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Introduction

This work investigates a novel computational model of pre-
verbal infant word learning in an attempt to create a more ro-
bust speech recognition system. Currently, the state-of-the-art
can be extremely accurate when used in its optimal environ-
ment. However, when taken out of its comfort zone accuracy
significantly deteriorates and does not come anywhere near
human speech processing abilities, even for the simplest of
tasks. We take inspiration from the ease with which new-
borns are able to learn words, with no apparent difficulty, and
develop into expert communicators of their native language.

In order to learn words, the young language learner must
be able to segment speech into useful units and then asso-
ciate them to visual referents from within their environment
(Smith & Yu, 2008). The model described here, the Acous-
tic DP-ngrams, attempts to solve the word-to-world mapping
problem through cross-modal (acoustic & visual) associative
learning set within an interactive framework, as illustrated in
figure 1 (for a more technical description of the system see
(Aimetti, 2009)).

Initial results show that there is significant potential with
the current algorithm, as it segments in an unsupervised man-
ner and does not rely on a predefined lexicon or acous-
tic phone models that constrain current Automatic Speech
Recognition (ASR) methods. The learning process concurs
with current cognitive views of early language acquisition
(Jones, Hughes, & Macken, 2006; Saffran, Aslin, & Newport,
1996; Saffran, Werker, & Werner, 2006; Smith & Yu, 2008),
and the key word detection experiments exhibit similar be-
haviours apparent in developing preverbal infants (Gomez &
Gerken, 2000; Kuhl, 2004; Newman, 2008).

The Computational Model

There are two key processes occurring within our learning
agent (LA):

1. Automatic Segmentation: Acoustic DP-ngrams is used
to automatically segment the speech, directly from the acous-
tic signal, into important lexical fragments by discovering
similar repeating patterns. This approach uses a dynamic pro-
gramming (DP) technique, dynamic time warping (DTW), to
accommodate the temporal distortion present in speech. The
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Figure 1: Word-to-World mapping set within an interactive
carer-learner framework. LA’s internal memory is inspired
by current cognitive views (Jones et al., 2006).

advantage of this approach is that it uses an accumulative
scoring system to measure the quality and length of the dis-
covered fragments. This method is similar to the Segmental
DTW algorithm developed to summarise recordings of aca-
demic lectures (Park & Glass, 2008).

2. Word-to-World Mapping: Figure 1 shows the inter-
action between LA and its parent (carer). During training
the carer incrementally feeds LA with cross-modal stimuli;
the acoustic stream consists of continuous speech, as sam-
pled data, and the visual stream consists of crisp tags, rep-
resenting the visual referents within the utterance. Internal
representations of the visual referents is achieved through the
co-occurring events from both modalities, as suggested by
Smith and Yu (2008). Each class is therefore emergent and
constantly evolves with the accumulation of exemplar tokens,
thus allowing the system to gradually become more robust to
the variation present in speech.



Experiments

LA is trained with 480 cross-modal utterances from a single
female speaker (F1); each utterance is passed to the system as
sampled acoustic data in parallel with the crisp visual tag(s),
representing the key word(s) that lie within it. To test the
emergence and robustness of internal representations, LA is
faced with a recurrent key word detection task throughout de-
velopment. This is carried out as probe moments which occur
every 20 utterances. LA is temporarily frozen and tested on
320 unobserved utterances from the known female speaker
(F1) and 320 unobserved utterances from an unknown male
speaker (M1). Only the acoustic part of the input is processed
and LA must recognise the key word(s), responding with the
correct visual referent(s).

Figure 2 displays the key word detection accuracy during
the learning period, which is shown as the percentage of cor-
rect key word detections over the number of utterances ob-
served. The blue plot with circles shows the F1 probe, the
green plot with squares shows the M1 probe and the red dis-
continuous plot shows the chance level of a correct guess.
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Figure 2: LA’s key word detection accuracy throughout de-
velopment. Probing is carried out every 20 utterances where
LA is tested on a known (F1) and unknown (M1) speaker.

Internal representations can be seen to emerge very quickly
from the plot in figure 2. After only 20 utterances LA is
already able to detect key words well above chance level,
achieving 54% for F1 and 31% for M1. Robust representa-
tions for F1 develop after 180 utterances, where key word de-
tection accuracy reaches a plateau of 92%(+1%). However,
internal representations for M1 seem to plateau after only 40
utterances and limited to a maximum of 49%.

Discussion & Future Work

This paper introduces a computational model of early word
learning abilities in preverbal infants. The algorithm is able
to successfully learn words in a cognitively plausible fashion.

It is clear to see from the results that LA quickly builds up ac-
curate representations to a familiar speaker F1, but is also still
able to generalise above chance level to an unknown speaker
M1 across gender with 40%to50% accuracy. This shows that
without observing other speakers, the system is not able to
build robust internal representations that can reliably gener-
alise across speakers, as suggested by Newman (2008).

One downside to this technique is that it is unable to run on
a large data-set as the exemplar tokens being stored in mem-
ory are unbound and tend to infinity. Currently, the authors
are investigating a method to automatically build prototype
representations for the most efficient units within the learn-
ers native language (i.e. with Hidden Markov Models). This
agrees with current thinking that infants begin learning lan-
guage attending to too much detail within their native lan-
guage, and that prototype representations (an average of ex-
emplar units stored in memory) occur with experience from a
greater variety of speakers (Kuhl, 2004; Newman, 2008).
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