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Abstract
Experiments on visual search have demonstrated the existence 
of a relatively large and reliable memory for which objects 
have been fixated;  an indication of this memory is that revisits 
(fixations on previously fixated objects) typically comprise 
only  about 5% of fixations. Any cognitive architecture that 
supports visual search must  account for where such memory 
resides in the system and how it can be used to guide eye 
movements in  visual  search. This paper presents a simple 
solution  for the EPIC architecture that is consistent with the 
overall requirements for modeling visually-intensive tasks 
and other visual memory phenomena. 

Keywords: visual search;  cognitive modeling; eye 
movements. 

Introduction
Many everyday and work activities involve visual search, 

the process of visually scanning or inspecting the 
environment to locate an object of interest that will then be 
the target of further activity. Many human-computer 
interaction tasks require such visual search to be made in a 
visual environment that is must simpler than natural scenes. 
For example, a particular icon coded by color, shape, and 
other attributes must be located on a screen and then clicked 
on using a mouse. This domain combines relative simplicity 
of the visual characteristics of the searched-for objects with 
practical relevance: the task is a natural one in the sense that 
such activities are very common in current technology. 
Visual search is so heavily relied on in many computer-
based systems that it probably is a major bottleneck in 
system performance. Thus understanding in detail how 
visual search works in such domains can lead to better 
system designs. In addition, if visual search can be 
understood in the context of a comprehensive computational 
cognitive architecture, then it will add to our knowledge of 
human perception, cognition, and action in the especially 
rigorous and coherent way characteristic of computational 
cognitive architectural modeling. 

Visual Search and Active Vision
In a laboratory visual search task, a display of objects is 

presented, and the participant must locate a particular object 
specified by perceptual properties and make a response 
based on whether such an object is present or exactly which 
properties it has (e.g.  the specific shape). In most 
experiments, the display is static and contains some number 
of objects,  only one of which is the target that must be 
responded to; the others are distractors. The properties of 
the display or the displayed objects are manipulated,  and 
reaction time (RT) and/or eye movements are measured. The 
empirical literature on this task was dominated for a long 
time by studies that measured only RT, and often for 

tachistoscopically presented displays that ruled out eye 
movements, but more recently the cost of eye movement 
data collection has decreased to the point that it has become 
much more common, and deservedly so. While any 
behavioral measurement only indirectly reflects the mental 
processes that produce it, RT is clearly much less diagnostic 
of what goes on during visual search than eye movements. 
Furthermore, tasks in which the eye is free to move about a 
static display in a naturalistic manner,  typical of eye 
movement studies of visual search, will be more 
representative of the normal operation of the visual system 
and the role of attention in visual activity. This point was 
argued eloquently by Findlay and Gilchrist (2003) in 
presenting an active vision framework for understanding 
visual activity; it is markedly different from traditional 
approaches to visual attention which have ignored both the 
role of eye movements and extra-foveal information.

A key process in visual search is choosing the next object 
for inspection. A variety of studies (see Findlay & Gilchrist, 
2003, for a review) have shown that this choice is not at all 
random; rather the color,  shape, size, orientation, or other 
visual properties of objects influences which object is 
chosen for the next fixation; the phenomenon is called 
visual guidance or eye guidance. In the active vision 
framework, these properties are available in extra-foveal or 
peripheral vision to some extent, meaning that visual 
attention, which in the context of normal visual activity is 
almost synonymous with where the eye is fixated, is a 
process of selecting for detailed examination one of a large 
number of objects currently perceived to be in the visual 
scene, and doing this selection on the basis of the visual 
properties available in extra-foveal vision. 

Fixation Memory
An important fact about visual guidance in visual search 

tasks is that an object that was previously fixated will be 
only rarely selected for a new fixation. This is an old result 
in eye movement studies (e.g. Barbur, Forsyth, & Wooding, 
1993), but it did not receive much attention until the 
controversial Horowitz and Wolfe (1998) claim that "Visual 
search has no memory." They compared search RTs of a 
static display with a changing display, in which the objects 
changed positions during search, and found no difference in 
RT. If the visual search mechanism remembered where it 
had already inspected, it should be disrupted if the objects 
changed location; the RT being unaffected argues that the 
search was not disrupted,  which means in turn that there was 
no memory for the previous fixations. Peterson, Kramer, 
Ranxiao, Irwin, and McCarley (2001) countered with a 
study demonstrating that "Visual search has memory". They 
recorded eye movements during search of a static display, 
and discovered,  as earlier studies had noted, that revisits 



were rare, meaning that the previous fixations were 
remembered in some way. 

Encoding failures trigger revisits. Peterson et al. went 
further with a detailed analysis showing that most revisits 
were made immediately after only one intervening fixation, 
which rules out memory failure as the cause of a revisit. 
Rather, Peterson et al. proposed that revisits were due to 
encoding failures: soon after fixating an object and moving 
on to the next,  the person would realize that the previous 
object had not been fully encoded, and so would revisit it. 
Using a Monte-Carlo model, they demonstrated that this 
explanation accounted for the statistical structure of the 
revisits considerably better than either a no-memory or 
memory-failure model.

Search strategies dominate.  Several subsequent studies 
(e.g. von Mühlenen, Müller & Müller, 2003; Geyer, von 
Mühlenen,  & Müller, 2006) using RT, eye tracking, and 
changing displays make it clear that the Horowitz and Wolfe 
results were an artifact of how the changing displays would 
force a change in task strategy.  If the display is changing, 
the only way to perform the task successfully is use a 
strategy that compensates, such as to "wait and see" whether 
the target appears in a subset of the display.  In other words, 
the changing display paradigm forces a strategy that 
produces a no-memory effect.  Regardless of the 
methodological issues and the merits of the results, an 
important implication is that making use of memory for 
previous fixations is not "hard-wired" in the visual system, 
e.g. at the oculomotor level, but rather is an optional feature 
of a visual search task strategy.

Objects, not locations. Additional studies (e.g. Beck, 
Peterson, & Vomela, 2006) have attempted to determine 
whether what is remembered on each fixation is the 
location, the identity, or the properties of the objects. 
However, it should be clear that in a changing-display 
paradigm, if objects are identified in terms of their 
properties (e.g. shape), then they are "teleporting" from one 
location to the next, which is not a natural input to the visual 
system. Hulleman (2009) performed the most elegant and 
naturalistic test of whether fixation location was 
remembered simply by having the objects move around on 
the display during search similar to the Pylyshyn & Storm 
(1988) multiple object tracking paradigm. He observed 
almost no difference in search rates compared to a static 
display. This strongly suggests that fixation locations 
themselves were not remembered, since the objects were 
continuously changing location. The conclusion would seem 
to be that previously fixated objects are being remembered, 
where object identity persists over changes in location. In a 
naturally static display, such as the Peterson et al.  (2001) 
paradigm, the issue does not arise: objects retain their 
location and properties.

Large capacity. The consensus of the empirical literature 
at this point is that memory for previous fixations exists. 
Moreover, it has a fairly large effective capacity. The 
Peterson et al. study involved twelve objects, half of which 
would have to be visited on the average. Results described 
in Kieras and Marshall (2006) involved 48 objects for two 
targets, with low revisit rates. Takeda (2004) estimated the 
capacity as high as 20 objects. This effective capacity is 

much more than the typical estimates for working memory, 
and so-called visual working memory in particular (e.g. 
Luck & Vogel, 1997) which has been estimated as holding 
only about four objects in a change-detection paradigm.

The locus puzzle. From the point of view of cognitive 
architecture, this result presents a serious quandary. Where 
is this capacious and reliable memory situated, and how 
does it work? Is it a special-purpose memory, or is it simply 
a by-product of some other memory function? These 
questions were addressed as part of program of detailed 
quantitative modeling of visual search tasks using the EPIC 
architecture, which was developed to represent perceptual-
motor constraints on performance as fully as cognitive 
constraints, and so is well-suited to the goal. This work with 
EPIC visual search models focussed on representing how 
multiple stimulus attributes could guide visual search 
through conjunctive feature guidance, and how to represent 
their differential availability at the retinal level. These 
models were successful at accounting for detailed results in 
very simple tasks such as Findlay's (1997) first-saccade 
conjunctive search, searching very large displays of 100 
multiattribute objects as in Williams (1967), and searching 
dense displays of 48 complex objects (Kieras & Marshall, 
2006). However, in these models, the memory for fixations 
was represented in an unsatisfactory ad hoc manner. This 
paper presents a detailed model for the Peterson results to 
show how the fixation memory could be a side function of a 
memory system that is already present.

The EPIC Cognitive Architecture
The EPIC architecture for human cognition and 

performance provides a general framework for simulating a 
human interacting with an environment to accomplish a 
task. Due to lack of space, the reader is referred to Kieras & 
Meyer (1997), Meyer & Kieras (1997), or Kieras (2004) for 
a more complete description of EPIC. Figure 1 provides an 
overview of the architecture, showing perceptual and motor 
processor peripherals surrounding a cognitive processor; all 
of the processors run in parallel with each other. To model 
human performance of a task, the cognitive processor is 
programmed with production rules that implement a strategy 
for performing the task. When the simulation is run,  the 
architecture generates the specific sequence of perceptual, 
cognitive, and motor events required to perform the task, 
within the constraints determined by the architecture and the 
task environment. 

Figure 2 expands the visual processor shown in Figure 1. 
The eye processor explicitly represents differential retinal 
availability in terms of acuity functions that specify which 
visual properties of objects are currently visible as a 
function of the current position of the eye and the size of the 
object. The currently available visual properties for each 
object are represented in the sensory store; the perceptual 
processor then encodes the properties of each object, 
possibly in relation to other objects, and passes the encoded 
representation on to the perceptual store where they are 
available to the cognitive processor to match the conditions 
of production rules. The perceptual store thus contains the 
current representation of the visual world that cognition can 
reason and make decisions about, especially decisions about 



where to move the eyes next by commanding the ocular 
motor processor. The perceptual store retains the 
representations for all objects currently visible, with more 
information and detail about those that have been fixated.

When the eyes move away from an object, the properties 
of the object persist for a short time (e.g. 200 ms) in the 
sensory store, and when lost, the perceptual processor notes 
that the corresponding property in the perceptual store no 
longer has sensory support. After a relatively long time, the 
property will then be lost from the perceptual store.  But if 
the object disappears completely, it and all of its properties 
will be removed from the perceptual store fairly quickly. 

The concept is that as the eyes move around the visual 
scene, a complete and continuous representation of the 

objects currently present in the visual situation will be built 
up and maintained in the perceptual store, allowing the 
cognitive processor to make decisions based on far more 
than the properties of the currently fixated object. The 
notion that this information persists for a considerable time 
as long as the scene is present in supported by studies 
summarized by Henderson & Castelhano (2005) in which a 
visual scene is continuously present,  but using a gaze-
contingent forced-choice paradigm, subjects are tested for 
their memory of a previously fixated object in a naturalistic 
scene; retention times at least several seconds long were 
observed.

Modeling Fixation Memory
The earliest attempts to fit models with the EPIC 

architecture for visual search in several tasks determined 
that some kind of fixation memory is required in order to 
account simultaneously for basic measures such as the 
number of fixations, search time, and distribution of 
fixations on objects with different properties (e.g. Kieras & 
Marshall,  2006).  In order to include fixation memory, these 
earliest models simply "tagged" each object in memory to 
designate that it had already been fixated and then made an 
occasional random fixation to produce a revisit.  This is an 
unsatisfactory ad-hoc solution.

The model presented here examines a more interesting 
possibility,  namely that the perceptual store,  which 
represents the current visual scene, could serve as a memory 
for fixations. That is, if the object has been fixated,  then its 
representation would include the relevant property of the 
object; if the object was the target, the search would stop as 
soon as this was determined. But if it was not, then the next 
object to be examined can be chosen from the set of objects 
currently lacking information about the property in question. 
Thus by choosing objects whose properties are unknown, 
previously fixated objects will not be revisited. 

However, since the encoding of the fixated objects is not 
perfectly reliable, there will be occasions when a previously 
fixated object will be lacking the target property,  and so will 
get visited again. This concept is the basis for the simple 
statistical model presented by Peterson et al. (2001); the 
explicit cognitive architectural model presented here 
provides a generalization to other visual search tasks, and in 
addition, clarifies some aspects of their results.

Model for the Peterson Task
Figure 3 shows the EPIC model display of the physical 

visual situation consisting of the stimuli for a single trial in 
the Peterson task after several fixations. The stimuli on each 
trial were twelve objects presented in random locations on a 
static display; eleven were distractors,  consisting of rotated 
L-shapes, and one was the target, a T-shape rotated either to 
the left or to the right. The participant's task was to locate 
the T  shape and press a key depending on whether it was the 
left- or right-rotated shape. Figure 3 shows how the objects 
were quite small, being 0.19° in visual angle size,  and were 
widely spaced, a minimum of 4.9° apart. Participants with 
normal vision would thus have to fixate each object 
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individually to recognize it. Because of space limitations, 
the very small shapes are obscured in the figure. 

The EPIC model to fit the data comprised a choice of (1) 
visual acuity parameters, (2) an encoding process in the 
visual perceptual processor,  (3) a parameter for the encoding 
failure rate, (4) a parameter for the decay time of visual 
properties in the perceptual store that are no longer sensorily 
supported, and (5) a set of production rules that 
implemented the visual search strategy. Each of these model 
inputs will be described briefly.

(1). The visual acuity parameters for this situation are 
very simple,  specifying that the shape of an object was 
available only in the fovea,  while the location of an object is 
available throughout the visual field,  meaning that any 
object can be selected as a fixation target. The object color 
plays no role in the task, but its availability was left at the 
default value. Figure 4 shows the effects of the acuity 
functions for the same display as in Figure 3.

(2, 3).The perceptual processor encodes the objects by in 
terms of the recognized shapes for distractors and targets, 
which are then stored in the visual perceptual store where 
they become available for production rules to match on. The 
Peterson et al. encoding failure concept is represented as 
follows: with some constant probability, the encoding could 
fail and result in a partial encoding that retains some 
information about whether a distractor or target was present, 
but not enough to identify the actual shape. For example, a 
partial encoding for distractor could be that two line 
segments were joined at the ends, while a partial encoding 
for a target could be that one line segment joined another in 
the middle. For purposes of display in the model, these 
partial encodings are represented by partially rotated L and 
T shapes. The probability of partial encoding of targets and 
distractors is assumed to be the same. 

(4). After encoding, if the eye is then moved to a different 
object, the actual shape quickly becomes unavailable, and 
the encoded shape is marked as no longer having sensory 
support. The encoded property then disappears from the 
perceptual store after the time specified by the decay time. 
In accordance with the Henderson and Castelhano (2005) 

Figure 3. An example of the physical situation in a Peterson et al. 
(2001) task trial after several fixations as depicted in EPIC's 
display. The concentric circles show the current location of the 
eyes; the small inner circle has a 1° radius corresponding to the 
conventional fovea size; the outer circle is a calibration ring with 
10° radius. The sizes of the overall display and the search objects 
are shown to scale, so the objects are indeed very small. 

 
Figure 4. An example of the contents of the sensory store 
corresponding to the lower right corner of Figure 3. Objects whose 
location, but no other properties, are known are represented as 
light gray open circles (top two). Objects which are close enough 
to the current fixation point to have their black color available, but 
not their shape, are represented as black open circles (right hand 
two). Both the shape and the color are available for the currently 
fixated object. 
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results, this parameter is assumed to be a few seconds in 
magnitude, though for purposes of model fitting for this 
data, it was made as small as possible. 

(5).  The visual search strategy in the model is an 
application of a basic strategy, shown in Figure 5, that has 
been used in several EPIC visual search models. There are 
two threads of execution. Nomination rules in the first 
thread propose objects to fixate based on available visual 
properties, and also nominate a random choice. Choice rules 
then pick a single candidate from the nominated objects 
according to a priority scheme, and launch an eye 
movement to the chosen candidate. The rules in the second 
thread wait for all relevant properties of the fixated 
candidate to be fully visible and either respond if it is a 
target,  or discard the candidate if not. The overlapped 
processing provided by the two threads enables the time 
between successive eye movement initiations to be short, 
about 250 ms, which is commonly observed in high-speed 
visual search tasks.

For the Peterson model, the strategy chooses objects for 
the next fixation according to the following simple scheme: 
Only objects not being currently inspected are considered. If 
an object is partially encoded as a target, it is given first 
priority for the next fixation, followed by an object not 
encoded as a distractor (either no encoding at all or partially 
encoded as a distractor), followed by an object chosen at 
random. Thus the strategy favors possible targets, then 
unvisited or partially encoded objects, and avoids objects 
fully known to be distractors. Figure 6 summarizes the 
model by showing the contents of the perceptual visual store 
corresponding to Figure 3, right before a target revisit.

Results
Figure 7 shows the observed and predicted results for this 

model, with the observed data from Peterson et al. (2001) 
shown as solid points and lines with 95% confidence 
intervals. The graph shows the proportion of fixations that 
are revisits as a function of lag, the number of fixations 
between the original and the revisit. Thus most of the 
revisits occur after fixating one intervening object. The total 
number of revisits is shown in the upper curve, and the 
number of revisits on targets in the lower curve. 

The predicted values from the model are shown as open 
points and dotted lines. The model parameter values were 
chosen by iteration to produce a good fit with 10,000 
simulation trials per run. The fit of the model predictions is 
very good; almost all of the predicted values are within the 
confidence intervals; the R2 and standard error of prediction 
is 0.986 and 0.001 for Revisits, and 0.999 and 0.000 for 
Target Revisits. The parameter values producing this fit are 
0.14 for the probability of encoding failure, and 4000 ms for 
the decay time of properties in the perceptual store. Any 
shorter decay time produces an increase in the number of 
predicted revisits at very long lags.

A comparison to the Peterson et al.  2001 model is useful. 
Although they reported the number of target revisits, they 
modeled only the total number of revisits, and so did not 
attempt to account for the fact that most of the immediate 
revisits are due to revisits to the target. Exploration with a 
variety of strategies and parameter values makes it clear that 
to fit both curves, the model must make the distinction 
between partially encoded targets and partially encoded 
distractors. Partially encoded targets must be favored for 
revisits, and partially encoded distractors treated similarly to 
unvisited objects — otherwise,  there is no way to fit both 
curves simultaneously.  That is, if possible targets are not 
favored for a revisit, then parameters that fit the overall rate 
of revisits far underpredict the proportion of target revisits. 

 

Figure 6. An example of the contents of the perceptual store after 
several fixations corresponding to the upper left corner (left panel) 
and lower right corner (right panel) of Figure 3. Two objects 
whose color is known to be black, but whose shape is unknown are 
represented as black open circles. Previously fixated objects have 
encoded shapes available. In the right panel, three distractors have 
been fixated, including the current one. In the left panel, there is a 
partially encoded target at the top left, and partially encoded 
distractor in the center right, represented as partially rotated 
shapes. The strategy is about to move the eyes back to the 
previously visited target.
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In fact, according to the model, the revisit data for all 
objects are the sum of two underlying functions: Partially 
encoded distractors are revisited only because they are 
treated like unvisited distractors, yielding a shallow descent 
in revisits as a function of lag (imagine the total revisits 
curve for lags 2 to 12 extrapolated back to lag 1). But 
partially encoded targets are revisited immediately, 
producing the sharp descent from lag 1 to lag 2.  The sum of 
these two trends produces the sharp-then-shallow curve for 
total revisits which was modeled by Peterson et al. The 
current EPIC model always revisits partially encoding 
targets immediately, and never favors partially encoded 
distractors over unvisited distractors. It might be possible to 
improve the fit slightly by using different encoding failure 
parameters for targets and distractors,  and a more subtle 
choice strategy, but the current model fits the data 
acceptably well with few free parameters and a simple 
strategy. 

Conclusion
The Peterson et al. (2001) experiment is fundamental in 

that it well isolates a set of basic processes underlying visual 
search that a successful cognitive architecture must be able 
to explain naturally. The present EPIC model demonstrates a 
how memory for fixations can emerge from the operation of 
a strategy for choosing the next object based on a persistent 
visual store of information about previously fixated objects. 
In this task, the only relevant properties of the objects is 
their location, whose wide availability makes it possible to 
choose an previously unvisited object for fixation, and the 
shape, visually available for only the one object foveated at 
a time. This model works by relying on the persistence of 
the perceptual encoding in the visual store and a simple 
strategy that maximizes task performance by making the 
most efficient use of partial encoding results. 

The persistent visual store needs to be present in the 
architecture to allow cognition to reason about the entire 
visual situation. Its persistence is required for this 
architectural function, and is consistent with other empirical 
results such as those surveyed by Henderson and Castelhano 
(2005). 

Thus the architectural puzzle posed by the existence of 
fixation memory can be solved by relying on this otherwise-
required store; no special architectural mechanism is need to 
account for fixation memory. Models currently being 
refined for other visual search tasks (such as that described 
in Kieras & Marshall, 2006) show that this concept of 
fixation memory scales to more complex displays, objects, 
and search tasks.
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