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Abstract

A common feature of many cognitive architectures is a central 
executive  control  with  a  50-millisecond  cycle  time.   This 
system determines which action to perform next, based on the 
current context.   We present the first  model of this system 
using  spiking  neurons.   Given  the  constraints  of  well-
established  neural  time  constants,  a  cycle  time  of  46.6 
milliseconds emerges from our model.  This assumes that the 
neurotransmitter  used  is  GABA (with  GABA-A receptors), 
the primary neurotransmitter for the basal ganglia, where this 
cognitive module is generally believed to be located.

Keywords: cognitive  cycle  time;  central  executive;  LIF 
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Introduction
ACT-R,  Soar,  GOMS,  EPIC,  and  a  variety  of  other 
approaches  to  modelling  human  cognition  all  contain  a 
common assumption about the central control of cognitive 
operations.  This is usually regarded as a production system 
where  IF-THEN  rules  are  applied  sequentially.   This 
imposes a serial bottleneck where low-level decisions as to 
which cognitive action should be performed next are made, 
requiring  approximately  50  milliseconds  per  decision 
(Anderson et al., 1995).

While this 50 millisecond cognitive cycle time leads to 
models that match empirical data, the neurological basis for 
this  time  constraint  has  not  been  previously  established. 
This paper develops a model of low-level rule application 
using realistic spiking neurons.   The 50 millisecond cycle 
time  is  then  shown  to  be  the  result  of  well-established 
neuron  membrane  and  neurotransmitter  properties.   The 
result is not only a realistic, neurally plausible model of a 
core component for cognition, but also an explanation for 
why this characteristic time appears across architectures.

The model presented here is not meant to be complete.  In 
particular, we do not provide a model of the developmental 
process  which  leads  to  the decision making system.  We 
also  do  not  currently  include  any  learning  capabilities, 
although this is part of our ongoing research.  Instead, our 
model  uses  fixed  mathematically  derived  synaptic 
connection  weights,  in  contrast  to  most  neural  network 
models.   These derived weights are meant to be the final 
result  of  a  learning  process,  and  weights  derived  in  this 
manner have been shown to be realistic and highly robust to 
noise and neuron death (Eliasmith & Anderson, 2003).

Recent  results  have  suggested  that  the  brain  area  that 
corresponds  to  the  system we  are  modelling  is  the  basal 
ganglia (e.g. Anderson et al., 2004).  This provides us with 
constraints as to the neural properties and neurotransmitters 

involved.   However,  since  we  are  not  yet  modelling  all 
aspects of this system and its interactions with other brain 
areas, we do not present our work as a complete model of 
the basal ganglia.

We  start  by  describing  the  basic  components  of  our 
model:  the  standard  leaky  integrate-and-fire  (LIF)  neuron 
and  a  model  of  post-synaptic  current  caused  by  a  neural 
spike.  From these, we construct a simplistic minimal model 
of  neural  decision  making.   We  then  add  a  competition 
system so  that  only  one  option  at  a  time  is  represented. 
Finally, we build a working memory system so that context 
can be stored over time.

Neural Model
The standard basic model of spiking neurons is  the leaky 
integrate-and-fire  (LIF)  model.   While  computationally 
simple,  it  provides  a  good approximation to  real  neurons 
over  a wide range  of conditions (Koch,  1999).   It  uses  a 
point  neuron,  as  opposed  to  more  complex  compartment 
models where ion flows within the neuron are modelled at a 
sub-millisecond level.  Current is constantly leaking out of 
the neuron as per the membrane resistance R, but if enough 
input current is gathered to cause the voltage to be above a 
certain threshold, then the neuron will fire.  After firing, the 
voltage  is  set  to  0  for  a  fixed  refractory  period  (2 
milliseconds) before starting to gather current again.

Given a constant current input J and membrane resistence 
R, the voltage level of the LIF neuron changes over time as 
given in Equation 1 and shown in Figure 1.  The timing of 
this  behaviour  is  controlled  by  τRC,  the  membrane  time 
constant  of the neuron.   Larger  values  cause the neuron's 
voltage to change more slowly, making it slower to respond 
to  changes  in  input  current.   Interestingly,  many  real 
neurons  are  well-characterized  by  LIF  neurons  with 
membrane time constants in the range of 20 milliseconds, so 
this value is used for all simulations reported here.

V t =J R 1−e−t /RC (1)

Figure 1: LIF neuron with constant input current.



When a neuron fires, it affects the input current to all of the 
neurons to which it is connected.  This current  h(t) can be 
characterized by Equation 2, where τs captures the effects of 
neurotransmitter  re-uptake  and  dispersal.   As  shown  in 
Figure  2,  a  small  τs provides  a  fast,  short-lasting  effect 
(~10ms), while others last for hundreds of milliseconds.

ht =t e−t / s (2)

Figure 2: Post-synaptic currents for common synapses.

The τs values used here are approximate, based on available 
neurophysiology data.   Gupta et  al. (2000) estimate  τs  for 
GABA-A to be 10.41ms.  AMPA is generally found to be 
between  1ms  and  10ms  and  NMDA  between  50ms  and 
150ms (e.g. Moreno-Bote & Parga, 2004).

While  the  neural  model  we  are  using  is  not  a  perfect 
replication  of  real  neurons,  we  find  it  sufficient  for  our 
purposes.  The LIF neurons allow us to explore the timing 
of neural processing, unlike the typical rate neurons used in 
most neural models.  These not only do not spike, but also 
do  not  have  any  temporal  dynamics  at  all,  responding 
instantly to any change in input.  Furthermore, given that the 
basic neural behaviour is well captured by the LIF model, 
switching to a more detailed model should not significantly 
impact the large-scale behaviour of the system (on the order 
of tens of milliseconds).  That said, our model does not rely 
on the use of LIF neurons, and other more complex models 
could be used.

Neural Representation
Any  model  of  a  central  executive  control  system  where 
particular  actions are chosen based on the current  context 
must  confront  the  issue  of  neural  representation.   The 
current context must be represented in such a manner as to 
appropriately  affect  the behaviour  of  other  neurons.   The 
approach described here to define and create such models is 
known  as  the  Neural  Engineering  Framework  (NEF; 
Eliasmith and Anderson, 2003).  

To  be  as  general  as  possible,  we  make  the  minimal 
assumption that representations can be distributed across a 
group of neurons, but leave open the question of the exact 
nature  of  this  distribution.   Within  a  neural  group,  each 
neuron has a preferred value  to which it responds most 

strongly,  and  this  response  is  reduced  as  the  difference 
between this preferred value and the actual value increases.  

If we assume that any value the neurons can represent can 
be thought of as a vector x, this behaviour can be captured 
in  terms  of  the  input  current  J as  shown  in  Equation  3. 
Adjusting the neuron gain  α, the background input current 
Jbias,  and  the  preferred  direction  vector  allows  us  to 
capture  a  wide  range  of  known  neural  representation 
schemes.

J= ⋅xJ bias (3)
In  the  simplest  case,  100  neurons  could  represent  a  100 
dimensional  vector  x by  having  each  be  a  different 
unit  vector  in  each  of  the  100  dimensions.   This  would 
provide a completely local representation of each value in 
the vector.  More realistically, 100 neurons could represent 
one  or  two  dimensions  by  having  values  chosen 
randomly  (i.e.  uniformly  distributed  around  the  unit 
hypersphere in that many dimensions).  This approach has 
been observed in numerous areas of visual and motor cortex 
(e.g. Georgopoulos et al., 1986).  By having more neurons 
per dimension, the representation error can be decreased to 
arbitrarily low levels (error is inversely proportional to the 
number of neurons). 

Since Equation 3 can be used as the input to a model of an 
LIF neuron, we can determine the sequence of spikes that 
would be generated for a group of neurons if a particular 
vector  x is  being  represented.   We  can  also  perform the 
opposite  operation:  given  a  sequence  of  spikes  we  can 
estimate  the  original  vector.   As  shown  elsewhere 
(Eliasmith & Anderson, 2003), this can be done by deriving 
the decoding vectors  as per Equation 4, where ai is the 
average firing rate for neuron  i with a given vector  x, and 
the integration is over all values of x.

=
−1
 ij=∫ ai a j dx  j=∫ ai x dx (4)

The resulting vectors  can be used to determine an 
estimate of the represented value using Equation 5.  This is 
an estimate that  varies  over  time based on the individual 
spikes.  Importantly, it is the optimal estimate when under 
the  constraint  that  the  estimate  must  be  built  by  linearly 
adding the effects  of the post-synaptic currents  caused by 
each  spike.   This  is  precisely  the  constraint  that  other 
neurons are under, so Equation 5 indicates the best that the 
original vector can be reconstructed by another neuron.

x t =∑
i ,n

t−t i ,n∗h iti=∑
i ,n

h t−ti , ni (5)

This  result  further  provides  a  method  for  determining 
optimal  synaptic  connection  weights  between  groups  of 
neurons if one group is to perform a linear transformation 
on  the  value  represented  by  the  other.   If  one  group  of 
neurons represents  x and the other group should represent 
Mx,  then  this  can  be  achieved  by  setting  the  connection 
weights w as per Equation 6.

w ij= j
 j Mi (6)

We can  also  use  a  variant  of  Equation  4  to  determine 
connection weights for arbitrary nonlinear transformations 
of x (see Eliasmith & Anderson, 2003 for details).



The Task
As a baseline for the construction and demonstration of our 
model, we use a simple minimal sequential decision making 
task.  This is meant to show that the model is capable of 
responding  appropriately  to  different  contexts,  and  is 
capable of modifying the context itself.

The  current  context  is  represented  by a large  group of 
neurons (at least 2000 in all models shown here), as per the 
representation  system  described  in  the  previous  section. 
The preferred  direction vectors  are  chosen randomly 
from  the  unit  hypersphere,  and  the  neuron  gains  α and 
background  currents  Jbias are  chosen  to  give  a  uniform 
distribution  of  maximum firing rates  between  100Hz and 
200Hz  and  an  average  background  firing  rate  of  40Hz, 
consistent with many cortical neurons.  At the beginning of 
a  simulation,  this  context  is  fixed  to  represent  the  initial 
state of the model, but after this initialization period (50ms) 
there  is  no  external  input.   That  is,  the  model  must  be 
capable of maintaining and changing its own internal state.

We  arbitrarily  choose  five  vectors  to  represent  five 
different internal states referred to as A, B, C, D, and E.  The 
model's task is to implement the set of state change rules 
that will cause it to cycle through these five states.  If the 
system is in state A, it should change to state B;  if it is in B, 
it should change to C, and so on.

In terms of the cognitive architecture ACT-R, this would 
involve five production rules.  Each production rule would 
match on a particular goal buffer state (A through E), and if 
that  production  fires  it  would  modify  the  goal  buffer  to 
contain the next state in the sequence.  In ACT-R (and in 
most other cognitive architectures), this process is externally 
fixed to require 50 milliseconds.   As will be seen, in our 
models this timing will emerge from neural properties.

Figure 3 shows an idealized (non-neural)  model of this 
process.   The  five  different  colours  indicate  the  five 
different  representational  states  over  a  period  of  500 
milliseconds.  This is enough time for the system to repeat 
the cycle twice.  At each moment in time, we measure the 
represented vector x and compare it to the arbitrarily chosen 
patterns A through E.  This comparison is done by taking the 
dot product of the represented value (from Equation 5) and 
each of the five target patterns.

Figure 3: Behaviour of an ideal model cycling through five 
states, fixed to have a 50 millisecond cycle time.

Model 1: Basic Sequential Decisions
Our first model is created by adding a separate population of 
neurons  for  each  of  the rules  to  be implemented.   These 
neurons must be connected to the main context neurons so 
that they will only fire when the value being represented is 
the same as (or very close to) the desired state (A through 
E).  When a particular group of neurons starts to fire, their 
connections back to the context neurons are such that they 
will  drive  its  firing  towards  the  desired  next  state.   This 
structure  is  shown in Figure 4.   For  clarity,  this  diagram 
shows only three rules: A→B, B→C, and C→A.

Figure 4: Neural groups and connections for Model 1.

To form the synaptic connections from the context  to the 
rule neural groups, we can use Equation 6.  For example, for 
the connection to the first rule, we set M to be the pattern A. 
As per Equation 6, this means that the neural group will be 
driven to represent the value Ax, which is the dot product of 
the represented  context  value with  A.   This will  be large 
(near  1)  when  A is  being represented,  and small  (near  0) 
when another pattern is being represented.

The properties of the neurons in the rule groups must also 
be set.  Here, we can make use of the fact that we want these 
neurons to not fire at all when representing 0, but should be 
sensitive to values near 1.  This can be achieved by having a 
large  negative  Jbias (with  some  random  variation).   The 
corresponding neuron tuning curves are shown in Figure 5. 
These show the average spiking rate of ten different neurons 
for different contexts  x.  To see the actual spiking patterns 
over time, Figure 6 shows the spikes caused by varying the 
input to this neural group from 0 to 1 and back to 0 over one 
second. 

Figure 5: Average firing rates for neurons detecting the 
presence of pattern A.  Different context patterns are on the 
x-axis: far left is a context unlike A (dot product of 0), far 

right is a context of exactly A.  Each curve shows a different 
neuron with different values of α and Jbias.
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Figure 6: Individual neuron spikes for the neural group 
detecting A.  Each neuron's spikes are separated along the y-
axis.  Dot product of the context with A is varied from 0 to 1 

and back to 0 over one second (dotted line).  The value
x decoded using Equation 5 is shown (solid line).

We use a similar process to form synaptic connections from 
the  individual  rule  groups  back  to  the  context  neurons. 
Here, the weights encode the effect of each rule, indicating 
how the context should be changed if this rule is applied. 
These are again calculated using Equation 6.  The resulting 
model has a variety of parameters, given in Table 1.

Table 1: Parameters of the model
Parameter Default value

# of context neurons 2000
# of neurons per rule group 20

membrane time constant (τRC) 20ms
synaptic time constant for context (τSC) 10ms
synaptic time constant for rules (τSR) 10ms

The behaviour of the resulting model is shown in Figure 7. 
As  can  be  seen,  it  successfully  cycles  between  the  five 
states.  For this particular model, each change requires an 
average  of  27.5ms,  making  this  much  faster  than  the 
expected 50 millisecond cycle time.  Furthermore, this rate 
is not sensitive to the numbers of neurons in each group: 
increasing these values by a factor of 10 causes only a slight 
decrease  (<2ms)  in  the  cycle  time,  since  adding  more 
neurons decreases the representational error in the system.

Figure 7: Behaviour of Model 1.  Similarity is determined 
by the dot product of x (calculated from the spikes of the 
context neurons using Equation 5) with the vectors A to E.

The  main  effect  on  behaviour  is  seen  by  adjusting  the 
synaptic  time constants.   As shown in Figure 2,  different 
neurotransmitter/receptor  pairs  have  different  time 
constants.  We can adjust the synapses from context neurons 
to rules separately from the ones from rule neurons to the 
context.   These  parameters  are  varied  in  Figure  8.   The 
membrane  time  constant  is  known  to  be  approximately 
20ms for a wide range of neurons, so it is not adjusted here. 

Figure 8: Average cycle time in seconds for varying τSC and 
τSR in Model 1.  Values above 0.1 indicate either a cycle 
time above 100ms or no cycling (an infinite cycle time).

Given the results in Figure 8, the model is successful when 
the synaptic time constant for the context neurons is below 
30ms,  which  is  consistent  with  both  GABA-A  and  fast 
AMPA synapses.  This limit decreases as the synaptic time 
constant of the rule neurons increases.

While  this  model  is  successful  at  cycling  across  five 
different states, it fails in many other cases.  For example, 
Figure 9 shows the behaviour when cycling between three 
states.  Here, cycling behaviour is initially evident, but over 
time the  system converges  to  a  static  representation.   In 
particular, it converges to representing all three states at the 
same  time.   The  final  context  value  is  the  superposition 
(vector sum) of A, B, and C.  This is clearly not the desired 
behaviour.

Figure 9: Behaviour of Model 1 when there are only three 
states.  Similarity is determined by the dot product of x

(calculated from the spikes of the context neurons using 
Equation 5) with the vectors A, B, and C.



Model 2: Inhibition Between Rules
To improve  on Model  1  and  fix  the  behaviour  shown in 
Figure 9, we needed to add a mechanism to encourage the 
application  of  only  one  rule  at  a  time.   This  was 
accomplished  by adding inhibition between the groups of 
neurons responsible for each rule.  That is, if the neurons in 
the first group are firing, this should decrease the activity in 
the other four groups.  This is accomplished with Equation 
6,  where  M is  simply  the  value  -wi (the  strength  of  the 
inhibition).  We must also add a self-excitatory connection 
of strength we within the neurons of each rule group, so as to 
counteract this inhibitory current.  This new model is shown 
in Figure 10.

Figure 10: Neural groups and connections for Model 2.

For wi of 0.5 and a we of 1, the model is successfully cyclic 
for  cycles  of  2  through  20  (which  was  as  high  as  was 
tested).  That is, the resulting behaviour looks like Figure 7, 
rather than Figure 9.  The precise effects of these parameters 
will be explored in future work, as they are likely to impact 
any reinforcement learning system which might be used to 
bias  one  rule  over  another  (such  as  in  the  ACT-R utility 
learning  system).   With  these  parameter  values,  the 
behaviour of the model for varying τSC and τSR is shown in 
Figure 11.  We can see that Model 2 is slightly slower, but 
more stable over a wider range of synaptic time constants.

Figure 11: Average cycle time in seconds for varying τSC 

and τSR in Model 2.  Values above 0.1 indicate either a cycle 
time above 100ms or no cycling (an infinite cycle time).

While  this  model  eliminates  the  problem of  convergence 
onto a superposition of states,  there is  a further difficulty 
present in both Model 1 and Model 2.  So far, we have been 
assuming that this rule-following system is completely self-
sufficient.   In  particular,  once  an  action  is  chosen,  the 
context is modified, and the system is then immediately able 
to start identifying the next rule to apply.

However, in real cognitive models, the central production 
system is only one of many components that can affect the 
current context.  For example, in ACT-R, it is common for 
the  production  system  to  request  that  the  declarative 
memory  system  recall  a  fact.   While  that  fact  is  being 
recalled, the production system may not be doing anything, 
as no rules may apply until that fact is found (which may 
take hundreds of milliseconds).  During that time, no rules 
are applied, but the context must be maintained.

Figure 12 shows the behaviour of Model 2 when no rules 
can be found that apply to the current context.  This is done 
by removing the rule that transitions from E to A.  As can be 
seen, when no rule can be applied, the system  forgets the 
current context, since no rule is firing to set it in the context 
population.  Model 1 behaves similarly.

Figure 12: Behaviour of Model 2 when the rule to go from 
E to A is removed.  The context information is lost.

Model 3: Maintaining Working Memory
To eliminate the forgetting effect  shown in Figure 12, we 
add recurrent  connections among the neurons representing 
context.  This approach has previously been used to model 
working  memory  (Singh  &  Eliasmith,  2006),  and  is  a 
generic method for storing information over time in spiking 
neurons.   This is  done by using Equation 6 to  determine 
synaptic  weights  from  the  context  population  back  into 
itself, with M set to be the identity matrix I.  The resulting 
model is shown in Figure 13.

The behaviour of this model when the rule to transition 
from E to A is removed is shown in Figure 14.  In contrast 
to  Model  2  (Figure  12),  the  system  is  now  capable  of 
maintaining context information over time.  

Adding this new recurrent connection allows information 
to  be  stored,  but  it  also  slows  down  the  process  of 
modifying this information.  The behaviour for varying τSC 

and τSR is shown in Figure 15.
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Figure 13: Neural groups and connections for Model 3.

Figure 14: Behaviour of Model 3 when the rule to go from 
E to A is removed.  The context information is maintained.

Figure 15: Average cycle time in seconds for varying  τSC 

and τSR in Model 3.  Values above 0.1 indicate either a cycle 
time above 100ms or no cycling (an infinite cycle time).

Discussion
Our Model 3 successfully identifies the rule appropriate to 
the current context and modifies the context appropriately. 
It  is  able  to  keep  the  patterns  for  each  context  separate 
(unlike Model  1) and store information over  time (unlike 
Model 2).  Furthermore,  if the synaptic time constants for 
both the context neurons and the rule neurons are set to be 
10ms, the average cycle time is 46.6ms, very close to the 
standard of 50ms.  As noted above,  10ms is the synaptic 
time  constant  for  GABA-A  receptors.   These  are  the 
primary synaptic receptors in the basal ganglia, which is the 
postulated location responsible for sequential rule selection.

While our model closely matches the generally accepted 
cycle time of 50 milliseconds, more is needed before it can 
be accepted as a neural model of central executive control. 
Most  crucially,  cognitive  architectures  generally  postulate 
rules that are much more complex than “if A then B”.  We 
have  shown  elsewhere  (Stewart  &  Eliasmith,  2008)  how 
complex  symbolic  rules  can  be  translated  into  vectors 
appropriate for our model.  This would require the addition 
of a new neural population capable of combining the output 
of the rule neurons with the existing context.  Preliminary 
results indicate that such a system would increase the cycle 
time by 5-10ms if AMPA or GABA-A are used.

We are also in the process of directly mapping our model 
onto the architecture of the basal ganglia and its connection 
to the cortex via the thalamus.  In this case, the context may 
be stored using faster AMPA connections in various cortical 
areas and then gathered in the striatum for matching.  The 
thalamus would then apply the complex rules mentioned in 
the  previous  paragraph.   This  is  a  direct  match  to  the 
mapping  from  modules  to  brain  areas  found  in  ACT-R 
(Anderson et al., 2004).  Furthermore, a learning system is 
required  (likely  using  a  dopamine-based  expected  reward 
signal) to identify how these synaptic connections arise.

Although our model  is  incomplete,  it  provides  the  first 
neural  explanation for the 50 millisecond cognitive cycle. 
This time is  a direct  result  of the properties  of GABA-A 
receptors,  along with the requirements  that  the system be 
able to recognize appropriate rules in a given context, apply 
rules separately, and store context information over time.
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