
Spiking Neurons and Central Executive Control:
The Origin of the 50-millisecond Cognitive Cycle

Terrence C. Stewart (tcstewar@uwaterloo.ca)
Chris Eliasmith (celiasmith@uwaterloo.ca)

Centre for Theoretical Neuroscience, University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1

Abstract

A common feature of many cognitive architectures is a central
executive control with a 50-millisecond cycle time. This
system determines which action to perform next, based on the
current context. We present the first model of this system
using spiking neurons. Given the constraints of well-
established neural time constants, a cycle time of 46.6
milliseconds emerges from our model. This assumes that the
neurotransmitter used is GABA (with GABA-A receptors),
the primary neurotransmitter for the basal ganglia, where this
cognitive module is generally believed to be located.

Keywords: cognitive cycle time; central executive; LIF
neurons; neural production system; neural engineering
framework; cognitive architectures

Introduction
ACT-R, Soar, GOMS, EPIC, and a variety of other
approaches to modelling human cognition all contain a
common assumption about the central control of cognitive
operations. This is usually regarded as a production system
where IF-THEN rules are applied sequentially. This
imposes a serial bottleneck where low-level decisions as to
which cognitive action should be performed next are made,
requiring approximately 50 milliseconds per decision
(Anderson et al., 1995).

While this 50 millisecond cognitive cycle time leads to
models that match empirical data, the neurological basis for
this time constraint has not been previously established.
This paper develops a model of low-level rule application
using realistic spiking neurons. The 50 millisecond cycle
time is then shown to be the result of well-established
neuron membrane and neurotransmitter properties. The
result is not only a realistic, neurally plausible model of a
core component for cognition, but also an explanation for
why this characteristic time appears across architectures.

The model presented here is not meant to be complete. In
particular, we do not provide a model of the developmental
process which leads to the decision making system. We
also do not currently include any learning capabilities,
although this is part of our ongoing research. Instead, our
model uses fixed mathematically derived synaptic
connection weights, in contrast to most neural network
models. These derived weights are meant to be the final
result of a learning process, and weights derived in this
manner have been shown to be realistic and highly robust to
noise and neuron death (Eliasmith & Anderson, 2003).

Recent results have suggested that the brain area that
corresponds to the system we are modelling is the basal
ganglia (e.g. Anderson et al., 2004). This provides us with
constraints as to the neural properties and neurotransmitters

involved. However, since we are not yet modelling all
aspects of this system and its interactions with other brain
areas, we do not present our work as a complete model of
the basal ganglia.

We start by describing the basic components of our
model: the standard leaky integrate-and-fire (LIF) neuron
and a model of post-synaptic current caused by a neural
spike. From these, we construct a simplistic minimal model
of neural decision making. We then add a competition
system so that only one option at a time is represented.
Finally, we build a working memory system so that context
can be stored over time.

Neural Model
The standard basic model of spiking neurons is the leaky
integrate-and-fire (LIF) model. While computationally
simple, it provides a good approximation to real neurons
over a wide range of conditions (Koch, 1999). It uses a
point neuron, as opposed to more complex compartment
models where ion flows within the neuron are modelled at a
sub-millisecond level. Current is constantly leaking out of
the neuron as per the membrane resistance R, but if enough
input current is gathered to cause the voltage to be above a
certain threshold, then the neuron will fire. After firing, the
voltage is set to 0 for a fixed refractory period (2
milliseconds) before starting to gather current again.

Given a constant current input J and membrane resistence
R, the voltage level of the LIF neuron changes over time as
given in Equation 1 and shown in Figure 1. The timing of
this behaviour is controlled by τRC, the membrane time
constant of the neuron. Larger values cause the neuron's
voltage to change more slowly, making it slower to respond
to changes in input current. Interestingly, many real
neurons are well-characterized by LIF neurons with
membrane time constants in the range of 20 milliseconds, so
this value is used for all simulations reported here.

V t =J R 1−e−t /RC (1)

Figure 1: LIF neuron with constant input current.

When a neuron fires, it affects the input current to all of the
neurons to which it is connected. This current h(t) can be
characterized by Equation 2, where τs captures the effects of
neurotransmitter re-uptake and dispersal. As shown in
Figure 2, a small τs provides a fast, short-lasting effect
(~10ms), while others last for hundreds of milliseconds.

ht =t e−t / s (2)

Figure 2: Post-synaptic currents for common synapses.

The τs values used here are approximate, based on available
neurophysiology data. Gupta et al. (2000) estimate τs for
GABA-A to be 10.41ms. AMPA is generally found to be
between 1ms and 10ms and NMDA between 50ms and
150ms (e.g. Moreno-Bote & Parga, 2004).

While the neural model we are using is not a perfect
replication of real neurons, we find it sufficient for our
purposes. The LIF neurons allow us to explore the timing
of neural processing, unlike the typical rate neurons used in
most neural models. These not only do not spike, but also
do not have any temporal dynamics at all, responding
instantly to any change in input. Furthermore, given that the
basic neural behaviour is well captured by the LIF model,
switching to a more detailed model should not significantly
impact the large-scale behaviour of the system (on the order
of tens of milliseconds). That said, our model does not rely
on the use of LIF neurons, and other more complex models
could be used.

Neural Representation
Any model of a central executive control system where
particular actions are chosen based on the current context
must confront the issue of neural representation. The
current context must be represented in such a manner as to
appropriately affect the behaviour of other neurons. The
approach described here to define and create such models is
known as the Neural Engineering Framework (NEF;
Eliasmith and Anderson, 2003).

To be as general as possible, we make the minimal
assumption that representations can be distributed across a
group of neurons, but leave open the question of the exact
nature of this distribution. Within a neural group, each
neuron has a preferred value  to which it responds most

strongly, and this response is reduced as the difference
between this preferred value and the actual value increases.

If we assume that any value the neurons can represent can
be thought of as a vector x, this behaviour can be captured
in terms of the input current J as shown in Equation 3.
Adjusting the neuron gain α, the background input current
Jbias, and the preferred direction vector  allows us to
capture a wide range of known neural representation
schemes.

J= ⋅xJ bias (3)
In the simplest case, 100 neurons could represent a 100
dimensional vector x by having each  be a different
unit vector in each of the 100 dimensions. This would
provide a completely local representation of each value in
the vector. More realistically, 100 neurons could represent
one or two dimensions by having  values chosen
randomly (i.e. uniformly distributed around the unit
hypersphere in that many dimensions). This approach has
been observed in numerous areas of visual and motor cortex
(e.g. Georgopoulos et al., 1986). By having more neurons
per dimension, the representation error can be decreased to
arbitrarily low levels (error is inversely proportional to the
number of neurons).

Since Equation 3 can be used as the input to a model of an
LIF neuron, we can determine the sequence of spikes that
would be generated for a group of neurons if a particular
vector x is being represented. We can also perform the
opposite operation: given a sequence of spikes we can
estimate the original vector. As shown elsewhere
(Eliasmith & Anderson, 2003), this can be done by deriving
the decoding vectors  as per Equation 4, where ai is the
average firing rate for neuron i with a given vector x, and
the integration is over all values of x.

=
−1
 ij=∫ ai a j dx  j=∫ ai x dx (4)

The resulting vectors  can be used to determine an
estimate of the represented value using Equation 5. This is
an estimate that varies over time based on the individual
spikes. Importantly, it is the optimal estimate when under
the constraint that the estimate must be built by linearly
adding the effects of the post-synaptic currents caused by
each spike. This is precisely the constraint that other
neurons are under, so Equation 5 indicates the best that the
original vector can be reconstructed by another neuron.

x t =∑
i ,n

t−t i ,n∗h iti=∑
i ,n

h t−ti , ni (5)

This result further provides a method for determining
optimal synaptic connection weights between groups of
neurons if one group is to perform a linear transformation
on the value represented by the other. If one group of
neurons represents x and the other group should represent
Mx, then this can be achieved by setting the connection
weights w as per Equation 6.

w ij= j
 j Mi (6)

We can also use a variant of Equation 4 to determine
connection weights for arbitrary nonlinear transformations
of x (see Eliasmith & Anderson, 2003 for details).

The Task
As a baseline for the construction and demonstration of our
model, we use a simple minimal sequential decision making
task. This is meant to show that the model is capable of
responding appropriately to different contexts, and is
capable of modifying the context itself.

The current context is represented by a large group of
neurons (at least 2000 in all models shown here), as per the
representation system described in the previous section.
The preferred direction vectors  are chosen randomly
from the unit hypersphere, and the neuron gains α and
background currents Jbias are chosen to give a uniform
distribution of maximum firing rates between 100Hz and
200Hz and an average background firing rate of 40Hz,
consistent with many cortical neurons. At the beginning of
a simulation, this context is fixed to represent the initial
state of the model, but after this initialization period (50ms)
there is no external input. That is, the model must be
capable of maintaining and changing its own internal state.

We arbitrarily choose five vectors to represent five
different internal states referred to as A, B, C, D, and E. The
model's task is to implement the set of state change rules
that will cause it to cycle through these five states. If the
system is in state A, it should change to state B; if it is in B,
it should change to C, and so on.

In terms of the cognitive architecture ACT-R, this would
involve five production rules. Each production rule would
match on a particular goal buffer state (A through E), and if
that production fires it would modify the goal buffer to
contain the next state in the sequence. In ACT-R (and in
most other cognitive architectures), this process is externally
fixed to require 50 milliseconds. As will be seen, in our
models this timing will emerge from neural properties.

Figure 3 shows an idealized (non-neural) model of this
process. The five different colours indicate the five
different representational states over a period of 500
milliseconds. This is enough time for the system to repeat
the cycle twice. At each moment in time, we measure the
represented vector x and compare it to the arbitrarily chosen
patterns A through E. This comparison is done by taking the
dot product of the represented value (from Equation 5) and
each of the five target patterns.

Figure 3: Behaviour of an ideal model cycling through five
states, fixed to have a 50 millisecond cycle time.

Model 1: Basic Sequential Decisions
Our first model is created by adding a separate population of
neurons for each of the rules to be implemented. These
neurons must be connected to the main context neurons so
that they will only fire when the value being represented is
the same as (or very close to) the desired state (A through
E). When a particular group of neurons starts to fire, their
connections back to the context neurons are such that they
will drive its firing towards the desired next state. This
structure is shown in Figure 4. For clarity, this diagram
shows only three rules: A→B, B→C, and C→A.

Figure 4: Neural groups and connections for Model 1.

To form the synaptic connections from the context to the
rule neural groups, we can use Equation 6. For example, for
the connection to the first rule, we set M to be the pattern A.
As per Equation 6, this means that the neural group will be
driven to represent the value Ax, which is the dot product of
the represented context value with A. This will be large
(near 1) when A is being represented, and small (near 0)
when another pattern is being represented.

The properties of the neurons in the rule groups must also
be set. Here, we can make use of the fact that we want these
neurons to not fire at all when representing 0, but should be
sensitive to values near 1. This can be achieved by having a
large negative Jbias (with some random variation). The
corresponding neuron tuning curves are shown in Figure 5.
These show the average spiking rate of ten different neurons
for different contexts x. To see the actual spiking patterns
over time, Figure 6 shows the spikes caused by varying the
input to this neural group from 0 to 1 and back to 0 over one
second.

Figure 5: Average firing rates for neurons detecting the
presence of pattern A. Different context patterns are on the
x-axis: far left is a context unlike A (dot product of 0), far

right is a context of exactly A. Each curve shows a different
neuron with different values of α and Jbias.

context

rule
1

rule
2

rule
3

A
B

C

AB C

Figure 6: Individual neuron spikes for the neural group
detecting A. Each neuron's spikes are separated along the y-
axis. Dot product of the context with A is varied from 0 to 1

and back to 0 over one second (dotted line). The value
x decoded using Equation 5 is shown (solid line).

We use a similar process to form synaptic connections from
the individual rule groups back to the context neurons.
Here, the weights encode the effect of each rule, indicating
how the context should be changed if this rule is applied.
These are again calculated using Equation 6. The resulting
model has a variety of parameters, given in Table 1.

Table 1: Parameters of the model
Parameter Default value

of context neurons 2000
of neurons per rule group 20

membrane time constant (τRC) 20ms
synaptic time constant for context (τSC) 10ms
synaptic time constant for rules (τSR) 10ms

The behaviour of the resulting model is shown in Figure 7.
As can be seen, it successfully cycles between the five
states. For this particular model, each change requires an
average of 27.5ms, making this much faster than the
expected 50 millisecond cycle time. Furthermore, this rate
is not sensitive to the numbers of neurons in each group:
increasing these values by a factor of 10 causes only a slight
decrease (<2ms) in the cycle time, since adding more
neurons decreases the representational error in the system.

Figure 7: Behaviour of Model 1. Similarity is determined
by the dot product of x (calculated from the spikes of the
context neurons using Equation 5) with the vectors A to E.

The main effect on behaviour is seen by adjusting the
synaptic time constants. As shown in Figure 2, different
neurotransmitter/receptor pairs have different time
constants. We can adjust the synapses from context neurons
to rules separately from the ones from rule neurons to the
context. These parameters are varied in Figure 8. The
membrane time constant is known to be approximately
20ms for a wide range of neurons, so it is not adjusted here.

Figure 8: Average cycle time in seconds for varying τSC and
τSR in Model 1. Values above 0.1 indicate either a cycle
time above 100ms or no cycling (an infinite cycle time).

Given the results in Figure 8, the model is successful when
the synaptic time constant for the context neurons is below
30ms, which is consistent with both GABA-A and fast
AMPA synapses. This limit decreases as the synaptic time
constant of the rule neurons increases.

While this model is successful at cycling across five
different states, it fails in many other cases. For example,
Figure 9 shows the behaviour when cycling between three
states. Here, cycling behaviour is initially evident, but over
time the system converges to a static representation. In
particular, it converges to representing all three states at the
same time. The final context value is the superposition
(vector sum) of A, B, and C. This is clearly not the desired
behaviour.

Figure 9: Behaviour of Model 1 when there are only three
states. Similarity is determined by the dot product of x

(calculated from the spikes of the context neurons using
Equation 5) with the vectors A, B, and C.

Model 2: Inhibition Between Rules
To improve on Model 1 and fix the behaviour shown in
Figure 9, we needed to add a mechanism to encourage the
application of only one rule at a time. This was
accomplished by adding inhibition between the groups of
neurons responsible for each rule. That is, if the neurons in
the first group are firing, this should decrease the activity in
the other four groups. This is accomplished with Equation
6, where M is simply the value -wi (the strength of the
inhibition). We must also add a self-excitatory connection
of strength we within the neurons of each rule group, so as to
counteract this inhibitory current. This new model is shown
in Figure 10.

Figure 10: Neural groups and connections for Model 2.

For wi of 0.5 and a we of 1, the model is successfully cyclic
for cycles of 2 through 20 (which was as high as was
tested). That is, the resulting behaviour looks like Figure 7,
rather than Figure 9. The precise effects of these parameters
will be explored in future work, as they are likely to impact
any reinforcement learning system which might be used to
bias one rule over another (such as in the ACT-R utility
learning system). With these parameter values, the
behaviour of the model for varying τSC and τSR is shown in
Figure 11. We can see that Model 2 is slightly slower, but
more stable over a wider range of synaptic time constants.

Figure 11: Average cycle time in seconds for varying τSC

and τSR in Model 2. Values above 0.1 indicate either a cycle
time above 100ms or no cycling (an infinite cycle time).

While this model eliminates the problem of convergence
onto a superposition of states, there is a further difficulty
present in both Model 1 and Model 2. So far, we have been
assuming that this rule-following system is completely self-
sufficient. In particular, once an action is chosen, the
context is modified, and the system is then immediately able
to start identifying the next rule to apply.

However, in real cognitive models, the central production
system is only one of many components that can affect the
current context. For example, in ACT-R, it is common for
the production system to request that the declarative
memory system recall a fact. While that fact is being
recalled, the production system may not be doing anything,
as no rules may apply until that fact is found (which may
take hundreds of milliseconds). During that time, no rules
are applied, but the context must be maintained.

Figure 12 shows the behaviour of Model 2 when no rules
can be found that apply to the current context. This is done
by removing the rule that transitions from E to A. As can be
seen, when no rule can be applied, the system forgets the
current context, since no rule is firing to set it in the context
population. Model 1 behaves similarly.

Figure 12: Behaviour of Model 2 when the rule to go from
E to A is removed. The context information is lost.

Model 3: Maintaining Working Memory
To eliminate the forgetting effect shown in Figure 12, we
add recurrent connections among the neurons representing
context. This approach has previously been used to model
working memory (Singh & Eliasmith, 2006), and is a
generic method for storing information over time in spiking
neurons. This is done by using Equation 6 to determine
synaptic weights from the context population back into
itself, with M set to be the identity matrix I. The resulting
model is shown in Figure 13.

The behaviour of this model when the rule to transition
from E to A is removed is shown in Figure 14. In contrast
to Model 2 (Figure 12), the system is now capable of
maintaining context information over time.

Adding this new recurrent connection allows information
to be stored, but it also slows down the process of
modifying this information. The behaviour for varying τSC

and τSR is shown in Figure 15.

context

rule
1

rule
2

rule
3

A
B

C

AB C
­wi

­wi

­wi

wewewe

Figure 13: Neural groups and connections for Model 3.

Figure 14: Behaviour of Model 3 when the rule to go from
E to A is removed. The context information is maintained.

Figure 15: Average cycle time in seconds for varying τSC

and τSR in Model 3. Values above 0.1 indicate either a cycle
time above 100ms or no cycling (an infinite cycle time).

Discussion
Our Model 3 successfully identifies the rule appropriate to
the current context and modifies the context appropriately.
It is able to keep the patterns for each context separate
(unlike Model 1) and store information over time (unlike
Model 2). Furthermore, if the synaptic time constants for
both the context neurons and the rule neurons are set to be
10ms, the average cycle time is 46.6ms, very close to the
standard of 50ms. As noted above, 10ms is the synaptic
time constant for GABA-A receptors. These are the
primary synaptic receptors in the basal ganglia, which is the
postulated location responsible for sequential rule selection.

While our model closely matches the generally accepted
cycle time of 50 milliseconds, more is needed before it can
be accepted as a neural model of central executive control.
Most crucially, cognitive architectures generally postulate
rules that are much more complex than “if A then B”. We
have shown elsewhere (Stewart & Eliasmith, 2008) how
complex symbolic rules can be translated into vectors
appropriate for our model. This would require the addition
of a new neural population capable of combining the output
of the rule neurons with the existing context. Preliminary
results indicate that such a system would increase the cycle
time by 5-10ms if AMPA or GABA-A are used.

We are also in the process of directly mapping our model
onto the architecture of the basal ganglia and its connection
to the cortex via the thalamus. In this case, the context may
be stored using faster AMPA connections in various cortical
areas and then gathered in the striatum for matching. The
thalamus would then apply the complex rules mentioned in
the previous paragraph. This is a direct match to the
mapping from modules to brain areas found in ACT-R
(Anderson et al., 2004). Furthermore, a learning system is
required (likely using a dopamine-based expected reward
signal) to identify how these synaptic connections arise.

Although our model is incomplete, it provides the first
neural explanation for the 50 millisecond cognitive cycle.
This time is a direct result of the properties of GABA-A
receptors, along with the requirements that the system be
able to recognize appropriate rules in a given context, apply
rules separately, and store context information over time.

References
Anderson, J. R., John, B. E., Just, M. A., Carpenter, P. A.,

Kieras, D. E., & Meyer, D. E. (1995). Production system
models of complex cognition. 17th Annual Meeting of the
Cognitive Science Society.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y. (2004). An integrated theory of the
mind. Psychological Review 111(4). 1036-1060.

Eliasmith, C. & Anderson, C. (2003). Neural Engineering:
Computation, representation, and dynamics in
neurobiological systems. Cambridge: MIT Press.

Georgopoulos, A.P., Schwartz, A., & Kettner, R.E. (1986).
Neuronal population coding of movement direction.
Science, 233, 1416-1419.

Gupta, A., Wang, Y., & Markram, H. (2000). Organizing
principles for a diversity of GABAergic interneurons and
synapses in the neocortex. Science, 287. 273-278.

Koch, C. (1999). Biophysics of computation: Information
processing in single neurons. Oxford University Press.

Moreno-Bote, R., & Parga, N. (2005). Simple model
neurons with AMPA and NMDA filters: role of synaptic
time scales. Neurocomputing 65-66. 441-448.

Singh, R., & Eliasmith, C. (2006). Higher-dimensional
neurons explain the tuning and dynamics of working
memory cells. Journal of Neuroscience, 26, 3667-3678.

Stewart, T.C. and Eliasmith, C. (2008). Building production
systems with realistic spiking neurons. 30th Annual
Meeting of the Cognitive Science Society.

context

rule
1

rule
2

rule
3

I

A
B

C

AB C
­wi

­wi

­wi

wewewe

	Introduction
	Neural Model
	Neural Representation
	The Task
	Model 1: Basic Sequential Decisions
	Model 2: Inhibition Between Rules
	Model 3: Maintaining Working Memory
	Discussion
	References

