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Abstract

We consider a class of bandit problems in which
a decision-maker must choose between a set of
alternatives—each of which has a fixed but unknown
rate of reward—to maximize their total number of
rewards over a short sequence of trials. Solving these
problems requires balancing the need to search for
highly-rewarding alternatives with the need to capitalize
on those alternatives already known to be reasonably
good. Consistent with this motivation, we develop
a new model that relies on switching between latent
searchingand standingstates. We test the model over
a range of two-alternative bandit problems, varying
the number of trials, and the distribution of reward
rates. By making inferences about the latent states from
optimal decision-making behavior, we characterize how
people should switch between searching and standing.
By making inferences from human data, we attempt to
characterize how people actually do switch. We discuss
the implications of our findings for understanding and
measuring the competing demands of exploration and
exploitation in decision-making.

Keywords: Bandit problems, exploration versus
exploitation, reinforcement learning, Bayesian graphical
models, human decision-making, optimal decision-
making

Bandit Problems
Bandit problems, originally described by Robbins
(1952), present a simple challenge to a decision-maker.
They must choose between a known set of alternatives
on each of a series of trials. They are told each of the
alternatives has a fixed reward rate, but are not told what
the rates are. Their goal is just to maximize the total re-
ward they receive over the series of trials. In this paper,
we focus on short finite-horizon versions of the bandit
problem, involving just a small number of trials.

As an example of the challenge posed by these sorts
of bandit problems, consider the situation shown in Fig-
ure 1. Here there are two alternatives, and 16 total trials
available to attain rewards. After 10 trials, one alterna-
tive has been chosen 8 times, and returned 3 successes
and 5 failures, while the other alternative has been tried
just 2 times, for 1 success and 1 failure. Which alter-
native should be chosen on the 11th trial? Choosing the
first alternative exploits the knowledge that it quite likely
returns rewards at a moderate rate. Choosing the sec-
ond alternative explores the possibility that this alterna-
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Figure 1: An example bandit problem, with two alterna-
tives and 16 total trials. After 10 trials, the first alterna-
tive on the left has 2 successes (lighter, green bar) and
5 failures (darker, red bar), while the alternative on the
right has 1 success and 1 failure.

tive may be the more rewarding one, even though much
less is known about it.

As this example makes clear, finite-horizon bandit
problems are psychologically interesting because they
capture the tension between exploration and exploitation
evident in many real-world decision-making situations.
Decision-makers must try to learn about the alternatives,
which requires exploration, while simultaneously satis-
fying their goal of attaining rewards, which requires ex-
ploitation. In this way, studying human performance
on bandit problems addresses basic questions, including
how people search for information, how they adapt to
the information they find, and how they optimize their
behavior to achieve their goals.

Human performance on bandit problems has been
studied from a variety of psychological perspectives.
Early studies used models and experimental manipula-
tions motivated by theories of operant conditioning (e.g.,
Brand, Wood, & Sakoda, 1956); later studies were in-
formed by economic theories with a focus on deviations



from rationality in human decision-making (e.g., Banks,
Olson, & Porter, 1997; Meyer & Shi, 1995); most re-
cently human performance on the bandit problem has
been a topic of interest in cognitive neuroscience (e.g.,
Cohen, McClure, & Yu, 2007; Daw, O’Doherty, Dayan,
Seymour, & Dolan, 2006) and probabilistic models of
human cognition (e.g., Steyvers, Lee, & Wagenmakers,
in press).

One common finding is that people often switch flexi-
bly between exploration and exploitation, often choosing
alternatives in proportion to their reward rate, unless they
are given strong incentives to maximize their reward by
repeatedly choosing the most-rewarding alternative (e.g.,
Shanks, Tunney, & McCarthy, 2002). Typically, these
experiments involve a large number of trials, and so one
plausible explanation for sub-optimal probability match-
ing is that people are allowing for the possibility that
rewards rates might change over time. This seems less
likely to be a confounding consideration in short-horizon
bandit problems, and so we are especially interested to
know if people switch between exploration and exploita-
tion for these problems.

Accordingly, in this paper we develop and evaluate a
probabilistic model that assumes different latent states
guide decision-making for short-horizon bandit prob-
lems. These latent states give emphasis either to search-
ing the environment, or to choosing the same alterna-
tive repeatedly, and so dictate how a decision-maker
solves the dilemma in our introductory example, where
a well-understood but only moderately-rewarding alter-
native must be compared to a less well-understood but
possibly better-rewarding alternative. Using the optimal
decision process, and human data, for a range of bandit
problems we apply our model to understand the best way
to switch between searching and standing, and how peo-
ple actually do switch, for short horizon two-alternative
bandit problems.

The outline of the paper is as follows. In the next sec-
tion, we present our model, including its implementation
as a probabilistic graphical model. We then report an ex-
periment collecting human and optimal decisions for a
range of bandit problems. Next, we use the behavioral
data and our model to make inferences about the optimal
way to switch between searching and standing, and how
people actually do switch. Finally, we draw some con-
clusions relating to simpler latent state models suggested
by our analysis.

A Latent State Model
Bandit problems have been widely studied in the fields
of game theory and reinforcement learning (e.g., Berry,
1972; Berry & Fristedt, 1985; Gittins, 1979; Kaebling,
Littman, & Moore, 1996; Macready & Wolpert, 1998;
Sutton & Barto, 1988). One interesting idea coming from
established reinforcement learning models is that of a la-
tent state to control exploration versus exploitation be-
havior.

In particular, the ‘ε-first’ heuristic (Sutton & Barto,
1988) assumes two distinct stages in bandit problem

decision-making. In trials in the first ‘exploration’ stage,
alternatives are chosen at random. In the second ‘ex-
ploitation’ stage, the alternative with the best observed
ratio of successes to failures from the first stage is cho-
sen. The demarcation between these stages is determined
by a free parameter, which corresponds to the trial at
which exploration stops and exploitation starts.

Our Model
Our model preserves the basic idea of a latent explo-
ration or exploitation state guiding decision-making, but
makes two substantial changes. First, we allow each
trial to have a latent state, introducing the possibility of
switching flexibly between exploration and exploitation
to solve bandit problems. In our model, for example, it
is possible to begin by exploring, then exploit, and then
return for an additional period of exploration before fin-
ishing by exploiting. Indeed, any pattern of exploration
and exploitation, changing trial-by-trial if appropriate, is
possible.

Second, we implement exploration and exploitation
behavior using a more subtle mechanism than just ran-
dom search followed by deterministic responding. In
particular, for the two-alternative bandit problems we
consider, our model distinguishes between three differ-
ent situations,

• The Samesituation, where both alternatives have the
same number of observed successes and failures.

• TheBetter-Worsesituation, where one alternative has
more successes and fewer failures than the other alter-
native (or more successes and equal failures, or equal
successes and fewer failures). In this situation, one
alternative is clearly better than the other.

• TheSearch-Standsituation, where one alternative has
been chosen much more often, and has more successes
but also more failures than the other alternative. In this
situation, neither alternative is clearly better, and the
decision-maker faces a dilemma. Choosing the better-
understood alternative corresponds to standing; choos-
ing the less well-understood alternative corresponds to
searching.1

Within our model, which alternative is chosen depends
on the situation, as well as the latent search or stand state.
For thesamesituation, both alternatives have an equal
probability of being chosen. For thebetter-worsesitua-
tion, the better alternative has a high probability, given
by a parameterγ, of being chosen. The probability the
worse alternative is chosen is 1−γ.

1Intuitively, our notionof searching is a form of exploration,
and our notion of standing is a form of exploitation. We use the
new terms, however, to emphasize that our search and stand de-
cisions have formal characterizations that are different defini-
tions of exploration and exploitation in reinforcement learning
algorithms. For example,ε-first uses simple random choices
as a model of exploration, whereas our approach is based on
choosing specifically the alternative that is less well known in
a search-stand situation.
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Figure 2: Graphical representation of the latent state
model.

For thesearch-standsituation, the exploration alter-
native will be chosen with the high probabilityγ if the
decision-maker is in a latent search state, but the ex-
ploitation alternative will be chosen with probabilityγ
if the decision-maker is in the latent stand state. In this
way, the latent state for a trial controls how decisions are
made each time the decision-maker encounters a search-
stand situation.

Graphical Model Implementation
We implemented our model as a probabilistic graphical
model in WinBUGS (Lunn, Thomas, Best, & Spiegel-
halter, 2000), which makes it easy to do fully Bayesian
inference using computational methods based on poste-
rior sampling. The graphical model is shown in Figure 2,
using the same notation as Lee (2008).

The encompassing plates show the repetitions for the
trials within each problem, and the multiple problems
completed by a decision-maker. The square shaded
nodesSA

i j , SB
i j , FA

i j andFB
i j are the observed counts of

successes and failures for alternatives A and B on the
ith trial of the j th problem. The unshaded nodeγ is the
‘accuracy of execution’ parameter, controlling the (high)
probability that the deterministic heuristic described by
our model is followed. The unshadedzi nodes are the
discrete latent indicator variables, withzi = 0 meaning
the ith trial is in the explore state, andzi = 1 meaning it
is in the exploit state. We assumed uninformative priors
γ∼ Uniform(0,1) andzi ∼ Bernoulli(1/2).

The double-borderedθi j node is a deterministic func-
tion of theSA

i j , SB
i j , FA

i j , FB
i j , γ andzi variables. It gives

the probability that alternative A will be chosen on the
ith trial of the j th problem. According to our model, this

is

θi j =





1/2 if A is same
γ if A is better
1−γ if A is worse
γ if A is search andzi = 0
1−γ if A is search andzi = 1
γ if A is stand andzi = 1
1−γ if A is stand andzi = 0.

The shadeddi j node is the observed decision made,
di j = 1 if alternative A is chosen anddi j = 0 if alternative
B is chosen, so thatdi j ∼ Bernoulli(θi j ).

In this way, the graphical model in Figure 2 provides
a probabilistic generative account of observed decision
behavior. It is, therefore, easy to use the model to make
inferences about latent search and stand states from deci-
sion data. In particular, the posterior distribution of thezi
variable represents the probability that a decision-maker
has a latent search versus stand state on theith trial. In
the next section, we describe an experiment that provides
both human and optimal data suitable for this type of
analysis.

Experiment
Participants
We collected data from 10 naive participants (6 males, 4
females).

Stimuli
We considered six different types of bandit problems,
all involving just two alternatives. The six bandit prob-
lem types varied in terms of two trial sizes (8 trials and
16 trials) and three different environmental distributions
(‘plentiful’, ‘neutral’ and ‘scarce’) from which reward
rates for the two alternatives were drawn.

Following Steyvers et al. (in press), we defined these
environments in terms of Beta(α,β) distributions, where
α corresponds to a count of ‘prior successes’ andβ to
a count of ‘prior failures’. The three environmental dis-
tributions are shown in Figure 3, and use valuesα = 4,
β = 2, α = β = 1, andα = 2, β = 4, respectively.

Procedure
We collected within-participant data on 50 problems for
all six bandit problem conditions, using a slight variant
of the experimental interface shown in Figure 1. The
order of the conditions, and of the problems within the
conditions, was randomized for each participant. All
6×50= 300 problems (plus 5 practice problems per con-
dition) were completed in a single experimental session,
with breaks taken between conditions.

Optimal Performance
Given theα andβ parameters of the environmental dis-
tribution, and the trial size, it is possible to find the opti-
mal decision-making process for a bandit problem. This
is achieved via dynamic programming, using a recursive
approach well understood in the reinforcement learning



0 0.2 0.4 0.6 0.8 1

D
en

si
ty

Reward Rate

↓
Scarce

↓
Plentiful

↑
Neutral

Figure 3: The plentiful, neutral and scarce environmental
distributions of reward rates.

literature (e.g., Kaebling et al., 1996). Using this ap-
proach, we calculated optimal decision-making behavior
for all of the problems completed by our participants.

Modeling Analysis
We applied the graphical model in Figure 2 to the opti-
mal and human decision data, for all six bandit problem
conditions. For each data set, we recorded 1,000 poste-
rior samples from the joint distributionof the unobserved
variables. We used a burn-in also of 1,000 samples, and
multiple independent chains, to assess convergence.

Basic Results

Descriptive Adequacy A basic requirement of any
cognitive model is that it can fit the observed data rea-
sonably well. To test the descriptive adequacy of the la-
tent state model, we used a standard Bayesian approach
and evaluated its posterior predictive fit to the to all of
the human and optimal decision-making data (i.e., the
agreement between the model and data averaged over the
posterior distribution of the parameters). The levels of
agreement are shown in Table 1. It is clear that the latent
state model is generally able to fit both human and opti-
mal behavior very well. There are some small suggestive
differences—scarce environments seem, for example, to
be a little less well described, as does one participant
(AH)—that are worthy of future investigation, but do not
affect our broad analyses in this paper.

Latent States Having checked the descriptive ade-
quacy of the latent state model, our main interest is in the
change between latent search and stand states, as shown
by the inferred model parameters.2 The basic results
needed to address this question are summarized by the
posterior mean of thezi indicator variables, which ap-

2We observed that the inferredγ parameter values were all
close to 1, as expected, and do not report them in detail.

Table 1: Posterior predictive agreement between the la-
tent state model, and the optimal and human decision-
makers (DMs), for the three environments and two prob-
lem sizes.

Plentiful Neutral Scarce

DM 8 16 8 16 8 16
Optimal .95 .93 .95 .94 .92 .90

PH .96 .94 .92 .92 .84 .90
ST .99 .87 .94 .84 .93 .80
AH .89 .89 .76 .75 .71 .73
MM .92 .88 .92 .93 .90 .94
SZ .92 .94 .95 .92 .88 .91
MY .94 .95 .92 .93 .89 .88
EG .94 .91 .90 .90 .85 .89
MZ .97 .91 .92 .88 .93 .86
RW .89 .90 .86 .80 .84 .80
BM .93 .88 .92 .87 .89 .90

proximates the posterior probability that theith trial uses
the stand state.

Figure 4 shows the posterior means of thezi variables
for the optimal decision process, and all 10 participants,
in all six experimental conditions. The experimental con-
ditions are organized into the panels, with rows corre-
sponding the plentiful, neutral and scarce environments,
and the columns corresponding to the 8- and 16-trial
problems. Each bar graph shows the probability of an
stand state for each trial, beginning at the third trial (since
it is not possible to encounter the search-stand situation
until at least two choices have been made). The larger
bar graph, with black bars, in each panel is for the op-
timal decision-making data. The 10 smaller bar graphs,
with gray bars, corresponds to the 10 participants within
that condition.

Analysis
The most striking feature of the pattern of results in Fig-
ure 4 is that, to a good approximation, once the optimal
or human decision-maker first switches from searching
to standing, they do not switch back. This is remark-
able, given the completely unconstrained nature of the
model in terms of search and stand states. All possible
sequences of these states over trials are given equal prior
probability, and all could be inferred if the decision data
warranted.

The fact that both optimal and human data lead to
a highly constrained pattern of searching and standing
states across trials reveals an important regularity in ban-
dit problem decision-making. We consider this finding
first in terms of optimal decision-making, and then in
terms of human decision-making.

Optimal Decision-Making The optimal decision pro-
cess results in Figure 4 show that it is optimal to be-
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Figure 4: Each bar graph shows the inferred probabilities of the stand state over the trials in a bandit problem. Each
of the six panels corresponds to an experimental condition, varying in terms of the plentiful, neutral or scarce envi-
ronment, or the use of 8 or 16 trials. Within each panel, the large black bar graph shows the stand probability for the
optimal decision-process, while the 10 smaller gray bar graphs correspond to the 10 participants.

gin with searching, then transition (generally) abruptly
to standing at some trial that depends on the nature of
the environment, and remain in the stand state for all of
the remaining trials. The plentiful and scarce environ-
ments for 16-trial problems show a few trials where there
is uncertainty as to whether searching or standing is opti-
mal but, otherwise, it seems clear that optimal decision-
making can be characterized by a single transition from
searching to standing.

It is also clear from Figure 4 that the optimal decision-
making must be sensitive to the environment in switch-
ing from searching to standing. In particular, as environ-
ments have lower expected reward rates, the switch away
from searching begins earlier in the trial sequence. For

example, the optimal decision process for 8-trial prob-
lems essentially switches from searching to standing at
the 5th trial in the plentiful environment, but at the 4th
trial in the neutral environment, and the 3rd trial in the
scarce environment.

Human Decision-Making While the regularity in
switching might not be surprising for optimal decision-
making, it is more remarkable that human participants
show the same pattern. There are some exceptions—
both participants RW and BM, for example, sometimes
switch from standing back to searching briefly, before
returning to standing—but, overall, there is remarkable
consistency. Most participants, in most conditions, begin
by searching, and transition at a single trial to standing,



which they maintain for all of the subsequent trials.
However, while there is consistency over the partici-

pants in switching just once from searching to standing,
there are clear differences between individuals in when
that switch happens. For example, the participant SZ, in
all of the conditions, switches at a much later trial than
most of the other participants.

There also seem to be individual differences in terms
of sensitivity to the environment. Some participants
switch at different trials for different environments, while
others—such as participant ST—switch at essentially the
same trial in all experimental conditions.

Discussion
Our basic findings involve both a regularity and a flexi-
bility in the way people (and optimal) decision-makers
switch between exploration and exploitation in bandit
problems. The regularity is that a beginning period of
searching gives way to a sustained period of standing.
The flexibility is that when this switch occurs depends
on the individual decision-maker, the statistical proper-
ties of the reward environment, and perhaps the interac-
tion between these two factors.

The obvious cognitive model suggested by our find-
ings combines the regularity with the flexibility. We pro-
pose that decision-making on finite-horizon bandit prob-
lem can be modeled in terms of a single parameter, con-
trolling when searching switches to standing. That is,
rather than needing a latent state parameter for each trial,
only a single switch-point parameter is needed, with all
earlier trials following the searching state, and all later
trials following the standing state. Such a model would
be similar in spirit—but formally different in an im-
portant way—to the standardε-first heuristic from rein-
forcement learning. It would combine the single switch-
point with an analysis of bandit game situations (‘same’,
‘better-worse’, ‘search-stand’) that produces more fo-
cused and principled operational definitions of what it
means for decision-maker to explore and exploit.

A priority for future research is to apply this new
single-switch model to human and optimal behavior on
bandit problems. Being able to make inferences about
when people and optimal decision-makers switch from
exploration to exploitation promises a direct way to as-
sess individualdifferences in how people search their en-
vironment for information, and react to different distribu-
tions of reward in those environments.
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