
Multiple Object Manipulation: is structural modularity necessary?
A study of the MOSAIC and CARMA models

Stéphane Lallée (stephane.lallee@inserm.fr)
INSERM U846, Stem-Cell and Brain Research Institute

Bron, France

Julien Diard and Stéphane Rousset
Laboratoire de Psychologie et NeuroCognition CNRS-UPMF

Grenoble, France

Abstract

A model that tackles the Multiple Object Manipulation task
computationally solves a higly complex cognitive task. It
needs to learn how to identify and predict the dynamics of
various physical objects in different contexts in order to ma-
nipulate them. MOSAIC is a model based on the modularity
hypothesis: it relies on multiple controllers, one for each ob-
ject. In this paper we question this modularity characteristic.
More precisely, we show that the MOSAIC convergence dur-
ing learning is quite sensitive to parameter values. To solve
this issue, we define another model (CARMA) which tackles
the manipulation problem with a single controller. We provide
experimental and theoretical evidence that tend to indicate that
non-modularity is the most natural hypothesis.

Keywords: motor control; MOSAIC; CARMA; modularity;
internal representation; neural network.

Introduction
There is, in the world, an infinity of objects with different
physical behaviors. Despite this variability, humans can ma-
nipulate them with ease, from light origamis to heavy cups.
For a given goal position, how do they select the correct force
to apply? How are they able to accurately predict the dis-
placements resulting from the applied forces? These two
questions are central in object manipulation: control and pre-
diction, respectively. If the physical characteristics of objects
and their identity are known, or if there is a single object,
this problem is easy to model and solve. Indeed, the dynam-
ics of physical bodies are well described by Newton’s equa-
tions. Given the starting position, and the applied forces, it is
straightforward to compute the resulting trajectory.

The problem becomes much more difficult if the objects
are numerous, and of unknown physical parameters. We call
this the Multiple Object Manipulation task (MOM).

It is thought that natural cognitive systems are able to solve
this problem because they are capable of good predictions in
uncertain and unstable environments. Modeling this ability
can provide insights and a better understanding of the possi-
ble brain structures involved in the process (Kawato, 2008).
This has lead Gomi and Kawato to propose the MOSAIC
model (MOdular Selection And Identification for Control)
(Gomi & Kawato, 1993). This model solves both problems of
object identification and object control simultaneously. The
key feature of MOSAIC is that it uses neural networks in a
modular way. In other words, the system has multiple distinct
neural controllers, one for each object. It is able to choose

which controller to use in order to manipulate an object, even
without knowing the object identity explicitly.

The structural matching between object and controller, in
MOSAIC, is a very strong hypothesis, that we question in
this paper. To do so, we developed another model, CARMA
(Centralized Architecture for Recognition and MAnipulation)
which solves the same problem as MOSAIC but in a non-
modular way. By comparing the properties of MOSAIC and
CARMA, we study the object–controller coupling in both
a theoretical and experimental manner. More precisely, we
show how object specialization in MOSAIC is actually quite
sensitive to the learning parameters, and how CARMA avoids
this issue.

The rest of the paper is organized as follows. We first de-
scribe the experimentation framework, as well as the MO-
SAIC and CARMA models. Our experiments begin with a
validation of the capacity of both models to solve the MOM
task. We then study the way it is solved in more detail, par-
ticularly regarding the controller specialization in MOSAIC.
We finally show how the notion of object is encoded as part
of the network activation structure in CARMA.

Experimental framework
We replicate the task defined by Gomi and Kawato (Gomi
& Kawato, 1993) and applied in their subsequent papers
(Wolpert & Kawato, 1998; Haruno, Wolpert, & Kawato,
2001), as closely as possible. It is the simulation of an arm
that moves an object on a one-dimensional axis. The task is
to move the object according to a given trajectory: the simu-
lation has to choose, at each time step, a force to apply to the
object.

The task becomes a MOM task when the object to be
moved is changed at a fixed frequency during the simulation,
and this change occurs in a single time-step. The amount
of information available to the system is quite limited: the
physical characteristics of the various objects, and the change
frequency are unknown. This turns a simple linear equation
system into a difficult cognitive task. Fig. 1 shows an example
of the task.

In the simulation, any physical object is treated as a
damped spring-mass system. Each object is thus defined by 3
parameters (M,B,K), with M the mass, B the viscous damp-
ing coefficient and K the spring constant.



Figure 1: A sample desired trajectory to be followed (light)
and the actual trajectory (dark) plotted against time.

Figure 2: Global structure of MOSAIC with three controllers.

Time is treated as a discrete variable. We will use the fol-
lowing notations: for a given time index t, xt is the object po-
sition, x̂t the estimated object position, ẋt is the object speed,
Ot is the object identity, xdt is the desired position, ut is the
applied force, and ût is the estimated applied force.

A very simple plant model is used to compute, at each time
step, the actual movement of the presented object Ot under
the applied force ut :

xt+1 =
dt
M

(
ut +

(
M
dt
−B

)
ẋt −Kxt

)
. (1)

It is the only part of the simulation that actually knows the
characteristics (M,B,K) of the objects Ot .

The MOSAIC model
The main idea of the MOSAIC model is to use multiple par-
allel controllers, each one suited for each particular object.
Each controller is divided into three modules: the first en-
codes a Direct model, the second encodes an Inverse model
and the last is a Responsibility Predictor, and is used to take
into account visual information. Each of these modules is
implemented using artificial neural networks (ANN).

Multiple controllers
At the highest level, the MOSAIC architecture is illustrated
Fig. 2. Each controller is designed to predict the behavior of a
particular object, but the actual control is done by all of them.
At each time step, the responsibility of each controller is es-
timated. These responsibilities reflect the controllers’ abili-

ties to predict adequately the behavior of the current object.
They are used in 2 ways: first, they weigh the contribution
of each controller towards the final command (the controllers
that predict well have greater control over the object), and
second, they weigh the learning rate of each controller (the
best predictors learn more and learn faster).

The responsibility λi
t of the i-th controller is computed by

comparing the current position xt with the position x̂i
t esti-

mated by controller i, as follows (Wolpert & Kawato, 1998):

λ
i
t =

e−(xt−x̂i
t )

2/σ2

∑
n
j=1 e−(xt−x̂ j

t )2/σ2
, (2)

with σ a scaling parameter of this soft-max function.
Because the sum of all responsibilities is 1, they can be

interpreted as probabilities: λi
t is the probability that the i-th

controller is the best one to control the current object, accord-
ing to the prediction errors. The σ parameter then regulates
the competition between controllers.

Since the responsibilities gate both learning and forces,
they are the heart of MOSAIC. The controller which was the
best at predicting the object trajectory will have the highest
responsibility, will learn more about controlling this object,
which will help it predict more accurately, etc. Theoretically,
it is supposed to make every controller specialize and con-
verge to being the controller of a specific object.

Controller architecture
Each controller includes a Direct and Inverse model for a
given object. The Direct model F predicts the future posi-
tion given the current position, current speed and last applied
control, while the Inverse model G computes the command
to apply to go from a current position and speed to a desired
future position:

x̂t+1 = F(xt , ẋt ,ut) , (3)
ût = G(xt , ẋt ,xdt+1) . (4)

Each is implemented using linear ANNs (without hidden
layers), with 4 nodes each. Indeed, for a single object, they
approximate very simple equations with two unknown quan-
tities and three parameters (M,B,K). The task of the Back-
propagation algorithm is to adapt the weights of the network
to give an implicit approximation of these parameters.

Visual modality
So far, the responsibilities are only based on the controllers’
prediction error: it is feedback of a purely motor nature.

To more closely approximate the cognitive task of object
manipulation, a third module is added to each controller, the
Responsibility Predictor (RP), which simulates feedforward
visual information. A visual representation is added to each
object, in the form of a 3×3 matrix Mv of boolean pixels. The
role of the RP is, given this visual representation, to predict
the responsibility λ̂i

t of its controller before any motion is per-
formed. This feedforward responsibility estimation is merged



Figure 3: Global structure of the CARMA model. The direct,
inverse and context predictor modules are four-layer MLPs.

with the motor feedback, and the responsibilities of Equation
(2) are replaced by:

λ
i
t =

λ̂i
t × e−(xt−x̂i

t )
2/σ2

∑
n
j=1 λ̂

j
t × e−(xt−x̂ j

t )2/σ2
. (5)

The CARMA model
The global CARMA model takes the same inputs as MO-
SAIC (xt , ẋt ,xt+1,ut ,Mv), and is essentially structured like a
single controller of MOSAIC (see Fig. 3): it is made of three
modules, which are a Direct model, an Inverse model and a
Contextual Predictor (CP). Each of these thus encodes knowl-
edge relevant to several objects: therefore, they are more
computationally complex than in MOSAIC. Whereas in MO-
SAIC, each module of a controller could be a linear ANN, in
CARMA, each module is a four-layer Multi-Layer Perceptron
(MLP), with an input layer, an output layer, and two hidden
layers (with 10 and 2 nodes for the Direct and Inverse models,
10 and 5 nodes for the RP; the full CARMA model we used
thus had 96 nodes).

Direct and Inverse models
The Direct and Inverse models have the same outputs as in
MOSAIC, and the same inputs, augmented with two 3×3 ma-
trices, which represent the actual visual input (real context)
and the estimated visual input (estimated context). The real
context input is the visual representation Mv of the manipu-
lated object. Given the same input position, speed and force,
this enables the Direct and Inverse models to output differ-
ent values for different objects, according to this contextual
input.

Context Predictor
The purpose of the CP is to identify the manipulated object,
based on its dynamics. It uses motor feedback information to
predict what should be the visual representation of the manip-
ulated object. This estimated context can then be compared

!

Figure 4: Solving the manipulation task with CARMA, be-
fore learning (left) and after learning (right). Three objects
are switched every 20 time steps.

with the actual visual context; this comparison and the result-
ing difference drives the learning phase of CARMA. After
convergence, this difference becomes very close to zero: the
estimated and real context are almost always equal to one an-
other.

In some experiments, we also used the difference between
the real and estimated contexts as a mechanism to handle il-
lusions, where the system was fed a visual input which cor-
responded to a different object than the one actually manipu-
lated. However, the details of these experiments are beyond
the scope of this paper.

Experiments
In this section we first show that both systems can handle and
solve the MOM task. We then analyze in more detail the way
MOSAIC solves it. In particular, we show that MOSAIC’s
controllers do not become specialized for specific objects, ex-
cept in special cases. We then study the mechanisms involved
in CARMA for solving the MOM task.

Solving the task: experimental validation
MOSAIC and CARMA can both solve the MOM task with-
out any problem. In Fig. 4 the results were recorded from
CARMA controlling a set of 3 different objects, before and
after the learning phase. Similar plots, obtained with MO-
SAIC, are not shown.

In order to prove that learning how to manipulate one ob-
ject is not sufficient to manipulate all of them, we trained both
systems on one given object, and, after convergence, gave
them a different object (test object). We observed very low
performance overall, as expected.

However, two cases could clearly be identified. If the sys-
tem was trained on a lighter object than the test object, it
would subsequently generate insufficient forces during test,
which would not displace sufficiently the test object: the gen-
eral trends of the trajectory would be followed, with large
errors, large delays and slow convergence to the trajectory
(Fig. 5, top). On the other hand, if the training object was
heavier than the test object, the system would subsequently
generate excessive forces, which would lead to overshoots
and oscillating behaviors(Fig. 5, bottom). This was observed
both in MOSAIC and CARMA.



Figure 5: Using the learned controllers for an unknown, test
object (from time step 50 to 100) either leads to damped and
delayed control (top) when the test object is lighter, or oscil-
lations (bottom) when the test object is heavier.

MOM with multiple controllers: MOSAIC
We then studied the behavior of MOSAIC for a MOM task.

The MOSAIC model relies on the property that, after con-
vergence, each controller is specialized, in the sense that it
should be responsible for the control of one and only one ob-
ject. This property is well described (Haruno et al., 2001),
but, unfortunately, we were not able to replicate it reliably.
Indeed, according to our simulations, this specialization is not
systematic: most of the time, it does not occur.

In typical cases, we observed that one controller acquires
a large responsibility over all the objects, even if they have
widely different physical characteristics (M,B,K). For in-
stance, we presented the system with four objects (A to D),
with different dynamics, and trained a MOSAIC system with
four controllers (0 to 3). Despite the variability in the objects,
we usually observed that one of the controllers was mainly
responsible for most of the output commands, with marginal
specialization in the remaining controllers. One typical case
is shown Fig. 6.

Conditions for object specialization in MOSAIC
We discovered that object specialization in MOSAIC was
quite sensitive to the values of the learning algorithm’s pa-
rameters. We now detail them and explain their influence.

Learning rate The learning algorithm for the Inverse and
Direct modules of each controller is the Backpropagation al-
gorithm. If a controller is given a high responsibility for a
short time, it learns a lot more than the other controllers and
then already has an accurate control on all objects; we there-
fore used a low value (0.001).

Figure 6: Mean responsibilities along a typical trajectory
for a 4-controller MOSAIC (0 to 3) with 4 objects (A to
D): here, controller 1 (second block of bars) takes care of
most of the control for all objects, while controllers 2 and
3 are marginally specialized for objects C and D, respec-
tively. Object A: (M = 1,B = 2,K = 8), object B: (M =
1,B = 8,K = 1), object C: (M = 3,B = 1,K = .7), object
D: (M = 8,B = 2,K = 1).

Object switching frequency This frequency has a crucial
importance during the learning phase. If the frequency is too
low, the situation is similar to sequential training: large train-
ing on one object, then on another one. In this case one con-
troller becomes perfect for one object, and is also better for
the other objects than untrained controllers: this is the prop-
erty we illustrated previously (see Fig. 5). In our simulations
we switched objects frequently, every 20 time steps.

Controller competition parameter σ This parameter
seems to be key for controller specialization. Unfortunately,
the way it is defined in MOSAIC is unclear: it is only said to
be “tuned by hand over the course of the simulation ” (Haruno
et al., 2001, 2211). We therefore investigated three cases.

If σ is set to a low value, the competition is strong between
controllers: as soon as one controller specializes for one ob-
ject, as it is also better than untrained controllers on the other
objects (see Fig. 5), it wins control over all objects. More-
over, only one controller is active at a time: the system be-
comes similar to a mixture of experts system (Jacobs, Jordan,
Nowlan, & Hinton, 1991).

If σ is set to a high value, the cooperation is strong between
controllers: the responsibilities are so well distributed that al-
most no specialization appears. All controllers have nearly
the same responsibilities so they share the control of the ob-
jects. Despite this, the manipulation error remains small.

The last case is to have σ vary during training, and more
precisely, decrease over the training period. Indeed, with
an initial cooperation and shared control between controllers,
they all quickly learn the main characteristics of the motion
equation, and the main aspect of control: apply a positive
force when the object needs to go up, a negative force other-
wise. When this is trained into all controllers, then σ can be
slowly decreased so that controllers, in turn, pick more pre-
cise characteristics of the physical behaviors of the objects.
Finally, σ should decrease over time, but not in a linear way
since the convergence of the ANNs is not linear. When it is
correctly tuned, a specialization can be observed (Haruno et
al., 2001). Unfortunately, the function σ(t), according to our



Figure 7: Dynamics for 3 objects (A to C) with different char-
acteristics (M,B,K). The axes are: speed ẋt , applied force ut
and next position xt+1. A fixed starting position is assumed.
Each plane corresponds to one object.

Figure 8: Responsibilities for 4 controllers in MOSAIC, plot-
ted against the desired position xdt .

simulations, also appears to be dependent of problem specific
factors, including the number of presented objects and their
characteristics (M,B,K); we do not foresee an easy way in
which σ(t) could be automatically defined in order to be suit-
able for a given instance of the MOM task.

What is learned by controllers in MOSAIC?
A close inspection of the physical manipulation problem
shows that some structural properties are the same for all ob-
jects: for instance, discrimination between the pulling cases
(negative force) and the pushing cases (positive force).

Further investigations also show that some objects with dif-
ferent physical characteristics become indistinguishable for
some trajectories. For instance, consider two objects with the
same mass M and spring constant K but with different damp-
ing factors B1 and B2: when the speed along the trajectory is
small, these two objects behave similarly, and a single con-
troller can easily control both. On the other hand, when the
speed is high, the forces to output are different, and two con-
trollers are needed. This is illustrated Fig. 7: we plotted the
motion equation (1) for three different objects. In order to
represent it on a 3D plot, we set a fixed starting position xt . In
this projection of the Space Of Dynamics (SOD), we can ob-
serve that objects are intersecting planes. At the intersections,
the objects are indistinguishable.

Because objects are indistinguishable for some trajectories,
we hypothesized that controllers in MOSAIC would not be-
come specialized for specific objects, but rather, for object–
trajectories combinations. We thus plotted the controller re-
sponsibilities after learning against the trajectory characteris-
tics. We show Fig. 8 the responsibilities for 4 controllers (0

! !

Figure 9: On the left, the CARMA Inverse module with an
additional two-node layer for investigating the structure of
the learned network. On the right, activity plot of the Inverse
module; the axes are the values in the 2D added layer (X and
Y) and the output value of the network (Z).

to 3) manipulating 3 objects (A to C) as a function of the de-
sired position xdt : we observe that when xdt < 0, controller
2 takes almost full control, that there is a shared control be-
tween controllers 2 and 3 for xdt ∈ [.1, .7], and that controller
3 is specialized for xdt ∈ [.7, .9], independently of the object
being manipulated. Therefore, it appears that MOSAIC con-
trollers indeed specialize for motion subspaces.

MOM with a single controller: CARMA

Since CARMA solves the MOM task with a single controller,
and because it does not encode objects in its structure, we
studied the way different objects were represented in the Di-
rect model and Inverse model ANNs after learning.

We first quickly describe a new method of plotting the acti-
vation of a MLP neural network, and then use it on CARMA
to investigate its internal representation of objects.

In a MLP, each layer is a transformation of the input space
that can have a different dimensionality. If we add a two-
node layer to the network, it is possible to extract a two-
dimensional transformation of the input space and plot it. To
generate the plotting data, we first train the network, then dis-
able learning, submit to the network a random input activity
on the nodes of interest, propagate it through the network,
and, finally, record the activity of the two-dimensional hidden
layer. This process is iterated until enough data is collected
to have a good representation of the input space.

We used this method on CARMA’s Inverse module (Fig. 9,
left). By logging the activity of the two-dimensional hidden
layer activity and the one-dimensional output layer we can
draw a 3D plot of the function approximated by the whole
module. In the case of a network trained on multiple ob-
jects, this representation gives information about the inter-
nal representations of objects. The most interesting result is
that the function is fragmented: multiple long shapes are par-
tially merged (Fig. 9, right). The number of shapes is equal
to the number of objects learned by the system. With this
method we get a clear representation of what an object is for
CARMA: the concept of object is no longer a structural prop-
erty of the model, it a contiguous set of activities in the set of
possible activations in the network.



In the activity plot, the proximity of the shapes provides
useful information. Some of them are merged, meaning that
the objects are indistinguishable based on their dynamics.
Furthermore, only one factor modifies the shape positions
in the plot: the visual representation of the object. In other
words, CARMA produces different outputs for different vi-
sual representation. This means that CARMA learns the mo-
tion equation, and uses the visual representation of the object
as its parameters. Thus, the characteristics (M,B,K) are en-
coded in the internal visual representation. This encoding is
the key point of the Context Predictor module.

Recall that the Context Predictor inputs are from the space
of object dynamics, and its output is an estimated visual con-
text: the CP learns a mapping from object dynamics to the vi-
sual representation space. In other words, it associates phys-
ical behaviors of objects with their appearances. The module
never computes the (M,B,K) parameters explicitly, but en-
codes these in a visual space.

There is an interesting analogy with the way humans are
not able to exactly ascertain the mass of an object. It is easy
to know that one object is heavier than another, but very dif-
ficult to provide a precise estimation of a mass. Indeed, hu-
mans probably encode mass in a non-numeric space which
would be a mixture of volume, aspect, dynamic experienced
by motor experience, etc.

To further study this analogy, it would be fruitful to train
the system and verify whether and how similar visual repre-
sentations are associated with objects with similar dynamics;
in other words, study the metrics of the transformation be-
tween the visual space and the space of the (M,B,K) param-
eters. With manually designed visual representations (e.g. ob-
jects with very similar visual representations but very differ-
ent dynamics), it would be possible to test the predictions
made by the Contextual Predictor.

Discussion
We presented and tested two systems, MOSAIC and
CARMA, designed to solve the Multiple Object Manipula-
tion task. The main difference between them is the modular-
ity hypothesis: MOSAIC assumes that objects are encoded
in a spatial way, into the model structure; whereas CARMA
builds a function which handles all objects. Our experimen-
tal study has shown that, in MOSAIC, the controller–object
association is not systematic and mainly relies on a human
tuned parameter. Most of the time, controllers specialize on
complex mixtures of trajectory, motion and object, which we
have shown to be a central property of the CARMA model.

The non-modular approach was criticized by the authors
of MOSAIC. According to them, for instance, a single con-
troller would be too computationally complex. Actually, for
the same problem, CARMA uses less neurons than MOSAIC.
Indeed, in CARMA, the computational power comes from the
number of nodes in hidden layers, while in MOSAIC, com-
plete Direct and Inverse models are duplicated for each ad-
ditional object. For instance, our CARMA implementation,

with 10 hidden nodes in the Direct and Inverse models, and
a total of 96 nodes, solves the MOM task with 10 objects. In
MOSAIC, it would require 8*10 objects + 20 (for the RP) =
100 neurons. We believe that the difference would grow for
additional objects, as CARMA with a few more nodes would
treat a large number of additional objects (as we illustrated
experimentally but did not expose in detail here).

They also suspected a slow adaptation to context variation;
however, there is no delay in CARMA since the context is
what defines the output of the system. The last point is the
sensibility to catastrophic unlearning, which we did not study
in this paper, but which has been solved elsewhere on similar
single controllers, by a method that can easily be adapted to
CARMA (Ans & Rousset, 2000).

Studying MOSAIC has implications beyond the scope of
pure mathematical modeling. Indeed, the modularity hypoth-
esized in MOSAIC – one controller for one object, and there-
fore, a spatial, structural encoding of objects in the global
controller – is taken as a starting point of some recent brain
imagery studies (Imamizu et al., 2000; Imamizu, Kuroda,
Miyauchi, Yoshioka, & Kawato, 2003; Ito, 2000). Therefore,
equivalents of this structural object endoding are looked for
in the biological substrate; there is here the risk of an interpre-
tation bias, resulting from taking for granted a model which
is too specific.

References
Ans, B., & Rousset, S. (2000). Neural networks with a

self-refreshing memory: Knowledge transfer in sequential
learning tasks without catastrophic forgetting. Connection
science, 12, 1–19.

Gomi, H., & Kawato, M. (1993). Recognition of manipu-
lated objects by motor learning with modular architecture
networks. Neural Networks, 6, 485–497.

Haruno, M., Wolpert, D. M., & Kawato, M. (2001). MO-
SAIC model for sensorimotor learning and control. Neural
Computation, 13(10), 2201–2220.

Imamizu, H., Kuroda, T., Miyauchi, S., Yoshioka, T., &
Kawato, M. (2003). Modular organization of internal mod-
els of tools in the human cerebellum. Proceedings of the
National Academy of Science (PNAS), 100(9), 5461–5466.

Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino,
R., Pütz, B., et al. (2000). Human cerebellar activity re-
flecting an acquired internal model of a new tool. Nature,
403, 192–195.

Ito, M. (2000). Neurobiology: Internal model visualized.
Nature, 403, 153–154.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E.
(1991). Adaptive mixtures of local experts. Neural Com-
putation, 3(1), 79–87.

Kawato, M. (2008). From ‘understanding the brain by cre-
ating the brain’ towards manipulative neuroscience. Phil.
Trans. R. Soc. B, 363, 2201–2214.

Wolpert, D. M., & Kawato, M. (1998). Multiple paired for-
ward and inverse models for motor control. Neural Net-
works, 11(7-8), 1317–1329.


