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Abstract 

Human performance can seriously degrade under demanding 
tasks. To improve performance, agents can reason about the 
current state of the human, and give the most appropriate and 
effective support. To enable this, the agent needs a work 
pressure model, which should be valid, as the agent might 
otherwise give inappropriate advice and even worsen 
performance. This paper concerns the validation of an 
existing work pressure model. First, human experiments have 
been designed and conducted, whereby measurements related 
to the model have been performed. Next, this data has been 
used to obtain appropriate parameter settings for the work 
pressure model, describing the specific subject. Finally, the 
work pressure model, with the tailored parameter settings, has 
been used to predict human behavior to investigate predictive 
capabilities of the model. The results have been analyzed 
using formal verification. 

Introduction 
In demanding working circumstances the quality of the 
tasks performed by a human might be severely influenced 
(cf. Hancock et al., 1995, Hanley, 1997). Especially when 
tasks are performed in a critical domain, such effects are 
highly undesired. To improve task performance in such 
situations, personal assistant agents (cf. Kozieok and Maes, 
1993; Mitchell et al., 1994; Maheswaran et al., 2003) can be 
used to monitor the activities of the human, and intervene in 
case needed. Interventions could for example take the form 
of assigning (part of) the tasks to other humans, or give 
advice regarding the performance of the task. 

One crucial element in the support given by a personal 
assistant agent is that it should be given in appropriate 
circumstances: the agent should have an awareness of the 
state of the human. In Bosse et al. (2008a) a dynamical 
model has been presented that describes the cognitive 
workload experienced by humans, given knowledge of the 
human’s characteristics in combination with the tasks that 
need to be performed. The model is quantitative, based upon 
mostly qualitative theories from Psychology, but was not 
validated yet using human experiments. The primary focus 
of this paper is to develop and implement an approach for 
the validation of this human work pressure model. The 
validation has been performed by taking a number of steps. 
First of all, an experiment with 31 human subjects has been 

conducted. Hereby, the subjects were to play a game 
whereby they experience different amounts of workload. 
Each subject was given two conditions. Using the empirical 
data obtained from this experiment, parameter estimation 
techniques have been deployed to find appropriate 
parameter settings for the model to accurately describe the 
subject’s behavior in one of the conditions. Thereafter, these 
settings have been used to predict the behavior of the 
subject in the other condition. Finally, properties that relate 
to the work pressure model have been verified against the 
empirical data as well. 

This paper is organized as follows. First, the work 
pressure model is briefly explained. Thereafter, the setup of 
the experiment and the results of parameter estimation are 
shown. Next, the verification of properties against the 
empirical data, and finally the paper is concluded and future 
work is discussed. 

Work pressure model 
The Agent model for the Functional State (FS) of a human 
represents the dynamical state of a person when performing 
a certain task. States such as experienced pressure, 
motivation and exhaustion of the person are predicted, but 
also the performance quality and the amount of generated 
effort to the task..  

The model is based on two different theories: 1) the 
cognitive energetic framework (Hockey, 1997), which states 
that effort regulation is based on human recourses and 
determines human performance in dynamic conditions; 2) 
The idea, that when performing sports, a person’s generated 
power can continue on a critical power level without 
becoming more exhausted (Hill, 1993). In the FS model (cf. 
Figure 1) critical power is represented by the critical point: 
the amount of effort someone can generate without 
becoming more exhausted.  

As input the FS model uses external factors (task 
demands and environment state) and personal factors 
(experience, cognitive abilities and personality profile), 
which are used to determine a person’s dynamical state. In 
addition, it determines the relation of this state to the 
human’s actions with respect to the task (e.g. performance 
quality), represented in the Task Execution State.  

An example equation of the model is: 



    E(t+Δt) = E(t) + Pos(η·(GE(t)-CP(t)) ·Δt) - π·RE(t)· Δt  
Here Exhaustion (E) builds up or reduces over time. 

When the generated effort (GE) is above the critical point 
(CP), exhaustion increases, otherwise exhaustion decreases 
depending on the level of recovery effort (RE). Parameters η 
and π determine the amount of increase or decrease. The 
function Pos(x) in this formula is defined as the maximum 
of x and 0. For more details on the model, see (Bosse et al., 
2008). 

 
Figure 1. Agent Model for an Operator’s Functional State 

Experimental setup 
First, an overview of the game and its participants is given. 
The main part of the experiment is a game which combines 
a shooting task and a calculation task. Thereafter, the 
procedure of the experiment is explained. A more detailed 
version can be found in Appendix A: 
http://www.few.vu.nl/~fboth/ICCM/appendix_A.pdf. 
Finally, a description is given of how data from the 
experiment has been used as input for the work pressure 
model. 

Game and Participants 
In the experiment the main task is a shooting game where 
the goal is to get as many points as possible. Objects 
(friends and enemies) were falling down in different 
locations at different speeds. The purpose is to shoot the 
enemies before they hit the ground. Shooting at a missile is 
done by a mouse click at a specific location; the missile 
would then explode exactly at the location of the mouse 
click. The speed with which the missile reaches this location 
is 79.6 pixels per second. When an object is within a radius 
of 50 pixels of the explosion, the object is destroyed. The 
number of points a participant receives for hitting an enemy 
is proportional to the proximity of the explosion. When a 
participant shoots a friend or when an enemy reaches the 
bottom of the screen, points are lost. When a friendly object 
reaches the bottom of the screen points are gained. Next to 
each of the objects, a calculation is written on the screen. A 
correct calculation indicates that the object is friendly and 
should not be shot. An incorrect calculation indicates that 
the object is an enemy and should be shot before it reaches 
the bottom of the screen. For a demo of the shooting game, 
see http://www.forcevisionlab.nl/demo/missilecommand.swf.  

In the study 31 persons participated (18 males, 13 
females, of which 25 students). They ranged in age from 17 

to 57 years with a mean age of 26 years. The experiment 
took approximately 1 hour for which participants received a 
voucher of 10 euro. In addition, there was a voucher of 100 
euro for the one with the best score on the game. 

Procedure 
For the experiment a 2 factor within subjects design was 
used. Two different conditions within each participant were 
tested. In Bosse et al. (2008a), two scenarios were simulated 
using the model. Scenario 1 started with a low task level and 
continued with a high task level. Scenario 2 started with a 
high task level and continued with a low task level. 
Condition was counterbalanced over participants to correct 
for a possible order effect, such that participants with an odd 
number started with condition 2 and even numbered 
participants started with condition 1.  

Participants started the experiment with filling out a 
personality questionnaire with questions from the NEO-PI-
R and the NEO-FFI (Costa and McCrae, 1992); with these 
questions some aspects of each participant’s personality 
were measured, to serve as input for the personality profile 
of the work pressure model. Neuroticism and extraversion 
were measured with the NEO-FFI. With the NEO-PI-R 
vulnerability (part of neuroticism) and ambition (part of 
conscientiousness) were measured.  

After the questionnaire, participants performed three 
small tests each consisting of 30 trials which were equal 
between participants. These tests served as input for model 
validation (see the next subsection and Appendix A for the 
explanation thereof). Instructions for each test were shown 
on the screen. The first test was a simple choice Reaction 
Time test (choice-RT), where a square was presented either 
left or right from a fixation cross at the centre of the screen. 
Participants had to react with either the left arrow (when the 
square was presented left) or the right arrow (when the 
square was presented right). The second test was a task 
where calculations were presented. Again, participants had 
to choose whether the calculation was correct (left arrow) or 
incorrect (right arrow). The third small test (mouse-RT) was 
another Reaction Time task; here a circular target was 
presented somewhere on the screen. Participants had to react 
quickly and precisely by clicking with the mouse as close as 
possible to the centre.  

After the three small tasks, participants practiced during 3 
minutes for the experiment-game described in the previous 
subsection. The goal of the practice task was familiarize 
with the shooting and calculation tasks in the game. After 
practice the participants started the experiment-game with 
either condition 1 or condition 2, which both took 15 
minutes. 

From experiment data to work pressure model 
In order to validate the model, data from the experiment was 
used to calculate the values of several concepts of the work 
pressure model, namely personality profile, basic cognitive 
abilities (BCA) and expertise profile, following theories 
from Psychology (Matthews & Deary, 1998; Plomin & 



Spinath, 2002; Rose et al, 2002; Salgado, 1997). Hereby, 
several parameters are introduced that need to be estimated 
by the parameter estimation approach as well. Including 
this, the number of parameters that should be estimated is 
27. For the precise mathematical equations used, see 
http://www.few.vu.nl/~fboth/ICCM/appendix_D.pdf. 

Furthermore, from the experiment data the situational 
demands can be calculated. Although the scenarios were the 
same for all participants, the calculated task level could 
differ due to the performance quality. Therefore, Situational 
Demands were calculated per time step per participant. 
According to the model, situational demands and the 
expertise profile together contribute to task level.  
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TaskLevel = (1.5 – Exp)·SitD        (1) 

In the experiment, performance quality was measured in 
terms of efficiency and effectiveness. Efficiency represented 
the number of missiles necessary to shoot an enemy. 
Effectiveness was dependent on how close to the object the 
missile exploded (explosion fraction) and whether an enemy 
or friend was shot. In case of an enemy being shot: 

Effectiveness = (1+ explosion_fraction)/2.0        (2) 

Effectiveness was 0 when a friend was shot or an enemy 
landed. When a friend landed, effectiveness was 1. Using 
effectiveness and efficiency, the task execution state was 
calculated: 
ObjTES = (0.25·efficiency + 0.75·effectiveness)·2         (3) 

Estimation of parameters 
This section presents the results of parameter estimation for 
the work pressure model using two different methods: a 
gradient-based approach and an approach based on 
probabilistic search.  

Gradient-based parameter estimation 
To perform parameter estimation, a method based on the 
maximum likelihood principle has been applied (Sorenson, 
1980). In line with this principle a likelihood function of the 
measurement data and the unknown parameters is defined. 
This function is essentially the probability density function 
of the measurement data given the parameter values p(z|). 
Furthermore, it was assumed that the measurements 
contained noise which is zero-mean and has a Gaussian 
distribution. The measurement data were represented by the 
random, normally distributed variable z. Such an 
assumption is often made for dynamic systems in many 
areas. The parameter vector, which makes the likelihood 
function most probable to obtain the measurements z (… 
.. which maximizes the likelihood function) is called the 
maximum likelihood estimate; it is obtained by minimizing 
the error function: 
 
 
Here the measurements obtained are discrete time, N is the 
number of measurements, R is the measurement noise 
covariance matrix. The estimate of R is obtained as 

The maximum likelihood estimates are consistent, 
asymptotically unbiased and efficient (Sorenson, 1980). 

The calculation of the maximum likelihood estimate is 
performed iteratively. The estimate value at the (k+1) 
iteration is determined as: 
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Here the first gradient is defined as 

For the work pressure model the expressions for the 
partial derivatives w.r.t. the parameters (i.e., sensitivity 
coefficients) have been obtained analytically (see Appendix 
B: http://www.few.vu.nl/~fboth/ICCM/appendix_B.pdf). 
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The analytical determination of the second gradient is 
more involved, therefore a Gauss-Newton numerical 
approximation has been used for it: 
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Such an approximation does not cause a significant error 
in the parameter estimate. Furthermore, the use of the 
second gradient speeds up the convergence of the estimation 
process significantly. 

The state values of the system were calculated by 
numerical integration of the model equations using the 4th 
order Runge-Kutta method, which has proven to be both 
accurate and stable. The estimation error is calculated in 
each iteration as root mean square error:  

 
 
 

The parameter estimation procedure based on the 
maximum likelihood principle has been implemented using 
the following algorithm: 

Algorithm: ML-PARAMETER-ESTIMATION 
 

Input: Initial values of the parameters 1, maximal number of iterations 
itmax; satisfactory error value err_sat; matrix of the input values U; 
matrix of the output values Z 
Output: Maximum likelihood estimate ML 

1 i=1 
2 Until i  itmax perform steps 3-7 
3 Calculate the current state of the system using the model  
       equations 
4 Calculate the output root mean square error erri using (10).  
5 if err  err_sat, then ML = i; exit endif. 
6 if i < itmax, then 
   6a Calculate the noise covariance matrix R using (6) 
   6b Calculate the sensitivity coefficients /y  

   6c Calculate the first and second gradients using the formulae  
          (8) and (9) respectively. 
   6d Calculate the parameter values for the next iteration i+1 using (7) 
      endif 
7 i = i+1 
8 Find the minimum error errm in {erri| i=1..itmax}; then  
          ML = m; exit. 

The algorithm was implemented in the Matlab 7 
environment. The worst case complexity is estimated as 
O(NN||M), where NN is the number of integration points, || 
is the number of the estimated parameters, M is the number 
of outputs. The execution of an iteration took less than 2 sec 
on an average PC. 
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Simulated annealing 
The Simulated Annealing method uses a probabilistic 
technique to find a parameter setting. In this method a 
random parameter setting is chosen as the best available 
parameter setting at the start. Then a displacement is 
introduced into these settings to generate a neighbor of the 
current parameter settings in the search space. If this 
neighbor is found more appropriate representation of the 
observed human behavior then it is marked as the best 
known parameter setting otherwise a new neighbor is 
selected to evaluate its appropriateness. The displacement in 
the parameter settings depends on the temperature, in case 
the temperature is higher, the steps will become larger. The 
temperature at a certain time point for the parameter settings 
is defined as follows  

  Temperature = computational-budget-left  error (11) 

Here the computational budget is the number of neighbors 
to be tested for better approximation. The displacement in 
the parameter for example γ was derived from following 
equations selecting any one at random. 
γ=γ+Temperature  (1-γ)  random_no_between[0,1] (12a) 

or γ = γ-Temperature  γ  random_no_between[0,1] (12b) 
The method is described as follows: 
 

Algorithm: SA-PARAMETER-ESTIMATION 
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Input: Initial randomly selected values of the parameters 1, 
computational budget C; observed human behaviour B;  
Output: Best estimate of parameter settings BE 

1  BE=1 
2  while C  0 perform steps 3-8 
3  Choose a random parameter setting  in neighbourhood of BE  using 
equation (11 and 12a, 12b). 
4 Calculate the output root mean square error err for  using (10).  

 5 Calculate the output root mean square error errBE for BE using (10). 
6 if err  errBE, then BE = ; errBE = err; endif. 
7 Decrease C;  
8 Temperature = C * errBE;  
9 output BE. 

 

Figure 2. Empirical data and the estimated output 
performance quality for subject 37 for condition1 (left) and 

condition 2 (right) 
In figure 2 performance quality for subject 37 is shown for 
computational budget 10000 and 900 observed human 
behavior. Here it should be noted that graph represents the 
curve generated with parameter settings producing 
minimum root mean square error found till the end of 
computational budget. The algorithm has been implemented 
in C++ and applied to the work pressure model. If C is 

computational budget, then the worst case complexity of the 
method can be expressed as О(CB), where B is the number 
of observed behaviors. Here it could be observed that 
computational complexity of this method is independent 
number of parameter. 

Results of the estimation 
The gradient-based and simulated annealing methods have 
been applied for the estimation of 30 parameters of the work 
pressure model (see Appendix C: 
http://www.few.vu.nl/~fboth/ICCM/appendix_C.pdf). The 
estimation has been performed for 31 subjects, for both 
experimental conditions. The initial setting of the 
parameters has been taken from Bosse et al. (2008a). This 
setting is grounded partially in the psychological literature; 
furthermore it ensures the desired properties of the modeled 
system. Figure 2 illustrates the empirical data and the 
estimated output performance quality for subject 37 for both 
conditions. 

The estimation by both methods showed similar 
behavioral patterns in the output of the model. However, the 
gradient-based method has a better precision in comparison 
to the simulated annealing. The root mean square errors 
calculated in both parameter estimation methods are given 
in Table 1. To evaluate the quality of estimation also other 
measures have been used. In particular, the Cramer-Rao 
bounds provide a useful measure of relative accuracy of the 
estimated parameters (Sorenson, 1980). 

 

Table 1. Root mean square errors of estimation by the 
gradient-based (GB) and simulated annealing (SA) methods 

for all subjects in both experimental conditions 
Error range < 0.1 [0.1, 0.25) [0.25, 0.4) > 0.4 

GB 21 11-20, 22, 24-41 - - Subjects 
in condi-
tion 1 

SA  40 11, 12, 22, 24-
26, 30, 32-39, 41

13-18, 20, 21, 
28, 29, 31 

GB 12, 15, 18, 
20, 21, 23, 
27, 30 

11, 13, 14, 16, 
17, 19, 22, 24-
26, 28, 32-41 

29, 31 - Subjects 
in condi-
tion 2 

SA 32 17, 26, 30, 31, 
34. 35, 37, 40 

12, 27, 38, 41 11, 13-16, 18-
23, 25, 28, 29, 
33, 36, 39 

 

This measure sets a lower bound on the standard 
deviation of the estimators: 
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For efficient estimation the equality holds. Furthermore, for 
the maximum likelihood method, I() = 2

E(), which also 
needs to be calculated for (9); thus no additional 
computation effort for the evaluation of this measure is 
required. Using this measure at least 57% (70% in the best 
case) of the estimated parameters have been identified as 
accurate for all subjects in both conditions (relative standard 
deviation (rsd)  5%). Other parameters, although less 
accurate (5% < rsd < 40%) still have a degree of confidence. 

Another useful criterion for judging the quality of the 
estimates is the correlation coefficients among the estimates 
calculated as: 
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Only one significant correlation between the parameters A 
and  has been identified. 

The precision of the parameter estimation is essential for 
prediction of the system dynamics using the model. To 
examine predictive capabilities of a model, cross-validation 
is often used. In the cross-validation of the work pressure 
model the empirical data of the condition 2 have been used 
for the parameter estimation, whereas the data of the 
condition 1 were used for validation of the model with the 
parameter estimates obtained from the condition 1. 

The prediction quality was determined by comparing the 
root mean square errors for both conditions. For most of the 
subjects (84%) in the GB estimation, prediction errors 
(Table 2) differ from the estimation errors (Table 1, subjects 
in condition 1) insignificantly (less than 10%). Furthermore, 
also cross-validation was performed, in which data from one 
of the settings were used for parameter estimation and data 
from the other setting were used for validation (Figure 3).  
 

Table 2. Prediction errors of estimation by the GB and SA 
methods for all subjects in condition 1 using the estimated 

parameters from condition 2 
Error range < 0.1 [0.1, 0.25) [0.25, 0.4) > 0.4 

GB 21 12-20, 22, 24-30, 
34-40 

11, 31, 32, 41 33 

SA - 17, 26, 31, 32, 
37, 40 

12, 13, 22, 25, 28, 
30, 34, 35, 38, 41 

11, 14-16, 18-
21, 29, 33, 39 
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Figure 3. Predicted dynamics for subject 37 in condition 1 
using the estimated parameters from condition 2 (left) and in 

setting 2 using the parameters from setting 1 (right).. 

Verification of Properties 
This section focuses on logical verification, another 
approach which has been used to validate the model. The 
idea is that properties are identified that are entailed by the 
work pressure model, and these properties are verified 
against the empirical data that has been obtained. In order to 
conduct such an automated verification, the properties have 
been specified in a language called TTL (for Temporal 
Trace Language, cf. Bosse et al., 2008b) that features a 
dedicated editor and an automated checker. This predicate 
logical temporal language supports formal specification and 
analysis of dynamic properties, covering both qualitative 
and quantitative aspects. TTL is built on atoms referring to 
states of the world, time points and traces, i.e. trajectories of 
states over time. In addition, dynamic properties are 
temporal statements that can be formulated with respect to 
traces based on the state ontology Ont in the following 

manner. Given a trace  over state ontology Ont, the state in 
 at time point t is denoted by state(, t). These states can be 
related to state properties via the formally defined 
satisfaction relation denoted by the infix predicate |=, i.e., 
state(, t) |= p denotes that state property p holds in trace  at 
time t. Based on these statements, dynamic properties can be 
formulated in a formal manner in a sorted first-order 
predicate logic, using quantifiers over time and traces and 
the usual first-order logical connectives such as , , , , 
, . For more details on TTL, see (Bosse et al., 2008a). 

Three main properties have been identified that follow 
from the work pressure model. The first property specifies 
that performance quality decreases in case a task level in a 
certain range is experienced: 
P1(min_level, max_level, d, x) 
If at time point t1 the task level is tl and the performance quality 
pq, and tl is in the range [min_level max_level], and until t1+d the 
task level does not cross these boundaries, then there exists a time 
point t2> t1 at which the performance quality is at most x * pq. 
P1(min_level, max_level, d, x)  
:TRACE, t1:TIME, pq1:REAL 

[ state(, t1) |= has_value(performance_quality, pq1) & 
    tl:REAL, t’:TIME  t1 & t’  t1 + d  
       [state(, t’) |= has_value(task_level, tl)  
        [ tl  max_level & tl  min_ level ] ] 
     t2:TIME > t1, pq2:REAL 
         [state(, t2) |= has_value(performance_quality,pq2) &pq2  x * pq1] 

This property has been verified using the following values: 
min_level is set to 20% above BCA, max_level is set to the 
highest task level encountered in the experiment, the 
duration d is set to 60 time steps (i.e. a minute real time), 
and x is set to 1 (i.e. performance quality should never go 
up, but can remain the same). These settings follow the 
model: in case a task level above BCA is experienced, the 
human becomes exhausted, and the quality can no longer go 
up. Results show that this property is satisfied in 60% of the 
empirical traces. 

The second property concerns the opposite: in cases 
where there is a task level between certain boundaries, the 
performance quality should be at least as high as before the 
period (note that the formal form has been omitted for the 
sake of brevity): 
P2(min_level, max_level, d, x) 
If at time point t1 the task level is tl and the performance quality 
pq, and tl is in the range [min_level, max_level], and until t+d the 
task level does not cross these boundaries, then there exists a time 
point t2> t1 at which the performance quality is at least  x * pq. 
Using the following settings:  max_level at 20% below BCA, 
min_level is set to 0 and d and x the same as for the previous 
property, this property is satisfied in 45% of the cases. In 
case a task level is experienced which is somewhat below 
the highest task level that can be handled without exhaustion 
building up (i.e. the BCA), then the performance will get 
better, or at least stay the same (as there is no exhaustion). 

The final property which has been verified concerns 
performance quality being higher for cases whereby there is 
a lower task level: 
P3(low_level, high_level) 



In case the task level at a time point t1 is tl1, and at a time point t2 
the task level is tl2, and tl1 > high_level and tl2 < low_level, then 
there exists a time point t’ > t1 and there exists a time point t’’ > 
t2 such that the performance quality at time point t’ is lower than 
the performance quality at time point t’’.  
 

Using a low_level of 20% below BCA, and a high_level of 
20% above the cognitive abilities, this property is satisfied 
in 60.7% of the cases. The property complies with the 
model, because a task level beyond BCA results in 
exhaustion leading to a worsened performance, which is not 
the case for a task level far below BCA. In total, 25.0% of 
the cases comply with properties P1, P2, and P3. 

Discussion and conclusions 
To reason about the human behavior and support 
possibilities personal assistant agents often use (cognitive) 
models. To ensure that support is provided by agents in a 
timely and knowledgeable manner, such models should be 
accurate and validated. This paper contributes an approach 
to validate the work pressure model. In the following the 
performed validation steps of the approach are discussed. 

The experience with the experiment was that the 
participants were very motivated to perform well on the 
main task. This was not only due to the reward; they were 
also enthusiastic about the game itself. In order to keep the 
learning effect to a minimum and to maintain the 
participants’ concentration, every participant performed 
only two sessions of the 15 minute game. However, 
precision of parameter estimation will increase when 
measurements of more within-subject conditions are taken. 

The results obtained for the parameter estimation are 
satisfactory. However, a number of parameters (35% in 
average) were evaluated as less accurate, and, therefore, less 
reliable. Partially this can be explained by a large overall 
number of parameters being estimated. Most of the less 
precise parameters have a weak relation to the measured 
output (e.g., noise sensitivity) Furthermore, since the 
empirical data were collected based on irregular events (i.e., 
actions of humans), some intervals contained the amount of 
information insufficient for estimation. Despite this, as 
shown in the paper, the models with estimated parameters 
demonstrated good predictive capabilities in the cross-
validation, which is a strong indicator of the model validity. 

The trends as predicted by the model have also been 
verified against the empirical material. The results show that 
a reasonable percentage of the traces satisfy each of these 
individual properties. The combination of all three 
properties is however only satisfied in 25% of the cases, 
which can mainly be attributed to the aforementioned 
collection based on irregular events, making the data 
obtained more prone to sudden changes. 

The topic of model validation received much attention in 
the areas of Psychology and Social Science. In particular, a 
validation approach from (Yilmaz, 2006) distinguishes the 
validation phases similar to the ones considered in the paper 
(e.g., conceptual and operational validation); however, the 
precise elaboration of the phases is focused largely on social 
processes, which are not relevant for our work. Furthermore, 
examples of model validation are found in psychology, e.g. 

on the subject of visual attention (Parkhurst et al., 2002), 
however often no parameter estimation is involved. 

In the future research the considered parameter estimation 
methods will be extended for the case of real-time 
estimation, which accounts for human learning. 
Furthermore, a personal assistant agent will be implemented 
that is able to monitor and balance work pressure of the 
human in a timely and knowledgeable manner. 
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