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Abstract 

Humans rapidly learn complex structures in many domains. 
Some findings of above-chance performance of untrained 
control groups in artificial grammar learning studies raise the 
question to which extent learning can occur in an untrained, 
unsupervised testing situation with partially correct and 
incorrect structures. Computational modelling simulations 
explore whether an unsupervised online learning effect is 
theoretically plausible in artificial grammar learning. 
Symbolic n-gram models and simple recurrent network 
models were evaluated using a large free parameter space and 
applying a novel evaluation framework, which models the 
human experimental situation through alternating evaluation 
(in terms of forced binary grammaticality judgments) and 
subsequent learning of the same stimulus. Results indicate a 
strong online learning effect for n-gram models and a weaker 
effect for simple recurrent network models. Model 
performance improves slightly once the window of accessible 
past responses for the grammaticality decision process is 
limited. Results suggest that online learning is possible when 
ungrammatical structures share grammatical chunks to a large 
extent. Associative chunk strength for grammatical and 
ungrammatical sequences is found to predict both, chance and 
above-chance performance for human and computational 
data. 
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Introduction 

Humans are very efficient learners. In many cases we learn 

without intention and without awareness, and it has been 

suggested that implicit learning constitutes one powerful 

and fundamental root mechanism of learning (Reber, 1993). 

Humans are even further able to learn and to adapt to the 

environment, whilst being in the midst of things: we pick up 

individual characteristics, or melodic features in a piece of 

music while we are listening or dancing to it, sportsmen are 

able to adapt to characteristics of their opponents or the 

environment while playing, or musicians adapt to 

characteristic musical patterns of other musicians while 

improvising together.  

Humans acquire implicit knowledge about regular 

structures very quickly. Serial reaction time experiments 

have found humans to be able to acquire rule-based 

structures extremely rapidly (Reber, 1993). Similarly, under 

the artificial grammar learning paradigm (AGL) participants 

acquire rule-based structures rapidly after short 

familiarisation periods (Pothos, 2007). One question that 

arises in this context concerns how efficient humans may 

learn regular structures even during a test, or under more 

complex conditions involving a combination of both, 

regular and irregular structures. For instance, Dulany et al. 

(1984) found that untrained controls performed above 

chance, which might suggest that they  have picked up some 

regularity in the structures during the testing. Redington & 

Chater (1996) discuss the possibility of such a learning 

process, whereas Reber & Perruchet (2003) argue that above 

chance performance of a control group would not stem from 

a learning effect but from confounding structural biases that 

may be easy to detect. However, two recent musical 

grammar learning experiments found a high performance of 

about 60%  in untrained controls (Loui et al, 2008; 

Rohrmeier et al., submitted) which may reopen the question 

about a potential rapid online-learning effect.  

This study addresses how online-learning on the fly could 

be theoretically possible based on computational modelling 

methods. It proposes a framework to model both the 

simultaneous learning of structures while being tested and 

the generation of binary grammaticality judgments, in a way 

that parallels the human situation. It aims to demonstrate 

that two standard computer models of learning reproduce an 

effect of unsupervised online learning under certain 

conditions regarding the stimulus structures. Further it 

explores why it turns out that grammatical structures, but 

not ungrammatical ones, are preferred as familiar even 

though the learning process happens under unsupervised 

conditions. These theoretical and computational 

observations raise several hypotheses regarding an efficient 

online-learning effect for future psychological research.  

Experimental hints & evidence 

In a musical AGL experiment, Rohrmeier et al. (submitted) 

found that untrained control participants were able to 

distinguish rule-consistent grammatical stimulus structures 

from ungrammatical structures throughout the course of a 

testing phase, even though they had no prior training. Once 

the performance of this group is plotted over time 

(throughout the course of the testing phase, in which the 

stimulus order was randomized), one finds a curve of the 

shape of a saturation curve (figure 1). The fact that the 

performance curve begins at a chance level of 0.5 (and not 

above) and steadily raises to a level of 0.62, suggests that 

participants gradually pick up some knowledge that enables 

them to distinguish the structures, with little prior bias. The 

study found the group performance to be significantly above 

chance after 11 steps into the testing phase. 

This unusual result is surprising and rare in the context of 

other AGL studies. However there are not many cases of 

studies with untrained control groups. Dulany et al. (1984), 

Redington & Chater (1994), Dienes (reported in Redington 



& Chater, 1996), and Loui et al. (2008) found above chance 

performance of untrained controls; whereas Altmann et al. 

(1995), Meulemans & Van der Linden (1997) and Reber & 

Perruchet (2003) did not. If well this set of experimental 

evidence is not decisive and further empirical work is 

required, computational modelling work may shed light on 

the question of whether an effect of rapid online-learning 

under complex conditions of partially grammatical and 

ungrammatical structures is theoretically plausible at all. In 

addition it may raise particular hypotheses regarding human 

learning performance based on theoretical considerations. 

 
Figure 1: Performance of an untrained participant group during 

the testing phase. 

 

Based on these considerations, this study aims to simulate 

a potential effect of online-learning from the angle of two 

different cognitively motivated models: a connectionist 

model with reference to connectionist theories of AGL 

(Pothos, 2007) and a symbolic n-gram model with reference 

to fragment or chunking based theories of human learning 

(Servan-Schreiber & Anderson, 1990; Perruchet & Pacteau, 

1990).  

Method 

First, the modelling framework intends to model the 

simultaneity of learning and responding during testing. This 

departs from traditional machine learning or computational 

modelling methods (Mitchell, 1997; Bishop, 2006) as the 

typical separation between model training and model 

evaluation is suspended. In this framework the models are 

first evaluated for each given stimulus and then 

subsequently trained on the same stimulus. This method 

keeps the modular operations of training and evaluating the 

model with single strings (as learning during the processing 

of the stimulus would require significant changes in the 

mechanism of the model, in particular, the SRN).  

Secondly, the modelling framework intends to capture the 

human testing situation, which involves having to decide 

about stimulus grammaticality immediately during the 

testing. Often computational models are simply evaluated 

by comparing the overall sequence familiarity for 

grammatical and ungrammatical sequences after the whole 

test evaluation (e.g. Kuhn & Dienes, 2008) but are not 

required like the human to give decisive binary 

grammaticality (G/UG) responses after each single stimulus 

without full information about the remaining test set. 

Consequently, the model responses would not be directly 

comparable to the human responses. Therefore, the present 

modelling framework applies a threshold decision technique 

to generate binary grammaticality judgments from the 

model’s familiarity responses directly for each single 

stimulus (see below).  

We use cross-entropy based on sequence predictability 

(Mitchell, 1997; Bishop, 2006; Pearce & Wiggins, 2004) as 

an estimate of the familiarity that a model assigns to a 

stimulus.  

Models 

N-gram model. Fragment based n-gram models are 

symbolic models which have been successfully used in 

computational linguistics and in music modelling (Manning 

& Schuetze, 1999; Pearce & Wiggins, 2004, 2006). This 

study employs a simple n-gram model after Pearce & 

Wiggins (2004) which stores fragments of the lengths 1 to n 

symbols from its input sequences, and creates predictions 

for the symbol sequence of a given test sequence by 

combining predictions from differently sized fragments 

using Moffat’s (1990) method, which has been found to 

perform best in comparison to other smoothing and 

combining methods (Pearce & Wiggins, 2004). The model 

produces a familiarity response for a whole test sequence 

based on its information content, i.e. the mean cross-entropy 

of the prediction for each symbol of the sequence.  

 

Simple Recurrent Network. The simple recurrent network 

model was implemented following Elman (1990). A 

familiarity response for a single test sequence is generated 

through the information content, i.e. cross-entropy based on 

the prediction of each symbol.  

Deciding grammaticality judgements 

Both models return familiarity values based on cross-

entropy, which have to be classified on the fly into binary 

grammaticality responses. As the range and distribution of 

the familiarity values are unknown prior to the test and vary 

over time, the decision cannot be based on a static threshold 

value. The current familiarity value is instead classified as 

grammatical or ungrammatical when it is greater or smaller 

than the median of the available past familiarity values. The 

decision is made random for the first sequence as there is no 

reference value available.  

Procedure 

First the model is initialised and the sequence order is 

randomised. Then, for each stimulus of the testing set, the 

model computes, as outlined, a familiarity response based 

on cross entropy, which is compared to the median of the 

past responses and subsequently transformed into a 



grammaticality judgment. After each sequence evaluation, 

the model is trained with the stimulus.  

Choice of free parameter space 

Cleeremans & Dienes (2008) discuss the problem that 

regarding the choice of free model parameters there are few 

ways of determining cognitively meaningful parameter 

choices. The present simulations adopt the method by Kuhn 

& Dienes (2008) to define a grid over the range of possible 

meaningful parameters and to run a fixed number of 

simulations for each point in the parameter space. A 

parameter space of learning rate and momentum each of 

{0.1, 0.3, 0.5, 0.7, 0.9}, 2 learning epochs, and {10, 15, 25, 

50, 80, 120} hidden units was used for the SRN models, 

resulting in a space of 150 parameter combinations. The n-

gram models were evaluated using a parameter space of a 

maximal n-gram length of {2,3,4,5,6,∞}, where ∞ signifies 

that there was no upper limit for the fragment size and that 

fragments up to the whole string were stored.  

Materials 

Test sequences from the studies above which featured an 

untrained control group were used, if the stimuli were 

available. In addition, the stimuli by Brooks & Vokey 

(1991) as used by Tunney & Shanks (2003) were included 

in order to feature another well-known finite-state grammar.  

Simulation 1 

The purpose of simulation 1 was to investigate to which 

extent online learning could be simulated for the studies 

listed above. For each of the 7 grammars listed above, 80 

instances of each the n-gram model and the SRN were run 

for each configuration in the parameter space above. In 

addition, the same number of control models were run, 

which featured no sequence training after stimulus 

presentations. 

Table 1 displays the results. All n-gram models exhibit a 

significant and strong effect of online-learning for all 

parameters (all p<0.0005). In many cases mere bigram 

learning proves sufficient for a performance level which is 

barely topped by larger contexts, a finding that is consistent 

with evaluations by Pearce & Wiggins (2004). Further, 

many n-gram models outperform human results. SRN 

models also show significant above chance performance, 

typically for 50 or more hidden units and a learning rate of 

0.5 or higher. All control models performed not different  

from chance (all df=79, p>0.05) for all stimulus sets, 

suggesting that there was no model induced bias. In general, 

the SRN models tend to have a less strong effect of online-

learning and often perform slightly lower than humans. 

However, unlike many n-gram models, SRN models exhibit 

around chance performance for the stimulus set by Reber & 

Perruchet (2003), just like in the human results. The 

structures by Meulemans & Van der Linden, exp. 2a were 

not learned by either models or humans, whereas in their 

exp 2b, interestingly, models and humans preferred 

ungrammatical structures as familiar.  

Simulation 2 

The purpose of simulation 2 was to investigate to which 

extent the window of available past familiarity judgments 

influences the online-learning efficiency. Therefore, one 

small change was introduced to the process of the 

grammaticality judgement decision: whereas the 

grammaticality response compared the current familiarity 

value to all previous familiarity values, now it was only 

compared to the last 5, 10, 20, or 30 values, using a sliding 

window technique. The cognitive motivation for this change 

was to incorporate some of the effect of human memory 

limitations in the modelling.  

The same models and the same parameter space as in 

simulation 1 have been evaluated for the different memory 

windows above. Results revealed that performance for both 

model types slightly improved overall when less (window 

size of 10 or 20) but not too little context (window size of 5) 

of familiarity judgments is taken into account. The mean 

model performance improved for .003, .010, .013, .007 (n-

gram models), and 0.012, 0.016, 0.014, 0.009 (SRN models) 

percent points for memory windows of 5, 10, 20, 30 

respectively, compared to an unlimited memory window
1
. 

This small improvement may be explained through the fact 

that familiarity values tend to increase and to converge 

throughout the test. When the familiarity window excluded 

older values in which the models were in a prior, less stable 

state, the performance improves, having an even greater 

effect for high-performing models
1
. 

Why do the right structures get picked? 

The behavioural and computational findings beg the main 

question of how it is possible that grammatical structures 

may potentially be learned gradually and in an unsupervised 

manner, within an environment that contains 50% 

ungrammatical structures, i.e. a fair amount of misleading 

and wrong information. The model simulations give rise to a 

potential explanation and a hypothesis for human behaviour 

extending Redington & Chater’s (1996) argument:  stimulus 

structures, both grammatical and ungrammatical structures, 

share a large set of fragments or chunks, and those are 

acquired with every testing of grammatical and 

ungrammatical stimulus. If one assumes that the learning of 

chunks or fragments constitutes one major part in artificial 

grammar learning (Servan-Schreiber & Anderson, 1990; 

Perruchet & Pacteau, 1990; Pothos, 2007), the chunk 

distribution of stimuli would supposedly play a major role 

in the learning. Whereas grammatical chunks appear 

relatively frequently, ungrammatical chunks, however, arise 

from violations in the structure and are thus expected to 

appear less frequently. Once a learner detects differences 

between chunk frequency in stimuli, a distinction between 

grammatical and ungrammatical chunks might be possible 

on that base. Therefore, the reason why responses converge 

toward grammatical structures may rely on the fact that 

grammatical sequences tend to have higher chunk 

                                                           
1 Detailed results had to be omitted out due to space limitations. 



frequencies on average than ungrammatical sequences.  

Accordingly, one might hypothesise that if grammatical 

and ungrammatical chunks were to appear comparably 

frequently in the whole test set, the learner could not 

distinguish between them. Secondly, it would be expected 

that the learner picks the structures with the larger share of 

frequent fragments as grammatical; and hence the selection 

would converge toward either grammatical or 

ungrammatical structures depending on which one 

encompasses the more frequent chunks. Using the 

associative chunk strength (ACS) measure (Meulemans & 

Van der Linden, 1997), we would predict that the set of 

stimuli with the greater mean ACS with respect to the whole 

set of testing structures will be preferred and that the 

performance would be around chance if both mean ACS 

values were very similar. 

Accordingly, the proportion of mean grammatical ACS to 

ungrammatical ACS was calculated for the different 

stimulus sets used above. The ACS proportion values were 

roughly about 1 for Meulemans & van der Linden, exp 2A, 

Reber & Perruchet; greater than 1 for Dulany et al., Loui et 

al., Rohrmeier et al., and Tunney & Shanks, and smaller 

than 1 for Meulemans & van der Linden, exp 2B. Mean 

ACS values for grammatical and ungrammatical structures 

were significantly different for Dulany et al, Rohrmeier et 

al., Tunney & Shanks Meulemans & van der Linden, exp 

2B (all p<0.02). Both human performance and model 

performance match the pattern of the ACS proportions in 

terms of both direction and extent of performance: Human 

performance for the first (balanced) studies is at chance, and 

models perform not as well or at chance. Human and 

machine performance for the second set of studies is above 

chance. In the third case, human performance is below 

chance (Meulemans & van der Linden (1997) do not report 

if it is significant) and this is matched by significant below 

chance performance of the computational models.  The 

correlation between ACS proportions and human as well as 

model performance were high: 0.71 (human performance), 

0.98 (2-gram & 3-gram models), greater than 0.90 (other n-

gram models), greater than 0.84 (SRN models with 80 or 

120 hidden layers and learning rates greater than 0.7), and 

0.89 (best SRN model).  Finally, it is interesting to note that 

n-gram models show that some above chance online 

learning was possible for the structures by Reber & 

Perruchet, and Loui et al., even though the mean ACS 

values for their grammatical und ungrammatical structures 

were not significantly different (both p>0.4). 

The learning curve 

Another related question concerns the shape of the 

learning curve. Assuming that the performance curve of the 

online learning effect mainly depends on the gradual 

acquisition of information (about the distribution of the 

stimulus features or chunks) throughout the testing phase, a 

very simple estimate of the learning and its growth can be 

formulated based on common considerations. Assuming that 

new information gained about the sequences decreases as 

more sequences are known, a decreasing function of 

information intake may be expressed: 
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Accordingly, the total knowledge about the structures at a 

certain time step is the amount of the information acquired 

up to that time: 
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This consideration yields a logarithm or power function 

prediction, based on two or three free parameters, for the 

performance curve of the online learning effect. These 

curves relate to well-known power laws of human learning 

(Newell & Rosenbloom, 1981; Anderson, 1995) and fit the 

human data well, which was available for the study by 

Rohrmeier et al. (Fig. 1). They also match the computational 

learning curves (Fig. 2) well (all R
2
>0.94; further details 

were omitted due to space limitations). 

Discussion and Conclusion 

The findings above suggest that there are some theoretical 

and empirical grounds to assume an online learning effect. 

The results from the first and second simulation show that 

the online-learning effect can be reproduced by cognitively 

motivated symbolic and connectionist models and that a 

limited memory window improves the performance.  

The learning effect is possible when ungrammatical 

structures contain grammatical fragments to a large extent. 

The considerations and simulations suggest that online 

learning occurs because responses tend to converge towards 

sequences with high ACS values, independently of them 

being grammatical or ungrammatical. This yields a 

hypothesis for future experimental work: behavioural 

experiments may reveal whether participants indeed would 

tend to choose structures with high ACS independently of 

whether they are rule based or not in an online learning 

situation. Future work may further assess to what extent 

ACS of grammatical and ungrammatical sequences predicts 

the direction and extent of human performance well.  

Theories of AGL (Pothos, 2007) propose that there are 

several theoretically plausible forms of the acquired 

knowledge, such as chunk knowledge, anchor positions, rule 

knowledge, or, microrules. This research was based on 

chunk knowledge and showed that it could predict an 

online-learning to a certain extent. It remains open which 

effect the other features or factors may have with regards to 

the online learning effect.  



Although the models in this study show an effect of 

online learning, the results do not fully account for human 

results: the fragment-based n-gram models tended to learn 

‘too efficient’ and to outperform the human results whereas 

the SRN models tended to perform worse than human 

results. From this perspective, strongly n-gram based 

accounts of human learning (Perruchet & Pacteau, 1992) 

would require to incorporate explanations of lower human 

performance compared to the efficiency of models based on 

n-gram representations, whereas connectionist accounts 

would need to account for the better human performance. 

One remaining question concerns why this effect has not 

been commonly found in other studies. The reason why 

Reber & Perruchet (2003) have found no online learning 

effect of untrained controls in their experiments, appears to 

stem from the fact that their grammatical and 

ungrammatical structures are highly balanced in terms of 

their ACS. Other studies, in which ACS was unbalanced 

towards grammatical structures or ungrammatical structures 

found performance in favour of potential online learning.  

Yet more experimental evidence is needed.  

Another potential explanation for the little present 

evidence of the effect may be that unambiguously clear 

control group instructions are difficult to generate and that 

stimulus appearance might influence learnability in the 

context of online learning where very quick memorisation is 

required. Most AGL studies use abstract letter sequences 

such as VNRX which have little overlap with everyday 

structures, language, or sounds. In this respect it is striking 

that two studies which used melodies of simple sequential 

structure (Rohrmeier et al., submitted; Loui et al., 2008) 

found very high performance of untrained controls about 

60%. Similarly, Reber & Perruchet’s (2003) study found 

higher performance when using consonants common in 

French language. Whether there is an effect of stimulus 

domain and appearance for online learning remains to be 

further explored. These findings have an impact for the 

AGL research paradigm in as much as some learning effect 

during testing has to be assumed, even though its additional 

impact after a learning phase might be small.  
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Evaluation Parameters Dulany 
et al, 
1984 

Reber & 
Perruchet, 
2003 

Loui et 
al, 
2008 

Rohrmeier 
et al, 
submitted 

Meulemans & Van der 
Linden, 1997 
Exp 2a           Exp 2b 

Tunney & 
Shanks, 
2003 

ACS proportion bi- and trigrams 1.372 1.009 1.026 1.223 0.975 0.833 1.101 
 

Human results 
(untrained controls) 

  0.560 
 

0.445 
0.513 
0.490 

0.60 0.616 0.490 0.450 – 

  max n        

n-gram model  2 0.764* 0.538* 0.587* 0.688* 0.486 0.406* 0.579* 

      mw = ∞  3 0.769* 0.540* 0.592* 0.686* 0.488 0.397* 0.585* 

  4 0.758* 0.566* 0.583* 0.726* 0.485 0.411* 0.569* 

  5 0.757* 0.573* 0.579* 0.773* 0.502 0.421* 0.575* 

  6 0.760* 0.552* 0.597* 0.798* 0.503 0.431* 0.582* 

  ∞ 0.758* 0.574* 0.587* 0.819* 0.491 0.432* 0.576* 

n-gram control   0.500 0.500 0.500 0.500 0.500 0.500 0.500 

 hid lr        

SRN models 10 0.1 0.491 0.503 0.505 0.506 0.498 0.491 0.503 

 0.3. 0.5 0.511 0.503 0.507 0.517 0.490 0.490 0.511      m = {0.1,0.3, 
        0.5,0.7,0.9}  0.7. 0.9 0.518 0.500 0.512 0.530* 0.493 0.476 0.515 

     mw = ∞ 15 0.1 0.499 0.502 0.505 0.511 0.490 0.494 0.505 

     for all models  0.3. 0.5 0.517 0.499 0.508 0.528* 0.488 0.482 0.519 

       0.7. 0.9 0.531* 0.502 0.520 0.529* 0.487 0.471 0.516 

 25 0.1 0.500 0.497 0.498 0.515 0.489 0.488 0.511 

  0.3. 0.5 0.520 0.500 0.516 0.531* 0.488 0.470 0.519 

  0.7. 0.9 0.538* 0.498 0.519 0.536* 0.486 0.463* 0.527* 

 50 0.1 0.512 0.494 0.511 0.516 0.493 0.487 0.514 

  0.3. 0.5 0.533* 0.501 0.517 0.534* 0.483 0.465* 0.529* 

  0.7. 0.9 0.550* 0.500 0.526* 0.542* 0.474 0.449* 0.536* 

 80 0.1 0.513 0.502 0.511 0.514 0.488 0.479 0.520 

  0.3. 0.5 0.536* 0.497 0.520 0.534* 0.483 0.462* 0.538* 

  0.7. 0.9 0.558* 0.497 0.537* 0.544* 0.473 0.446* 0.539* 

 120 0.1 0.520 0.501 0.514 0.530 0.478 0.476 0.524 

  0.3. 0.5 0.542* 0.495 0.527* 0.538* 0.470 0.452* 0.538* 

  0.7. 0.9 0.566* 0.498 0.543* 0.549* 0.474 0.439* 0.538* 

SRN control   0.492 0.499 0.501 0.501 0.490 0.496 0.497 

Best scoring SRN          
mw = 20. m=0.1 120 0.7 0.579* 0.493 0.552* 0.577* 0.481 0.444* 0.538* 

Table 1. Associative chunk strength proportions for bi- and trigrams 

and mean performance (SD was omitted due to space limitations) for n-

gram models and SRN models with no restrictions on the memory 

window. SRN results were collapsed over all momentum values. All 

marked (*) mean values are significantly different from chance (all 

df=79, p<.0001). Displayed parameters are maximal fragment length for 

n-gram models (max n), number of hidden layer units (hid), learning rate 

(lr), momentum (m) for SRN models, and memory window size (mw, in 

number of past stimuli). 

 

Figure 2. Comparing online learning curves for the sequences by 

Rohrmeier et al. (submitted) for (from top to bottom) n-gram models 

(coloured) for n=6,5,4,3,2, human performance (thick line) and two high 

scoring SRN models (dashed, hid=120/80, lr=0.7, mw=20/10, m=0.1/0.7 

respectively). Power functions fit all learning curves well (all R2>0.94), 

yet plots or details were omitted here due to space limitations. 
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