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Abstract 

A commonly held idea is that people engaged in guessing 
tasks try to detect sequential dependencies between the 
occurring events and behave accordingly.  For instance, 
previous accounts of the popular Rock Paper Scissors game 
assume that people try to anticipate the move an opponent is 
likely to make and play a move capable of beating it. In the 
paper we propose that players modulate their behavior by 
reacting to the effects it produces on the environment, i.e., 
that they behave exactly as they do in non competitive 
situations. We present an experiment in which participants 
play against a computer controlled by different algorithms and 
develop a procedural model, based on the new ACT-R utility 
learning mechanism, that is able to replicate the participants' 
behavior in all the experimental conditions.  

Keywords: Rock-Paper-Scissors, reinforcement learning, 
procedural learning, ACT-R, neural nets. 

Introduction 

The capability of adapting to changes occurring in the 

environment and to anticipate future events constitutes a 

critical  factor for organisms' survival, and humans and 

animals have been tuned by natural selection to become 

receptive to subtle variations in the external contingencies. 

Adaptivity and proactivity are realized essentially through a  

process of  selection by consequences—named also law of 

effect (Thorndike, 1898), operant conditioning (Skinner, 

1938) or reinforcement learning (Sutton & Bartho, 1998)—

i.e., on the idea that organisms modulate their behavior by 

reacting to the effects it produces on the environment. 

 Some predictions organisms routinely make concern the 

behavior of other organisms. A particular situation in which 

such predictions are useful is given by competitive games. 

It's obvious that, if we knew in advance the move our 

opponent is going to make, our life would become easier.  In 

the paper we deal with Rock Paper Scissors (aka 

Roshambo), a competitive game that, while being extremely 

simple to describe and  play, presents a series of interesting 

features when considered from a cognitive point of view.     

The following section presents the essentials of the game 

and describes some strategies that have been suggested to 

play it effectively.  Next, we review previous studies which 

investigated the behavior of human players in this task and 

proposed some models to explain it.  As it will become 

apparent in the following, a common theme underlying this 

work is that people attempt to succeed at the game by trying 

to anticipate the move the opponent is likely to make and 

playing a move capable of beating it.  We advance, on the 

other hand, a simpler explanation for the players' 

performance which relies on the same principle of selection 

by consequences that explains most of the behavior in non 

competitive situations.  We present an experiment in which 

participants play against a computer controlled by different 

algorithms and develop a procedural model based on the 

new ACT-R utility learning mechanism that is able to 

replicate the participants' behavior in all the experimental 

conditions. 

Rock Paper Scissors 

Rock Paper Scissors (henceforth RPS) is a competitive two-

person game which is played through a series of turns in 

which players make their moves simultaneously. The 

outcome of each turn is determined as follows:  Rock beats 

Scissors, Scissors beats Paper, but Paper beats Rock.  If both 

players make the same move, the turn is considered as a tie. 

That’s all, as far as the game's rules are concerned.  

 In RPS no move—no “pure strategy”, in terms of Game 

Theory (Von Neumann & Morgenstern, 1944)—can be 

considered as the best to play.  Concepts like “better”, 

“bigger”, “stronger” and similar are possible only referring 

to sets for which a partial ordering could be established, and 

this requires the existence of a transitive relation among set 

members, an eventuality that cannot be realized in RPS 

where the relation “beats” originates a closed loop.  

 Considered from the point of view of the Game Theory, 

RPS is classified as a two-person zero-sum game. For all 

games of this kind there exists a solution, i.e., a rule or norm 

that prescribes how the game should be played. Assuming 

perfectly rational players, the solution coincides with the  

Nash equilibrium at which neither player could hope to 

achieve a better performance by modifying their strategy, In 

case of RPS, the Nash equilibrium is reached by choosing 

the three possible moves randomly with equal probability, 

i.e., by playing a mixed strategy through a stochastic 

combination of the pure strategies.  

 While game theorists could consider RPS as a trivial 

game, there are two facts that make it intriguing from a 

cognitive point of view. First of all, humans are notoriously 

bad at generating random moves (Rapoport & Budescu, 

1997; Wagenaar, 1972), so theorists could not easily 

practice what they preach. Being unable to play randomly, 

humans necessarily display sequential dependencies among 

the moves they make that could be exploited by a clever 

opponent. Second, the mixed strategy has the advantage that 

no strategy can beat it but it also has the disadvantage that 



there is no strategy that it can beat.  In other words, it 

guarantees a break-even result in the long run, regardless of 

how strong (or how weak) the opponent is, but it does not 

allow a player to reach consistent wins. 

In fact, aficionados consider RPS a game of wit, not a 

game of chance.  Even a cursory look at the web site of the 

World RPS Society (www.worldrps.com) or a quick skim of 

The official rock paper scissors strategy guide (Walker & 

Walker, 2004) should convince that RPS experts use their 

insight to try to anticipate the opponent's move, possibly 

recurring to particular sequences of moves to try to induce 

predictable responses in the other player.  The problem is 

that, to exploit a weakness in the opponent's play, you need 

to make non-random moves, which makes you vulnerable.   

A clearer idea about which strategies could succeed at the 

game may be obtained by looking at the results of the First 

and Second International RoShamBo Programming 

Competition—held at the University of Alberta, Canada, in  

September 1999 and July 2000, respectively—two    

tournaments between computer programs playing RPS in 

which each program competed against all others. Because 

organizers enrolled in the competition some really weak 

programs that produced easily predictable move sequences, 

a program that played the optimal strategy without trying to 

exploit the competitors' deficiencies (running at the same 

time the risk to expose its owns) could reach only weak 

results.  It should be noted that all programs could store the 

complete sequence of moves played by themselves and by 

the opponent, a feature which human players, due to their 

memory limitations, cannot easily rely upon.  

The programs adopted essentially two high-level 

strategies to choose their moves.  The first one was based on 

pattern-matching and tried to exploit the statistical 

regularities occurring in the sequence of moves produced by 

the opponent. The second one relied on some kind of meta-

reasoning to determine how the opponent would choose its 

move. One of the most complicated strategies of this kind 

was represented by the so called Sicilian-reasoning 

according to which a program tried to figure out the 

competitor's move by assuming that it will think like itself, 

taking however than into account the fact that the 

competitor was likely to use Sicilian reasoning too, and 

giving thus raise to a “I know that you know that I know ...” 

recursive pattern. This approach was very effective and 

programs adopting it ranked among the best. 

While computer programs could shed light on how RPS 

should be played by perfectly rational agents with unlimited 

memory, we could ask how individual with bounded 

rationality, cognitive limits and emotions (i.e., normal 

people) really play the game.  

Previous work 

In the last decade Robert West, with Christian Lebiere and 

coworkers, produced a series of studies (West, 1999; 

Lebiere & West, 1999; West & Lebiere, 2001; Routledge-

Taylor & West, 2004,  2005; West, Stewart, Lebiere & 

Chandrasekharan 2005)  focused on the analysis of human 

behavior in the RPS and on the attempts to simulate it. 

These studies present several experiments whose results are 

explained through models that differ slightly from paper to 

paper. Through their comparative exam it is possible, 

however, to extract a unitary view and a coherent story that 

we are now going to tell.  

According to the authors,  people engaged in the RPS, and  

similar guessing tasks, try to detect regularities  in the 

occurring events—in our case in the sequence of moves 

made by the opponent—and use this information to 

modulate their behavior. If both players use the same 

strategy of sequence detection, they enter in a state of 

reciprocal causation in which each player tries to influence 

the opponent's behavior while being, simultaneously 

influenced by it.  The result is a dynamic, coupled system 

capable of generating patterns of interaction that could not 

be explained by looking at each system in isolation. 

The players' behavior could be explained and replicated 

by a model capable of storing a variable number of previous 

opponent's moves.  Differently from the computer programs 

playing the same game, the model has a reduced memory 

buffer whose capacity constitutes a critical factor in 

determining its behavior.  A model which stores only the 

previous opponent's move is said to be a Lag1 model, if it 

stores the previous two moves is said to be Lag2, and so on.  

The intuitive idea behind the models is that, if players 

could figure out what an opponent, having made the moves 

represented in the memory buffer, is going to do, they 

should make the move capable of beating it. This idea has 

been realized and implemented in different ways. 

West (1999), Lebiere & West (2001) and Rutledge-Taylor 

& West (2004) used a two layers neural net which received 

in input the opponent’s moves and  gave as output  the move 

made by the player. The input layer comprised a number of 

node triples  (each node representing Rock, Paper or 

Scissor, respectively) corresponding to the number of 

opponent's moves the model could store: one three-nodes 

group  for Lag1—storing only the last move—two groups 

for Lag2— storing the last and the last but one moves—etc.  

Each input node could have a value of 0 or 1. More 

particularly, for each input triple, the node corresponding to 

the move made by the opponent received an activation value 

of 1 while the remaining two nodes got a 0.  

 All the nodes of the input layer were linked to the three 

nodes, one for each move, constituting the output layer. The 

weights of the links connecting the input and output nodes 

were initialized to 0 (in West, 1999 and West & Lebiere 

2001) or were assigned a value randomly chosen from the 

set {-1, 0, +1} (in Rutledge-West, 2004).  The value of an 

output node was determined by summing the weights of the 

links coming from the activated input nodes, i.e., from those 

input nodes having their activation set to 1. The network 

returned the move associated with the highest-value output 

node, possibly making a random choice in case of multiple 

nodes with the same activation.  

After each choice, the link weights were adjusted 

according to the outcome. Two main policies were followed 



for updating the links.  In the “passive” models,  wins were 

rewarded by adding 1 to the weights of the links coming 

from the activated nodes (i.e., input nodes with a value of 1) 

and leading to the output node corresponding to the chosen 

move,  losses were punished by subtracting 1, while ties 

kept all the links unvaried.  “Aggressive” models, on the 

other hand, treated ties like losses and subtracted 1 to the 

links connecting the activated input nodes with the non-

winning output node. 

West & Lebiere (2001) carried out a series of 

experiments in which human participants played against 

different versions of the model and compared these results 

with those obtained by having different models compete 

against each other.  In general, games in which identical 

versions of the models were pitted against each other ended 

in a tie. On the other hand, it was found that a broader 

memory span or a more aggressive attitude provided a 

competitive advantage:  Lag2 models were able to reliably 

defeat Lag1 models while aggressive versions were superior 

to passive ones.  Interestingly, the advantage provided by an 

extra lag or a more aggressive attitude were additive and 

approximately equal in magnitude.   

Coming to human players, they were able to win on the 

average 9.99 turns (after a 300 turns game) more than the 

Aggressive Lag1 and 11.14 turns (after 287) more than the 

Passive Lag2 when pitted against these algorithms. 

According to West & Lebiere (2001), humans perform like 

the Aggressive Lag2 that constitutes, according to the 

authors, the best model for their behavior.  Humans showed 

indeed a small but statistically significant trend to lose, 

instead of tie, against this model, but this effect was 

attributed to the fact that they were not able, due to lack of 

motivation and/or fatigue, to play in the same consistent 

manner as their computerized opponent. 

 These findings were congruent with those reported in 

those papers (West, 1999, Lebiere & West, 1999; Rutledge-

Taylor & West, 2005, West, Stewart, Lebiere, & 

Chandrasekharan, 2005) that utilized models based on the 

ACT-R (Anderson & Lebiere, 1998) cognitive architecture. 

The idea that RPS is played exploiting the last moves to try 

to anticipate the next one to is maintained in these models, 

but in this case the sequence of moves is stored and 

retrieved not through a neural net but by taking advantage of 

the ACT-R declarative mechanism, while the model's 

choices, instead of being driven by the nodes' activation 

values, are demanded to the ACT-R procedural system.   

The ACT-R declarative memory stores chunks containing 

the opponent's previous  patterns and a prediction for the 

next move. The most important procedure used by the 

models is the following (slightly adapted from Lebiere & 

West, 1999, p. 297, and of intuitive significance): 

Sequence Prediction 
IF no move has been played 

 and the opponent last played move(s) L2 (and L1) 

 and move(s) L2 (and L1) are  followed by move L 

 and move L is beaten by move M 

THEN play move M.  

For each turn, the model recalls the most active chunk 

matching the two (for Lag2 models) or the last (for Lag1 

models) opponent's move(s). The model notes the move 

predicted by the chunk and plays the move that beats it. 

After both players have made their choice, a new chunk 

containing the update moves and the corresponding 

prediction is formed, or a previously existing chunk already 

storing the same information is reinforced.  

Using this approach, Lebiere & West (1999) were capable 

of replicating the results of West (1999) while Rutledge-

Taylor & West (2005) constructed several models capable 

of replicating the results of West & Lebiere (2001). 

The Experiment 

Our interest for RPS arose after a series of  experiments 

(e.g., Fum & Stocco, 2003; Fum, Napoli, & Stocco, 2008,; 

Stocco, Fum, & Napoli, 2009) which found the participants' 

behavior heavily influenced by the principle of selection by 

consequences. These experiments, however, dealt with non 

competitive situations, i.e., situations that could be classified 

as “a one-person game, sometimes called a game against 

nature, wherein a single player makes a decision in the face 

of an environment assumed to be indifferent or neutral” 

(Zagare, 1984, p. 11). To investigate whether the same 

principle could hold in competitive situations like RPS, we 

established the following experiment.   

 Participants played three rounds of RPS against a 

computer controlled in each round by a different program. A 

first group of participants (in the “Classic” condition) 

interacted with the computer through an interface which 

adopted the usual symbols, i.e. clinched fist for Rock, flat 

hand for Paper, and closed hand with extended index and 

Scissors. Participants were instructed about the rules of the 

game and were told that the computer was following in each 

round a different strategy that could however be defeated, at 

least in some cases. Immediately after the participants'  

made their choice, the computer move was displayed 

together with the turn outcome. Wins allowed the 

participants to gain one point (+1), losses were punished by 

the same amount (-1), while ties left the score unaltered (0).    

A second group of participants was engaged in the same 

task arranged, however, as a game against nature.  In this 

“Nature” condition the computer was presented not as a 

competitor but as a neutral game device allowing 

participants gain or lose points. In fact the programs the 

computer used were exactly the same of the previous 

condition. Instead of the classic RPS symbols, however, 

participants saw on the screen three geometric figures 

representing a sphere, a cube and a pyramid. At the 

beginning of each round the computer randomly matched 

each figure with an RPS move and behaved accordingly. 

Participants were told that they could obtain in each turn a 

score of +1, 0 or -1.  It was also said that the criterion 

according to which the computer assigned scores to figures 

could not be easily guessed and that, in any case, it would 

change in each round. By relying on their “intuition” 



participants had to try to obtain in each round as many 

points as possible.   

Another difference between these conditions, in addition 

to the setting and the use of different move images, was 

given by the fact that the computer, instead of the move it 

made in each turn, displayed the complete payoff matrix 

allowing participants to see both the score gained by their 

move and the scores they could have gained by making the 

alternative choices. Suppose a participant chose the sphere 

(matched for that round with Scissors) and the computer the 

cube (matched with Paper, while the pyramid was matched 

with Rock). The outcome was shown by displaying +1 in 

correspondence to the sphere (because Scissors beat Paper), 

0 near the cube (each move ties with  itself) and -1 near the 

pyramid (because Rock beats Scissors).  

In the experiment a third condition (named “Implicit”) 

was utilized that was presented against as a competitive 

situation in which participants had to choose  one of the new 

symbols (the sphere, the cube and the pyramid) displayed on 

the screen.  Participants were told that each figure could 

beat another figure, tie with itself, and lose against the third 

one but the payoff matrix was not revealed and had to be 

discovered by playing the game.   

In summary, participants played against the computer, 

controlled by the same algorithms, in a classic RPS game, in 

a situation disguised as a game against nature, and in a 

competitive framework with unknown payoffs. We wanted 

to establish how participants would perform in the three 

conditions and, in particular, whether their behavior should 

be explained by using models of a different kind. 

Method 

Participants and design.  Sixty students (37 males) 

enrolled at the University of Trieste, Italy, were recruited as 

participants. Their age varied between 18 and 32 years 

(M=21.4, SD=3.7).  Participants were randomly assigned to 

one of the three experimental conditions (Classic, Implicit, 

and Nature) in which they were engaged in three RPS 

rounds, each one against a different algorithm whose order 

was counterbalanced between rounds. The experiment 

followed therefore a 3x3 mixed design with Condition as 

between subjects and Algorithm as within subjects factors. 

 

Materials. Three algorithms were used in the experiment. 

The first one, Lag2, replicated the program described in the 

previous section.  In this case, however, we implemented a 

Passive Lag2 algorithm which updated the net weights by 

assigning +1 to wins, 0 to ties and -1 to losses.   The second 

algorithm, Random, played according to the optimal 

strategy by choosing its moves randomly from a uniform 

distribution.  The third one, Biased, made also random 

moves but it sampled from a distribution in which one of the 

moves had a 50% probability of being selected, a second 

one a 35% probability and the third one 15%. At the 

beginning of each task the computer assigned randomly one 

move to each probability class.   

 

Procedure.  The experimental sessions were held 

individually. Participants were instructed about the game 

rules and it was stressed that each round would be played 

against a different opponent (in the Classic and Implicit 

condition) or a different program (in the Nature condition) 

which followed its own criteria in choosing the moves. 

After reading the instructions, participants were involved in 

three 100-turn RPS rounds, each round played against a 

different algorithm. Participants made their choices by 

clicking on an image displayed at the vertex of an imaginary 

equilateral triangle. The images were randomly placed at the 

vertices for each participant.  After participants made their 

choice, the move played by the computer and the outcome 

score were shown in the Classic and Implicit conditions 

while in the Nature condition the scores that could have 

been obtained by choosing the alternative moves were also 

displayed. During the task participants were kept informed 

through a colored bar of their running total that was 

however reset after each round.  

Results 

We first ascertained whether the rounds, per se, could 

influence the participants' performance, i.e., whether the 

mere fact of having played 100, 200 or 300 RPS turns, 

independently of the condition and the algorithm, could 

represent a significant factor in determining their behavior.  

The scores obtained in the rounds were as follows: M=-0.17, 

SD=9.78 for Round1, M=1.64, SD=11.18 for Round2, and 

M=0.27, SD=10.40 for Round3, respectively. A repeated 

measures one-way ANOVA on the scores of each round did 

not revealed (p=.65) any significant effect.  No signs of 

learning (or fatigue) were thus evidenced that could hinder 

the interpretation of further results. 

 We then analyzed the factors manipulated in the 

experiment, i.e., the Condition to which participants were 

assigned and the Algorithm against which they played. 

Table 1 reports the means and the standard deviations of  

participants’ scores. 

 

Table 1: Means (and standard deviations) of the scores. 
 

 Lag2 Random Biased 

Classic -3.80   (9.61) -1.40 (9.84) 6.80   (7.14) 

Implicit -6.45 (10.17)    -1.20 (5.74)  5.95 (11.73) 

Nature -6.40   (9.29) 4.65 (8.76) 6.55   (9.60) 

 

A mixed design ANOVA revealed as significant the effect 

of the Algorithm only (F(2)=25.13 p<.000001), while 

Condition  (p=.44) and the interaction (p=.29) did not seem 

to play any role.  In other words, participants behave in the 

same way when they played the classic RPS game, knowing 

the relationship that existed between the moves, in the 

implicit RPS, when the payoff matrix was unknown, and in 

the non-competitive Nature condition. Two further 

ANOVAs restricted on the scores of the first 20 and 40 

turns, respectively, provided similar results—i.e. the only 



significant effect was that of the Algorithm—suggesting that 

no payoff learning was needed to perform in the Implicit 

condition as in the Classic one, with the results of both 

conditions were similar to those obtained in the Nature one.  

 Figure 1 reports the results obtained by collapsing the 

three conditions.  As evidenced, participants lost against 

Passive Lag2, tied against Random and won against Biased. 

Two t tests confirmed that both in the case of Lag2 

(t(t(59)=-4.47, p < .0001) and of the Biased algorithms 

(t(59) = 5.24, p<.00001) the participants performance 

differed significantly from 0. 

 

Figure 1. Mean scores obtained against the different 

algorithms (collapsed conditions) with bars representing 

95% confidence intervals.  

Modeling the results 

Our results contrast with the commonly held assumption 

that players try to succeed at RPS by anticipating the 

opponent's move and by making a move capable of beating 

it.  This approach could possibly work in the Classic and 

Implicit conditions but cannot be applied in the Nature one 

where the idea of “opponent's move” does not simply make 

sense. To explain the experimental results we would 

therefore be obliged to assume that different strategies were 

applied in the competitive and non-competitive settings. 

Moreover, following the same assumption, we would expect 

to find a difference, at least in the first phases, between the 

Classic and the Implicit conditions. While participants in the 

former know immediately what to play to defeat an 

anticipated move, those in the latter have to learn what beats 

what; since the very first turns, however, the results 

obtained in these conditions are not discriminable and, 

again, are similar to those obtained in the third one.  Finally, 

because human participants, as reported by West & Lebiere 

(2001), had a tough time playing against the Aggressive 

Lag2 algorithm, we tried to facilitate their task by having 

them compete against a more manageable version. If 

Aggressive Lag2, which systematically beats the passive 

version, represents however the best incarnation of the 

above mentioned assumption, it is difficult to explain why 

participants systematically, and independently of any fatigue 

sign,  lost against the Passive Lag2 algorithm.  

A principle of economy suggests the possibility that, at 

least under the conditions examined in our study, 

participants do not follow different strategies and do not try 

to anticipate the opponent's move but they simply make 

those moves that are more likely to succeed, independently 

of the condition to which they have been assigned and the 

opponent they competed with.  

To test this hypothesis, we pitted against our algorithms 

three different models, representing possible participants' 

strategies in RPS.  The models were the Passive Lag2, 

Passive Lag1 and a procedural model which exploited the 

ACT-R's new utility learning mechanism (Anderson, 2007).  

The idea on which Procedural ACT-R is based is that an 

organism, facing the problem of choosing among different 

moves or actions, will select that which worked best in the 

past, i.e., the action that was most useful in the previous 

history of the organism. The model associates therefore to 

each option a utility measure that is updated after each move 

application according to the reward it receives from the 

environment, Starting at an initial value of 0 the utility Ui of 

each move i at time n is updated according to the formula 

(Anderson, 2007, p. 160):  

����� = ���� − 1�+∝ ������ + ���� − 1�
 
where α is a learning parameter and R is the outcome 

received in each turn (the usual +1 for a win, 0 for a tie, and 

-1 for a loss).  The choice of the move is however not 

deterministic but  subjected to noise. The probability Pi that 

a given move i will be selected among a set of j options 

(including i too) is given by:   

�� =
��� �⁄
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where s it the noise parameter. 

 The choices made by the model are thus regulated by α 

and s;  we set α to 0.2 and varied s to fit the experimental 

data. To allow a fair comparison, we implemented 

NoisyLag2 and NoisyLag1, the nondeterministic  versions 

of the respective models in which the  choices were made 

according to the same formula used in Procedural ACT-R. 

 A final problem had to be solved before running the 

simulations. While Procedural ACT-R could be employed 

in all the experimental conditions, it was not immediately 

clear how NoisyLag2 and NoisyLag1 could be used to 

simulate the participant's behavior in the game against 

Nature, in which the opponent's moves were not available to 

them. The only data the models had available were 

represented by the scores obtained by making the different 

moves. Discarding obviously the idea of storing the score 

associated with the move chosen by the player, we tried the 

other options obtaining a surprising result (at least for us): 

the behavior of the models was exactly the same 

independent of the fact they stored the best moves (i.e. the 

moves leading to a score of +1), the worst ones (-1) or those 

in-between (with a 0 score). In fact, after a moment's 

thought, we realized that the opponent's moves stored by the 

West & Lebiere’s (2001) lag models were exactly the 

moves a player should have made to tie in each turn!   



 That said, we ran a series of simulations with each model 

starting with s=0.1 and progressively augmenting the 

parameter through increments of 0.1 up to a final value of 

14.0.  We simulated 1000 runs of the model for each 

parameter value against each algorithm, and considered that 

the model was fitting the data when the 95% confidence 

intervals of the models' results were completely included 

within the 95% confidence intervals of the participants’ 

data. The Procedural ACT-R model (with noise values 

ranging from 0.39 to 0.44) was the only model capable of 

replicating the participants' performance against all the 

different algorithms both in term of general performance 

(total means) and in terms of a temporal series of five 

successive 20-turns blocks.  Both NoisyLag1 and 

NoisyLag2 did not to fit the participants' data against Lag2 

because they were not able, for any s setting, to generate 

scores that were less than those obtained by the opponent.  

These models were in a sense too powerful to be considered 

as a good representation of the people's performance.  

Conclusions 

In the paper we presented the first results of a research 

project aimed at investigating the possibility of applying the 

principle of selection by consequence, traditionally adopted 

to explain human behavior in games against nature, to 

model the players’ performance in competitive games. We 

focused on RPS which was previously explained by 

adopting some form of belief models, i.e. models that “starts 

with the premise that players keep track of the history of 

previous play by other players and form some belief about 

what others will do in the future based on past observation. 

Then they tend to choose a best-response, a strategy that 

maximizes their expected payoffs given the beliefs they 

formed.” (Camerer & Ho, 1999, p.2) We found that two 

models of this kind (NoisyLag2 and NoisyLag1) were 

isomorphic with models that work by taking into account 

only the environmental rewards and we found that they 

were too powerful to be able to explain the human behavior.  

A purely procedural model based on the ACT-R new utility 

mechanism was able to fit the experimental data providing 

thus a simpler and more general explanation for the players’ 

behavior.    
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