
An Account of Model Inspiration, Integration, and Sub-task Validation

Christopher W. Myers
cmyers@cerici.org

Cognitive Engineering Research Institute

5810 S. Sossaman Rd. Ste. 106
Mesa, AZ 85212 USA

Abstract
The promise of reuse is a motivator for, and benefit from,
developing cognitive models. Another benefit is the
integration of previously developed models into a single
model capable of making predictions across different tasks
than either of the contributing models could make alone. In
the current paper, I explicate the development of a model
through the integration of, and inspiration from, two
previously published models. The composite was developed
for a context different from the constituent models’ original
contexts, and demonstrates a success of inspiration and
integration.

Keywords: model reuse, integration, synthetic teammate

Introduction
The promise of model reuse is a boon to, and motivator for,
developing models. A related benefit is to integrate different
models into a composite capable of making predictions in
different contexts than the contributing models could make
alone. To take advantage of these potential benefits,
developers of large-scale, complex models must seek out
published models for integration rather than reinventing the
wheel. This paper provides an account of the integration of,
and inspiration from, two previously reported models of
distinct cognitive processes.

The context for model inspiration and integration is the
development of a synthetic teammate (Ball et al., 2009). The
constituent models provided portions of the synthetic
teammate component responsible for interacting with its
task environment, the task behavior component.

In the remaining sections of the introduction, I first
provide background on the synthetic teammate project.
Second, I describe the task and goals specific to the
synthetic teammate’s task behavior component. Third, I
provide results from a task analysis on the goals critical to
the task behavior component.

The Synthetic Teammate Project
The Cognitive Engineering Research Institute and the
Performance & Learning Models team at the Air Force
Research Laboratory are collaborating to develop a
synthetic agent capable of coordinating with human
teammates to complete an unmanned aerial vehicle (UAV)
reconnaissance task. The far-term goal of the project is to
reduce the number of human operators in team trainers
while maintaining training effectiveness. The near-term goal
of this project is to develop a cognitively plausible synthetic

teammate within the ACT-R 6 cognitive architecture
(Anderson, 2007). Achieving the near-term goal will
facilitate accomplishing far-term goals, through the
identification of cognitive capacities necessary for operating
as a teammate (e.g., memory, language, etc.), and
demonstrate how to integrate relevant cognitive capacities.

The synthetic teammate is being developed to operate
within a UAV Synthetic Task Environment (UAV-STE; see
Cooke & Shope, 2005) used to study teams for the better
part of the past decade. In the UAV-STE, teammates
coordinate to successfully complete a reconnaissance task.
The synthetic teammate has been developed to operate as
the UAV Air Vehicle Operator (AVO), and to interact with
a photographer that takes pictures of ground targets, or
waypoints, and a mission planner responsible for planning
the UAV’s route. Communication among teammates occurs
through a text-based instant messaging system.

Four cognitive components have been identified as the
basis of the synthetic teammate: 1) language
comprehension, 2) language generation and dialog
management, 3) situation assessment, and 4) task behavior.
The current paper is focused on goals associated with the
task behavior component (see Ball et al., 2009, for details on
the other components).

Task Goals for the Task Behavior Component
To fly the UAV, the AVO must complete six goals: 1) set
the airspeed, 2) altitude, 3) course, 4) waypoint, and 5) send
and 6) receive text messages. Of these six, the solution for
the first four is covered in the current paper. A typing model
associated with the last two goals, sending and receiving
messages, is currently being integrated (John, 1996).

 
Figure 1. The left box is an example of the interface used to
enter the airspeed, altitude, and course. The right box is used

for setting waypoints.

The UAV-STE was designed to simulate a team task;
consequently the user interface was not designed as a high
fidelity representation of any existing UAV system in use
by the military. To maneuver the UAV from one location to
another, the AVO uses a point-and-click interface to enter
settings (see Figure 1). To set the waypoint, the user toggles
through a list of 109 alphabetically organized waypoints by
pressing the setting adjustment buttons (see Figure 1). Each
time an adjustment button is pressed, a new waypoint value
is queued (e.g., BEP in Figure 1). The waypoint list operates
as a continuous loop (i.e., A comes after Z). When the user
has queued the next waypoint to visit, she presses the “New
TO” button, changing “H-AREA” to “BEP” in Figure 1.

There are three flight parameters (altitude, course, and
airspeed). Each flight parameter has a separate user
interface, though they are identical (see Figure 1). To set the
flight parameters, the AVO adjusts the setting value by
using the small (+ | –) and large (++ | – –) setting adjustment
buttons. These buttons have different increments and
decrements depending on the setting (see Table 1). Similar
to the waypoint list, course values are a continuous loop,
returning to 1° after 360°. The airspeed and altitude values
are infinite number lines, beginning at 0 and ending at
infinity. When the desired setting value is reached, the user
presses the “Enter” button to complete the setting goal.

Table 1. Setting adjustment buttons for each task setting
goal. The waypoint buttons either increment to the next

(+), or decrement (–) to the previous waypoint in an
alphabetical list. The other button increments increase or

decrease setting values, accordingly.

Task Goals Large
++ | – –

Small
+ | –

Airspeed 20 | –20 2 | –2

Altitude 1000 | –1000 100 | –100

Course 10 | –10 1 | –1

Waypoint Not applicable 1 | –1

There are five differences between setting a waypoint and
setting the flight parameters. First, the adjustment buttons
for setting the flight parameters have small and large
adjustments, whereas there are only small adjustments for
setting the waypoint (see Figure 1 and Table 1). Second,
there is an “Enter” button for setting the flight parameters
and a “New TO” button for setting the waypoint. Although
these buttons have different names, there functions are
identical. Third, the values of flight parameters are integers,
whereas waypoints are strings of numbers and letters (e.g.,
WP8, BEP). The fourth difference is the addition of the
queued value for setting the waypoint, and the fifth and final
difference is the spatial arrangements of the user interfaces.

Although there are interface differences between setting
flight parameters and waypoints, there is considerable

overlap of methods for setting altitudes, courses, airspeeds,
and waypoints. In the following section I provide results
from a task analysis of the four goals.

Task Analysis Results
A hierarchical GOMS (i.e., goals, operators, methods, and
selection rules) analysis was conducted on setting waypoints
and flight parameters. The purpose of the analysis was to
reveal commonalities and differences between the goals.

The task analysis revealed a consistent three-step subgoal
structure across each of the four goals, composed of 1)
obtaining the desired setting value, 2) comparing the
desired setting value against the current value, and 3)
Changing the current setting value to the desired value. The
following methods <m> and selection rules <sr> are
identical across the four goals:

Obtain subgoal <sr>:
Either Retrieve the desired information from memory
Or Request the information from a teammate.

Compare subgoal <m>:
1. <m>Visually encode one of the adjustment buttons
2. <m>Move mouse to, and click on, button
[system-event]:= setting value appears
3. <m> Visually encode setting value
4. <sr> IF button adjustment values are unknown,

THEN retrieve them from memory
5. <sr> Given the current setting value, desired

setting value, and adjustment button values, select
adjustment button

Change subgoal <m>:
1. <sr> IF mouse is at the selected adjustment button,

THEN goto <m> 4; ELSE continue
2. <m> Visually encode button
3. <m> Move mouse to button
4. <m> Click mouse
[system-event]:= setting value changes
5. <sr> IF not attending to setting value, THEN

visually encode setting value; ELSE continue
6. <sr> IF the current setting equals the desired

setting, THEN visually encode “Enter”/”New TO”
button and goto change subgoal <m>7; ELSE IF
large adjustment clicked, THEN goto compare
subgoal, <sr>5; ELSE goto change subgoal,
<m>4.

7. <m> Click mouse–return with goal accomplished.
[system-event]:= setting value disappears

Although setting flight parameters and waypoints follow
the same subgoal structure, methods for completing steps in
the subgoal methods presented above diverge. The
divergence results from different value types between flight
parameters and waypoints and the absence of large setting
adjustment buttons for setting waypoints. These differences
specifically affect methods for completing <sr>5 of the
compare subgoal. In the following section, candidate
models for setting the flight parameters and waypoints are
selected from the cognitive modeling literature.

Candidate Models
As the science of developing quantitative process models of
cognitive activities matures, many models become available
with which to take whole cloth or draw inspiration from
when tackling large, complex models that must be capable
of completing many different tasks. Rather than possibly
reinventing the wheel, published models were sought as
candidates for integration into the task behavior component
of the synthetic teammate. To be a candidate, models had to
be compatible with the subgoal methods and selection rules
detailed above. The current section covers a strategy
selection model (Lovett, 1998) with implications for setting
flight parameters, and a letter recall and comparison model
(Klahr et al., 1983) with implications for setting waypoints.

Strategy Selection
Lovett (1998) demonstrated that ACT-R’s choice
mechanism can account for changes in strategy selection
with experience from the task environment. Lovett
identified two strategies for obtaining a solution in a spatial
problem-solving task (i.e., the building-sticks task):
overshoot or undershoot. Generally, the overshoot strategy
results in passing the desired state, and then backtracking to
it. The undershoot strategy incrementally approaches the
desired state without passing it. Strategy selection was
based on a strategy’s likelihood of success within the
environment, such as sets of problems where the overshoot
strategy produced a solution a majority of the time and vice
versa.

In the building-sticks task, the choice of which strategy to
use was not obvious, requiring experience to determine
which strategy was most successful. Lovett’s model used
the production utility mechanism in ACT-R 5 to learn which
of the two strategies was best suited for different problem
sets. With experience, the model learned to choose a
strategy on a proportion of trials that was similar to humans.

Lovett’s approach to strategy selection is perfectly suited
for selecting between possible strategies for setting flight
parameters for two reasons. First, Lovett’s model was
originally developed in an earlier version of ACT-R.
Second, her undershoot and overshoot strategies are similar
to strategies that can be brought to bear on setting flight
parameters.

When setting a flight parameter, the AVO has four
possible adjustment buttons to choose from. From the four
options come two strategies: difference reduction and
meandering. The difference reduction strategy involves
moving from the current setting to the desired setting,
reducing the difference between the two values at each step,
and can be achieved efficiently or inefficiently.

The efficient difference reduction strategy comes as close
as possible to the desired setting using the large adjustment
buttons, then switching to the small adjustment buttons to
reach the desired setting. Indeed, Lovett’s overshoot and
undershoot strategies are efficient difference reduction
strategies.

The inefficient difference reduction strategy involves only
using the small adjustment buttons. This strategy will
succeed, but in many cases take substantially longer to
complete than the efficient difference reduction strategy.

Finally, the meandering strategy is a mix of difference
reduction and periodic interventions to randomly select and
use a different adjustment button. This strategy will
eventually select the desired setting value, but could take
months. Hence, only the two difference reduction strategies
are considered further.

The efficient difference reduction strategy can be
developed as independent undershoot and overshoot
strategies, similar to those described by Lovett. Because the
structure of the flight parameter setting environment does
not contain any bias leading to differential success between
an efficient undershoot difference reduction strategy or an
efficient overshoot difference reduction strategy, there is
little use in developing models of each strategy and letting
ACT-R’s choice mechanism demonstrate equivalency.
Furthermore, the inefficient difference reduction strategy is
a “straw man” strategy–participants will arguably use the
large increment buttons simply because of their availability.

Letter Recall and Comparison
When setting a waypoint, the AVO can either advance (+)
or retreat (–) through the list of waypoints one waypoint at a
time. I assumed that participants come to the task with
extensive knowledge and experience in the English
alphabet. I also assumed that the choice to advance or retreat
through waypoints results from bringing the alphabet
knowledge to bear on the waypoint setting goal, and looked
to Klahr et al. (1983) as a candidate representation of the
English alphabet for a model of letter comparison.

Figure 2. Alphabet representation adapted from Klahr,

Chase, and Lovelace (1983). Dashed lines and open arrows
represent capabilities added to their model.

In the Klahr et al. (1983) model of letter retrieval and
comparison, letters were stored as hierarchical subgroups in
a link-node structure (e.g., α to τ in Figure 2). Letters within

a node (e.g., D in node α) can only be reached through node
entry points. Entry points for each node are the first letter of
the node (e.g., A for α, H for β, etc., see Figure 2). Node
contents are based on empirical evidence of entry point
consistency with phrasing in “Twinkle, Twinkle Little Star,”
used to teach the alphabet (Klahr et al., 1983).

Klahr et al.’s letter retrieval model is a serial, self-
terminating search across and within alphabet nodes. Letters
and nodes were linked only to their successors. Thus, to
backtrack through nodes the previous node must be
maintained in working memory.

Klahr et al. validated their model with response time data
collected from human participants that were shown letters of
the alphabet and asked to respond with the name of the letter
that either occurs before or after the probe letter. However,
determining whether to advance or retreat through the
waypoint list in the UAV-STE is quite different. Rather than
responding with an adjacent letter, the model must
determine whether the desired waypoint (e.g., BEO) occurs
before or after the queued waypoint (BEP in Figure 1). This
requires determining if a letter occurs before or after another
letter in the alphabet, and these comparisons can occur
between and within letter nodes. Even so, the Klahr et al.
(1983) model is a good candidate for representing the
English alphabet. In the following section I cover the
development and integration of the candidate models within
ACT-R.

Development & Integration in ACT-R
ACT-R is a computational cognitive architecture for
developing cognitive models (Anderson, 2007). In ACT-R,
cognition revolves around the interaction between a central
production system and several modules. There are modules
for vision, motor capabilities, memory, storing the model’s
intentions for completing the task (i.e., the control state),
information retrieved from memory, and a module for
storing the mental representation of the task at hand (i.e., the
problem state). Each module contains one or more buffers
that can store one piece of information, or chunk, at a time.
Modules are capable of massively parallel computation to
obtain chunks. For example, the memory module can
retrieve a single chunk from thousands of others and place
the chunk into the module’s buffer. Module contents are
used to guide processing in the central production system.

The central production system is a set of state-action rules
that are matched to buffer contents and act on the buffers by
removing information from them or adding information to
them. Only a single production rule can proceed at a time,
and each production rule takes at least 50 ms to complete.
The production system acts as a serial bottleneck, as all
information passed between the buffers, and interactions
with the environment, must go through it.

Developing A Flight Parameter Setting Strategy
The previous section covering Lovett’s model of strategy
selection revealed that there is not a differential benefit
between overshoot and undershoot strategies for setting

flight parameters. Not only is there no differential benefit,
there are few alternative strategies that would compete in
setting flight parameters. Consequently, only the efficient
undershoot strategy was developed for setting the flight
parameters.

In the ACT-R productions that instantiate <sr>5 of the
compare subgoal, a function was called from a production’s
action side that selects the appropriate adjustment button
given button adjustments for the current flight parameter
(e.g., altitude, airspeed, and course) and the current and
desired setting values. Button selection was implemented in
this fashion to avoid the need of integrating a representation
of the number line, integrating models of addition and
subtraction, and integrating a model of choosing the
appropriate adjustment button based on the button
increments and the difference between the desired and
current setting values. Hence, the efficient undershoot
strategy was perfectly executed by the model when setting
the flight parameters. However, the model was not provided
knowledge that course values looped back to 1° after
passing 360°.

Developing a Waypoint Setting Model
The waypoint adjustment button selection process utilized

Klahr et al.’s (1983) model of letter retrieval and
comparison. The English alphabet was divided into six
alpha-chunks that contained letters, instantiating Klahr et
al.’s alphabet nodes (see Figure 2). Alpha-chunks were
stored in ACT-R’s declarative memory, and were based on
the Klahr et al. (1983) alphabet division. In addition to
letters, the chunk’s name and the name of the subsequent
alpha-chunk (i.e., the next-node-name slot) were also stored
in alpha-chunks. Different from Klahr et al., chunk slots for
the chunk name that comes prior to the current chunk in the
alphabet (i.e., the previous-node-name slot) and the absolute
position of the alphabet chunk in the alphabet (i.e., the
position slot with values ranging from 1 to 6) were added to
alpha-chunks. The values in the previous-node-name and
the next-node-name slots were strings and thus have no
effect on memory retrieval in ACT-R.

A two-step process was developed to complete <sr>5 of
the compare subgoal. The process began by comparing the
first letter of each waypoint name. If they were equal,
subsequent letters were compared until two were different
(e.g., O and P from the desired waypoint BEO and the
queued waypoint BEP). At this point the second step began.

The second step began with retrieving alpha-chunks for
each of the different letters for comparison (in our example
letters O and P). When retrieving alpha-chunks, activation
was spread from letters residing in the goal buffer. Thus,
alpha-chunks were retrieved independently, without the
need to serially traverse the alpha-chunks/nodes until the
desired alpha-chunk was reached. This non-serial retrieval
of alpha-chunks differs from the Klahr, et al. model, and
allows traversing the alphabet nodes in either direction (see
open and closed arrows between nodes in Figure 2).

When different alpha-chunks were retrieved, letter
comparisons were made using a combination of the
previous-node-name, next-node-name, and position slots.
However, when retrievals returned the same alpha-chunk,
the model had to serially search through the letter slots of
the retrieved alpha-chunk until one of the letters was found.
To instantiate serial search through slots in the alpha-
chunks, s x o productions were developed, where s is the
greatest number of letter slots in the alpha-chunk containing
the most letters minus one, and o is the number of possible
outcomes based on comparing two letters. The value for s is
reduced because if the penultimate slot is reached without
finding either of the letters, than the wrong alphabet chunk
has been retrieved, searching the last slot becomes useless,
and a new retrieval is issued.

The α alpha-chunk had the greatest number of letter slots
(i.e., 7), and there were three possible outcomes–the letter
from the desired waypoint was reached first in an alpha-
chunk, a letter from the queued waypoint was reached first,
or the currently checked slot did not contain either letter.
Consequently, 6 x 3 = 18 productions were developed to
serially search through letter slots of retrieved alphabet
chunks. These productions mimicked procedural expertise
of iterating through letters within an alpha-chunk.
Furthermore, these productions were general enough to
apply to any letter comparisons within any of the alpha-
chunks.

For example, when the model determines which waypoint
occurs alphabetically, BEP or BEO, it determines the first
and second letters of the waypoints are identical. Next it
determines that O and P are different, and retrieves the γ
alpha-chunk. The model then iterates through γ’s letter slots,
reaching O before P, providing information to the model
that BEO comes before BEP in the waypoint list, and to
retreat (–) rather than advance (+) through the list.

Although the letter comparison procedure and the
declarative structure of the alphabet were based on Klahr et
al.’s model, the process differs slightly. For their model to
obtain the chunk containing the letter O, it would require
retrieving α and β chunks first, then retrieving the γ chunk.
Once the γ chunk was retrieved, it would be serially
searched for O.

Integration: Sharing Production Rules Across
Goals
The methods comprising the subgoal methods and selection
rules obtain, compare, and change gleaned from the task
analysis suggest that there should be a high proportion of
shared production rules to set flight parameters and
waypoints when integrating the two models within ACT-R.
The similarity in procedures for setting the flight parameters
was high, and the only difference was the setting adjustment
increments retrieved from declarative memory. Hence, each
flight parameter (i.e., airspeed, altitude, and course) shared
100% of its production rules with the other flight
parameters. However, production sharing between the
setting flight parameters and waypoints was not nearly as

high, with a minimum of 32% and a maximum of 44.5%.
The minimum value comes from the model not having to
serially search through an alpha-chunk, and the maximum
value comes from the model having to exhaustively search
through the largest alpha-chunk, α.

Both models were successfully integrated into a
composite, with a relatively high degree of production rule
sharing. In the following section I report the composite’s
validity.

Composite Model Validation
Model and human participants set the airspeed, course,
altitude, and waypoint to determine if the composite model
provided valid predictions. Data were collected from three
dependent variables: 1) interclick duration, which was
operationally defined as the time between clicks beginning
after method 2 of the compare subgoal, 2) the number of
mouse clicks to complete the goals, and 3) the total time to
complete the goal. Interclick duration represents temporal
dynamics between clicking an adjustment button and
determining if the new setting value is the desired setting
value (from method 4 through method 6 of the change
subgoal). The number of clicks and the setting duration
reflect the accuracy of the task analysis presented above.

Method
Participants were instructed to set the airspeed, course,
altitude, and waypoint 20 times each. There were five
human and 10 model participants. Human and model
participants interacted with the same environment. Although
the model had no knowledge of the course value continuous
loop, human participants were instructed that both the
waypoint and course setting values were continuous loops.

Base levels for alpha-chunks were set to a high initial
value to account for early learning of the alphabet and a
lifetime of use. All other ACT-R parameters were set to
values necessary for other components of the synthetic
teammate. These values were set prior to running the model
and remained unchanged. Finally, production compilation
and production utility learning were not active during model
runs, and the model was reset after setting the flight
parameters and waypoint 20 times each.

Twenty randomly selected airspeeds, altitudes, courses
and waypoints were randomized for each participant and
model run. The model operated as if the desired setting was
provided from another teammate through the
communication system. Consequently, neither the model
nor human participants performed the obtain selection rule
from the task analysis, presented above.

Results
A comparison between human and model data revealed little
deviation between model and human performance, across
the dependent variables from each of the four goals (i.e.,
setting airspeed, course, altitude, and waypoint), RMSD =
1.20; r2 = 0.98.

Figure 3. Results from model validation effort for the three

dependent variables. Error bars are standard error.

Results indicate a very good fit between the composite
model and human data. Interestingly, and not surprisingly,
the course flight parameter has the poorest fit to human data,
and likely stems from not incorporating knowledge of the
setting’s continuous loop of setting values.

Discussion and Areas for Improvement
This excellent model fit to human data resulted from
performing a detailed task analysis, finding previously
published models suitable to perform requisite tasks, and
incorporating the models into a composite using a cognitive
architecture. Although the model successfully predicts
human data, there are clear areas for improvement. First, the
selection of the flight parameter setting adjustment buttons
is done using a function call external to ACT-R.
Incorporating this decision process, while maintaining the
model fit to human data is highly desirable. Second, it
would be an improvement to enable the model to handle the
continuously looping values of the course flight parameter.

The Klahr et al. (1983) model of letter recall and
comparison was successfully integrated with other aspects
of the synthetic teammate task behavior component.
Furthermore, changing Klahr et al.’s serial search across
alphabet nodes to a parallel retrieval process using ACT-R’s
spreading activation mechanism along with the close fit,
points to an interesting possible extension to Klahr et al’s
model. The Lovett (1998) model of choice was less
integration–more inspiration. There was also complete
sharing of production rules across procedures for setting the
different flight parameters, and decent sharing across
procedures for setting flight parameters and waypoints. This
high degree of production rule reuse reflects success in
model integration.

When developing large-scale complex models, such as a
synthetic teammate, the model must be capable of
completing multiple disparate tasks. Model inspiration
and/or integration of existing models provide the developer
with the ability to model cognitive activities that may be
outside their own area of expertise. The success of the
composite model further demonstrates that the development
of computational cognitive models has matured enough to
draw inspiration from, or integrate, previously published
models.

Acknowledgments
The research reported here was supported by grants from the
Air Force Office of Scientific Research (AFOSR #FA9550-
07-0081) and the Office of Naval Research (ONR
#N000140910201) awarded to Dr. Nancy Cooke and Dr.
Christopher Myers, respectively.

References
Anderson, J. R. (2007). How Can the Human Mind Occur in

the Physical Universe? Oxford: Oxford University Press.
Ball, J. T., Myers, C. W., Heiberg, A., Cooke, N. J.,

Matessa, M., & Freiman, M. (2009). The Synthetic
Teammate Project. Paper presented at the 18th
Conference on Behavior Representations in Modeling and
Simulation, Sundance, UT.

Cooke, N. J., & Shope, S. M. (2005). Synthetic Task
Environments for Teams: CERTT's UAV-STE. In
Handbook on Human Factors and Ergonomics Methods
(pp. 46-41 - 46-46). Boca Raton: CLC Press, LLC.

John, B. E. (1996). TYPIST: A theory of Performance in
Skilled Typing. Human-Computer Interaction, 11(4), 321-
355.

Klahr, D., Chase, W. G., & Lovelace, E. A. (1983).
Structure and Process in Alphabetic Retrieval. Journal of
Experimental Psychology: Learning, Memory, &
Cognition, 9(3), 462-477.

Lovett, M. C. (1998). Choice. In J. R. Anderson & C.
Lebiere (Eds.), The Atomic Components of Thought (pp.
41). Mahwah: Lawrence Erlbaum Associates.

