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Abstract 
The promise of reuse is a motivator for, and benefit from, 
developing cognitive models. Another benefit is the 
integration of previously developed models into a single 
model capable of making predictions across different tasks 
than either of the contributing models could make alone. In 
the current paper, I explicate the development of a model 
through the integration of, and inspiration from, two 
previously published models. The composite was developed 
for a context different from the constituent models’ original 
contexts, and demonstrates a success of inspiration and 
integration.  
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Introduction 
The promise of model reuse is a boon to, and motivator for, 
developing models. A related benefit is to integrate different 
models into a composite capable of making predictions in 
different contexts than the contributing models could make 
alone. To take advantage of these potential benefits, 
developers of large-scale, complex models must seek out 
published models for integration rather than reinventing the 
wheel. This paper provides an account of the integration of, 
and inspiration from, two previously reported models of 
distinct cognitive processes.  

The context for model inspiration and integration is the 
development of a synthetic teammate (Ball et al., 2009). The 
constituent models provided portions of the synthetic 
teammate component responsible for interacting with its 
task environment, the task behavior component.  

In the remaining sections of the introduction, I first 
provide background on the synthetic teammate project. 
Second, I describe the task and goals specific to the 
synthetic teammate’s task behavior component. Third, I 
provide results from a task analysis on the goals critical to 
the task behavior component.  

The Synthetic Teammate Project  
The Cognitive Engineering Research Institute and the 
Performance & Learning Models team at the Air Force 
Research Laboratory are collaborating to develop a 
synthetic agent capable of coordinating with human 
teammates to complete an unmanned aerial vehicle (UAV) 
reconnaissance task. The far-term goal of the project is to 
reduce the number of human operators in team trainers 
while maintaining training effectiveness. The near-term goal 
of this project is to develop a cognitively plausible synthetic 

teammate within the ACT-R 6 cognitive architecture 
(Anderson, 2007). Achieving the near-term goal will 
facilitate accomplishing far-term goals, through the 
identification of cognitive capacities necessary for operating 
as a teammate (e.g., memory, language, etc.), and 
demonstrate how to integrate relevant cognitive capacities. 

The synthetic teammate is being developed to operate 
within a UAV Synthetic Task Environment (UAV-STE; see 
Cooke & Shope, 2005) used to study teams for the better 
part of the past decade. In the UAV-STE, teammates 
coordinate to successfully complete a reconnaissance task. 
The synthetic teammate has been developed to operate as 
the UAV Air Vehicle Operator (AVO), and to interact with 
a photographer that takes pictures of ground targets, or 
waypoints, and a mission planner responsible for planning 
the UAV’s route. Communication among teammates occurs 
through a text-based instant messaging system. 

Four cognitive components have been identified as the 
basis of the synthetic teammate: 1) language 
comprehension, 2) language generation and dialog 
management, 3) situation assessment, and 4) task behavior. 
The current paper is focused on goals associated with the 
task behavior component (see Ball et al., 2009, for details on 
the other components).  

Task Goals for the Task Behavior Component 
To fly the UAV, the AVO must complete six goals: 1) set 
the airspeed, 2) altitude, 3) course, 4) waypoint, and 5) send 
and 6) receive text messages. Of these six, the solution for 
the first four is covered in the current paper. A typing model 
associated with the last two goals, sending and receiving 
messages, is currently being integrated (John, 1996).  

 
Figure 1. The left box is an example of the interface used to 
enter the airspeed, altitude, and course. The right box is used 

for setting waypoints. 



The UAV-STE was designed to simulate a team task; 
consequently the user interface was not designed as a high 
fidelity representation of any existing UAV system in use 
by the military. To maneuver the UAV from one location to 
another, the AVO uses a point-and-click interface to enter 
settings (see Figure 1). To set the waypoint, the user toggles 
through a list of 109 alphabetically organized waypoints by 
pressing the setting adjustment buttons (see Figure 1). Each 
time an adjustment button is pressed, a new waypoint value 
is queued (e.g., BEP in Figure 1). The waypoint list operates 
as a continuous loop (i.e., A comes after Z). When the user 
has queued the next waypoint to visit, she presses the “New 
TO” button, changing “H-AREA” to “BEP” in Figure 1. 

There are three flight parameters (altitude, course, and 
airspeed). Each flight parameter has a separate user 
interface, though they are identical (see Figure 1). To set the 
flight parameters, the AVO adjusts the setting value by 
using the small (+ | –) and large (++ | – –) setting adjustment 
buttons. These buttons have different increments and 
decrements depending on the setting (see Table 1). Similar 
to the waypoint list, course values are a continuous loop, 
returning to 1° after 360°. The airspeed and altitude values 
are infinite number lines, beginning at 0 and ending at 
infinity. When the desired setting value is reached, the user 
presses the “Enter” button to complete the setting goal.  

Table 1. Setting adjustment buttons for each task setting 
goal. The waypoint buttons either increment to the next 

(+), or decrement (–) to the previous waypoint in an 
alphabetical list. The other button increments increase or 

decrease setting values, accordingly. 

Task Goals Large 
++ | – – 

Small 
+ | – 

Airspeed 20 | –20 2 | –2 

Altitude 1000 | –1000 100 | –100 

Course 10 | –10 1 | –1 

Waypoint Not applicable 1 | –1 

There are five differences between setting a waypoint and 
setting the flight parameters. First, the adjustment buttons 
for setting the flight parameters have small and large 
adjustments, whereas there are only small adjustments for 
setting the waypoint (see Figure 1 and Table 1). Second, 
there is an “Enter” button for setting the flight parameters 
and a “New TO” button for setting the waypoint. Although 
these buttons have different names, there functions are 
identical. Third, the values of flight parameters are integers, 
whereas waypoints are strings of numbers and letters (e.g., 
WP8, BEP). The fourth difference is the addition of the 
queued value for setting the waypoint, and the fifth and final 
difference is the spatial arrangements of the user interfaces. 

Although there are interface differences between setting 
flight parameters and waypoints, there is considerable 

overlap of methods for setting altitudes, courses, airspeeds, 
and waypoints. In the following section I provide results 
from a task analysis of the four goals.  

Task Analysis Results 
A hierarchical GOMS (i.e., goals, operators, methods, and 
selection rules) analysis was conducted on setting waypoints 
and flight parameters. The purpose of the analysis was to 
reveal commonalities and differences between the goals. 

The task analysis revealed a consistent three-step subgoal 
structure across each of the four goals, composed of 1) 
obtaining the desired setting value, 2) comparing the 
desired setting value against the current value, and 3) 
Changing the current setting value to the desired value. The 
following methods <m> and selection rules <sr> are 
identical across the four goals: 

Obtain subgoal <sr>:  
Either Retrieve the desired information from memory 
Or        Request the information from a teammate.  

Compare subgoal <m>: 
1. <m>Visually encode one of the adjustment buttons  
2. <m>Move mouse to, and click on, button  
[system-event]:= setting value appears  
3. <m> Visually encode setting value  
4. <sr> IF button adjustment values are unknown, 

THEN retrieve them from memory  
5. <sr> Given the current setting value, desired 

setting value, and adjustment button values, select 
adjustment button  

Change subgoal <m>: 
1. <sr> IF mouse is at the selected adjustment button, 

THEN goto <m> 4; ELSE continue 
2. <m> Visually encode button 
3. <m> Move mouse to button 
4. <m> Click mouse 
[system-event]:= setting value changes  
5. <sr> IF not attending to setting value, THEN 

visually encode setting value; ELSE continue 
6. <sr> IF the current setting equals the desired 

setting, THEN visually encode “Enter”/”New TO” 
button and goto change subgoal <m>7; ELSE IF 
large adjustment clicked, THEN goto compare 
subgoal, <sr>5; ELSE goto change subgoal, 
<m>4. 

7. <m> Click mouse–return with goal accomplished. 
[system-event]:= setting value disappears 

Although setting flight parameters and waypoints follow 
the same subgoal structure, methods for completing steps in 
the subgoal methods presented above diverge. The 
divergence results from different value types between flight 
parameters and waypoints and the absence of large setting 
adjustment buttons for setting waypoints. These differences 
specifically affect methods for completing <sr>5 of the 
compare subgoal. In the following section, candidate 
models for setting the flight parameters and waypoints are 
selected from the cognitive modeling literature.  



Candidate Models 
As the science of developing quantitative process models of 
cognitive activities matures, many models become available 
with which to take whole cloth or draw inspiration from 
when tackling large, complex models that must be capable 
of completing many different tasks. Rather than possibly 
reinventing the wheel, published models were sought as 
candidates for integration into the task behavior component 
of the synthetic teammate. To be a candidate, models had to 
be compatible with the subgoal methods and selection rules 
detailed above. The current section covers a strategy 
selection model (Lovett, 1998) with implications for setting 
flight parameters, and a letter recall and comparison model 
(Klahr et al., 1983) with implications for setting waypoints.  

Strategy Selection 
Lovett (1998) demonstrated that ACT-R’s choice 
mechanism can account for changes in strategy selection 
with experience from the task environment. Lovett 
identified two strategies for obtaining a solution in a spatial 
problem-solving task (i.e., the building-sticks task): 
overshoot or undershoot. Generally, the overshoot strategy 
results in passing the desired state, and then backtracking to 
it. The undershoot strategy incrementally approaches the 
desired state without passing it. Strategy selection was 
based on a strategy’s likelihood of success within the 
environment, such as sets of problems where the overshoot 
strategy produced a solution a majority of the time and vice 
versa.   

In the building-sticks task, the choice of which strategy to 
use was not obvious, requiring experience to determine 
which strategy was most successful. Lovett’s model used 
the production utility mechanism in ACT-R 5 to learn which 
of the two strategies was best suited for different problem 
sets. With experience, the model learned to choose a 
strategy on a proportion of trials that was similar to humans. 

Lovett’s approach to strategy selection is perfectly suited 
for selecting between possible strategies for setting flight 
parameters for two reasons. First, Lovett’s model was 
originally developed in an earlier version of ACT-R. 
Second, her undershoot and overshoot strategies are similar 
to strategies that can be brought to bear on setting flight 
parameters. 

When setting a flight parameter, the AVO has four 
possible adjustment buttons to choose from. From the four 
options come two strategies: difference reduction and 
meandering. The difference reduction strategy involves 
moving from the current setting to the desired setting, 
reducing the difference between the two values at each step, 
and can be achieved efficiently or inefficiently.  

The efficient difference reduction strategy comes as close 
as possible to the desired setting using the large adjustment 
buttons, then switching to the small adjustment buttons to 
reach the desired setting. Indeed, Lovett’s overshoot and 
undershoot strategies are efficient difference reduction 
strategies.  

The inefficient difference reduction strategy involves only 
using the small adjustment buttons. This strategy will 
succeed, but in many cases take substantially longer to 
complete than the efficient difference reduction strategy.  

Finally, the meandering strategy is a mix of difference 
reduction and periodic interventions to randomly select and 
use a different adjustment button. This strategy will 
eventually select the desired setting value, but could take 
months. Hence, only the two difference reduction strategies 
are considered further. 

The efficient difference reduction strategy can be 
developed as independent undershoot and overshoot 
strategies, similar to those described by Lovett. Because the 
structure of the flight parameter setting environment does 
not contain any bias leading to differential success between 
an efficient undershoot difference reduction strategy or an 
efficient overshoot difference reduction strategy, there is 
little use in developing models of each strategy and letting 
ACT-R’s choice mechanism demonstrate equivalency. 
Furthermore, the inefficient difference reduction strategy is 
a “straw man” strategy–participants will arguably use the 
large increment buttons simply because of their availability. 

Letter Recall and Comparison 
When setting a waypoint, the AVO can either advance (+) 
or retreat (–) through the list of waypoints one waypoint at a 
time. I assumed that participants come to the task with 
extensive knowledge and experience in the English 
alphabet. I also assumed that the choice to advance or retreat 
through waypoints results from bringing the alphabet 
knowledge to bear on the waypoint setting goal, and looked 
to Klahr et al. (1983) as a candidate representation of the 
English alphabet for a model of letter comparison. 

 
Figure 2. Alphabet representation adapted from Klahr, 

Chase, and Lovelace (1983). Dashed lines and open arrows 
represent capabilities added to their model. 

In the Klahr et al. (1983) model of letter retrieval and 
comparison, letters were stored as hierarchical subgroups in 
a link-node structure (e.g., α to τ in Figure 2). Letters within 



a node (e.g., D in node α) can only be reached through node 
entry points. Entry points for each node are the first letter of 
the node (e.g., A for α, H for β, etc., see Figure 2). Node 
contents are based on empirical evidence of entry point 
consistency with phrasing in “Twinkle, Twinkle Little Star,” 
used to teach the alphabet (Klahr et al., 1983).  

Klahr et al.’s letter retrieval model is a serial, self-
terminating search across and within alphabet nodes. Letters 
and nodes were linked only to their successors. Thus, to 
backtrack through nodes the previous node must be 
maintained in working memory.  

Klahr et al. validated their model with response time data 
collected from human participants that were shown letters of 
the alphabet and asked to respond with the name of the letter 
that either occurs before or after the probe letter. However, 
determining whether to advance or retreat through the 
waypoint list in the UAV-STE is quite different. Rather than 
responding with an adjacent letter, the model must 
determine whether the desired waypoint (e.g., BEO) occurs 
before or after the queued waypoint (BEP in Figure 1). This 
requires determining if a letter occurs before or after another 
letter in the alphabet, and these comparisons can occur 
between and within letter nodes. Even so, the Klahr et al. 
(1983) model is a good candidate for representing the 
English alphabet. In the following section I cover the 
development and integration of the candidate models within 
ACT-R. 

Development & Integration in ACT-R 
ACT-R is a computational cognitive architecture for 
developing cognitive models (Anderson, 2007). In ACT-R, 
cognition revolves around the interaction between a central 
production system and several modules. There are modules 
for vision, motor capabilities, memory, storing the model’s 
intentions for completing the task (i.e., the control state), 
information retrieved from memory, and a module for 
storing the mental representation of the task at hand (i.e., the 
problem state). Each module contains one or more buffers 
that can store one piece of information, or chunk, at a time. 
Modules are capable of massively parallel computation to 
obtain chunks. For example, the memory module can 
retrieve a single chunk from thousands of others and place 
the chunk into the module’s buffer. Module contents are 
used to guide processing in the central production system.  

The central production system is a set of state-action rules 
that are matched to buffer contents and act on the buffers by 
removing information from them or adding information to 
them. Only a single production rule can proceed at a time, 
and each production rule takes at least 50 ms to complete. 
The production system acts as a serial bottleneck, as all 
information passed between the buffers, and interactions 
with the environment, must go through it. 

Developing A Flight Parameter Setting Strategy 
The previous section covering Lovett’s model of strategy 
selection revealed that there is not a differential benefit 
between overshoot and undershoot strategies for setting 

flight parameters. Not only is there no differential benefit, 
there are few alternative strategies that would compete in 
setting flight parameters. Consequently, only the efficient 
undershoot strategy was developed for setting the flight 
parameters.  

In the ACT-R productions that instantiate <sr>5 of the 
compare subgoal, a function was called from a production’s 
action side that selects the appropriate adjustment button 
given button adjustments for the current flight parameter 
(e.g., altitude, airspeed, and course) and the current and 
desired setting values. Button selection was implemented in 
this fashion to avoid the need of integrating a representation 
of the number line, integrating models of addition and 
subtraction, and integrating a model of choosing the 
appropriate adjustment button based on the button 
increments and the difference between the desired and 
current setting values. Hence, the efficient undershoot 
strategy was perfectly executed by the model when setting 
the flight parameters. However, the model was not provided 
knowledge that course values looped back to 1° after 
passing 360°. 

Developing a Waypoint Setting Model 
The waypoint adjustment button selection process utilized 

Klahr et al.’s (1983) model of letter retrieval and 
comparison. The English alphabet was divided into six 
alpha-chunks that contained letters, instantiating Klahr et 
al.’s alphabet nodes (see Figure 2). Alpha-chunks were 
stored in ACT-R’s declarative memory, and were based on 
the Klahr et al. (1983) alphabet division. In addition to 
letters, the chunk’s name and the name of the subsequent 
alpha-chunk (i.e., the next-node-name slot) were also stored 
in alpha-chunks. Different from Klahr et al., chunk slots for 
the chunk name that comes prior to the current chunk in the 
alphabet (i.e., the previous-node-name slot) and the absolute 
position of the alphabet chunk in the alphabet (i.e., the 
position slot with values ranging from 1 to 6) were added to 
alpha-chunks. The values in the previous-node-name and 
the next-node-name slots were strings and thus have no 
effect on memory retrieval in ACT-R.  

A two-step process was developed to complete <sr>5 of 
the compare subgoal. The process began by comparing the 
first letter of each waypoint name. If they were equal, 
subsequent letters were compared until two were different 
(e.g., O and P from the desired waypoint BEO and the 
queued waypoint BEP). At this point the second step began.  

The second step began with retrieving alpha-chunks for 
each of the different letters for comparison (in our example 
letters O and P). When retrieving alpha-chunks, activation 
was spread from letters residing in the goal buffer. Thus, 
alpha-chunks were retrieved independently, without the 
need to serially traverse the alpha-chunks/nodes until the 
desired alpha-chunk was reached. This non-serial retrieval 
of alpha-chunks differs from the Klahr, et al. model, and 
allows traversing the alphabet nodes in either direction (see 
open and closed arrows between nodes in Figure 2). 



When different alpha-chunks were retrieved, letter 
comparisons were made using a combination of the 
previous-node-name, next-node-name, and position slots. 
However, when retrievals returned the same alpha-chunk, 
the model had to serially search through the letter slots of 
the retrieved alpha-chunk until one of the letters was found. 
To instantiate serial search through slots in the alpha-
chunks, s x o productions were developed, where s is the 
greatest number of letter slots in the alpha-chunk containing 
the most letters minus one, and o is the number of possible 
outcomes based on comparing two letters. The value for s is 
reduced because if the penultimate slot is reached without 
finding either of the letters, than the wrong alphabet chunk 
has been retrieved, searching the last slot becomes useless, 
and a new retrieval is issued.  

The α alpha-chunk had the greatest number of letter slots 
(i.e., 7), and there were three possible outcomes–the letter 
from the desired waypoint was reached first in an alpha-
chunk, a letter from the queued waypoint was reached first, 
or the currently checked slot did not contain either letter. 
Consequently, 6 x 3 = 18 productions were developed to 
serially search through letter slots of retrieved alphabet 
chunks. These productions mimicked procedural expertise 
of iterating through letters within an alpha-chunk. 
Furthermore, these productions were general enough to 
apply to any letter comparisons within any of the alpha-
chunks.  

For example, when the model determines which waypoint 
occurs alphabetically, BEP or BEO, it determines the first 
and second letters of the waypoints are identical. Next it 
determines that O and P are different, and retrieves the γ 
alpha-chunk. The model then iterates through γ’s letter slots, 
reaching O before P, providing information to the model 
that BEO comes before BEP in the waypoint list, and to 
retreat (–) rather than advance (+) through the list. 

Although the letter comparison procedure and the 
declarative structure of the alphabet were based on Klahr et 
al.’s model, the process differs slightly. For their model to 
obtain the chunk containing the letter O, it would require 
retrieving α and β chunks first, then retrieving the γ chunk. 
Once the γ chunk was retrieved, it would be serially 
searched for O. 

Integration: Sharing Production Rules Across 
Goals 
The methods comprising the subgoal methods and selection 
rules obtain, compare, and change gleaned from the task 
analysis suggest that there should be a high proportion of 
shared production rules to set flight parameters and 
waypoints when integrating the two models within ACT-R. 
The similarity in procedures for setting the flight parameters 
was high, and the only difference was the setting adjustment 
increments retrieved from declarative memory. Hence, each 
flight parameter (i.e., airspeed, altitude, and course) shared 
100% of its production rules with the other flight 
parameters. However, production sharing between the 
setting flight parameters and waypoints was not nearly as 

high, with a minimum of 32% and a maximum of 44.5%. 
The minimum value comes from the model not having to 
serially search through an alpha-chunk, and the maximum 
value comes from the model having to exhaustively search 
through the largest alpha-chunk, α. 

Both models were successfully integrated into a 
composite, with a relatively high degree of production rule 
sharing. In the following section I report the composite’s 
validity.   

Composite Model Validation 
Model and human participants set the airspeed, course, 
altitude, and waypoint to determine if the composite model 
provided valid predictions. Data were collected from three 
dependent variables: 1) interclick duration, which was 
operationally defined as the time between clicks beginning 
after method 2 of the compare subgoal, 2) the number of 
mouse clicks to complete the goals, and 3) the total time to 
complete the goal. Interclick duration represents temporal 
dynamics between clicking an adjustment button and 
determining if the new setting value is the desired setting 
value (from method 4 through method 6 of the change 
subgoal). The number of clicks and the setting duration 
reflect the accuracy of the task analysis presented above.  

Method 
Participants were instructed to set the airspeed, course, 
altitude, and waypoint 20 times each. There were five 
human and 10 model participants. Human and model 
participants interacted with the same environment. Although 
the model had no knowledge of the course value continuous 
loop, human participants were instructed that both the 
waypoint and course setting values were continuous loops. 

Base levels for alpha-chunks were set to a high initial 
value to account for early learning of the alphabet and a 
lifetime of use. All other ACT-R parameters were set to 
values necessary for other components of the synthetic 
teammate. These values were set prior to running the model 
and remained unchanged. Finally, production compilation 
and production utility learning were not active during model 
runs, and the model was reset after setting the flight 
parameters and waypoint 20 times each. 

Twenty randomly selected airspeeds, altitudes, courses 
and waypoints were randomized for each participant and 
model run. The model operated as if the desired setting was 
provided from another teammate through the 
communication system. Consequently, neither the model 
nor human participants performed the obtain selection rule 
from the task analysis, presented above.  

Results 
A comparison between human and model data revealed little 
deviation between model and human performance, across 
the dependent variables from each of the four goals (i.e., 
setting airspeed, course, altitude, and waypoint), RMSD = 
1.20; r2 = 0.98. 



 

 

 
Figure 3. Results from model validation effort for the three 

dependent variables. Error bars are standard error. 

Results indicate a very good fit between the composite 
model and human data. Interestingly, and not surprisingly, 
the course flight parameter has the poorest fit to human data, 
and likely stems from not incorporating knowledge of the 
setting’s continuous loop of setting values.  

Discussion and Areas for Improvement 
This excellent model fit to human data resulted from 
performing a detailed task analysis, finding previously 
published models suitable to perform requisite tasks, and 
incorporating the models into a composite using a cognitive 
architecture. Although the model successfully predicts 
human data, there are clear areas for improvement. First, the 
selection of the flight parameter setting adjustment buttons 
is done using a function call external to ACT-R. 
Incorporating this decision process, while maintaining the 
model fit to human data is highly desirable. Second, it 
would be an improvement to enable the model to handle the 
continuously looping values of the course flight parameter. 

The Klahr et al. (1983) model of letter recall and 
comparison was successfully integrated with other aspects 
of the synthetic teammate task behavior component. 
Furthermore, changing Klahr et al.’s serial search across 
alphabet nodes to a parallel retrieval process using ACT-R’s 
spreading activation mechanism along with the close fit, 
points to an interesting possible extension to Klahr et al’s 
model. The Lovett (1998) model of choice was less 
integration–more inspiration. There was also complete 
sharing of production rules across procedures for setting the 
different flight parameters, and decent sharing across 
procedures for setting flight parameters and waypoints. This 
high degree of production rule reuse reflects success in 
model integration.  

When developing large-scale complex models, such as a 
synthetic teammate, the model must be capable of 
completing multiple disparate tasks. Model inspiration 
and/or integration of existing models provide the developer 
with the ability to model cognitive activities that may be 
outside their own area of expertise. The success of the 
composite model further demonstrates that the development 
of computational cognitive models has matured enough to 
draw inspiration from, or integrate, previously published 
models.  
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