
Using Information Flow for Modelling Mathematical Metaphors

Markus Guhe (m.guhe@ed.ac.uk)
Alan Smaill (A.Smaill@ed.ac.uk)
Alison Pease (A.Pease@ed.ac.uk)

School of Informatics, Informatics Forum, 10 Crichton Street

Edinburgh EH8 9AB, UK

Abstract

We argue for two points in this paper. Firstly, formal models
can be a useful means for cognitive modelling, in particular
for domains that traditionally already use this kind of model.
Secondly, we present a formal model of how two of the ground-
ing metaphors for arithmetic proposed by Lakoff and Núñez
(2000) can be linked to basic notions of arithmetic using the
infomorphisms of the Information Flow theory.

Keywords: formal model, logic, metaphor, mathematics, scien-
tific discovery

The Cognition of Mathematics

As of yet, there is no cognitive model of the way in which

people invent mathematical concepts. As part of our research

on understanding the cognition of creating mathematical con-

cepts we are working towards such a model (Guhe, Pease,

& Smaill, 2009). We build on two streams of research: em-

bodied conceptualisation, which analyses mathematical ideas

as being constructed by the cognitive process of metaphor

(Lakoff & Núñez, 2000), and societal conceptualisation based

on Lakatos’s (1976) philosophical account of the historical de-

velopment of mathematical ideas. Both argue strongly against

the ‘romantic’ (Lakoff and Núñez) or ‘deductivist’ (Lakatos)

style in which mathematics is presented as an ever-increasing

set of universal, absolute, certain truths which exist indepen-

dently of humans. In contrast to this view, our main interest

in the Wheelbarrow project is how mathematical concepts are

formed and modified by the embodied and situated human

mind.

While there are cognitive models of learning mathematics

(eg Lebiere, 1998; Anderson, 2007), there are to our knowl-

edge no models of how humans create mathematics. Collect-

ing empirical data on how scientific concepts are created is

difficult, and this is true for case studies as well as labora-

tory settings. Using case studies (see, for example, Nersessian,

2008) suffers from the problems that they are not reproducible

(and therefore anecdotal) and that they are usually created

in retrospect, which means that they are very likely to con-

tain many rationalisations instead of an actual protocol of the

thought processes. Using a laboratory setting in contrast (cf

Schunn & Anderson, 1998) means that the experiment has to

be designed in such a way that the participants are limited in

their possible responses, ie their degree of freedom is limited

and it is uncertain whether or how this is different form the

unrestricted scientific process.

Lakoff and Núñez (2000) claim that the human ability for

mathematics is brought about by two main factors: our embod-

ied nature and our ability to create and use metaphors. They

describe how starting from interactions with the environment

we build up (more and more abstract) mathematical concepts

by processes of metaphor and abstraction. More precisely, they

distinguish two kinds of metaphors: grounding metaphors and

linking metaphors (p 53). In grounding metaphors one domain

is embodied and the other abstract, eg the four grounding

metaphors for mathematics, which we will describe below. In

linking metaphors, both domains are abstract, which allows the

creation of more abstract mathematical concepts. For example,

having established the basics of arithmetic with grounding

metaphors this knowledge is used to create – among others

– the concepts of points in space, spaces of any number of

dimensions and functions (p 387).

We follow Gentner (1983; see also Gentner & Markman,

1997, p 48) in assuming that metaphors are similar to analo-

gies. Gentner proposes that when comparing two concepts we

can distinguish between analogies, metaphors, literal similari-

ties or mere appearance similarities by looking at the number

of relations and properties that (the representations of) the

two concepts have in common. For analogies, mainly rela-

tions between concepts are matched, while for metaphors a

larger amount of properties are involved. Thus, the distinction

between analogy and metaphor is only a difference in degree.

According to Gentner’s (1983, p 156) structure mapping

theory the main cognitive process of analogy formation is a

mapping between the (higher-order) relations of conceptual

structures. Although we use this approach for creating com-

putational cognitive models of mathematical discovery (see

Guhe et al., 2009 for an ACT-R model using path-mapping

– a realisation of structure mapping in ACT-R developed by

Salvucci & Anderson, 2001), in this paper we will present a

formal model that specifies the particular grounding metaphors

that Lakoff and Núñez (2000) propose. This formalisation will

be a basis for enhancing the ACT-R model.

Lakoff and Núñez’s Four Basic Metaphors of

Arithmetic

Lakoff and Núñez (2000, chapter 3) propose that humans

create the conceptual space of arithmetic with four different

grounding metaphors that create an abstract conceptual space

from embodied experiences, ie interactions with the real world.

Since many details are required for describing these metaphors

adequately, we can only provide the general idea here.

Object Collection The first metaphor, arithmetic is object

collection, describes how by interacting with objects we expe-

rience that objects can be grouped and that there are certain

regularities when creating collections of objects, eg by remov-

ing objects from collections, by combining collections, etc.

By the process of metaphor (analogy) these regularities are

mapped into the domain of arithmetic, for example, collections

of the same size are mapped to the concept of number and

putting two collections together is mapped to the arithmetic

operation of addition.

Object Construction Similarly, in the arithmetic is object

construction metaphor we experience that we can combine

objects to form new objects, for example by using toy building

blocks to build towers. Again, the number of objects that are

used for the object construction are mapped to number and

constructing an object is mapped to addition.

Measuring Stick The measuring stick metaphor captures

the regularities of using measuring sticks for the purposes of

establishing the size of physical objects, eg for constructing

buildings. Here numbers correspond to the physical segments

on the measuring stick and addition to putting together seg-

ments to form longer segments.

Motion Along A Path The motion along a path metaphor,

finally, adds concepts to arithmetic that we experience by

moving along straight paths. For example, numbers are point

locations on paths and addition is moving from point to point.

Note that these metaphors are not interchangeable. All are

used to create the basic concepts of arithmetic. For this initial

proposal we will only consider the first two metaphors.

Formal Models

The field of cognitive modelling makes only little use of formal

methods.1 A reason for this may be the recognition that tradi-

tional claims that logic describes the way humans reason do

not stand up to scrutiny – at least not in this generality.2 Con-

sequently, logic is hardly used for modelling human cognition.

However, this is throwing out the baby with the bath water,

because the rigour of logical models is a great methodological

advantage. Moreover, for the domain that we are interested in

(the cognition of mathematics) the results of the cognitive pro-

cesses (the mathematical structures and processes) are usually

already modelled with logic, which makes them easy to use.

Having said this, it is also clear that such models are on a high

level of abstraction, one comparable to differential equations

or statistics. An advantage of this high level is the models’

conciseness, which makes it easy to have models with a broad

coverage.

Artificial intelligence, mathematics and automated theory

formation, which all mainly use formal models, usually do not

consider the work carried out in cognitive modelling. A major

aim of our project is to bring the research in these disciplines

1‘Formal’ in the sense of logic or mathematics. Computational
models are formal as well, of course, and as they are usually realised
on digital computers, they are also logical models.

2To be fair, it should be noted that most logicians today would say
that logic describes how humans ought to reason. However, we pro-
pose that formal theories can contribute to understanding cognition.

closer to the research in cognitive modelling. Cognitive mod-

elling will also profit from our approach, because most of the

work on the cognitive abilities we are investigating (linguis-

tics, mathematics) is not done as cognitive modelling approach

but formally. Instead of recreating this research in cognitive

modelling it is advantageous to transfer or link the existing

research in a principled manner to cognitive modelling.

Finally, cognitive modelling is only concerned with creating

models of the mind. Only rarely is there a computational or

formal characterisation of the properties of the model itself.

For example, a cognitive reasoning model is not usually speci-

fied with respect to completeness (is the model able to make

all valid deductions?) or soundness (are all inferences drawn

by the model correct given the used premises?) Determining

such properties of a model (theory/system) is a strong point of

formal systems.

To illustrate that logic is still a useful way to describe cog-

nition we would like to draw attention to the Wason selection

task.3 The apparent failures of humans in this task can convinc-

ingly be explained as being effects of the participants having

problems ‘with interpreting how the experimenter intends the

task and materials to be understood’ (Stenning et al., 2006, p

63). In the case of the Wason selection task Schooler (2001)

and Stenning et al. (2006) demonstrate that the apparent short-

comings of the participants are due to their understanding the

task as being an inductive information gathering task rather

than a deductive one, where they are supposed to reason from

a set of premises to a conclusion. It has been observed that

participants have no problems drawing the conclusions de-

sired by the experimenter in a task with the identical logical

structure but framed as a task of, for example, reasoning about

the drinking age of youngsters.4 The reason, however, that the

inferences are ‘correct’ in this case is not, as is often suggested,

that the problem is set in a different domain (a social situa-

tion instead of an abstract logic task) but that the participants

understand the goal of the task in the way the experimenter

intends, namely as being a deductive task – for which logic is

a good model.

General Reasoning with Local Processing

A major difference between formal and cognitive modelling is

that formal models usually consider all the knowledge in the

3In the Wason selection task, the participants are presented with
four cards, showing letters and numbers, for example: A, B, 3, 8.
They are given a rule like If one side has a vowel, then the other
has an even number. The participants now have to decide, which
cards must be turned to see whether this rule is correct for these
four cards. They should turn as few cards as possible. (Stenning,
Lascarides, & Calder, 2006, p 28) The failure consists in the fact
that participants usually turn over more cards than is necessary to
draw the requested conclusion. This is often considered to be an
example of a confirmation bias (Ross & Anderson, 1982, p 149), ie
the preference to seek information that confirms held beliefs instead
of trying to disconfirm such beliefs.

4The cards show the name of a drink on one side and the age of
the drinker on the other, eg whiskey, orange, 19, 16. The rule is If you
drink alcohol, then you must be over 18 years old. The participants
are instructed to check whether all drinkers follow the rule.

system in each step. However, it is clear that this is not how

cognition works. Instead only a small subset of the available

knowledge is used for each computational step such as the

firing of a production rule. This reduction of the considered

knowledge to what we call a local context (Guhe, 2007) is

the main reason why cognitive processes require much less

computational power than artificial systems. Furthermore, the

reason that (natural) cognitive systems can cope with the com-

plexities of the real world while an artificial system is either

prone to fall off a cliff (not enough knowledge considered) or

being caught by a predator (computations are too slow), is that

current artificial systems are very bad at establishing suitable

local contexts – if they do it at all.

A reason for this is that the idea of a localised processing is

a big challenge for formal models, because not taking all avail-

able knowledge into account can introduce inconsistencies,

which will almost inevitably cause the system to fail. However,

the Information Flow theory by Barwise and Seligman (1997)

provides just what is needed to define distributed, localised

formal systems. This means, the system consists of multiple

subsystems (classifications, theories, local logics) that are con-

nected by infomorphisms in a formally sound way. This makes

it almost ideally suited for describing cognition in a formal

manner, because humans are not only good at establishing

local contexts but also at connecting the local contexts.

Coming back to the reasons for using formal methods the

advantage of using logic for cognitive modelling is that it pro-

vides a general-purpose mechanism for reasoning – which is

a main motivation for inventing and using logics in the first

place. Although it is clear that human reasoning is strongly

influenced by the current task and the current task demands,

there is also a general ability to reason from premises to con-

clusions. It seems wasteful to have, for example, a different

version of modus ponens in each task model. This does not

mean that we propose a ‘logic module’, just that a general

reasoning ability exists somewhere in the system. It can be

implemented with means provided by existing cognitive archi-

tectures.

We have three main cases in mind where such a general

reasoning mechanism is useful. Firstly, it can be used as a

general model of distributed reasoning: if the system knows

something within a local context and also knows how this

knowledge is connected to another local context, then there

is a principled way to use this connection to reason about the

distal local context. Secondly, on a local level the reasoning

on the chosen local context retains all the desirable properties

of the chosen logic (soundness, completeness). Thirdly, such a

mechanism is a good way to approach cognitive mathematics,

because the results of the cognitive process (the mathematical

structures) are already represented formally.

Information Flow

This section provides a short introduction to Information Flow

theory. We will focus on the aspects that we need for our

formalisation; a detailed discussion of Information Flow can

be found in Barwise and Seligman (1997). We only need

three of the main notions for our purposes here: classification,

infomorphism and channel.

Classification A classification A consists of a set of tokens

tok(A), a set of types typ(A) and a binary classification relation

àA between tokens and types. In this way, the classification

relation classifies the tokens, for example, for a token a >

tok(A) and a type α > typ(A) the relation can establish aàA α.

Graphically, a classification is usually depicted as in left

part of figure 1, ie with the types on top and the token on the

bottom.

typ(B)

tok(A) tok(B)

⊧B⊧A

typ(A)
f ̂

f ̌

Figure 1: Two classifications (A and B) and an infomorphism

(f) in Information Flow

Infomorphism An infomorphism f � A� B from a classi-

fication A to a classification B is a (contravariant) pair of

functions f = ` f ˆ; f ˇe that satisfies the following condition:

f ˇ(b) àA α iff b àB f ˆ(α)

for each token b > tok(B) and each type α > typ(A), cf figure 1.

Note that the ‘type relation’ f ˆ and the ‘token relation’ f ˇ

point in opposite directions. (They are contravariant.) As a

mnemonic the ˆ of f ˆ points upwards, where the types of

classifications are usually written.

Channel A channel is a set of infomorphisms that have a

common codomain. For example, the channel C depicted in

figure 2 consists of a family of four infomorphisms f1 to f4

that connect the four classifications A1 to A4 to the common

codomain C. The common codomain is the core of the channel.

Note that the infomorphisms of defining a channel are all pairs

of functions, ie f1 = ` f1̂ ; f1ˇe, etc.

A3

A1

C

f3

f1

A2

f2

A4

f4

Figure 2: Channel C = � f1; f2; f3; f4� and its core C

The core is the classification that contains the information

connecting the tokens of the classifications A1 to A4. The to-

kens of C are called connections, because they connect the

tokens of the other classifications. In our application to arith-

metic the core is the arithmetic knowledge that represents what

is common to the different source domains – the common arith-

metic properties of object collections, object constructions,

etc.

Channels and cores are the main way in which Information

Flow achieves a distributed, localised kind of representing

knowledge. In other words, this is the property of the Infor-

mation Flow approach the fits to the localised representation

and processing found in cognition. At the same time, infomor-

phisms provide a principled way of representing the connec-

tion between the different local contexts. This is not the place

to go into the details about this aspect of Information Flow, but

Barwise and Seligman (1997) give a comprehensive account

of the properties that are or are not preserved when following

an infomorphism from one classification to another one.

Formalisation of the Arithmetic Metaphors

The basic idea of how to apply Information Flow theory to

the four basic metaphors of Lakoff and Núñez (2000) is that

each domain (object collection, object construction, measur-

ing stick, motion along a path and arithmetic) is represented

as a classification and the metaphors/analogies between the

domains are infomorphisms.

Information flow (which give the theory its name) captures

regularities in the distributed system (see the First Principle

of Information Flow, Barwise & Seligman, 1997, p 8). So, the

infomorphisms between the four source domains and the core

(arithmetic) capture the regularities that link these domains

to arithmetic, and the arithmetic classification represents the

knowledge of what these domains have in common. (A full

arithmetic classification contains more than these commonali-

ties – think of arithmetic concepts arising by linking metaphors

like the concept of zero –, but for our current purposes it suf-

fices to think of it this way.)

Object Collection

Classification We define a classification CL for the domain

of object collections, cf table 1. The tokens of the object

collection domain are actual physical instances of collections

of objects that are or have been encountered by the cognitive

agent. Formally, we represent them as sets of objects named

collA, collB; : : :

The tokens are classified by the size (cardinality) of the

collection, ie types are sets with a number of distinct elements.

Following Lakoff and Núñez (2000, p 55) we assume an innate

or early developed subitising ability, ie the ability to determine

the cardinality of small object collections of up to three or four

objects. As a convention we write oc1 for the type set with one

object, oc2 for the one with two objects, etc.

The classification relation àCL for object collections relates

those sets for which each object of the token set can be mapped

to exactly one object of the type set, ie no object of the token

set and no object of the type set is left over and each object is

mapped to exactly one element of the other set.

Table 1: The arithmetic is object collection metaphor.

object collection arithmetic

collections of objects of the same size numbers

size of collection number

bigger greater

smaller less

smallest collection the unit (one)

putting collections together addition

taking a smaller collection from a

larger collection

subtraction

Given this classification, we can now assign a type to each

token, eg collA àCL oc2;collB àCL oc1. Figure 3 shows an ex-

ample for an object collection with three objects.

obj1
obj3 obj2

collectionX oc3

Figure 3: Example of the token–type relation for an object

collection with cardinality 3

By proposing this classification we do not want to suggest

that this is the only suitable classification for object collections;

it is simply one that is suited for our goal of linking this

source domain to arithmetic. A classification suitable for other

purposes may be a classification by kind like blocks or balls.

Size The size of an object collection is the cardinality of the

type set. Thus, given a token set collA, a type set ocA with

collA àCL ocA

sizeCL(colA) = SocAS:

Smallest collection The smallest collection (the unit collec-

tion) is the type set with a single object, ie oc1.

Bigger and smaller For comparing two object collections

the type sets are aligned and a one-to-one mapping is estab-

lished between the two type sets for as many elements as

possible. The bigger collection is the one with at least one

unmapped object. The smaller object collection is the other

collection.

Formally, we define it as follows. Given two type sets ocA

and ocB:

biggerCL(ocA;ocB) =

¢
¨̈

¦
¨̈
¤

true; if SocAS A SocBS;

f alse; if SocAS < SocBS:

smallerCL is the inverse.

Although not mentioned by Lakoff and Núñez (2000) in

this context, two object collections are equal (in size) if they

have the same type (or if they have the same cardinality):

equalCL(ocA;ocB) iff ocA = ocB:

Putting collections together Putting separate and disjoint

collections together is the union of token sets:

putTogetherCL(collA;collB) = collA8 collB:

The corresponding type is the type set that has a one-to-one-

mapping between all objects in both sets. We write this as

ocA •CL ocB (where collA àCL ocA and collB àCL ocB), which

is another possible type. Note that because the sets are disjoint

SocA8ocBS = SocAS+ SocBS.

Taking a smaller collection from a larger collection Tak-

ing a smaller set from a larger set5 is the set difference. Thus,

for two object collections collA and collB with collA àCL ocA,

collB àCL ocB and biggerCL(ocB;ocA):

takeSmallerCL(collA;collB) = collA� collB

The corresponding type is ocA XCL ocB (with collA àCL ocA

and collB àCL ocB), which is another possible type.

Object Construction

For the object construction domain we define a classification

CN. In contrast to CL the tokens and types of this classification

are not defined as simple sets but as sets of sets. We name

token sets as consA;consB, etc and type sets as ocnA;ocnB, etc.

Note that in contrast of CL there is no implicit (and incidental)

coding of size in the types of CN as the types can have just as

complex substructures as the tokens, see the examples below.

Table 2: The arithmetic is object construction metaphor.

object construction arithmetic

objects numbers

smallest whole object the unit (one)

size of object size of number

bigger greater

smaller less

constructed object result of arith-

metic operation

whole object a whole number

putting objects together to form

larger objects

addition

taking smaller objects from larger

objects to form other objects

subtraction

Smallest Whole Object A smallest whole object is repre-

sented as a singleton set for token sets, ie a set that contains

one physical object that cannot be deconstructed. The corre-

sponding type set is the set containing the empty set, ie �g�.

5Note that attempting to take a larger set from a smaller set has
no physical correlate. This operation can only be performed in the ab-
stract arithmetic domain, where it leads to the invention (or discovery)
of negative numbers.

Size of Object The size of an object is the cardinality of the

flattened type set. Thus, given a token set consA and a type set

ocnA with consA àCN ocnA

sizeCN(consA) = S f lat(ocnA)S:

A flattened set is obtained by applying the function f lat:

f lat(�A1;A2; : : :�) =

¢
¨̈

¦
¨̈
¤

�A1; f lat(A2; : : :)�; if SA1S = 1;

� f lat(A1); f lat(A2; : : :)�; otherwise:

f lat is defined on sets in general and is not restricted to CN.

Bigger and smaller Analogous to the definition for object

collections, bigger is defined as

biggerCN(ocnA;ocnB) =

¢
¨̈

¦
¨̈
¤

true; if size(ocA) A size(ocB);

f alse; if size(ocA) < size(ocB):

smallerCN is the inverse.

Constructed Object A constructed object is an object that

consist of other objects. Thus, a constructed object is a set that

has other object sets as elements. That is, given sets consA,

consB, . . . the constructed object set is �consA;consB; : : :�.

Whole Object Physical objects are always whole objects.

Putting Objects Together to form Larger Objects

Putting objects together is defined as the union of the sets

of object sets:

putTogetherCN(consA;consB; : : :) = �consA;consB; : : :�:

The corresponding type is ocnA•CN ocnB (with consA àCN cnsA

and consB àCN cnsB), which is another possible type.

For example, given the object sets (oX being a

representation of a physical object) ��o1�;�o2��,

��o3�;��o4�;�o5��� and �o6� the assembled object is

���o1�;�o2��;��o3�;��o4�;�o5���;�o6��.

Taking Smaller Objects from Larger Objects to Form

Other Objects Taking smaller objects from larger objects is

defined as the set difference. More precisely, the result of this

operation is a pair of sets – the difference set and the subtracted

set. Thus, given two sets consA and consB with consB ⊂ consA

takeSmallerCN(�consA;consB�) = (�consA�consB�;consB):

For example, given the object set ��o1�;��o2�;�o3��;�o4��

the object �o4� can be removed by

��o1�;��o2�;�o3��;�o4����o4�

The smaller object taken from the larger object is then �o4�

and the remainder of the larger object is ��o1�;��o2�;�o3���.

The type of this operation is ocnA XCN ocnB (with consA àCN

cnsA and consB àCN cnsB), which is another possible type.

Arithmetic

The classification AR representing arithmetic consists of the

abstract numbers as tokens and concrete instances (uses) of

numbers as types (for example as in There are seven trees).

The smallest number is 1.6

The arithmetic operations are defined as usual.

Metaphor Infomorphisms

With these three classifications, the infomorphisms between

the two classifications representing the source domains (CL

and CN) and the core AR are straightforward.

Infomorphism from Object Collection to Arithmetic

The infomorphism linking the object collection domain to

arithmetic is defined as f � CL� AR. The relation between

types is then f ˆ(ocA) = SocAS, the relation between tokens

f ˇ(num) = collA where num is an arithmetic number and collA
is a representation of the physical object collection that the

number refers to.

The smallest collection is f ˆ(oc1) = 1, and the comparison

relations and operations are defined as follows:

• f ˆ(biggerCL) = A

• f ˆ(smallerCL) = <

• f ˆ(•CL) = +

• f ˆ(XCL) = −

Infomorphism from Object Constructions to Arithmetic

Similar to the definition above, the informorphism g � CN�

AR relates types as gˆ(ob jA) = S f lat(ob jA)S and tokens as

gˇ(num) = consA, where consA represents the object being

referred to by the number and where num àAR ν, consA àCN

cnsA with size(cnsA) = ν. The other properties are defined as:

• gˆ(�g�) = 1

• gˆ(biggerCN) = A

• gˆ(smallerCN) = <

• gˆ(•CN) = +

• gˆ(XCN) = −

Channel

Given these two infomorphisms, the channel C is the set of

these two infomorphisms (C = � f ;g�).

Conclusions and Future Work

We have argued that a formal approach like Information Flow

can be used to great advantage for cognitive modelling. We

provided a formalisation of the basic aspects of two of the

grounding metaphors proposed by Lakoff and Núñez (2000)

that humans use for creating arithmetic. Although this high

6Note that there is no physical correspondence to 0. The absence
of a physical object collection is not a collection. The object con-
structed of no object is not an object (it does not exist). Remember
that historically 0 is a very late invention/discovery, a reaction to
certain needs in arithmetic, cf also Lakoff and Núñez (2000).

level of modelling does not directly address human task per-

formance, it offers important insights into the generalisations

of the different source domains required to invent arithmetic.

We will extend our formalisation (1) to include the other

basic metaphors and the linking metaphors within arithmetic;

(2) by adding further notions from Information Flow to the

formalisation, in particular regular theories and local logics.

With these extensions we will be able not only to represent

the required knowledge but also to model the corresponding

processes.

Acknowledgments

The research reported here was carried out in the Wheelbarrow

project, funded by the EPSRC grant EP/F035594/1.

References

Anderson, J. R. (2007). How can the human mind occur in the

physical universe? New York: Oxford University Press.

Barwise, J., & Seligman, J. (1997). Information flow: The

logic of distributed systems. Cambridge University Press.

Gentner, D. (1983). Structure-mapping: A theoretical frame-

work for analogy. Cognitive Science, 7(2), 155–170.

Gentner, D., & Markman, A. B. (1997). Structure mapping in

analogy and similarity. Am. Psychologist, 52(1), 45–56.

Guhe, M.(2007). Incremental conceptualization for language

production. Mahwah, NJ: Lawrence Erlbaum.

Guhe, M., Pease, A., & Smaill, A. (2009). A cognitive model

of discovering commutativity. In Proceedings of the 31st

Annual Conference of the Cognitive Science Society.

Lakatos, I. (1976). Proofs and refutations: The logic of mathe-

matical discovery. Cambridge: Cambridge University Press.

Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes

from: How the embodied mind brings mathematics into

being. New York: Basic Books.

Lebiere, C. (1998). The dynamics of cognition: An ACT-

R model of cognitive arithmetic. Unpublished doctoral

dissertation, CMU Computer Science Department.

Nersessian, N. J. (2008). Creating scientific concepts. Cam-

bridge: MIT Press.

Ross, L., & Anderson, C. A. (1982). Shortcomings in the attri-

bution process. In D. Kahneman, P. Slovic, & A. Tversky

(Eds.), Judgment under uncertainty: Heuristics and biases

(pp. 129–152). Cambridge University Press.

Salvucci, D. D., & Anderson, J. R. (2001). Integrating ana-

logical mapping and general problem solving: The path-

mapping theory. Cognitive Science, 25(1), 67–110.

Schooler, L. J. (2001). Rational theories of cognition in psy-

chology. In W. Kintsch, N. J. Smelser, & P. B. Baltes (Eds.),

International encyclopedia of the social and behavioral sci-

ences (pp. 12771–12775). Oxford: Pergamon.

Schunn, C. D., & Anderson, J. R. (1998). Scientific discovery.

In J. R. Anderson & C. Lebiere (Eds.), The atomic compo-

nents of thought (pp. 385–427). Mahwah, NJ: Erlbaum.

Stenning, K., Lascarides, A., & Calder, J. (2006). Introduction

to cognition and communication. Cambridge: MIT Press.

