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Abstract 

This paper addresses the use of Hebbian learning principles to 

model in an adaptive manner capabilities to interpret somebody 

else’s emotions. First a non-adaptive neural model for emotion 

reading is described involving (preparatory) mirror neurons and a 

recursive body loop: a converging positive feedback loop based 

on reciprocal causation between mirror neuron activations and  

neuron activations underlying emotions felt. Thus emotion 

reading is modelled taking into account the Simulation Theory 

perspective as known from the literature, involving the own 

emotions in reading somebody else’s emotions. Next the neural 

model is extended to an adaptive neural model based on Hebbian 

learning within which a direct connection between a sensed 

stimulus concerning another person’s body state (e.g., face 

expression) and the emotion recognition state is strengthened. 

 

Introduction 

In the Simulation Theory perspective on emotion reading 

(or Theory of Mind) it is assumed that a person uses the 

facilities involving the own mental states that are 

counterparts of the mental states attributed to another 

person; e.g., (Goldman, 2006). For example, the state of 

feeling pain oneself is used in the process to determine 

whether the other person has pain. More and more 

neurological evidence supports this perspective, in 

particular the recent discovery of mirror neurons that are 

activated both when preparing for an action (including a 

change in body state) and when observing somebody else 

performing a similar action.; e.g., (Rizzolatti, Fogassi, and 

Gallese, 2001; Wohlschlager and Bekkering, 2002; 

Kohler, Keysers, Umilta, Fogassi, Gallese, and Rizzolatti, 

2002; Ferrari, Gallese, Rizzolatti, and Fogassi, 2003; 

Rizzolatti, 2004; Rizzolatti and Craighero, 2004; Iacoboni, 

2008).   

Mirror neurons usually concern neurons involved in 

the preparation of actions or body states. By Damasio 

(1999) such preparation neurons are attributed a crucial 

role in generating and feeling emotional responses. In 

particular, using a ‘body loop’ or ‘as if body loop’, a 

connection between such neurons and the feeling of 

emotions by sensing the own body state is obtained; see 

(Damasio, 1999) or the formalisation presented in (Bosse, 

Jonker and Treur, 2008). Taken together, the existence of 

mirror neurons and Damasio’s theory on feeling emotions 

based on (as if) body loops provides strong neurological 

support for the Simulation Theory perspective on emotion 

reading.  

An extension of this idea was adopted by assuming 

that the (as if) body loop is processed in a recursive 

manner: a positive feedback loop based on reciprocal 

causation between feeling state (with gradually more 

feeling) and body state (with gradually stronger 

expression). This cycle is triggered by the stimulus and 

ends up in an equilibrium for both states. In (Bosse, 

Memon, and Treur, 2008; Memon and Treur, 2008) it was 

shown how a cognitive emotion reading model based on a 

recursive body loop can be obtained based on causal 

modelling using the hybrid modelling language 

LEADSTO (Bosse, Jonker, Meij and Treur, 2007). In 

(Bosse, Memon, and Treur, 2009) it was shown how this 

hybrid causal model can be extended to obtain an adaptive 

cognitive emotion reading model. The adaptation creates a 

shortcut connection from the sensed stimulus (observed 

facial expression) to the imputed emotion, bypassing the 

own emotional states.  

In the current paper a different model is presented for 

similar mind reading phenomena. This time, instead of a 

causal modelling approach, a more neurological point of 

departure is chosen by using a neural network structure 

which is processed in a purely numerical manner using 

generic principles for neural activation and Hebbian 

learning. In this way the obtained model stays more close 

to the neurological source of evidence and inspiration. 

The structure of this paper is as follows. First, the basic 

neural emotion reading model is introduced. Next, it is 

shown how the model can be made adaptive, by adopting a 

Hebbian learning principle that enables the model to 

strengthen the connections between neurons. For both the 

basic model and the adaptive model, some simulation 

results are shown, and different variations are discussed. 

The paper is concluded with a discussion. 

 

A Neural Emotion Reading Model 

In this and the next section the model to generate 

emotional states for a given stimulus is introduced. It 

adopts three important concepts from Damasio (1999)’s 

theory of consciousness: an emotion is defined as ‘an 

(unconscious) neural reaction to a certain stimulus, 

realised by a complex ensemble of neural activations in 



the brain’, a feeling is ‘the (still unconscious) sensing of 

this body state’, and a conscious feeling is what emerges 

when ‘the organism detects that its representation of its 

own body state has been changed by the occurrence of the 

stimulus’ (Damasio, 1999). Moreover, the model adopts 

his idea of a ‘body loop’ and ‘as if body loop’, but 

extends this by making these loops recursive. According 

to the original idea, from a neurological perspective 

emotion generation roughly proceeds according to the 

following causal chain; see (Bosse, Jonker and Treur, 

2008; Damasio, 1999) (in the case of a body loop): 

sensing a stimulus  →   

sensory representation of stimulus  →  

(preparation for)  bodily response  →  

sensing the bodily response  →   

sensory representation of the bodily response  →   

feeling the emotion 

As a variation, an ‘as if body loop’ uses a causal relation 

preparation for  bodily response  →   

sensory representation of the bodily response  
 

as a shortcut in the neurological chain. In the model used 

here an essential addition is that the body loop (or as if 

body loop) is extended to a recursive body loop (or 

recursive as if body loop) by assuming that the 

preparation of the bodily response is also affected by the 

state of feeling the emotion (also called emotional 

feeling):  

feeling the emotion  →  preparation for  bodily response   

as an additional causal relation. Damasio (2004) also 

assumes such recursively used reciprocal causal 

connections: 

 ‘… feelings are not a passive perception or a flash in time, 

especially not in the case of feelings of joy and sorrow. For a 

while after an occasion of such feelings begins – for seconds or 

for minutes – there is a dynamic engagement of the body, almost 

certainly in a repeated fashion, and a subsequent dynamic 

variation of the perception. We perceive a series of transitions. 

We sense an interplay, a give and take.’ (Damasio, 2004, p. 92) 

Within the neural model presented here both the neural 

states for preparation of bodily response and the feeling 

are assigned a level of activation, expressed by a number, 

which is assumed dynamic. The cycle is modelled as a 

positive feedback loop, triggered by the stimulus and 

converging to a certain level of feeling and body state. 

Here in each round of the cycle the next body state has a 

level that is affected by both the level of the stimulus and 

of the emotional feeling state, and the next level of the 

emotional feeling is based on the level of the body state. 

This neural model refers to activation states of (groups 

of) neurons and the body. An overall picture of the 

connection for this model is shown in Figure 1. Here each 

node stands for a group of one or more neurons, or for an 

effector, sensor or body state. The nodes can be interpreted 

as shown in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1:  Neural network structure of the model with body loop  

In the neural activation state of RN(s, f), the 

experienced emotion f is related to the stimulus s, which 

triggers the emotion generation process. Note that the 

more this neuron is strongly related to SRN(s), the more it 

may be considered to represent a level of awareness of 

what causes the feeling f; this may be related to what by 

Damasio (1999) is called a state of conscious feeling. This 

state that relates an emotion felt f to any triggering 

stimulus s can play an important role in the conscious 

attribution of the feeling to any stimulus s. 

 
node 

nr 

denoted by description 

0 s stimulus; for example, another person’s body 

state b'  

1 SS(s) sensor state for stimulus s 

2 SRN(s) sensory representation neuron for s 

3 PN(b) preparation neuron for own body state  b 

4 ES(b) effector state for own body state b 

5 BS(b) own body state b 

6 SS(b) sensor state for own body state b 

7 SRN(b) sensory representation neuron for own body 

state b 

8 FN(f) neuron for feeling state f 

9 RN(s, f) neuron representing that s induces feeling f 
 

Table 1  Overview of the nodes involved 
 

According to the Simulation Theory perspective a 

neural model for emotion reading should essentially be 

based on a neural model to generate the own emotions as 

induced by any stimulus s. Indeed, the neural model 

introduced above can be specialised in a quite 

straightforward manner to enable emotion reading. The 

main step is that the stimulus s that triggers the emotional 

process, which until now was left open, is instantiated with 

the body state b' of another person, for example a facial 

expression of another person. Indeed, more and more 

evidence is available that (already from an age of 1 hour), 

as an example of the functioning of the mirror neuron 

system (Rizzolatti, 2005), sensing somebody else’s facial 

expression leads (within about 300 milliseconds) to 

preparing for and showing the same facial expression 

    SRN(s) PN(b) 

    FN(f) 

effector  

state for b  

  RN(s, f)       

sensor  

state for s 

    SRN(b) 
sensor  

state for b 
 

own body 

state b  



(Goldman and Sripada, 2004, pp. 129-130). Within the 

network in Figure 1 this leads (via activation of the 

sensory representation state SRN(b')) to activation of the 

preparation state PN(b) where b is the own body state 

corresponding to the other person’s body state b'. This 

pattern shows how this preparation state PN(b) functions 

as a mirror neuron. Next, via the recursive body loop 

gradually higher and higher activation levels of the own 

feeling state f are generated. 

To formally specify the neural model, the mathematical 

concepts listed in Table 2 are used. 

 
concept description 

N set of node numbers (as listed in Table 1); variables indicating 

elements of this set are i, j, k 

N' N\{0} the set of node numbers except the node for the stimulus s 

wij(t) strength of the connection from node i to node j at time t; this is 

taken 0 when no connection exists or when i=j 

yi(t) activation level of node i at time t 

neti(t) net input to node i at time t 

g function to determine activation level from net input  

γ change rate for activation level 

η learning rate for weights 

 

Table 2  Mathematical concepts used 
 

The function g can take different forms, varying from the 

identity function g(v) = v for the linear case, to a 

discontinuous threshold (indicated by β) step function with 

g(v) = 0 for v<β and g(v) = 1 for v≥β, or a continuous 

logistic threshold function based on 1/(1+exp(-α(v-β)) 

with steepness α. For the connections between nodes of 

which at least one is not a neuron the connections have 

been made simple: weights 1 and g the identity function; 

so w12 = w34 = w45 = w56 = w67  = 1 

The activation levels are determined for step size ∆t for 

all i ∈ N'  as follows: 
 

 neti(t) = Σj∈N  wji(t) yj(t) 

  ∆yi(t) = γ (g(neti(t)) - yi(t)) ∆t 
 

Note that for step size ∆t = 1 and change rate γ = 1, the 

latter difference equation can be rewritten to 
 

 yi(t+1) = g(neti(t)) 
 

which is a wellknown formula in the literature addressing 

simulation with neural models.  

The model description in the form of a system of 

differential equations can be used for an analysis of 

equilibria that can occur. Here the external stimulus level 

for s is assumed constant. Moreover, it is assumed that γ > 

0. In general putting ∆yi(t) = 0 provides the following set 

of equations for i ∈ N':  
 

 yi = g(Σj∈N  wji yj) 
 

For the given network structure these equilibrium 

equations are: 
 

 y1 = g(w01 y0) 

 y2 = g(w12 y1) 

 y4 = g(w34 y3) 

 y5 = g(w45 y4) 

 y6 = g(w56 y5) 

 y7 = g(w67 y6) 

 y8 = g(w78 y7) 

 y3 = g(w23 y2 + w83 y8) 

 y9 = g(w29 y2 + w89 y8) 
 

Taking into account that connections between nodes 

among which at least one is not a neuron have weight 1 

and g the identity function, it follows that the equilibrium 

equations are: 
 

 y2 = y1 = y0 

 y7 = y6 = y5 = y4 = y3 

 y8 = g(w78 y7) 

 y3 = g(w23 y2 + w83 y8) 

 y9 = g(w29 y2 + w89 y8) 

 

Example Simulations: Non-Adaptive Case 

The numerical software environment Matlab has been 

used to obtain simulation traces for the model described 

above. An example simulation trace that results from this 

model with the function g the identity function is shown 

in Figure 2. Here, time is on the horizontal axis, and the 

activation levels of three of the neurons SRN(s), FN(f), 

and RN(s,f) are shown on the vertical axis. As shown in 

this picture, the sensory representation of a certain 

stimulus s quickly results in a feeling state f, and a 

representation that s induces f. When the stimulus s is not 

present anymore, the activations of FN(f) and RN(s, f) 

quickly decrease to 0. The weight factors taken are: w23 = 

w83 = w89 = 0.1,  w78 = 0.5 and w29 = 0. Moreover, γ = 1, and 

a logistic threshold function was used with threshold 0.1 

and steepness 40. 

 
Figure 2:  Example simulation for non-adaptive emotion reading  

 

For the values taken in the simulation above, the 

equilibrium equations are:  
 

 y2 = y1 = y0 

 y7 = y6 = y5 = y4 = y3 

 y8 = g(0.5 y7) 

 y3 = g(0.1 y2 + 0.1 y8) 

 y9 = g(0.1y8) 
 



As the threshold was taken 0.1 it follows from the 

equations that for stimulus level y0 = 0 all values for yi are 

(almost) 0, and for stimulus level y0 = 1 that all values for 

yi are 1, which is also shown by the simulation in Figure 2. 
 

An Adaptive Neural Emotion Reading Model 

As a next step, the neural model for emotion reading is 

extended by a facility to strengthen the direct connection 

between the neuron SRN(s) for the sensory representation 

of the stimulus (the other person’s face expression) and the 

neuron RN(s, f). A strengthening of this connection over 

time creates a different emotion reading process that in 

principle can bypass the generation of the own feeling. 

The learning principle to achieve such an adaptation 

process is based on the Hebbian learning principle that 

connected neurons that are frequently activated 

simultaneously strengthen their connecting synapse e.g., 

(Hebb, 1949; Bi and Poo, 2001; Gerstner and Kistler, 

2002; Wasserman, 1989). The change in strength for the 

connection wij between nodes i, j ∈ N is determined (for 

step size ∆t) as follows: 
 

   ∆wij(t) = η yi(t)yj(t)(1 - wij(t)) ∆t 
 

Here η is the learning rate. Note that this Hebbian learning 

rule is applied only to those pairs of nodes i, j ∈ N for 

which a connection already exists. 

Also for the adaptive case equilibrium equations can 

be found. Here it is assumed that γ, η > 0. In general 

putting both ∆yi(t) = 0 and ∆wij(t) = 0  provides the 

following set of equations for i, j ∈ N':  
 

 yi = g(Σj∈N  wji yj) 

 yiyj(1 - wij) = 0 
 

From the latter set of equations (second line) it 

immediately follows that for any pair i, j ∈ N' it holds: 
 

 either    yi = 0 

 or    yj = 0 

 or    wij = 1 
 

In particular, when for an equilibrium state both yi and yj 

are nonzero, then wij = 1. 

 

Example Simulations: Adaptive Case 

Based on the neural model for adaptive emotion reading 

obtained in this way, a number of simulations have been 

performed; for an example, see Figure 3. As seen in this 

figure, the strength of the connection between SRN(s) and 

RN(s, f) (indicated by b which is in fact w29) is initially 0 

(i.e., initially, when observing the other person’s face, the 

person does not impute feeling to this). However, during 

an adaptation phase of two trials, the connection strength 

goes up as soon as the person imputes feeling f to the 

target stimulus s (the observation of the other person’s 

face), in accordance with the temporal relationship 

described above.  

 

 

Figure 3:  Example simulation for adaptive emotion reading 

Note that, as in Figure 2, the activation values of other 

neurons gradually increase as the person observes the 

stimulus, following the recursive feedback loop discussed. 

These values sharply decrease as the person stops 

observing the stimulus as shown in Figure 3, e.g. from 

time point 40 to 76, from time point 112 to 148, and so on. 

Note that at these time points the strength of the 

connection between SRN(s) and RN(s, f) (indicated by b) 

remains stable. After the adaptation phase, and with the 

imputation sensitivity at high, the person imputes feeling f 

to the target stimulus directly after occurrence of the 

sensory representation of the stimulus, as shown in the 

third trial in Figure 3. Note here that even though the 

person has adapted to impute feeling f to the target directly 

after the stimulus, the other state property values continue 

to increase in the third trial as the person receives the 

stimulus; this is because the adaptation phase creates a 

connection between the sensory representation of the 

stimulus and emotion imputation without eliminating the 

recursive feedback loop altogether. Note that when a 

constant stimulus level 1 is taken, an equilibrium state is 

reached in which b = 1, and all yi are 1. 

The learning rate η used in the simulation shown in 

Figure 3 is 0.02. In Figure 4 a similar simulation is shown 

for a lower learning rate: 0.005. 

 

Figure 4:  Adaptive emotion reading with lower learning rate 



Discussion 

In recent years, an increasing amount of neurological 

evidence is found that supports the ‘Simulation Theory’ 

perspective on emotion reading, e.g., (Rizzolatti, Fogassi, 

and Gallese, 2001; Wohlschlager and Bekkering, 2002; 

Kohler, Keysers, Umilta, Fogassi, Gallese, and Rizzolatti, 

2002; Ferrari, Gallese, Rizzolatti, and Fogassi, 2003; 

Rizzolatti, 2004; Rizzolatti and Craighero, 2004; Iacoboni, 

2005, 2008). That is, in order to recognise emotions of 

other persons, humans exploit observations of these other 

persons’ body states as well as counterparts within their 

own body. The current paper introduces a numerical 

model to simulate this process. This model is based on the 

notions of (preparatory) mirror neurons and a recursive 

body loop (cf. Damasio, 1999, 2004): a converging 

positive feedback loop based on reciprocal causation 

between mirror neuron activations and neuron activations 

underlying emotions felt. In addition, this model was 

extended to an adaptive neural model based on Hebbian 

learning, where neurons that are frequently activated 

simultaneously strengthen their connecting synapse (cf. 

Hebb, 1949; Bi and Poo, 2001; Gerstner and Kistler, 2002; 

Wasserman, 1989). Based on this adaptive model, a direct 

connection between a sensed stimulus (for example, 

another person’s face expression) and the emotion 

recognition can be strengthened. 

The simulation model has been implemented in 

Matlab, in a generic manner. That is, the model basically 

consists of only 2 types of rules: one for propagation of 

activation levels between connected neurons, and one for 

strengthening of connections between neurons that are 

active simultaneously. These rules are then applied to all 

nodes in the network. To perform a particular simulation, 

only the initial activation levels and connection strengths 

have to be specified. Both for the non-adaptive and for the 

adaptive model, a number of simulations have been 

performed. These simulations indicated that the model is 

indeed sufficiently generic to simulate various patterns of 

adaptive emotion reading. An interesting question for 

further research is to what extent the model can simulate 

other neural processes as well. Another challenge for the 

future is to extend the model such that it can cope with 

multiple qualitatively different emotional stimuli (e.g., 

related to joy, anger, or fear), and their interaction.  
Validation of the presented model is not trivial. At 

least, this paper has indicated that it is possible to integrate 

Damasio’s idea of body loop with the notion of mirror 

neurons and Hebbian learning, and that the resulting 

patterns are very plausible according to the literature. In 

this sense the model has been validated positively. 

However, this is a relative validation, only with respect to 

the literature that forms the basis of the model. A more 

extensive empirical evaluation is left for future work. 

By other approaches found in the literature, a specific 

emotion recognition process is often modelled in the form 

of a prespecified classification process of facial 

expressions in terms of a set of possible emotions; see, for 

example, (Cohen, Garg, and Huang, 2000; Malle, Moses, 

and Baldwin, 2001; Pantic and Rothkrantz, 1997, 2000). 

Although a model based on such a classification procedure 

is able to perform emotion recognition, the imputed 

emotions have no relationship to a person’s own emotions. 

The neural model for emotion reading presented in the 

current paper uses a person’s own feelings in the emotion 

reading process as also claimed by the Simulation Theory 

perspective, e.g., (Goldman, 2006; Goldman and Sripada, 

2004). Besides, in the neural model presented here a direct 

classification is learnt by the adaptivity model based on a 

Hebbian learning rule. A remarkable issue here is that 

such a direct connection is faster (it may take place within 

hundreds of milliseconds) than a connection via a body 

loop (which usually takes seconds). This time difference 

implies that first the emotion is recognised without feeling 

the corresponding own emotion, but within seconds the 

corresponding own emotion is in a sense added to the 

recognition. When an as if body loop is used instead of a 

body loop, the time difference will be smaller, but still 

present. An interesting question is whether it is possible to 

design experiments that show this time difference as 

predicted by the neural model.  

Some other computational models related to mirror 

neurons are available in literature; for instance: a genetic 

algorithm model which develops networks for imitation 

while yielding mirror neurons as a byproduct of the 

evolutionary process (Borenstein and Ruppin, 2005); the 

mirror neuron system (MNS) model that can learn to 

‘mirror’ via self-observation of grasp actions (Oztop and 

Arbib, 2002); the mental state inference (MSI) model that 

builds on the forward model hypothesis of mirror neurons 

(Oztop, Wolpert, and Kawato, 2005), etc. A 

comprehensive review of these computational studies can 

be found in (Oztop, Kawato, and Arbib, 2006). All of the 

above listed computational models and many others 

available in the literature are targeted to imitation, whereas 

the neural model presented here specifically targets to 

interpret somebody else’s emotions. 

The approach adopted in the current paper has drawn 

some inspiration from the four models sketched (but not 

formalised) in (Goldman, 2006, pp. 124-132). The 

recursive body loop (or as if body loop) introduced here 

addresses the problems of model 1, as it can be viewed as 

an efficient and converging way of generating and testing 

hypotheses for the emotional states. Moreover, it solves 

the problems of models 2 and 3, as the causal chain from 

facial expression to emotional state is not a reverse 

simulation, but just the causal chain via the body state 

which is used for generating the own emotional feelings as 

well. Finally, compared to model 4, the models put 

forward here can be viewed as an efficient manner to 

obtain a mirroring process between the emotional state of 

the other person on the own emotional state, based on the 

machinery available for the own emotional states. 
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