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Abstract 

Prior work has shown that the interleaving of perceptual, 
motor, and cognitive components results in a considerable 
speedup in the performance of a simple decision making task 
(Veksler, Gray, & Schoelles, 2007). The current modeling 
effort conducted using the ACT-R cognitive architecture 
(Anderson & Lebiere, 1998) is intended to demonstrate how 
this interleaving might be learned, and how decision-making 
in this task might take place. The model learns the 
interleaving and exhibits a speedup in performance similar to 
that of human participants (RMSE=4.3sec). Furthermore, the 
model matches human accuracy by using a simple heuristic to 
make decisions.  

Introduction 
Previous work has shown that milliseconds matter in 
understanding human performance (Gray & Boehm-Davis, 
2000; Veksler et al., 2007). This millisecond improvement 
has been shown to occur in a table-based, decision-making 
task (Lohse & Johnson, 1996) without resorting to changes 
in higher-order decision-making strategies. Furthermore, 
exploratory modeling revealed the necessity to focus on the 
millisecond level considerations in skilled task performance. 
It was found that an important aspect of the model in 
mirroring the speedup in performance observed in human 
participants was the interleaving of cognitive, perceptual, 
and motor operations. An additional speedup was observed 
in human data as participants minimized the distance they 
moved the mouse while interacting with the interface.  

Our current modeling effort seeks to extend this by  (1) 
including a learning component to the model whereby the 
model learns the interleaving and distance minimization on 
its own, and (2) implementing a higher order strategy to 
match human accuracy performance.  

The Task 
The experimental environment used in this research was 
designed to study and model how information access 
influences the way in which a decision is made – 
specifically what information is considered and how it is 
integrated given the environmental constraints and 
accessibility of information. In particular, we were 
interested in whether or not people would take advantage of 
particular regularities in the environment in order to 
maximize their score. We hypothesized that this exploitation 
would occur more when the cost of information acquisition 
was higher (longer lockout durations).  

We used a simple table task (see Figure 1) similar to the 
one used in a previous study (Veksler et al., 2007) with a 
few important alterations. The current task environment 
contained five alternatives (arranged in rows) with a value 
on each of five attributes (arrayed in columns). In addition, 

each attribute had an assigned probability value which 
indicated that attribute’s relative importance to the 
alternative’s total score. However, the values in the grid 
were not visible to the participant and they could only 
uncover one value at a time. The task environment also 
allowed us to manipulate the duration of the lockout 
between a participant selecting a cell in the grid and the 
value of that cell appearing on the screen, so as to allow us 
to determine the cognitive and perceptual-motor tradeoffs 
involved. 

In the previous study we conducted in the lab, we 
manipulated how information was accessed – whether 
participants could see an entire row, an entire column, or 
only one cell at a time. In the current study, we instead 
wanted to explore what particular pieces of information 
people would gravitate towards given a different cost of 
exploring the grid – how long they had to wait for 
information to appear. We hypothesized that the cost of 
information acquisition would influence not only the 
exploration of the task environment but also the accuracy of 
the decisions. 

Another important change from the original study, is that 
we went back to the original decision-making table task and 
implemented different ‘gambles,’ composed of various sets 
of probability values for the attributes, in order to see how 
they would affect performance (Payne, Bettman, & Johnson, 
1988) since that work indicated that the probability 
landscape of the task influenced the strategies people used 
to complete the task. 

Method 
We used a traditional decision-making table task for the 
study.  

Participants 
A total of 75 undergraduates (22 females and 53 males) 
from Rensselaer Polytechnic Institute participated in the 
study. The average age was 19.21 years (SD = 2.05). 
Students received extra credit for their participation. 

Design 
There was one between-subjects independent variable of 
lockout duration with 3 levels. The levels varied the 
duration of the lockout prior to a value appearing on the 
screen when a participant clicked on a cell. The three 
lockouts were 0s (0-lock), 2s (2-lock), and 4s (4-lock). 
However, for purposes of the models we only focused on 
the 0-lock condition. There was a within-subject 
independent variable of gamble type with 4 levels. The 
gamble types are listed in Table 1. Each gamble type 
consisted of 5 column (outcome) probabilities that were 
randomized on each trial within a block of 10 trials. The 



dispersion of each gamble type refers to the degree to which 
one of the column probabilities ‘dominates’ the others. For 
example, Gamble Type 0 has one column probability of .6, 
which is significantly greater than any of the other column 
probabilities. Gamble Type 0 therefore has a higher 
dispersion value than any of the other gambles since cell 
values in the column containing a probability of .6 would 
contribute more to the final value of an alternative (row) as 
compared to any other columns. The order of the gambles 
was randomized within each epoch of 40 trials (10 
consecutive trials in each block contain the same gamble 
type). There were two epochs in the study resulting in 80 
trials. 

Table 1 : Gamble types used in the study. Column 
probabilities are randomized from trial to trial within a 
block of 10 of a particular gamble type. The dispersion 
value is the standard deviation of the 5 probabilities 
comprising the gamble. 

Gamble Type Column 
Probabilities 

Dispersion 

0 .6,.1,.1,.1,.1 .22 
1 .4,.3,.1,.1,.1 .14 
2 .3,.2,.2,.2,.1 .07 
3 .2,.2,.2,.2,.2 0 

 

Materials 
The experiment was presented using a computer running 
Mac OS X on a 17” flat-panel LCD monitor set to 
1024x768 resolution. The software used for the experiment 
was written in LispWorks 5.0. Each trial consisted of a 
blank grid being presented to participants (Figure 1). 

Along the top of the grid were listed the corresponding 
column probabilities for that column. The alternatives to 
choose among were the rows in the grid and participants had 
to click on the radio button to the left of the alternative to 
make their choice. Each cell in the grid could be uncovered 
by clicking on it. Once a cell was clicked, any cell clicked 
prior to the current one would be covered up. Therefore, 
only one cell value was visible at any given time. Since we 
found that in our original study, the task was easier for the 
participants than we originally anticipated, in order to make 
the current version a bit more difficult, the cell values were 
randomly selected from the range 11 to 50 rather than being 
one of 0, 2 or 4. 

Procedure 
Each participant was run separately. Participants were asked 
to turn off their cell phones for the duration of the study. 
After signing informed consent forms and going through the 
instructions on how to do the task, each participant 
completed 80 decision-making trials. These were broken 
down into blocks of 10 and each block of 10 had one of the 
4 gamble types. Participants were instructed to choose the 
alternative (row) that had the highest weighted summed 
value. Specifically, the expected value of any given 
alternative can be calculated by: 

€ 

EV(altj ) = pi
i=1

5

∑ vj i  

p: outcome (column) probability in column i 
v: cell value of cell in row j and column i 
 

 

Figure 1: Task Environment 

 
The reward given for each trial was the ratio of the 

alternative chosen by the participant compared to the best 
alternative’s expected value. Therefore, if the participant 
chose the best alternative they received a reward of 100 
points, if the next best alternative (and its ratio to the best 
was 98) then they would receive 98 points. 

Participants were given feedback on their score after each 
trial, along with how long they spent on the trial and how 
many cells they uncovered. At the end of a block of trials 
they were given feedback on their average score for that 
block. At the end of each epoch they were given feedback 
on the average score over the 40 trials. 

Results 
Several participants had to be excluded from the analysis 
due to software malfunction. Consequently, only data from 
58 participants (16 females and 42 males) was used for the 
analysis, 20 participants in the 0-lock condition, 19 in the 2-
lock and 19 in the 4-lock. However, it should be noted that 
the current modeling work only addresses the 0-lock 
condition of this study. Future work will also incorporate 
the other conditions. 

Accuracy 
A 4x3 repeated measures ANOVA on the effects of lockout 
and gamble type on average accuracy over 80 trials was 
conducted. The repeated variable was gamble type. There 
was not a significant gamble*lockout interaction, F(6, 165) 
= 1.11, p = 0.358. There was a significant main effect of 



gamble type, F(3, 165) = 62.2, p < 0.001. There was also a 
significant main effect of lockout, F(2, 55) = 6.87, p < .01. 
Figure 2 illustrates the trends in accuracy across the four 
gamble types with respect to the lockout condition. 

There was a significant linear trend, F(1, 55) = 179.6, p < 
.01, ω = .46, indicating that as the dispersion of the gambles 
decreased, average score increased. Post-hoc tests revealed 
significant differences between 0-lock and 4-lock 
conditions, with a mean difference of 3.28, p < .01. 

These results indicate that participants in longer lockouts 
had on average less accurate choices and that accuracy was 
worse for gambles that had more ‘dominating’ probability 
columns. 

 
Figure 2: Average Accuracy across Gambles and 
Lockout Conditions. Error bars are standard error. 

Duration of Trial 
A 8x3 repeated measures ANOVA was conducted on the 
effects of lockout and block on how long cell values 
appeared on the screen. The repeated variable was block 
number. There was not a significant block*lockout 
interaction, F(5.7, 156.66) = 2.07, p = 0.06. There was a 
main effect of block, F(2.85, 156.66) = 25.41, p < 0.01. 
There was also a significant main effect of lockout, F(2, 55) 
= 11.94, p < .01. Figure 3 illustrates the trends in average 
trial duration. Of note here is that there is a significant 
speedup over the course of the study, in all of the 
conditions. 

Location of Cell Clicks 
In order to better understand the strategies people were 
using to do the task, we looked at which cells participants 
tended to uncover. In the previous study (Veksler et al., 
2007), we found that when given the opportunity to view 
values by rows vs. by columns, participants chose to check 
cell values within a row before transitioning to the next row, 
rather than clicking consecutive cells within a column. We 
subjected the data of the 0-lock group from the current study 
to the same analysis. We examined the percent of cell clicks 
that were either on two consecutive cells in a row or in a 
column (henceforth referred to as cell transitions). We found 
that about twice as many cell transitions occurred within a 
row rather than within a column (Figure 4).  

A paired sample t-test revealed a significant difference 
between the percent of cell transitions within a row (M = 
.59, SE = .04) versus within a column (M = .29, SE = .04), 
t(19) = 3.96, p < .001. This suggests that people tended to 
use a by-row strategy of evaluating alternatives rather than 
focusing on the columns and our current modeling effort 
reflects this strategy as well. 

We were also interested in whether participants tended to 
consider the probability values assigned to the columns in 
their decision making process. In particular, we 
hypothesized (and previous work by Payne et. al. has 
shown) that gambles that had higher dispersion values 
should have more cells uncovered containing the higher 
probability columns. For the sake of brevity, our findings 
were that there was not a significant difference between the 
percent of cells participants clicked in the different 
probability columns as compared to what would be expected 
by chance.  

We also hypothesized that cells in the higher probability 
columns would be uncovered earlier in the trial rather than 
later. However, we found that although there was a 
considerable bias toward checking grid values starting at the 

 
Figure 3: Average duration of trial by block of 10 trials. 
Error bars are standard error. 

 
Figure 4: Percent of cell click transitions occurring 
within a row versus within a column. Error bars are 
standard error. 



top row and moving down (average first click on top row = 
1.07, average first click on bottom row = 12.08) and a bias 
toward checking cells in the left hand columns first (left 
column = 5.02, right column = 8.7), there was not a 
significant bias toward checking higher probability columns 
first.  

The Model 
To model human performance on this task, we used the 
ACT-R cognitive architecture (Anderson et al., 2004). ACT-
R is a modularized production system with a subsymbolic 
memory module. It has visual and motor modules to embed 
it in the task environment. It also has declarative memory 
and a procedural module. In addition, it has imaginal and 
goal buffers to store its working memory and goal chunks, 
respectively. Thus, it serves as a good framework to model 
human performance on this simple table task. 

The current modeling work combined the static models of 
previous modeling work (Veksler et al., 2007), to 
demonstrate the learning component in order to fit human 
data on the task. Furthermore, whereas the previous 
modeling effort was more concerned with the speed of the 
interactive routines, the current model also attempts to 
reproduce accuracy. 

The structure of the current model is similar to that of the 
previous models and is briefly described here. There are 
roughly four components to the model: switching between 
alternatives, moving through the cell values within an 
alternative, comparing the current alternative’s value to the 
best so far, and answering. Figure 5 illustrates the flow of 
the model and the various productions involved. There are 
two important changes from the previous models (Veksler et 
al., 2007) to the current model. The first is the introduction 
of two sets of competing productions intended to produce a 
learning effect in the model. The second is the change in 
strategy implemented by the model to complete the task. We 
will address each of these important changes in turn.  

Competing Productions – Learning Speedup 
In matching trial duration of the human data, we 
implemented two sets of competing productions intended to 
demonstrate the speedup in performance. 

The first two productions that compete occur in the 
“Switching Between Alternatives” part of the model. As per 
the previous modeling effort, we found that human 
participants initially clicked on cells in a left to right fashion 
whereas later they alternated the direction depending on 
their ending position in a given row. We thus incorporated 
this alternating behavior into the model thereby decreasing 
the distance the mouse had to move when a new alternative 
was encountered. Since move-mouse execution time in 
ACT-R is closely related to the distance that the mouse must 
move, as per Fitts’ Law (Fitts, 1954; MacKenzie, 1992), this 
feature allowed the model to transition faster between 
alternatives (about 900ms faster over the course of the trial). 
The two competing productions ‘change-row l->r’ vs. 

 
Figure 5: Schematic of the Model. Dashed lines indicate 
competing productions. Productions in green propagate 
a reward. Productions in red are competing 



 
Figure 6: Average trial duration comparison between 
model and human data. Error bars are standard error. 

‘move down’ are the two types of transitions that we noticed 
in our human data. Initially the utility of the ‘change-row l-
>r’ production is considerably greater than the ‘move-down’ 
production, however, the model quickly learns the greater 
utility of choosing to move down to the next row rather than 
always resorting to reading the cell values left->right. 

The second set of productions that compete occurs in the 
“Moving Through Cells Within an Alternative” part of the 
model. Again, as per our previous modeling effort, we 
noticed that a considerable speedup in performance could be 
attained by having the model interleave cognitive, 
perceptual, and motor components (Veksler et al., 2007). 
The two competing productions are ‘choose-state’ and 
‘choose-prep.’ The productions following the ‘choose state’ 
production all have no interleaving of the perceptual-motor-
cognitive components whereas the productions following 
the ‘choose-prep’ production do include all the interleaving 
as described in previous work, and as can be seen in Figure 
5, comprise half as many productions.  
 

ACT-R uses a reinforcement learning mechanism for 
updating production utilities and is based on the amount of 
reward and time since the production fired that the reward 
has been triggered as well as a noise parameter. The utility 
of a production i at time n is defined by the equation 
(Bothell, 2004): 
 

€ 

Ui(n) =Ui(n −1) +α[Ri(n) −Ui(n −1)]  
 
α is learning rate (set to .2)  
Ui(0) is set to 1000 for ‘choose state’ and 1 for ‘choose 
prep’ 
Ri(n) is the effective reward given to production i at time n 
calculated by subtracting the reward at time n minus the 
time since production i was selected 
 

In order to even the playing field, in all cases the same 
amount of reward is triggered by the rewarding production 
(in this case we used a reward of 1). However, based on the 
current model’s competing productions, it turns out that the 
major factor influencing how much reward each of the 
competing productions receives (and thereby alters its 

utility) is the time since the competing production fired 
compared to the reward production. The average difference 
between how long this interval was for ‘change-row l->r’ 
vs. ‘move down’ is 85ms. The average difference between 
how long this interval was for ‘choose-state’ vs. ‘choose-
prep’ is 471ms. Over the course of the 80 trials, the model 
quickly learns the higher utility of using the ‘move down’ 
and ‘choose prep’ productions.  

Figure 6 illustrates the average trial duration for both 
human and model data, which is a direct result of which of 
the competing productions are selected during a particular 
trial. Qualitatively, there is a learning curve for both humans 
and the model over the course of the first few trials, RMSE 
= 4.35s and the correlation coefficient is .21. The low level 
analysis of the time it takes both the model and the human 
participants to transition between consecutive cells in the 
grid indicates similar trends, RMSE = 131.74ms and the 
correlation coefficient is 0.28. Past work has addressed this 
low level analysis and for brevity only the fit is mentioned 
here (Veksler et al., 2007). Future work will need to address 
how to account for the remainder of the speedup seen in 
human data, perhaps as strategy shifts come into play later 
during the course of the experiment. 

Model’s Strategy – Accuracy Matching 
The model just described was also outfitted with a simple 
heuristic in order to match human accuracy on the task. The 
strategy change that we implemented had to do with our 
analysis of cell clicks in the human data and the current task 
environment’s setup. In particular, since we no longer had 
easy values in the cells of the grid, computing the normative 
value of an alternative is much more difficult than in our 
original task. Instead, given our human data analysis and 
how quickly participants were transitioning between cells in 
the grid, we suspected that rather than multiplying out the 
values and probabilities and summing these across the 
alternative, our participants were using a simpler heuristic to 
determine the best alternative.  

This heuristic strategy was implemented in the model 
whereby as the model uncovered cell values, it simply kept 
a count in its imaginal buffer as to the number of cells in a 
particular row whose values exceeded some predetermined 
threshold value. Thus, rather than doing any sort of 
computation per se, the model was merely keeping count. At 
the end of a trial, the choice the model made was based on 
the alternative that it found to have the most cells above a 
threshold. If there were ties among alternatives, the more 
recent alternative looked at was chosen. 

The implementation of this strategy also led to an 
important consideration – where to place the threshold. We 
explored the threshold parameter space in closed form to 
determine which threshold resulted in the best fit to human 
accuracy data. The procedure used is described below. 
Threshold Consideration 
A closed form model of the threshold parameter was 
developed to explore the model’s accuracy given one of 35 
threshold values (15 to 49). At first, 24 random 80-trial 



stimuli were used and run through each of the 35 threshold 
values and it was determined that a threshold value of 40 
provided the best fit to average human performance, RMSE 
= 0.61. We then took all of the stimuli from the human 
participants (actual trials participants saw) and ran those 
through the model using the threshold of 40. Figure 7 
depicts the fit of the model with a threshold of 40 to human 
data. 

A 2x4 repeated measures ANOVA was conducted to 
compare human and model accuracy (type) with the 
repeated measure being gamble. There was not a significant 
gamble*type interaction, F(3, 151) = 1.16, p = 0.33. There 
was a significant main effect of gamble, F(3, 151) = 143.65, 
p < 0.001. There was not a significant main effect of type, 
F(1, 151) = 0.08, p = 0.78.  

This analysis indicates that there was not a significant 
difference between human and model accuracy across the 4 
gamble types. However, there was a significant difference 
between the gambles for both humans and the model. 
 

 
Figure 7: Accuracy comparison of model with threshold 
40 across all 80 trials of human participant's stimuli. 
Error bars are standard error. 

Conclusions 
The current modeling work had a twofold purpose. The first 
was to demonstrate that the model could learn the cognitive, 
perceptual, motor interleaving resulting in the speedup in 
performance shown in previous work. The second was to 
implement a decision-making strategy that human 
participants most likely utilized in order to do the task.  

Given the human data collected from a study of a 
decision-making table task, we found accuracy differences 
dependent on the constraints of the task environment (both 
lockout durations and types of gambles used). We also 
found that over the course of the 80 trials, participants 
completed trials considerably faster. The current model also 
completes the trials faster over the course of the task.  

Furthermore, a more rigorous analysis of the human data 
indicated some biases in the way participants interacted with 
the task environment and we have implemented these biases 
in the strategy the model uses to complete the task. Namely, 
the model goes through the grid of cells in a top-down 
manner, and begins with the left-most column in the first 
row that it uncovers. In addition, the lack of a bias to click 

on the higher probability columns and the fact that gambles 
with higher dispersion values also had lower average scores, 
indicates that human participants tended to disregard the 
probability data, at least as far as the 0 second lockout group 
was concerned, and our model did as well. Future work will 
need to address how to reconcile this result with previous 
results of Payne et. al. (1988) in which it was found that 
probabilities played a role in decision strategies. 

Future work will also incorporate the data we have from 
the other two conditions of the study as it relates both to 
strategy selection and timing. We also plan to further 
explore the factors influencing how quickly the model can 
perform the task as it seems human participants are 
nevertheless faster. 
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