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Abstract 
We present an embodied model of gaze-following.  The 
model learns how to follow another’s gaze by using 
cognitively plausible mechanisms.  It matches a classic gaze-
following experiment (Corkum & Moore, 1998) and runs on 
an embodied robotic system. 
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Introduction 
Gaze-following is an important, early component of joint 
visual attention (Scaife & Bruner, 1975; Butterworth & 
Jarrett, 1991).  Joint visual attention is looking at the same 
object as another person.  Some researchers have suggested 
that joint visual attention is strongly related to the ability to 
infer others' mental states (Baron-Cohen, 1995).  More 
recently, researchers have suggested that gaze following 
does not require a representational component (Woodward, 
2003). 

In fact, several researchers have recently built 
computational models to explore the emergence and 
learning of gaze-following.  

Previous models of gaze-following 
One of the challenges confronting models of gaze-following 
is to create an embodied model.  Embodiment is important 
in this domain for a number of reasons.  First, there has 
recently been a movement for embodied models of 
cognition (e.g., Wilson, 2000).  Second, spatial and 
developmental models seem to be particularly amenable to 
embodied cognition.  Third, embodied cognition forces an 
integrative approach across models, theories, and empirical 
results.  Finally, the complexity of the physical world 
provides strong tests for the theory under question.  Each of 
the models of gaze following (including ours) claims they 
have embodied characteristics. There are three existing 
models of the acquisition of gaze-following. 

Nagai, Hosoda, Morita, & Asada (2003) used a neural 
network approach to learn that shifts in the caregiver's head 
pose pointed to a salient and interesting object.  Over time, 
the model (which also runs on a robot) learned to follow the 
gaze of the caregiver to an interesting object. 

Doniec, Sun, & Scassellati (2006) greatly sped up the 
algorithm by using pointing gestures to acquire joint 

attention.  Their algorithm (which also ran on a robot) had 
the robot actively point to the object it thought the caregiver 
was gazing at.  This pointing greatly increased learning rate 
through positive examples.  The fact that infants start to 
make deictic gestures around 10 months of age (Bates, 
Benigni, Bretherton, Camaioni, & Volterra, 1979), which is 
about the same age that gaze-following is acquired (Corkum 
& Moore, 1995; Corkum & Moore, 1998) provides 
empirical evidence that infant gesture may be a component 
of gaze-following.  Beyond this interesting suggestion, 
however, Doniec et al.'s primary contribution is that it is 
able to learn at a much faster rate than previous models. 

Triesch, Teuscher, Deak, & Carlson (2006) also 
developed a model of gaze-following.  Triesch et al.'s model 
monitors the caregiver's direction of gaze and gradually 
learns that the caregiver looks at objects in the environment 
that are interesting or novel to the infant, which is 
rewarding.  Triesch et al. modeled the learning process 
through Temporal-Difference (TD) learning, a biologically 
plausible reinforcement learning algorithm. Triesch et al.'s 
model used a model of habituation to determine when to 
shift attention and learned to follow gaze to determine 
where optimal (most interesting) objects were in the 
environment.  Their model used a simple grid world where 
objects could only exist in a limited number of locations. 

It is a mantra in the modeling community that no model is 
perfect; future models attempt to improve upon past models.  
All three of these models made strong progress toward the 
understanding of gaze-following.  Their biggest weakness, 
however, is that they had significant issues with cognitive 
plausibility.  In order to show cognitive plausibility, we (1) 
use and integrate a variety of cognitively plausible 
mechanisms (e.g., models of human memory, attention, 
etc.), (2) run models using a similar experimental paradigm, 
and (3) match experimental data using those mechanisms 
within the constraints of the experimental paradigm. 

Several criticisms have been leveled against the Nagai et 
al. model. First, that model required an extremely large 
amount of training data; probably too much to be 
cognitively plausible (Doniec et al., 2006). Second, their 
model does not seem to be able to scale up to the more 
representational stage of gaze-following (Butterworth & 
Jarrett, 1991).  Third, their model seems to work for only a 
single caregiver (Doniec et al., 2006). 



Doniec et al.'s model was built in a manner that did not 
emphasize cognitive plausibility; their focus was on 
achieving fast and efficient learning for gaze-following in a 
realistic embodied context. One aspect of their model that 
limits its plausibility as a cognitive developmental account 
is the fact that they used six objects (toys) for joint gaze-
following.  If we assume that their model is approximately a 
10 m. old infant, it is well known that infants at that age can 
not reliably identify objects a caregiver is gazing at if there 
are other objects in the line of sight (Butterworth & Jarrett, 
1991). 

While we agree with many aspects of Triesch et al.’s 
model, several criticisms have also been leveled at it.  Some 
researchers have explicitly questioned the psychological 
plausibility (Moore, 2006).  Specifically, Moore suggested 
that accurately modeling the attentional processes of infants 
during gaze following is a critical component to 
psychological plausibility in gaze-following. Additionally, 
because Triesch et al. used a grid system to simplify the 
training, the need for spatial cognition was greatly reduced. 
Thus, according to critics, a more robust and/or 
psychological representation of space was needed (Doniec 
et al., 2006; Moore, 2006). 

The goal of this project is to show how an embodied 
model of gaze-following can not only perform gaze-
following but also have a higher degree of cognitive 
plausibility by having cognitive attentional mechanisms 
(Doniec et al., 2006; Moore, 2006), a spatial representation 
(Doniec et al., 2006; Moore, 2006), and a match to data.  
While a match to data is not a perfect measure of cognitive 
plausibility (Cassimatis, Bello, & Langley, 2008), it can be 
used to differentiate models.  At the least, if a model can 
show performance and competence as well as a reasonable 
data fit, it is more plausible (and, to us, preferred), than a 
model that does not. 

The data we attempt to match is an experiment by 
Corkum and Moore (1998).   

Method (Corkum & Moore, 1998) 
A complete description of the experiment can be found in 
Corkum & Moore (1998). 

Participants 
63 participants completed the study, 21 participants in each 
of three age groups (6—7, 8—9, and 10—11 month olds). 

Setup and Procedure 
The experiment took place in a cubicle where two toys had 
been placed.  Each toy rested on a turntable on either side of 
the room.  When activated, the toy lit up and the turntable 
rotated.  Both toys were visible to the infant at all times. 

At the beginning of the experiment, each child entered 
into the cubicle and sat on their parent’s lap directly across 
from the experimenter.  The experimenter sat .6 m away.  
The experimenter called the child’s name or tickled the 
child’s tummy to get the infant to look at the experimenter.  
After the child looked at the experimenter, the trial began. 

Each trial consisted of the experimenter looking 90° left 
or right at one of the two toys.  The experimenter gazed at 
the toy for 7 s.  During the trial, the experimenter did not 
vocalize or touch the infant, nor did the experimenter call 
the infant’s name. 

The experiment consisted of three consecutive phases.  In 
the baseline phase, there were four trials where the 
experimenter looked at a toy (two trials to each side).  
During the baseline phase the toy remained inactive (i.e., 
did not light up or turn) in order to assess spontaneous gaze-
following. 

During the shaping phase, there were four trials (two to 
each side), but this time, regardless of the infant’s gaze, the 
toy that was gazed at by the experimenter lit up and rotated. 

During the final testing phase, a maximum of 20 trials (10 
to each side) occurred where the toy was activated only if 
the infant and the experimenter looked at the same toy.  If 
the child successfully followed the experimenter’s gaze 5 
times in a row, the experiment terminated. 

Scoring 
Each head turn was coded as either a target (joint-gaze with 
the experimenter) or a non-target (the wrong toy was gazed 
at) response.  Infant head turns that did not look at a toy 
(e.g., naval-gazing) were not scored. 

Random gaze-following would correspond to 
approximately 50% accuracy.  Accurate gaze-following 
would correspond to an accuracy rate significantly greater 
than 50%, while anti-gaze-following would correspond to 
an accuracy rate significantly less than 50%. 

Results and Discussion 
To maintain clarity and connection with other researchers 
who report accuracy, percentage scores will be reported here 
for both the baseline and the last four test trials instead of 
the reported difference scores. 

As Figure 1 suggests, only 10—11 m infants could 
reliably follow gaze at baseline.  After training, however, 
both 8—9 m and 10—11 m infants could reliably follow 
gaze (there was a slight, non-significant increase in gaze-
following for the 6—7 m infants).  

These results are consistent with other researchers 
(Corkum & Moore, 1995) who have shown that gaze-
following reliably occurs during the end of the first year: 
only 10—11 m infants could reliably follow gaze at 
baseline.  Interestingly, however, 8—9 m infants learned to 
follow gaze in the experimental setting with a modest 
amount of training. 

Corkum and Moore (1998) interpret these data as showing 
that there are several precursors to gaze-following.  First, 
infants must be mature enough to respond to different 
spatial locations; they must have some rudimentary spatial 
ability.  Second, infants must be able to learn that an 
interesting event will occur where the person looks.  They 
further suggest that the adult’s head turn cues the infant’s 
attention in the direction of the turn.  

We next describe the architecture and the task model. 



 
Figure 1: Experimental data from Corkum and Moore 

(1998).  Bars are experimentall data and circles are model 
data.  Error bars are 95% confidence intervals. 

Architecture Description 
ACT-R is a hybrid symbolic/sub-symbolic production-based 
system ( Anderson, 2007). ACT-R consists of a number of 
modules, buffers, and a central pattern matcher. Modules 
contain a relatively specific cognitive faculty associated 
with a specific region of the brain. For each module, there 
are one or more buffers that communicate directly with that 
module as an interface to the rest of ACT-R. At any point in 
time, there may be at most one item in any individual 
buffer; thus, the module’s job is to decide what and when to 
put a symbolic object into a buffer. The pattern matcher uses 
the contents of the buffer to match specific productions. 

ACT-R supports the concept of purely bottom-up 
processing.  Bottom-up or reactive processing occurs when 
there is no goal-directed processing that occurs.  In contrast, 
top-down or goal-directed processing occurs when the goal 
buffer (intentional module) is part of the processing. 

ACT-R interfaces with the outside world through the 
visual module, the aural module, the motor module, and the 
vocal module. Other current modules include the 
intentional, imaginal, temporal and declarative modules. 

We have modified ACT-R by allowing it to perceive the 
physical world by attaching robotic sensors and effectors to 
it; we call our system ACT-R/E (the “E” is for Embodied).  
For ACT-R/E, we have added a new module (spatial) and 
modified the visual, aural and motor modules to work with 
our robot and to use real-world sensor modalities.  We did 
not modify other parts of the architecture itself.  Below we 
discuss the modifications to visual and motor (aural is not 
used in this project) and a brief description of the spatial 
module.  Figure 2 shows a schematic of ACT-R/E. 

Visual 
The Visual Module is used to provide a model with 

information about what can be seen in the current 
environment. ACT-R normally sees information presented 

on a computer monitor.  We modified the original visual 
module to accept input from a video camera. The visual 
module allows access to both the location of an object (the 
“where'” system) and a more detailed representation (the 
“what” system).  Obtaining additional information about an 
object or person requires declarative retrieval(s).  We used a 
3D optical flow model to capture a person’s 3D head pose in 
space and a fiducial tracker for object identification and 
localization.  These systems are described more fully 
elsewhere (Kato, Billinghurst, Poupyrev, Imamoto, & 
Tachibana, 2000; Trafton, Bugajska, Fransen, & Ratwani, 
2008; Fransen, Hebst, Harrison, & Trafton, under review). 

 
Figure 2: Schematic of ACT-R/E 

Motor 
Traditional ACT-R has a virtual motor system that allows 
virtual hand movements (e.g., typing, mouse movements).  
ACT-R/E’s motor module allows commands to be issued 
for navigation and mobility, as well as providing self-
localization knowledge.  In this project, motor is used to 
control the robot’s head, including the eyes and head pose.   

Spatial 
To facilitate acting in space, ACT-R/E utilizes a spatial 

theory called Specialized Egocentrically Coordinated 
Spaces (SECS, pronounced seeks) (Harrison & Schunn, 
2003). SECS is neurologically inspired and based on 3D 
space (Previc, 1998).  SECS provides two egocentric spatial 
modules, which are responsible for the encoding and 
transformation of representations in service of navigation 
(configural) and manipulation (manipulative).  

The configural module provides high fidelity location 
information for attended representations that is 
automatically updated as the model moves through or looks 
around the environment. The configural module represents 
the world as spatial blobs that need to be navigated around, 
above, or below.  These spatial blobs do not have a high 
degree of precision. The manipulative module uses a metric, 
geon-based 3D representation for objects.  The manipulative 
module provides encodings of object geometry and 
orientation, a critical component to the gaze-following 
discussed below. 



Simulator and Robot Description 
Currently, the open-source Stage robot simulator (Collett, 
MacDonald, & Gerkey, 2005) is used to enable data 
collection and to speed-up the model development cycle. 

Our current robot platform is the MDS (Mobile-
Dexterous-Social) Robot (Breazeal, 2009).  The MDS robot 
neck has 18 DoF for the neck and head including eye pitch 
and pan which allows the robot to look at various locations 
in 3D space.  Perceptual inputs include a color video camera 
and a SR3000 camera to provide depth information.  For the 
current project, the MDS head can move its eyes and head 
to look at various locations in 3D space. 

Model Description 
An ACT-R/E model was developed that simulates the 
development of gaze-following. 

High Level Description of the gaze-following model 
There are five model components that enable gaze-
following:  the reactive nature of the model; using ACT-R’s 
memory system as a model of habituation; a more detailed 
description of the spatial components; the gaze-following 
itself; and the utility learning mechanism. 
The reactive nature of the model The model itself is 
completely bottom-up; there is no goal-directed or top-down 
action in this model.  The model was written in this manner 
because early gaze-following seems to be emergent rather 
than goal-directed (Triesch et al., 2006). Later models in the 
developmental process will need to have a goal-directed 
component. 
Habituation in ACT-R When the model gazes at any 
object (person, toy, etc.), it looks at that object until it can 
recall the object before it attempts to look at a different 
object.  This is an approximation of habituation (Sirois & 
Mareschal, 2002); several other researchers (Triesch et al., 
2006) use an exponential function that is remarkably similar 
and formally equivalent to ACT-R’s model of memory 
retrieval (Anderson, Bothell, Lebiere, & Matessa, 1998). 

After the model gazes at and habituates to an object, it 
starts to look for a new object.   
Spatial Module As mentioned earlier, standard ACT-R has 
only a rudimentary spatial ability.  This ability is part of the 
visual module.  In the visual module, a visual description of 
the object (a “what” component) and where that object is 
located in screen coordinates (a “where” component) is 
available (Byrne & Anderson, 1998).  ACT-R’s what and 
where system are used any time visual objects in the world 
need to be attended to.  Many successful models of attention 
have been built using these mechanisms. 

Unfortunately, the what and where components of ACT-R 
are not sufficient to follow gaze, much less provide even 
rudimentary spatial competency.  As previously mentioned, 
two spatial modules were added to ACT-R, the configural 
module and the manipulative module.   

The configural module is focused on the configuration of 
objects in the world relative to self.  Specifically, it allows 

the model to determine how far away from self another 
object is and what angle that object is from self.  Configural 
information changes dynamically as objects in the world 
change or move (including the self-model).  This 
information is critical for navigation in general and spatial 
cognition in an embodied context. 

For gaze-following, the manipulative buffer provides the 
orientation that a particular object is facing.  Specifically, 
the manipulative buffer provides information about what 
direction a person is facing (body) or gazing (head). 

The visual, configural, and manipulative modules are 
linked symbolically so that different types of spatial 
information about an object can be easily kept track of. 
Gaze Following Gaze-following was implemented by 
adding constraints to the visual search mechanism. As 
implemented, gaze-following is a directed visual search 
along a retinotopic vector. Given a starting point and either 
an angle or an end point, the visual search will return the 
location on an object somewhere along that line within some 
tolerance.  Note that this mechanism works in 3D space. 

This simple mechanism allows the visual system to find 
candidate objects along a gaze, or any potential 
obstructions. These skills align nicely with Butterworth’s 
developmental stages of gaze (Butterworth & Jarrett, 1991). 
Utility Learning ACT-R is able to not only learn new facts 
and rules, but also to learn which rule should fire (called 
utility learning in ACT-R).  It accomplishes this by learning 
which rule or set of rules lead to the highest reward.  ACT-R 
uses an elaboration of the Rescorla-Wagner learning rule 
and the temporal-difference (TD) algorithm.  The TD 
algorithm has been shown to be related to animal and 
human learning theory.  The elaboration in ACT-R is more 
applicable for human learning and allows it to be more 
easily incorporated into a production-system framework (Fu 
& Anderson, 2006). 

Briefly, any time a reward is given (e.g., for infants, a 
smile from a caregiver), a reward is propagated back in time 
through the rules that had an impact on the model getting 
that reward.  Punishments may also be given with a similar 
time-course, but no punishments were given in this model.  

For all models, we kept most of the ACT-R parameter 
defaults.  The parameters that were changed include the 
base level learning (a decay value of .2 instead of the typical 
default of .5), which allowed for a reasonable habituation 
timecourse; utility noise (set at a reasonable .5) to allow 
low-use productions to occasionally fire; and the utility 
learning rate (set at .2) which allowed the productions to 
converge to a stable expected utility within a reasonable 
period of time (minutes instead of months). 

A sample experimental model run  
The first thing that the model does in an experimental trial is 
to find a person (called a caregiver in this example).  This 
corresponds to the experimental procedure where the 
experimenter got the infant’s attention (Corkum & Moore, 
1998).  The model looks at the caregiver until it has 
habituated to that person, as described above.  The caregiver 



looks at an object in the environment for 7 s or until the 
model makes a decision about where to look. 

When the model is “young” it has a favored rule set, 
which is to locate, attend-to, and gaze at an object.  The 
object can be anything in the model’s field of view and it is 
chosen randomly. 

If the caregiver is looking at the same object that the 
model decides to look at, the model is given a small reward.  
If the caregiver is looking at a different object than the 
model, no reward is given but the trial is completed and the 
reward process begins anew. 

Even though there is a favored rule to find an object and 
gaze at it, the gaze-following rule competes with it.  The 
gaze-following rule has a much lower utility when the 
model is young so it does not get an opportunity to fire very 
often.  However, because of the relatively high noise value 
for utility (called expected-utility-noise in ACT-R), the 
gaze-following rule does occasionally get a chance to fire.  
If the gaze-following rule has a high enough utility to fire, it 
attempts to follow the gaze of the caregiver to an object. 

The gaze-following production uses configural 
knowledge to determine the caregiver’s distance and 
orientation from itself. As long as the model attends to the 
caregiver, the current information is available to the model. 

The gaze-following production also uses manipulative 
knowledge of the head of the caregiver to determine what 
direction the caregiver’s head is facing.  This information is 
clearly important because without it the gaze of the 
caregiver could not be determined.  Note also that the model 
assumes that the eyes are facing the same direction as the 
head.  For the experimental procedure discussed here, this 
assumption is appropriate, but as children develop (by 1 
year) they do differentiate between head pose and where the 
eyes themselves are gazing (Brooks & Meltzoff, 2002). 

With this information, the infant model looks from the 
caregiver in the direction the head is facing.  The model 
then finds the first available object in that direction, which 
is consistent with previous research (Butterworth & Jarrett, 
1991).  The model is again given a small reward.  After 
habituation to that object, the trial ends and the model looks 
for another object to attend to.   

Because the gaze-following production is correct more 
often than the random production (which is accurate on 
average 1/(number-of-objects), the gaze-following 
production slowly gains utility.  However, it takes a period 
of time before the combination of noise and utility allow the 
gaze-following production to overtake and eventually 
become dominant over the random-object production. 

Modeling developmental progress 

When the model is young, it has a handful of productions 
that look around the world. Experience is simulated by 
concentrating gaze-following learning such that a few 
minutes is equal to 2 months.  For the 6-7 m model, it was 
given 80 seconds of experience with looking around a 
simple world at objects and receiving feedback as described 

in the experimental run.   For the 8-9 m model, three 
minutes of experience were given, and for the 10-11 six 
model, six minutes of experience were given.  Because the 
rate of learning is dependent entirely on the utility learning 
rate parameter, learning occurred quite quickly in this 
model.  Utility learning rate could be scaled down 
substantially to match actual infant learning time.  In order 
to do this correctly, however, it would be important to know 
approximately how many times an infant attempts to follow 
a gaze or how often an infant receives feedback or the infant 
found something especially interesting to look at as well as 
knowledge about the environment (e.g., the number of 
objects).  Other researchers have come to a similar 
conclusion concerning the importance of learning in gaze-
following (Corkum & Moore, 1998; Triesch et al., 2006). 

At each age (6-7, 8-9, and 10-11 m), the model was put 
through the exact same experimental procedure as Corkum 
& Moore (1998).  Note that the lighting up and rotating of 
the toy provided a strong reward to the child, which is 
modeled by joint attention during the training phase of the 
procedure; no reward was given during the baseline phase, 
so this was a relatively pure measure of age-related ability.   

To provide some match to the experimental procedure, 21 
models (corresponding to the 21 participants) were run at 
each age group.  However, to achieve stable results, the 
model was run 10 times with no utility learning for the 
baseline and after training conditions.  This allowed the 
model to be tested after different age or experimental related 
amounts of practice yet maintain stable results. 

Model fit 
As is evident in Figure 1, the model matches the data quite 
well; R2 = .95 and RMSD = .3.  Critically, all model points 
are within 95% confidence intervals of the data.  The model 
suggests that there is not a qualitative change in any child, 
but that as children gain more experience they get better at 
it. Interestingly, with a modest amount of experimental 
training, the 8-9 m model also showed improvement 
(though not, of course, as much as the 10-11 m model).  
Again the model suggests that the reason for this is that 8-9 
m children were at the “right” developmental age to take 
advantage of the concentrated training.  This training 
allowed productions that occasionally fired during “real 
life” to be focused and rewarded, which brought their utility 
to surpass the random behavior they had before the 
experiment started.  Note again that the 6-7 m children did 
not statistically improve.  The model explanation for this is 
that they simply had not had enough experience yet. 

Embodied gaze following 
The infant model at each stage of development was 

trained using Player and then run on an embodied platform 
(our robot). Movies are available at 
http://www.nrl.navy.mil/aic/iss/aas/CognitiveRobotsVideos.
php. 



General Discussion 
We described an embodied model of gaze-following that is 
not only functional but matches data from a classic gaze-
following paradigm and experiment. The primary advantage 
of this model over previous models is that it has a very high 
degree of cognitive plausibility.  First, as Moore (2006) 
suggested, it has an accepted model of visual attention.  
Second, it has a psychologically plausible representation of 
space that is critical to the success of the model.  Third, this 
model is embodied and runs on a physical robot, allowing 
additional tests of the theory as well as added complexity. 

Of the model’s 5 components (reactivity, habituation, the 
spatial module, gaze-following, and utility learning), three 
of them are absolutely critical to the success of the model.  
The reactivity nature of the module is a theoretical 
commitment to modeling young children, though the model 
could be written using a top-down model.  Likewise, 
habituation is something that has been theoretically 
proposed and empirically observed, though it is not a critical 
component to the success of the model.  The other three 
components, however, are needed.  The spatial component 
integrates the spatial aspects of the task while the entire 
system could not function without the ability to perceive 
which direction a person is gazing.  Because the 
developmental progress is accounted for by utility learning, 
it also is a necessary part of the model. 

The model does make an interesting prediction:  that 6 m 
infants (and even younger) could learn to follow gaze with 
enough practice. A core component to this prediction is that 
the infant have enough patience to go through enough 
training and the ability of young children to extract 3D 
information from the world.  It is believed that 6 m olds do 
have this capability, but very young children do develop it. 

This model also has several similarities to other infant 
data.  The model does not understand obstructions and 
follows gaze to the first object along a path (Butterworth & 
Jarrett, 1991).  The architecture does have the capability, 
however, to perform relatively precise gaze-following, 
ignoring highly salient objects in the path (the ‘geometric’ 
stage; Butterworth & Jarrett, 1991).  The current model can 
not, however, follow gaze to a position outside its current 
field of view (the ‘representational’ stage).  The current 
model has no true perspective-taking ability at all. 

In order to provide the model with perspective taking 
abilities, it would presumably need more goal-directed 
cognition as well as more developed spatial capabilities. 
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