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Abstract

To date, spatial language models have tended to overlook
process-based accounts of building scene representations
and their role in generating flexible spatial language behav-
iors. To address this theoretical gap, we implemented a
model that combines spatial and color semantic terms with
neurally-grounded scene representations. Tests of this model
using real-world camera input support its viability as a theo-
retical framework for behaviorally flexible spatial language.
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Introduction
Spatial language is an incredibly flexible tool whose ca-
pabilities range from generating and comprehending direc-
tions (Tom & Denis, 2004) to facilitating coordinated ac-
tion (Bangerter, 2004). Yet, despite this broad behavioral
scope, implemented spatial language models which seek to
uncover processes underlying basic spatial communication
(e.g. object location description) have tended to focus on
a limited range of behaviors, namely relational judgment
tasks. These models have successfully accounted for a com-
plex array of empirical data including the influence of land-
mark shape (Regier & Carlson, 2001) and functional object
features (Coventry et al., 2005). The neural processing as-
pects underlying these accounts, however, remain underde-
veloped. Consequently, a number of critical questions that
bear directly on spatial language and its linkage to support-
ing sensory-motor processes have gone unaddressed. For
example, how does a neural scene representation evolve
on the basis of sensory information? How might complex
higher-level behaviors like spatial language emerge from
these lower-level dynamic processes? How are the time
courses of spatial language behaviors structured by their
roots in scene representations?

Behavioral flexibility in the spatial language system be-
comes a central issue once one addresses the neural pro-
cesses that link spatial language to the sensory-motor sys-
tem. Fundamentally, we do not yet understand how the
sensory-motor foundations of scene representations and
spatial language work to support the broad array of spa-
tial language behaviors. The absence of process-based ac-
counts for the generation of spatial scene representations
and the behaviors derived from these representations is a
significant barrier to developing a more comprehensive, in-
tegrative spatial language model.

As a step to overcoming this barrier, we were led to
consider three elements underlying behavioral flexibility in
spatial language. First, the spatial language system uses
both spatial and non-spatial characteristics. Second, it inte-
grates the graded sensory-motor representations with sym-
bolic, linguistic terms. Finally, the spatial language system
combines these numerous elements continuously in time ac-
cording to the specific behavioral context.

To develop a behaviorally flexible theoretical framework
for spatial language that satifies these constraints, one needs
a representational language that links to both the sensory-
motor and linguistic worlds. The Dynamic Field Theory
(Erlhagen & Schöner, 2002), a neuronally based theoret-
ical language emphasizing attractor states and their insta-
bilities, is one viable approach. Recent applications of the
DFT have extended beyond spatial working memory devel-
opment (Spencer, Simmering, Schutte, & Schöner, 2007)
to include a theoretically generative account of signature
landmark effects in spatial language (Lipinski, Spencer, &
Samuelson, in press). Critically, this latter work integrated
a connectionist-style localist spatial term network into the
model. This suggests that the DFT can provide the requi-
site, integrative representational language.

The present work incorporates this hybrid approach to
implement a new model integrating spatial language seman-
tics with real-world visual input. Our goal is to qualita-
tively test the model’s core functionality and, thus, its vi-
ability as an initial theoretical framework for flexible spa-
tial language behaviors. To rigorously test our model, we
implement it on a robotic platform continously linked to
real-world visual images of everyday items on a tabletop
workspace. Our model extracts the categorical, cognitive
information from the low-level sensory input through the
system dynamics, not through neurally ungrounded prepro-
cessing of the visual input. Models which do not directly
link cognitive behavior to lower-level perceptual dynamics
risk side-stepping this difficult issue. Our demonstrations
specifically combine visual space, a selected subset of basic
English spatial semantic terms, and color. These demon-
strations serve as an initial proof of concept that takes an
early step towards modeling more complex, natural spatial
language behaviors.



Modeling neurons and dynamical neural fields
This section briefly reviews the mathematics of our model
(see also (Erlhagen & Schöner, 2002)).

Dynamical fields
The dynamical neural fields are mathematical models first
used to describe cortical and subcortical neural activation
dynamics (Amari, 1977). The dynamic field equation
Eq. (1) is a differential equation describing the evolution of
activation u defined over a neural variable(s) x. These neu-
ral variables represent continuous perceptual (e.g. color) or
behavioral (e.g. reaching amplitude) dimensions of interest
that can be naturally defined along a continuous metric.

τu̇(x, t) =−u(x, t)+h+
Z

f (u(x′, t))ω(∆x)dx′+

+ I(x, t)
(1)

Here, h < 0 is the resting level of the field; the sigmoid
non-linearity f (u) = 1/(1 + e−βu) determines the field’s
output at suprathreshold sites with f (u) > 0. The field is
quiescent at subthreshold sites with f (u) < 0. The homo-

geneous interaction kernel ω(∆x) = cexce
−(∆x)2

2σ2 − cinh de-
pends only on the distance between the interacting sites
∆x = x−x′. This interaction kernel is a Bell-shaped (Gaus-
sian), local excitation/global inhibition function. The short-
range excitation is of amplitude cexc and spread σ. The inhi-
bition is global, as we are not interested in multipeak solu-
tions here, and has an amplitude cinh. I(x, t) is the summed
external input to the field; τ is the time constant.

If a localized input activates the neural field at a cer-
tain location, the interaction pattern ω stabilizes a localized
”peak”, or ”bump” solution of the field’s dynamics. These
activation peaks represent the particular value of the neural
variable coded by the field and thus provide the representa-
tional units in the DFT (Spencer & Schöner, 2003).

In our model, all entities having ”field” in their name
evolve according to Eq. (1), where x is a vector representing
the two-dimensional visual space in Cartesian coordinates.
The links between the fields are realized via the input term
I(x, t), where only sites with f (u) > 0 propagate activation
to other fields or neurons.

Discrete nodes
The discrete (localist) neural nodes in the model represent-
ing spatial and color semantic terms can be flexibly used
for either user input or response output. Their activation
evolves according to the dynamic equation (2).

τd ḋ(t) =−d(t)+hd + f (d(t))+ I(t). (2)

Here, d is the activity level of a node; the sigmoidal non-
linearity term f (d) shapes the self-excitatory connection for

each discrete node and provides for self-stabilizing activa-
tion. The negative resting level is defined by hd . The I(t)
term represents the sum of all external inputs into the given
node. This summed input is determined by the input com-
ing from the connected neural field, the user interface spec-
ifying the language input, and the competitive, inhibitory
inputs from the other discrete nodes defined for that same
feature group (color or space); τ is the time constant of the
dynamics.

The spatial language framework
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Figure 1: Overview of the architecture

This section outlines the overall structure (see Fig. 1)
of our integrative model and explains how it operates in
two scenarios fundamental to spatial language: describing
where an object is (Demonstration 1) and describing which
object is in a specified spatial relation (Demonstration 2).

Color-space fields
The color-space fields (Fig. 1A) are an array of several dy-
namical fields representing the visual scene. Each of the
fields is sensitive to a hue range which corresponds to a ba-
sic color. The resolution of color was low in the presented
examples because only a few colors were needed to rep-
resent the used objects. In principle, the color (hue) is a
continuous variable and can be resolved more finely. The
stack of color-space fields is therefore a three-dimensional
dynamic field that represents colors and locations on the
sensor surface. The camera provides visual input to the
color-space field, which is below the activation threshold



before the task is defined. The field is thus quiescent to this
point.

Once the language input specifying the color of the ob-
ject activates the respective color-term node, however, the
resting levels of all sites of the corresponding color-space
field are raised homogeneously. Because the color-space
fields receive localized camera input, this uniform activa-
tion increase is summed with that input to enable the devel-
opment of an instability and, ultimately, the formation of a
single-peak solution. This peak is centered over the position
of the object with that specified color.

The spatial language input also influences the color-
space field’s dynamics through the aligned spatial semantic
fields (see below).

Reference field
The reference field (Fig. 1B) is a spatially-tuned dynamic
field which also receives visual input (Fig 1B). When the
user specifies the reference object color, the correspond-
ing ”reference-color” node becomes active and specifies the
color in the camera image that provides input into the ref-
erence field. A peak of activation in the reference field
evolves at the location of the reference object. The refer-
ence field continuously tracks the position of the reference
object. Its dynamics also filters out irrelevant inputs and
camera noise and thus stabilizes the reference object repre-
sentation. Having a stable, but updatable reference object
representation allows the spatial semantics to be continu-
ously aligned with the visual scene.

Spatial semantic templates
The spatial semantic templates (Fig. 1C) are represented as
a set of synaptic weights that connect spatial terms to an ab-
stract, ”retinotopic” space. The particular functions defin-
ing ”left”, ”right”, ”below”, and ”above” here were two-
dimensional Gaussians in polar coordinates and are based
on a neurally-inspired approach to English spatial semantic
representation (O’Keefe, 2003). When viewed in Cartesian
coordinates, they take on a tear-drop shape for these terms.

Shift
The shift mechanism (Fig. 1D) aligns these retinotopically
defined spatial semantics with the current task space. The
shift is done by convolving the ”egocentric” weight matri-
ces with the outcome of the reference field. Because the sin-
gle reference object is represented as a localized activation
peak in the reference field, the convolution simply centers
the semantics over the reference object. The spatial terms
thus become defined relative to the specified reference ob-
ject location (for related method see (Pouget & Sejnowski,
1995)).

Aligned spatial semantic fields
The aligned spatial semantic fields (Fig. 1E) are arrays of
dynamical neurons with weak lateral interaction. They re-

ceive input from the spatial alignment or ”shift” mechanism
which maps the spatial semantics onto the current scene by
”shifting” the semantic representation of the spatial terms to
the reference object position. The aligned spatial semantic
fields integrate the spatial semantic input with the summed
outcome of the color-space fields and interact reciprocally
with the spatial-term nodes. Thus, a positive activation in
an aligned spatial semantic field increases the activation of
the associated spatial-term node and vice versa.

Demonstrations

We here detail two exemplar demonstrations (from a set of
thirty conducted) which address two behaviors fundamental
to spatial language. In the presented scenarios, three objects
were placed in front of the robot: a green stack of blocks,
a yellow plastic apple, and a blue tube of sunscreen. The
visual input was formed from the camera image and sent to
the reference and color-space fields. The color-space field
input was formed by extracting hue value (”color”) for each
pixel in the image and assigning that pixel’s intensity value
to the corresponding location in the matching color-space
field. The input for the reference field was formed in an
analogous fashion according to the user-specified reference
object color. When the objects are present in the camera
image, the reference and color-space fields receive localized
inputs, corresponding to the three objects in view (marked
with arrows, see Fig. 2 and Fig. 3). This was the state of the
system before the particular task was set.

In Demonstration 1 we ask ”Where is the yellow object
relative to the green one?” and the robot must select the
correct descriptive spatial term. In Demonstration 2 we
ask ”Which object is to the right of the yellow one?” and
the robot must select the color term that describes the tar-
get object. Both examples were performed with exactly the
same visual scene and parameter set. Thus, the only differ-
ence for the system was the user-specified task input. If our
model functions properly, the interactive dynamics should
select the correct spatial or color term according to the task
details.

Due to the graded representation of space and color in the
neural fields, being able to solve these two tasks means ac-
cessing hundreds of scenarios with multiple objects and ob-
ject positions in the image. More fundamentally, these dif-
ferent tasks both require the integration of visual and sym-
bolic input as well as the autonomous selection of a descrip-
tive spatial term. Such integration and decision processes
are a core capacity of the human spatial language system
and underlie the full range of real-world spatial language
behaviors. Accounting for these core processes in different
tasks in a single, neurally-grounded model provides a strong
foundation for scaling up to more complex spatial language
scenarios.
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Figure 2: Demonstration 1 activations just before answering ”Where”.

Demonstration 1: Describing ”Where”

Demonstration 1 asks ”Where is the yellow object relative
to the green one?” To respond correctly, the robot must
select ”Right”. Fig. 2 shows the neural fields’ activation
just before the answer is given. The task input first ac-
tivates two discrete neurons, one representing ”green” for
the user-specified reference object color and the other ”yel-
low” for the user-specified object color (see user inputs,
top Fig. 2). The reference object specification ”green”
leads to the propagation of the green camera input into the
reference field, creating an activation bump in the refer-
ence field at the location of the green item (see Reference
field, Fig. 2). The specification of the target color ”yel-
low” increases the activation for the ”yellow” node linked
to the ”yellow” color-space field (see yellow activation time
course line, top Fig. 4a), which raises the resting level of the
associated ”yellow” color-space field. This uniform activa-
tion boost coupled with the camera input from the yellow
object induces an activation peak in the field (see ”yellow”
Color-space field, Fig. 2).

This localized target object activation is then transfered

to the aligned semantic fields. In addition to receiving this
target-specific input, the aligned semantic fields also receive
input from spatial term semantic nodes. Critically, these se-
mantic profiles are shifted to align with the reference object
position. In the current case, the yellow target object acti-
vation therefore overlaps with the aligned ”right” semantic
field (see red arrow in the ”right” Aligned spatial semantic
field, Fig. 2). This overlap ultimately drives the activation
and selection of the ”right” node (see spatial-term neuron
activation time course, bottom Fig. 4a).

Demonstration 2: Describing ”Which”

Demonstration 2 asks ”Which object is to the right of the
yellow one?”. To respond correctly, the robot must select
”Blue”. As indicated in Fig. 3, the task input first activates
two discrete nodes, one representing the reference object
color ”yellow” and the other representing ”right”.

The reference object specification ”yellow” creates an ac-
tivation bump in the reference field location matching that
of the yellow item (see Reference field, Fig. 3). The spec-
ification of ”right”, in its turn, increases the activation for
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Figure 3: Demonstration 2 activations just before answering ”Which”.

that spatial-term node (see activation time course, bottom
Fig. 4b), creating a homogeneous activation boost to the
”right” semantic field. This activation boost creates a pos-
itive activation in the field to the right of the yellow ref-
erence object (see ”right” Aligned spatial semantic field,
Fig. 3). This spatially-specific activation is then input into
the color-space fields and subsequently raises activation at
all those color-space field locations to the right of the ref-
erence object (see lighter-blue Color-space fields’ regions,
Fig. 3). This region overlaps with the localized input of the
blue object in the ”blue” color-space field and an activa-
tion peak develops in that field (see red arrow in the ”blue”
Color-space field, Fig. 3). This increases the activation of
the associated ”blue” color-term node, triggering selection
of the correct answer, ”blue” (see color-term node’s activa-
tion profile, top Fig. 4b).

Discussion

Together, these demonstrations reveal the model’s ability to
localize the specified target object in the visual scene and
to extract the required spatial or non-spatial target infor-
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mation. These different behaviors emerged from the au-
tonomous dynamics integrating the low-level camera input
and the categorical user input and are thus truly context-
dependent. In assessing this framework it is also important
to note that precisely the same parameter setting was used in
all tasks; only the context input changed. Thus, the behav-
iors are autonomously structured simply by the symbolic
and visual input. Even with our initially limited range of
spatial and color terms, the framework can be immediately
applied to a broad range of real-world objects and locations
without modification. This novel system therefore provides
a contextually adaptive framework for the flexible applica-
tion of spatial semantics. More fundamentally, because of
its focus on integrative dynamic processes modelled in ac-
cordance with neural principles, it also provides a founda-
tion for modeling more complex human spatial language
behaviors.
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