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Abstract 

Everyday life demands explanations and predictions from 
everybody all the time. Using experience based knowledge, the 
human mind is well suited to draw the required causal inferences. 
However, due to failures in the past, such inferences are usually 
drawn under uncertainty and come along with different degrees of 
confidence. We present an ACT-R model describing the cognitive 
processes of induction and deduction for a prediction task in a 
simple, simulated technical environment. While ACT-R provides 
excellent mechanisms to capture causal learning and causal 
inferences, no process has been defined yet to account for the trust 
humans put in their predictions.  Based on the availability heuristic 
by Tversky and Kahneman (1973), we propose an approach for 
modeling different levels of trust by using a temporal module from 
Taatgen, van Rijn and Anderson (2007), thus relating availability 
to retrieval time and confidence judgments. The forecasts of our 
model are compared with the results of an empirical study and 
nicely fit the experimental data. 
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Introduction 
The explanation of a current state of the world by events in 
the past and the prediction of future events from a present 
situation are fundamental qualities of human cognition. We 
follow the assumption proposed by many others that such 
reasoning processes are based on causal models (e.g., 
Waldmann, 1996) and proceeded under uncertainty (e.g. 
Einhorn & Hogarth, 1982). Two factors determine how 
much trust we put in an explanation or a prediction. 
The first factor is the perceived amount of missing 
information in a given situation. This case applies when a 
causal model demands more data than currently available. 
Experiments by Thüring and Jungermann (1992) as well as 
Jungermann and Thüring (1993) demonstrated that such 
situations appear as ambiguous and lead to a reduction of 
confidence people have in their causal inferences.  
The second factor is not an attribute of the situation, but of 
the causal model itself. Causal models – as any other kind of 
mental model – may be incomplete or even incorrect 
(Norman, 1983), hence leading to faulty conclusions.  
Obviously, deficient models are not trustworthy. Confidence 
requires success, i.e., “…it’s the model’s ability to make 
accurate predictions that is the ultimate measure of the 
model’s value” (Chown 2006, p. 69). This value can be 
characterized as the reliability of the model. To summarize, 
the ambiguity of the situation at hand and the reliability of 
the causal model currently employed determine the strength 

of confidence we have in the conclusions we draw. If we 
want to predict this confidence, we require a formal basis 
for modeling the influence of both factors. In the former 
studies by Thüring and Jungermann, rule-based systems 
served as such a basis and were used to describe the 
structure of a causal model. This approach was well suited 
to characterize ambiguous situations by the degree of 
matching between data and the conditional parts of the rules 
and to predict the content and confidence of causal 
inferences drawn from them. The reliability of a model, on 
the other hand, proved as more complicated to handle. 
Especially when we tried to describe how rules are formed 
in the course of inductive learning and which psychological 
mechanisms influence the confidence of causal judgments 
based on such rules “under construction”, it became 
apparent that a comprehensive cognitive framework is 
needed to cope with the complexity of the matter.  
The cognitive architecture ACT-R (Anderson, Bothell, 
Byrne, Douglass, Lebiere & Qin, 2004) provides such 
framework. We will use it to demonstrate how simple rule-
based causal models can be built from induction and how 
predictions can be derived from such models. Special 
emphasis will be placed on the issue of how the success 
(respectively failure) of predictions in the course of learning 
influence the reliability of the rules and the confidence 
people place in their inferences. 

Modeling Objectives 
To model induction, predictions and confidence, three basic 
objectives must be achieved. 
(i) To ensure inductive learning, not only the current 
situation must be represented in the ACT-R model, but 
preceding situations must be accounted for as well. In 
addition, the success or failure in coping with these 
situations must be captured. (ii) The ACT-R model must be 
able to make predictions. A prediction can be characterized 
as a statement about a future state of the world in terms of 
specific propositions. Since predictions are made under 
uncertainty, the ACT-R model must be able to combine a 
propositional content with a degree of confidence. To 
achieve this, reliability as well as ambiguity must be 
considered by the ACT-R model (although the latter is not 
emphasized here). (iii) In case of incorrect predictions, the 
ACT-R model must provide mechanisms to modify the 
causal knowledge structure if new evidence is available. To 
put the objectives into practice and to implement an ACT-R 
model with the ability to generate predictions with different 



degrees of confidence, we have to refer to experimental 
data.  

The Experiment 
The empirical basis of our approach are data obtained in an 
experiment by Thüring, Drewitz and Urbas (2006) that 
tested the following assumption: When a causal model is 
induced from observations, inferences deduced from that 
model are usually probabilistic and their uncertainty is 
influenced by the observer’s former experience with the 
model. The results of this experiment were extensively 
discussed in Thüring et al. (2006) to clarify the interplay of 
induction, deduction and confidence judgments.  
In the experimental task, the participants had to acquire the 
causal model of a technical system, i.e., the cooling system 
of a power plant. The system could run properly (state OK) 
or not (state MALFUNCTION) and consisted of four 
pumping devices (subsystems A, B, C and D). Information 
about the subsystems was displayed on four dials (Fig. 1) 
which could be turned on (A, D) or off (B, C). Each dial 
represented the state of a subsystem that was either ’up’ (A), 
’down’ (D), or ’unknown’ because its dial was switched off 
(B, C). While each of the factors A, B and C was causally 
relevant at some point of the experiment, factor D was a 
random variable serving as a distractor, which was 
introduced to obtain a sufficient level of task complexity. In 
each trial, participants were shown a combination of dials as 
in the left part of figure 1. Based on this information, they 
first predicted the state of the overall system by pressing one 
of two buttons ’OK’ or ’MALFUNCTION’, and then rated 
their confidence by adjusting a slider. After submitting their 
confidence rating, a status message informed them about the 
correct system state as shown in the right part of figure 1. 
 

 
 

Figure 1: Screen layout of the experiment. 
 

Using the feedback they received in each trial, participants 
could gradually develop a causal model representing the 
relation between the state of the subsystems (A, B, C, D) 
and the state of the entire system (OK or 
MALFUNCTION). In the first phase of our study, a simple 
model was induced in which just the proper functioning of 
one subsystem (e.g., A) was required for the faultless 
running of the cooling. Our participants learned this model 

fairly quickly from the data. In figure 8, the curve labeled 
“human” shows their mean confidence ratings (transformed 
into percentage values). Data points in the upper half of the 
figure represent ratings for the prediction “OK”, those in the 
lower part for the prediction “MALFUNCTION”. Note that 
the ratings start well above zero, because three trials in 
which A was coupled to OK were used in advance to 
acquaint the participants with the experimental setting. 
Starting from there participants soon reached a high and 
stable level of confidence (i.e., mean values between 70% 
and 80% with some exceptions due to the random condition 
D). At the end of this learning phase, information was 
provided which reduced the reliability of the model, i.e., in 
the trials 26-31 the feedback was contrary to the initial 
system behavior. Consequently, our participants’ confidence 
in their predictions dramatically decreased and some of 
them even predicted a state contradictory to the rule they 
had learned before. 
In the second phase of the experiment, information was 
provided that allowed for expanding the simple ’mono 
causal’ model into a more extensive one. This was either an 
‘or-model’ capturing multiple alternative causes each of 
them being sufficient for the effect, or an ‘and-model’ 
representing a conjunction of several causal conditions each 
of them being necessary for the effect. When the new model 
was reinforced over several trials, confidence ratings raised 
to a level similar to the one of the mono causal model at the 
beginning (see fig. 8 and 9). When the reliability of these 
models was reduced (trials 31-35 and 45-49), the same 
effects occurred as in phase one, i.e., confidence ratings 
dropped again. 
According to our first objective, the ACT-R model must be 
able to capture the cognitive processes of knowledge 
acquisition in this experiment, which are distinguished by 
the fact that people revise and expand their causal model 
when new facts become available. 

Knowledge Acquisition 
We propose three mechanisms of knowledge acquisition 
complementing each other, with each of them being 
necessary to form and diversify a causal model. 

Inductive Learning 
The first mechanism can be characterized as inductive 
learning. Within their natural environments, people make 
observations and store them in memory. Observing the same 
constellation of events repeatedly strengthens their 
associative relation in the memory trace. Thus, rudimentary 
causal models are constituted that guide further 
observations. In our experiment, these models could be 
described in terms of simple rules such as “if A is up then 
the system is OK” or “if A is down then a MALFUNCTION 
occurs”.  

Deductive Reasoning 
Inductive learning is closely related to deductive reasoning. 
When a rule has been formed via induction, its reliability is 



tested via deduction, thus creating a circle in which these 
two mechanisms take turns in forming a causal model. In 
each deduction, available data are matched with the rules 
and a conclusion is drawn. Those rules, which have been 
reliable in the past, are chosen over less reliable ones. In the 
first phase of our experiment, the rule “if A is up then the 
system is OK” produced a correct prediction whenever A 
was up, while the rule “if D is up then the system is OK” 
did not, because the relation between D and the system state 
was random.  
Though reliable rules should be chosen most frequently, less 
reliable ones can get a chance when their conditions are 
matched by the current data. When this happens, the 
confidence that is placed in the prediction should be less 
compared to the confidence in a prediction derived from a 
reliable rule. For example, the confidence in predicting a 
well functioning system when “D is up” should be lower 
compared to a situation when “A is up”. 
To summarize, reliability serves two purposes. It determines 
which rules are chosen over others and it tunes the confi-
dence people place in their predictions. Both these functions 
must be implemented in ACT-R to explain the data of our 
experiment and to achieve the second objective stated 
above, i.e., the derivation of the propositional content of a 
prediction in combination with a specific degree of confi-
dence based on the experienced reliability of the model. 

Rule Revision 
While the reduction of confidence placed in a prediction is 
one consequence of the failure of a rule, the revision of the 
rule itself is another one. Changing the content or the 
structure of a rule is the third mechanism required to des-
cribe the forming of a causal model. Revisions only make 
sense in the light of new evidence, i.e., when the failure of a 
rule coincides with the observation of new conditions that 
must be satisfied in addition to (or instead of) the conditions 
that have been accounted for so far. In this case, the rule in 
question is altered. In our experiment, this happened in the 
second phase where simple mono causal models where 
expanded to an “or-model” or an “and-model”. To attain our 
third objective, such changes must be accounted for when 
causal models are developed in ACT-R. 

Overview of the ACT-R Model 
The three mechanisms were implemented in the framework 
provided by ACT-R 6.0. Figure 2 displays the cyclic 
concept we used to establish the cognitive flow of control 
for performing the successive trials in our experiment. The 
nodes represent different control states, whereas the directed 
links indicate possible transitions between them.  
At the START of each experimental trial, the current 
situation is stored in an ACT-R buffer.  This situation 
consists of the states (“up” or “down”) of the four 
components (A to D) of the cooling system. The task is to 
predict if these states will entail a proper functioning or a 
malfunction of the system. The next step is to SEARCH for 
instances in declarative memory matching the situation at 

 
 

Figure 2: Cognitive flow of control of the ACT-R model. 
 
hand. In our model, each search in memory relies on the 
spreading activation mechanism and is affected by noise 
resulting from the according parameter in ACT-R. Those 
instances, that have been frequently used in former cycles, 
have a higher activation and hence a higher probability to be 
found. Two outcomes are possible at this stage. (i) If a 
match is made, the according instance is retrieved. Now, a 
first propositional content for the required prediction has 
been found, since the instance contains the effect (OK or 
MALFUNCTION) that this specific constellation of A to D 
has produced in the past. To account for previous 
experiences with the prediction, its content is linked to an 
appraisal value. The appraisal is “good” when former 
predictions were correct, but “bad” when mistakes were 
made in the past. (ii) If no match is made, the model 
switches to “GUESS”. This is the case either when the 
current situation is new, or if the activation of no instance in 
declarative memory is high enough for a successful 
retrieval. Guessing means that one of the two outcomes 
“OK” or “MALFUNCTION” is chosen at random from 
declarative memory. Therefore, in case (i) as well as in case 
(ii), the result at this stage is a first propositional content for 
the required prediction enhanced by an appraisal value. 
In the next step, the content is CHECKED against different 
experiences made in the past. Three alternatives are 
possible: (i) If an instance with “good appraisal” was found 
during SEARCH, the check looks for an instance with the 
same effect but a “bad appraisal”. (ii) If an instance with 
“bad appraisal” was found during SEARCH, the check 
looks for an instance with the same effect but a “good 
appraisal”. (iii) If the result of GUESSING was “OK”, then 
the alternative effect “MALFUNCTION” is produced 
during memory search, and vice versa for the result of 
“MALFUNCTION”. The idea underlying this stage is 
twofold. First, it mimics reasoning under uncertainty where 
inferences are compared to other possibilities. Second, the 
cognitive processes involved here produce different retrieval 
times that are used to model different degrees of confidence. 
How this is achieved will be described later.  
When the CHECK has been accomplished, the model 
switches to CHECK DONE. Now, if the appraisal of the 
instance retrieved during SEARCH is “bad”, the preliminary 



propositional content is not reliable. In this case, the process 
FIND OPPOSITE generates the opposite effect as 
alternative prediction and uses it as ANSWER. Otherwise, 
no alternative prediction is required and the result of the 
former SEARCH is delivered as ANSWER. In our 
experiment, this is the point where subjects make their 
prediction and then receive a feedback. 
In the ACT-R model, the FEEDBACK is CHECKED by 
comparing it with the prediction. If the prediction is correct, 
APPRAISE generates the appraisal value “good” and links 
it to the according instance. In case of a wrong prediction, 
however, the appraisal turns to “bad” and hence the instance 
represents an incorrect prediction.  
If a successful prediction is made based on GUESSING or 
on TAKING THE OPPOSITE, this new information is RE-
HEARSED to strengthen the activation of this valuable new 
insight. For the same reason, REHEARSAL occurs when a 
formerly reliable instance produces a wrong prediction.  
When the state FINISH is reached, all buffers are cleared 
and the results are transferred to declarative knowledge. A 
result consists of a new instance, whenever an unpreceden-
ted constellation was encountered in that cycle and used for 
a prediction. In this way, declarative knowledge is extended 
and revised.  
So far, we have described a circular process of knowledge 
acquisition consisting of inductive learning, deduction and 
rule revision. Figure 3 shows the predictions made by the 
ACT-R model (over 21 runs) compared to the predictions 
made by the participants in the experiment by Thüring et al. 
(2006). As indicated in the chart, there is a very good fit 
between both types of predictions. 
To fulfill our second objective, these results must be related  
to the generation of confidence judgments. Reliable causal 
rules are represented by instances with a positive appraisal. 
Among these instances, those with a high activation 
constitute a person’s actual causal model. The amount of 
activation not only determines which rules are used for 
prediction, but should also influence the confidence people 
have in their predictions.  
 

 
 

Figure 3: Mean propositional judgments (n=21). 
 

However, since activation is a subsymbolic parameter, it 
cannot be directly used to produce confidence judgments. 
To solve this problem, we adopt a heuristic proposed by 
Tversky and Kahneman (1973) to our ACT-R model. 

The Availability Heuristic: Degree of 
Confidence and Retrieval Time 

When people have to evaluate the frequency or likelihood of 
an event, they often use heuristics to do so. In case of 
applying the availability heuristic, the subjective probability 
of an event depends on how fast the representation of a 
former occurrence of the event can be retrieved from 
memory, i.e., the faster the retrieval of the event, the higher 
its estimated probability. Tversky and Kahnman (1973) 
assumed that the ease of retrieval is equivalent to the 
perceived time of retrieval. This offers an interesting 
solution for the problem of modeling the confidence of 
predictions. The retrieval of an instance raises its overall 
activation, which in turn lowers its retrieval time and hence 
should increase the confidence in its propositional content. 
Within ACT-R, the perception of time can be captured by a 
temporal module that was developed by Taatgen, van Rijn 
and Anderson (2007), especially for estimating short times.  

Estimating Time with the Temporal Module 
The temporal module consists of a pacemaker and its 
relations to a temporal buffer (see fig. 4). Three different 
parameters can be set to influence time estimation within 
this framework (Taatgen et al., 2007). One of them is the 
time-master-start-increment. This parameter has to be set at 
a low level to make the module sensitive enough for 
estimating short durations, such as retrieval times. 
When time measuring begins, a start signal is created which 
causes the pacemaker to generate time pulses, so-called 
ticks. These ticks are collected in the accumulator of the 
temporal buffer. When a time estimation is needed, the 
number of ticks that have been accumulated between the 
temporal request and the retrieval represents the elapsed 
time.  
 

 
 

Figure 4: The temporal module (taken and adapted from 
                Taatgen et. al., 2007). 

 
In our approach, time estimation is always related to the 
retrieval of a specific memory element, such as an instance. 
Therefore, any temporal request is combined with the 
request for a memory element, and the analog holds for the 
retrieval. The ACT-R syntax implementing the combined 
request and retrieval is shown in figure 5. 
The result of a temporal retrieval is a symbolic value 
characterizing the perceived time for finding the memory 
element. This value can be processed further to generate 
different degrees of confidence. 



 
Figure 5: Combined declarative and temporal request. 

From Time to Confidence 
We propose two different methods to transform perceived 
retrieval times into confidence judgments. Both are 
mathematical functions, which (at least for the time being) 
are not implemented within ACT-R itself.  
 
Transforming retrieval time. The first method can be 
characterized as a direct implementation of the availability 
heuristic. It is expressed by the formula in figure 6. Two 
properties of this function are immediately salient: (i) Short 
retrieval times lead to high confidence values while long 
retrieval times cause low confidence judgments. (ii) Since 
the function is logarithmic, the decrease of confidence 
decelerates with the number of ticks increasing. This 
accounts for the observation that differences between longer 
retrieval times result in rather small differences for related 
confidence ratings and vice versa.  
 

 
Figure 6: Transformation function (f(x)=log(x+2)2) for the 

transformation of retrieval time (schematically).  
 

Figure 8 displays the confidence judgments for predicting 
the system states “OK” and “MALFUNCTION” that are 
generated by our model when this function is used. 
Although the match between the model and human data is 
good, a more sophisticated approach can be taken to model 
the confidence of predictions. 
 
Transforming retrieval time differences. The idea 
underlying our second method is to check the retrieval time 
for an original prediction against the retrieval time for an 
alternative prediction. The alternative is an instance of the 
same content, but with an appraisal indicating that (at least 
once) the instance has failed to be successful. Due to its 
success in the past, the original predication is highly 

activated and can be retrieved fast. If the same holds for the 
alternative, the difference between the retrieval times of 
both predictions is small and the confidence in the original 
should be low. On the other hand, if the alternative 
prediction has been less successful than the original, its 
lower activation entails a longer retrieval time. In this case, 
the difference between the retrieval times of both 
predictions is large and the confidence in the original 
prediction should remain high. These relations between 
retrieval time and degree of confidence are captured by our 
second function. It accounts for the fact that we may find 
conflicting information of different value when we search 
our memory to make a prediction.  
The difference of both retrieval times is calculated (as an 
absolute integer) and taken as input for the transformation 
process. Figure 7 shows the formula and form of the 
function used for this transformation. 
Figure 9 presents the generated data by the model using the 
method of transforming time differences into confidence 
ratings. 
 

 
Figure 7: Transformation function (f(x)=b*log10a*x) for the 

transformation of time differences (schematically). 

Discussion 
The ACT-R model and the two functions described above 
were developed to account for the data of the first 
experimental block where a ‘mono causal model’ had to be 
learned. A comparison of the charts in figure 8 and 9 
indicates that both functions are well suited to model 
confidence ratings based on time measures.  
 

 
 
Figure 8: Combined ratings for the ‘mono causal’ block 
calculated with method I: transformation of retrieval time 
(n=21, RMSSD=4.3). 



 
 
Figure 9: Combined ratings for the ‘mono causal’ block 
calculated with method II: transformation of time 
differences (n=21, RMSSD=3.1). 
 
Nevertheless, there is an advantage for the second function. 
The trend measure (r2) and the goodness-of-fit measure 
(RMSSD) show a better fit with the empirical data for that 
method. Therefore, the second function was chosen to pre-
dict the confidence ratings in the second experimental block, 
where the ‘and-model’ as well as the ‘or-model’ were in-
duced. Again, the model proved to be well applicable, mat-
ching the empirical data with a high fit (see fig. 10 and 11). 
 

 
 
Figure 10: Combined ratings of propositional content and 
related confidence for the ‘and’ block (n=21, RMSSD=4.3). 

 

 
 
Figure 11: Combined ratings of propositional content and 
related confidence for the ‘or’ block (n=21, RMSSD=3.8). 
 
To summarize, we have proposed an ACT-R model, which 
combines inductive learning, deductive reasoning and 
mechanisms for revising knowledge structures to describe 

the acquisition of causal models. Predictions derived from a 
causal model are made under uncertainty, i.e., the proposi-
tional content of an inference is combined with a particular 
confidence. In order to describe different degrees of confi-
dence, the availability heuristic proposed by Tversky and 
Kahneman (1973) was adopted to our ACT-R model. This 
was accomplished by using estimated retrieval times of 
memory elements to operationalize availability. The opera-
tionalization was achieved by two mathematical functions, 
which transform retrieval times into confidence judgments. 
The data generated by our ACT-R model in combination 
with these functions where compared to data generated by 
humans in an experiment reported by Thüring et al. (2006). 
As a result, the second function proved as slightly superior 
to the first one. 
Future research will adress the problem of how this function 
can be implemented directly within the ACT-R framework. 
Moreover, our approach must be tested in further 
experiments adressing different situations of inductive 
learning as well as different domains of reasoning. 
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