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Abstract this idea in an engineering task by building an artificialrage

Donald Hebb proposed a hypothesis that specialised groups of situated in a viral environment, capable of complex sym-
neurons, called cell-assemblies (CAs), form the basis for neu- POlic processing, and implemented entirely using CAs ofsim
ral encoding of symbols in the human mind. It is not clear, ~ulated neurons. Some of the objectives have already been
P:g‘r’g}sfgﬁtg%"ngg: (i:riir(]:Iggsrig:sllfs's?/%%%(ljiccg)rgt’zénrﬁg t‘\’/\}‘gm:@vr\]’ achieved and reported elsewhere (e.g. Huyck & Belavkin,
strate that Hebbian learning of synaptic weights alone is not 2006; Huyck, 2007; Belavkin & Huyck, 2008). The archi-
adequate for all tasks, and that additional meta-control pro- tecture and some of these works will be discussed in the next
cesses should be involved. We describe an earlier proposed section.

architecture (Belavkin & Huyck, 2008) implementing such . . . . . .
a process, and then evaluate it by modelling the probability The work described in this paper is concerned with a partic-

matching phenomenon in a classic two-choice task. The model ular aspect of the project — a stochastic meta-control mech-
and its results are discussed in view of mathematical theory of 5nism that modulates Hebbian learning to allow for re-use

learning, and existing cognitive architectures as well as some S . -
hypotheses about neural functioning in the brain. and combination of CAs into new representations, such as

Keywords: Atrtificial Intelligence, Cognitive Science, Neu- Ie_arning I_ogical implicat_ions (i.e. prpcedural knowle@i_gAs

roscience, Decision making, Intelligent agents, Learning, Wwill be discussed in this paper, this cannot be achieved by

Bayesian modeling, Computational neuroscience, Human ex- ysing a Hebbian learning mechanism alone. A unique con-

perimentation tribution of this work is evaluation of the meta-control rhec

| ducti anism in a cognitive model of the probability matching phe-
ntroduction nomenon in a two-choice experiment (Friedman et al., 1964).

There exists a variety of artificial systems and algorithors f  The results suggest that a proposed mechanism is a plausi-

learning and adaptation. Most of them can be classified ale model. Some neurophysiological studies and hypotheses

sub-symbolic (e.g. Bayesian and connectionist networks) oabout the brain circuitry will be discussed supporting the b

symbolic systems (e.g. rule-based systems). Known natwlogical plausibility of the architecture.

ral learning systems use neural networks, and therefore can

be classified as using sub-symbolic computations. A distin-  Cell-Assemblies asthe Basis of Symbols

guishing feature of the human mind, however, is the abitity t

use rich symbolic representations and language.

From an information-theoretic point of view, symbols are
eIemenFs of some finite s_et _that are used to encode discrek?eural [ nformation Pro
categories of sub-symbolic information. They enable com-
munication of information about the environment or a com-It is widely accepted that human cognition is the result ef th
plex problem in a compact form. One obvious benefit is that@ctivity of approximately 18! neurons in the central nervous
with language, one can learn not only from one’s own expesystem (CNS) that interact with each other as well as with
rience, but also from experiences of others. The benefits dhe outside world via the peripheral nervous system (PNS).
reading a guidebook before going abroad are obvious. Biological neurons are complex systems, and they have been

The duality between sub-symbolic and symbolic ap-modelled with various levels of details. In our system, we us
proaches has been studied in cognitive science. There efatiguing, leaky, integrate and fire (fLIF) neurons.
ists sub-symbolic (i.e. connectionist), symbolic (e.@pA8, The ‘integrate and fire’ component is based on the classical
Newell, 1990) and hybrid architectures (e.gC®R, Ander-  idea that the neuron ‘fires’ (or spikes) if its action potabhti
son & Lebiere, 1998) for cognitive modelling. These differ- A, exceeds a certain threshold vakiey=1if A>0; y=0
ent approaches, however, have not yet explained where tr@therwise. The action potentiad, is a function of the in-
symbols are in the human mind, or how the brain implementser product (integrator){x,w) = Eik:lxi wi, wherex € R¥ is
symbolic information processing. the stimulus vector (pre-synaptic), ance RK is the synaptic

It was proposed by Hebb (1949) that symbols are repreweight vector of the neuron. HerK is ak-dimensional real
sented in the brain not by individual neurons, but by cor-vector space, whereis the number of synapses to the neu-
related activities of groups of cells, calle@ll assemblies ron. We use binary signals, and therefgie ak-dimensional
(CAs). The CABOT project set out to test and demonstrate binary vector.

In this section, we outline some of the basic features of the
CABoOT architecture as well as the CA hypothesis.

cessing in CABOT



The ‘leaky’ property refers to a more complex (non-linear) are functionally different if they belong to different CAes/en
dependency of the action potential on the pre- and posthough they are similar architecturally. Such specialiseis
synaptic activity: observed in many neural networks, such as in self-orgamisin

- maps (Kohonen, 1982) and patrticularly in the human brain.
A + (X, W), o= { ;°> 1 |ftfr|]red (.yt =1 Note that CAs are not necessarily disjoint sets of cells.nA si
c = otherwise gle cell may be a member of several overlapping CAs. This
Thus, the action potential is accumulated over several timéature can be used to encode hierarchies of patterns (FHuyck
moments if the neuron does not fire. Paramdter1 allows  2007).
for some of this activation to ‘leak’ away. This is the LIF  An important property of CAs’ dynamics is their persis-

A1 =

model (Maas & Bishop, 2001). tence. When enough neurons fire to start the reverberating
The ‘fatigue’ property refers to a dynamic threshold that iscircuit, the CA ignites. Once ignited, the activity withinet
defined as follows: cells in a CA may be sufficient to support itself. Many vari-

ables can contribute to this effect. In particular, thedgiaé
and recovery rate parameters in our system effect persisten
A CA's activity does not only depend on the external pat-
where value$, andF_ represent théatigueand fatiguee-  terns, but also on the activity of other CAs in the system as
coveryrates. Thus, if a neuron fires at tinhgits threshold  they can ignite and extinguish each other. Thus, the activ-
increases, and it is less likely to fire at time 1. ity of several CAs can be characterised by different pastern
The fatiguing and leaky properties of the neural model al-of ignition order and so on. It was demonstrated earlier that
low for a non-trivial dynamics of the system. Repetitiversti  such state transitions in the system of CAs are sufficiently
ulation of excitatory synapses increases the probabifitg o controllable to implement a broad range of tasks simulating
neuron to fire, even if the weights have small (positive) val-symbolic processing that will be discussed below.
ues. On the other hand, if the neuron fires repetitively, its "
threshold increases reducing the chance of it firing again_Symbolsand Human Cognition
Thus, frequencies of pre- and post-synaptic activitiesrare ~Many models of biological neurons suggest that synaptic
portant factors in our system. weights may represent the memory for statistical and sub-
The weights,w, of a neuron can adapt according to the symbolic information of the stimulus. In particular, in man
compensatory learning rule (Huyck, 2007), which is an im-algorithms for training artificial neural networks (e.g. &j
plementation of the Hebbian principle (Hebb, 1949), wherel982), the weight vectow € R¥ corresponds to one of the
W1 depends on the correlation between the pre-synaptic, Principal eigenvectors of the covariance mafEifxx'} of in-
and the post-synaptig;, activities. put vectorsx € R¥ that have been observed. On the other
The above described properties are known characteristiddand, human cognition, and human knowledge in particular,
of biological neurons, and our model is a compromise bels encoded using symbolic representations, and the link be-
tween computational efficiency and biological plausipilit tween the symbols and neural models is less clear.

that is important for the emerging dynamics that we discuss. |t was proposed by Hebb (1949) that CAs may be consid-
ered as the neural basis of symbols. Indeed, as discussed

Neural Cell-Assemblies in the previous section, CAs can be easily mapped to some
Networks of neurons can be used as general function approxdiscrete categories of the stimuli, and their activity eats
mators and applied in a variety of tasks including contrat;p can model serial processing typical for symbolic algorithm
tern recognition and classification. Our system, GBuses  Testing this hypothesis experimentally is one of the main ob
recurrent, partially connected networks (a mesh) of fLIEne jectives of the CABT project. However, many challenges
rons with a largely pre-defined topology. The non-linearity had to be overcome to make a purely CA-based system per-
of the cells and the topology of the network leads to a comforming some non-trivial symbol processing task.
plex dynamics of the system similar to that in attractor and Previously, we reported a system performing a counting
recurrent nets (e.g. Hopfield, 1982), where some of thesstateask that consisted of 7 modules and 40 CAs (Huyck &
are more probable. These more ‘stable’ states can be charaBelavkin, 2006). A more recent system, CAB 2, is an
terised by groups of neurons that remain significantly moreartificial agent functioning in a virtual 3D environment tha
active than the other cells in the system. According to Heblhas a model of visual information processing, and is capable
(1949), we refer to such reverberating groups of cellsals  of natural language processing and action selection (Bilav
assemblie$CASs). & Huyck, 2008). One of the advantages of such a CA-based
In our system, the formation of CAs depends on the topol-architecture is that neural CAs, that we associate with sym-
ogy of the network, and it is facilitated by the adaptation ofbolic representations, integrate also all the sensory $ub-
the weights between connected cells. Therefore, CAs can b&ymbolic) information, which can be a natural solution te th
used for pattern classification of sensory stimuli (i.etgrats ~ symbol groundingoroblem. An associated phenomenon of
from external connections). This leads to functiosécial-  symbolic processing igrounding transfe— combination
isation of neurons in the network based on CAs — two cellsand re-use of existing symbols to form new representations.

Fy >0 iffired (y =1)

Bi1=6+h, Ft{ F_ <0 otherwise



The re-use of symbols is also important for learning pro-functionu: X x Y — R, while in stochastic setting one con-
cedural knowledge. Indeed, a logical implication (i.e. asiders conditional probability distributiori®u | x,y) on val-
production rule) may use combinations of symbols both inues of utilityu € R. If the utility functionu = u(x,y) or the
the antecedent and the consequent, and generally there geoént distribution P(u,x,y) is known (and henc®(u | x,y)),
many more possible combinations than the number of ruleghen given input, the optimal outpuy € Y maximises the
that are actually used. Hybrid architectures, such as#,  expected utility:
rely on statistical (sub-symbolic) computations to ‘filteut
the unwanted rules in the process caltamhflict resolution
In CABOT, associations between CAs are learnt due to th;N

Hebbian learning mechanism. However, as will be pointe ribution P (in the deterministic cas&p{u | x,y} coincides

out below, this mechanism alone is not sufficient to imple-_ . .
. . .y with u=u(x,y)). Thegreedystrategy of always choosing the
ment learning of particular associations between CAs rep- (x.y)) g ys 9y y g

) 2 ) optimal output can be expressed as follows:
resenting existing symbols. To resolve this problem, an ad-
ditional stochastic meta-control mechanism, moderatirgy t P(y| x) = { 1 if y:)7(x) 1)
Hebbian learning, has been introduced (Belavkin & Huyck, 0 otherwise

2008).. Here, we use th|§ mechanl.sm to mode! the probgblllty Information constraints mean that either the utility fuant
matchl_ng phenomenor_1 ina cla_ls_s_lcal two-choice experiment, _ u(x,y) or the distributiorP(u, ,y) is not known. Instead,
and this way evaluate its plausibility. one has some data from past occurrenceéugt,y) € R x

X x'Y which can be used to estimatéx;y) ~ Ep{u | x,y}.

In this case, the greedy strategy for choosing the system’s

y(x) = arg mya>Ep{u | Xy}

hereEp{-} denotes the expected value with respect to dis-

Stochastic Meta-Control of L earning

Two-Choice Task output is not optimal. The optimal policy is the following
Let x, y; andy, be three symbols, whererepresents a stim- exponential (‘soft-max’) distribution (e.g. Belavkin, @®):
ulus (antecedent), ang, represent two alternative re- A .

( » k¥ rep Bly|x) = QY| ) exp(Bilxy) ~W(B.X} (2

sponses (consequents). Thus, we have a conflict between two
implicationsx — y; andx — y» shown on the diagram below whereQ(y | x) is the distribution corresponding to the mini-
mum of information (e.g. no data), paramefeis related to
X the amount of information available in the data, ab(B, x)
/ \ is defined from the normalisation condition (i.&((,x) =
Inyy Q(y | x) exp{Ba(x,y)}). Distribution (2) is obtained by
Y1 Y2 solving the following variational problem

This is a simplest two-choice task (a more complex two- U(l) =sup(Ep{u} : 1(PQ) <1}

choice task may involve a set of different stimuli). The P

choice ofy; or y; is followed by some reinforcement event where I (P,Q) is the Kullback-Leibler divergence of dis-
E that may have different utility values (e.g. a success aftetribution P(u,x,y) from Q(u,x,y) representing information
choosingy, or a failure after choosingy). Learning the as- amountl contained in the data. Paramefir! appears in
sociations between the choices and the utility values, sucthe solution as the Lagrange multiplier related to inforiorat
asu(x — y2) < u(x — 1), leads to a preferencg, < yi, constraint by the derivative otJ (1):

and therefore learning rule — y;. If the reinforcement Bl u(l) 3)
event is not deterministic, but occurs with some probapilit

P(E) = me [0,1], then the preference gk to y, may also  The function above is decreasing so that — 0 (orp — o)

be stochastic. As demonstrated in many experiments with args information increases. Note that the exponential Bistri
imals and human participants, the frequency of chooging tion (2) converges to the greedy strategy (1Bas .

adapts to probabilityt of reinforcement with high utility — Exponential distributions are often used for selecting the
a phenomenon referred to as t@bability matching This  output of a system in machine learning and stochastic optimi
phenomenon can be explained based on the theories of opgation algorithms. It is also used in theeA-rR cognitive ar-
mal statistical decisions (Wald, 1950) and informatiorueal chitecture to model some stochastic properties of behaviou

(Stratonovich, 1965). In particular, it was used in the @&—R model of the two-
o o ) choice experiment, discussed below. However, the ‘tempera
Principles of Statistical L earning ture’ parametef 1 is usually set to some constant value or

Let us consider an abstract system with inpat X and out-  determined from some arbitrary ‘annealing’ schedule. The
puty € Y. Any learning system can be characterised by someelation of3 1 to entropy of success in@—R was proposed
optimisation criteria and information constraints (Béay  in (Belavkin, 2002/2003), and it was shown that it improves
2009). Optimisation corresponds to some preference oglati the match between the models and data. The derivation of
on the input-output pairéx,y) € X x Y. In a deterministic ~ optimal functionB~* = U’(l) can be found in (Stratonovich,
setting, this preference relation can be represented hilitg ut  1965) and more generally in (Belavkin, 2009).



M eta-Control of Hebbian Learning cording to the application (e.g. using sensory information

: ; The purpose of the Explore module is to randomise the ac-
The output of a neuron depends on its weight veatar R¥, . ) i
utpy ! b ''s Welgnt veatar tivity of the response CAs (i.e. CAs in s¢). The Explore

which, according to Hebb’s hypothesis, adapts to the corre- . . ,
lation between the pre- and post-synaptic activitieandy module contains cells that can be active without any externa

in the past. It is attractive to conclude, therefore, thabHe Etlmlulatlon 3u|e 0 sgonta.r;etous a}ctlv?tltt)n. ||T2eA§"S 'g the
bian learning is a particular implementation of the statadt xplore mogule Send excitatory signais 1o a ynan

learning. However, the utility is clearly missing in this-de thet_ V_‘;e'ghii 01;Ethelse conréetlztlons (tj(') not chagge.l Thus, the
scription of neural plasticity. What criteria does such a-pro actiity IgA € gaﬁ.re module gan rlggtehr randomly any reT-h
cess of changing the weights optimise? Ifin a two-choice tas SPONs€ ~A, and this process does not have a memory. The

the system accidentally chooses the ‘incorrect’ cell-adgg :Ehxplore modtgl?a d'.mtp.'g‘ rrt1.ents the effect of parameget in
Y2, then the weights associatimgvith neurons iny, increase € exponential distribution.

due to the correlation-based Hebbian learning. This cay onl | The Va(\jlule mOdtLr']leti?nﬁs |?h!tt)|tofr)t/hco\r;nlectlor1li<; to the EX'
increase the chance of — y» igniting in the future, even plore module, so that high activity of the Value cells maytshu

though the reinforcing evel following the choice ok — y» down the activity in the Explorg quule. .AS a “?S“'t' any re-
has a low utility (i.e. a failure). Thus, some additional pro sponse CA that hgs been ignited in Sewill persist longer
cess should be involved to increase the chance of the ‘(Ibrrecbecause 't. '§ Igss likely to be shut dO.W” by an.other CA. S.UCh
combinatiorx — y; after the reinforcing everit. Such a pro- a connectivity implements the following learning schenfe: |

cess appears to be especially useful if the CA-based symbolf“ particular paifx,y) results in a high utility value, then high

representations, formed earlier, are to be re-used. Belew Wact|V|ty of the Value module inhibits the Explore moduledan

describe a neural implementation of such a meta-control oﬁhe responsibl_ex,y) pair is aIIoweq to persist longer, and thg
Hebbian learning based on the utility feedback (Belavkin g X — Y connection increases relative to others due to Hebbian

: o o . learning.
Huyck, 2008) following principles of statistical learning Learging the ‘correct rules (subsBIC X x Y) contributes

to a better performance of the system (i.e. higher expected
utility). As a consequence, the average activity of the ¥alu
@ module increases with time, while the activity of the Explor
module decreases. This dynamic also corresponds to a de-
crease of paramet@ ! as information increases making the
V1 system less random and more deterministic.

Vi M odelling Probability Matching

To test how adequately the above mechanism can represent
i _ , properties of human cognition, we evaluate its performance
Figure 1: Components and connections of the Value and Exjgainst data from a classic two-choice experiment due to

plore modules controlling Hebbian learning of connectionsgriedman et al. (1964). The choice of this dataset was mo-
between CAs in modulex andY. Solid and dashed arrows  yated not only by its quality and detailed description of

show excitatory and inhibitory connections respectively.

the procedures, but also because it was used to ‘calibrate

stochastic properties of other cognitive architecturashsas
The meta-control process involves two specialised modact—r (Anderson & Lebiere, 1998). The complete descrip-

ules: Value and Explore. Their connections in the sys+jon of the experiment and data can be found in the original

tem are shown on Figure 1. Her¥ = {Xi,....xm} and  paper (Friedman et al., 1964). Here we give a basic outline.
Y = {y1,...,¥n} are sets of CAs representimg stimuli and

n responses respectively. Initially, there are excitatag-c  EXperiment Description and Previous Work
nections from every CA irX to all CAs inY, which means In this experiment, participants were asked to select one of
that all pairs(x,y) (i.e. all rulesx — y) are equally preferred. two responses on presentation of a stimulus. After the re-
Thus, given inpuk € X, any responsg € Y can be selected. sponse was selected, a reinforcement e#entcurred with
However, due to Hebbian learning, the connectior y is  probability P(E) = t that did not depend on the response.
reinforced if a particular pair of CAs ignite together, gigi  Each participant had to perform this task in three sessions,
the pair a higher chance to ignite together in the future.sThu each session consisting of 8 blocks, each block consisted of
simply by virtue of Hebbian learning, the system can learn48 trials. The probability?(E) = 1 changed between each
eventually to prefer some random pairs. The purpose of thé8—trial block. This paper will report only simulations @-r
Value and Explore modules is to make this process selectiveults in Sessions 1 and 2. In these two sessions, blocks 1, 3,
according to the utility value of the feedback. 5 and 7 had?(E) = .5, and blocks 2, 4, 6, and 8 were with
The output activity of the Value module represents the util-P(E) € {.1,.2,.3, .4,.6,.7,.8,.9} that was assigned according
ity valuesu associated with the pafk,y) selected on the pre- to a random pattern. Thus, probabill(E) = 1t was alter-
vious step. The input of the module can be configured acnating between .5 and some value above or below .5 between
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Figure 2: Frequency of response (ordinates) as a functiofigure 3: Comparison of response frequency produced by
of the probability of reinforcing this response (absci3sae the CABOT model with response frequency by participants
Points and error bars represent average response and stam{Friedman et al., 1964). RMSE=8.937%.

dard deviations in 48—trials of two-choice task from 80 jgart

ipants, reported in (Friedman et al., 1964). Dashed lingisho . ] . o ]
frequency of the reinforcing event itself. Hebbian rule increasing associations— y between active

CAs. The fatigue and leak parameters of Yheetwork were
set in such a way that CAs ignite only when an external stim-
48-trial blocks. The data recorded the number of times Reuli are present. The CAs iviinhibited each other so that only
sponse 1 was chosen in each 48-trial block. one of the CAs ir¥Y was active at any moment. The Explore
Figure 2 shows the results of these experiments, reporteshodule had excitatory connections with a small proportion
by Friedman et al. (1964). The charts show frequencies obf cells in moduleY. These connections were distributed uni-
Response 1 (R), and reinforcement event§(E), as func-  formly, and the weights did not adapt. Spontaneous acinati
tions of the control probabilitf?(E) = . One can see thatthe in the Explore module could randomly trigger any of the two
frequency of the reinforcement evetE) approximates the response CAs in module. The activity of the Explore mod-
the control probabilityr (E) ~ P(E). The response frequency ule could be inhibited by the output activity from the Value
F(R) also matches the probabiliB(E), but it differs signifi- ~ module that was triggered in each trial according to proba-
cantly at the lower and higher ends of the range: WR@Hh) bility P(E) = mtof the reinforcement event, controlled by the
is low (t= .1), the participants overestimate the probability experimental sequence.
(F(R) > P(E)); whenP(E) is high (t=.9), the participants When the Explore module is inhibited by the reinforcing
underestimate it (R) < P(E)). Thus, the response appears activity of the Value module, the active pdi,y) is allowed
to be less certain than the reinforcing event. to persist longer, strengthening the connectionsy relative
As suggested by Anderson and Lebiere (1998), this exto other connections. We found that the robustness of this
perimental evidence indicates against using the greedy str effect depends on the time (i.e. number cycles) these CAs
egy (1) for choosing the response. The data was modelled iare allowed to persist. In this model, it takes approximatel
ACT-R by sampling responses from exponential distributionbetween 10-20 cycles for a response CAito ignite, and
with somep~1 > 0. This agrees with equations (2) and (3), if the Explore module is active, then the response CA may
where~! — 0 only when informatiorl — supl. We now  change during another 10-20 cycles. In this experiment, the
describe a model of this experiment implemented in @&B  system ran for 100 cycles per trial which was sufficient for
o the control of learning to have a robust effect. The complete
Model Description code of the simulation is available online from the C&B
The model used the architecture shown on Figure 1, wherproject website.
moduleX consisted of CAs representing one or more stimuli,
and moduleY contained two CAs representing two alterna- Results
tive responses. There were excitatory connections with lovi’he model was used to simulate Sessions 1 and 2 of eight
weights from modulé& to all CAs in moduleY. The weights  48-trial blocks each with variable control probabilities
on these connections, however, could adapt according to @riedman et al., 1964). The results comparing response fre



guency of the model with the data are shown on Figure 3. The References

model approximates the data fairly well (RMSE=8.937%) anderson, J. R., & Lebiere, C. (1998fhe atomic compo-

showing the probability matching effect that also overesti pents of thoughtMahwah, NJ: Lawrence Erlbaum.

mates and underestimates the low and high value of the corge|avkin, R. V. (2003). On emotion, learning and uncer-
trol probability 1t respectively. Note that unlike thedd—R tainty: A cognitive modelling approachPhD thesis, The

model, where the estimated paramdiet in the exponential University of Nottingham, Nottingham, UK.

distribution was constant (Anderson & Lebiere, 1998), theBeIavkin, R. V. (2009). Bounds of optimal learning. In

activity_ of the Explore module randomising the response is 2009 |EEE International Symposium on Adaptive Dynamic
dynamic. Programming and Reinforcement Learnigup. 199-204).
. Nashville, TN, USA: IEEE.
Conclusions Belavkin, R. V., & Huyck, C. (2008). Emergence of rules

In this paper, we discussed the CABarchitecture and some  in cell assemblies of fLIF neurons. Ifhe 18th European
challenges associated with implementing the CA hypothesis Conference on Atrtificial Intelligence.
of symbolic processing in the brain. The problem of re-usePaw, N. D., O'Doherty, J. P., Dayan, P., Seymour, B., &
and combination of symbols, particularly in learning proce  Dolan, R. J. (2006). Cortical substrates for exploratory
dural knowledge, pointed at one significant shortcoming of decisions in humans\ature 441(7095), 876-879.
the standard Hebbian learning mechanism — adaptation dfriedman, M. P., Burke, C. J., Cole, M., Keller, L., Millward
weights based purely on correlations does not take into ac- R. B., & Estes, W. K. (1964). Two—choice behaviour under
count the optimisation criteria that a system may have to sat extended training with shifting probabilities of reinferc
isfy. To resolve this problem, stochastic meta-controldoas ~ ment. In R. C. Atkinson (Ed.)Studies in mathematical
on utility feedback was introduced into the system. psychologypp. 250-316). Stanford, CA: Stanford Univer-

It is attractive to speculate about the existence of the&/alu  Sity Press.
and Explore modules in the brain. Some researchers haveranger, R. (2006, July). Engines of the brain: The compu-
proposed that tonically active cholinergic neurons in tasah tational instruction set of human cognitioAl Magazine
ganglia and striatal complex play an important role in con- 27(2), 15-32.
flict resolution and learning procedural knowledge (Grange Hebb, D. O. (1949).The organization of behavior New
2006). These neurons account for a small proportion of the York: John Wiley & Sons.
connections that are quite uniform and non-topographid, anHopfield, J. (1982). Neural networks and physical systems
the activity of these neurons was suggested to play the role with emergent collective Computational abilitid®roceed-
of stochastic noise, similar to the activity of cells in the-E  ings of the National Academy of Sciences of the JSA
plore module (see Fig. 1). Interestingly, the activatiorhef 2554-8.
tonically active cholinergic neurons is inhibited by theiac Huyck, C. (2007). Hierarchical cell assembli€onnection
vation from the reward path, similar to the function of the Science
Value module in our system. Other studies of mechanisméluyck, C., & Belavkin, R. V. (2006, April). Counting with
for exploratory behaviour in the brain are also in favour of Nneurons, rule application with nets of fatiguing leaky in-
the exponential distribution model (Daw, O’Doherty, Dayan tegrate and fire neurons. In D. Fum, F. D. Missier, &
Seymour, & Dolan, 2006). A. Stocco (Eds.)Proceedings of the Seventh International

Setting these speculations aside, this work has demon- Coqfergnce on Cognitive Modelingtieste, Italy: Edizioni
strated that the proposed mechanism can be used for control-Goliardiche. . . .
ling Hebbian learning in networks of relatively biologial ~Kohonen, T. (1982). Self-organized formation of topologi-
faithful models of neurons. The mechanism allows for se- Cally correct feature mapgiological Cybernetics43, 59—
lective learning of connections between specialised gadp _
cells (CAs), and following Hebb’s hypothesis it shows notMaas, W., & Bishop, C. (2001)Pulsed neural networks
only that CAs can indeed be associated with symbols, but MIT Press. B . . _
also shows how such representations can be re-used and cofewell, A. (1990) Unified theories of cognitiarCambridge,
bined to learn new knowledge. Simulation of the probability Massachusetts: Harvard University Press.
matching effect has demonstrated that the mechanism is al§da: E. (1982). A simplified neuron model as a principal
a plausible cognitive model. We anticipate that the progose component analyzedournal of Mathematical Biologyt5,
architecture can also be used to model other psychological 267-273. . ) .
phenomena, such as the effect of reinforcement values ontratonovich, R. L. (1965)..On value ofmformandves‘qya
speed of learning, and this is one possible direction of our of USSR Academy of Sciences, Technical Cybernétigs

future research. 12. (InRussian) N _
Wald, A. (1950). Statistical decision functionsNew York:

Acknowledgements John Wiley & Sons.
This work was supported by EPSRC grant EP/DO59720.



