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Abstract 

This paper responds to MacDonald and Christiansen’s 
(2002) experience-based account of subject vs. object 
relative clause processing based on Simple Recurrent 
Network simulations. They found that object-extracted 
relative clauses exhibit performance penalties that are 
absent in subject relative clauses, and more so in less 
trained networks. Whereas MC argue that their finding 
reflects a differential amount of word order regularity in 
subject- vs. object-extractions, a detailed analysis of the 
word-by-word output-activation pattern suggests that it is 
caused by the network failing to distinguish verbs from 
the relative pronoun that during early training epochs. 
This interpretation is supported by other aspects of the 
activation pattern that indicate incomplete grammar 
acquisition. Nevertheless, the results point at a viable 
source of complexity in sentence processing. 

Introduction 

Relative Clauses and working memory 
The contrast between Subject-extracted (2) and 

Object-extracted relative clauses (1) is the poster child 
of working-memory oriented psycholinguistics. 

(1) The reporter who the senator attacked admitted 
the error (ORC) 

(2) The reporter who attacked the senator admitted 
the error (SRC) 

Subject-relative clauses (SRCs, 1) are generally 
easier to process than object-RCs (2), and more notably 
so for readers with a low reading span (King & Just, 
1991). Among the multitude of models, two 
fundamentally opposing frameworks have been most 
prominent: retrieval-based working memory models, 
(eg. Just & Carpenter, 1992, Gibson, 1998, Gordon et 
al., 2004, Vasishth & Lewis, 2005), and experience-
based models, such as probabilistic parsers (Hale 2001, 
Levy, 2005) and connectionist models, most notably 
that of MacDonald and Christiansen (2002). Their 
model is based on Simple Recurrent Networks (Elman, 
1990). SRNs acquire implicit grammatical knowledge 
when they are trained on linguistic corpora. Crucially, 

they lack a clear distinction between linguistic 
knowledge, processing, and a knowledge-free notion of 
a working memory and its capacity. In MCs’ SRN-
based approach, the complexity difference between 
Subject and Object-RCs can be attributed to the 
differential degree of word-order regularity exhibited 
by SRCs and ORCs. Subject-RCs match the 
predominant subject-verb-object (SVO) word order of 
simple main clauses. Object-RCs, on the other hand, 
show an irregular O-S-V order. Processing SRCs hence 
benefits from “regular” word order expectations being 
transferred from main clauses, whereas no such transfer 
is made for ORCs. Therefore, SRCs are easier to 
process than ORCs despite the relatively low frequency 
of relative clauses in general. These predictions were – 
in principle at least – confirmed by MC’s simulations 
with Simple Recurrent Networks. These networks were 
trained in three epochs of 10000 random sentences 
each. Because SRCs were easy even in the earliest 
training epoch, only ORCs benefited from more 
training. The resulting grammatical error pattern shows 
striking resemblance to the reading times of the 
different span groups of King and Just (1991). 
MacDonald and Christiansen (2002) hence attribute the 
differential performance of span-groups to their 
respective amount of linguistic experience rather than 
differences in working memory capacity. Basically, 
they reveal a – this time word-order-based – frequency 
(amount of training) x regularity (i.e. transfer from 
predominant order) interaction comparable to what has 
been demonstrated for other connectionist models in a 
variety of domains (e.g. Seidenberg & McClelland, 
1989). 

In this paper, we will show that MC’s critical results 
can be attributed to a fundamental part of speech 
classification error due to insufficient learning in early 
epochs. We will argue however that the underlying 
mechanism of interference by locally coherent 
predictions might very well be a valid predictor for 
processing complexity. 



SRNs and sentence processing 
SRNs have successfully been demonstrated to be 
capable of implicitly acquiring limited recursive 
“grammars” (e.g. Elman, 1991; Christiansen & Chater, 
1999). They do so by learning to predict the next word 
when presented with sentences word-by-word at the 
input. In the SRN architecture, there is a hidden layer 
that receives combined activation from the input layer 
and the context layer, which holds the content of the 
hidden-layer at the previous cycle. Using the standard 
back-propagation algorithm, the prediction-error, 
reflecting the deviance of the predicted activation 
pattern from the actual next word pattern, is used to 
adjust connection weights throughout the network back 
to the input layer. Eventually, after thousands of 
learning cycles, the SRN performs reasonably well even 
on sentences that it has never seen before. At this point, 
SRNs can be demonstrated to have classified words into 
their syntactic categories and possibly even into more 
fine-grained semantic distinctions (Elman, 1990). SRNs 
have repeatedly been demonstrated to be able to acquire 
an implicit recursive grammar (Elman, 1991, 
Christiansen & Chater, 1999).  

As a measure of the grammatical viability of the 
network’s predictions, output vectors are compared to 
grammaticality vectors calculated from the underlying 
context free grammar used to generate the training set. 
Each unit corresponds to a lexicon entry (word) and 
carries its grammatical probability in the context of the 
previous words in the sentence. For instance, if there 
are two grammatical continuations, both equally likely, 
the corresponding units both have a probability of 0.5 
and should hence receive 50% of the output activation 
each.  

Deviation from this activity pattern increases the 
grammatical prediction error (GPE). The GPE is a 
global error measure (i.e. the specific errors on each 
output unit are collapsed into a single value) ranging 
from zero to one, with zero meaning a perfect 
prediction of all grammatical continuations, and one 
meaning that all activation is on ungrammatical units. 
To achieve this, the GPE is computed from hits 
(summed activation on correctly predicted, grammatical 
nodes), false alarms (summed activation on incorrectly 
predicted, ungrammatical nodes) plus misses (sum of 
differences of desired and actual activity on 
grammatical nodes, if positive, weighted by the amount 
of total output activation), as specified in (3). 

(3)   

A GPE decreasing over several training epochs 
reflects the network’s ongoing acquisition of implicit 
grammatical knowledge.  

MC used the GPE to predict on-line processing load, 
with GPEs being directly proportional to reading times. 

Unfortunately, they restricted their analyses to global 
error (GPE) patterns. However, the GPE as a global 
measure can reflect two independent properties of the 
networks: i. how well the networks have learnt the 
grammar underlying the training corpora, and ii. on-line 
processing difficulty. MC clearly focused on the second 
aspect, implicitly presuming that grammar acquisition 
even after the earliest training epoch has reached a 
mature enough stage to be compared to adult 
participants in reading studies. However, until more 
fine-grained analyses have been carried out, the source 
of the errors remains obscure.  

What’s in an error? 
False alarm activation can indicate a. the lack of 

adequate knowledge about word categories and the 
constructions they can appear in, or b. the interference 
induced by locally coherent continuations, ignoring the 
global context they appear in. We will show that strong 
but globally inconsistent local dependencies can distract 
from globally grammatical predictions, even in 
networks that have sufficiently learnt to classify words 
along syntactic categories. 

We present detailed analyses of a. the output 
activation patterns in our replication of MacDonald and 
Christiansen’s SRNs, and b. multi-dimensional scaling 
results of average hidden layer activations1.  

SRN simulation 
The SRNs were built from thirty-one units each in the 

input and the output layer, and sixty units each in the 
hidden and the context layer. Like MC (2002), we 
trained ten SRNs with ten different corpora. The 
corpora were generated from a 30 word vocabulary plus 
the end of sentence marker (EOS) fed into a 
probabilistic context free grammar. Ten percent of the 
NPs were modified by relative clauses2, regardless of 
their position in the sentence. Half of the RCs were 
SRCs (25% transitive and 25% intransitive) and the 
other half ORCs (transitive only). RCs were both 
center-embedded or right branching. One half of the 
verbs were in the present tense, the other half in the past 
tense. The present tensed verbs agreed in number 
(singular or plural) with their clausal subject, past 
tensed verbs fit with both singular and plural subjects. 

                                                             
1 We did not have access to MCs networks and data except for 
the summarized output activities. We therefore had to 
replicate their results before we could start analyzing hidden 
layer activities. 
2 The probabilities differ slightly from those published in the 
article, because we rather used the numbers of the actual 
original grammar generator that M. Christiansen has provided 
to us. Our test revealed the same basic activation patterns with 
either set of values. 



Each training corpus contained 10,000 sentences, 
resulting in an epoch of about 55,000 sweeps (words) 
on average. The learning rate was set to .1, and there 
was no momentum. Cross-entropy was used to calculate 
the error used by the backpropagation learning 
algorithm. The test sentences were not included in the 
training corpus. 

Results 
There are two positions of interest with high GPEs: 

the embedded verb in ORCs and the matrix verb in both 
ORCs and SRCs. The most interesting spot in ORCs is 
the embedded verb, where the largest portion of 
experience-based variance was obtained in MC’s 
networks, motivating the frequency x regularity 
interpretation. 
Embedded verb in ORCs 

In ORCs, the embedded verb follows a “NP–that–
NP” sequence. After the first training epoch, the 
element most active here, quite surprisingly, is the end 
of sentence (EOS, see figure 1). This prediction is 
clearly ungrammatical, because neither the matrix 
clause nor the RC received a verb yet. In the second 
epoch, the prediction of an EOS has been strongly 
reduced, while the correct predictions of verbs with the 
right number marking were increased. This trend 
continues until the third epoch, where there is virtually 
no activity left for EOS. As for the verbs, it should be 
easy to establish the agreement between the NP and the 
verb, since both are adjacent in ORCs, as they are in 
main clauses. Surprisingly, it takes three epochs to learn 
this dependency to an adequate extent. 
 

  
Figure 1: Mean output activations and grammatical 

probabilities at the embedded verb in ORCs, for three 
training epochs. Whiskers indicate standard errors. 

Matrix verb 
The second position at which a sentence-type x 

experience interaction was established in MCs 
simulations is the matrix verb. Moreover, GPEs on the 
matrix verb were high for both SRCs and ORCs. The 
results seem to fit King and Just’s (1991) reading data 
in as much as reading times were also highest at this 
point in both SRCs and ORCs, with a slight advantage 
for SRCs. Nevertheless, while reading times at the 
matrix verb after ORCs showed the highest variability 
for readers of different span groups, the GPEs for ORCs 

in the network simulations varied not nearly as much at 
the matrix verb as on the embedded verb3.  

We examined the activation patterns at the matrix 
verb after both SRCs and ORCs, since both exhibit 
extremely high GPEs (between about .55 and .88). 

SRCs. The detailed output vector analysis revealed 
that the GPE is based on one major false alarm 
component. In SRCs (figure 2), after a verb-NP 
sequence, the high GPE was based on false activation 
of the EOS, which did not change substantially over 
epochs. 

 
Figure 2: Mean output activations and grammatical 

probabilities at the matrix verb after SRCs, for three 
training epochs. 

 
Figure 3: Mean output activations and grammatical 

probabilities at the matrix verb after ORCs, for three 
training epochs. 

 
ORCs. After ORCs, following a NP-verb sequence, the 
only grammatical continuation is the matrix verb. 
Activation on all other words is a false alarm. Note that 
in the first epoch, the sum of false alarms is about 80%. 
The activation pattern reveals that the high GPE was 
due to one of the following two major false alarm 
components:  

1. The false prediction of a determiner, indicating 
the prediction of another NP following the verb. 
This error dramatically decreased over the three 
epochs, but was still present even in the third 
epoch. 

2. The false activation of EOS, which even grew 
slightly in the third epochs. 

                                                             
3 However, the reading data on the matrix verb can be 
explained by a spill-over from the embedded verb, something 
that can quite regularly be observed in reading data. This 
dissimilarity between reading and simulation data should 
therefore not be taken too seriously. 



Discussion  
Embedded verbs 

The activation patterns reveal that the high GPE at 
the embedded verb in ORCs during the first and the 
second epochs is mainly due to an ungrammatical 
prediction of an EOS. The remaining activation of the 
verbs shows that the networks have, at the same time, 
learned intra-RC number agreement, if not perfectly. 
How can this pattern of results be explained? 

The EOS prediction is also high after SRCs following 
the sequence NP-that-verb-NP. Note that about half of 
the sentences end after the RC, namely when the RC 
modifies the Object-NP in transitive main clauses. The 
high false EOS prediction might thus be due to locally 
predicting the sentence ending, despite the context of a 
Subject-NP modifying center-embedded sentence. 

Back to the embedded verb in ORCs. Here, NP-that-
NP, and …that-NP is certainly not a good sentence 
ending. Two simple hypotheses can be ruled out fairly 
quickly. First, since about half of the sentences end with 
an NP, it might be just the NP that makes a good EOS 
in early training. Secondly, the prediction of the EOS 
might just reflect that with each additional word, the 
likelihood of an EOS increases. 
 

 
Figure 4: Output activaton of EOS at each position in 

sentences with ORCs, for three training epochs. 
 

Figure 4 shows the activation of an EOS throughout 
the entire sentence. There is clearly little activation after 
the first NP, ruling out the first hypothesis. Moreover, 
there is a clear peak at the embedded verb, the matrix 
verb and the following determiner, whereas the 
subsequent noun shows almost zero EOS activation. An 
implicit counting mechanism that predicts increasing 
EOS activity with each step further downstream can 
hence be ruled out.  

We want to pursue a third hypothesis: The network 
has not yet classified the relPro that correctly after the 
first epoch and confuses it with verbs. Note that the 
sequence NP-that-NP shares some distributional 
properties with regular transitive main clauses. The 
training corpora contained both simple main clauses 

and sentences with one or more RCs, most of which 
were center-embedded, i.e. modifying the first NP. All 
sentences started with an NP. The next word could 
either be a verb, or the relative pronoun that. Both were 
often followed by another NP, as i. transitive verbs in 
main clauses are followed by the direct object, and ii. 
the relative pronoun is followed by the subject-NP in 
ORCs. Due to this distributional resemblance, it seems 
reasonable that in early epochs, the networks are bad in 
distinguishing NP-verb-NP sequences from NP-that-NP 
sequences, or, to put it more simply, they confuse the 
relative pronoun with transitive verbs, at least in the 
local context of one NP to the left and one NP to the 
right. Hence, at the acquired level of grammatical 
knowledge, the EOS appears to be a feasible 
continuation for NP-that-NP, since it appears to mark 
the end of a simple transitive SVO main clause4. 

With more training, the networks slowly adapt to the 
fact that the relPro and verbs are not distributionally 
equivalent when a wider context is taken into account. 

To substantiate this claim, we analyzed the hidden 
layer activities for all words in the corpus. There have 
been several proposals for analyzing distributed 
representations in neural networks, such as cluster 
analysis (Hinton, 1988), principle component & phrase 
state analysis (Elman, 1989), skeleton analysis (Mozer 
& Smolensky, 1989), contribution analysis (Sanger, 
1989), which make the networks’ representations and 
behavior more transparent. Since we are interested in 
how the SRNs have classified words, we analyzed 
hidden layer activities for each word averaged over test 
runs of one thousand random sentences. We present 
multi-dimensional scaling (MDS) data illustrating the 
internal grouping of words and indicating scaled 
euclidean distances between individual words (word 
groups). All stress values were below 0.1. 

If the confusion of relPros and verbs is responsible 
for false EOS prediction, the hidden layer activations of 
relPros and verbs should be more similar in the first 
epoch than in later epochs. 
Results 

As figures 5 and 6 illustrate, euclidean distances 
between the relPro that and transitive verbs change 
considerably between epochs. The relPro is thus much 
more similar to verbs, especially transitive verbs, after 
the first training epoch than it is after the third, where 
                                                             
4 There is even more distributional overlap between relpros 
and verbs: In SRCs, the relative pronoun that is immediately 
followed by a verb. However, even this local sequence is 
locally consistent with the verb classification of that, since in 
sentences with ORCs, the matrix verb immediately follows 
the embedded verb (it even follows a NP-verb sequence!). 
NP-that-verb-NP sequences are hence locally consistent with 
both the verb reading of that, since there is a NP-verb-verb-
NP sequence contained in sentences with ORCs, and with the 
correct relative pronoun reading of that. 



that builds an outlier categorie of its own. The hidden 
layer activities support the confusion hypothesis: After 
the first epoch, average activities of relPros resemble 
those of verbs much more than after the second and the 
third epoch.  

 
Figure 5: MDS plot of average hidden layer 

activations after epoch 1 

In fact, relPros resemble transitive verbs more than 
intransitive verbs. These data clearly suggest that the 
biggest part of what is gained from training is the 
substantially better classification of the relPro. On the 
other hand it is also clear that relPros are not generally 
classified as verbs even in the first epoch. However, the 
hidden layer analyses reflect averaged hidden layer 
activities at the moment when the word is at the input, 
not after the entire NP-that-NP sequence.   
 

 
Figure 6. MDS plot of average hidden layer activations 

after epoch 3 

Discussion of matrix verb results 
The results on the matrix verbs strongly suggest that 

the GPE is mainly based on one or two false alarm 
components for SRCs and ORCs, respectively. In both 
sentences, the EOS is a major false alarm component. 

In SRCs, the EOS-prediction follows a …-
verbtransitive-NP sequence. Expecting an EOS here is 
locally legitimized by the word order in transitive main 
clauses, which end here in the majority of the cases. 
The false EOS prediction appears to be stable, and 
would probably survive even more training epochs, 
even though the activation of correct verbs is 
continuously growing throughout the epochs. These 
data suggest that the main reason for long reading times 
on matrix verbs in center embedded sentences is that 
readers, even the most experienced ones, expect the 
sentence to end here about as much as they expect a 
correct matrix verb. In the absence of further empirical 
data, we resort to questioning this empirical prediction 
on the grounds of plausibility. We are convinced that 
adult readers, even less experienced ones, would be 
quite surprised if the sentence ended after a simple 
center-embedded RC. 

In ORCs, both false alarm predictions of the 
determiner and the EOS prediction follow a …-NP- 
verbtransitive sequence. In this local context, the 
prediction of the determiner is legitimized by the word 
order in simple transitive main clauses, where verbs are 
followed by an NP. As in SRCs, this prediction 
indicates that, to a substantial degree, the networks 
ignore the fact that the RC is sub-ordinate. Contrary to 
the stable EOS prediction in SRCs however, the 
determiner prediction shrinks over time, indicating that 
the networks learned to widen their contextual window. 
The decreasing amount of false alarm activation is 
responsible for the global GPE reduction at the matrix 
verb. Although it appears odd that adult readers would 
run into this local trap, this result is modestly consistent 
with MCs frequency x regularity interpretation.  

The false prediction of an EOS at this position seems 
a bit puzzling at first glance. The embedded verbs used 
here are transitive, as they have to combine with an 
object-NP in the test sentences. Even if the networks 
pursue a main clause analysis, they should predict a NP, 
but rule out an EOS. However, half of the transitive 
verbs used (phones, phone, phoned, understands, 
understand, understood) were also used as intransitives. 
It seems likely that the averaged GPEs are based on 
false predictions due to these verbs. A more detailed 
analysis, distinguishing strictly transitive and optional 
transitive verbs could clarify this issue. Also note that 
the false prediction of an EOS increases with 
experience. So the most experienced networks, and 
hence high span readers, are predicted to not really be 
surprised if the sentence ends after a center-embedded 
ORC. Once again, we are skeptical about this 
hypothesis. 

In all cases, locally coherent continuations have 
distracted the network from the global necessity of a 
matrix verb at this position. More generally speaking, 



locally consistent false alarms were identified as the 
main source of processing difficulty.  

Conclusion 
We have argued that when predictions derived from 

connectionist models are presented, global error 
measures must be accompanied with detailed analyses 
of the output activation vectors to understand the source 
of the errors in the networks. A detailed analysis of 
false alarm components can hint at substantial 
acquisition deficits at the current stage of learning and 
at simulation artifacts caused by the choice of the 
grammar that the training corpora are generated from. 
In the present case, MC’s networks were shown to 
make unrealistic continuation predictions based on 
classification errors (the relative pronoun that is 
considered a verb). However, identifying a flaw in a 
particular simulation hardly renders a general 
hypothesis invalid. Experience is a likely source of both 
construction specific complexity and inter-individual 
variation, and empirical support is beginning to 
materialize. For instance, Wells, Christiansen, Race, 
Acheson, and MacDonald (2009) showed that 
processing of relative clauses, and especially of ORCs, 
can be improved by training with RCs.  

The activation analyses also revealed that the main 
source of complexity is the distraction induced by 
locally coherent continuations. Are adult language 
processors distracted by such false alarm predictions? 
Again, empirical support is beginning to surface. Tabor, 
Galantucci and Richardson (2004) provided data 
indicating that locally coherent but globally incoherent 
fragments can distract attention from the globally valid 
analysis in ambiguities. Konieczny (2005) revealed that 
syntactic errors produced by adding locally coherent 
words to a sentence were harder to detect than errors 
induced by locally incoherent words. Konieczny, 
Müller, Hachmann, Schwarzkopf and Wolfer (2009) 
showed in visual-world eyetracking experiments that 
local coherences are being interpreted during speech 
processing. Despite their misleading results, MC’s 
approach helped identifying a fundamental processing 
phenomenon: interference by local coherences. 
Empirical data showing local coherence effects in real 
language processers provides support for the 
connectionist framework as a whole. 
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