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Abstract 
Second Life™ is a 3D virtual world with unlimited potential 
as a tool for cognitive modeling. This paper discusses the 
many advantages of using Second Life versus other 
simulation environments, the aspects of cognitive modeling 
that this simulation environment may be appropriate for, the 
interface setup, and various technical issues. Two simulations 
are provided as examples of interfacing Second Life with 
cognitive models, including an example where the high-
fidelity complexity and constraints of Second Life may help 
to distinguish between models and/or parameter values that 
produce varying performance in different task environments. 
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worlds, embodiment, ACT-R, task environment, cognitive 
architectures. 

Introduction 
The 3D virtual world Second Life™ offers a potential 
environment for training and testing cognitive models. 
Second Life is populated by hundreds of thousands of 
online users, and perhaps millions of virtual objects. This 
technology may be of interest to the cognitive modeling 
community for a variety of reasons, including scalability 
and scope testing, skill transfer simulations and long-term 
model development, emerging behavioral and social 
simulations, etc. Second Life provides a very rich, dynamic, 

and interesting world, (compared with the simple simulation 
environments that are typical in cognitive modeling), that is 
well-supported and easy to use and to redesign as needed 
(compared with robotics), with unlimited tasks, and the 
opportunity for life-long (rather than simulation-long) 
learning for a cognitive agent. Some Cognitive Science 
researchers have already begun to explore Second Life for 
demo and simulation purposes (e.g. Burden; Merrick & 
Maher, 2009; Rensselaer Polytechnic Institute, 2008), but 
more work with this environment is needed to take full 
advantage of its features.  

The rest of this paper discusses the advantages of Second 
Life over alternative simulation environments for cognitive 
modeling, the types of simulations that Second Life may be 
appropriate for, and some key technical issues for modeling 
in this environment. Finally, two simulations are provided 
as examples of how cognitive models may be interfaced 
with Second Life, and how the high-fidelity complexity and 
constraints provided by the virtual world may be useful in 
distinguishing between models and/or parameter values that 
produce varying performance in different task 
environments. 

Why Second Life? 
The attraction of Second Life is the same as that of robotics 

Figure 1. Cognitive Agent exploring a park in New York. ACT-R model controlling the agent. 



– embodiment (minus the many hassles of robotics, 
discussed below). A large portion of human cognitive 
abilities is the result of the complexities and consistencies of 
our environment. Thus, a dynamic, rich world, with physical 
laws and consistent object properties may provide for more 
fidelity than simpler simulation environments, and thus, 
more useful models of cognition. 

Second Life’s complexity and constraints may help to 
avoid some ‘false positives’, as well as ‘misses’ in cognitive 
modeling. A false positive may occur when a cognitive 
model accounts for human data in a simplified task 
environment, but cannot scale in the real world. A miss may 
occur when a cognitive model cannot fit human data without 
the added complexity and constraints of the real world; thus, 
the use of a simplistic simulation environment may cause 
for the model to be incorrectly dismissed. 

Second Life vs Robotics 
If real-world fidelity is so important, why not just use the 
real world? There are many limitations to working with 
robots in the physical environment, versus simulated agents 
in virtual reality. In addition to the financial expenses, one 
major problem is that robotics work involves 
disproportionally more work on the ‘body’ as opposed to 
the ‘mind’. In the end, a slight change to the task 
environment (e.g. taking a driving robot off-road) may 
require changes in both sensory and motor mechanisms.  

While biological agents are endowed with appropriate 
sensory-motor systems for their world, and virtual agents 
for theirs, robotic agents are in no way equipped to handle 
the dynamics of the real world. For example, the number of 
sensors on today’s robots, compared to the amount of 
sensors that a biological cognitive agent might have, is 
simply laughable. Virtual worlds like Second Life provide 
for environmental complexity and fidelity, as well as 
proportionally suitable sensory-motor abilities of virtual 
agents. Said simply, by using Second Life as opposed to a 
robot platform, researchers may be able to focus on 
cognitive research, and avoid unnecessary investments of 
time and finances.  

Other Simulation Environments 
Many other virtual simulation environments exist, and may 
be used for cognitive modeling. Some of the alternatives 
have better graphics, which can be very useful for demo 
purposes, some have a faster interface for brain-body 
communication, etc. However, due to the sheer size of the 
Second Life user community, due to its steadily increasing 
popularity, it makes for a much richer, ever-growing world. 
Additionally, the commercial value of Second Life is 
reflected in greater expansion of its technical capability and 
technical support. Using Second Life over a less popular 
simulation environment may be equated to using the World 
Wide Web over a Bulletin Board System. 

What in the world of Cognitive Modeling is Second 
Life good (and not good) for? 
Second Life may NOT be employed for modeling 
millisecond response times, nor is it appropriate for large-
scale parameter exploration. Rather, Second Life is best 
used for modeling performance, and learning curves. 
Specifically, Second Life is best employed for (1) testing 
the scope of models’ learning/decision-making mechanisms 
in complex and dynamic, distractor-full environment, (2) 
modeling adaptation and skill transfer, and (3) social 
modeling. 
Complexity and Constraints 

Spatial navigation is a prime example of a task that 
requires the complexity and constraints of Second Life for 
cognitive modeling. When modeling navigation, researchers 
often unrealistically represent the environment as a flat grid 
of adjacent spaces (e.g. Braga & Araujo, 2003; Voicu & 
Schmajuk, 2002). Some alternatives may be to include two-
way or one-way wormholes. Different models may thrive in 
different environments, and so the choice of task-
environment is not trivial. Second Life may be employed to 
provide realistic uncertainties and constraints. Although 
Second Life bears many geographic properties (e.g. if space 
A can be reached from space B, usually this means that 
space B can be reached from space A), it also provides 
many realistic uncertainties (e.g. object B may be in view 
when approaching object A from the East, but not from the 
North; object C may be dynamic, sometimes to be found in 
proximity with A, and sometimes in proximity with B, etc.). 
The use of a high-fidelity environment may help to deduce 
high-fidelity cognitive models and parameter sets. 
Task Variety and Skill Transfer 

Second Life may be used for simulations of a variety of 
tasks, from playing with building blocks, to maze-running, 
to soccer, etc. Most tasks are very easy to set up, require no 
programming or 3D modeling background, and are reusable 
by other researchers. Of great importance is the fact that an 
agent may ‘live’ and develop in this rich world, learning 
new skills along the way. The multitude of tasks can also 
help in modeling skill-transfer – an important qualification 
of human intelligence. A cognitive agent may adopt their 
soccer skills to hockey, walking skills to driving, and block-
building skills to tower of Hanoi, Tetris, and sculpting.  

Technical Setup and Complications 
The Second Life programming language, LSL, is required 
for interfacing Second Life objects with cognitive models. 
Although the basic algorithm is relatively simple (capture 
and send sensory information to model; perform any actions 
returned by the model), some complications are bound to 
arise.  
Land Ownership 

There are many parts of the Second Life world where new 
objects cannot be created because the landowner does not 
allow this. There are parts of the world, called sandboxes, 
where users are encouraged to build and script their objects; 
however, objects usually cannot remain in most sandboxes 



for longer than a few hours. Thus, sandboxes may be fine 
for building models and running short simulations, but not 
for longer lifespans or more controlled simulations. One 
alternative is to buy land. Another may be to connect an 
object to an avatar (see a lengthier discussion of this in the 
Region Restrictions section below). 

One last alternative is to use land that may be offered for 
research purposes by a university or a private research 
institution. For example, the Second Life AI Laboratory 
(SLAIL) provides booth size spaces for free to anyone 
undertaking research in AI (cognitive modeling included), 
and particularly AI in virtual worlds, providing a permanent 
exhibition, meeting and collaboration space for the 
community. The space may be found on Daden Cays in 
Second Life – (http://slurl.com/secondlife/Daden%20Cays/152/44/22; 
for more details visit http://knoodl.com/ui/groups/ 
ArtificialIntelligenceGroup/wiki/SLAIL). 
Region Restrictions 

Scripted objects in Second Life are restricted from 
entering certain regions. If a modeling simulation requires 
travel beyond known open regions, it may be necessary to 
use an avatar (an avatar is a representation of a human user 
in Second Life, and only exists as long as the user is logged 
on). One simple way to resolve this issue is to attach the 
object interfaced with a cognitive model to an avatar. For 
example, the neon-blue sphere floating above the avatar’s 
head in Figure 1 is an object scripted to interact with a 
cognitive model. For demo purposes the scripted object can 
be made see-through, tiny, or made to look like an article of 
clothing (e.g. a hat). 
Firewall Issues 

When a computer running a cognitive model is using 
DHCP, or if it is behind a firewall, a dedicated web server is 
necessary for interfacing the model with the Second Life 
world (Figure 2). Alternatively, LSL scripts can answer 
HTTP requests from the cognitive agent directly through 
their XML-RPC service (XML-RPC is a standard for XML 
structure for sending function calls to remote systems). This 
latter route is sometimes unreliable and may be deprecated 
("Category:LSL XML-RPC - Second Life Wiki," 2009), but 
may be faster than the setup shown in Figure 2, depending 
on the speed of the researcher-owned web servers. 
Asynchronous HTTP Calls 

A question may arise when a cognitive model sends a 
command to its Second Life ‘body’ (e.g. “move toward the 
fountain”, “raise left arm .2m”, “push the block object”), 
and receives information back about the state of the world, 
as to the time of the state. The model may require 
information as to whether its last action has been performed, 
and whether the HTTP responses are in order. This is easily 
resolved by sending a timestamp along with the last 
performed action from the body script to the model. 

 

 
Figure 2. Second Life setup for models on DHCP or behind 

a firewall. Simulation shown at bottom has 3 models 
exploring a maze with cheese and water. 

 
Memory Issues 

Second Life scripts are relatively restricted in memory 
(16KB total for Byte-code, Stack, Free Memory, and Heap). 
This may be a serious restriction for collecting data about 
the state of the agent and keeping a copy of the prior state 
(prior state information may be necessary to avoid sending 
unchanged information to the model, saving both speed and 
bandwidth). This is not an issue when world-state contains 
only the last taken action plus the names of a few 
surrounding objects, but becomes an issue when collecting 
all possible information (object id, name, description, 
position, direction, velocity, dimensions, etc.) for a large 
number of objects.  
Scanning 

Other complications may arise in the way that a model in 
Second Life may be allowed to scan around for nearby 
objects. The scan is performed as a sphere, rather than a 
cylinder. This may take unnecessarily long for a large 
radius. A smaller radius may be scanned for a simulated 
sense of smell, but for long-distance vision, scanning must 
be restricted from a sphere to a smaller cone.  
Speed 

The greatest complication is that the perception-action 
protocol can take a relatively long time. This, of course, 
depends on the setup of scanning and HTTP requests. The 
greater bottleneck seems to be the maximum rate of HTTP 
requests (capped at 25 requests in 20 seconds). The 
assumption in modern cognitive architectures (e.g. 
Anderson & Lebiere, 1998) is that visual information is 
used at most 10 times per second (50ms for attention shift, 



and 50ms for attending the information). Thus, it seems that 
Second Life vision is about 10 times slower than may be 
desired for real-time cognitive models. This is not a major 
problem for interacting with static objects or other (similarly 
retarded) models, but it is a problem nonetheless. However, 
the technical support enjoyed by the Second Life 
community carries the promise of near-future solutions for 
these issues. 

Specifics of Sample Simulations 

Simulation 1 
The first simulation was attempted to examine how a 
cognitive architecture may be interfaced with Second Life. 
The ACT-R cognitive architecture (Anderson & Lebiere, 
1998) was connected with a Second Life script through an 
intermediary web server, as displayed in Figure 2. A 
scripted object was created in Second Life that would scan 
the world every few seconds, and send the state of the world 
via an HTTP call to the intermediary web server. On the 
ACT-R side, a cognitive model, in a perceive-think-act loop, 
would request an updated world-state from the intermediary 
web server, decide upon an action, and send motor 
commands back to the server.  
Second Life Setup 

The Second Life scripted object was attached to an avatar 
for greater exploratory capabilities (without an avatar 
scripted objects are restricted from many lands). The script 
performed a regular scan of nearby objects with a radius of 
2m. If less than 5 objects were detected, the radius was 
increased, and another scan was re-initiated, until at least 5 
objects were detected. Much more information was 
collected and transferred to the ACT-R model than was 
necessary for this simulation (e.g. object position, velocity, 
size, etc.), as this helped to examine the technical limitations 
of the setup. In addition, information sent to ACT-R 
included a timestamp, and the latest received motor 
command. 
ACT-R Interface and Model 

ACT-R visual and motor components were interfaced for 
Second Life in the following manner. Lisp functions were 
added to send out motor commands to the intermediary web 
server, and to retrieve world-state from the server. The 
ACT-R visual information (visicon) was filled with Button 
objects, each Button containing the name of its 
corresponding Second Life object found in the world-state 
list from the server. Upon clicking one of the button objects, 
a command would be issued, via a call to the web server, to 
move toward the corresponding object.  

The ACT-R model employed to examine this interface 
was the Goal-Proximity Decision model (Veksler, Gray, & 
Schoelles, 2009). The details of the model are not provided 
here, as this is tangential to the focus of this paper. The 
general idea of the model is that it attends all objects in the 
visicon, and clicks the object with the greatest strength of 
association to the current goal (plus or minus noise). The 

strength of association between objects, in turn, is updated 
based on experienced temporal proximity of those objects. 
Simulation Results 

The Second Life script was first limited to find only the 
objects that belonged to its owner, which comprised sixteen 
randomly distributed boxes that served as navigational 
landmark (Figure 3). The model was presented with each of 
the sixteen objects as its goal, one at a time, until it 
successfully found each object.  

 

 
Figure 3. Second Life simulation. Controlled environment, 

with researcher-owned objects. 
 
Upon the successful completion of this exercise, the 

scanning restrictions were removed, allowing the model to 
‘see’ all objects within its scanning radius. The model was 
moved to an object-rich region, Washington Square Park in 
Manhattan (Figure 1), and manually given various objects as 
its goals (e.g. fountain, bench, store). Although the model 
was able to successfully navigate most of the region, some 
distant objects were unreachable due to the chosen scanning 
procedure. Thus long-distance vision, as discussed in the 
Scanning section above, may be necessary for most 
exploratory agents.  

Simulation 2 
The purpose of the second simulation was to examine 
whether Second Life can be set up to help distinguish 
between sets of model parameters for a Reinforcement 
Learning model. Reinforcement Learning (Sutton & Barto, 
1998) is a widely implemented model of trial-and-error 
behavior. The specific form of Reinforcement Learning that 
was implemented in this model was a closed-form version 
of the ACT-R decision/utility-learning mechanism. The 
model chose which object to approach based on the utility 
of that object, given the specific goal (plus or minus noise). 
Upon reaching its goal, the model updated the utility of all 
encountered objects for reaching that goal based on the 
ACT-R utility-learning equation (Bothell, 2008).  



The details of the model are relatively tangential to the 
focus of this work. What is important, however, is that there 
are several free parameters in this model (e.g. exploratory 
noise, learning rate, etc.), and that the same parameter 
values may cause different behavior for different task 
environments. Thus a high-fidelity task environment, like 
Second Life, may be necessary to distinguish between 
different parameter sets. 
Different Task Environments 

Parameter searches were performed with the model using 
three different maze structures. Each maze contained sixteen 
available spaces for the model to explore. The mazes were 
rated according to the average difficulty of finding each 
possible maze location from each possible starting point, by 
means of a random walk. The easy, medium, and difficult 
mazes required on average 181.39, 369.83, and 793.79 
steps, respectively. The easy and medium difficulty mazes 
were set up in a grid-like fashion, with bidirectional 
movement allowed between any two neighboring locations. 
The easy maze, shown in Figure 4A, allows movement in all 
eight directions to its neighboring cells (N, NE, E, SE, S, 
SW, W, and NW). The medium difficulty maze, shown in 
Figure 4B, allows movement in four directions (N, E, S, W). 
The difficult maze, shown in Figure 4C, was set up with 
unidirectional and bidirectional connections, without regard 
for grid consistency.  

 

 
Figure 4. Sample navigation task environments. Numbered 

boxes signify locations, arrows signify the directions in 
which an agent may travel. 

 
Different Parameter Sets 

The model ran through each of the three tasks 60 times 
for each parameter set (noise was varied between .01 and 
30, learning rate was .001 and .2). Each model run consisted 
of five bins, where the model had to reach sixteen goal in 

each bin (every possible location was set as a goal, in 
random order). The best performance (as measured by the 
average number of steps taken by the model to reach a goal 
in bin 5) for each maze was achieved with a different set of 
values for the free parameters in the model. The best 
parameters for the easy maze (paramsEasy) was achieved 
when the noise parameter was set to 5 and the learning rate 
was .1, for the medium difficulty maze (paramsMed) when 
the noise parameter was 25 and the learning rate was .1, and 
for the difficult maze (paramsHard) when the noise 
parameter was 15 and the learning rate was .01. A 3x3 two-
way ANOVA revealed a significant interaction effect of 
ParameterSet × MazeDifficulty, F(4, 531) = 115.42, p < 
.001, a significant effect of ParameterSet, F(2, 531) = 
167.60, p < .001, and a significant effect of MazeDifficulty, 
F(2, 531) = 346.52, p < .001. Post-hoc Tukey HSD 
comparisons revealed significant differences between the 
performance of all three parameter sets at the p < .05 level.  
Second Life Simulation 

Given the differences between paramsEasy, paramsMed, 
and paramsHard on the three types of task environments, it 
may be appropriate, and even essential, to establish which 
parameter set is best in a high-fidelity task environment. A 
Second Life simulation was set up as a proof of concept. 
Figure 2 is an accurate representation of the modeling setup, 
with a connection through the intermediary web server, with 
the models being represented as mice in a maze, with 
random poles and boxes (serving as landmarks), and three 
possible goals: swiss cheese, cheddar cheese, and water 
bowl. The complexity of the task, as well as its fidelity, was 
augmented with a greater number of objects and the 
presence of dynamic objects (other mice). The model was 
minimally altered so as to receive perceptual information 
from Second Life, and send motor commands back (the 
perception and action functions from Simulation 1 were 
reused).  

The focus here is (1) to point out that choosing a task 
environment for cognitive modeling is not trivial (2) that 
Second Life, in theory, is an appropriate environment for 
task simulations, and (3) that Second Life, in practice, can 
be successfully interfaced with cognitive models. On the 
latter point, the model ran once with each of the three 
parameter sets, each run consisting of ten bins, where each 
bin comprised finding the three goals, one at a time, in 
random order. Early results (see Figure 5) suggest that the 
three parameter sets eventually converge, but this may take 
an extremely long time (≈27 walks through the maze, 
which, at worst, is almost 3000 steps). The average number 
of steps taken to reach a goal is 35.9 for paramsMed, 99.4 
for paramsEasy, and 148.5 for paramsHard.  

These results are not interpretable without more data, nor, 
even if the trend should continue, could we assume that the 
medium difficulty maze shown in Figure 4B may be used in 
place of high-fidelity task environments. Instead, the 
suggestion is that these task environments should be used in 
combination: one to quickly test many models and 
parameter values, the other to test whether a model could 



scale up to the complexities of dynamic and uncertain 
worlds.  

 

 
Figure 5. Second Life simulation results from three different 

sets of parameter values. 

Summary 
In sum, Second Life may be an important tool for cognitive 
modeling. It provides a better balance of real-world 
complexity and constraints than simpler simulation 
environments, less hassle and financial investment than 
robotics work, and it stands out from other 3D virtual world 
with a rich, massive-multiuser environment, and extensive 
technical support. The Second Life environment may be 
easily interfaced with cognitive architectures, as described 
in Simulation 1, or with closed form models, as described in 
Simulation 2. As Simulation 2 suggests, Second Life 
modeling work can help to answer questions as to the 
fidelity of various cognitive mechanisms and/or parameter 
values whose performance may vary in different task 
environments.  

Future work will address rigorous statistical comparison 
of model performance in Second Life versus other task 
environments. Other plans include implementation of long-
distance visual scanning coupled with head-movements, and 
exploration of a greater variety of tasks (e.g. soccer, 
building blocks, hide and seek).  
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