
Large Declarative Memories in ACT-R

Scott Douglass (Scott.Douglass@mesa.afmc.af.mil)

Jerry Ball (Jerry.Ball@mesa.afmc.af.mil)
Human Effectiveness Directorate, 711

th
 Human Performance Wing

Air Force Research Laboratory

6030 S. Kent Street, Mesa, AZ 85212

Stuart Rodgers (stu@agstechnet.com)
AGS TechNet

Dayton, OH

Abstract

The development of large-scale cognitive models
introduces significant computational challenges. Large
declarative memories are a case in point. It is not
computationally feasible to load a large declarative
memory into the process space available for execution of
a cognitive model. Fortunately, computer science
provides us with relational databases to support access to
large external stores of information from within an
executing process. This paper motivates and describes
the interfacing of the ACT-R cognitive architecture with
a relational database to support large declarative
memories within ACT-R models.

Keywords: large-scale cognitive modeling; large
declarative memory, ACT-R cognitive architecture,
relational database.

The Need for Large Declarative

Memories

The typical cognitive model models a specific

laboratory task with modest declarative memory (DM)

requirements. The DM of such models can be loaded

into the process space of the model and executed

efficiently. The ACT-R cognitive architecture

(Anderson, 2007; Anderson et al., 2004) comes with

efficient data storage and access mechanisms for

managing modest size declarative memories within the

process space of the model. However, the development

of cognitive models of complex tasks requires more

substantial DMs. At some point, the size of declarative

memory becomes too large to be loaded into the

executing process as a whole and external data storage

and access mechanisms are needed.

Researchers in the Air Force Research Laboratory,

Human Effectiveness Directorate, Cognitive Models

and Agents Branch (AFRL/RHAC) in collaboration

with the Cognitive Engineering Research Institute

(CERI), AGS TechNet and L3 Communications are

engaged in a project to develop a Synthetic Teammate

(Ball et al., 2009) capable of functioning as the Air

Vehicle Operator (AVO), or pilot, in a 3-person team

task simulation of an Uninhabited Aerial Vehicle

(UAV) performing reconnaissance missions (Cooke &

Shope, 2005). All the major components of the

Synthetic AVO are being developed within the ACT-R

cognitive architecture, including language

comprehension (Ball, Heiberg & Silber, 2007),

language generation, dialog and situation models, and

task behavior (Myers, to appear). The use of ACT-R

reflects our commitment to develop a cognitively

plausible, yet functional synthetic agent. We believe

that adhering to well-established cognitive constraints

may actually facilitate the development of functional

agents by pushing development in cognitively plausible

directions which are more likely to be successful in

modeling complex human behavior than non-

cognitively plausible alternatives.

The Synthetic AVO must communicate with the

planning officer, who plans the route, and the payload

operator, who takes pictures of targets, in order to

accomplish a 40 minute reconnaissance mission

involving more than 12 waypoints, many of which are

targets. As a result, language comprehension is an

important component of the larger Synthetic AVO

model. Further, the range of vocabulary and

grammatical constructions used by the teammates to

communicate with the AVO is extensive and

unpredictable. An analysis of spoken transcripts

between all human teams participating in several earlier

studies identified a total of 2500 unique words in 19K

spoken utterances and an analysis of text chat

transcripts in a recent study identified 1700 unique

words in 5500 text chat messages. Overall, we expect

the model to require a vocabulary of 10-15K words and

multi-word units to be capable of adequately modeling

human communicative behavior on this complex task.

By itself, the language comprehension component is

pushing the scale of DM beyond the capacity of the

existing ACT-R data storage and access mechanisms.

To support the projected vocabulary, we are pursuing

the integration of a large subset of the WordNet lexicon

(Fellbaum, 1998; Miller, 1998) into the model.

Table 1: Summary of the SGP parameters introduced by the persistent-DM module.

Parameter Name Description of Parameter Behavior

PDM-active Enable/disable the use of persistent DM

PDM-add-DM-serializes Determines if add-dm produces DB chunks or not

PDM-resets-clear-DB Enable/disable the clearing of the persistent DM during model resets

PDM-DB-name Name of PostgreSQL database containing the persistent DM of interest

PDM-user Username required by the PostgreSQL DBMS for DB access

PDM-passwd Password required by the PostgreSQL DBMS

PDM-DBMS-hostname DBMS hostname provided as a machine name or IP address

To accomplish this, we are leveraging the WN-Lexical

interface to ACT-R developed by Bruno Emond (2005).

The WN-Lexical interface provides a capability to load

all of WordNet into ACT-R’s DM at once. However, on

our hardware the model exhausts the memory capacity

after just 30% of WordNet is loaded.

Although we do not envision using the entire

WordNet lexicon in our language comprehension

model, we do expect to use a large enough subset for it

to be problematic for the existing ACT-R data storage

and access capabilities. To support the integration of a

large subset of the WordNet lexicon into the language

comprehension model, an external data storage system

is needed. WN-Lexical provides a capability to load

individual words into DM as needed, retaining unused

words in an external store. However, this capability is

not tightly integrated with ACT-R’s declarative

memory module and cannot take advantage of ACT-R

DM mechanisms like spreading activation. This is

problematic since there is a high level of lexical

ambiguity in the WordNet lexicon (e.g. the word ―dog‖

has eight senses in WordNet) and spreading activation

is a key mechanism for dealing with such ambiguity.

Ideally, the external data storage capability should

be transparent from the perspective of ACT-R and

DM—i.e. whether the model is accessing a word from

an internal or external data store should not affect the

behavior of the model. The next section describes just

such a capability.

Persistent DM for ACT-R

Current Declarative Module
The chunks constituting declarative memory in ACT-R

6 are stored internally in a single data structure. When a

retrieval request is executed by the ACT-R declarative

module, a process carried out by the module essentially

uses constraints in the retrieval request and computed

activations to identify which chunk matching the

constraints (if any) should be accessed from the data

structure and placed into the retrieval buffer. This

process is simple and effective when the number of

chunks in the data structure remains below a certain

threshold. As the number of chunks in declarative

memory increases, the process slows and eventually

breaks down.

An ACT-R user wanting to model cognitive

processes dependent on declarative memories larger

than a critical threshold therefore requires new data

storage and access mechanisms to support DM chunk

storage and retrieval. Fortunately, the modular nature of

ACT-R and the software design of ACT-R 6 greatly

facilitate the development and deployment of

alternative chunk storage and retrieval mechanisms.

New SQL Functionality
To meet large DM requirements, we’ve developed a

chunk storage and retrieval capability in ACT-R 6

based on PostgreSQL, a powerful, open source object-

relational database management system (DBMS). This

―persistent-DM‖ module outsources chunk storage to an

industrial-strength external DBMS while leaving ACT-

R’s retrieval calculus untouched. The persistent-DM

module (defined in a single file) modifies the behavior

of ACT-R’s declarative module by: (1) introducing

seven control parameters; (2) providing programmatic

support for managing the interaction between ACT-R

and the PostgreSQL DBMS; (3) extending the retrieval

process; and (4) modifying the comparison of chunk

slots. Table 1 describes the seven control parameters.

The persistent-DM module’s parameters allow the

ACT-R modeler to easily control the behavior of the

module. For example, toggling the PDM-active

parameter from T (on) to NIL (off) disables use of

PostgreSQL and returns the chunk storage/retrieval

behavior of ACT-R back to its default. Setting PDM-

add-DM-serializes and PDM-resets-clear-DB to T (yes)

when persistent DM is enabled allows a modeler to

populate the persistent DM with chunks explicitly

defined in a model. Lastly, setting PDM-add-DM-

serializes and PDM-resets-clear-DB to NIL (no) when

persistent DM is enabled allows a modeler to make a

DM that persists across model runs available, without

having to comment out parts of the model. The

persistent-DM module provides the ACT-R modeler

with programmatic support for the definition and

management of external PostgreSQL databases. A

modeler using the persistent-DM module can

programmatically:

– Generate and use generic SQL queries to interact

with persistent external knowledge bases.

– Serialize (write) and de-serialize (read) ACT-R

chunks in massive knowledge bases.

– Use transactions, rollbacks and commits to protect,

undo, and save changes to declarative memory.

Most importantly, a modeler using the persistent-DM

module can transparently:

– Employ PostgreSQL DBMS-based alternatives to

the default chunk addition, removal, and merging

processes in ACT-R 6. These alternatives don’t

change the calculus underlying ACT-R’s

declarative module, they just change the way

retrieval requests are used to determine the subset

of chunks from declarative memory that will

participate in the calculation of activation during

the retrieval process.

– Use retrieval constraints based on regular

expressions.

To use the persistent-DM module, an ACT-R

modeler needs to: (1) install the PostgreSQL DBMS on

a computer (the computer can be the modeler’s

workstation or a dedicated remote server); (2) install a

common-lisp library supporting interaction with

PostgreSQL; (3) drop the persistent-DM module

definition file into the ACT-R 6 ―modules‖ directory;

(4) activate the module by adding something like the

following to the SGP section of a model.

(sgp :pdm-db-name "model-v5-DM"

:pdm-user "Scott"

:pdm-passwd “Open_Seseme"

:pdm-resets-clear-db T

:pdm-add-dm-serializes T

:pdm-active T

...

Figure 1: Activating and configuring the persistent-

DM module in an ACT-R model.

The activation of the persistent-DM module has no

impact on model behavior. However, wall clock

performance of the ACT-R simulator is impacted.

Chunk serialization and de-serialization processes

depend on non-trivial information exchanged with the

PostgreSQL DBMS and using persistent-DM when

models have small declarative memories exacts a fixed

and relatively high cost. If the cost of using persistent-

DM remains essentially fixed, then persistent-DM will

eventually outperform ACT-R’s default declarative

memory system when models have large enough

declarative memories. To find out where this tipping

point is, and to better understand when we should and

shouldn’t use the persistent-DM module, we conducted

a comparative analysis of default and persistent-DM.

Computational Efficiency of Retrievals

from Different Size Declarative Memories

When the number of chunks maintained by an ACT-R

model remains low, keeping them on-hand in an

internal data structure facilitates optimal simulator

performance. Under these circumstances, the cost of

forming an external query, dispatching the query to a

DBMS, and interpreting the return from a DBMS

exceeds the cost of comparing candidate chunks to

retrieval constraints. When the number of chunks

maintained by an ACT-R model exceeds a certain

value, keeping them on-hand in an internal data

structure exceeds lisp/machine memory limits and the

framework crashes. Under these circumstances,

modeling can only proceed if a DBMS is used. Between

these two extremes is a decision space in which the

benefits of using persistent-DM gradually exceed the

costs. To start exploring the nature of this decision

space, a controlled evaluation of the performance of the

persistent-DM was conducted. During this evaluation,

three factors were systematically varied:

– Type of DM: default or persistent

– Size of DM: ~1K, ~5K, ~10K, ~20K, ~80K or

~240K chunks

– Retrieval Constraints: 1, 2, 3 or 4 slot/value

requirements

Each of the differently sized DMs was defined by a

separate ASCII file containing a single call to ACT-R’s

―add-dm‖ command. Under conditions where the type

of DM being evaluated was default, these files were

loaded into ACT-R and ―add-dm‖ added chunks to the

internal chunk table. Under conditions where the type

of DM being evaluated was persistent, PostgreSQL

databases containing these same chunks were connected

to by the persistent-DM module.

aardwolf-noun-pos
ISA noun
parent "none"
token "type"
type noun
super-type noun
subtype noun
form nil
word aardwolf-word
gram-form common-sing
animate animate

Figure 2: ACT-R chunk specification of a noun

describing an aardwolf part-of-speech.

Chunks used in the evaluation represented nouns.

The ACT-R specification of the noun chunk type

consisted of nine slots (see Figure 2).

Regardless which type of DM was being evaluated,

retrieval requests intended to recover 10 randomly

chosen chunks from each differently sized DM were

executed to assess wall-clock retrieval times. Figure 3

shows example retrieval requests based on 1 and 4

retrieval constraints.

+retrieval>
ISA noun
parent "none“

...

+retrieval>
ISA noun
parent "none"
super-type noun
word aardwolf-word
gram-form common-sing

Figure 3: Example ACT-R retrieval requests based on

1 and 4 retrieval constraints.

Additional retrieval constraints lead to more specific

retrievals but require additional slot/value comparisons.

Evaluations of ACT-R’s retrieval process lead us to

believe that the use of additional slot/value constraints

in more constrained retrieval requests would impose a

time cost when ACT-R’s default retrieval mechanisms

are employed. We incorporated the retrieval constraints

factor into the evaluation in order to systematically

assess the actual costs (if any) of employing greater

retrieval constraints. Due to database indexing and SQL

query optimizations; additional constraints shouldn’t

impose similar time costs. The incorporation of the

retrieval constraints factor into the evaluation allowed

us to directly assess the efficiency (or lack of) of SQL

queries based on composed constraints.

During the evaluation, 2 performance measures were

recorded:

1. Setup-time: The amount of time it took to make

chunks in the differently sized DMs available to

ACT-R’s retrieval process.

2. Retrieval-time: The amount of time it took to

actually retrieve a chunk matching the retrieval

constraints.

Table 2 lists the average setup times we measured in

the evaluation of default and persistent DM. Times in

the table clearly show that loading a declarative

memory specification into ACT-R through default

methods requires an increasing amounts of time when

declarative memory size increases. The details of the

relationship between the size of DM and set-up time,

while interesting, do not contribute to the point that as

declarative memory grows, a load-time problem

appears. Consequently, they won’t be discussed further.

The failure of ACT-R to load 240,000 chunks into

default declarative memory provides us with an initial

estimate of the number of chunks—at least as complex

as our noun chunk type—beyond which ACT-R

becomes unstable on our hardware. Lastly, the cost of

connecting to an external PostgreSQL DBMS was

found to be relatively constant.

Table 2: Summary of setup times (in msec)

~1K ~5K ~10K ~20K ~80K ~240K

default 98 375 981 2828 103395 NA

persistent 82 90 90 94 86 86

Ten retrieval times were recorded under all 6x4

combinations of DM size and retrieval constraints.

These measures were analyzed using a repeated

measures ANOVA. Since default DM was unable to

accommodate 240,000 chunks, retrieval times are

missing in Figure 4. The persistent DM retrieval times

under these circumstances were not included in the

repeated measures ANOVA. All main effects and

interactions were found to be highly significant. The

significant Size of DM X Retrieval Constraints X Type

of DM interaction (F(12,108) = 3.682, p<0.001) is

illustrated in Figure 4. The figure shows that while

wall-clock retrieval times are uninfluenced by the size

of declarative memory when persistent DM is used,

they are significantly influenced by the size of

declarative memory when default DM is used. When

declarative memory contains more than approximately

80,000 chunks, the benefits of keeping chunks in an

internal data structure are lost. 80,000 chunks seem to

be the point at which things decidedly favor persistent-

DM; at least given the complexity of our noun chunk

type. Using additional retrieval constraints imposes no

additional time costs on persistent DM. A clear, and

eventually significant, relationship between constraints

and retrieval time can be seen in default DM.

While this simple evaluation reveals some of the

capabilities of persistent-DM, much work needs to be

done. For example, activations were not computed in

the comparative study. When sub-symbolic chunk

properties are calculated and maintained in ACT-R’s

declarative module, symbolic properties of candidate

chunks such as fan and type inheritance can easily lead

to a dramatic need to obtain properties of non-candidate

chunks. In order to begin to understand the costs and

benefits of persistent-DM, the calculation of activation

was inhibited. We are planning follow-up evaluations

that will systematically control fan and chunk type

inheritance in order to further explore the capabilities of

the persistent-DM module.

0

25

50

75

100

125

150

175

200

R
e
tr

ie
v

a
l

L
a

te
n

c
y

 (
m

s)

~
1
K

,
1

~
1
K

,
2

~
1
K

,
3

~
1
K

,
4

~
5
K

,
1

~
5
K

,
2

~
5
K

,
3

~
5
K

,
4

~
1
0
K

,
1

~
1
0
K

,
2

~
1
0
K

,
3

~
1
0
K

,
4

~
2
0
K

,
1

~
2
0
K

,
2

~
2
0
K

,
3

~
2
0
K

,
4

~
8
0
K

,
1

~
8
0
K

,
2

~
8
0
K

,
3

~
8
0
K

,
4

~
2
4
0
K

,
1

~
2
4
0
K

,
2

~
2
4
0
K

,
3

~
2
4
0
K

,
4

persistent

default

Chunks in DM, Retrieval Constraints

Type of DM

Retrieval Latency: Chunks in DM x Retrieval Constraints x Type of DM

(Error Bars: 95% Confidence Interval)

Figure 4: Summary of wall-clock retrieval times.

Conclusions

We have integrated a relational database with the ACT-

R cognitive architecture to support the creation of large,

externalized, persistent declarative memories whose

behavior matches that of existing internal declarative

memories. We are using this capability in the

development of a complex model of a Synthetic AVO

capable of communicating with human teammates in

performance of a reconnaissance task. More generally,

such a capability is needed in the development of

complex cognitive models with significant declarative

memory requirements and this capability aligns with

our research focus on large-scale cognitive modeling

(cf. Douglass & Luginbuhl, 2008).

Future Directions

The interface to the external database is currently

functional and outperforms ACT-R’s internal data

storage and access mechanisms on large declarative

memories under a range of conditions as demonstrated

in the previous section. However, we believe there is

room for significant improvement and optimization of

the performance of the interface. In particular, the

retrieval of a word from DM actually involves a chain

of retrievals which includes all the elements in the fan

list of the word. In the worst case, this chain could

consume much of declarative memory, bringing the

system to its knees. Besides needing to retrieve the fan

list for a word in order to compute activations, if the

retrieval template is highly unconstrained, many DM

chunks will match and the computations may exceed

process internal resource capacities. We bumped into

this problem early on in a version of the model which

only used spreading activation based soft constraints on

word retrieval. If the retrieval template contains no hard

constraints on the form of the word to be retrieved,

relying exclusively on spreading activation to bias the

retrieval, then ACT-R must compute the activation of

every word in DM to determine which word to retrieve.

This is computationally explosive and was unworkable

with a mental lexicon of just 2500 words. We were

forced to reinstate a whole word hard constraint on

retrievals, with a fallback to a first letter hard constraint

and spreading activation based soft-constraint on

matching words if the whole word retrieval fails.

Currently, these retrievals are executed by different

productions. However, we are exploring the possibility

of using the regular expression capability provided by

the persistent DM module (a slot name preceded by ―~‖

invokes this regular expression matching capability) to

conditionally retrieve the whole word first and if that

fails then retrieve the word with highest activation

matching the first letter, all within a single retrieval

production. Given a conditional retrieval capability, a

whole word match would terminate the retrieval,

returning the matched word, and the less constrained

and more computationally expensive first letter match

with spreading activation over matching words would

not occur.

We are also planning on using the regular expression

matching capability to support retrieval of perceptual

units at multiple levels of representation. The

perceptual module of ACT-R currently divides the

linguistic input into word units using a function called

chop-string. This function relies on spaces and

punctuation to delimit words. For example, the input

―he went.‖ would be divided into ―he‖ ―went‖ and ―.‖.

However, sometimes words contain punctuation and

shouldn’t be divided—for example ―etc.‖ and ―didn’t‖.

And sometimes words can have a space as in ―ad hoc‖

and ―a priori‖. In the case of ―didn’t‖, the chop-string

function returns ―didn‖ ―’‖ and ―t‖ and it takes three

attention fixations and several productions per ―word‖

to process this input. Given the rapidity with which

humans process language during reading—

approximately 225 msec per space delimited word

during silent reading (Rayner, 1998)—this treatment of

―didn’t‖ is unlikely to be cognitively plausible. To

bring the language comprehension model into closer

alignment with reading results, what is needed is a

capability to recognize the largest unit in DM which

matches the input, often matching multi-word units in a

single attention fixation. To achieve this we are

implementing a capability to do retrievals at multiple

levels using a disjunction of perceptual units derived

from the input. For example, ―didn’t‖ will lead to an

attempt to retrieve either ―didn’t‖ or ―didn‖ within a

single retrieval specification, ―John’s‖ (as in ―John’s

book‖) will lead to an attempt to retrieve either

―John’s‖ or ―John‖, ―etc.‖ will lead to an attempt to

retrieve either ―etc.‖ or ―etc‖, ―went.‖ will lead to an

attempt to retrieve either ―went.‖ or ―went‖, ―a priori‖

will lead to an attempt to retrieve either ―a priori‖ or

―a‖ and ―because of‖ will lead to an attempt to retrieve

either ―because of‖ or ―because‖.

Finally, longer term we are contemplating pushing

ACT-R’s activation computation into the database—

transparently from the perspective of ACT-R and DM.

This would avoid the need to retrieve large numbers of

chunks from external DM in order to compute their

activations within the ACT-R process.

References

Anderson, J. R. (2007). How Can the Human Mind occur in

the Physical Universe? NY: Oxford.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S,

Lebiere, C, and Qin, Y. (2004). An Integrated Theory of

the Mind. Psychological Review 111, (4). 1036-1060

Ball, J., Heiberg, A. & Silber, R. (2007). Toward a Large-

Scale Model of Language Comprehension in ACT-R 6.

Proceedings of the 8th International Conference on

Cognitive Modeling, pp. 163-168. Edited by R. Lewis, T.

Polk & J. Laird.

Ball, J, Myers, C., Hieberg, A., Cooke, N., Matessa, M. &

Freiman, M. (2009). The Synthetic Teammate Project.

Paper presented at the Behavior Representation in

Modeling and Simulation Conference.

Cooke, N. & Shope, S. (2005). Synthetic Task Environments

for Teams: CERTT’s UAV-STE. Handbook on Human

Factors and Ergonomics Methods. 46-1-46-6. Boca Raton,

FL: CLC Press, LLC

Douglass, S. & Luginbuhl, D. (co-chairs) (2008). Cognitive

Modeling and Software Engineering Workshop.

Emond. B. (2006). WN-LEXICAL: An ACT-R module built

from the WordNet lexical database. In Proceedings of the

Seventh International Conference on Cognitive Modeling

(pp. 359-360). Trieste, Italy.

Fellbaum, C. (ed) (1998). WordNet: An electronic lexical

database. Cambridge. MA : MIT Press.

Miller, G.A. (1998). Foreword, In C. Fellbaum, (ed),

WordNet: An electronic lexical database. Cambridge, MA:

MIT Press

Myers, C. (to appear). An Account of Reuse and Integration.

Proceedings of the 9th International Conference on

Cognitive Modeling

Rayner, K. (1998). Eye Movements in Reading and

Information Processing: 20 Years of Research.

Psychological Bulletin, 124(3), 372-422.

