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Abstract 

 
The development of large-scale cognitive models 
introduces significant computational challenges. Large 
declarative memories are a case in point. It is not 
computationally feasible to load a large declarative 
memory into the process space available for execution of 
a cognitive model. Fortunately, computer science 
provides us with relational databases to support access to 
large external stores of information from within an 
executing process. This paper motivates and describes 
the interfacing of the ACT-R cognitive architecture with 
a relational database to support large declarative 
memories within ACT-R models.  

Keywords: large-scale cognitive modeling; large 
declarative memory, ACT-R cognitive architecture, 
relational database. 

The Need for Large Declarative 

Memories 

The typical cognitive model models a specific 

laboratory task with modest declarative memory (DM) 

requirements. The DM of such models can be loaded 

into the process space of the model and executed 

efficiently. The ACT-R cognitive architecture 

(Anderson, 2007; Anderson et al., 2004) comes with 

efficient data storage and access mechanisms for 

managing modest size declarative memories within the 

process space of the model. However, the development 

of cognitive models of complex tasks requires more 

substantial DMs. At some point, the size of declarative 

memory becomes too large to be loaded into the 

executing process as a whole and external data storage 

and access mechanisms are needed.  

Researchers in the Air Force Research Laboratory, 

Human Effectiveness Directorate, Cognitive Models 

and Agents Branch (AFRL/RHAC) in collaboration 

with the Cognitive Engineering Research Institute 

(CERI), AGS TechNet and L3 Communications are 

engaged in a project to develop a Synthetic Teammate 

(Ball et al., 2009) capable of functioning as the Air 

Vehicle Operator (AVO), or pilot, in a 3-person team 

task simulation of an Uninhabited Aerial Vehicle 

(UAV) performing reconnaissance missions (Cooke & 

Shope, 2005). All the major components of the 

Synthetic AVO are being developed within the ACT-R 

cognitive architecture, including language 

comprehension (Ball, Heiberg & Silber, 2007), 

language generation, dialog and situation models, and 

task behavior (Myers, to appear). The use of ACT-R 

reflects our commitment to develop a cognitively 

plausible, yet functional synthetic agent. We believe 

that adhering to well-established cognitive constraints 

may actually facilitate the development of functional 

agents by pushing development in cognitively plausible 

directions which are more likely to be successful in 

modeling complex human behavior than non-

cognitively plausible alternatives.  

The Synthetic AVO must communicate with the 

planning officer, who plans the route, and the payload 

operator, who takes pictures of targets, in order to 

accomplish a 40 minute reconnaissance mission 

involving more than 12 waypoints, many of which are 

targets. As a result, language comprehension is an 

important component of the larger Synthetic AVO 

model. Further, the range of vocabulary and 

grammatical constructions used by the teammates to 

communicate with the AVO is extensive and 

unpredictable. An analysis of spoken transcripts 

between all human teams participating in several earlier 

studies identified a total of 2500 unique words in 19K 

spoken utterances and an analysis of text chat 

transcripts in a recent study identified 1700 unique 

words in 5500 text chat messages. Overall, we expect 

the model to require a vocabulary of 10-15K words and 

multi-word units to be capable of adequately modeling 

human communicative behavior on this complex task. 

By itself, the language comprehension component is 

pushing the scale of DM beyond the capacity of the 

existing ACT-R data storage and access mechanisms. 

To support the projected vocabulary, we are pursuing 

the integration of a large subset of the WordNet lexicon 

(Fellbaum, 1998; Miller, 1998) into the model. 



Table 1: Summary of the SGP parameters introduced by the persistent-DM module. 

Parameter Name Description of Parameter Behavior 

PDM-active Enable/disable the use of persistent DM 

PDM-add-DM-serializes Determines if add-dm produces DB chunks or not 

PDM-resets-clear-DB Enable/disable the clearing of the persistent DM during model resets 

PDM-DB-name Name of PostgreSQL database containing the persistent DM of interest 

PDM-user Username required by the PostgreSQL DBMS for DB access 

PDM-passwd Password required by the PostgreSQL DBMS 

PDM-DBMS-hostname DBMS hostname provided as a machine name or IP address 

 

To accomplish this, we are leveraging the WN-Lexical  

interface to ACT-R developed by Bruno Emond (2005). 

The WN-Lexical interface provides a capability to load 

all of WordNet into ACT-R’s DM at once. However, on 

our hardware the model exhausts the memory capacity 

after just 30% of WordNet is loaded.  

Although we do not envision using the entire 

WordNet lexicon in our language comprehension 

model, we do expect to use a large enough subset for it 

to be problematic for the existing ACT-R data storage 

and access capabilities. To support the integration of a 

large subset of the WordNet lexicon into the language 

comprehension model, an external data storage system 

is needed. WN-Lexical provides a capability to load 

individual words into DM as needed, retaining unused 

words in an external store. However, this capability is 

not tightly integrated with ACT-R’s declarative 

memory module and cannot take advantage of ACT-R 

DM mechanisms like spreading activation. This is 

problematic since there is a high level of lexical 

ambiguity in the WordNet lexicon (e.g. the word ―dog‖ 

has eight senses in WordNet) and spreading activation 

is a key mechanism for dealing with such ambiguity. 

Ideally, the external data storage capability should 

be transparent from the perspective of ACT-R and 

DM—i.e. whether the model is accessing a word from 

an internal or external data store should not affect the 

behavior of the model. The next section describes just 

such a capability. 

Persistent DM for ACT-R 

Current Declarative Module 
The chunks constituting declarative memory in ACT-R 

6 are stored internally in a single data structure. When a 

retrieval request is executed by the ACT-R declarative 

module, a process carried out by the module essentially  

uses constraints in the retrieval request and computed 

activations to identify which chunk matching the 

constraints (if any) should be accessed from the data 

structure and placed into the retrieval buffer. This 

process is simple and effective when the number of 

chunks in the data structure remains below a certain 

threshold. As the number of chunks in declarative 

memory increases, the process slows and eventually 

breaks down. 

An ACT-R user wanting to model cognitive 

processes dependent on declarative memories larger 

than a critical threshold therefore requires new data 

storage and access mechanisms to support DM chunk 

storage and retrieval. Fortunately, the modular nature of 

ACT-R and the software design of ACT-R 6 greatly 

facilitate the development and deployment of 

alternative chunk storage and retrieval mechanisms.  

New SQL Functionality 
To meet large DM requirements, we’ve developed a 

chunk storage and retrieval capability in ACT-R 6 

based on PostgreSQL, a powerful, open source object-

relational database management system (DBMS). This 

―persistent-DM‖ module outsources chunk storage to an 

industrial-strength external DBMS while leaving ACT-

R’s retrieval calculus untouched. The persistent-DM 

module (defined in a single file) modifies the behavior 

of ACT-R’s declarative module by: (1) introducing 

seven control parameters; (2) providing programmatic 

support for managing the interaction between ACT-R 

and the PostgreSQL DBMS; (3) extending the retrieval 

process; and (4) modifying the comparison of chunk 

slots. Table 1 describes the seven control parameters. 

The persistent-DM module’s parameters allow the 

ACT-R modeler to easily control the behavior of the 

module. For example, toggling the PDM-active 

parameter from T (on) to NIL (off) disables use of 

PostgreSQL and returns the chunk storage/retrieval 

behavior of ACT-R back to its default. Setting PDM-

add-DM-serializes and PDM-resets-clear-DB to T (yes) 

when persistent DM is enabled allows a modeler to 

populate the persistent DM with chunks explicitly 

defined in a model. Lastly, setting PDM-add-DM-

serializes and PDM-resets-clear-DB to NIL (no) when 

persistent DM is enabled allows a modeler to make a 

DM that persists across model runs available, without 

having to comment out parts of the model. The 

persistent-DM module provides the ACT-R modeler 

with programmatic support for the definition and 

management of external PostgreSQL databases. A 



modeler using the persistent-DM module can 

programmatically: 

– Generate and use generic SQL queries to interact 

with persistent external knowledge bases. 

– Serialize (write) and de-serialize (read) ACT-R 

chunks in massive knowledge bases. 

– Use transactions, rollbacks and commits to protect, 

undo, and save changes to declarative memory. 

Most importantly, a modeler using the persistent-DM 

module can transparently: 

– Employ PostgreSQL DBMS-based alternatives to 

the default chunk addition, removal, and merging 

processes in ACT-R 6. These alternatives don’t 

change the calculus underlying ACT-R’s 

declarative module, they just change the way 

retrieval requests are used to determine the subset 

of chunks from declarative memory that will 

participate in the calculation of activation during 

the retrieval process. 

– Use retrieval constraints based on regular 

expressions. 

To use the persistent-DM module, an ACT-R 

modeler needs to: (1) install the PostgreSQL DBMS on 

a computer (the computer can be the modeler’s 

workstation or a dedicated remote server); (2) install a 

common-lisp library supporting interaction with 

PostgreSQL; (3) drop the persistent-DM module 

definition file into the ACT-R 6 ―modules‖ directory; 

(4) activate the module by adding something like the 

following to the SGP section of a model. 

(sgp :pdm-db-name "model-v5-DM"

:pdm-user "Scott"

:pdm-passwd “Open_Seseme"

:pdm-resets-clear-db T

:pdm-add-dm-serializes T

:pdm-active T

...

 

Figure 1: Activating and configuring the persistent-

DM module in an ACT-R model. 

The activation of the persistent-DM module has no 

impact on model behavior. However, wall clock 

performance of the ACT-R simulator is impacted. 

Chunk serialization and de-serialization processes 

depend on non-trivial information exchanged with the 

PostgreSQL DBMS and using persistent-DM when 

models have small declarative memories exacts a fixed 

and relatively high cost. If the cost of using persistent-

DM remains essentially fixed, then persistent-DM will 

eventually outperform ACT-R’s default declarative 

memory system when models have large enough 

declarative memories. To find out where this tipping 

point is, and to better understand when we should and 

shouldn’t use the persistent-DM module, we conducted 

a comparative analysis of default and persistent-DM. 

Computational Efficiency of Retrievals 

from Different Size Declarative Memories 

When the number of chunks maintained by an ACT-R 

model remains low, keeping them on-hand in an 

internal data structure facilitates optimal simulator 

performance. Under these circumstances, the cost of 

forming an external query, dispatching the query to a 

DBMS, and interpreting the return from a DBMS 

exceeds the cost of comparing candidate chunks to 

retrieval constraints. When the number of chunks 

maintained by an ACT-R model exceeds a certain 

value, keeping them on-hand in an internal data 

structure exceeds lisp/machine memory limits and the 

framework crashes. Under these circumstances, 

modeling can only proceed if a DBMS is used. Between 

these two extremes is a decision space in which the 

benefits of using persistent-DM gradually exceed the 

costs. To start exploring the nature of this decision 

space, a controlled evaluation of the performance of the 

persistent-DM was conducted. During this evaluation, 

three factors were systematically varied: 

– Type of DM: default or persistent 

– Size of DM: ~1K, ~5K, ~10K, ~20K, ~80K or 

~240K chunks 

– Retrieval Constraints: 1, 2, 3 or 4 slot/value 

requirements 

Each of the differently sized DMs was defined by a 

separate ASCII file containing a single call to ACT-R’s 

―add-dm‖ command. Under conditions where the type 

of DM being evaluated was default, these files were 

loaded into ACT-R and ―add-dm‖ added chunks to the 

internal chunk table. Under conditions where the type 

of DM being evaluated was persistent, PostgreSQL 

databases containing these same chunks were connected 

to by the persistent-DM module. 

aardwolf-noun-pos
ISA noun
parent  "none"
token  "type"
type  noun
super-type  noun
subtype  noun
form  nil
word  aardwolf-word
gram-form  common-sing
animate  animate

 

Figure 2: ACT-R chunk specification of a noun 

describing an aardwolf part-of-speech. 



Chunks used in the evaluation represented nouns. 

The ACT-R specification of the noun chunk type 

consisted of nine slots (see Figure 2). 

Regardless which type of DM was being evaluated, 

retrieval requests intended to recover 10 randomly 

chosen chunks from each differently sized DM were 

executed to assess wall-clock retrieval times. Figure 3 

shows example retrieval requests based on 1 and 4 

retrieval constraints. 

+retrieval>
ISA noun
parent  "none“

...

+retrieval>
ISA noun
parent  "none"
super-type  noun
word  aardwolf-word
gram-form  common-sing

 

Figure 3: Example ACT-R retrieval requests based on 

1 and 4 retrieval constraints. 

Additional retrieval constraints lead to more specific 

retrievals but require additional slot/value comparisons. 

Evaluations of ACT-R’s retrieval process lead us to 

believe that the use of additional slot/value constraints 

in more constrained retrieval requests would impose a 

time cost when ACT-R’s default retrieval mechanisms 

are employed. We incorporated the retrieval constraints 

factor into the evaluation in order to systematically 

assess the actual costs (if any) of employing greater 

retrieval constraints. Due to database indexing and SQL 

query optimizations; additional constraints shouldn’t 

impose similar time costs. The incorporation of the 

retrieval constraints factor into the evaluation allowed 

us to directly assess the efficiency (or lack of) of SQL 

queries based on composed constraints. 

During the evaluation, 2 performance measures were 

recorded: 

1. Setup-time: The amount of time it took to make 

chunks in the differently sized DMs available to 

ACT-R’s retrieval process. 

2. Retrieval-time: The amount of time it took to 

actually retrieve a chunk matching the retrieval 

constraints. 

Table 2 lists the average setup times we measured in 

the evaluation of default and persistent DM. Times in 

the table clearly show that loading a declarative 

memory specification into ACT-R through default 

methods requires an increasing amounts of time when 

declarative memory size increases. The details of the 

relationship between the size of DM and set-up time, 

while interesting, do not contribute to the point that as 

declarative memory grows, a load-time problem 

appears. Consequently, they won’t be discussed further. 

The failure of ACT-R to load 240,000 chunks into 

default declarative memory provides us with an initial 

estimate of the number of chunks—at least as complex 

as our noun chunk type—beyond which ACT-R 

becomes unstable on our hardware. Lastly, the cost of 

connecting to an external PostgreSQL DBMS was 

found to be relatively constant. 

Table 2: Summary of setup times (in msec) 

~1K ~5K ~10K ~20K ~80K ~240K

default 98 375 981 2828 103395 NA

persistent 82 90 90 94 86 86  
 

Ten retrieval times were recorded under all 6x4 

combinations of DM size and retrieval constraints. 

These measures were analyzed using a repeated 

measures ANOVA. Since default DM was unable to 

accommodate 240,000 chunks, retrieval times are 

missing in Figure 4. The persistent DM retrieval times 

under these circumstances were not included in the 

repeated measures ANOVA. All main effects and 

interactions were found to be highly significant. The 

significant Size of DM X Retrieval Constraints X Type 

of DM interaction (F(12,108) = 3.682, p<0.001) is 

illustrated in Figure 4. The figure shows that while 

wall-clock retrieval times are uninfluenced by the size 

of declarative memory when persistent DM is used, 

they are significantly influenced by the size of 

declarative memory when default DM is used. When 

declarative memory contains more than approximately 

80,000 chunks, the benefits of keeping chunks in an 

internal data structure are lost. 80,000 chunks seem to 

be the point at which things decidedly favor persistent-

DM; at least given the complexity of our noun chunk 

type. Using additional retrieval constraints imposes no 

additional time costs on persistent DM. A clear, and 

eventually significant, relationship between constraints 

and retrieval time can be seen in default DM. 

While this simple evaluation reveals some of the 

capabilities of persistent-DM, much work needs to be 

done. For example, activations were not computed in 

the comparative study. When sub-symbolic chunk 

properties are calculated and maintained in ACT-R’s 

declarative module, symbolic properties of candidate 

chunks such as fan and type inheritance can easily lead 

to a dramatic need to obtain properties of non-candidate 

chunks. In order to begin to understand the costs and 

benefits of persistent-DM, the calculation of activation 

was inhibited. We are planning follow-up evaluations 

that will systematically control fan and chunk type 

inheritance in order to further explore the capabilities of 

the persistent-DM module. 
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Figure 4: Summary of wall-clock retrieval times.

Conclusions 

We have integrated a relational database with the ACT-

R cognitive architecture to support the creation of large, 

externalized, persistent declarative memories whose 

behavior matches that of existing internal declarative 

memories. We are using this capability in the 

development of a complex model of a Synthetic AVO 

capable of communicating with human teammates in 

performance of a reconnaissance task. More generally, 

such a capability is needed in the development of 

complex cognitive models with significant declarative 

memory requirements and this capability aligns with 

our research focus on large-scale cognitive modeling 

(cf. Douglass & Luginbuhl, 2008). 

Future Directions 

The interface to the external database is currently 

functional and outperforms ACT-R’s internal data 

storage and access mechanisms on large declarative 

memories under a range of conditions as demonstrated 

in the previous section. However, we believe there is 

room for significant improvement and optimization of 

the performance of the interface. In particular, the 

retrieval of a word from DM actually involves a chain 

of retrievals which includes all the elements in the fan 

list of the word. In the worst case, this chain could 

consume much of declarative memory, bringing the 

system to its knees. Besides needing to retrieve the fan 

list for a word in order to compute activations, if the 

retrieval template is highly unconstrained, many DM 

chunks will match and the computations may exceed 

process internal resource capacities. We bumped into 

this problem early on in a version of the model which 

only used spreading activation based soft constraints on 

word retrieval. If the retrieval template contains no hard 

constraints on the form of the word to be retrieved, 

relying exclusively on spreading activation to bias the 

retrieval, then ACT-R must compute the activation of 

every word in DM to determine which word to retrieve. 

This is computationally explosive and was unworkable 

with a mental lexicon of just 2500 words. We were 

forced to reinstate a whole word hard constraint on 

retrievals, with a fallback to a first letter hard constraint 

and spreading activation based soft-constraint on 

matching words if the whole word retrieval fails. 

Currently, these retrievals are executed by different 

productions. However, we are exploring the possibility 

of using the regular expression capability provided by 

the persistent DM module (a slot name preceded by ―~‖ 



invokes this regular expression matching capability) to 

conditionally retrieve the whole word first and if that 

fails then retrieve the word with highest activation 

matching the first letter, all within a single retrieval 

production. Given a conditional retrieval capability, a 

whole word match would terminate the retrieval, 

returning the matched word, and the less constrained 

and more computationally expensive first letter match 

with spreading activation  over matching words would 

not occur.   

We are also planning on using the regular expression 

matching capability to support retrieval of perceptual 

units at multiple levels of representation. The 

perceptual module of ACT-R currently divides the 

linguistic input into word units using a function called 

chop-string. This function relies on spaces and 

punctuation to delimit words. For example, the input 

―he went.‖ would be divided into ―he‖ ―went‖ and ―.‖. 

However, sometimes words contain punctuation and 

shouldn’t be divided—for example ―etc.‖ and ―didn’t‖. 

And sometimes words can have a space as in ―ad hoc‖ 

and ―a priori‖. In the case of ―didn’t‖, the chop-string 

function returns ―didn‖ ―’‖ and ―t‖ and it takes three 

attention fixations and several productions per ―word‖ 

to process this input. Given the rapidity with which 

humans process language during reading—

approximately 225 msec per space delimited word 

during silent reading (Rayner, 1998)—this treatment of 

―didn’t‖ is unlikely to be cognitively plausible. To 

bring the language comprehension model into closer 

alignment with reading results, what is needed is a 

capability to recognize the largest unit in DM which 

matches the input, often matching multi-word units in a 

single attention fixation. To achieve this we are 

implementing a capability to do retrievals at multiple 

levels using a disjunction of perceptual units derived 

from the input. For example, ―didn’t‖ will lead to an 

attempt to retrieve either ―didn’t‖ or ―didn‖ within a 

single retrieval specification, ―John’s‖ (as in ―John’s 

book‖) will lead to an attempt to retrieve either 

―John’s‖ or ―John‖, ―etc.‖ will lead to an attempt to 

retrieve either ―etc.‖ or ―etc‖, ―went.‖ will lead to an 

attempt to retrieve either ―went.‖ or ―went‖, ―a priori‖ 

will lead to an attempt to retrieve either ―a priori‖ or 

―a‖ and ―because of‖ will lead to an attempt to retrieve 

either ―because of‖ or ―because‖.  

Finally, longer term we are contemplating pushing 

ACT-R’s activation computation into the database—

transparently from the perspective of ACT-R and DM. 

This would avoid the need to retrieve large numbers of 

chunks from external DM in order to compute their 

activations within the ACT-R process. 
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