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Abstract 

A crucial aspect of diagnostic reasoning is the integration 
of sequentially incoming information into a consistent 
mental representation. While research stresses the 
importance of working memory in such a task, it is not 
clear how the information represented in working memory 
can guide the retrieval of associated information from long-
term memory. Factors that might influence this retrieval are 
the amount of information currently in the focus of 
attention (Lovett, Daily & Reder, 2000) and the time since 
the information first became available (Wang, Johnson & 
Zhang, 2006). By comparing the results of different ACT-R 
models to human data from a sequential diagnostic 
reasoning task, we show that these factors do not 
necessarily influence the retrieval. Our findings rather 
suggest that in a task where information has to be actively 
maintained in working memory, each piece of this 
information has the same potential to activate associated 
knowledge from long-term memory, independent from the 
amount of information and the time since it entered 
working memory.  
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Introduction 

Generating and evaluating explanations for data extracted 
from the environment is a key component of many 
everyday tasks like medical or technical diagnosis and 
social attribution. This kind of reasoning is often called 
diagnostic or abductive reasoning (Josephson & 
Josephson, 1994; Johnson & Krems, 2001). For example, 
in medical diagnostic reasoning a physician needs to find 
the best explanation for the set of symptoms displayed by 
a patient. In such a task, information (e.g., the patients’ 
symptoms) often becomes available step by step. The 
reasoner needs to integrate this information into a 
consistent mental representation that is updated every 
time a new piece of information becomes available. To 
find an explanation for the observed information, 
associated information (e.g., potential explanations for a 
set of symptoms) needs to be retrieved from memory. 

Working memory has been proposed to play a crucial 
role in such a task. It is needed to keep track of the 
subsequently gathered information (Baumann, 2001) and 
it might hold possible explanations for this information 
retrieved from the reasoners long-term memory 
(Baumann, 2001; Thomas, Dougherty, Sprenger & 
Harbison, 2008). However, it is not clear how the 
information is represented in working memory over the 
course of the task and how that influences the retrieval of 

associated information. The goal of this paper is to 
develop a better understanding of how information in 
working memory guides the retrieval of associated 
knowledge from long-term memory in a sequential 
diagnostic task.  

To achieve this, we implement different assumptions 
about the retrieval in ACT-R models and compare the 
model data to human data from a diagnostic reasoning 
experiment (Bauman, Mehlhorn & Bocklisch, 2007). 
Before we turn to describing the models, results and the 
related theories in detail, we want to point out that 
abduction in general and diagnosis in particular are 
complex tasks. In this paper we focus on memory 
retrieval, as it is a key aspect of these tasks.  However, 
one should keep in mind that the models are a 
simplification of the task, as they ignore more deliberate 
processes (as e.g. described by. Johnson & Krems, 2001) 

Theories 

Human memory might be understood as a set of elements, 
each of which is assigned a specific activation value. In 
this conception, a subset of the elements being activated 
above some specific threshold constitutes working 
memory (e.g., Just and Carpenter, 1992). In diagnostic 
reasoning, observations (e.g., the symptoms presented by 
a patient) and their possible explanations (e.g., diseases 
causing these symptoms) are held in memory. Given such 
a knowledge structure, observations can serve as a cue for 
the retrieval of associated knowledge. That is, information 
in the focus of attention (e.g., the symptoms presented by 
a patient) initiates a spreading activation process that 
activates associated information in long-term memory. 
Although this assumption has been made by various 
researchers (e.g., Arocha & Patel, 1995; Bauman et al., 
2007; Thomas et al., 2008), the nature of this spreading 
activation process is not yet fully understood. 

It has been argued that the total amount of activation 
that can be spread from working memory is limited and 
will be equally divided among the elements that spread 
activation (Lovett et al., 2000). Thus, the amount of 
activation spread by each single piece of information will 
depend on the amount of information that is currently held 
in the focus of attention. It has also been argued that 
information in working memory is subject to decay (e.g., 
Wang et al., 2006). That means that the activation spread 
from a specific piece of information in working memory 
to associated knowledge in long-term memory depends on 
the time since the information became available. 



As noted above, in diagnostic reasoning the reasoner 
needs to find an explanation for information observed 
from the environment. As new information often only 
becomes available over time, the amount of information 
in working memory (i.e. the number of observations that 
need to be explained) as well as the ‘age’ of information 
in working memory (i.e. the time since the observation 
was made) varies. Therefore, sequential diagnostic 
reasoning is a field especially suited to test assumptions 
about information representation in working memory and 
its effect on retrieval from long-term memory. 

To test the different possibilities, we designed different 
cognitive models using ACT-R. In its current 
implementation, ACT-R’s declarative memory system 
consists of chunks (facts like Influenza can cause cough 
and fever) that represent declarative knowledge. Access to 
these memory elements depends on their activation 
(Anderson, 2007; Lovett et al., 2000). For each chunk, 
this activation is computed as the sum of its base-level 
activation and the associative activation from the current 
context (i.e. spreading activation). The base-level reflects 
the chunk’s previous usefulness in terms of the number of 
times it was used and the time that has elapsed since. The 
associative activation reflects a chunk’s usefulness in the 
current context and is computed as the product of the 
activation spread to it from some specific source (see 
below) and the strength with which it is related to that 
source (Anderson, 2007).  

The source that provides the activation to be spread is 
information about the current problem or task. This 
information is represented in one of ACT-R’s modules, 
the imaginal module. This module holds a mental 
representation of the problem currently in the focus of 
attention (Anderson, 2007). In a sequential diagnostic 
reasoning task, it is assumed that the imaginal module 
thus holds the information about all the data gathered so 
far. This information can then spread activation to 
associated knowledge held in declarative memory. To test 
the nature of the representation of information in working 
memory we implemented different modes of this 
spreading activation process in four ACT-R models.  

The first model addresses the question if the amount of 
information in the focus of attention should influence 
spreading activation. To test this, we used the standard 
implementation of spreading activation in ACT-R. In this 
implementation, the total amount of spreading activation 
is assumed to be equally divided among the information 
stored in the source chunk (Lovett et al., 2000). Thus, the 
activation spread by each single piece of information 
depends on the amount of information in the focus of 
attention. The more slots the source chunk contains, the 
less activation can be spread by each single slot.  

The second and the third model address the question 
whether information in working memory is subject to 
decay. In the second model, we use an equation for 
decaying activation proposed in a constraint satisfaction 
model (UECHO) by Wang et al. (2006). It assumes 
spreading activation to decay in curvilinear, negatively 

accelerated manner. Thus, information in working 
memory increasingly loses its impact over time. To test if 
decay needs to be negatively accelerated as proposed by 
Wang et al., or if a more simple assumption of decay 
would be sufficient, we implemented a third model using 
a linear decay function. In this model, information in 
working memory loses its ability to spread activation 
linearly over time. 

For being able to better access the explanatory power of 
the above models, we implemented a fourth model that 
serves as a control model. This model is most 
parsimonious, as it assumes a constant amount of 
activation spread by each piece of information in working 
memory. Thus, in this model, spreading activation neither 
depends on the amount of information held in working 
memory, nor on the time since the information became 
available. 

Experiment 

Human data was obtained in an experiment using an 
artificial diagnosis task (see also Baumann et al., 2007). 
Participants were told to imagine they are a doctor in a 
chemical plant and had to diagnose which chemical their 
patient had been in contact with. Therefore, they learned a 
knowledge structure consisting of nine different chemicals 
grouped into three categories. Chemicals were named 
with single letters and each chemical caused three to four 
symptoms (Table 1). Each symptom could be associated 
with two, three or six chemicals. Participants acquired this 
knowledge in an extensive training session, where they 
had to solve various tasks until reaching proficient 
performance. 

In two subsequent experimental sessions, participants 
then worked on 340 diagnostic reasoning trials. In each of 
these trials, symptoms belonging to a chemical were 
presented sequentially on the screen. At the end of each 
trial, participants were asked for their diagnosis (see 
Figure 1 for a sample trial). As each symptom had several 
possible causes, only the combination of symptoms in a 
trial allowed for unambiguously identifying the correct 
diagnosis. With the number of observed symptoms, the 
number of plausible diagnoses could be narrowed down, 
leaving the correct diagnosis (consistent to all symptoms) 
at the end of the trial. 

To track the activation of different explanations during 
the course of this reasoning task, a probe reaction task 
was used. After one of the symptoms in each trial, a single 
letter was shown. This could either be the name of one of 
the chemicals or not. Once the letter was presented on the 
screen, participants were to indicate as fast as possible 
whether it was a chemical or not. The idea of this probe 
reaction task is based on the idea of lexical decision tasks 
(e.g., Meyer & Schvaneveldt, 1971) according to which 
participants should respond faster to a probe that is 
activated higher in memory than to a probe of low 
activation. Using this measure, it was possible to monitor 
the activation of explanations over the course of the 



sequential reasoning task with as little impact on the task 
itself as possible.  

 
Table 1. Summary of the material participants had to 

learn (original material in German). 
Group Chemical Symptoms 

B cough, short breath, headache, eye inflammation 

T cough, short breath, headache, itching Landin 

W cough, eye inflammation, itching 

Q skin irritation, redness, headache, eye inflammation 

M skin irritation, redness, headache, itching Amid 

G skin irritation, eye inflammation, itching 

K diarrhea, vomiting, headache, eye inflammation 

H diarrhea, vomiting, headache, itching Fenton 

P diarrhea, eye inflammation, itching 

 
Three different types of explanations were tracked in 

the experiment. First, the probed explanations could be an 
element of the current explanation (that is they were 
consistent to all symptoms observed so far). These probes 
are termed ’relevant’. Second, the probed explanation 
could be an explanation that was never considered during 
the current trial. These probes were termed ‘irrelevant’. 
Third, the probed explanation could have been considered 
relevant until some evidence inconsistent with that 
explanation forced participants to reject it. These probes 
are called ’rejected’. Rejected probes additionally varied 
with respect to the time since their rejection. They could 
be probed directly after rejection (just rejected); one 
symptom after rejection (rejected 1 symptom ago); or two 
symptoms after rejection (rejected 2 symptoms ago).  

 

 

Figure 1. Sample trial from Baumann et al. (2007) with B 
as a relevant probe. (Letters in parentheses represent 

relevant explanations). 

Models 

Four ACT-R models using different implementations of 
spreading activation from working memory were designed 
to test the assumptions presented above. Because ACT-
R’s memory system is dependent on patterns of retrieval 
time, the temporal order of events was modeled as closely 
as possible to the actual experiment. Thus, the models 
went through the same trials as human participants. After 
one symptom of each trial a probe was presented and the 
models had to indicate whether it was a chemical or not 
by typing ‘Y’ for Yes and ‘N’ for No respectively. At the 

end of each trial the models typed the letter representing 
the diagnosis. This was accomplished using ACT-R’s 
perceptual and motor modules that allow for modeling 
time to process visual stimuli and performing key strokes. 

As participants had received extensive training on the 
task prior to the experiment, the base levels of the chunks 
representing symptoms and probes or diagnosis 
respectively were all set to the same high level. 

To implement the integration of the sequentially 
presented symptoms we assumed one chunk to be placed 
in the imaginal module at the beginning of each trial. 
Over the course of the trial, the slots of this chunk were 
successively filled with the symptoms seen thus far. As 
noted above, we assumed the imaginal module to be the 
source of spreading activation, thus, only information 
stored in this module could spread activation to associated 
concepts in declarative memory. 

To solve the probe task, the model had to retrieve the 
explanation-chunk representing the probe letter. Due to 
spreading activation from the observed symptoms stored 
in the imaginal module, explanations associated to these 
symptoms received more spreading activation and could 
therefore be retrieved faster. Thus, as in human 
participants, the time to respond to a probe could be used 
as a measure for the activation of explanations in memory. 
As soon as the model was asked for the final diagnosis, it 
attempted to retrieve an explanation-chunk from memory. 
As the explanation most consistent to all observed 
symptoms obtained the highest spreading activation, this 
explanation was the one most likely to be retrieved. 

To model the different assumptions concerning the 
nature of activation processes in working memory, we 
varied the implementation of spreading activation from 
the imaginal module between the different models as 
described in the following. 

 
Model 1. In the first model, the amount of activation 
spread by each symptom depends on the number of 
symptoms observed so far. The imaginal module (holding 
the observed symptoms) can spread a certain amount of 
maximum activation that is equally divided among the 
symptoms: 

 
Wj = W/n (1) 

 
with Wj being the spreading activation associated with the 
jth symptom, W being the total amount of activation for 
the module and n being the number of symptoms hold by 
the module. This is the standard solution implemented in 
ACT-R. Thus, after the first symptom is presented, there 
is only one chunk in the imaginal module that can spread 
activation and thus, has a full spreading activation (set to 
1). The more symptoms placed in the module over the 
course of the trial, the less activation is spread by each of 
these symptoms.  
 
Model 2. For the second model, we implemented a 
function that assigned pre-specified amounts of activation 



to be spread to the slots of the source chunk. The values 
associated with the slots were computed using a formula 
proposed for the decay of information in a constraint 
satisfaction model (Wang et al., 2006; see also Mehlhorn 
& Jahn, 2009) that assumed a non-linear negatively 
accelerated decay:  
 

Wj = Wj-1(1-d)√t (2) 
 
where Wj is the spreading activation associated with the jth 
symptom, d denotes a decay parameter that was set to 0.4 
and t denotes the time that has elapsed since the trial 
started. Thus, the most recent symptom always spreads a 
full amount of activation (set to 1). Over the course of the 
task, symptoms spread less activation the longer they are 
kept in the imaginal module. 
 
Model 3. The third model also used a function assigning 
pre-specified decaying amounts of activation. However, in 
this model we implemented a linear instead of a 
negatively accelerated decay. To make sure that not the 
total amount of the decay, but only the slope of the decay 
function would influence the outcome, we used equal 
values as in Model 2 for the most recent and the oldest 
symptom:  

 
Wj = W1-(j-1)((W1-W4)/3) (3) 

 
with Wj again being the spreading activation associated 
with the jth symptom and W1 and W4 being the spreading 
activation values for the most recent and the latest 
symptom as computed by formula (2). Thus, in this model 
the activation spread by symptoms decays away in a 
linear manner over time. 
 
Model 4. A constant amount of activation associated with 
each slot of the source chunk was implemented in the 
fourth model. Thus, Wj was set to a fixed value of 0.16 
that had shown to provide a good fit to the human data. 
Thus, in this model, activation spread by a piece of 
information in the imaginal module neither depends on 
the amount of information in the module, nor on the time 
since the information first entered the module. 

Results 

All four models were compared to the results produced by 
human participants on four dependent measures, namely 
the accuracy that was reached in the diagnosis and the 
probe task and the average reaction times for correct 
responses in these two tasks. 
 
Diagnosis Task. Table 2 shows the mean accuracies and 
the mean reaction times for the diagnosis task. All models 
were able to solve the diagnosis task reaching very good 
to perfect performance. Inspecting the reaction times for 
correct diagnoses reveals that all models produced about 
the same reaction times as human participants. 

 
Table 2. Mean accuracies and mean reaction times by 
models and human participants in the diagnosis task. 

 
 Mean accuracy 

(%) 
Mean RT (ms) - 

correct 
diagnoses 

Participants 96.1 608.09 

Model 1 100 606.87 

Model 2 98.4 571.21 
Model 3 99.1 555.13 
Model 4 100 658.31 

 

Probe Task. To analyze the accuracy of the probe task, 
for human data as well as for the models’ data, only trials 
with correct final diagnoses were used. To analyze 
reaction times to probes, trials on which either the 
diagnosis or the probe response was wrong, were 
excluded. This was done because for human participants it 
remains unclear what caused the wrong diagnosis or the 
wrong probe response. For example, a participant might 
have missed a symptom and thus reached a wrong 
conclusion, implying that the activation measured in the 
probe task is not the activation of the target letter but 
rather that of another, possibly irrelevant one. 

Human participants responded correctly to the probes in 
93.1% of the trials whereas all models reached 100% 
accuracy. Reaction times for the different probe types are 
illustrated in Figure 2. For all probe types, Model 4 fits 
the human data best. The other models deviated more 
from the human data, which is not only evident in overall 
faster reaction times, but also in the less well fitting 
patterns. The different fits are reflected by the R2 between 
participants’ data and the modeling results as well as the 
RMSSDs; being R2 = .35 and RMSSD = 2.75 for Model 
1, R2 = .37 and RMSSD = 3.00 for Model 2, and R2 = .44 
and RMSSD = 3.58 for Model 3, whereas Model 4 
reached a R2 of .80 and a RMSSD of .85. 

As can be seen in Figure 2, for relevant probes, 
participants’ reaction times decreased the closer the probe 
was presented to the end of the trial. Model 4 produced a 
pattern close to the participants’ data. In all other models, 
reaction times were too fast at the beginning of the trials 
and did not change substantially during the trials, 
indicating that the earlier symptoms were overweighed. It 
is notable that none of the models fit the positive 
acceleration (that is, a sudden drop in reaction times from 
symptom 3 to symptom 4) of the participants’ data. 

For irrelevant probes, participants’ response times 
decreased slowly over the trial. The models’ reaction 
times decreased as well, but except for Model 4, this 
decrease was much faster than for the participants. Again, 
the slopes of the curves differed between all models and 
the participant data. Participants reacted increasingly 
faster towards the end of the trial, while the models’ 
reactions decreased asymptotically toward some value. 



Figure 2. Models’ and participants' reaction times for different probe types at different probe positions. 
 

For the just rejected probes, all models’ patterns 
matched the pattern provided by humans fairly well. 
However, the models’ responses were too fast. Again, the 
fourth model’s reaction times lie closest to the human 
data. For the probes rejected one symptom ago, all 
models’ patterns again roughly matched the ones provided 
by human participants; except that Model 4 showed a 
slight decrease instead of an increase in the reaction times. 
Despite the difference in the slope, Model 4 again 
produced reaction times closest to the human data. Also 
for probes rejected two symptoms ago, the best fit to 
human data was provided by Model 4. 

Discussion 

In this paper, we explored the influence of the 
implementation of different spreading activation 
processes in working memory during a diagnosis task. In 
the task, sequentially presented information needed to be 
integrated to find an explanation most consistent to all 
pieces of information. We compared the data provided by 
four ACT-R models that utilized different patterns of 
spreading activation to human data on several dependent 
measures. The analysis of diagnostic performance and the 
probe accuracy was important to show that all models 
were able to solve the task. However, the most interesting 
dependent variable is the probe reaction time. It not only 
provides a measure for how strongly different types of 
explanations are activated by the observed symptoms, but 
also how this activation changes over time. 

As the results show, neither the standard 
implementation of ACT-R (Model 1), assuming the 
amount of spreading activation in the focus of attention to 
depend on the amount of information held in the source 
chunk nor models assuming the spreading activation of 
information in working memory to decay away with time 
(Models 2 and 3), could account for the patterns found in 
human data. Varying the pattern of the decay function 
from a negatively accelerated decay in Model 2 to a linear 
decay in Model 3 also had no substantial effect on the 
model fit. Concluding, none of the models assigning 

varying activation-values to the information held in 
working memory were able to fit the data.  

Contrary to these models, our fourth model provided a 
pattern very close to the one provided by human 
participants. This model assumed the amount of spreading 
activation associated with each piece of information in 
working memory to be constant. Before discussing 
possible implications of this finding, we would like to 
address several potentially critical aspects of our 
approach.  

One could argue that the bad fit of the Models 1, 2 and 
3 might only be due to the high base levels assigned to the 
diagnosis chunks, thus causing the reaction times to be too 
short. To rule out this possibility, we also implemented 
the three models with lower base-levels. However, this 
did not improve the models’ fit, because it did not affect 
the pattern of the response times, but only the absolute 
level. 

Another possible source of criticism might be the 
different amount of total spreading activation that was 
used for the different models. That is, for example in 
Model 2, the sum of all activations assigned to the 
different slots of the chunk in the imaginal module was 
1.56, whereas the total spreading activation in Model 1 
was 1. To rule out possible criticism related to this point, 
we also implemented all four models in a way such that 
the total spreading activation was constant across the 
models. This, again, did not change much about the 
general data pattern.  

Conclusions 

Our results have several interesting implications. First, 
they question the implementation of spreading activation 
currently used in ACT-R. Second, they question the 
assumption of decay in working memory as proposed in 
some constraint satisfaction models. Why could those 
theoretical assumptions not be confirmed by our data? 
Does the amount of information in working memory 
really have no impact on how much activation can be 



spread by each piece of information? And is information 
in working memory really not subject to decay?  

We would answer both questions with no. The results 
do neither implicate that there is no overall limit to the 
amount of activation spread from working memory nor 
that there is no decay. In our task, participants had to 
maintain a relatively small amount of information in 
working memory (up to four symptoms). This lies within 
the general range of working memory capacity (cf. 
Cowan, 2000). Thus, our results do not question that the 
total amount of activation spread from the focus of 
attention is related to working memory capacity (e.g., 
Lovett et al., 2000). Rather, this spreading activation 
might be assigned to the information in the focus of 
attention in a different way. That is, until the total 
capacity of working memory is reached, each piece of 
information seems to spread the same amount of 
activation. 

Moreover, only information that is not currently held in 
the focus of attention might be subject to processes of 
decay. That means, as soon as some piece of information 
becomes irrelevant to the current task or as the amount of 
information in the focus exceeds its limited capacity, this 
information might decay away. However, in our task, the 
information neither became irrelevant nor did it exceed 
the capacity of working memory during the whole 
reasoning process. When new symptoms are observed, the 
reasoner needs to integrate them with earlier symptoms to 
find an explanation consistent to all symptoms. Therefore, 
the older symptoms need to be actively maintained, and 
thus they do not decay. 

An interesting question for further research would be to 
take a closer look at what happens when the amount of 
information to be actively maintained during the task 
exceeds working memory capacity. As several authors 
suggest, in such cases the least activated information 
would be dropped from working memory (e.g., Thomas et 
al., 2008; Chuderski, Stettner & Orzechowski, 2006). 
Thus, this information should no longer be able to spread 
activation to associated information in long-term memory 
but instead it should become subject to decay.  

Concluding, our results shed some light on the 
representation of information in working memory during 
a sequential diagnostic reasoning task. They suggest that 
in such a task, each piece of this information has the same 
potential to activate associated knowledge from working 
memory. It will be an interesting question for further 
research to determine in how far this finding can be 
generalized from diagnostic reasoning to other tasks that 
require information to be actively maintained in working 
memory. 
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