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Abstract

Computational models are presented that attempt to mimic
how humans select keywords to describe documents. These
semantic models are based on data mining techniques applied
to large corpora of human writing. A methodology to test the
merit of these models is developed; performance at matching
author-chosen keywords is the basis of this test. Results
indicate topic models and their derivatives outperform
traditional semantic models. Finally, it is shown how these
models might be incorporated into a system that automatically
selects keywords for an academic publication.
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Background

After reading a text, humans are able to provide a quick
summary of its contents. The smallest summary possible is
simply a list of topics. These topics, or 'keywords,' represent
the highest levels of human abstraction: they dramatically
reduce an entire document to a few words while retaining
key information. A computational model of keyword
generation would allow researchers to better understand
how knowledge is extracted, abstracted, and generalized in
the mind.

In this paper we compare the ability of four computational
models to pick out author-selected keywords from a larger
set of possible keywords. The models are contrasted based
on theoretical and technical differences. Finally we propose
future research to better understand the underlying
mechanics of these models and show how they may be
useful as normative tools for automatic keyword generation.
The tests of the four models (fit to data) serve as a proof of
concept of such a system.

Measures of Semantic Relatedness

Measures of semantic relatedness (MSRs) are techniques
that quantify the semantic relationships between two words
or documents. They derive a numeric ranking of relatedness

from a fitted semantic model. For example, after being
trained on a large corpus of English text, an MSR might
determine that 'cat' and 'dog' are highly related. The
calculation of this ranking depends on each MSR, but the
interpretation is the same.

All of the selected MSRs (and the models they are based
on) depend on the 'bag of words' assumption (Landauer,
Laham, et al., 1997). This means that word order or context
does not factor into the relatedness computation. As
keywords merely describe the topics of the text (instead of
the content), this assumption should not hinder the
predictive power of the models.

Although all MSRs are capable of calculating relatedness
between words, only a few of the measures are capable of
determining relatedness between multi-word terms (e.g.
documents, paragraphs). The four MSRs selected for this
analysis are able to do this.

Our assumption is that keywords may be selected for a
given document from a larger ontology based on document-
keyword relatedness values. In other words, for a given
MSR, m, a document, D, a set of appropriate keywords for
this document, k;,, and a set of less appropriate keywords
for this document (distractors), d;, we assume that
m(D,k)>m(D,d,).

Semantic Models

LSA

Latent Semantic Analysis was first proposed in the late
1980s as a way to extract meaningful relationships between
text (Landauer & Dumais, 1997). It has become the basis of
numerous applications including educational testing, search
engines, and optical character recognition (Zhuang, Bao,
Zhu, Wang, Naoi, 2004). LSA uses the singular value
decomposition (SVD) to identify the strongest linear
relationships within text corpora. The matrices resulting
from this analysis can be used to calculate word-to-word,
word-to-document, or document-to-document similarity.



Constructing the LSA model

A word-document matrix is constructed from a corpus of
natural language. Each element in the matrix is the tf-idf
ranking (term frequency—inverse document frequency;
Salton and McGill, 1983) of the corresponding word in the
corresponding document. Using tf-idf allows LSA to
discount frequent words that have low semantic content
('the,' 'what'). The calculation for tf-idf is:

flxld) ik m
length(d) f(x)

where f(xlw) is the number of times that some word, x,
appears in a given document, d, length(d) is the number of
words in d, m is the total number of documents in a corpus,
and f(x) is the total number of times that x appears in the
corpus.

Once the word-document matrix is populated, the singular
value decomposition is run. This produces a representation
of the original word-document space but realigned to
capture important relationships. Restricting the new
semantic space to the N most important dimensions provides
a set of vectors associated to each word in the corpus an
each document in the corpus. For this paper, N was set to 50
to provide a large enough number of dimensions without
impeding the usefulness of the SVD.

Calculating a relatedness value

Two methods are available to compare words to documents:
appending the document's word count to the original word-
document matrix as the start of training, or summing each
word's topic vector over the entire document. Since the
former requires an expensive SVD computation for every
test, we choose the latter to evaluate semantic relatedness.

For every keyword/document pair, a semantic relatedness
measure can be calculated as follows:

1. For every keyword/document, look up each word
in the reduced LSA semantic space (see above).
This produces a vector of length N for every word.

2. Sum  these vectors over the entire
keyword/document.

3. Take the summed keyword vector and the summed
document vector and determine the cosine between
the two vectors. This cosine-similarity is the final
score provided by LSA (Landauer & Dumais,
1997).

Implementation

LSA was implemented for this paper in custom software. A
word-by-document matrix was constructed and populated
with corresponding tf-idf values. This matrix was passed to
a Matlab SVD routine which computed the reduced
semantic model. This model correlates words to the reduced
semantic space. A vector for each document or keyword
phrase was calculated by summing the individual word
vectors, and the final relatedness value is the cosine between
the document and keyword vectors.

LDA

In attempting to rework LSA with a strong probability
model, Latent Dirichlet Allocation was developed (Blei, Ng,
Jordan, 2003). This technique models each document as a
probability distribution of topics; each topic is modeled as a
distribution of words. By inferring what topic and word
distributions exist in a corpus, LDA is able to provide an
intuitive notion of topic — and keyword — extraction. LDA
and similarly derived methods are called 'topic models'
because, unlike methods such as LSA, topics are an explicit
component in the model.

Constructing the LDA model

Latent Dirichlet Allocation builds a generative model of text
by fitting a proposed model against known data.
Specifically, LDA constructs a hierarchical Bayesian model
based on Dirichlet priors. Thus, documents comprise a
Dirichlet distribution of N “topics,” while topics comprise a
multinomial distribution of words. Two corpus-wide
parameters govern the model: the Dirichlet prior for topics
are controlled by a scalar parameter & and the multinomial
distribution for words in topics is controlled by the N-vector
B. By estimating a and [ for a corpus, a document's topical
content may be computed and compared. As with LSA, N
was chosen to be 50 for this paper.

1. Initialize a placeholder set of topic probabilities (Y)
and a placeholder set of probabilities that each
word was derived from each topic ().

2. Using the expectation-maximization algorithm
(Dempster, Laird, & Rubin, 1977) determine the
best Dirichlet parameters to predict the word-
document matrix (as calculated for LSA).

1. For each word and using the current estimate
of Y, «, and B, estimate the probabilities of
which topic each word was derived from (®).

2. Normalize ® so it sums to 1.

3. For each document and using the updated
estimate of @, , and B, calculate the new per-
document topic probabilities Y.

3. Once ® and Yy are calculated, estimate o, and .
Repeat steps 2 and 3 until convergence.

Calculating the relatedness value

Using Bayesian inference (with the Dirichlet priors
calculated above), a probability for each topic in a document
can be calculated. This vector is a topical “fingerprint” of
the document, and is similar to the vector created by LSA.
Another topic vector is created for the keyword, and the
cosine similarity between document and keyword vectors
provides a similarity score.

Implementation

For this paper, the LDA-C software package was used. This
takes a list of word counts for each document and outputs a
fitted LDA model in terms of topic, document, and word
probabilities. It also infers the topic probabilities of a new
document (when given a fitted model). The similarity



between a document and keyword phrase can be determined
by first inferring the topic probabilities of each. These can
be treated as a vector, and the cosine represents their
relatedness.

CT™

Correlated Topic Models extend LDA by allowing topics to
be correlated with each other (Blei & Lafferty, 2006). LDA
requires topics to be statistically independent, but this may
not be true in practice. For example, a document with a
topic related to biology is more likely to contain chemistry
related topics than topics concerning the French Revolution.
CTM allows for this correlation by using a logistic
distribution instead of the Dirichlet.

Constructing the CTM model

Correlated Topic Models are constructed in a similar
manner to Latent Dirichlet Allocation models, the main
difference is the choice of the logistic norm instead of the
Dirichlet prior. The logistic norm allows topics to be
correlated with each other — specified by a correlation
matrix. Inference of these new parameters are performed
similarly as in LDA.

Calculating the relatedness value

The results from CTM are computed exactly the same as
with LDA - the distribution over topics is treated as a
vector and the cosine similarity is computed between the
keyword and document. The cross-topic correlation values
are ignored.

Implementation

As with LDA, CTM was computed using a software
package. CTM-C takes similar inputs and provides similar
outputs as LDA-C. Since the cross-topic correlation values
are ignored for this paper, the calculation of relatedness
values in CTM is the same as in LDA.

VGEM

VGEM (Vector Generation from Explicitly-defined
Multidimensional semantic space; Veksler, Govostes, &
Gray, 2008) was recently proposed as an alternative to the
more computationally-intensive MSRs introduced above.
Like LSA, VGEM represents terms as vectors in a
multidimensional semantic space, and calculates term
relatedness as the cosine between their vectors. However,
VGEM does not require construction or computational
reduction of a document-by-word matrix (which becomes
extremely expensive for sufficiently large corpora). Instead,
VGEM requires a set of words to be explicitly chosen as the
dimensions of the semantic space, and calculates term
vectors dynamically based on term frequencies and term co-
occurrences with each of the dimension-words. Various
frequency/co-occurrence formulas may be used, e.g.
Pointwise Mutual Information (Turney, 2001), or
Normalized Google Distance, (Cilibrasi & Vitanyi, 2007).

For the purposes of this paper, VGEM dimensions were
taken to be the topics derived from LDA, and frequency/co-
occurrence formula used for calculating term vectors was
Normalized Similarity Score (NSS), which is a variant of
Normalized Google Distance. To be more precise, the value
of each word, x, on dimension, y, is derived as follows:

NSS(x, y) =1 -NGD(x, y) ,
where NGD is a formula derived by Cilibrasi & Vitanyi
(2007):

_ max{log f(x),log f(y)} —log f(x,y)
NGD(:Y) = = ogM — min{log f(x), log f)}

f(x) is the frequency with which x may be found in the
corpus, f(x,y) is the frequency with which both x and y may
be found in the corpus, and M is the total number of texts in
the corpus.
Constructing the VGEM model
1. After training an LDA model(N = 50), select the
two highest probability words from each topic in
the corpus. This provides the dimension words for
VGEM and only needs to be performed once per
corpus. Note that VGEM may have up to 100
dimensions, but may have fewer due to redundant
words in the LDA-derived dimensions.
Calculating relatedness value
1. For each word in the document, calculate the NSS
between the word and each dimension word.
2. Over each document, sum up all word similarity
vectors
3. To compare both documents, calculate the cosine
similarity between the two summed vectors.
Implementation
VGEM was implemented in custom software for this paper.
After the set of word-document counts were computed,
LDA was trained on the corpus to provide VGEM
dimension words. The two most probable word for each
topic were chosen for VGEM dimensions (duplicate words
were only represented once). NSS value between a given
word and each dimension word generate a VGEM vector.
Negative NSS values were clamped to zero. For each
document or keyword phrase, VGEM vectors for each word
were summed, providing a vector for the entire document or
keyword phrase. The similarity between the two is simply
the cosine, as for all the measures presented in this paper.

Methodology

Corpus Selection

Our testing and training corpus is the proceedings of the
Annual Meeting of the Cognitive Science Society from
2004 to 2008. 100 papers from 2008 were removed to
provide test cases, while the rest of the papers were used to
train the models as described above. All stopwords as



defined in the Python Natural Language Toolkit (Loper &
Bird, 2002) were discarded, in addition to all words less
than 3 characters long and all words occurring in less than 3
documents.

Segmentation

Each document was processed in two separate modes: by
-document and by-paragraph. In paragraph mode, each
document was split by software into 50-word non-
overlapping segments (the final segment, even if less than
50 words, is kept). Sentence and true paragraph boundaries
are ignored (to preserve the 'bag of words' assumption).
Document mode leaves the document intact. Thus, in by-
paragraph mode, a word-by-paragraph matrix is constructed
for LSA, LDA, and CTM instead of the word-by-document
matrix mentioned above (splitting up corpora into smaller
segments is standard practice, e.g. Landauer & Dumais,
1997).

Segmenting documents by paragraph allows insight into
what information these models incorporate. In paragraph
mode, each model is only given a small window to process
text. This emphasizes locality in word-word association.
However, because the windows do not overlap, paragraph
mode may break word-word associations that lie across
‘paragraph’ boundaries. This would lead to an artificially
inflated number of topics as there would be less second-
order word-word correlations. Future research will examine
the use of a sliding window to solve this problem.

Testing Method

Test Cases

In order to evaluate the predictive power of these models,
we determine how well each model can select author-chosen
keywords. Each test case consisted of a cue, targets, and
distractors. The cue was one of the 100 selected documents
from Cognitive Science 2008 conference proceedings, as
mentioned in the Corpus Selection section. The targets were
the author-picked keywords from the cue document, and the
distractors were random keywords from other documents.
The number of distractors was twice the number of targets,
a random guess would be correct 33% of the time. It should
be noted that each 'keyword' may actually be a keyword
phrase (e.g., matural language processing'). This does not
pose a problem as each MSR is able to process multi-word
terms.

For each MSR, the targets+distractors list was ranked and
sorted in accordance with MSR's relatedness values between
the cue and each of the keywords. Finally, the score for each
MSR on each cue-targets-distractors test case was
calculated as follows:

Number of targets in top n words

Scorecs. =
n

where 7 is the number of targets, and "top n words" refers to
the top third of the sorted targets-distractors list. Thus, if all

target keywords are more related to cue than any of the
distractor keywords, the score for that test case is 100%. If
none of the target words are picked by the MSR to be more
related to the cue than any of the distractor words, the score
is 0. The overall score for a given MSR is the average of all
100 test case scores.

Results

The mean performance, measured as the ability to select
author generated keywords from among distractors, is
shown in (Figure 1). We compared the best results from
each measure (by-document mode for LSA and LDA; by-
paragraph mode for CTM and VGEM) by means of a
repeated measures ANOVA. The analysis revealed a
significant main effect of Measure, F(3, 395)=13.011,
p<-0l. Posthoc Tukey HSD comparisons revealed
significant differences between LSA (M=.53, SE=.02) and
LDA (M=.69, SE=.02), LSA and CTM (M=.63, SE=.02),
and LSA and VGEM (M=.68, .02). No significant
differences were found between LDA, CTM, and VGEM.

Table 1. Mean and standard error values for the
performances of four MSRs on selecting author-generated
keywords among distractor keywords, using by-document

and by-paragraph modes of training. Chance-level
performance is .33.

Mode Document Paragraph
Mean Std. Err Mean Std. Err
LSA| 0.53 0.020 0.38 0.021
LDA| 0.68 0.021 0.65 0.019
CTM| 0.59 0.022 0.63 0.018
VGEM| 042 0.021 0.68 0.019
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Figure 1. Best mean performances of four MSRs on
selecting author-generated keywords among distractor
keywords. Chance-level performance is .33. Error bars

represent standard error.



Analysis

It is not surprising that topic models (LDA and CTM)
consistently perform well in this task. Keywords are
nothing more than descriptions of topics; while LSA and
VGEM can be interpreted to use topics, they do not model
them as explicitly as LDA and CTM.

In paragraph mode, LSA barely outperforms random
guessing (0.33). This implies that LSA heavily depends on
second and even higher order word correlations, which has
been confirmed in several contexts (Kontostathis &
Pottenger, 2002). However, the exact opposite has occurred
with VGEM - non-overlapping segmentation of text has
significantly increased its score. VGEM's underlying MSR —
NSS - explicitly uses first order co-occurrence in its model,
but nothing else.

LDA and CTM were not statistically different from each
other. This is striking because CTM was developed as an
improvement upon LDA. Perhaps the utility of CTM is not
realized without very disparate topics, the narrow scope of
cognitive science papers might render the topic correlation
of CTM ineffective.

VGEM is statistically equivalent to LDA and CTM. This
is interesting as it is a much simpler measure. Of course, in
this paper VGEM used LDA-derived dimensions; this
means a full LDA training step must be performed to obtain
these results. However, that only needs to be performed
once per corpus. With dimensions, VGEM only depends on
two tabulations: how many documents contain a given
word, and how many documents contain two given words.
These can be performed quickly on large or even streaming
databases. Additionally, the VGEM approach is adaptable to
new vocabulary: as long as the new word appears in a
document with a dimension word, a VGEM score can be
computed for it. The other three models would require
computationally expensive retraining.

Future Development

Sliding Window
As mentioned in analysis, the paragraph model emphasizes
locality, but interferes with higher-order word correlation.
Preprocessing the text as a sliding window will eliminate
artificial barriers by overlapping the selected text. This has
the unfortunate side-effect of greatly increasing computation
time, which is why it was left out of this analysis. The size
of the window (either sliding or non-overlapping) could be
modulated to find parameters that best suit the data. This
analysis might not benefit LDA (which performs worse on
paragraphs) but might boost VGEM performance even
higher.
General Corpus

In this analysis, the MSRs were trained on a corpus with a
narrow technical focus — cognitive science articles.
Although a substantial number of documents were used, the
limited breadth of this corpus might be an issue, especially

when specialized vocabulary is considered. Lindsey,
Veksler, Grintsvayg, & Gray (2007) explore the
performance of MSRs when used on different types of
corpora, a similar analysis could be performed on the
keyword-matching test.

Larger Parameter Search

In addition to the corpus used and the text windowing
chosen, there are several variables that affect the outcome of
the results. The number of topics/dimensions used, the
selection of topics for VGEM, and the choice of MSR all
might interact in complicated ways that can only be
determined by a more rigorous examination of the
parameter space.

Automated Keyword Generation

This work lays the foundation for an automated keyword
selection system. Editors of scholarly publications solicit
keywords for each submission, mainly to assist in assigning
reviewers with relevant interest. However, these keywords
can describe topics too narrow or too broad and are rarely
consistent across authors (Furnas, Landauer, Gomez, &
Dumais, 1987). This is not fully alleviated by a fixed set of
keywords: authors may pick too few or too many keywords,
and the keyword set may be redundant or omit crucial
topics.

A system built upon the keyword-matching test could
provide a solution to these two problems. For the first, any
of the MSRs described can rank the relationship between
each paper and an ontology of keywords. A relatedness
threshold can determine which keywords to retain for the
document and which to discard. As for the second problem,
the ontology of keywords itself can be generated by topic
models such as LDA and CTM, much like the VGEM
dimensions extracted from LDA as described above.
Theoretically, these would represent the 'true' topic
distribution.

To test such a system, more human data would be
required. Reviewers of each submission are most qualified
to judge which keywords are most representative of the
document. When reviewing a paper, they could be sent two
sets of keywords — author developed and MSR generated —
and select which set they feel better suits the paper. This
could be expanded to provide keywords from multiple
MSRs

Of course, with such sophisticated ranking systems, one
questions the usefulness of keywords at all — could we not
move straight to an automated matching of submissions to
reviewers?

Summary

We describe several MSRs of various theoretical
underpinnings and introduce a test that measures the ability
of MSRs to match human document keyword selection. We
then evaluate each MSR's performance on this test. The
results demonstrate that topic models perform well and are



robust under text segmentation. Additionally, VGEM (with
LDA-derived dimensions) performs as well as topic models
with the added benefit of adaptability and speed. Finally,
we show how this test is a proof of concept of an automatic
keyword generation system.
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