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Abstract
The  majority  of  cognitive  models  support  some  form  of 
parameterization,  either  of  the  model  itself,  or  through 
architectural mechanisms. In order to fully understand these 
models, it is important to understand the model’s behavior as 
a result of parameter variation across a wide range of values. 
Even simple models become difficult to understand without a 
systematic method of exploring performance across parameter 
combinations, and scientists have turned to iterative methods 
to perform sweeps of these spaces.  As an alternative to an 
exhaustive, homogeneous search, we examined adaptive mesh 
refinement (AMR) to explore simple and complex parameter 
spaces  of  several  models  developed  within  ACT-R.  AMR 
allows  for  fewer  model  runs  with  minimal  loss  of 
information.  We  found  that,  with  appropriate  granularity, 
AMR  methods  can  provide  a  sufficient  computational 
exploration  of  a  performance  space  with  only  1%  of  the 
sampling  of  conventional,  homogeneous  parameter  sweeps. 
The  advantages  of  AMR  for  computationally  efficient 
exploration  of  the  performance  predictions  should  be  of 
benefit  and  interest  to  developers  and  users  of  cognitive 
architectures and cognitive models. 
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Introduction
Although many discussions of cognitive modeling focus on 
the degree of fit to human empirical data, the point has been 
compellingly made that what a cognitive model does outside 
of the best-fitting parameter combination is just as important 
as  what  it  does at  the best-fitting parameter  combination, 
and  perhaps  even  more  so  (Roberts  &  Pashler,  2000). 
Information about how a model performs outside the best-
fitting  parameter  combination  provides  modelers  with 

information  about  how  likely  it  is  that  other  parameter 
combinations  result  in  a  comparable  fit.  It  also  gives 
modelers  information  about  the  full  range  of  behavior 
possible  from  the  model  and  how  different  parameters 
interact to generate possibly complex behavioral dynamics. 
Both  novice  users  of  a  cognitive  architecture  working  to 
understand model dynamics, and expert users of a cognitive 
architecture testing modifications to the theories embedded 
in  these  architectures  would  stand  to  benefit  enormously 
from  a  rapid  analysis  and  visualization  of  the  model 
performance spaces involved. However, cognitive modelers 
facing this problem are currently confronted with a lack of 
tools  that  support  exploring  that  space.  The  de-facto 
approach  to  cognitive  modeling is  more  often a focus on 
maximizing fit to human data. This is done through either 
hand-tuning  based  on the  intuition and  experience  of  the 
modeler or automated optimizing of the fit  of a cognitive 
model through approaches such as genetic algorithms, the 
conjugate  gradient  methods,  or  any  of  a  variety  of  other 
alternatives for optimization. Any of these approaches can 
be sufficiently successful, but they provide little data about 
the  performance  of  the  model  outside  of  the  ultimate 
parameter values used in presenting the final fit. 

Cognitive modelers need techniques and tools to support 
the  rapid  exploration  of  parameter  spaces  in  pursuit  of 
understanding of both models and architectures,  including 
methods that support  visualization of complex spaces that 
illuminate model and architecture behavior  in response to 
changes  in  parameters.  We  will  describe  an  integrated 
approach  to  these  explorations  that  we  have  developed 
across  our  previous  research  efforts  (e.g.,  Best,  Fincham, 
Gluck,  Gunzelmann,  & Krusmark,  2008).  First,  however, 
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we will turn to a discussion of exploring parameter spaces in 
the context of cognitive modeling.

Our  goal,  in  this  case,  is  to  understand  how  the 
architecture  and  model  behave  generally  and  at  the  best 
fitting  point  itself.  To  get  a  full  understanding  of  how a 
model  is  behaving  outside  of  the  best-fitting  parameter 
combination, one approach is to define the limits and step-
sizes  of  a  parameter  space  and  then  run  a  model  some 
number  of  times  at  each  parameter  combination  (an 
exhaustive,  homogeneous  search),  where  the  selected 
number of runs is intended to provide convergence on the 
underlying  prediction of  the model  and architecture.  This 
method produces an evenly sampled space that describes the 
overall  behavior  of  the  model.  However,  resources  (time, 
computation) are allocated evenly between informative and 
uninformative areas of the space. Informative areas are rich 
in  detail  relating  the  performance  of  the  model  or 
architecture to the underlying parameters. Uninformative (or 
less informative) areas of the space may take on a variety of 
different  characteristics,  such as  a degenerate  part  of the 
space  where  a  model  produces  no  responses  at  all.  The 
resources  spent  on  uninformative  areas  are  essentially 
wasted,  as  they  provide  little  additional  information. 
Furthermore, a reduction in granularity (step size) can result 
in  oversampling  of  the  parameter  space;  resources  are 
wasted in this case as well. Even worse, if the model is a 
preliminary version or prototype, significant effort could be 
expended exploring a space that could quickly be deemed 
uninteresting  (e.g.,  a  model  with  a  bug  that  produces 
spurious  results).  Adaptive  mesh  refinement  is  one 
technique that can be used to circumvent these issues and 
focus  resources  on  high  information  value  areas  of  the 
model and architecture space.

Adaptive Mesh Refinement
Adaptive  mesh  refinement  (AMR)  is  a  method  that  can 
differentially and intelligently allocate resources to areas of 
a  parameter  space  that  call  for  finer  resolution  in  the 
modeling based on the presence of more local complexity 
(Plewa  et  al.  2005).  Briefly,  the  entire  n-dimensional 
parameter space, which is defined using some set of finite 
bounds, is initially divided into geometrically regular cells 
at a very coarse level. The value of each dependent measure 
the model produces at the midpoint of each cell is estimated 
based  on  the  previously  sampled  value  of  the  dependent 
measures  produced  at  the  corners.  This  estimated  or 
expected value is then compared to the actual value sampled 
at the midpoint. If the expected and observed values at the 
midpoint  are  closer  than  a  predetermined  deviation 
threshold, changes in the dependent measure are estimated 
to  change  linearly  across  the  parameter  range  within  the 
cell,  and  the  dependent  values  for  all  target  parameter 
combinations  within  that  cell  are  populated  with  linear 
interpolation based on the sampled corners  and midpoint. 
Alternatively,  if  the difference  between the estimated and 
measured values for the dependent measure(s) exceeds the 
threshold, the cell is divided more finely and the process is 

repeated with the children cells. Ultimately,  this results in 
minimal  sampling  over  linear  portions  of  the  space  and 
maximal  (bounded)  sampling  over  areas  that  have  more 
complex surface characteristics (e.g., curvature, variability). 
The  stringency  of  the  threshold  chosen  determines  the 
amount of space sampled. For example, a small allowable 
deviation  such  as  1%  will  result  in  nearly  complete 
sampling of the space,  while a more lax criterion such as 
allowing up to 50% deviation before further refinement was 
pursued  would  result  in  almost  none  of  the  space  being 
sampled.  We  have  found  that  using  AMR  with  a  well 
chosen  refinement  threshold  can  result  in  a  100  fold 
reduction  of  resources  expended  without  a  corresponding 
reduction in the information value of the data gathered from 
the model parameter space, allowing for a rapid exploration 
of  parameter  spaces,  thereby  dramatically  shortening  the 
cognitive model revision cycle (Best et al. 2008).

AMR  techniques,  because  they  attempt  to  sample 
minimally, may produce local spikes in the data, especially 
when  applied  to  stochastic  models  such  as  the  ACT-R 
spaces described here (i.e., the means are less stable when 
using fewer model runs). We have found that the inclusion 
of smoothing as a post-process for AMR generally produces 
improved results, especially at lower sampling rates, since it 
uses information from the local neighborhood to cancel out 
noise present in the surface. We implemented smoothing, as 
is  commonly  done  in  digital  image  processing,  by 
combining  the  AMR  determined  value  of  a  dependent 
measure at a point in some proportion (e.g., ½ was  useful in 
many of  our  experiments)  with the average  of its  nearest 
neighbors on the AMR surface (Plewa et al. 2005).

As  parameter  spaces  become larger  and  more  complex 
(i.e., greater dimensionality and finer granularity), however, 
the required resources can prohibit  exploration, even with 
the gains from AMR. The main reason for this is that the 
scaling of a parameter space is exponential, and thus even 
relatively simple models may easily exceed the capacity of 
available computational resources in a typical lab setting. In 
this situation, high performance computing (HPC) must be 
leveraged,  in  combination  with  AMR,  if  a  timely 
exploration  is  to  be  performed.  HPC computing typically 
involves a large network or cluster of computers that  can 
perform  model  runs  in  parallel,  resulting  in  a  faster 
exploration of complex parameter spaces. This is especially 
useful  in the case of  cognitive model  explorations,  which 
can be described as “embarrassingly parallel”, a term used 
in the field of computational complexity that means that the 
processes to be parallelized (individual model runs) do not 
interact with each other (Dutra et al. 2003).

The remainder of our presentation will focus on applying 
AMR  to  a  set  of  task  models  of  increasing  complexity, 
demonstrating  the  utility  of  AMR  and  the  value  of 
parameter  exploration for understanding cognitive models. 
The three tasks we will describe are the Paired Associates 
Task (PAT), taken directly from the ACT-R tutorial  units 
(ACT-R Tutorials, 2009), the Psychomotor Vigilance Test 
(PVT; Dinges & Powell, 1985), and the Walter Reed Serial 



Addition and Subtraction Task (SAST; Thorne et al., 1985). 
We now turn to these models and an exploration of their 
parameter spaces using AMR and HPC.

Parameter Space Descriptions
The  Paired  Associates  Task,  as  described  in  Anderson 
(1981) is  a  learning task that  involves  presentation of  20 
nouns associated with the digits 0-9. The pairs are presented 
once  during  a  study  session  and  then  presented  7  times 
during a testing session. The participant is scored on latency 
to correct response and proportion of correct responses out 
of the 20 pairs for each of the 7 presentations.

This task is used as the target of a modeling unit in the 
ACT-R tutorials  where  the  focus  is  on understanding the 
interactions of parameters related to activation in producing 
the memory behavior  of  the  ACT-R architecture  (and  its 
corresponding  explanation  of  human  memory).  However, 
the  modeling  task  itself  poses  a  challenge  to  the  novice 
cognitive modeler, and prospective modelers may leave the 
tutorial unit unsure of the interactions of the parameters, and 
possibly  even  somewhat  frustrated.  We  thus  chose  this 
model as a target to see if the methods we have developed 
could  be  quickly  applied  to  aid  in  understanding  the 
behavior of the architecture and model of this task.

In the ACT-R architecture, the latency of a retrieval from 
declarative memory is impacted by the activation of chunks, 
where that activation is a product of its base level activation 
and a noise factor.  The activation is also impacted by the 
rate  of  decay in  declarative  memory,  while  the  ability  to 
retrieve  activated  chunks  is  impacted  by  the  retrieval 
threshold, which determines an activation level below which 
chunks cannot be retrieved.  Of these parameters,  the base 
level learning parameter is typically left at a default value, 
leaving  us  three  parameters  to  choose  from  for  this 
exploration.  Their  behavior  is  given  by  the  following 
equations. The first equation relates the retrieval time to A, 
the activation of a chunk, and  F, the latency factor, while 
the second equation relates  the probability of  recall  for  a 
chunk  to  the  retrieval  threshold,  τ,  the  activation  of  the 
chunk, A,and the noise parameter of the system, s.
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To allow for easy visualization, we chose to focus on only 
two  of  these  remaining  parameters,  fixing  the  noise 
parameter s at 0.5, and exploring the PAT space by varying 
the parameters for the retrieval threshold (τ) and the latency 
factor (F), as suggested in the tutorial instructions (ACT-R 
Tutorials, 2009). We explored levels of τ from -3 to 0 with a 
step size of 0.25 and levels of F from 0 to 0.45 with a step-
size of 0.025, resulting in a space with 13 levels of  τ,  19 
levels of F, and a total of 247 parameter combinations. 

Our general approach to understanding the efficiency and 
effectiveness of AMR methods, which we also used below 
with  the  PVT  and  SAST  models,  is  to  first  collect  100 
model runs at each parameter combination, and then divide 
these  into  a  “train”  and  “test”  portion  of  the  data.  The 
comparison of these two halves provides a baseline estimate 
of how well the data fit themselves (model stability), which 
can  be  expressed  as  a  baseline  Root  Mean  Square  Error 
(RMSE). AMR variants can then be compared against this 
baseline to see what additional error, if any, they produce.

Our exploration was conducted using software written to 
run the ACT-R models and collate the results automatically, 
allowing the experimenter to initialize experimental settings 
and  then  leave  the  software  to  continue  unaided.  The 
resulting data are then imported into R, which we used, or 
an alternative statistical analysis and visualization package.

Our focus is  on AMR methods,  but  to demonstrate  the 
efficiency  gain  these  methods  can  produce,  we  also 
conducted  an  exhaustive  homogeneous  sweep  of  the 
parameter space for comparison. Our hypothesis is that the 
same scientific  conclusions would  be  reached  with  either 
method, one using a fraction of the computational resources, 
and thus one source of evidence for this hypothesis will be 
in the quality of the conclusions a modeler might come to 
viewing the different  diagrams.  For this  purpose,  we will 
present  an  exhaustively  sampled  space,  labeled  “fully 
explored” (figure  1),  and a minimally sampled space that 
uses AMR to the full extent possible to reduce computation, 
labeled  “minimally  explored”  (figure  2).  In  addition,  we 
also present a visualization of the results of the smoothing 
post-process (figure 3).

Figures 1-3 are of the latency for the 8th simulated recall 
trial during the PAT, labeled “t8lat DV”, which we selected 
for presentation based on the obvious interaction between τ 
and  F. The gray spheres represent parameter combinations 
at which models were run.

These  figures  show  that  increasing  the  latency  factor 
produces a predominantly linear increase in reaction times 
when the retrieval threshold is less than approximately -2, 
but that higher values of the retrieval threshold (closer to 0) 
produce an interaction with the latency factor. In particular, 
the latency  for  retrievals  decreases  at  higher  values  of  τ, 
since more active chunks are retrieved more quickly or, in 
cases  when  a  failure  to  retrieve  a  chunk  happens,  the 
recognition that this is the case happens faster.

It is hard to imagine how a novice modeler might come to 
understand  this  space  by  manually  entering  parameter 
values and attempting to understand the rows of data that 
result, and thus for this reason alone we might suppose that 
the use of these methods is desirable. Further, the qualitative 
conclusion  that  can  be  reached  comparing  the  smoothed 
AMR results (figure 3) to the exhaustive results (figure 1) is 
obvious: the smoothed AMR surface contains much of the 
qualitative detail of the exhaustively sampled surface, but at 
a fraction of the computational cost, having been produced 
using only 1% of the runs present in the exhaustive graph.



Figure 1: Fully explored parameter space

Figure 2: Minimally explored parameter space

Figure 3: Minimally explored parameter space - smoothed

The question, then, is this: What is the gain of using AMR 
in  terms  of  computational  resources  as  it  relates  to  any 
corresponding  loss  in  fidelity?  We  will  now  attempt  to 
answer  that  question  both  quantitatively  and 
comprehensively in the context of the three tasks we have 
worked with: the PAT, PVT and SAST. First, however, we 
will provide a brief background on these two new tasks.

The  Psychomotor  Vigilance  Test  involves  the 
presentation of a stimulus at known locations, but at random 
time intervals, and measuring the time it takes the subject to 
respond to that stimulus. Responses are binned into 20ms 
intervals  with false  starts  defined  as  reaction  times faster 
than 150 ms, lapses as reaction times slower than 500 ms, 
and sleep attacks as reaction times slower than 30 s. This 
task,  due to  its  cognitive  simplicity and sensitivity to the 
effects  of  sleep  deprivation  and  circadian  rhythm,  is 
commonly used to assess the impact of fatigue (e.g., Dinges 
& Powell, 1985; Van Dongen & Dinges, 2005).

The  Walter  Reed  Serial  Addition/Subtraction  Task 
involves presenting two single-digit  numbers  in sequence, 
followed by an operator – either a plus sign or minus sign. 
After  performing  the  operation,  participants  respond  with 
the ones digit of the answer, or the answer plus 10 if the 
result is negative. Time to correct responses and the percent 
of correct responses are measured.

As  we  did  with  the  PAT,  these  tasks  were  evaluated 
within the framework of AMR to determine the impact of 
AMR methods on accuracy and reduction of computational 
demands.  All  of  the  AMR methods  were  compared  to  a 
corresponding  exhaustive  parameter  sweep,  where  the 
exhaustive sweep used 100 model runs at each combination 
to establish a baseline: the exhaustive data were split in half 
and  compared  to  determine  how  well  the  data  fit 
themselves.  This  produced  a  baseline  Root  Mean  Square 
Error (RMSE) for the model runs against which AMR runs 
were  then  compared.  In  addition,  this  allowed  for  an 
efficiency metric which was simply the percent of the “full 
space”  that  was  explored  by  an  AMR  variant  (%  Space 
Sampled). The “full space” is one of the baseline halves and 
is  composed  of  50  model  runs  at  each  parameter 
combination.  Finally,  we  also  report  the  total  number  of 
model  runs  involved  in  each  of  the  spaces  and  AMR 
variants.  We  tested  several  variations  of  AMR  and 
smoothing  using  this  methodology.  In  particular,  we 
examined: 1) allowing the number of model runs to vary as 
a  property  of  local  variation  or  fixing  them  at  some 
particular n, 2) using local error bounds based on one or all 
dependent measures, 3) determining local error in dependent 
measure prediction based on absolute, relative, or statistical 
criteria,  4)  the impact  of modifying the smoothing radius 
and intensity, and 5) the impact of using 4-neighbors vs. 8-
neighbors in smoothing. Here we will only report specific 
instances due to space limitations.

The PVT and SAST spaces have been used to explore the 
ability  of  modifications  to  the  ACT-R  architecture  to 
account for the pattern of deficits exhibited by people under 
conditions  of  extended  wakefulness  (e.g.,  Gunzelmann  et 



al.,  2007).  These  modifications  include  parameterized 
mechanisms,  which require careful  exploration to  provide 
an understanding of their potential impacts. The PVT space 
was  explored  using  4  parameters,  with  the  chosen 
granularity  of  these  parameters  resulting  in  a  parameter 
space  with  56,511  parameter  combinations.  Models  were 
run at each combination for the exhaustive parameter sweep. 
Similarly,  the  SAST  space  was  explored  by  varying  7 
parameters,  with  a  necessarily  coarser  granularity  (to 
partially offset the higher dimensionality) that resulted in a 
parameter  space  with  a  total  of  129,600  parameter 
combinations.  Models  were  run  at  each  of  these 
combinations for the exhaustive parameter sweep.

Table 1: Algorithm Performance Summary

Data Set

PAT 209.26% 1.07% 132
PVT 226.45% 1.32% 37,335
SAST 533.19% 1.09% 70,479

PAT 113.94% 10.20% 1,260
PVT 154.81% 8.40% 237,350
SAST 167.55% 9.72% 630,020

PAT 100.00% 100.00% 12,350
PVT 100.00% 100.00% 2,825,550
SAST 100.00% 100.00% 6,480,000

% Control 
RMSE

% Space 
Sampled

Total 
Model 
Runs

~ 1% 
Space 
Sampled

~ 10% 
Space 
Sampled

100% 
Space 
Sampled

In general, with only 10% of the space sampled, for the 
worst  case  additional  error  was  only 67.55% beyond  the 
error in the original data when compared to themselves. The 
granularity of the sampling, however, did interact, and the 
SAST model,  despite  having the  largest  parameter  space, 
also  had  the  coarsest  minimum  granularity.  That  is,  the 
SAST has only 6 levels per IV, so not much processing can 
be skipped, and skipping removes information. The result of 
this  was that,  at  very sparse sampling of  ~1%, the AMR 
algorithm never  proceeded  much beyond the initial  AMR 
corners,  producing a very rough approximation for SAST. 
The PVT space granularity fell  in the middle of the PAT 
and  SAST spaces,  and  allowed for  dramatic  compression 
with  very  little  loss  of  accuracy.  In  particular,  in  those 
spaces the error  was approximately only doubled (~200% 
RMSE)  when  compared  to  baseline  at  a  very  minimal 
sampling of  approximately 1% of the data  sampled.  This 
represents a two order of magnitude gain in time to get an 
answer  that,  while  approximate,  is  most  likely  extremely 
useful (and might, in the case of faulty models, obviate the 
need for ever collecting the other 99% of the data).

Taken as a whole, algorithm performance is fairly similar 
across spaces despite dramatic differences in the size of the 
model spaces. That is, the SAST space is several orders of 
magnitude larger than the PAT space, but the error terms are 
within an order of magnitude.

For all three parameter spaces, we explored the effects of 
performing the homogeneous sweep with a reduced number 
of model runs. These data are not presented due to space 
limitations. In all cases, however, AMR methods provided 
superior  results.  For  example,  running  2  models  at  each 
parameter  combination  results  in  reducing  the  space 
sampled  to  4%.  AMR methods  using  only 2  model  runs 
result in less space sampled and are more accurate as well.

We  also  explored  adaptively  changing  the  number  of 
model  runs  at  each  parameter  combination  based  on 
measures of local variation. This method ultimately results 
in focusing computational resources on portions of the space 
where the model returns spurious results. Increased model 
runs  in  these  areas  does  not  result  in  a  superior 
understanding  of  the  model;  AMR methods  predict  these 
noisy areas more efficiently through linear interpolation.

Conclusions
In this paper, we have demonstrated the application of AMR 
to  a  variety  of  modeling  contexts,  showing  both  the 
visualizations  that  can  be  produced  and  the  gains  in 
computational efficiency achieved through this method. In 
the case of the PAT, the AMR exploration brought  out  a 
nonlinear interaction that would most likely not be obvious 
from a set of tabled values, and would almost certainly be 
missed  by a  novice  modeler.  However,  through  applying 
AMR to this task model, we were quickly able to visualize 
and  understand  the  underlying  model  and  architecture 
dynamics as a result of examining the impact of varying the 
parameters  that  control  the  model  and  architecture.  This 
simply cannot be achieved by examining the fit of a model 
at a particular point in a parameter space.

The  PAT  could  certainly  be  approached  by  hand 
modifying  the  models  in  a  desktop  environment,  as  it  is 
during the ACT-R tutorials, or even through an exhaustive 
iterative  sweep  of  the  parameter  space,  but  we make the 
case  here  that  the  AMR  methods  can  produce  superior 
understanding  with  little  to  no  extra  investment  in 
computational  resources,  and  thus  they  are  clearly 
preferable to the alternatives.

As  parameter  spaces  become larger  and  more  complex 
(i.e.,  greater  dimensionality  and  finer  granularity),  the 
resources required to enumerate or sample from them can 
become prohibitive,  even with the gains  from AMR. The 
reason for  this is  that  the scaling of a parameter  space is 
exponential,  and  thus  even  relatively  simple  models  may 
easily  exceed  the  capacity  of  available  computational 
resources  in  a  typical  lab  setting.  It  is  evident  that  the 
number of model runs, as reported in Table 1, is a proxy for 
time. While Moore's Law was once considered a potential 
way  out  of  computing  bottlenecks  –  simply  waiting  for 
faster  processors  to arrive  could solve some issues – that 



simply does not apply to problems that scale exponentially. 
Further,  though  processors  are  increasing  in  speed,  our 
cognitive architectures, models, and the task domains we are 
interested  in  are  also increasing  in  complexity,  and these 
effects largely cancel each other out. Thus, it is necessary 
both  to  improve  the  efficiency  of  our  methods  through 
approaches  such as  AMR, and  also to  leverage  resources 
that  combine  processors,  such  as  High  Performance 
Computing (HPC). HPC typically involves a large network 
or  cluster  of  computers  that  can  perform  model  runs  in 
parallel,  resulting  in  a  faster  exploration  of  complex 
parameter  spaces.  This  is  especially useful  in  the case  of 
cognitive  model  explorations,  which  can  be  described  as 
“embarrassingly  parallel”,  a  term  used  in  the  field  of 
computational complexity that means that the processes to 
be parallelized (individual model runs) do not interact with 
each other (Dutra 2003).

Fortuitously,  these  methods  also  provide  a  natural 
gateway  to  solving harder  computational  problems:  a 
problem formulated for AMR solution and visualization in 
the  desktop  environment  is  already  formulated  for  HPC 
solution and visualization.

The techniques described here demonstrate effective ways 
for  exploring  large parameter  spaces.  Indeed,  the  work 
described here could not have been conducted without these 
techniques. This is not to say, however, that the underlying 
exponential nature of cognitive modeling problems has been 
tamed.  Rather,  the  methods  here  provide  a  significant 
amount  of  leverage  to  a  scientist  who  has  managed  to 
reduce the effectively infinite space of cognitive models to a 
manageable size.
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