
Adaptive Mesh Refinement for Efficient Exploration of
Cognitive Architectures and Cognitive Models

Bradley J. Best (bjbest@AdCogSys.com)
Caitlin Furjanic (cfurjanic@AdCogSys.com)
Nathan Gerhart (ngerhart@AdCogSys.com)

Adaptive Cognitive Systems, 1942 Broadway St., Suite 201
Boulder, CO, 80302 USA

Jon Fincham (Fincham@cmu.edu)
Department of Psychology, 5000 Forbes Ave.

Pittsburgh, PA, 15213 USA

Kevin A. Gluck (kevin.gluck@us.af.mil)
Glenn Gunzelmann (glenn.gunzelmann@us.af.mil)

Air Force Research Laboratory, 6030 S. Kent St.
Mesa, AZ, 85212 USA

Michael A. Krusmark (michael.krusmark@mesa.afmc.af.mil)
L-3 Communications, 6030 S. Kent St.

Mesa, AZ, 85212 USA

Abstract
The majority of cognitive models support some form of
parameterization, either of the model itself, or through
architectural mechanisms. In order to fully understand these
models, it is important to understand the model’s behavior as
a result of parameter variation across a wide range of values.
Even simple models become difficult to understand without a
systematic method of exploring performance across parameter
combinations, and scientists have turned to iterative methods
to perform sweeps of these spaces. As an alternative to an
exhaustive, homogeneous search, we examined adaptive mesh
refinement (AMR) to explore simple and complex parameter
spaces of several models developed within ACT-R. AMR
allows for fewer model runs with minimal loss of
information. We found that, with appropriate granularity,
AMR methods can provide a sufficient computational
exploration of a performance space with only 1% of the
sampling of conventional, homogeneous parameter sweeps.
The advantages of AMR for computationally efficient
exploration of the performance predictions should be of
benefit and interest to developers and users of cognitive
architectures and cognitive models.

Keywords: Adaptive mesh refinement; Cognitive
architecture; Cognitive model; ACT-R; Parameter sweeps;
visualization

Introduction
Although many discussions of cognitive modeling focus on
the degree of fit to human empirical data, the point has been
compellingly made that what a cognitive model does outside
of the best-fitting parameter combination is just as important
as what it does at the best-fitting parameter combination,
and perhaps even more so (Roberts & Pashler, 2000).
Information about how a model performs outside the best-
fitting parameter combination provides modelers with

information about how likely it is that other parameter
combinations result in a comparable fit. It also gives
modelers information about the full range of behavior
possible from the model and how different parameters
interact to generate possibly complex behavioral dynamics.
Both novice users of a cognitive architecture working to
understand model dynamics, and expert users of a cognitive
architecture testing modifications to the theories embedded
in these architectures would stand to benefit enormously
from a rapid analysis and visualization of the model
performance spaces involved. However, cognitive modelers
facing this problem are currently confronted with a lack of
tools that support exploring that space. The de-facto
approach to cognitive modeling is more often a focus on
maximizing fit to human data. This is done through either
hand-tuning based on the intuition and experience of the
modeler or automated optimizing of the fit of a cognitive
model through approaches such as genetic algorithms, the
conjugate gradient methods, or any of a variety of other
alternatives for optimization. Any of these approaches can
be sufficiently successful, but they provide little data about
the performance of the model outside of the ultimate
parameter values used in presenting the final fit.

Cognitive modelers need techniques and tools to support
the rapid exploration of parameter spaces in pursuit of
understanding of both models and architectures, including
methods that support visualization of complex spaces that
illuminate model and architecture behavior in response to
changes in parameters. We will describe an integrated
approach to these explorations that we have developed
across our previous research efforts (e.g., Best, Fincham,
Gluck, Gunzelmann, & Krusmark, 2008). First, however,

mailto:michael.krusmark@mesa.afmc.af.mil
mailto:glenn.gunzelmann@us.af.mil
mailto:kevin.gluck@us.af.mil
mailto:Fincham@cmu.edu
mailto:ngerhart@AdCogSys.com
mailto:cfurjanic@AdCogSys.com
mailto:bjbest@AdCogSys.com

we will turn to a discussion of exploring parameter spaces in
the context of cognitive modeling.

Our goal, in this case, is to understand how the
architecture and model behave generally and at the best
fitting point itself. To get a full understanding of how a
model is behaving outside of the best-fitting parameter
combination, one approach is to define the limits and step-
sizes of a parameter space and then run a model some
number of times at each parameter combination (an
exhaustive, homogeneous search), where the selected
number of runs is intended to provide convergence on the
underlying prediction of the model and architecture. This
method produces an evenly sampled space that describes the
overall behavior of the model. However, resources (time,
computation) are allocated evenly between informative and
uninformative areas of the space. Informative areas are rich
in detail relating the performance of the model or
architecture to the underlying parameters. Uninformative (or
less informative) areas of the space may take on a variety of
different characteristics, such as a degenerate part of the
space where a model produces no responses at all. The
resources spent on uninformative areas are essentially
wasted, as they provide little additional information.
Furthermore, a reduction in granularity (step size) can result
in oversampling of the parameter space; resources are
wasted in this case as well. Even worse, if the model is a
preliminary version or prototype, significant effort could be
expended exploring a space that could quickly be deemed
uninteresting (e.g., a model with a bug that produces
spurious results). Adaptive mesh refinement is one
technique that can be used to circumvent these issues and
focus resources on high information value areas of the
model and architecture space.

Adaptive Mesh Refinement
Adaptive mesh refinement (AMR) is a method that can
differentially and intelligently allocate resources to areas of
a parameter space that call for finer resolution in the
modeling based on the presence of more local complexity
(Plewa et al. 2005). Briefly, the entire n-dimensional
parameter space, which is defined using some set of finite
bounds, is initially divided into geometrically regular cells
at a very coarse level. The value of each dependent measure
the model produces at the midpoint of each cell is estimated
based on the previously sampled value of the dependent
measures produced at the corners. This estimated or
expected value is then compared to the actual value sampled
at the midpoint. If the expected and observed values at the
midpoint are closer than a predetermined deviation
threshold, changes in the dependent measure are estimated
to change linearly across the parameter range within the
cell, and the dependent values for all target parameter
combinations within that cell are populated with linear
interpolation based on the sampled corners and midpoint.
Alternatively, if the difference between the estimated and
measured values for the dependent measure(s) exceeds the
threshold, the cell is divided more finely and the process is

repeated with the children cells. Ultimately, this results in
minimal sampling over linear portions of the space and
maximal (bounded) sampling over areas that have more
complex surface characteristics (e.g., curvature, variability).
The stringency of the threshold chosen determines the
amount of space sampled. For example, a small allowable
deviation such as 1% will result in nearly complete
sampling of the space, while a more lax criterion such as
allowing up to 50% deviation before further refinement was
pursued would result in almost none of the space being
sampled. We have found that using AMR with a well
chosen refinement threshold can result in a 100 fold
reduction of resources expended without a corresponding
reduction in the information value of the data gathered from
the model parameter space, allowing for a rapid exploration
of parameter spaces, thereby dramatically shortening the
cognitive model revision cycle (Best et al. 2008).

AMR techniques, because they attempt to sample
minimally, may produce local spikes in the data, especially
when applied to stochastic models such as the ACT-R
spaces described here (i.e., the means are less stable when
using fewer model runs). We have found that the inclusion
of smoothing as a post-process for AMR generally produces
improved results, especially at lower sampling rates, since it
uses information from the local neighborhood to cancel out
noise present in the surface. We implemented smoothing, as
is commonly done in digital image processing, by
combining the AMR determined value of a dependent
measure at a point in some proportion (e.g., ½ was useful in
many of our experiments) with the average of its nearest
neighbors on the AMR surface (Plewa et al. 2005).

As parameter spaces become larger and more complex
(i.e., greater dimensionality and finer granularity), however,
the required resources can prohibit exploration, even with
the gains from AMR. The main reason for this is that the
scaling of a parameter space is exponential, and thus even
relatively simple models may easily exceed the capacity of
available computational resources in a typical lab setting. In
this situation, high performance computing (HPC) must be
leveraged, in combination with AMR, if a timely
exploration is to be performed. HPC computing typically
involves a large network or cluster of computers that can
perform model runs in parallel, resulting in a faster
exploration of complex parameter spaces. This is especially
useful in the case of cognitive model explorations, which
can be described as “embarrassingly parallel”, a term used
in the field of computational complexity that means that the
processes to be parallelized (individual model runs) do not
interact with each other (Dutra et al. 2003).

The remainder of our presentation will focus on applying
AMR to a set of task models of increasing complexity,
demonstrating the utility of AMR and the value of
parameter exploration for understanding cognitive models.
The three tasks we will describe are the Paired Associates
Task (PAT), taken directly from the ACT-R tutorial units
(ACT-R Tutorials, 2009), the Psychomotor Vigilance Test
(PVT; Dinges & Powell, 1985), and the Walter Reed Serial

Addition and Subtraction Task (SAST; Thorne et al., 1985).
We now turn to these models and an exploration of their
parameter spaces using AMR and HPC.

Parameter Space Descriptions
The Paired Associates Task, as described in Anderson
(1981) is a learning task that involves presentation of 20
nouns associated with the digits 0-9. The pairs are presented
once during a study session and then presented 7 times
during a testing session. The participant is scored on latency
to correct response and proportion of correct responses out
of the 20 pairs for each of the 7 presentations.

This task is used as the target of a modeling unit in the
ACT-R tutorials where the focus is on understanding the
interactions of parameters related to activation in producing
the memory behavior of the ACT-R architecture (and its
corresponding explanation of human memory). However,
the modeling task itself poses a challenge to the novice
cognitive modeler, and prospective modelers may leave the
tutorial unit unsure of the interactions of the parameters, and
possibly even somewhat frustrated. We thus chose this
model as a target to see if the methods we have developed
could be quickly applied to aid in understanding the
behavior of the architecture and model of this task.

In the ACT-R architecture, the latency of a retrieval from
declarative memory is impacted by the activation of chunks,
where that activation is a product of its base level activation
and a noise factor. The activation is also impacted by the
rate of decay in declarative memory, while the ability to
retrieve activated chunks is impacted by the retrieval
threshold, which determines an activation level below which
chunks cannot be retrieved. Of these parameters, the base
level learning parameter is typically left at a default value,
leaving us three parameters to choose from for this
exploration. Their behavior is given by the following
equations. The first equation relates the retrieval time to A,
the activation of a chunk, and F, the latency factor, while
the second equation relates the probability of recall for a
chunk to the retrieval threshold, τ, the activation of the
chunk, A,and the noise parameter of the system, s.

AFeTime −=

s
AChunk ii

e
retrievalP −

+
= τ

1

1)(

To allow for easy visualization, we chose to focus on only
two of these remaining parameters, fixing the noise
parameter s at 0.5, and exploring the PAT space by varying
the parameters for the retrieval threshold (τ) and the latency
factor (F), as suggested in the tutorial instructions (ACT-R
Tutorials, 2009). We explored levels of τ from -3 to 0 with a
step size of 0.25 and levels of F from 0 to 0.45 with a step-
size of 0.025, resulting in a space with 13 levels of τ, 19
levels of F, and a total of 247 parameter combinations.

Our general approach to understanding the efficiency and
effectiveness of AMR methods, which we also used below
with the PVT and SAST models, is to first collect 100
model runs at each parameter combination, and then divide
these into a “train” and “test” portion of the data. The
comparison of these two halves provides a baseline estimate
of how well the data fit themselves (model stability), which
can be expressed as a baseline Root Mean Square Error
(RMSE). AMR variants can then be compared against this
baseline to see what additional error, if any, they produce.

Our exploration was conducted using software written to
run the ACT-R models and collate the results automatically,
allowing the experimenter to initialize experimental settings
and then leave the software to continue unaided. The
resulting data are then imported into R, which we used, or
an alternative statistical analysis and visualization package.

Our focus is on AMR methods, but to demonstrate the
efficiency gain these methods can produce, we also
conducted an exhaustive homogeneous sweep of the
parameter space for comparison. Our hypothesis is that the
same scientific conclusions would be reached with either
method, one using a fraction of the computational resources,
and thus one source of evidence for this hypothesis will be
in the quality of the conclusions a modeler might come to
viewing the different diagrams. For this purpose, we will
present an exhaustively sampled space, labeled “fully
explored” (figure 1), and a minimally sampled space that
uses AMR to the full extent possible to reduce computation,
labeled “minimally explored” (figure 2). In addition, we
also present a visualization of the results of the smoothing
post-process (figure 3).

Figures 1-3 are of the latency for the 8th simulated recall
trial during the PAT, labeled “t8lat DV”, which we selected
for presentation based on the obvious interaction between τ
and F. The gray spheres represent parameter combinations
at which models were run.

These figures show that increasing the latency factor
produces a predominantly linear increase in reaction times
when the retrieval threshold is less than approximately -2,
but that higher values of the retrieval threshold (closer to 0)
produce an interaction with the latency factor. In particular,
the latency for retrievals decreases at higher values of τ,
since more active chunks are retrieved more quickly or, in
cases when a failure to retrieve a chunk happens, the
recognition that this is the case happens faster.

It is hard to imagine how a novice modeler might come to
understand this space by manually entering parameter
values and attempting to understand the rows of data that
result, and thus for this reason alone we might suppose that
the use of these methods is desirable. Further, the qualitative
conclusion that can be reached comparing the smoothed
AMR results (figure 3) to the exhaustive results (figure 1) is
obvious: the smoothed AMR surface contains much of the
qualitative detail of the exhaustively sampled surface, but at
a fraction of the computational cost, having been produced
using only 1% of the runs present in the exhaustive graph.

Figure 1: Fully explored parameter space

Figure 2: Minimally explored parameter space

Figure 3: Minimally explored parameter space - smoothed

The question, then, is this: What is the gain of using AMR
in terms of computational resources as it relates to any
corresponding loss in fidelity? We will now attempt to
answer that question both quantitatively and
comprehensively in the context of the three tasks we have
worked with: the PAT, PVT and SAST. First, however, we
will provide a brief background on these two new tasks.

The Psychomotor Vigilance Test involves the
presentation of a stimulus at known locations, but at random
time intervals, and measuring the time it takes the subject to
respond to that stimulus. Responses are binned into 20ms
intervals with false starts defined as reaction times faster
than 150 ms, lapses as reaction times slower than 500 ms,
and sleep attacks as reaction times slower than 30 s. This
task, due to its cognitive simplicity and sensitivity to the
effects of sleep deprivation and circadian rhythm, is
commonly used to assess the impact of fatigue (e.g., Dinges
& Powell, 1985; Van Dongen & Dinges, 2005).

The Walter Reed Serial Addition/Subtraction Task
involves presenting two single-digit numbers in sequence,
followed by an operator – either a plus sign or minus sign.
After performing the operation, participants respond with
the ones digit of the answer, or the answer plus 10 if the
result is negative. Time to correct responses and the percent
of correct responses are measured.

As we did with the PAT, these tasks were evaluated
within the framework of AMR to determine the impact of
AMR methods on accuracy and reduction of computational
demands. All of the AMR methods were compared to a
corresponding exhaustive parameter sweep, where the
exhaustive sweep used 100 model runs at each combination
to establish a baseline: the exhaustive data were split in half
and compared to determine how well the data fit
themselves. This produced a baseline Root Mean Square
Error (RMSE) for the model runs against which AMR runs
were then compared. In addition, this allowed for an
efficiency metric which was simply the percent of the “full
space” that was explored by an AMR variant (% Space
Sampled). The “full space” is one of the baseline halves and
is composed of 50 model runs at each parameter
combination. Finally, we also report the total number of
model runs involved in each of the spaces and AMR
variants. We tested several variations of AMR and
smoothing using this methodology. In particular, we
examined: 1) allowing the number of model runs to vary as
a property of local variation or fixing them at some
particular n, 2) using local error bounds based on one or all
dependent measures, 3) determining local error in dependent
measure prediction based on absolute, relative, or statistical
criteria, 4) the impact of modifying the smoothing radius
and intensity, and 5) the impact of using 4-neighbors vs. 8-
neighbors in smoothing. Here we will only report specific
instances due to space limitations.

The PVT and SAST spaces have been used to explore the
ability of modifications to the ACT-R architecture to
account for the pattern of deficits exhibited by people under
conditions of extended wakefulness (e.g., Gunzelmann et

al., 2007). These modifications include parameterized
mechanisms, which require careful exploration to provide
an understanding of their potential impacts. The PVT space
was explored using 4 parameters, with the chosen
granularity of these parameters resulting in a parameter
space with 56,511 parameter combinations. Models were
run at each combination for the exhaustive parameter sweep.
Similarly, the SAST space was explored by varying 7
parameters, with a necessarily coarser granularity (to
partially offset the higher dimensionality) that resulted in a
parameter space with a total of 129,600 parameter
combinations. Models were run at each of these
combinations for the exhaustive parameter sweep.

Table 1: Algorithm Performance Summary

Data Set

PAT 209.26% 1.07% 132
PVT 226.45% 1.32% 37,335
SAST 533.19% 1.09% 70,479

PAT 113.94% 10.20% 1,260
PVT 154.81% 8.40% 237,350
SAST 167.55% 9.72% 630,020

PAT 100.00% 100.00% 12,350
PVT 100.00% 100.00% 2,825,550
SAST 100.00% 100.00% 6,480,000

% Control
RMSE

% Space
Sampled

Total
Model
Runs

~ 1%
Space
Sampled

~ 10%
Space
Sampled

100%
Space
Sampled

In general, with only 10% of the space sampled, for the
worst case additional error was only 67.55% beyond the
error in the original data when compared to themselves. The
granularity of the sampling, however, did interact, and the
SAST model, despite having the largest parameter space,
also had the coarsest minimum granularity. That is, the
SAST has only 6 levels per IV, so not much processing can
be skipped, and skipping removes information. The result of
this was that, at very sparse sampling of ~1%, the AMR
algorithm never proceeded much beyond the initial AMR
corners, producing a very rough approximation for SAST.
The PVT space granularity fell in the middle of the PAT
and SAST spaces, and allowed for dramatic compression
with very little loss of accuracy. In particular, in those
spaces the error was approximately only doubled (~200%
RMSE) when compared to baseline at a very minimal
sampling of approximately 1% of the data sampled. This
represents a two order of magnitude gain in time to get an
answer that, while approximate, is most likely extremely
useful (and might, in the case of faulty models, obviate the
need for ever collecting the other 99% of the data).

Taken as a whole, algorithm performance is fairly similar
across spaces despite dramatic differences in the size of the
model spaces. That is, the SAST space is several orders of
magnitude larger than the PAT space, but the error terms are
within an order of magnitude.

For all three parameter spaces, we explored the effects of
performing the homogeneous sweep with a reduced number
of model runs. These data are not presented due to space
limitations. In all cases, however, AMR methods provided
superior results. For example, running 2 models at each
parameter combination results in reducing the space
sampled to 4%. AMR methods using only 2 model runs
result in less space sampled and are more accurate as well.

We also explored adaptively changing the number of
model runs at each parameter combination based on
measures of local variation. This method ultimately results
in focusing computational resources on portions of the space
where the model returns spurious results. Increased model
runs in these areas does not result in a superior
understanding of the model; AMR methods predict these
noisy areas more efficiently through linear interpolation.

Conclusions
In this paper, we have demonstrated the application of AMR
to a variety of modeling contexts, showing both the
visualizations that can be produced and the gains in
computational efficiency achieved through this method. In
the case of the PAT, the AMR exploration brought out a
nonlinear interaction that would most likely not be obvious
from a set of tabled values, and would almost certainly be
missed by a novice modeler. However, through applying
AMR to this task model, we were quickly able to visualize
and understand the underlying model and architecture
dynamics as a result of examining the impact of varying the
parameters that control the model and architecture. This
simply cannot be achieved by examining the fit of a model
at a particular point in a parameter space.

The PAT could certainly be approached by hand
modifying the models in a desktop environment, as it is
during the ACT-R tutorials, or even through an exhaustive
iterative sweep of the parameter space, but we make the
case here that the AMR methods can produce superior
understanding with little to no extra investment in
computational resources, and thus they are clearly
preferable to the alternatives.

As parameter spaces become larger and more complex
(i.e., greater dimensionality and finer granularity), the
resources required to enumerate or sample from them can
become prohibitive, even with the gains from AMR. The
reason for this is that the scaling of a parameter space is
exponential, and thus even relatively simple models may
easily exceed the capacity of available computational
resources in a typical lab setting. It is evident that the
number of model runs, as reported in Table 1, is a proxy for
time. While Moore's Law was once considered a potential
way out of computing bottlenecks – simply waiting for
faster processors to arrive could solve some issues – that

simply does not apply to problems that scale exponentially.
Further, though processors are increasing in speed, our
cognitive architectures, models, and the task domains we are
interested in are also increasing in complexity, and these
effects largely cancel each other out. Thus, it is necessary
both to improve the efficiency of our methods through
approaches such as AMR, and also to leverage resources
that combine processors, such as High Performance
Computing (HPC). HPC typically involves a large network
or cluster of computers that can perform model runs in
parallel, resulting in a faster exploration of complex
parameter spaces. This is especially useful in the case of
cognitive model explorations, which can be described as
“embarrassingly parallel”, a term used in the field of
computational complexity that means that the processes to
be parallelized (individual model runs) do not interact with
each other (Dutra 2003).

Fortuitously, these methods also provide a natural
gateway to solving harder computational problems: a
problem formulated for AMR solution and visualization in
the desktop environment is already formulated for HPC
solution and visualization.

The techniques described here demonstrate effective ways
for exploring large parameter spaces. Indeed, the work
described here could not have been conducted without these
techniques. This is not to say, however, that the underlying
exponential nature of cognitive modeling problems has been
tamed. Rather, the methods here provide a significant
amount of leverage to a scientist who has managed to
reduce the effectively infinite space of cognitive models to a
manageable size.

Acknowledgments
The views expressed in this paper are those of the authors
and do not reflect the official policy or position of the De-
partment of Defense or the U.S. Government. This research
was funded by the Air Force Research Laboratory’s
Warfighter Readiness Research Division in Mesa, Arizona.

References
ACT-R Tutorials (2009). Retrieved from the ACT-R Web

site: http://act-r.psy.cmu.edu/actr6/.
Anderson, J.R. (1981). Interference: The relationship

between response latency and response accuracy. Journal
of Experimental Psychology: Human Learning and
Memory, 7, 326-343.

Berger, M., & Oliger, J. (1984). Adaptive mesh refinement
for hyperbolic partial differential equations. Journal of
Computational Physics, 53, 484-512.

Best, B., Fincham, J., Gluck, K., Gunzelmann, G., &
Krusmark, M. (2008). Efficient Use of Large-Scale
Computational Resources. In J. Hansberger (Ed.),
Proceedings of the Seventeenth Conference on Behavior
Representation in Modeling and Simulation (pp. 180-
181). Orlando, FL: Simulation Interoperability Standards
Organization.

Brooke, J.M., Marsh, J., Pettifer, S., and Sastry, L.S (2007).
The importance of locality in the visualization of large
datasets. Concurrency and computation: practice and
experience, 19:195–205.

Dinges, D. F., & Powell, J. W. (1985). Microcomputer
analyses of performance on a portable, simple visual RT
task during sustained operations. Behavior Research
Methods, Instruments, & Computers 17(6), 652-655.

Dutra, I. C., Page, D. Santos Costa, V. Shavlik, J.W. and
Waddell, M. (2003). Towards automatic management of
embarrassingly parallel applications. In Proceedings of
Europar 2003, Lecture Notes in Computer Science.
Klagenfurt, Austria: Springer Verlag.

Gluck, K., Scheutz, M., Gunzelmann, G., Harris, J., &
Kershner, J. (2007). Combinatorics meets processing
power: Large-scale computational resources for BRIMS.
Proceedings of the Sixteenth Conference on Behavior
Representation in Modeling and Simulation (pp. 73-83).
Orlando, FL: Simulation Interoperability Standards
Organization.

Gunzelmann, G., & Gluck, K. A. (2008). Approaches to
modeling the effects of fatigue on cognitive performance.
In J. Hansberger (Ed.), Proceedings of the Seventeenth
Conference on Behavior Representation in Modeling and
Simulation (pp. 136-145). Orlando, FL: Simulation
Interoperability Standards Organization

Gunzelmann, G., Gluck, K. A., Kershner, J., Van Dongen,
H. P. A., & Dinges, D. F. (2007). Understanding
decrements in knowledge access resulting from increased
fatigue. In D. S. McNamara and J. G. Trafton (Eds.),
Proceedings of the Twenty-Ninth Annual Meeting of the
Cognitive Science Society (pp. 329-334). Austin, TX:
Cognitive Science Society.

Gunzelmann, G., Gross, J. B., Gluck, K. A., & Dinges, D. F.
(in press). Sleep deprivation and sustained attention
performance: Integrating mathematical and cognitive
modeling. Cognitive Science.

Plewa, T., Linde, T.J., and Weirs, V.G. (2005). Adaptive
mesh refinement, theory and applications: proceedings of
the Chicago Workshop on Adaptive Mesh Refinement
Methods, Sept. 3-5, 2003. Springer Verlag.

Rai, M. M., & Anderson, D. (1981). Grid evolution in time
asymptotic problems. Journal of Computational Physics,
43, 327-344.

Roberts, S., & Pashler, H. (2000). How persuasive is a good
fit? A comment on theory testing. Psychological Review,
107, 358-367.

Thorne, D. R., Genser, S. G., Sing, G. C., & Hegge, F. W.
(1985). The Walter Reed performance assessment battery.
Neurobehaviora. Toxicology and Teratology, 7, 415-418.

Van Dongen, H. P. A., & Dinges, D. F. (2005). Sleep,
Circadian Rhythms, and Psychomotor Vigilance. Clinical
Sports Medicine, 24, 237-249.

Willett, R. (2003, September 24). Sampling Theory and
Spline Interpolation. Retrieved from the Connexions Web
site: http://cnx.org/content/m11126/2.3/

	Introduction
	Adaptive Mesh Refinement
	Parameter Space Descriptions
	Conclusions
	Acknowledgments
	References

