
Multi-Associative Memory in fLIF Cell Assemblies
Christian R. Huyck (c.huyck@mdx.ac.uk)

Kailash Nadh (k.nadh@mdx.ac.uk)

School of Engineering and Information Sciences
Middlesex University

London, UK

Abstract

The fundamental mammalian behaviours of perception, recog-
nition, recollection, and all other psychological phenomena are
intrinsically related to the basic cognitive tasks of memorisa-
tion and association. Based on Hebb’s Cell Assembly (CA)
theory, it is believed that concepts are encoded as neuronal
CAs in mammalian cortical areas. This paper describes a se-
ries of simulations that demonstrate various associative mem-
ory tasks using CAs based on biologically plausible fatiguing,
Leaky, Integrate and Fire neurons. The simulations show the
ability of CAs to form, retain and recollect basic concepts and
multiple and sequential associations.
Keywords: Cell Assemblies; Multi-associative memory; fLIF
neurons

Introduction
Associative memory is a fundamental cognitive process. The
concepts in memory and the associations between them are
learned. These concepts and associations are critical to cog-
nitive processing.

Like all cognitive processes, associative memory must
have a neural basis, but neural models of associative memory
are rare and surprisingly incomplete. Cell Assemblies (CAs)
can account for many cognitive phenomena, including asso-
ciative memory. Concepts can be stored as CAs (see Section
CAs and auto-associative memory), and associations can be
stored in connections between CAs.

Associative memory has a wide range of properties. Con-
cepts can be connected in one to one, one to many, and many
to many relationships. Associations can be context sensi-
tive. In this paper, simulated CAs are used to explore these
properties performing different tasks including a simple spa-
tial cognitive mapping task. Cognitively, a good associative
memory model should be capable of priming, differential as-
sociations, timing, gradual learning and change, encoding in-
stances, and many such processes. The model simulations do
not account for these phenomena, but this is the beginning of
an exploration of a model that will (see Section Discussion
and conclusion).

Background
Human associative memory is remarkable. Throughout life,
new concepts are learned and new associations formed. Any
given concept is associated with many other concepts, and
retrieval of an associated concept can be based on a combi-
nation of the base concept and the context. Priming studies,
for example, show the memory system supports a wide range

type and strength of associations between concepts. Memory
retrieval and formation of associations are rapid processes.

Simulated neural models of associative memory are not
currently capable of many of the tasks described in the prior
paragraph. Closely related connectionist models have how-
ever been used to perform some of them.

CAs and auto-associative memory
Hebb (1949) hypothesised that the CA is the neural basis of
concepts, and the CA is central to most neural models of
memory. The theory proposes that objects, ideas, stimuli and
even abstract concepts are represented in the brain by simulta-
neous activation of large groups of neurons with high mutual
synaptic strengths (Wennekers & Palm, 2000). If an external
stimulus excites a sufficient number of neurons of an exist-
ing CA, it can result in the spreading of activation within the
CA, in turn igniting it due to recurrent activity and high mu-
tual synaptic strength. The CA can then remain active even
after the stimulus is removed. This reverberating behaviour
accounts for short term memory.

CAs are learned using the Hebbian learning rule, whereby
modifications in the synaptic transmission efficacy are driven
by the correlations in the firing activity of pre-synaptic and
post-synaptic neurons (Gerstner & Kistler, 2002). When ex-
ternal stimuli are presented to a network, synaptic strength
between neurons are adjusted so as to gain more strength
if they undergo repeated and persistent activation or firing,
gradually assembling them into a group, a CA. This forma-
tion of CAs accounts for long term memory. Thus, the CA
hypothesis provides a structural and functional account for
such cortical processes.

While still unproven, there is significant evidence and
wide spread agreement that CAs are the neural basis of con-
cepts. This includes a range of neural recording mechanisms
(Abeles, Bergman, Margalit, & Vaddia, 1993; Bevan & Wil-
son, 1999; Pulvermuller, 1999).

The CA is a form of auto-associative memory. In auto-
associative memories, an initial state is allowed to settle into
a stored memory, allowing subsequent noisy input to retrieve
a stored pattern. The Hopfield Model illustrates this property
(Hopfield, 1984). A network of units that are well connected
with bidirectional weighted connections is used to store a
set of binary patterns (typically using a Hebbian calculation).
When an initial set of neurons is switched on, in the discrete
version of the system, activation spreads through the system



based on the weighted connections. In most cases the system
will settle into a stable state with no neurons switching be-
tween on and off. If the input pattern is close to a stored pat-
tern, it will settle into that pattern’s state, thus functioning as
a content-addressable memory. Neurons may also belong to
multiple CAs. Hopfield patterns that share on-bits are models
of CAs that share neurons.

While CAs are critical for the model of multi-associative
memory described in this paper, they are not the solution. The
question is how different CAs are associated with each other.

Multi-associative memory
Auto-associative memory is not typically what is meant by
associative memory. Instead, associative memory is gener-
ally a shortened form (usually implicitly) of multi-associative
memory; this has also been called hetero-associative memory.
Psychologically, memories are not stored as individual con-
cepts, but large collections of associated concepts that have
many to many connections (Anderson & Bower, 1980). Each
memory (CA) is associated with many other memories (CAs).

CAs and multi-associative memory
Even though CAs account for memory formation, their pre-
cise neural dynamics are far from perfectly understood. As
explained in the Section CAs and auto-associative memory,
neurons may belong to different CAs, and if they are repeat-
edly co-activated by different versions of the same stimulus,
they tend to become associated (Hebb, 1949). This is based
on the notion that events that occur together repeatedly should
somehow belong together. Wennekers and Palm (2000) ex-
plained that every time these events occur in conjunction,
they drive certain subgroups of neurons, their correlated fir-
ing should be learned, and, by that, respective groups should
become associatively connected.

Repeated co-activation of neurons can lead to the forma-
tion of CAs. Similarly, repeated co-activation of multiple
CAs results in the formation of multiple and sequential as-
sociations, and sometimes new CAs. When an external stim-
ulus activates a CA, it might lead to the activation of neurons
that ignites a different CA that is not directly stimulated. This
forms the rudimentary, neural level explanation of associative
memory. Humans constantly retrieve and form associations
with whatever sensory input they receive for the purpose of
perception, understanding and reasoning.

Multi-associative memory models
Many multi-associative memory models have been proposed.
A select few models are reviewed below.

Non-Holographic Associative Memory is an early multi-
associative memory model (Willshaw, Buneman, & Longuet-
Higgins, 1969). It is a well-connected network that can learn
to map input bit patterns to output bit patterns using a Heb-
bian learning mechanism. In CA terms, input CAs are con-
nected to output CAs via learned one way associations. This
is a one step model. The Linear Associator (Kohonen, 1977)
is a similar model that, like many other models, encodes

memories in well connected systems. The brain is not well
connected, but it is often argued that it is broken into com-
partments that are well connected (Amit, 1989).

The Multi Modular Associative Memory (Levy & Horn,
1999) used well connected modules and analysed the storage
capacity of a system with items stored in multiple modules.
It showed that such a multi modular network is resilient to
corrupted input, based on their observation that natural asso-
ciated memories remain resilient to a great extent in humans
who suffer from focal damage. They concluded that multi
modular networks are necessary for meaningful implementa-
tion of associative neural networks. This is supported by evi-
dence that shows that the memory for a given word is stored
in multiple areas of the brain (Pulvermuller, 1999).

The Valiant model (Valiant, 2005) is a graph theoretical
model of memorisation and association based on four quan-
titative parameters associated with the cortex: the number of
neurons per concept; number of synapses per neuron; synap-
tic strengths; and number of neurons in total. It is assumed
that neurons are randomly connected. The learning algorithm
provided is biologically implausible, but the model shows
that random graphs allow a method of assigning new mem-
ory items and associative relationships between the items.

The Jets and Sharks simulation (McClelland, 1981) uses
the interactive activation model (Rumelhart & McClelland,
1982) to simulate associative memory. In the model, each
concept is represented by a node, and connections are made
between nodes to show how closely related these are. The
system is not well connected. Activation spreads between the
nodes via the weighted connections. The information to be
encoded concerns two hypothetical groups (Jets and Sharks),
group members, and some of their demographic characteris-
tics. The system can act as a content-addressable memory
system. So, the features of an individual group member can
be activated as input, and the individual’s representation will
quickly become activated by the spread of activation. Addi-
tionally, prototypical effects can be derived (Rosch & Mervis,
1975). So, if the Shark concept is stimulated, activation will
spread and eventually, the prototypical shark will become
more active than other individuals. The individual that shares
most features with other Sharks is the prototypical member.

This has been a brief review of multi-associative memory
models. It has been known for 40 years that simulated neu-
ral systems can encode multi-associative memories, but it has
become apparent that well connected systems are not a good
model of the brain. This has been addressed by partition-
ing the system into modules, and by using sparsely connected
random graphs. These models however do not account for a
range of associative memory characteristics that the human
memory system exhibits, for instance, context effects.

The simulator
This section briefly describes a computational model that
simulates CAs using fLIF neurons. Like all models, it is a
simplification of the mammalian neural architecture, but has



proven successful in modelling many cognitive phenomena.

The fLIF neural network
The fLIF neuron model (Huyck, 2007) encompasses many
properties of the biological neuron. The CAs used in the
experiments described in this paper emerge from fLIF neu-
ral networks. The model is an extension of the LIF (Leaky
Integrate and Fire) model (Maas & Bishop, 2001; Gerstner,
2002). fLIF neurons collect activation from pre-synaptic neu-
rons and fire on surpassing a threshold, that is, they integrate
and fire. On firing, a neuron loses its activation level, other-
wise the activation leaks gradually, resembling the behaviour
of a biological neuron.

The activation A of a neuron i at time t is:

Ait =
Ait−1

δ
+ ∑

j∈Vi

wi js j (1)

The current total activation is the activation from the last time
step divided by decay factor δ, plus incoming activation. This
new activation is the sum of the active inputs s j of all neurons
j ∈Vi,Vi being the set of all neurons connected to i, weighted
by the connection from neuron j to i. The neuron fires when
the accumulated activation A exceeds a threshold θ, and firing
neurons do not retain activation. Firing is a binary event, and
activation of wi j is sent to all neurons j to which the firing
neuron i has a connection. Fatiguing causes the threshold to
be dynamic, θt+1 = θt + Ft . Ft is positive (F+) if the neuron
fires at t and negative (F−) if it does not.

The network architecture
Two of the three the simulations discussed in this paper par-
titions the network into subnetworks; the context simulation
uses only one subnet. The subnets are made of fLIF neu-
rons and the number of neurons vary between subnets. Intra-
subnet synapses are based on biologically inspired distance
biased connections. This topology makes it likely for a neu-
ron to have excitatory connections to neighbouring neurons,
and less likely to far away ones. The subnet is a rectangu-
lar array of neurons with distance organized toroidally. In-
hibitory connections within a subnet and all inter-subnet con-
nections are set randomly. The connectivity rule for excita-
tory neurons is given by equation 2. There exists a connection
between neuron i and j of a network only if Ci j = 1.

Ci j = 1, if r < (1/(d ∗ v)) (2)
Ci j = 0, if not

where r is a random number between 0 and 1, d is the neu-
ronal distance and v is the connection probability. This indi-
cates that connections in a network are influenced by distance
between neurons and the connection probability factor. Dis-
tance d = 5 throughout all the simulations, as it has been ob-
served to work well. Inspired by biological neural topology,
long distance intra-network connections are also present, con-
nected by long distance axons with many synapses (Church-
land & Sejnowski, 1992).

In each of the simulations, networks are divided into mul-
tiple CAs using unsupervised Hebbian. The CAs are orthog-
onal and represent different concepts, and this is in response
to training stimuli. Neurons in different CAs do have excita-
tory connections to other CAs, based on the connection rule
(Equation 2), but the learned weights are low because neurons
in different CAs rarely co-fire. Once learned, when a CA is
externally activated, it typically inhibits all inactive CAs in
the same network via learned inhibitory connections. Sim-
ilarly, simultaneous co-activation of CAs increases the con-
nection strength between them, creating associations.

Learning in the network
CAs in a network are learned by a correlatory Hebbian learn-
ing rule (Huyck, 2004), whereby synaptic connection weights
are modified based on the following equation:

∆+wi j = (1−wi j)∗λ (3)
∆−wi j = wi j ∗−λ (4)

wi j is the synaptic weight from neuron i to j and λ is the learn-
ing rate. During each cycle, weights change based on the state
of pre-synaptic and post-synaptic neurons. If both neurons
fire, the weights increase as per the Hebbian rule (Equation
3). If only the pre-synaptic neuron fires, weights decrease as
per the anti-Hebbian rule (Equation 4). These two rules act
together, changing wi j, gradually increasing the likelihood of
j firing if i fires. Without reverberation, the weight would
reflect the likelihood that neuron j fires when neuron i fires.

The network parameters used in the simulations are pre-
sented in the table 1. The decay parameter has a link to bio-
logical data, but the others have been selected via a search of
the space. In particular, the fatigue parameters are different
across the three experiments described below.

Table 1: Network parameters

Parameter Symbol Value
Learning rate λ .10

Activation threshold θ 4.5
Fatigue F+ = F− .80

Decay factor δ 1.2
Neuronal distance d 5

Simulations
This section describes three sets of simulations. These sim-
ulations demonstrate that the model is capable of supporting
complex associations.

Jets and Sharks
This is a CA based implementation of a modified version of
the classic Jets and Sharks model that uses five members in
each of the hypothetical (Jets or Sharks) groups. The orig-
inal experiment had 27 members, but 10 randomly selected



member were used here to demonstrate feasibility. Each of
the members and their attributes are encoded as CAs in dif-
ferent subnets. A unique Person CA represents each member
and their attributes, namely Name, Age, Education, Marital
status, and Occupation. There is a one-to-one relationship
between each Person and their Name CA. A subset is illus-
trated in Figure 1.

Art - Jet, 40’s, Junior High, Single, Pusher
Phil - Shark, 30’s, College, Married, Pusher

Figure 1: Two people in Jets and Sharks. Circles refer to sub-
nets, names to orthogonal CAs, and arrows to connections.

Each CA is mutually exclusive and is made up of 200
neurons. Inter-subnet connections are random, initially low-
weight excitatory connections. The CAs and their associa-
tions are learned by external stimulation and co-activation of
each Person CA and their attributes simultaneously for 200
cycles, in succession.

Multiple memory retrieval tests were conducted. For in-
stance, when the Name CA of Art is externally stimulated, it
propagates activation to Art’s Person CA. The particular Per-
son CA, having learned excitatory connections to different
attributes, causes activation to further propagate throughout
the network, gradually activating all corresponding attributes
of Art. On 15 runs, the correct results were retrieved for each
of the 10 people. This shows one to one associations (e.g.
Art to his name), one to many (e.g. Art to all his properties)
and many to many (e.g. Pusher is activated by many people
along with other properties).

Similarly, when the attribute Shark is externally activated,
it propagates activation to all Person CAs having that at-
tribute, and the immediate effect is that all Shark members
ignite Though these CAs do not share neurons, multiple CAs
in a subnet may be simultaneously active. Gradually, activa-
tions stabilise through competition between CAs. One Person
CA is found to have more activation than others, emerging as
the prototypical Shark. The network was tested 15 times to
obtain the prototypical Jet and Art emerged to be so, through-
out. The same was done for Sharks and Nick emerged to be
prototypical 9 times and Ned, 6 times. This is because both
members share the most features with other members of the
group, and hence emerge to be prototypical members.

Context sensitive association
Most associative memory models, focusing solely on associ-
ations, usually neglect to acknowledge the inherent types of

associations that exist. A concept may be associated to many
others, but the types of associations may vary from concept to
concept. The association of cat to mammal is not the same as
fur to mammal. As a step towards simulating different types
of associations and eventually implicit labelled associations,
a model capable of differentiating associations based on con-
texts was developed.

Figure 2: Initial and Learned state of CAs

Figure 2 shows the network setup, the physical connection
before (A) and after (B) the CAs and their associations are
learned. A single network holds all the 5 orthogonal CAs,
namely Hungry, Not Hungry (states), Salivate, Lie down (ac-
tions) and Food (object). Since all the CAs are in the same
network, they have excitatory and inhibitory connections with
each other. The parameters in the simulation are those from
Table 1, except the fatigue parameters have been modified.
F+ = F− = 0.4. Initially, patterns corresponding to each of
the CAs are presented for 300 cycles so that they are learned
independently. When a CA is active, it inhibits all other CAs
in the network via learned inhibitory connections. When one
CA is active and another is inactive, inter-CA connection
weights are decreased. The associations between CAs are
learned by co-activation for 300 cycles each, that is, by acti-
vating three CAs (object, state, action) simultaneously, in the
following manner:

Food + Hungry⇒ Salivate
Food + Not Hungry⇒ Lie down

This mimics the behaviour of a hypothetical dog that salivates
when food is presented when hungry, and lies down ignoring
food when not hungry. After the associations are learned,
context sensitive behaviour is tested in the following manner:
when Food and Hungry are externally stimulated, Salivate ac-
tivates, suppressing Lie down. The tests were repeated on
100 different network configurations, and action CAs (Sali-
vate, Lie down) activated correctly 83 times with an average
of 84.6 neurons firing.

Igniting any one CA leads to activity in one associated CA,
and in less than 20% of trials the third associated CA. No
unassociated CAs have been activated in simulations.



Cognitive spatial mapping using sequential memory
Cognitive spatial mapping is a psychological process by
which an individual acquires, stores, recalls and decodes in-
formation about the relative locations and attributes of a spa-
tial environment for the purpose of spatial navigation (Downs
& Stea, 1973). A simplified version of this complex process
was implemented, where a virtual agent navigates a 3D vir-
tual world by recognising, memorising, associating and rec-
ollecting rudimentary landmarks. The parameters in the sim-
ulation are those from Table 1, except the fatigue parameters
have been modified. F+ = F− = 0.1. The change of these
parameters between the three simulations has merely been an
engineering decision based on a simple exploration of the pa-
rameter space. It is likely that different topologies using the
same parameters would have also produced similar results.

Figure 3 shows the top view of the virtual world, its 4
rooms, 4 coloured doors, and the exploration path the agent
takes. The agent’s path is fixed and it lacks the ability to turn
back and only moves forward.

Figure 3: Top view of the virtual world

In the learning mode, the agent explores the world, learn-
ing rooms, doors and Room-Door-Room sequences in the pro-
cess. A simple vision system detects doors and door colours,
and triggers learning actions, helping the agent navigate.

Figure 4 illustrates the gross subnetwork topology of the
spatial mapping module, excluding other subnets of the agent.
The solid arrows show physical inter-subnet connections
(random, low-weight excitatory connections). RoomNet1
and RoomNet2 store instances of the rooms the agent vis-
its. DoorNet stores the doors encountered and SequenceNet,
encodes the sequences of visits. ColourNet has CAs that
represent colours recognised by the agent, and GoalNet en-
codes the target door, which the agent searches for while in
the test mode. The greyed areas show a sample sequence,
where the agent has learned the association Room1←→Red-
Door←→Room2 by co-activation. The dashed lines represent
learned connections with increased synaptic weights.

The CAs representing rooms, doors and sequences in cor-
responding subnets are made up of 200 neurons each, and are
learned as the agent explores. In the learning mode, when
the agent encounters a door, a 5-step learning process is trig-

Figure 4: Cognitive spatial mapping network setup

gered: 1) The agent encodes its present location as a CA
in both the RoomNets; 2) It learns the door, forming a CA
in the DoorNet; 3) The agent associates the colour of the
door in the ColourNet with the newly formed door CA; 4)
The agent moves to the next room and learns the room (as in
Step 1); 5) It then encodes the passage it just made as a CA
in the SequenceNet, as in PreviousRoom-ConnectingDoor-
PresentRoom. This process is repeated until the agent is back
at its starting position. Each of the CAs are learned by stim-
ulation lasting 300 cycles, triggered by the visual cues the
agent reviews. Associations are learned by co-activation, as
described in the previous simulations. For instance, passages
are learned by simultaneously activating the corresponding
sequence CA in the SequanceNet, pre-entrance room CA
in RoomNet1, the connecting door CA in DoorNet and the
present room CA in RoomNet2, for 300 cycles.

In the test mode, the agent is instructed to go to a room ran-
domly chosen from the 4 rooms. This is done by externally
stimulating the target room CA in RoomNet2. This causes the
corresponding sequence CA to activate, which in turn acti-
vates the associated room CA in RoomNet1 and the connect-
ing door CA in DoorNet. When the door CA becomes active,
the goal CA is activated externally, leaving them to remain si-
multaneously active for 300 cycles, causing them to become
associated. As a result of this association, the goal CA be-
comes active whenever the corresponding door CA activates.
The active door CA that the agent has set as its goal is the door
that leads to the target room. With the goal in memory, the
agent moves forward, looking for the target landmark (door).
When the target door appears in the agent’s visual field, the
corresponding door CA in DoorNet activates, immediately
causing the goal CA to activate due to the previously learned
association, indicating achievement of the goal. With this, the



agent reaches the target room and the test ends.
The agent could have failed by stopping prematurely, or

continuing beyond the target room. However, it correctly
reached a the target room all 30 times the test was repeated.

Spatial cognitive mapping is an important associative task.
The task is also important for agents, and this cognitive map-
ping module is currently being incorporated into our current
Cell Assembly roBot (CABot3), an agent in a video game
based solely on fLIF neurons.

Discussion and conclusion
These simulations show that CAs emerging from model fLIF
neurons are capable of learning and retrieving core memories,
in the form of CAs, and associations between them. The Jets
and Sharks simulations show that the model can handle one
to one, one to many, and many to many relations. The sec-
ond set of simulations show that the model is capable of han-
dling context sensitive associations, and the third set shows
that it is capable of a basic form of cognitive mapping, using
multi-associative sequential memories. This is the first neural
model that simulates all the these processes.

While these are useful capabilities, the model does not ex-
hibit the wide range of behaviours that human associative
memory does. Human memories have varying strengths, and
so do the associations. Instances of types (tokens) can be
learned. Types, associations and tokens are all forgettable.
All of these behaviours occur in measurable times. It is
planned that future work will include all of these behaviours.

In the simulations described in this paper CAs were or-
thogonal, that is, neurons were in only one CA, and associa-
tions were maintained solely by synapses between neurons in
the associated CAs. Another type of association is possible,
where CAs are associated by sharing common neurons and
subcategorisation associations have been stored using shared
neurons in CAs (Huyck, 2007) . For example, the concept
Cat shares neurons with the concept Mammal because of the
association that a Cat isA Mammal. It is likely that such over-
lapping CAs are important for a good neural implementation
of multi-associative memory.

Other properties may also be necessary to achieve the full
range of associative memory behaviours. For instance, global
inhibitory mechanisms might be needed to manage spreading
of activation and prevent all neurons firing simultaneously.
None the less, the current simulations show simulated neural
systems can perform a range of associative memory tasks.
The authors leave the reader with these questions: what tasks
does an associative memory perform, and what are good tests
to show that a system performs these tasks?
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