
Cognitive Modelling with the Neural Engineering Framework

Chris Eliasmith (celiasmith@uwaterloo.ca)
Terrence C. Stewart (tcstewar@uwaterloo.ca)

Centre for Theoretical Neuroscience, University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1

Abstract
The  Neural  Engineering  Framework  (NEF;  Eliasmith  and 
Anderson,  2003)  provides  a  general  methodology  for 
developing efficient and realistic neural models that perform a 
specified task.   The framework  consists  of three quantified 
principles,  one for each of representation,  computation, and 
dynamics  in  neural  systems.   Adopting  these  principles 
provides a method for generating connection weights between 
groups of neurons that represent and transform state variables. 
In short, the NEF provides a neural compiler: a method for 
taking  a  high-level  description  of  a  neural  system  and 
deriving  a  plausible  organization  of  realistic  neurons  that 
realize this system.  Our tutorial introduces the principles of 
the  NEF  and  demonstrates  how  they  apply  to  cognitive 
modeling.   This  is  done through the  use of Nengo,  a  GUI 
neural simulation system, which supports an adjustable level 
of neural accuracy, Python scripting, and the analysis of the 
resulting models.
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The Neural Engineering Framework
As  cognitive  models  become  more  complex,  there  is  an 
increased demand for details at both the low and high levels. 
Traditionally,  focus  in  cognitive  modeling  has  been  on 
higher  levels  of  abstraction.  As  a  result,  researchers 
typically  posit  a  high-level  organizational  structure  which 
allows them to  consider  the information that  needs  to  be 
represented  and  the  transformations  that  are  required  for 
implementing hypothesized algorithms.  Ideally, however, a 
cognitive model should also make detailed predictions as to 
the firing  rates of  neurons implementing  the model,  their 
tuning  curves,  connectivity,  neurotransmitters,  and  other 
properties.

The Neural Engineering Framework (or NEF; Eliasmith 
and  Anderson,  2003)  provides  a  novel  approach  to 
addressing  this  typical  gap  in  cognitive  modeling.   It  is 
based on three principles of neural engineering:

1. Neural  representations  are  defined  by  the 
combination of nonlinear encoding (exemplified by 
neuron  tuning  curves)  and  weighted  linear 
decoding.

2. Transformations  of  neural  representations  are 
functions  of  variables  that  are  represented  by 
neural  populations.  Transformations  are 
determined  using  an  alternately  weighted  linear 
decoding.

3. Neural dynamics are characterized by considering 
neural  representations  as  control  theoretic  state 
variables.  Thus,  the  dynamics  of  neurobiological 
systems can be analyzed using control theory.

Each of these principles is considered under the assumption 
that  neural  systems  are  subject  to  significant  amounts  of 
noise. Therefore, any analysis of such systems must account 
for the effects of noise.

The core  idea  of  the  NEF is  to  consider  any cognitive 
system  as  containing  a  large  number  of  representations 
which change over time. How these representations change 
is dependent both on the external stimuli and on the other 
representations within the system.  A particular neural group 
can represent (via its spike pattern) a single scalar, a vector, 
or  even  a  function.   These  representations  are  inherently 
noisy,  and  accuracy  will  be  dependent  on  various  neural 
properties (although representational error has been shown 
to  be inversely linearly  related  to  the number  of  neurons 
used).

To  understand  how  these  representations  change  (i.e. 
define  a  transformation  of  a  representation),  the  NEF 
provides methods for defining weighted axonal projections. 
For instance, a given group might represent the product of 
the values being represented by two other groups which are 
projected to it (i.e. x(t) = y(t)*z(t),  where each variable is 
represented by a neural population).   Importantly, we can 
use  the  NEF  to  derive  the  linearly  optimal  connection 
weights to perform a wide variety of linear and nonlinear 
transformations.  Doing so makes it clear that the accuracy 
of  these  transformations  is  intimately  related  to  the 
observable  tuning  curves  of  the  neurons  involved.   This 
leads to models that are orders of magnitude more efficient 
than other approaches to neural representation,  and which 
are  a  closer  match  to  observed  neurological  data  (e.g. 
Conklin & Eliasmith, 2005; Fischer, 2005).

Applications
Initially, the main applications of this approach were in the 
domains of sensory and motor systems.  This has included 
the  barn  owl  auditory  system  (Fischer,  2005),  rodent 
navigation  (Conklin  &  Eliasmith,  2005),  escape  and 
swimming  control  in  zebrafish  (Kuo  & Eliasmith,  2005), 
and  the  translational  vestibular  ocular  reflex  in  monkeys 
(Eliasmith et al., 2002).  However, these same principles are 
now  being  applied  to  higher-level  cognitive  models.   A 
direct  extension  of  the  visual  working  memory  model 
(Singh & Eliasmith, 2006) has led to a neural model of the 
ACT-R  goal  buffer  (Stewart,  Tripp,  &  Eliasmith,  2008). 
More crucially,  the use of  Vector Symbolic  Architectures 
(Gayler,  2003)  has  allowed  for  the  representation  and 
manipulation  of  structured  symbol  trees  by  these  neural 
models.   This  neurally  realistic  cognitive  architecture 
(Stewart  & Eliasmith,  2009a)  resulted  in  a  model  of  the 
Wason  card  task  (Eliasmith,  2005)  and  ongoing  work 



producing  an  efficient  production  system  using  realistic 
neural constraints (Stewart & Eliasmith, 2008; 2009b).

The  NEF  provides  an  exciting  new  tool  for  cognitive 
modelers  as  it  provides  a  technique  for  producing  direct 
neural  predictions  from  a  given  high-level  algorithmic 
description of a cognitive model.  Furthermore, it leads to 
important theoretical results as to the relationships between 
neural  properties  and  the  high-level  algorithms  they  are 
capable  of  implementing  (e.g.  the  relationship  between 
neurotransmitter  re-uptake  rate  and  the  time  constant  of 
neural transformations).

These  consequences  are  also  very  general,  as  the  NEF 
provides  techniques  that  can  be  applied  to  any  cognitive 
model.  It provides a structure for organizing the high-level 
description of a model, such that it can be implemented by 
realistic  spiking  neurons,  providing  meaningful  data  in 
terms  of  the  expected  spike  patterns,  time  course,  and 
accuracy.   We have made use  of  it  in  a  wide  variety  of 
contexts,  and  we  have  developed  tools  that  support  the 
creation and analysis of these models.  These tools can be 
applied  to  many existing  models  to  incorporate  low-level 
neural details into existing modeling research.

Software and Simulations
We have developed Nengo <nengo.ca>,  a freely available 
open-souce  Java-based  neural  simulator  that  supports  the 
NEF.  This allows for hand-on examples of the theoretical 
concepts  underlying  the  NEF.   Using  a  point-and-click 
interface,  we  can  create  neural  group,  configure  them to 
represent scalars and vectors, adjust their neural properties, 
and simulate their spiking activity over time.  We can also 
connect these neural groups via synapses so as to perform 
linear  and nonlinear  transformations  on these  values,  and 
store  information  over  time.   These  are  the  basic 
mechanisms required for a wide range of algorithms,  and 
form the basis for our models of sensorimotor systems and 
working memory.  Nengo can also be programmed using a 
Python interface,  allowing  for  quick  creation  of  complex 
models (Stewart, Tripp, & Eliasmith, 2009).

Furthermore, these basic tools can be used to implement 
the theory of Vector Symbolic Architectures (Gayler, 2003) 
using NEF.   This  involves  using high-dimensional  fixed-
length vectors to represent symbols and symbol trees.  The 
nonlinear  operation  of  circular  convolution  is  used  to 
manipulate these symbol trees.  This can be seen as a non-
classical  symbol  system,  capable  of  performing  the 
operations required for symbolic cognition.  The result is a 
scalable  and  efficient  neural  cognitive  architecture, 
constructed from these basic neural components.
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