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Abstract

Donald Hebb proposed a hypothesis that specialised groups of
neurons, called cell-assemblies (CAs), form the basis for neu-
ral encoding of symbols in the human mind. It is not clear,
however, how CAs can be re-used and combined to form new
representations as in classical symbolic systems. We demon-
strate that Hebbian learning of synaptic weights alone is not
adequate for all tasks, and that additional meta-control pro-
cesses should be involved. We describe an earlier proposed
architecture (Belavkin & Huyck, 2008) implementing such
a process, and then evaluate it by modelling the probability
matching phenomenon in a classic two-choice task. The model
and its results are discussed in view of mathematical theory of
learning, and existing cognitive architectures as well as some
hypotheses about neural functioning in the brain.

Keywords: Artificial Intelligence, Cognitive Science, Neu-
roscience, Decision making, Intelligent agents, Learning,
Bayesian modeling, Computational neuroscience, Human ex-
perimentation

Introduction
There exists a variety of artificial systems and algorithms for
learning and adaptation. Most of them can be classified as
sub-symbolic (e.g. Bayesian and connectionist networks) or
symbolic systems (e.g. rule-based systems). Known natu-
ral learning systems use neural networks, and therefore can
be classified as using sub-symbolic computations. A distin-
guishing feature of the human mind, however, is the ability to
use rich symbolic representations and language.

From an information-theoretic point of view, symbols are
elements of some finite set that are used to encode discrete
categories of sub-symbolic information. They enable com-
munication of information about the environment or a com-
plex problem in a compact form. One obvious benefit is that
with language, one can learn not only from one’s own expe-
rience, but also from experiences of others. The benefits of
reading a guidebook before going abroad are obvious.

The duality between sub-symbolic and symbolic ap-
proaches has been studied in cognitive science. There ex-
ists sub-symbolic (i.e. connectionist), symbolic (e.g. SOAR,
Newell, 1990) and hybrid architectures (e.g. ACT–R, Ander-
son & Lebiere, 1998) for cognitive modelling. These differ-
ent approaches, however, have not yet explained where the
symbols are in the human mind, or how the brain implements
symbolic information processing.

It was proposed by Hebb (1949) that symbols are repre-
sented in the brain not by individual neurons, but by cor-
related activities of groups of cells, calledcell assemblies
(CAs). The CABOT project set out to test and demonstrate

this idea in an engineering task by building an artificial agent,
situated in a virtual environment, capable of complex sym-
bolic processing, and implemented entirely using CAs of sim-
ulated neurons. Some of the objectives have already been
achieved and reported elsewhere (e.g. Huyck & Belavkin,
2006; Huyck, 2007; Belavkin & Huyck, 2008). The archi-
tecture and some of these works will be discussed in the next
section.

The work described in this paper is concerned with a partic-
ular aspect of the project — a stochastic meta-control mech-
anism that modulates Hebbian learning to allow for re-use
and combination of CAs into new representations, such as
learning logical implications (i.e. procedural knowledge). As
will be discussed in this paper, this cannot be achieved by
using a Hebbian learning mechanism alone. A unique con-
tribution of this work is evaluation of the meta-control mech-
anism in a cognitive model of the probability matching phe-
nomenon in a two-choice experiment (Friedman et al., 1964).
The results suggest that a proposed mechanism is a plausi-
ble model. Some neurophysiological studies and hypotheses
about the brain circuitry will be discussed supporting the bi-
ological plausibility of the architecture.

Cell-Assemblies as the Basis of Symbols

In this section, we outline some of the basic features of the
CABOT architecture as well as the CA hypothesis.

Neural Information Processing in CABOT

It is widely accepted that human cognition is the result of the
activity of approximately 1011 neurons in the central nervous
system (CNS) that interact with each other as well as with
the outside world via the peripheral nervous system (PNS).
Biological neurons are complex systems, and they have been
modelled with various levels of details. In our system, we use
fatiguing, leaky, integrate and fire (fLIF) neurons.

The ‘integrate and fire’ component is based on the classical
idea that the neuron ‘fires’ (or spikes) if its action potential,
A, exceeds a certain threshold valueθ: y = 1 if A≥ θ; y = 0
otherwise. The action potential,A, is a function of the in-
ner product (integrator):〈x,w〉 = ∑k

i=1xi wi , wherex∈ R
k is

the stimulus vector (pre-synaptic), andw∈ R
k is the synaptic

weight vector of the neuron. Here,R
k is ak-dimensional real

vector space, wherek is the number of synapses to the neu-
ron. We use binary signals, and thereforex is ak-dimensional
binary vector.
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The ‘leaky’ property refers to a more complex (non-linear)
dependency of the action potential on the pre- and post-
synaptic activity:

At+1 =
At

dt
+ 〈xt ,wt〉 , dt =

{

∞ if fired (yt = 1)
d ≥ 1 otherwise

Thus, the action potential is accumulated over several time
moments if the neuron does not fire. Parameterd ≥ 1 allows
for some of this activation to ‘leak’ away. This is the LIF
model (Maas & Bishop, 2001).

The ‘fatigue’ property refers to a dynamic threshold that is
defined as follows:

θt+1 = θt +Ft , Ft =

{

F+ ≥ 0 if fired (yt = 1)
F− < 0 otherwise

where valuesF+ andF− represent thefatigueand fatiguere-
coveryrates. Thus, if a neuron fires at timet, its threshold
increases, and it is less likely to fire at timet +1.

The fatiguing and leaky properties of the neural model al-
low for a non-trivial dynamics of the system. Repetitive stim-
ulation of excitatory synapses increases the probability of a
neuron to fire, even if the weights have small (positive) val-
ues. On the other hand, if the neuron fires repetitively, its
threshold increases reducing the chance of it firing again.
Thus, frequencies of pre- and post-synaptic activities areim-
portant factors in our system.

The weights,w, of a neuron can adapt according to the
compensatory learning rule (Huyck, 2007), which is an im-
plementation of the Hebbian principle (Hebb, 1949), where
wt+1 depends on the correlation between the pre-synaptic,xt ,
and the post-synaptic,yt , activities.

The above described properties are known characteristics
of biological neurons, and our model is a compromise be-
tween computational efficiency and biological plausibility
that is important for the emerging dynamics that we discuss.

Neural Cell-Assemblies
Networks of neurons can be used as general function approxi-
mators and applied in a variety of tasks including control, pat-
tern recognition and classification. Our system, CABOT, uses
recurrent, partially connected networks (a mesh) of fLIF neu-
rons with a largely pre-defined topology. The non-linearity
of the cells and the topology of the network leads to a com-
plex dynamics of the system similar to that in attractor and
recurrent nets (e.g. Hopfield, 1982), where some of the states
are more probable. These more ‘stable’ states can be charac-
terised by groups of neurons that remain significantly more
active than the other cells in the system. According to Hebb
(1949), we refer to such reverberating groups of cells ascell
assemblies(CAs).

In our system, the formation of CAs depends on the topol-
ogy of the network, and it is facilitated by the adaptation of
the weights between connected cells. Therefore, CAs can be
used for pattern classification of sensory stimuli (i.e. patterns
from external connections). This leads to functionalspecial-
isationof neurons in the network based on CAs — two cells

are functionally different if they belong to different CAs,even
though they are similar architecturally. Such specialisation is
observed in many neural networks, such as in self-organising
maps (Kohonen, 1982) and particularly in the human brain.
Note that CAs are not necessarily disjoint sets of cells. A sin-
gle cell may be a member of several overlapping CAs. This
feature can be used to encode hierarchies of patterns (Huyck,
2007).

An important property of CAs’ dynamics is their persis-
tence. When enough neurons fire to start the reverberating
circuit, the CA ignites. Once ignited, the activity within the
cells in a CA may be sufficient to support itself. Many vari-
ables can contribute to this effect. In particular, the fatigue
and recovery rate parameters in our system effect persistence.

A CA’s activity does not only depend on the external pat-
terns, but also on the activity of other CAs in the system as
they can ignite and extinguish each other. Thus, the activ-
ity of several CAs can be characterised by different patterns
of ignition order and so on. It was demonstrated earlier that
such state transitions in the system of CAs are sufficiently
controllable to implement a broad range of tasks simulating
symbolic processing that will be discussed below.

Symbols and Human Cognition
Many models of biological neurons suggest that synaptic
weights may represent the memory for statistical and sub-
symbolic information of the stimulus. In particular, in many
algorithms for training artificial neural networks (e.g. Oja,
1982), the weight vectorw ∈ R

k corresponds to one of the
principal eigenvectors of the covariance matrixE{xx†} of in-
put vectorsx ∈ R

k that have been observed. On the other
hand, human cognition, and human knowledge in particular,
is encoded using symbolic representations, and the link be-
tween the symbols and neural models is less clear.

It was proposed by Hebb (1949) that CAs may be consid-
ered as the neural basis of symbols. Indeed, as discussed
in the previous section, CAs can be easily mapped to some
discrete categories of the stimuli, and their activity patterns
can model serial processing typical for symbolic algorithms.
Testing this hypothesis experimentally is one of the main ob-
jectives of the CABOT project. However, many challenges
had to be overcome to make a purely CA-based system per-
forming some non-trivial symbol processing task.

Previously, we reported a system performing a counting
task that consisted of 7 modules and 40 CAs (Huyck &
Belavkin, 2006). A more recent system, CABOT 2, is an
artificial agent functioning in a virtual 3D environment that
has a model of visual information processing, and is capable
of natural language processing and action selection (Belavkin
& Huyck, 2008). One of the advantages of such a CA-based
architecture is that neural CAs, that we associate with sym-
bolic representations, integrate also all the sensory (i.e. sub-
symbolic) information, which can be a natural solution to the
symbol groundingproblem. An associated phenomenon of
symbolic processing isgrounding transfer— combination
and re-use of existing symbols to form new representations.
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The re-use of symbols is also important for learning pro-
cedural knowledge. Indeed, a logical implication (i.e. a
production rule) may use combinations of symbols both in
the antecedent and the consequent, and generally there are
many more possible combinations than the number of rules
that are actually used. Hybrid architectures, such as ACT–R,
rely on statistical (sub-symbolic) computations to ‘filter’ out
the unwanted rules in the process calledconflict resolution.
In CABOT, associations between CAs are learnt due to the
Hebbian learning mechanism. However, as will be pointed
out below, this mechanism alone is not sufficient to imple-
ment learning of particular associations between CAs rep-
resenting existing symbols. To resolve this problem, an ad-
ditional stochastic meta-control mechanism, moderating the
Hebbian learning, has been introduced (Belavkin & Huyck,
2008). Here, we use this mechanism to model the probability
matching phenomenon in a classical two-choice experiment,
and this way evaluate its plausibility.

Stochastic Meta-Control of Learning
Two-Choice Task
Let x, y1 andy2 be three symbols, wherex represents a stim-
ulus (antecedent), andy1, y2 represent two alternative re-
sponses (consequents). Thus, we have a conflict between two
implicationsx→ y1 andx→ y2 shown on the diagram below

x

��~~
~~

~~
~

  
@@

@@
@@

@

y1 y2

This is a simplest two-choice task (a more complex two-
choice task may involve a set of different stimuli). The
choice ofy1 or y2 is followed by some reinforcement event
E that may have different utility values (e.g. a success after
choosingy1 or a failure after choosingy2). Learning the as-
sociations between the choices and the utility values, such
as u(x → y2) ≤ u(x → y1), leads to a preferencey2 . y1,
and therefore learning rulex → y1. If the reinforcement
event is not deterministic, but occurs with some probability
P(E) = π ∈ [0,1], then the preference ofy1 to y2 may also
be stochastic. As demonstrated in many experiments with an-
imals and human participants, the frequency of choosingy1

adapts to probabilityπ of reinforcement with high utility —
a phenomenon referred to as theprobability matching. This
phenomenon can be explained based on the theories of opti-
mal statistical decisions (Wald, 1950) and information value
(Stratonovich, 1965).

Principles of Statistical Learning
Let us consider an abstract system with inputx∈ X and out-
puty∈Y. Any learning system can be characterised by some
optimisation criteria and information constraints (Belavkin,
2009). Optimisation corresponds to some preference relation
on the input-output pairs(x,y) ∈ X ×Y. In a deterministic
setting, this preference relation can be represented by a utility

functionu : X×Y → R, while in stochastic setting one con-
siders conditional probability distributionsP(u | x,y) on val-
ues of utilityu ∈ R. If the utility function u = u(x,y) or the
joint distributionP(u,x,y) is known (and henceP(u | x,y)),
then given inputx, the optimal output ˆy ∈ Y maximises the
expected utility:

ŷ(x) = arg max
y

EP{u | x,y}

whereEP{·} denotes the expected value with respect to dis-
tribution P (in the deterministic case,EP{u | x,y} coincides
with u = u(x,y)). Thegreedystrategy of always choosing the
optimal output can be expressed as follows:

P(y | x) =

{

1 if y = ŷ(x)
0 otherwise

(1)

Information constraints mean that either the utility function
u= u(x,y) or the distributionP(u,x,y) is not known. Instead,
one has some data from past occurrences of(u,x,y) ∈ R×
X ×Y which can be used to estimate ˜u(x,y) ≈ EP{u | x,y}.
In this case, the greedy strategy for choosing the system’s
output is not optimal. The optimal policy is the following
exponential (‘soft-max’) distribution (e.g. Belavkin, 2009):

P̂(y | x) = Q(y | x) exp{β ũ(x,y)−Ψ(β,x)} (2)

whereQ(y | x) is the distribution corresponding to the mini-
mum of information (e.g. no data), parameterβ is related to
the amount of information available in the data, andΨ(β,x)
is defined from the normalisation condition (i.e.Ψ(β,x) =
ln∑Y Q(y | x) exp{β ũ(x,y)}). Distribution (2) is obtained by
solving the following variational problem

U(I) = sup
P
{EP{u} : I(P,Q) ≤ I}

where I(P,Q) is the Kullback-Leibler divergence of dis-
tribution P(u,x,y) from Q(u,x,y) representing information
amountI contained in the data. Parameterβ−1 appears in
the solution as the Lagrange multiplier related to information
constraintI by the derivative ofU(I):

β−1 = U ′(I) (3)

The function above is decreasing so thatβ−1 → 0 (orβ → ∞)
as information increases. Note that the exponential distribu-
tion (2) converges to the greedy strategy (1) asβ → ∞.

Exponential distributions are often used for selecting the
output of a system in machine learning and stochastic optimi-
sation algorithms. It is also used in the ACT–R cognitive ar-
chitecture to model some stochastic properties of behaviour.
In particular, it was used in the ACT–R model of the two-
choice experiment, discussed below. However, the ‘tempera-
ture’ parameterβ−1 is usually set to some constant value or
determined from some arbitrary ‘annealing’ schedule. The
relation ofβ−1 to entropy of success in ACT–R was proposed
in (Belavkin, 2002/2003), and it was shown that it improves
the match between the models and data. The derivation of
optimal functionβ−1 = U ′(I) can be found in (Stratonovich,
1965) and more generally in (Belavkin, 2009).
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Meta-Control of Hebbian Learning

The output of a neuron depends on its weight vectorw∈ R
k,

which, according to Hebb’s hypothesis, adapts to the corre-
lation between the pre- and post-synaptic activitiesx andy
in the past. It is attractive to conclude, therefore, that Heb-
bian learning is a particular implementation of the statistical
learning. However, the utility is clearly missing in this de-
scription of neural plasticity. What criteria does such a pro-
cess of changing the weights optimise? If in a two-choice task
the system accidentally chooses the ‘incorrect’ cell-assembly
y2, then the weights associatingx with neurons iny2 increase
due to the correlation-based Hebbian learning. This can only
increase the chance ofx → y2 igniting in the future, even
though the reinforcing eventE following the choice ofx→ y2

has a low utility (i.e. a failure). Thus, some additional pro-
cess should be involved to increase the chance of the ‘correct’
combinationx→ y1 after the reinforcing eventE. Such a pro-
cess appears to be especially useful if the CA-based symbolic
representations, formed earlier, are to be re-used. Below we
describe a neural implementation of such a meta-control of
Hebbian learning based on the utility feedback (Belavkin &
Huyck, 2008) following principles of statistical learning.

Value // Explore

��
x1
...

xm

//

//

//

y1
...

yn

Figure 1: Components and connections of the Value and Ex-
plore modules controlling Hebbian learning of connections
between CAs in modulesX andY. Solid and dashed arrows
show excitatory and inhibitory connections respectively.

The meta-control process involves two specialised mod-
ules: Value and Explore. Their connections in the sys-
tem are shown on Figure 1. Here,X = {x1, . . . ,xm} and
Y = {y1, . . . ,yn} are sets of CAs representingm stimuli and
n responses respectively. Initially, there are excitatory con-
nections from every CA inX to all CAs inY, which means
that all pairs(x,y) (i.e. all rulesx→ y) are equally preferred.
Thus, given inputx∈ X, any responsey∈Y can be selected.
However, due to Hebbian learning, the connectionx → y is
reinforced if a particular pair of CAs ignite together, giving
the pair a higher chance to ignite together in the future. Thus,
simply by virtue of Hebbian learning, the system can learn
eventually to prefer some random pairs. The purpose of the
Value and Explore modules is to make this process selective
according to the utility value of the feedback.

The output activity of the Value module represents the util-
ity valuesu associated with the pair(x,y) selected on the pre-
vious step. The input of the module can be configured ac-

cording to the application (e.g. using sensory information).
The purpose of the Explore module is to randomise the ac-

tivity of the response CAs (i.e. CAs in setY). The Explore
module contains cells that can be active without any external
stimulation due to spontaneous activation. The cells in the
Explore module send excitatory signals to all CAs inY, and
the weights of these connections do not change. Thus, the
activity in the Explore module can trigger randomly any re-
sponse CA, and this process does not have a memory. The
Explore module implements the effect of parameterβ−1 in
the exponential distribution.

The Value module sends inhibitory connections to the Ex-
plore module, so that high activity of the Value cells may shut
down the activity in the Explore module. As a result, any re-
sponse CA that has been ignited in setY will persist longer
because it is less likely to be shut down by another CA. Such
a connectivity implements the following learning scheme: If
a particular pair(x,y) results in a high utility value, then high
activity of the Value module inhibits the Explore module, and
the responsible(x,y) pair is allowed to persist longer, and the
x→ y connection increases relative to others due to Hebbian
learning.

Learning the ‘correct’ rules (subsetR⊂ X×Y) contributes
to a better performance of the system (i.e. higher expected
utility). As a consequence, the average activity of the Value
module increases with time, while the activity of the Explore
module decreases. This dynamic also corresponds to a de-
crease of parameterβ−1 as information increases making the
system less random and more deterministic.

Modelling Probability Matching
To test how adequately the above mechanism can represent
properties of human cognition, we evaluate its performance
against data from a classic two-choice experiment due to
Friedman et al. (1964). The choice of this dataset was mo-
tivated not only by its quality and detailed description of
the procedures, but also because it was used to ‘calibrate’
stochastic properties of other cognitive architectures, such as
ACT–R (Anderson & Lebiere, 1998). The complete descrip-
tion of the experiment and data can be found in the original
paper (Friedman et al., 1964). Here we give a basic outline.

Experiment Description and Previous Work
In this experiment, participants were asked to select one of
two responses on presentation of a stimulus. After the re-
sponse was selected, a reinforcement eventE occurred with
probability P(E) = π that did not depend on the response.
Each participant had to perform this task in three sessions,
each session consisting of 8 blocks, each block consisted of
48 trials. The probabilityP(E) = π changed between each
48–trial block. This paper will report only simulations of re-
sults in Sessions 1 and 2. In these two sessions, blocks 1, 3,
5 and 7 hadP(E) = .5, and blocks 2, 4, 6, and 8 were with
P(E)∈ {.1, .2, .3, .4, .6, .7, .8, .9} that was assigned according
to a random pattern. Thus, probabilityP(E) = π was alter-
nating between .5 and some value above or below .5 between
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Figure 2: Frequency of response (ordinates) as a function
of the probability of reinforcing this response (abscissae).
Points and error bars represent average response and stan-
dard deviations in 48–trials of two-choice task from 80 partic-
ipants, reported in (Friedman et al., 1964). Dashed line shows
frequency of the reinforcing event itself.

48-trial blocks. The data recorded the number of times Re-
sponse 1 was chosen in each 48-trial block.

Figure 2 shows the results of these experiments, reported
by Friedman et al. (1964). The charts show frequencies of
Response 1,F(R), and reinforcement events,F(E), as func-
tions of the control probabilityP(E) = π. One can see that the
frequency of the reinforcement eventF(E) approximates the
the control probabilityF(E)≈P(E). The response frequency
F(R) also matches the probabilityP(E), but it differs signifi-
cantly at the lower and higher ends of the range: WhenP(E)
is low (π = .1), the participants overestimate the probability
(F(R) ≥ P(E)); whenP(E) is high (π = .9), the participants
underestimate it (F(R) ≤ P(E)). Thus, the response appears
to be less certain than the reinforcing event.

As suggested by Anderson and Lebiere (1998), this ex-
perimental evidence indicates against using the greedy strat-
egy (1) for choosing the response. The data was modelled in
ACT–R by sampling responses from exponential distribution
with someβ−1 > 0. This agrees with equations (2) and (3),
whereβ−1 → 0 only when informationI → supI . We now
describe a model of this experiment implemented in CABOT.

Model Description

The model used the architecture shown on Figure 1, where
moduleX consisted of CAs representing one or more stimuli,
and moduleY contained two CAs representing two alterna-
tive responses. There were excitatory connections with low
weights from moduleX to all CAs in moduleY. The weights
on these connections, however, could adapt according to a
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Figure 3: Comparison of response frequency produced by
the CABOT model with response frequency by participants
in (Friedman et al., 1964). RMSE=8.937%.

Hebbian rule increasing associationsx → y between active
CAs. The fatigue and leak parameters of theY network were
set in such a way that CAs ignite only when an external stim-
uli are present. The CAs inY inhibited each other so that only
one of the CAs inY was active at any moment. The Explore
module had excitatory connections with a small proportion
of cells in moduleY. These connections were distributed uni-
formly, and the weights did not adapt. Spontaneous activation
in the Explore module could randomly trigger any of the two
response CAs in moduleY. The activity of the Explore mod-
ule could be inhibited by the output activity from the Value
module that was triggered in each trial according to proba-
bility P(E) = π of the reinforcement event, controlled by the
experimental sequence.

When the Explore module is inhibited by the reinforcing
activity of the Value module, the active pair(x,y) is allowed
to persist longer, strengthening the connectionsx→ y relative
to other connections. We found that the robustness of this
effect depends on the time (i.e. number cycles) these CAs
are allowed to persist. In this model, it takes approximately
between 10–20 cycles for a response CA inY to ignite, and
if the Explore module is active, then the response CA may
change during another 10–20 cycles. In this experiment, the
system ran for 100 cycles per trial which was sufficient for
the control of learning to have a robust effect. The complete
code of the simulation is available online from the CABOT

project website.

Results

The model was used to simulate Sessions 1 and 2 of eight
48-trial blocks each with variable control probabilitiesπ
(Friedman et al., 1964). The results comparing response fre-
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quency of the model with the data are shown on Figure 3. The
model approximates the data fairly well (RMSE=8.937%)
showing the probability matching effect that also overesti-
mates and underestimates the low and high value of the con-
trol probability π respectively. Note that unlike the ACT–R

model, where the estimated parameterβ−1 in the exponential
distribution was constant (Anderson & Lebiere, 1998), the
activity of the Explore module randomising the response is
dynamic.

Conclusions
In this paper, we discussed the CABOT architecture and some
challenges associated with implementing the CA hypothesis
of symbolic processing in the brain. The problem of re-use
and combination of symbols, particularly in learning proce-
dural knowledge, pointed at one significant shortcoming of
the standard Hebbian learning mechanism — adaptation of
weights based purely on correlations does not take into ac-
count the optimisation criteria that a system may have to sat-
isfy. To resolve this problem, stochastic meta-control based
on utility feedback was introduced into the system.

It is attractive to speculate about the existence of the Value
and Explore modules in the brain. Some researchers have
proposed that tonically active cholinergic neurons in the basal
ganglia and striatal complex play an important role in con-
flict resolution and learning procedural knowledge (Granger,
2006). These neurons account for a small proportion of the
connections that are quite uniform and non-topographic, and
the activity of these neurons was suggested to play the role
of stochastic noise, similar to the activity of cells in the Ex-
plore module (see Fig. 1). Interestingly, the activation ofthe
tonically active cholinergic neurons is inhibited by the acti-
vation from the reward path, similar to the function of the
Value module in our system. Other studies of mechanisms
for exploratory behaviour in the brain are also in favour of
the exponential distribution model (Daw, O’Doherty, Dayan,
Seymour, & Dolan, 2006).

Setting these speculations aside, this work has demon-
strated that the proposed mechanism can be used for control-
ling Hebbian learning in networks of relatively biologically
faithful models of neurons. The mechanism allows for se-
lective learning of connections between specialised groups of
cells (CAs), and following Hebb’s hypothesis it shows not
only that CAs can indeed be associated with symbols, but
also shows how such representations can be re-used and com-
bined to learn new knowledge. Simulation of the probability
matching effect has demonstrated that the mechanism is also
a plausible cognitive model. We anticipate that the proposed
architecture can also be used to model other psychological
phenomena, such as the effect of reinforcement values on
speed of learning, and this is one possible direction of our
future research.
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