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Abstract 

Fatigue has been implicated in an alarming number of motor 
vehicle accidents, costing billions of dollars and thousands of 
lives. Unfortunately, the ability to predict performance 
impairments in complex task domains like driving is limited 
by a gap in our understanding of the explanatory mechanisms. 
In this paper, we describe an attempt to generate a priori 
predictions of degradations in driver performance due to sleep 
deprivation. We accomplish this by integrating an existing 
account of the effect of sleep loss and circadian rhythms on 
sustained attention performance with a validated model of 
driver behavior. Although quantitative empirical data for 
validation are lacking, the predicted results across four days 
of sleep deprivation match qualitative trends published in the 
literature, and illustrate the potential for making useful 
predictions of performance in naturalistic task contexts that 
are relevant to real applied problems. 

Keywords: Driver Behavior; Fatigue; Computational Model; 
Sustained Attention; Sleep Deprivation. 

Introduction 
Accidents on roadways in the United States account for a 
distressingly high number of fatalities and substantial cost 
on an annual basis (Horne & Reyner, 1999; Klauer, Dingus, 
Neale, Sudweeks, & Ramsey, 2006; NTSB, 1995; Pack et 
al., 1995). According to a National Highway Transportation 
Safety Administration report, nearly 25% of these accidents 
can be wholly or partially attributed to the effects of 
drowsiness or fatigue on driver attention, judgment, and/or 
performance (NTSB, 1995). 

The alarmingly high cost of fatigue in the context of 
driving has been one motivation for studies to better 
understand changes in cognitive performance stemming 
from extended time awake (sleep deprivation), insufficient 
sleep (sleep restriction), and being awake at times of the day 
when the body is predisposed to sleep (circadian 
desynchrony; Dijk, Duffy, & Czeisler, 1992; Van Dongen & 
Dinges, 2005a; 2005b). This research has succeeded in 

identifying characteristic consequences of fatigue on 
cognitive performance. However, there remain significant 
limitations in the capacity to make valid predictions about 
performance in novel task contexts based on a history of 
time awake and circadian rhythms (Dinges, 2004; Van 
Dongen, 2004). 

Our computational modeling research has been targeted at 
addressing some of these current limitations in predictive 
validity. Much of this research addresses significant 
theoretical challenges associated with understanding the link 
between cognitive processes and fluctuations in overall 
cognitive arousal, or alertness (e.g., Gunzelmann, Gross, 
Gluck, & Dinges, 2009; Gunzelmann, Gluck, Kershner, Van 
Dongen, & Dinges, 2007). However, we are also addressing 
the issue of how these theoretical insights can be used to 
make a priori quantitative performance predictions in novel, 
naturalistic task contexts, based upon the mechanisms and 
parameters that have been identified (e.g., Gunzelmann, 
Byrne, Gluck, & Moore, 2009; Gunzelmann & Gluck, in 
press) 

In the research presented here, we evaluate the capacity to 
make predictions about degradations in driver performance 
associated with an extended period of total sleep 
deprivation. We discuss the implications of our research in 
the context of potential applications of a predictive capacity 
in the domain of driving. In the next sections, we describe 
our model of driving behavior, our theoretical mechanisms 
for fatigue, and how they are integrated to allow for the 
generation of quantitative predictions of behavior. We then 
compare the model’s predictions with qualitative trends in 
the empirical literature, demonstrating that the a priori 
predicted trend in the integrated model are aligned with 
those published results. 

Driver Model 
The first component of our exploration of driving and 
fatigue is the ACT-R driver model (Salvucci, 2006), a 
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computational model of driver performance developed in 
the ACT-R cognitive architecture (Anderson, 2007; 
Anderson et al., 2004), which serves as a psychological 
theory and simultaneously a computational framework for 
specifying and simulating human behavior models. The 
driver model is based on a control law of steering behavior 
(Salvucci & Gray, 2004) that visually encodes two salient 
points on the roadway: a near point in the lane center 
immediately in front of the vehicle; and a far point such as 
the vanishing point on a straight road, the tangent point on a 
curved road, or the lead vehicle when present. The control 
law describes how steering can be realized by keeping the 
far point stable while keeping the near point both stable and 
centered in the current lane. 

The driver model that uses this control law relies on a 
fundamental component of the ACT-R architecture – the 
production system that represents central cognition. Central 
cognition in ACT-R operates through a series of conflict 
resolution cycles to produce cognitive processing and 
behavior. During each cycle the subset of productions 
whose conditions match the current system state is 
identified. The “system state” is represented by the contents 
of a set of buffers that provide limited-bandwidth 
communication between central cognition and peripheral 
information processing modules such as perception and 
motor action. Within this set of matching productions, the 
one with the highest “utility value” is selected and its 
actions are executed, provided that it exceeds the ACT-R 
“utility threshold” parameter. The default duration for these 
cycles is 50 ms. 

The driver model uses successive iterations of four ACT-
R production rules to represent the control law of steering 
behavior. Specifically, these four rules comprise a control 
update cycle during which the model (1) encodes the near 
point, (2) encodes the far point, (3) updates steering and 
acceleration according to the control law, and (4) checks the 
vehicle’s current stability as measured by the lateral velocity 
and position of the near and far points. If the vehicle is not 
yet stable, the model immediately initiates another control 
update; otherwise, the model waits approximately 500 ms to 
initiate the next control update. 

The driver model has been shown to account well for 
driver behavior with respect to curve negotiation and lane 
changing (Salvucci, 2006). The most critical aspect of the 
model for our purposes here is the execution time for a 
control update cycle: A single cycle requires approximately 
200-250 ms, including 50 ms for each production rule firing 
(as dictated by ACT-R theory) plus some additional time for 
visual encoding. The update cycle time can increase, 
however, when attention is divided between driving and 
some secondary task, thus resulting in degradations in driver 
performance. For example, recent work has shown how 
dialing a phone (Salvucci, 2001; Salvucci & Taatgen, 2008) 
and rehearsing a memorized list of numbers (Salvucci & 
Beltowska, 2008) affects the driver model’s performance; in 
both cases, concurrent execution of the secondary task 
interferes with processing of the driving task, thereby 

increasing the update cycle time and degrading performance 
(measured by, e.g., lateral deviation from lane center or 
brake response time to an external event). As we will 
describe, proposed mechanisms for fatigue in ACT-R can 
also prolong or delay the update cycle, leading to similar 
degradations in driver performance. 

Mechanisms for Fatigue 
The driver model provides a validated basis for making 
predictions about driver behavior. In independent research, 
efforts have been made to identify mechanisms within ACT-
R to account for the impact of sleep loss and circadian 
rhythms on cognitive processing. In some of this research, 
we have focused on central cognitive mechanisms 
associated with the production execution cycle 
(Gunzelmann, Gross, et al., 2009). To account for changes 
associated with decreased alertness, we have integrated 
mechanisms in ACT-R that create opportunities for brief 
breakdowns in cognitive processing called microlapses.. In 
addition, we proposed a secondary process to represent the 
influence of explicit effort, which decreases the likelihood 
of a microlapse but also increases the probability of using 
lower-cost, less effective strategies in pursuit of achieving 
the goal. 

The mechanisms in the fatigue model are based on the 
theoretical perspective that fluctuations in overall alertness 
or arousal can be associated with changes in utility values 
for selecting and executing production rules in ACT-R’s 
central production system. Utility values are decreased, 
which increases the likelihood that no action will be taken 
on a given cycle. This situation leads to a microlapse, which 
is formally defined as a gap in cognitive processing lasting 
for the duration of one cognitive cycle (approximately 50 
ms). 

To account for the potential benefits of increased effort, a 
second parameter is manipulated – the utility threshold – 
which sets the minimum utility value required for a 
production to fire. Decreasing the utility threshold 
instantiates greater effort by making it more likely that some 
production will successfully fire. However, this 
manipulation also increases the probability that a suboptimal 
action (a production with a low utility) will be executed 
instead (see Gunzelmann, Gross, et al., 2009). 

To evaluate the validity of our account, we compared the 
model’s performance to human data on a sustained attention 
task across 88 hrs of total sleep deprivation. The model 
captured the important features of the human data, including 
explanations for small increases in the median of 
appropriately fast responses and increasing probabilities of 
false starts, slowed responses (lapses), and complete failures 
to respond (sleep attacks). The task, model, and results are 
described in detail in Gunzelmann, Gross, et al. (2009). 

Integration 
The mechanisms for fatigue instantiate a theory of changes 
in central cognitive processing resulting from fluctuations in 
alertness attributable to sleep loss and circadian rhythms. 
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Meanwhile, the model of driver behavior provides a 
validated account of mechanisms and processes involved in 
skilled driving. Importantly the ACT-R driver model relies 
on procedural knowledge for successful performance, 
including staying within its lane. As a result, an opportunity 
exists to bring together an existing model of driver behavior 
with an existing account of fatigue to explore the 
implications of fatigue on driving behavior. This 
opportunity represents an important step in the evolution of 
computational architectural accounts of cognitive 
phenomena, and illustrates the potential utility of unified 
theories that integrate theoretical insights from various 
domains of psychological research. 

The integration of the driver model and fatigue 
mechanisms was a straightforward process. The 
implementation of the driver model was altered to run on a 
high-performance computer but was not changed with 
respect to its core behavior. The driver model is similar to 
the sustained attention model in that neither makes 
extensive use of declarative memory, simplifying the 
account by eliminating the need to consider potential 
influences of fatigue on declarative knowledge access (e.g., 
Gunzelmann et al., 2007). The fatigue mechanisms were 
taken directly from Gunzelmann, Gross, et al. (2009) and 
applied to the driver model. Thus, our procedural fatigue 
mechanisms alone provide the moderating effects in the 
driving model. 

The actual effects of the fatigue mechanisms center on the 
production selection and execution phases of the production 
cycle in ACT-R. Proportional scaling of utility values 
during the selection phase of the driver model creates 
situations where the matching production with the highest 
utility fails to exceed the utility threshold. Thus, no 
production is executed on that cycle, producing a microlapse 
as described above. This is the key component in our 
theoretical account of performance declines associated with 
fatigue because it provides an account, based upon a single 
mechanism, of phenomena in the sleep research community 
that have been associated with cognitive lapses and 
cognitive slowing (e.g., Dinges & Kribbs, 1991). Parameter 
manipulations associated with fluctuations in alertness 
influence the frequency of microlapses, and microlapses 
lead to the performance changes exhibited by “tired” 
models. 

In cases when a microlapse occurs with no other ongoing 
processes in any of ACT-R’s information processing 
modules, the microlapse is accompanied by additional 
attenuation of utility values. The noise component of the 
utility values allows subsequent conflict resolutions to 
potentially match a production and continue model 
execution. However, this does not always occur, and as each 
successive decline in alertness further reduces the possibility 
of utilities rising about the threshold, a model can quickly 
spiral into a state analogous to sleep. In the model described 
in Gunzelmann, Gross, et al. (2009), this mechanism is 

critical in capturing the most substantial breakdowns in 
cognitive processing (i.e., sleep attacks).  

In the sustained attention task, long periods of time go by 
– as long as 10 seconds – where the model is simply waiting 
for a stimulus event. In contrast, the processing in the driver 
model incorporates a constant monitoring behavior, which 
leads to cognitive processing in modules outside central 
cognition throughout the task. Peripheral processing does 
not affect the occurrence of microlapses, but does prevent 
any progressive declines in utility values over the course of 
a 10-minute driving session. The implication is that our 
model currently does not capture changes in performance 
that may be expected over the course of a 10-minute driving 
episode (i.e., time on task effects). However, our focus is on 
making truly a priori predictions, and so we leave them 
unchanged in the model runs described below. 

In the next section, we evaluate the impact of our fatigue 
mechanisms on the driver model. Recall that the driver 
model realizes the continuous control law through four key 
productions. It is in this control update cycle that the fatigue 
mechanisms are most influential, since microlapses increase 
the overall update cycle time. As will be shown, even brief 
delays in cognitive activity can amount to significant and 
potentially devastating behavioral impacts. 

Model Evaluation 
To evaluate the model, its behavior was assessed in the 
context of a driving scenario described in Salvucci and 
Taatgen (2008). In the task, the driver steered down a 
single-lane highway, keeping the vehicle as centered as 
possible in the roadway. The vehicle moved at a constant 
speed that was not controlled by the driver, thus focusing 
the task particularly on lateral control. One key measure of 
performance in the task is lateral deviation: the root-mean-
squared error between the lane center and the vehicle’s 
lateral position within the lane. The baseline driver model 
navigating this environment exhibits an average lateral 
deviation of approximately 15 cm across a 10-minute 
driving scenario (see Salvucci & Taatgen, 2008). 

To produce predictions of driver behavior and 
performance, we used parameter values for the fatigue 
mechanisms that were estimated in our research on 
sustained attention (e.g., see Gunzelmann, Gross, et al., 
2009). Specifically, the model for that research was able to 
account for human sustained attention performance at 2 
hour intervals across 88 hours of total sleep deprivation. As 
an initial assessment of the driver model, we used the 
parameter values from sessions occurring shortly after 
participants awakened on the baseline day of the study, and 
from sessions occurring after 24, 48, and 72 hrs of total 
sleep deprivation (0800 on each of 4 consecutive days). The 
model was run 200 times using each of those parameter sets, 
leading to reliable measures of central tendency in the 
performance measures as well as evidence regarding the 
variability in fatigue effects across 10 minute driving 
sessions. 
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To assess the performance, the lateral deviation of the 
model was recorded for each second during each model run. 
Figure 1 shows a histogram of these deviation values as a 
function of degree of sleep deprivation (0, 24, 48, and 72 
hrs). Perhaps surprisingly, the distributions are not radically 
different. Note however, that on the left side of the 
distribution the proportion of lower deviation values (3-12 
cm) decreases with increasing sleep deprivation. The overall 
trend is toward an increasingly skewed distribution, where 
performance is basically normal most of the time, but 
diverges more often and to a greater extent as sleep 
deprivation increases. This pattern of results matches the 
data from the sustained attention task that we have used in 
developing the mechanisms applied to the driver model in 
this paper (see Gunzelmann, Gross, et al., 2009). 

While the distributions in the larger deviations (21-80 cm) 
are not very different, clear differences emerge in the 
categories representing the largest deviations. Lane 
violations (“LV” in the figure) represent points when some 
portion of the vehicle had crossed the lane line (i.e., the 
vehicle overlapped the adjacent lane). The proportions of 
lane violations more than double for Days 2 and 3 of sleep 
deprivation as compared to the baseline day or a single night 
without sleep. The final category, lane shifts (“LS” in the 
figure), represent points during which the vehicle has moved 
an entire lane’s width laterally — clearly a substantial 
degree of driver performance error. Whereas the Baseline 
and Day 1 conditions exhibit no lane shifts, there appear a 
small number of lane shifts in Day 2, and in Day 3, 3% of 
all lateral deviation values sampled are in this category. This 
means that 3% of the time, the model is driving completely 
out of its intended lane (possibly off the road or possibly 
into oncoming traffic). 

To better understand the nature of this performance in 
terms of the driver model and fatigue mechanisms, Figure 2 

shows a histogram of update times for the driver model in 
each condition — that is, the amount of time needed for the 
model to complete its four-production control update cycle. 
As was the case for lateral deviation, the distributions shift 
with increasing sleep deprivation such that update times 
reflecting cycles that are not interrupted (200-300 ms) 
become less frequent and longer update times become more 
prevalent. The increase in update times arises because  
production rules are more likely to fall below threshold 
under the influence of fatigue mechanisms, thus missing an 
opportunity to fire during a conflict resolution cycle. 

 

 
Figure 2: Distribution of model update times as a function 

of number of days of total sleep deprivation (TSD). 
 

 
Figure 1: Proportion of 1-second samples of lateral deviation falling into each of the specified bins. The last 
two categories represent instances where (1) the vehicle is partway out of the proper lane (a lane violation, 

“LV”), and (2) the vehicle’s deviation is more than a full lane width off (a lane switch, “LS”). Separate 
lines represent 0, 24, 48, and 72 hours of total sleep deprivation (TSD). 
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Comparison to Human Performance 
To evaluate the model predictions in the context of actual 
human driver performance, we compared the model’s 
performance to published results from a study of fatigued 
driving (Peters, Kloeppel, & Alicandri, 1999). Peters et al. 
(1999) measured lane violations during conditions of 
restricted sleep and sleep deprivation. Figure 3 compares the 
pattern of results from Peters et al. (1999) to the data from 
our model. The data from Peters et al. (1999) are frequency 
counts of lane violations, while the data from the ACT-R 
model reflect proportions of 1-second samples of lane 
deviation that exceeded the threshold for a lane violation. 
Though these measures are slightly different, they are 
closely related, and the pattern of results is identical (r=.99). 

 

 
Figure 3: Lane violations from Peters et al. (1999) compared 
to the proportion of lane deviation samples classified as lane 

deviations or lane shifts in the model. 
 
The Peters et al. experiment protocol was slightly 

different than the strict total sleep deprivation protocol 
assumed in our model predictions. Participants in Peters et 
al. (1999) were allowed four hours of sleep on the first 
night, between the Baseline Day and Day 1, whereas the 
parameters in the model assume total sleep deprivation. This 
could have some impact on the quantitative results, but the 
overall pattern would be similar in either case. The pattern is 
similar for both the human data and the model: only a slight 
performance decrement in Day 1, but a much larger 
decrement in Days 2 and 3. While the above caveat 
concerning the experiment protocol differences should be 
noted, these results suggest that the integration of the driver 
and fatigue models indeed captures an important aspect of 
fatigued driver behavior. 

Conclusions and Future Directions 
The model described in this paper exhibits declines in 
performance when mechanisms are implemented to 
represent the deleterious effects of sleep loss on central 

cognitive functioning. The foundation is a validated model 
of skilled driver behavior (Salvucci, 2006). That model is 
augmented with a set of mechanisms that account for 
changes in central cognitive processing that result from 
increased levels of fatigue associated with time awake and 
circadian rhythms (Gunzelmann, Gross, et al., 2009). 

The primary contribution of this research is the 
demonstration that it is possible to make truly a priori 
predictions regarding the effects of extended wakefulness on 
performance in complex, dynamic tasks. The qualitative 
changes in the model’s performance are identical to the 
performance changes observed in human participants 
attempting to drive after extended periods of partial or total 
sleep deprivation. The results go beyond intuitive notions 
regarding degradations in cognitive processing and 
performance as time awake increases by providing 
quantitative estimates about the actual impact of those 
changes on performance in the driving task. 

Of course, qualitative comparisons of overall performance 
falls short of the rigorous evaluation of the model that we 
would like to perform. However, the current research effort 
represents a critical step in the process of using 
computational cognitive modeling to make predictions 
about human cognition and behavior in naturalistic task 
contexts. The modular design of ACT-R facilitates this 
convergence of research efforts by providing an 
infrastructure that allows new theoretical components (like 
the account of fatigue) to be added seamlessly to the 
architecture. Once added, these new components, or 
modules, influence the model’s behavior to the extent that 
the proper conditions arise to activate the mechanisms. In 
this case, the mechanisms for fatigue have a substantial 
impact on model behavior. Importantly, the impact appears 
to be in line with human data on a similar task in the 
research literature. 

A major goal of research on fatigue is to develop an 
understanding of the impact of sleep loss that is useful in 
making predictions regarding the consequences for 
performance in applied settings. At the outset, we cited the 
enormous cost of fatigue – both in dollars and lives – on 
highways in the United States. A better understanding of the 
relationship between fluctuations in alertness and changes in 
observable human behavior has the potential to greatly 
reduce this cost, potentially saving thousands of lives. 
Moreover, driving is not the only area where the potential 
benefits exist. In many applied settings, lack of sleep and 
circadian desynchrony may lead to disastrous consequences 
(e.g., Caldwell, Caldwell, Brown, & Smith, 2004; Dinges, 
1995). Accurate predictions of the consequences of fatigue 
could help to avert some of these potential tragedies. 
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