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Abstract 

As cognitive architectures become ever more ambitious in the 
range of phenomena they are to assist in producing and 
modeling, there is increasing pressure for diversity in the 
mechanisms they embody. Yet uniformity remains critical for 
both elegance and extensibility.  Here, the search for 
uniformity is continued, but shifted downwards in the 
cognitive hierarchy to the implementation level.  Factor 
graphs are explored as a promising core, with initial steps 
towards a reimplementation of Soar.  The ultimate aim is a 
uniform implementation level for cognitive architectures 
affording both heightened elegance and expanded coverage. 
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From Architecture to Implementation 
A cognitive architecture is a hypothesis about the fixed 
structures underlying thought in active intelligent beings, 
whether natural or artificial.  It consists of a set of 
interacting mechanisms that can combine with appropriate 
knowledge to model human intelligent behavior and/or 
generate artificial intelligent behavior.  In the large, a 
cognitive architecture is a theory about one or more systems 
levels comprising an intelligent being. Newell (1990) 
discussed a hierarchy of levels (organelles, neurons, neural 
circuits, deliberate acts, operations, etc.) across four bands 
of human action: biological, cognitive, rational, and social.  
At each level, a combination of structures and processes 
implements the basic elements at the next higher level. 

One controversial attribute of systems levels in cognitive 
architecture is their girth; i.e., their uniformity versus 
diversity.  Diversity always exists across levels, but 
individual levels may consist of anything from a small 
number of very general elements to a wide diversity of more 
specialized ones.  Uniformity appeals to simplicity and 
elegance.  In caricature, it is the physicist’s approach, where 
a broad diversity of phenomena emerges from interactions 
among a small set of general elements. Diversity appeals to 
specialization and optimization.  It is the biologist’s 
approach, in which many specialized structures, each locally 
optimized, jointly yield a robust and coherent whole. 

Across a hierarchy of levels, there is no a priori reason to 
assume they are all of comparable girth.  While physicists 
and biologists may expect uniformity within their fields, the 
networking community trumpets the Internet hourglass to 
explain their protocol stack (Deering, 1998).  At the 
narrowed waist is the Internet Protocol (IP).  Above is an 
increasingly diverse sequence of levels enabling “everything 

on IP”.  Below is an increasingly diverse sequence of levels 
enabling “IP on everything”.  The hourglass yields a 
diversity of applications and implementations that are united 
via a core of mesoscale uniformity.  Domingos’s (In press) 
recent call for an interface layer in AI is an appeal for a 
similar sort of mesoscale uniformity in AI.  

Intelligence clearly entails diversity in the cognitive 
hierarchy across levels, but what about within levels? At the 
top, the extraordinary range of possible behaviors and 
applications is one of the core phenomena cognitive 
architectures are developed to explain. At the bottom, the 
mind is grounded in the diverse biology of the brain and, at 
least according to strong AI, could also be grounded in a 
diversity of alternative technologies (with adjustments in 
Newell’s lower levels for grounding in such technologies).  
But is there an hourglass or a rectangle in between? 

The question of the existence of a cognitive hourglass has 
traditionally been cast in terms of whether the cognitive 
architecture is uniform.  Among architectures for cognitive 
modeling, Soar (Rosenbloom, Laird & Newell, 1993) has 
been a standard exemplar of uniformity and ACT-R 
(Anderson, 1993) of diversity.  Recently, based on both 
functional and modeling considerations, Soar 9 (Laird, 
2008) has shifted strongly towards diversity, and is helping 
to tip the community balance in this direction. 

As a scientist, one can respond to a demonstrated need for 
diversity by simply accepting it, or by hypothesizing an 
underlying uniformity and simplicity that explains it. 
Anderson, for example, developed a background theory of 
cognitive rationality to justify ACT-R’s mechanisms as 
optimal adaptations to the environment (Anderson, 1990).  
The theory’s uniformity is not in the architecture itself, but 
does yield a simple, well-motivated explanation for it.  Yet 
something significant is lost when the uniformity is not in 
the cognitive hierarchy, as diversity negatively impacts both 
the elegance of the resulting system and the ease with which 
new capabilities can be integrated into a unified whole.  
Historically, diverse architectures have been tough to unify.  
To the extent such a system remains disunified, it is more of 
a toolkit or language than a hypothesis about the fixed 
structures of thought (i.e., an architecture). 

Another alternative is not simply to accept diversity, or 
try to justify it, but to continue a search for uniformity – the 
narrow waist of the hourglass – elsewhere in the cognitive 
hierarchy.  This is an application of the uniformity-first 
research strategy (a variant of Ockham’s razor): begin by 
assuming uniformity and accept diversity only upon 
overwhelming evidence. To the extent uniformity is 
possible, it yields elegance and facilitates unification and 
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extension. Beginning instead with diversity removes the 
pressure to search for hidden commonality, and may lead 
down an irrevocable path of complexity. 

The history of Soar well illustrates the uniformity-first 
strategy (Laird & Rosenbloom, 1996).  For years it had a 
single procedural, rule-based, long-term memory and a 
single learning mechanism (Laird, Rosenbloom & Newell, 
1986), while investigations continued into their ability to 
support a diversity of memory (e.g., procedural, semantic, 
and episodic (Rosenbloom, Newell & Laird, 1991)) and 
learning (e.g., skill and knowledge acquisition, 
generalization and transfer, and learning from observation 
(Rosenbloom, 2006)) behaviors.  A wide range of such 
behaviors proved feasible, but they never could be fully 
unified with the rest of the system to yield pervasive utility 
across all activity.  This evidence against the existing 
uniformity, amassed over years of experimentation, inspired 
the development of Soar 9, a diverse architecture that adds 
new long-term memories (semantic and episodic) and 
learning mechanisms (semantic, episodic and 
reinforcement), while also incorporating other new 
capabilities (emotion and imagery) (Laird, 2008). 

Uniformity-first, however, entails that acknowledging a 
need for diversity at the architecture level should be 
accompanied by a continued search for uniformity at other 
levels.  In this article, the particular focus is on burrowing 
beneath the diversity at the architecture level to look for 
uniformity at the implementation level just below. The goal 
is still an hourglass, albeit one with a lower waistline. 

The implementation of cognitive architectures, while 
critical for efficiency and usability, is usually extra-theoretic 
and not part of the architectural hypothesis. Characteristic 
examples include the COGENT (Cooper & Fox, 1998) and 
Storm (Pearson, Gorski, Lewis & Laird, 2007) 
environments for cognitive modeling/architectures, both of 
which are coarse-grained, graphical tools intended to assist 
the developer rather than theoretical hypotheses about the 
implementation level.  The primary exception is systems 
like SAL (Jilk, Lebiere, O’Reilly & Anderson, 2008) or 
Neuro-Soar (Cho, Dolan & Rosenbloom, 1991), where a 
cognitive architecture is implemented via neural networks.  
Neural approaches remain interesting possibilities for the 
implementation level, but the focus here is on the related but 
more general class of graphical models (Jordan, 2004). 

Graphical models share the core graphical/network nature 
of neural networks and graphical modeling environments, 
but focus on representing independence across variables in 
complex functions such as joint probability distributions and 
communication codes.  They include Bayesian networks 
(Pearl, 1988) and Markov networks, with origins in 
probabilistic reasoning.  But they also include factor graphs 
(Kschischang, Frey & Loeliger, 2001), which take a broader 
multivariate-function view.  Interestingly, a variety of neural 
network algorithms – such as supervised Boltzmann 
machines, radial basis functions, and unsupervised learning 
algorithms – can be mapped onto graphical models (Jordan 
& Sejnowski, 2001).  A core premise of this article is that 

graphical models provide untapped potential for cognitive 
architectures.  They may also ultimately forge a principled 
bridge between neural and symbolic architectures.  

The work in this article is based on factor graphs. 
Although originating in coding theory, where they underlie 
the “astonishing performance” of turbo codes, factor graphs 
are particularly promising for cognitive architecture because 
of the diversity of important problems and algorithms they 
subsume in a uniform manner when combined with their 
canonical sum-product algorithm.  Factor graphs are 
relevant for signal processing, where they are useful in 
vision (Drost & Singer, 2003) and subsume Kalman filters, 
the Viterbi algorithm, and the forward-backward algorithm 
in hidden Markov models; probabilistic processing, where 
they subsume belief propagation in Bayesian and Markov 
networks; and symbol processing, where they yield arc 
consistency for constraint problems (Dechter & Mateescu, 
2003).  There is also significant work on mixed approaches 
combining symbolic and probabilistic processing, hybrid 
approaches combining discrete and continuous processing, 
and hybrid mixed approaches (Gogate & Dechter, 2005). 

Factor graphs raise the possibility of a uniform 
implementation level that elegantly explains the diversity 
seen in existing cognitive architectures while going beyond 
them to yield an effective and uniform basis for: unifying 
cognition with perception and motor control, breaking down 
the barriers between central and peripheral processing by 
bringing the latter within the cognitive inner loop and 
making each potentially penetrable by the other; fusing 
symbolic and probabilistic reasoning to provide general 
reasoning under uncertainty; and providing a conceptual 
bridge from symbolic to neural architectures, by mapping 
them onto a common intermediary.  They provide a 
tantalizing combination that is particularly appropriate at the 
implementation level of: (1) generality, in the range of 
capabilities they can uniformly support in a state-of-the-art 
manner; and (2) constraint, in the ways that these 
capabilities can reasonably be supported. 

The remainder of this article introduces factor graphs, 
begins exploring their utility for cognitive architectures via 
a first step towards a graphical reimplementation of Soar, 
and summarizes the path forward from here.  The focus is 
not on a specific cognitive model, but on the possibility of a 
radically new generation of integrated cognitive models. 

Factor Graphs 
Factor graphs provide a form of divide and conquer with 
nearly decomposable components for reducing the 
combinatorics that arise with functions of multiple 
variables.  The function could be a joint probability 
distribution over a set of random variables; e.g., 
P(V,W,X,Y,Z), which yields the probability of 
V=v∧W=w∧X=x∧Y=y∧Z=z for every value v, w, x, y and z in 
the variables’ domains. Or the function could represent a 
constraint satisfaction problem, C(A,B,C,D), over a set of 
variables, yielding 1 if a combination of values satisfies the 
constraints and 0 otherwise.  Or the function could represent 
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a discrete-time linear dynamical system, as might typically 
be solved via a Kalman filter.  The problem formulation 
here would involve a trellis structure, where the graph for 
one time step is repeated for each, with four variables per 
time step – State, Input, Output and Noise (Kschischang, 
Frey & Loeliger, 2001) – K(S0,I0,O0,N0,…, Sn,In,On,Nn). 

The prototypical factor graph operation is the 
computation of marginals on variables.  For a joint 
probability distribution, this is simply the marginal of a 
random variable, computed by summing out the other 
variables: P(Y) = Σv,w,x,zP(v,w,x,Y,z).  The key to tractability 
is avoiding the explicit examination of every element of the 
cross product of the variables’ domains.  For probabilities, 
the joint distribution is decomposed into a product of 
conditional (and prior) probabilities over subsets of 
variables: P(V,W,X,Y,Z) = P(V)P(W)P(X|V,W)P(Y|X)P(Z|X).  
Such decompositions derive from the chain rule plus 
conditional independence assumptions.  Using commutative 
and distributive laws then enables more efficient marginal 
computation: P(Y) = ΣxP(Y|x)ΣzP(z|x)ΣvP(v)ΣwP(x|v,w)P(w).  
This provides 
the basics of 
Bayesian 
networks 
(Figure 1). 

Factor 
graphs 
generalize this 
to arbitrary 
multivariate 
functions; e.g., F(V,W,X,Y,Z) = F1(V,W,X)F2(X,Y,Z)F3(Z).  
The function becomes a bipartite graph, with a variable 
node for 
each 
variable, a 
factor node 
for each 
function 
use, and 
undirected 
links 
between 
factors and 
their 
variables 
(Figure 2). 

The core 
inference 
algorithm 
for factor 
graphs is 
the sum-
product (aka summary-product or belief-propagation) 
algorithm, which passes messages along links.  A message 
from a source node to a target node along a link summarizes 
the source node’s information about the domain of the link’s 
variable node.  A message from a variable node to a factor 

node is the pointwise product of the messages into the 
variable from all of its neighbors except the target node.  A 
message from a factor node to a variable node starts with 
this same product but also includes the factor node’s own 
function in the product, with all variables other than the 
target variable then being summed out to form the outgoing 
message.  A key optimization here, as in Bayesian networks, 
is to use the commutative and distributive laws to 
redistribute multiplicative factors outside of summations. 

For tree-structured graphs in which only a single marginal 
is desired, the factor graph can be reduced to an expression 
tree in which the products and sums are computed 
unidirectionally upwards in the tree.  Beyond this simplest 
case, the algorithm works iteratively by sending output 
messages from nodes as they receive input messages.  For 
polytrees, which have at most one undirected path between 
any two nodes, this iterative algorithm always terminates 
and yields the correct answer.  For arbitrary graphs with 
loops, neither correct answers nor termination are 
guaranteed.  However, it does often work quite well in 
practice, as has been most strikingly evident for turbo codes. 

The sum-product algorithm uses two specific arithmetic 
operations: sum and product.  However, the same generic 
algorithm works for any pair of operations forming a 
commutative semi-ring, where: both operations are 
associative and commutative and have identity elements; 
and the distributive law exists.  Max-product, for example, 
is key to computing maximum a posteriori (MAP) 
probabilities.  OR-AND also works, as do other pairs. 

To improve the efficiency of the algorithm, various 
optimizations can be applied, and alternative algorithms can 
be used (such as survey propagation (Mézard, Parisi & 
Zecchina, 2002) and Monte Carlo sampling (Bonawitz, 
2008)).  A connection exists between factor graphs and 
statistical mechanics, revealing that the sum-product 
algorithm minimizes the Bethe free energy, and yielding 
algorithmic innovations (Yedidia, Freeman & Weiss, 2005). 

Factor Graphs for Cognitive Architecture 
The key question for us is whether factor graphs can yield a 
uniform level for implementing, understanding and 
exploring cognitive architecture, while ultimately yielding 
novel architectures that are more uniform, unified, and 
functional. Existing work on hybrid mixed methods is 
encouraging, as is work on general languages for mixed 
probabilistic and logical reasoning. FACTORIE 
(McCallum, Rohanemanesh, Wick, Schultz & Singh, 2008), 
for example, combines factor graphs with an imperative 
programming language to support relations and other 
capabilities, while BLOG (Milch, Marthi, Russell, Sontag, 
Ong & Kolobov, 2007) and Alchemy (Domingos, Kok, 
Poon, Richardson & Singla, 2006) combine probability and 
logic via Bayesian and Markov networks, respectively. 

The particular approach advanced here is to: (1) re-
implement existing architectures to help understand factor 
graphs, existing architectures, and the implications of 
implementing architectures via factor graphs; (2) go beyond 

Figure 2. Example factor graphs 

Figure 1. Example Bayesian network 
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existing architectures by hybridization and simplification, 
both within and across architectures; and (3) integrate in 
new capabilities that don’t mesh well with existing 
architectures, such as perception and motor control. 

The initial focus is on Soar because of familiarity with it, 
its history in cognitive modeling, and its dual status as both 
a uniform (early) and a diverse (latest) architecture.  We can 
make a quick start on reimplementing the uniform core, and 
build towards a more uniform integration of later diversity. 

The inmost core of “uniform Soar” is the reactive layer, 
where working memory (WM) is elaborated via associative 
retrieval of relevant information from a parallel production 
system.  During a single elaboration cycle, match computes 
all legal production instantiations, which then fire in parallel 
to modify WM.  Match is the core of the elaboration cycle, 
so it is the natural focus for initial reimplementation efforts. 

In Soar, match is based on Rete (Forgy, 1982), comprising 
a discrimination network for sorting working memory 
elements (wmes) to production conditions, a join network to 
determine which combinations of wmes yield production 
instantiations (while attending to across-condition variable 
equality), and support for both incremental match across 
cycles and shared match across productions.  Most 
individual productions match efficiently, although worst-
case match cost is exponential in the number of conditions. 

A factor graph implementation of Rete has been designed, 
where factor nodes handle discriminations and joins, 
variable nodes represent wmes that match production 
conditions and their combinations – analogous to Rete’s α 
and β memories – and unidirectional message passing over 
an expression tree enables 
incremental and shared match.  
But, rather than imposing Rete 
on factor graphs, the primary 
focus here has been on 
algorithms that arise more 
naturally from viewing 
production match as a 
multivariate function. 

Consider the rule in Figure 3.  This is not exactly Soar’s 
representation, although it does retain its object-attribute-
value scheme, with conditions testing wmes via constants 
and variables (in angle brackets).  The simplest mapping of 
this production to a factor graph views it as a Boolean 
function of the three production variables – P1(v0,v1,v2) – 
which, for each combination of variable values, yields 0 or 1 
depending on 
whether the 
combination defines 
a legal instantiation.   
The production’s 
conditions then 
specify how the 
function is to factor: 
P1(v0,v1,v2) = 
C0(v0,v1)C2(v1,v2) 
(Figure 4). 

This mapping has been implemented. In it, WM is a 3D 
Boolean array – objects  attributes  values – with 1s for 
every wme in WM and 0s elsewhere; and messages are 
Boolean vectors with 1s for valid bindings of the link’s 
variable and 0s elsewhere.  In essence, productions define 
graphs while WM defines distributions over graph variables. 

This initial approach showed the feasibility of 
implementing match via factor graphs, but it also raised 
three issues: (1) both WM and tests of constants were 
hidden within the condition factors; (2) production match 
ignored conditions without variables; and (3) it led to errors 
from binding confusion (Tambe & Rosenbloom, 1994).  
Solutions for these issues have been implemented, but as the 
first one didn’t affect correctness – only how much factor 
graphs were leveraged – and the second couldn’t actually 
occur in Soar because all of its conditions must be linked 
via variables, only the third issue is discussed here. 

Binding confusion arose because the graph independently 
tracked the legal bindings of each variable – called 
instantiationless match in (Tambe & Rosenbloom, 1994) – 
rather than maintaining Rete’s explicit combinations of 
condition instantiations.  Suppose (A ^type B), (C ^type D), 
(B ^color Red) and (D ^color Blue) are in working memory.  
The match bound v0 to A & C, v1 to B & D, and v2 to Red & 
Blue, but it couldn’t, for example, distinguish which color   
(v2) to associate with object A (v0), despite the fact that a 
correct match would mandate Red rather than Blue. 

This problem is a direct consequence of the interaction 
between two types of constraint imposed by factor graphs: 
(1) the locality of processing in the network; and (2) the 
limitation on message content to the values of one variable.  
Approaches to binding confusion must either work around 
these constraints to yield correct combinations or redefine 
match to live within them.  Correct combinations can be 
yielded, for example, by post-extraction (Dechter & Pearl, 
1987) or by implementing Rete.  If instead match is to be 
redefined to be what is produced, we must then determine 
how to write rules that yield the desired overall behavior 
given the new semantics.  This approach could also be 
further refined by replacing Boolean array values with 
apportioned fractional values for ambiguous bindings. 

The most promising approach at this point modestly 
redefines the semantics of match to produce the needed 
combinations of bindings for action variables, while still 
avoiding the need for Rete’s full instantiations.  In the 
process, it eliminates binding confusion, alters the worst-
case match cost for a production to exponential in its 
treewidth, and further reduces costs and potential confusion 
by eliminating redundant instantiations that would otherwise 
generate equivalent results (when some condition-variable 
bindings differ while action-variable bindings do not). 

This approach enables local processing of variable 
combinations by using variable nodes in the graph that 
represent combinations of production variables rather than 
individual ones. To start, an ordering is imposed on the 
production’s conditions and actions to yield a sequence of 
factor nodes.  A variable node is then added between each 

Figure 3. Example rule 

Figure 4. Example rule graph 
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successive pair of factor nodes. To finish, the first and last 
condition/action that uses each production variable is 
determined, and that variable is added to each variable node 
between these two factor nodes (Figure 5). The approach is 
based on stretching in factor graphs, which itself maps onto 
junction trees (Kschischang, Frey & Loeliger, 2001).  Its 
implementation eliminates binding confusion by tracking 
combinations of variable bindings just as they are needed. 

Since each 
variable node in 
the graph may 
now represent 
multiple 
production 
variables, multi-
dimensional 
arrays result that can be expensive to process without further 
optimization.  The most critical optimization here is factor 
rearrangement.  Without it, the full factor graph for the rule 
in Figure 3 – comprising 8 factor nodes and 8 variable 
nodes when all three problem solutions are included plus the 
goal memory to be described later – exhausts heap space 
before match completes (in LispWorks PE).  With factor 
rearrangement, match takes only 1.7 sec. 

A second critical optimization leverages the uniformity of 
WM and message arrays (which are almost all 0s or 1s) via 
an N-dimensional generalization of region quad/octrees (à 
la CPT-trees in Bayesian networks (Boutilier, Friedman, 
Goldszmidt & Koller, 1996)).  If an array is uniform, it 
becomes a single-valued unit.  Otherwise, each dimension is 
bisected – yielding 2N sub-arrays – and the process recurs. 
The sum and product algorithms are trickier here, but have 
been worked out.  With this optimization, match time is 
reduced by a further factor of ~7 (from 1.7 to .25 sec.).  It 
also enables comparing match cost without rearrangement, 
yielding a factor of ~500 (132 vs. .25 sec.). 

One interesting implication of representing WM via trees 
is a view of it as a piece-wise constant function.  If this 
proves extensible to piece-wise linear functions, it may be 
effective for variables with continuous domains and ranges 
(as used in mixed and hybrid systems).  It may also be 
possible to employ more intelligent partitioning algorithms 
for WM, including adaptive clustering methods. 

Conclusion and Next Steps 
Despite the increasing trend towards diversity in cognitive 

architectures, uniformity at the implementation level may 
yet provide leverage in exploring, understanding and 
improving existing architectures; and in developing novel 
architectures with increased elegance and broader coverage.  
Factor graphs, and graphical models more generally, are 
intriguing for this level because they yield a wide diversity 
of capabilities in a uniform and constrained manner. 

An initial step has been taken towards reimplementing 
Soar by factor graphs, with the demonstration of the latter’s 
ability to implement (symbolic) production match via an 
interesting new algorithm.  The key next step is extending 

beyond match to the rest of Soar’s cognitive inner loop – the 
deliberate layer (or decision cycle) – where elaboration 
cycles repeat until quiescence (the elaboration phase) 
followed by a decision.  One approach to the elaboration 
phase is to alter WM between cycles, as in standard 
production systems. This has been implemented, but a more 
promising alternative is to arrange the elaboration phase’s 
temporal structure in space rather than time, as a trellis. 
With a trellis, perceptual and motor processing may be 
integrated directly into the cognitive inner loop rather than 
being walled off into a separate I/O system.  A trellis would 
also enable bidirectional information propagation across the 
elaboration phase to ensure correct graphical probability 
calculations.  For the process of decision making itself, 
influence diagrams are a natural strategy to explore first. 

Beyond reimplementing Soar’s cognitive inner loop is the 
challenge of extending the loop to include a more uniform 
integration of Soar 9’s semantic and episodic memories, 
plus probability and signal processing.  The lead candidate 
for semantic memory blends Prolog’s view of facts as 
condition-less rules that are triggered backwards by a goal 
probe, with the statistical view of retrieving the most 
probable semantic memory element given the probe 
(Anderson, 1990).  A goal memory – in analogy to working 
memory – has been implemented to enable backwards 
access to production actions; but appropriate control of 
backwards vs. forward processing in the inner loop is still 
needed, as is restricting retrieval to the most probable 
element (based on MAP probabilities and the max-product 
algorithm).  For episodic memory, two approaches have 
potential: (1) adding long-term trellises to the graph; and (2) 
extending WM to a fourth, temporal dimension. 

Adding probabilities to the inner loop is being explored 
via experiments with extant mixed languages, such as 
Alchemy and BLOG (Rosenbloom, 2009).  Signal 
processing will be investigated via trellises and piecewise-
linear quad/octrees (for representing continuous functions). 

Still, this is all only the beginning.  It will also be critical 
to: (1) reimplement Soar’s reflective layer and learning 
mechanism(s); (2) implement and integrate in other 
cognitive capabilities, such as planning, emotion, social 
cognition and language; (3) reexamine the implementation 
of a broader range of architectures (such as ACT-R); and (4) 
forge a bridge to neural architectures.  Success should yield 
both a uniform implementation level for architecture 
development – i.e., a narrow waist for the cognitive 
hourglass – and better architectures for cognitive modeling. 
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