
Towards a New Cognitive Hourglass:
Uniform Implementation of Cognitive Architecture via Factor Graphs

Paul S. Rosenbloom (Rosenbloom@USC.Edu)

Department of Computer Science and Institute for Creative Technologies, 13274 Fiji Way
Marina del Rey, CA 90292 USA

Abstract

As cognitive architectures become ever more ambitious in the
range of phenomena they are to assist in producing and
modeling, there is increasing pressure for diversity in the
mechanisms they embody. Yet uniformity remains critical for
both elegance and extensibility. Here, the search for
uniformity is continued, but shifted downwards in the
cognitive hierarchy to the implementation level. Factor
graphs are explored as a promising core, with initial steps
towards a reimplementation of Soar. The ultimate aim is a
uniform implementation level for cognitive architectures
affording both heightened elegance and expanded coverage.

Keywords: Cognitive architecture; implementation level;
factor graphs; graphical models; production match; Soar

From Architecture to Implementation
A cognitive architecture is a hypothesis about the fixed
structures underlying thought in active intelligent beings,
whether natural or artificial. It consists of a set of
interacting mechanisms that can combine with appropriate
knowledge to model human intelligent behavior and/or
generate artificial intelligent behavior. In the large, a
cognitive architecture is a theory about one or more systems
levels comprising an intelligent being. Newell (1990)
discussed a hierarchy of levels (organelles, neurons, neural
circuits, deliberate acts, operations, etc.) across four bands
of human action: biological, cognitive, rational, and social.
At each level, a combination of structures and processes
implements the basic elements at the next higher level.

One controversial attribute of systems levels in cognitive
architecture is their girth; i.e., their uniformity versus
diversity. Diversity always exists across levels, but
individual levels may consist of anything from a small
number of very general elements to a wide diversity of more
specialized ones. Uniformity appeals to simplicity and
elegance. In caricature, it is the physicist’s approach, where
a broad diversity of phenomena emerges from interactions
among a small set of general elements. Diversity appeals to
specialization and optimization. It is the biologist’s
approach, in which many specialized structures, each locally
optimized, jointly yield a robust and coherent whole.

Across a hierarchy of levels, there is no a priori reason to
assume they are all of comparable girth. While physicists
and biologists may expect uniformity within their fields, the
networking community trumpets the Internet hourglass to
explain their protocol stack (Deering, 1998). At the
narrowed waist is the Internet Protocol (IP). Above is an
increasingly diverse sequence of levels enabling “everything

on IP”. Below is an increasingly diverse sequence of levels
enabling “IP on everything”. The hourglass yields a
diversity of applications and implementations that are united
via a core of mesoscale uniformity. Domingos’s (In press)
recent call for an interface layer in AI is an appeal for a
similar sort of mesoscale uniformity in AI.

Intelligence clearly entails diversity in the cognitive
hierarchy across levels, but what about within levels? At the
top, the extraordinary range of possible behaviors and
applications is one of the core phenomena cognitive
architectures are developed to explain. At the bottom, the
mind is grounded in the diverse biology of the brain and, at
least according to strong AI, could also be grounded in a
diversity of alternative technologies (with adjustments in
Newell’s lower levels for grounding in such technologies).
But is there an hourglass or a rectangle in between?

The question of the existence of a cognitive hourglass has
traditionally been cast in terms of whether the cognitive
architecture is uniform. Among architectures for cognitive
modeling, Soar (Rosenbloom, Laird & Newell, 1993) has
been a standard exemplar of uniformity and ACT-R
(Anderson, 1993) of diversity. Recently, based on both
functional and modeling considerations, Soar 9 (Laird,
2008) has shifted strongly towards diversity, and is helping
to tip the community balance in this direction.

As a scientist, one can respond to a demonstrated need for
diversity by simply accepting it, or by hypothesizing an
underlying uniformity and simplicity that explains it.
Anderson, for example, developed a background theory of
cognitive rationality to justify ACT-R’s mechanisms as
optimal adaptations to the environment (Anderson, 1990).
The theory’s uniformity is not in the architecture itself, but
does yield a simple, well-motivated explanation for it. Yet
something significant is lost when the uniformity is not in
the cognitive hierarchy, as diversity negatively impacts both
the elegance of the resulting system and the ease with which
new capabilities can be integrated into a unified whole.
Historically, diverse architectures have been tough to unify.
To the extent such a system remains disunified, it is more of
a toolkit or language than a hypothesis about the fixed
structures of thought (i.e., an architecture).

Another alternative is not simply to accept diversity, or
try to justify it, but to continue a search for uniformity – the
narrow waist of the hourglass – elsewhere in the cognitive
hierarchy. This is an application of the uniformity-first
research strategy (a variant of Ockham’s razor): begin by
assuming uniformity and accept diversity only upon
overwhelming evidence. To the extent uniformity is
possible, it yields elegance and facilitates unification and

116

extension. Beginning instead with diversity removes the
pressure to search for hidden commonality, and may lead
down an irrevocable path of complexity.

The history of Soar well illustrates the uniformity-first
strategy (Laird & Rosenbloom, 1996). For years it had a
single procedural, rule-based, long-term memory and a
single learning mechanism (Laird, Rosenbloom & Newell,
1986), while investigations continued into their ability to
support a diversity of memory (e.g., procedural, semantic,
and episodic (Rosenbloom, Newell & Laird, 1991)) and
learning (e.g., skill and knowledge acquisition,
generalization and transfer, and learning from observation
(Rosenbloom, 2006)) behaviors. A wide range of such
behaviors proved feasible, but they never could be fully
unified with the rest of the system to yield pervasive utility
across all activity. This evidence against the existing
uniformity, amassed over years of experimentation, inspired
the development of Soar 9, a diverse architecture that adds
new long-term memories (semantic and episodic) and
learning mechanisms (semantic, episodic and
reinforcement), while also incorporating other new
capabilities (emotion and imagery) (Laird, 2008).

Uniformity-first, however, entails that acknowledging a
need for diversity at the architecture level should be
accompanied by a continued search for uniformity at other
levels. In this article, the particular focus is on burrowing
beneath the diversity at the architecture level to look for
uniformity at the implementation level just below. The goal
is still an hourglass, albeit one with a lower waistline.

The implementation of cognitive architectures, while
critical for efficiency and usability, is usually extra-theoretic
and not part of the architectural hypothesis. Characteristic
examples include the COGENT (Cooper & Fox, 1998) and
Storm (Pearson, Gorski, Lewis & Laird, 2007)
environments for cognitive modeling/architectures, both of
which are coarse-grained, graphical tools intended to assist
the developer rather than theoretical hypotheses about the
implementation level. The primary exception is systems
like SAL (Jilk, Lebiere, O’Reilly & Anderson, 2008) or
Neuro-Soar (Cho, Dolan & Rosenbloom, 1991), where a
cognitive architecture is implemented via neural networks.
Neural approaches remain interesting possibilities for the
implementation level, but the focus here is on the related but
more general class of graphical models (Jordan, 2004).

Graphical models share the core graphical/network nature
of neural networks and graphical modeling environments,
but focus on representing independence across variables in
complex functions such as joint probability distributions and
communication codes. They include Bayesian networks
(Pearl, 1988) and Markov networks, with origins in
probabilistic reasoning. But they also include factor graphs
(Kschischang, Frey & Loeliger, 2001), which take a broader
multivariate-function view. Interestingly, a variety of neural
network algorithms – such as supervised Boltzmann
machines, radial basis functions, and unsupervised learning
algorithms – can be mapped onto graphical models (Jordan
& Sejnowski, 2001). A core premise of this article is that

graphical models provide untapped potential for cognitive
architectures. They may also ultimately forge a principled
bridge between neural and symbolic architectures.

The work in this article is based on factor graphs.
Although originating in coding theory, where they underlie
the “astonishing performance” of turbo codes, factor graphs
are particularly promising for cognitive architecture because
of the diversity of important problems and algorithms they
subsume in a uniform manner when combined with their
canonical sum-product algorithm. Factor graphs are
relevant for signal processing, where they are useful in
vision (Drost & Singer, 2003) and subsume Kalman filters,
the Viterbi algorithm, and the forward-backward algorithm
in hidden Markov models; probabilistic processing, where
they subsume belief propagation in Bayesian and Markov
networks; and symbol processing, where they yield arc
consistency for constraint problems (Dechter & Mateescu,
2003). There is also significant work on mixed approaches
combining symbolic and probabilistic processing, hybrid
approaches combining discrete and continuous processing,
and hybrid mixed approaches (Gogate & Dechter, 2005).

Factor graphs raise the possibility of a uniform
implementation level that elegantly explains the diversity
seen in existing cognitive architectures while going beyond
them to yield an effective and uniform basis for: unifying
cognition with perception and motor control, breaking down
the barriers between central and peripheral processing by
bringing the latter within the cognitive inner loop and
making each potentially penetrable by the other; fusing
symbolic and probabilistic reasoning to provide general
reasoning under uncertainty; and providing a conceptual
bridge from symbolic to neural architectures, by mapping
them onto a common intermediary. They provide a
tantalizing combination that is particularly appropriate at the
implementation level of: (1) generality, in the range of
capabilities they can uniformly support in a state-of-the-art
manner; and (2) constraint, in the ways that these
capabilities can reasonably be supported.

The remainder of this article introduces factor graphs,
begins exploring their utility for cognitive architectures via
a first step towards a graphical reimplementation of Soar,
and summarizes the path forward from here. The focus is
not on a specific cognitive model, but on the possibility of a
radically new generation of integrated cognitive models.

Factor Graphs
Factor graphs provide a form of divide and conquer with
nearly decomposable components for reducing the
combinatorics that arise with functions of multiple
variables. The function could be a joint probability
distribution over a set of random variables; e.g.,
P(V,W,X,Y,Z), which yields the probability of
V=v∧W=w∧X=x∧Y=y∧Z=z for every value v, w, x, y and z in
the variables’ domains. Or the function could represent a
constraint satisfaction problem, C(A,B,C,D), over a set of
variables, yielding 1 if a combination of values satisfies the
constraints and 0 otherwise. Or the function could represent

117

a discrete-time linear dynamical system, as might typically
be solved via a Kalman filter. The problem formulation
here would involve a trellis structure, where the graph for
one time step is repeated for each, with four variables per
time step – State, Input, Output and Noise (Kschischang,
Frey & Loeliger, 2001) – K(S0,I0,O0,N0,…, Sn,In,On,Nn).

The prototypical factor graph operation is the
computation of marginals on variables. For a joint
probability distribution, this is simply the marginal of a
random variable, computed by summing out the other
variables: P(Y) = Σv,w,x,zP(v,w,x,Y,z). The key to tractability
is avoiding the explicit examination of every element of the
cross product of the variables’ domains. For probabilities,
the joint distribution is decomposed into a product of
conditional (and prior) probabilities over subsets of
variables: P(V,W,X,Y,Z) = P(V)P(W)P(X|V,W)P(Y|X)P(Z|X).
Such decompositions derive from the chain rule plus
conditional independence assumptions. Using commutative
and distributive laws then enables more efficient marginal
computation: P(Y) = ΣxP(Y|x)ΣzP(z|x)ΣvP(v)ΣwP(x|v,w)P(w).
This provides
the basics of
Bayesian
networks
(Figure 1).

Factor
graphs
generalize this
to arbitrary
multivariate
functions; e.g., F(V,W,X,Y,Z) = F1(V,W,X)F2(X,Y,Z)F3(Z).
The function becomes a bipartite graph, with a variable
node for
each
variable, a
factor node
for each
function
use, and
undirected
links
between
factors and
their
variables
(Figure 2).

The core
inference
algorithm
for factor
graphs is
the sum-
product (aka summary-product or belief-propagation)
algorithm, which passes messages along links. A message
from a source node to a target node along a link summarizes
the source node’s information about the domain of the link’s
variable node. A message from a variable node to a factor

node is the pointwise product of the messages into the
variable from all of its neighbors except the target node. A
message from a factor node to a variable node starts with
this same product but also includes the factor node’s own
function in the product, with all variables other than the
target variable then being summed out to form the outgoing
message. A key optimization here, as in Bayesian networks,
is to use the commutative and distributive laws to
redistribute multiplicative factors outside of summations.

For tree-structured graphs in which only a single marginal
is desired, the factor graph can be reduced to an expression
tree in which the products and sums are computed
unidirectionally upwards in the tree. Beyond this simplest
case, the algorithm works iteratively by sending output
messages from nodes as they receive input messages. For
polytrees, which have at most one undirected path between
any two nodes, this iterative algorithm always terminates
and yields the correct answer. For arbitrary graphs with
loops, neither correct answers nor termination are
guaranteed. However, it does often work quite well in
practice, as has been most strikingly evident for turbo codes.

The sum-product algorithm uses two specific arithmetic
operations: sum and product. However, the same generic
algorithm works for any pair of operations forming a
commutative semi-ring, where: both operations are
associative and commutative and have identity elements;
and the distributive law exists. Max-product, for example,
is key to computing maximum a posteriori (MAP)
probabilities. OR-AND also works, as do other pairs.

To improve the efficiency of the algorithm, various
optimizations can be applied, and alternative algorithms can
be used (such as survey propagation (Mézard, Parisi &
Zecchina, 2002) and Monte Carlo sampling (Bonawitz,
2008)). A connection exists between factor graphs and
statistical mechanics, revealing that the sum-product
algorithm minimizes the Bethe free energy, and yielding
algorithmic innovations (Yedidia, Freeman & Weiss, 2005).

Factor Graphs for Cognitive Architecture
The key question for us is whether factor graphs can yield a
uniform level for implementing, understanding and
exploring cognitive architecture, while ultimately yielding
novel architectures that are more uniform, unified, and
functional. Existing work on hybrid mixed methods is
encouraging, as is work on general languages for mixed
probabilistic and logical reasoning. FACTORIE
(McCallum, Rohanemanesh, Wick, Schultz & Singh, 2008),
for example, combines factor graphs with an imperative
programming language to support relations and other
capabilities, while BLOG (Milch, Marthi, Russell, Sontag,
Ong & Kolobov, 2007) and Alchemy (Domingos, Kok,
Poon, Richardson & Singla, 2006) combine probability and
logic via Bayesian and Markov networks, respectively.

The particular approach advanced here is to: (1) re-
implement existing architectures to help understand factor
graphs, existing architectures, and the implications of
implementing architectures via factor graphs; (2) go beyond

Figure 2. Example factor graphs

Figure 1. Example Bayesian network

118

existing architectures by hybridization and simplification,
both within and across architectures; and (3) integrate in
new capabilities that don’t mesh well with existing
architectures, such as perception and motor control.

The initial focus is on Soar because of familiarity with it,
its history in cognitive modeling, and its dual status as both
a uniform (early) and a diverse (latest) architecture. We can
make a quick start on reimplementing the uniform core, and
build towards a more uniform integration of later diversity.

The inmost core of “uniform Soar” is the reactive layer,
where working memory (WM) is elaborated via associative
retrieval of relevant information from a parallel production
system. During a single elaboration cycle, match computes
all legal production instantiations, which then fire in parallel
to modify WM. Match is the core of the elaboration cycle,
so it is the natural focus for initial reimplementation efforts.

In Soar, match is based on Rete (Forgy, 1982), comprising
a discrimination network for sorting working memory
elements (wmes) to production conditions, a join network to
determine which combinations of wmes yield production
instantiations (while attending to across-condition variable
equality), and support for both incremental match across
cycles and shared match across productions. Most
individual productions match efficiently, although worst-
case match cost is exponential in the number of conditions.

A factor graph implementation of Rete has been designed,
where factor nodes handle discriminations and joins,
variable nodes represent wmes that match production
conditions and their combinations – analogous to Rete’s α
and β memories – and unidirectional message passing over
an expression tree enables
incremental and shared match.
But, rather than imposing Rete
on factor graphs, the primary
focus here has been on
algorithms that arise more
naturally from viewing
production match as a
multivariate function.

Consider the rule in Figure 3. This is not exactly Soar’s
representation, although it does retain its object-attribute-
value scheme, with conditions testing wmes via constants
and variables (in angle brackets). The simplest mapping of
this production to a factor graph views it as a Boolean
function of the three production variables – P1(v0,v1,v2) –
which, for each combination of variable values, yields 0 or 1
depending on
whether the
combination defines
a legal instantiation.
The production’s
conditions then
specify how the
function is to factor:
P1(v0,v1,v2) =
C0(v0,v1)C2(v1,v2)
(Figure 4).

This mapping has been implemented. In it, WM is a 3D
Boolean array – objects  attributes  values – with 1s for
every wme in WM and 0s elsewhere; and messages are
Boolean vectors with 1s for valid bindings of the link’s
variable and 0s elsewhere. In essence, productions define
graphs while WM defines distributions over graph variables.

This initial approach showed the feasibility of
implementing match via factor graphs, but it also raised
three issues: (1) both WM and tests of constants were
hidden within the condition factors; (2) production match
ignored conditions without variables; and (3) it led to errors
from binding confusion (Tambe & Rosenbloom, 1994).
Solutions for these issues have been implemented, but as the
first one didn’t affect correctness – only how much factor
graphs were leveraged – and the second couldn’t actually
occur in Soar because all of its conditions must be linked
via variables, only the third issue is discussed here.

Binding confusion arose because the graph independently
tracked the legal bindings of each variable – called
instantiationless match in (Tambe & Rosenbloom, 1994) –
rather than maintaining Rete’s explicit combinations of
condition instantiations. Suppose (A ^type B), (C ^type D),
(B ^color Red) and (D ^color Blue) are in working memory.
The match bound v0 to A & C, v1 to B & D, and v2 to Red &
Blue, but it couldn’t, for example, distinguish which color
(v2) to associate with object A (v0), despite the fact that a
correct match would mandate Red rather than Blue.

This problem is a direct consequence of the interaction
between two types of constraint imposed by factor graphs:
(1) the locality of processing in the network; and (2) the
limitation on message content to the values of one variable.
Approaches to binding confusion must either work around
these constraints to yield correct combinations or redefine
match to live within them. Correct combinations can be
yielded, for example, by post-extraction (Dechter & Pearl,
1987) or by implementing Rete. If instead match is to be
redefined to be what is produced, we must then determine
how to write rules that yield the desired overall behavior
given the new semantics. This approach could also be
further refined by replacing Boolean array values with
apportioned fractional values for ambiguous bindings.

The most promising approach at this point modestly
redefines the semantics of match to produce the needed
combinations of bindings for action variables, while still
avoiding the need for Rete’s full instantiations. In the
process, it eliminates binding confusion, alters the worst-
case match cost for a production to exponential in its
treewidth, and further reduces costs and potential confusion
by eliminating redundant instantiations that would otherwise
generate equivalent results (when some condition-variable
bindings differ while action-variable bindings do not).

This approach enables local processing of variable
combinations by using variable nodes in the graph that
represent combinations of production variables rather than
individual ones. To start, an ordering is imposed on the
production’s conditions and actions to yield a sequence of
factor nodes. A variable node is then added between each

Figure 3. Example rule

Figure 4. Example rule graph

119

successive pair of factor nodes. To finish, the first and last
condition/action that uses each production variable is
determined, and that variable is added to each variable node
between these two factor nodes (Figure 5). The approach is
based on stretching in factor graphs, which itself maps onto
junction trees (Kschischang, Frey & Loeliger, 2001). Its
implementation eliminates binding confusion by tracking
combinations of variable bindings just as they are needed.

Since each
variable node in
the graph may
now represent
multiple
production
variables, multi-
dimensional
arrays result that can be expensive to process without further
optimization. The most critical optimization here is factor
rearrangement. Without it, the full factor graph for the rule
in Figure 3 – comprising 8 factor nodes and 8 variable
nodes when all three problem solutions are included plus the
goal memory to be described later – exhausts heap space
before match completes (in LispWorks PE). With factor
rearrangement, match takes only 1.7 sec.

A second critical optimization leverages the uniformity of
WM and message arrays (which are almost all 0s or 1s) via
an N-dimensional generalization of region quad/octrees (à
la CPT-trees in Bayesian networks (Boutilier, Friedman,
Goldszmidt & Koller, 1996)). If an array is uniform, it
becomes a single-valued unit. Otherwise, each dimension is
bisected – yielding 2N sub-arrays – and the process recurs.
The sum and product algorithms are trickier here, but have
been worked out. With this optimization, match time is
reduced by a further factor of ~7 (from 1.7 to .25 sec.). It
also enables comparing match cost without rearrangement,
yielding a factor of ~500 (132 vs. .25 sec.).

One interesting implication of representing WM via trees
is a view of it as a piece-wise constant function. If this
proves extensible to piece-wise linear functions, it may be
effective for variables with continuous domains and ranges
(as used in mixed and hybrid systems). It may also be
possible to employ more intelligent partitioning algorithms
for WM, including adaptive clustering methods.

Conclusion and Next Steps
Despite the increasing trend towards diversity in cognitive

architectures, uniformity at the implementation level may
yet provide leverage in exploring, understanding and
improving existing architectures; and in developing novel
architectures with increased elegance and broader coverage.
Factor graphs, and graphical models more generally, are
intriguing for this level because they yield a wide diversity
of capabilities in a uniform and constrained manner.

An initial step has been taken towards reimplementing
Soar by factor graphs, with the demonstration of the latter’s
ability to implement (symbolic) production match via an
interesting new algorithm. The key next step is extending

beyond match to the rest of Soar’s cognitive inner loop – the
deliberate layer (or decision cycle) – where elaboration
cycles repeat until quiescence (the elaboration phase)
followed by a decision. One approach to the elaboration
phase is to alter WM between cycles, as in standard
production systems. This has been implemented, but a more
promising alternative is to arrange the elaboration phase’s
temporal structure in space rather than time, as a trellis.
With a trellis, perceptual and motor processing may be
integrated directly into the cognitive inner loop rather than
being walled off into a separate I/O system. A trellis would
also enable bidirectional information propagation across the
elaboration phase to ensure correct graphical probability
calculations. For the process of decision making itself,
influence diagrams are a natural strategy to explore first.

Beyond reimplementing Soar’s cognitive inner loop is the
challenge of extending the loop to include a more uniform
integration of Soar 9’s semantic and episodic memories,
plus probability and signal processing. The lead candidate
for semantic memory blends Prolog’s view of facts as
condition-less rules that are triggered backwards by a goal
probe, with the statistical view of retrieving the most
probable semantic memory element given the probe
(Anderson, 1990). A goal memory – in analogy to working
memory – has been implemented to enable backwards
access to production actions; but appropriate control of
backwards vs. forward processing in the inner loop is still
needed, as is restricting retrieval to the most probable
element (based on MAP probabilities and the max-product
algorithm). For episodic memory, two approaches have
potential: (1) adding long-term trellises to the graph; and (2)
extending WM to a fourth, temporal dimension.

Adding probabilities to the inner loop is being explored
via experiments with extant mixed languages, such as
Alchemy and BLOG (Rosenbloom, 2009). Signal
processing will be investigated via trellises and piecewise-
linear quad/octrees (for representing continuous functions).

Still, this is all only the beginning. It will also be critical
to: (1) reimplement Soar’s reflective layer and learning
mechanism(s); (2) implement and integrate in other
cognitive capabilities, such as planning, emotion, social
cognition and language; (3) reexamine the implementation
of a broader range of architectures (such as ACT-R); and (4)
forge a bridge to neural architectures. Success should yield
both a uniform implementation level for architecture
development – i.e., a narrow waist for the cognitive
hourglass – and better architectures for cognitive modeling.

Acknowledgments
This effort was made possible by sabbatical support from
the USC Viterbi School of Engineering plus funding from
the Institute for Creative Technologies (ICT). ICT’s
Cognitive Architecture Working Group has been invaluable
for semi-public exploration of these ideas. (Kschischang et
al., 2001) first attracted my attention to factor graphs and is
the basis for much of the general material here on them.

Figure 5. Modified rule graph

120

References

Anderson, J. R. (1990). The Adaptive Character of
Thought. Hillsdale, NJ: Erlbaum.

Anderson, J. R. (1993). Rules of the Mind. Erlbaum.
Bonawitz., K. A. (2008) Composable Probabilistic

Inference with Blaise. Doctoral Dissertation, Department
of EECS, MIT, Cambridge, MA.

Boutilier, C., Friedman, N., Goldszmidt, M. & Koller, D.
(1996). Context-specific independence in Bayesian
networks. Proceedings of the Twelfth Conference on
Uncertainty in AI (pp. 115-123). Morgan Kaufman.

Cho, B., Rosenbloom, P. S. & Dolan, C. P. (1991). Neuro-
Soar: A neural-network architecture for goal-oriented
behavior. Proceedings of the 13th Annual Conference of
the Cognitive Science Society (pp. 673-677). Erlbaum.

Cooper, R. & Fox, J. (1998). COGENT: A visual design
environment for cognitive modeling. Behavior Research
Methods, Instruments & Computers, 30, 553-564.

Dechter, R. & Mateescu, R. (2003). A simple insight into
iterative belief propagation’s success. Proceedings of The
Nineteenth Conference on Uncertainty in Artificial
Intelligence (pp. 175-183). Morgan Kaufman.

Dechter, R. & Pearl, J. (1987). Network-based heuristics
for constraint-satisfaction problems. Artificial
Intelligence, 34, 1-38.

Deering, S. (1988). Watching the waist of the protocol
hourglass, Keynote address at ICNP '98.

Domingos, P. (In press). What is missing in AI: The
interface layer. In P. Cohen (Ed.), Artificial Intelligence:
The First Hundred Years. Menlo Park, CA: AAAI Press.

Domingos, P., Kok, S., Poon, H., Richardson, M. & Singla,
P. (2006). Unifying logical and statistical AI. Proceedings
of the Twenty-First National Conference on Artificial
Intelligence (pp. 2-7). AAAI Press.

Drost, R. J. & Singer. A. W. (2003). Image segmentation
using factor graphs. Proceedings of the 2003 IEEE
Workshop on Statistical Signal Processing (pp. 150-153).

Forgy, C. L. (1982). Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem. Artificial
Intelligence, 19, 17-37.

Gogate, V. & Dechter, R. (2005). Approximate Inference
Algorithms for Hybrid Bayesian Networks with Discrete
Constraints. Proceedings of the 21st Conference on
Uncertainty in Artificial Intelligence (pp. 209-216).

Jilk, D. J., Lebiere, C., O'Reilly, R. C. & Anderson, J. R.
(2008). SAL: An explicitly pluralistic cognitive
architecture. Journal of Experimental and Theoretical
Artificial Intelligence, 20, 197-218.

Jordan, M. I. (2004). Graphical models. Statistical Science
(Special Issue on Bayesian Statistics), 19, 140-155.

Jordan, M. I. & Sejnowski, T. J. (2001). Graphical Models:
Foundations of Neural Computation. MIT Press.

Kschischang, F. R., Frey, B. J. & Loeliger, H. (2001).
Factor graphs and the sum-product algorithm. IEEE
Transactions on Information Theory, 47, 498-519.

Laird, J. E. (2008). Extending the Soar cognitive
architecture. In Artificial General Intelligence 2008:
Proceedings of the First AGI Conference. IOS Press.

Laird, J. E. & Rosenbloom, P. S. (1986). Chunking in Soar:
The anatomy of a general learning mechanism. Machine
Learning, 1, 11-46.

Laird, J. E. & Rosenbloom, P. S. (1996). The evolution of
the Soar cognitive architecture. In D. M. Steier. and T. M.
Mitchell (Eds.), Mind Matters: A Tribute to Allen Newell.
Mahwah, NJ: Erlbaum.

McCallum, A., Rohanemanesh, K., Wick, M., Schultz, K. &
Singh, S. (2008). FACTORIE: Efficient probabilistic
programming via imperative declarations of structure,
inference and learning. Proceedings of the NIPS
workshop on Probabilistic Programming.

Mézard, M., Parisi, G. & Zecchina, R. (2002). Analytic and
algorithmic solution of random satisfiability problems.
Science, 297, 812-815.

Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D. L. &
Kolobov, A. (2007). BLOG: Probabilistic models with
unknown objects. In L. Getoor and B. Taskar, (Eds.)
Introduction to Statistical Relational Learning.
Cambridge, MA: MIT Press.

Newell, A. (1990). Unified Theories of Cognition.
Cambridge, MA: Harvard University Press.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. San Mateo,
CA: Morgan Kaufman,

Pearson, D. J., Gorski, N. A., Lewis, R. L. & Laird, J. E.
(2007). Storm: A framework for biologically-inspired
cognitive architecture research. In Proceedings of the 8th
International Conference on Cognitive Modeling.

Rosenbloom, P. S. (2006). A cognitive odyssey: From the
power law of practice to a general learning mechanism
and beyond. Tutorials in Quantitative Methods for
Psychology, 2, 43-51.

Rosenbloom, P. S. (2009). A graphical rethinking of the
cognitive inner loop. In Proceedings of the IJCAI
International Workshop on Graph Structures for
Knowledge Representation and Reasoning.

Rosenbloom, P. S., Laird, J. E. & Newell, A. (1993). The
Soar Papers: Research on Integrated Intelligence.
Cambridge, MA: MIT Press.

Rosenbloom, P. S., Newell, A. & Laird, J. E. (1991).
Towards the knowledge level in Soar: The role of the
architecture in the use of knowledge. In K. VanLehn
(Ed.), Architectures for Intelligence. Erlbaum.

Tambe, M. & Rosenbloom, P. S. (1994). Investigating
production system representations for non-combinatorial
match. Artificial Intelligence, 68, 155-199.

Yedidia, J. S., Freeman, W. T. & Weiss, Y. (2005).
Constructing free-energy approximations and generalized
belief propagation algorithms. IEEE Transactions on
Information Theory, 51, 2282-2312.

121

