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Abstract

We propose a computational model of human navigation,
which encompasses both geometry-based and landmark-based
navigation strategies. This model is based on a study of hu-
man cognitive strategies during a path memorization task in
a Virtual Reality (VR) experiment. Participants were asked
to memorize predefined paths in a large-scale virtual city
(COSMOpoliS c©). Our computational model qualitatively re-
produces the results of this experiment. This model uses the
Bayesian formalism, and focuses on the interplay between the
elementary cognitive strategies hypothesized above. It offers
an original interpretation of the way these strategies might be
articulated, departing from the classical hierarchical structure.
This novel view might be fruitful for robotic models from a
biomimetic perspective, where managing representations of
large-scale and complex environments is still a challenge.

Keywords: Bayesian modeling; human navigation; navigation
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We discuss here the results of an experiment, in which we
have explored the existence of elementary cognitive strategies
used for spatial encoding in humans. We have found that,
while navigation mainly relies on landmark recognition and
encoding for path memorization, the sudden disappearance of
these brings in light a back-up mechanism strategy enabling
the participants to navigate, although with less accuracy, us-
ing geometrical cues alone. These are the first evidence of
equivalent components between humans and animals in this
context.

In models of navigation, these observations of “back-up”
mechanisms usually lead to modeling independent subsys-
tems of navigation, and portraying them as hierarchically
articulated. We believe this view of independent subsys-
tems being hierarchically articulated to be simplistic, as it
merely pushes back the problem of understanding how dif-
ferent sources of information are integrated in the central ner-
vous system.

In this paper, we propose a probabilistic model that tack-
les this problem in an original manner. We develop a model
of navigation, which, although composed of a single com-
ponent, can mimic both landmark-based and geometry-based
navigation strategies. Bayesian inference is the principle,
which enables this single representation of the environment
to give rise to several navigation strategies. The overall be-
havior of our model is dictated by the availability of sensory
cues. When there are no uncertainties about the sensed land-
marks, our model performs as landmark based navigation. On

Figure 1: Top-view of the virtual city and archetypal errors
observed in the condition where landmarks are removed be-
tween memorization and reproduction. In light gray (green),
the learned paths. In black (blue to red), the reproduced paths
by the participant. For example, in the top-right panel, note
how the central building was passed from the right in the
learned path, and from the left in the participant’s reproduc-
tion.

the other hand, when landmarks are not sensed, the model
performs as geometry based navigation. In the following, the
term “navigator” will refer to a simulated, imaginary partici-
pant that would navigate in our virtual city according to our
mathematical model.

The model qualitatively reproduces patterns of errors we
observed in the COSMOpoliS c© experiment. In this exper-
iment, humans participants were immersed in a VR city us-
ing a VR helmet. They could navigate using a joystick for
forward translations, and turn their body in the real world
for virtual rotations (with a magnetic tracker set on the VR
helmet). Participants were presented a movie of a trajectory,
and were asked to memorize it (memorization phase). Af-
ter seeing the movie twice, they were set in the starting end
of the path and asked to reach its end, actively (reproduction
phase). Landmarks (posters on walls, lampposts, etc.) were
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disposed in the city. Experimental conditions were defined
by the availability of the landmarks in both the memorization
and reproduction phase. We focus here in two conditions:
in the Landmark condition, landmarks were available both in
memorization and reproduction. In the Probe Trial condition,
landmarks were removed between memorization and repro-
duction.

The data showed that all participants were able to success-
fully reach a goal in a virtual city in the Landmark condi-
tion. Data also showed that the goal was also reached when
landmarks were removed between memorization and repro-
duction (Probe Trial). However, in that case, patterns of error
could be observed quite frequently in the paths that partici-
pants made in order to reach the goal (see Fig. 1). Partici-
pants quite commonly reached the goal using a variant of the
memorized path, passing buildings from the wrong side, for
instance. Surprisingly, very few participants were actually
conscious of these discrepancies.

The rest of this paper is structured as follows. Firstly, we
briefly review the related work on hierarchical modeling of
human, animal or robotic navigation. We then present the
Bayesian model we developed in order to have our simulated
navigator reproduce this pattern of error: we first introduce
our simplifying assumptions, then define the model and de-
scribe its simulation. Finally, we discuss the interpretation of
our model as was defined, as well as of the relevance of our
simplifying assumptions. The paper concludes on a discus-
sion on the way our assumptions could be relaxed, yielding
perspectives on the future work.

Related modeling works
Both life sciences and robotics have made the modeling of
navigation capabilities of autonomous entities a crucial point
of research, and a wide variety of models already exists. We
focus here on hierarchical models of navigation.

In the domain of mobile robotics, modeling the environ-
ment that a robot has to face, usually in the form of a map,
is a crucial problem. The most promising approaches rely
on the probability calculus, thanks to its capacity for han-
dling incomplete models and uncertain information. These
approaches include – but are far from limited to – Kalman
Filters, Markov Localization models, (Partially and Fully)
Observable Markov Decision Processes (POMDP and MDP),
and Hidden Markov Models (see (Diard, Bessière, & Mazer,
2003) for a general introduction).

In this domain of probabilistic modeling for robotics, hi-
erarchical solutions are currently flourishing. The more ac-
tive domain in this regard is decision theoretic planning: one
can find variants of MDPs that select automatically the parti-
tion of the statespace (see for instance (Hauskrecht, Meuleau,
Kaelbling, Dean, & Boutilier, 1998)). Another class of ap-
proaches that rely on deterministic notions is based on the
extraction of a graph from a probabilistic model, like for ex-
ample a Markov Localization model (Thrun, 1998), or a MDP
(Lane & Kaelbling, 2002).

However, the main philosophy used by these hierarchical
approaches is to try to extract, from a very complex but in-
tractable model, a hierarchy of smaller models Automatically
selecting the right decomposition is of course a very difficult
problem. Moreover, even obtaining in the first place the ini-
tial, complex model, is still a difficult challenge in the general
case.

From a bio-mimetic perspective, it appears obvious that a
global, complex, large-scale model is not the starting point
of the acquisition of representations of space (B. J. Kuipers,
2000). Therefore, some robotic approaches, integrating in-
sights from biology, rather start from low-level behaviors and
representations, and then try to combine them so as to ob-
tain large-scale representations (Diard & Bessière, 2008; B. J.
Kuipers, 2000; B. Kuipers, Modayil, Beeson, MacMahon, &
Savelli, 2004; Victorino & Rives, 2004). Indeed, the study of
navigation capabilities in life sciences assumes right from the
start of its analysis that navigation is hierarchical in nature, as
can be easily assessed experimentally (Voicu, 2003).

The hierarchies of models proposed in some of these works
(Trullier, Wiener, Berthoz, & Meyer, 1997; Franz & Mal-
lot, 2000; B. J. Kuipers, 2000; B. Kuipers et al., 2004) have
several aspects: they are hierarchies of increasing navigation
skills, but also of increasing scale of the represented environ-
ment, of increasing time scale of the associated movements,
and of increasing complexity of representations. This last as-
pect means that global topologic representations, which are
simple, come at a lower level than global metric representa-
tions, which are arguably more complex to build and manip-
ulate. This ordering stems from the general observation that
animals that are able to use shortcuts and detours between
two arbitrary encoded places (skills that require global metric
models) are rather complex animals, like mammalians. These
skills seem to be mostly absent from simpler animals, like in-
vertebrates.

Works by Jacobs and Schenk go a step further, by propos-
ing the Parallel Map Theory (PMT) (Jacobs & Schenk, 2003),
in which a study of phylogenetically equivalent neuroanatom-
ical areas across different species helps hypothesize common
hierarchies of representations of space. In other words, they
propose a model of how the different layers in the above the-
ories might be implemented in the central nervous system.

Finally, Wang and Spelke (Wang & Spelke, 2002) assume
three subsystems, two of which being a path integration (PI)
and a view dependent place recognition system. These two,
in the context of the current paper, can be seen as analogous
of what we will denote as the environment geometry-based
and landmark-based navigation systems, respectively.

However, to the best of our knowledge, the question of
how different subsystems of a hierarchy of models can ex-
change information in a principled manner is still an open
issue. In other words, most existing models of animal nav-
igation describe hierarchies by identifying individual layers,
but do not tackle the problem of how these layers are linked.
They usually assume that a supervisor subsystem is respon-
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sible for selecting the interaction between individual compo-
nents, but rarely describe the way this supervisor could work,
or even discuss its plausibility (e.g. the reference frame selec-
tion subsystem of Redish & Touretzky (Redish & Touretzky,
1997)).

Our model precisely proposes an original articulation be-
tween a representation of a memorized path and resulting
strategies of navigation.

Model
In this section, we develop a Bayesian model, which qualita-
tively reproduces the observed patterns of errors (see Fig. 1).
Being preliminary, our model requires several simplifying as-
sumptions that we describe first. We then describe how, given
these assumptions, this single model is defined and used in
order to simulate the navigator in the virtual city in both the
Landmark and Probe Trial conditions. We finally discuss the
similarity between the simulation and experimental data.

Simplifying assumptions
Our model requires two major assumptions: the first concerns
the identification of orientations by the navigator; the second
concerns the identification of landmarks.

Firstly, we assume that the navigator uses a global refer-
ence frame for orientations. This means that an estimate of
the navigator’s bearing with respect to some origin is avail-
able at every moment. Given this estimate, the navigator
knows which direction it is currently going. This helps it
classify elementary displacements according to the direction
followed. This implies a separation between the estimation of
orientations and the estimation of positions. Neuroanatomi-
cally, such a separation appears to be plausible: estimations of
orientations might be grounded in head-direction cells (Stack-
man & Taube, 1997; Taube, 1998); estimations of positions
might be grounded in place cells (Redish & Touretzky, 1997).
However, to the best of our knowledge, such a separation
is rarely present in robotic models, where, usually, the pose
x,y,θ of the robot is considered, with similar mathematical
treatment for position x,y and orientation θ.

In order to be used, this orientation reference frame does
not need global sensory cues. Indeed, instead of being based
on some external cue, the origin could be based on the starting
orientation of the navigator (Berthoz et al., 1999).

We further assume that this global reference in orientation
does not drift during the navigation of the path. Indeed, in
COSMOpoliS c© and in our simulation, all angles between
streets are 90 ◦ angles, thus reducing risks of disorientation
(drifting of the orientation reference frame). With these as-
sumptions, in our model, we only need four possible orien-
tations for the global reference frame. In the following, we
denote “up” the starting direction, “down” the opposed direc-
tion, and “left” and “right” the two remaining directions.

Secondly, we assume that landmarks in the virtual city
are all unique and easily recognizable. We assume they are
placed at the intersections or decision points, as it has been

shown that the relevance of a landmark to solving naviga-
tion tasks is explicitly encoded in the central nervous system
(Janzen & Turennout, 2004). We further assume that land-
marks can be used to recognize all intersections in the city
without errors. These assumptions allow the model to include
certainties (probabilities of 1) about the landmark and their
recognition, when they are available.

Model definition

We now define a two-variable model.
The first variable, denoted Lt , is the location at time t, i.e.

the intersection the navigator is in, as defined by the land-
mark appearing at this intersection. Assuming n different
landmarks and intersections in the virtual city, l1, l2, . . . , ln,
we thus define: Lt = {l1, l2, . . . , ln}. The second variable,
denoted A, is the direction that should be followed at in-
tersection lt . According to our assumptions concerning the
global orientation reference frame, we define A by A =
{up, left,down, right}.

We thus define the joint distribution:

P(A,Lt) = P(Lt)P(A | Lt),

by applying Bayes rule. The first term, P(Lt), is the likeli-
hood to be in some intersection. We define this term by a
uniform probability distribution: P(Lt = lt) = 1/n. The sec-
ond term, P(A | Lt), represents probability distributions over
directions to follow, given the identity of the intersection the
navigator currently is at. We define this term by Conditional
Probability Tables (CPT). We assume the navigator identifies
these CPTs during the path memorization phase of the exper-
iment. In other words, during path presentation, the naviga-
tor counts the number of times it went “up”, “down”, “left”
and “right”, and builds the CPTs that reflect these frequen-
cies. The CPTs follow Laplace succession law distributions,
which are similar to histograms, except that probabilities for
unobserved cases are never zero 1.

There is one such CPT for each landmark seen along
the memorized path. As we have assumed all landmarks
to be unique, and assuming that the paths never pass
twice in the same intersection (which is the case in the
COSMOpoliS c© experiment), these learned distributions are
all of the same type: the probability is close to 1 for the actual
direction followed along the path, and close to 0 for the three
directions not followed.

1Laplace succession law probability distributions merge a prior
distribution with observed data. The formula is P(A = i | Lt = lt) =
ni+w
N+kw , with ni the number of times a particular case i has been ob-
served, N the total number of observations, k the size of the domain
of the variable, and w a parameter which tunes the speed at which
the initial uniform distribution is modified as the observations are
collected. A Laplace succession law converges toward a histogram
when the number of observations N is large. Assessing a biologi-
cally plausible weight w is an open question (out of the scope of this
paper and experiment).
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Model usage
Having learned the CPTs during the path presentations, the
model is now fully defined. The joint distribution P(A,Lt) is
available to the navigator, and we describe here how it can be
used to drive the navigator during the path reproduction, in
the Landmark and Probe Trial conditions.

In both cases, the navigator must decide, at each intersec-
tion, the direction to follow in order to accurately reproduce
the path it memorized. In the Landmark condition, inter-
sections can be identified during the learning phase as well
as during the reproduction phase. Therefore, when arriving
at an intersection, the value lt of the current intersection is
available, and can be used to select the relevant probability
distribution over actions P(A | Lt = lt). Once this distribution
is selected, choosing the action with the highest probability
value will lead the navigator along the memorized path, with-
out errors.

Alternatively, the navigator can draw at random according
to the memorized probability distribution. In this case, errors
in the reproduction could occur, their frequency depending on
the parameter w chosen for learning CPTs.

In the Probe Trial condition, landmarks are not available
in the city anymore in the reproduction. Therefore, when ar-
riving at an intersection, it is not possible for the navigator
to know the value of lt . However, using Bayesian inference,
P(A) can be computed: it is the probability distribution over
actions to take at each intersection, without knowing the in-
tersection identity. The computation is as follows:

P(A) = ∑
Lt

P(A,Lt) ∝ ∑
Lt

P(A | Lt).

This computation yields the best estimate available to the
navigator in order to choose what direction to go at each inter-
section during the reproduction. Drawing at random accord-
ing to P(A) allows the navigator to reproduce the memorized
path in the best manner, given the absence of visual cues.

Model simulation
We have simulated the model in an idealized version of the
VR city, abstracting ourselves from issues related to the small
scale of the VR city COSMOpoliS c©. We call this ideal, sim-
ulated city EQUApoliS. EQUApoliS is a regular, infinite grid
of square blocks, with simulated unique landmarks at each
intersection.

We defined a path to be learned and reproduced (narrow
black path in Fig. 2). When the navigator memorizes this
path, it learns by observation CPTs, one for each intersection.
One such CPT is shown Fig. 3.

In the Landmark condition, the memorized path is accu-
rately reproduced. Indeed, recall that the CPTs in this con-
dition can be read so as to provide, at each intersection, a
probability distribution over actions that clearly encodes the
direction that was followed during path memorization. There-
fore the navigator is driven along a path which is an exact
reproduction of the memorized path.

Figure 2: Typical trajectories obtained by the simulated navi-
gator in the Probe Trial condition. In narrow black, the mem-
orized path, in bold black, the simulated reproduced path.
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Figure 3: The CPT learned for the term P(A | Lt = 4): this is
the probability distribution for the fourth intersection of the
memorized path (see Fig. 2). At this intersection, the navi-
gator observed twice a movement to the right. This yields a
high probability value of going right (0.875, assuming w is
set to 0.1).

In the Probe Trial condition, however, landmarks are not
available anymore, and P(A) must be computed. In this ex-
ample, this leads to the probability distribution shown Fig. 4.
As the path contains 12 moves in the same direction as the ini-
tial orientation (we note this direction “up”), 7 moves to the
“right”, 1 move “down”, and 1 move to the “left”, the com-
putation for the term P(A) in the Probe Trial gives the prob-
ability distribution shown. At each intersection, we draw at
random according to P(A), until 21 displacements have been
made: Fig. 2 shows typical trajectories obtained in this man-
ner (bold trajectories).

Discussion
Interpretation of the proposed model
The simulation results illustrate that the proposed computa-
tion of the P(A) distribution can be interpreted as a “path
integration” component, both in an intuitive sense and in a
mathematical sense.

In an intuitive sense, the probability distribution over ac-
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Figure 4: The CPT computed for the term P(A) in the Probe
Trial simulation.

tions drives the navigator toward the goal in the correct gen-
eral direction. Indeed, P(A) as computed can be interpreted as
an estimation of the angle from the starting orientation to the
goal. For instance, the distribution shown Fig. 4 encodes the
knowledge that, to reach the goal, the navigator must mainly
go “up” and “right”, and it also encodes the relative propor-
tions of these elementary displacements. P(A), seen is this
manner, not only encodes an estimate of the bearing of the
goal, it also encodes the accuracy or reliability of that esti-
mate, by the spread or uncertainty of the obtained probability
distribution.

Let us now recall the mathematical sense of a path inte-
grator. Let ~p(t) be the path, i.e. the sequence of elementary
displacement vectors at time t,0 ≤ t ≤ T . The vector ~V (t)
representing the global displacement from the initial time 0
to time T is then given by:

~V (t) =
Z T

0
~p(t).

In our formulation, time is not continuous, but discretized
using events which are the passage at intersections. This ex-
plains the use of a discrete summation over intersections Lt
instead of a continuous integral over time. Moreover, we
assume the elementary displacements are not known deter-
ministically, as in ~p(t), but are encoded using the probabil-
ity distributions P(A | Lt). Therefore, the equation P(A) ∝

∑Lt P(A | Lt) can be interpreted as a Bayesian, discrete ver-
sion of a path integration mechanism.

The simulation shows that our model qualitatively repro-
duces the patterns of errors made by participants in the Probe
Trial. Indeed, in the simulated Probe Trial path reproduc-
tion (Fig. 2), we observe that, even though the navigator is
driven in the general direction of the goal, the order in which
the elementary displacements were performed in the learned
path are completely forgotten. This is a direct consequence
of the way the probability distribution P(A) is computed.
In ∑Lt P(A | Lt), the summation can exactly be interpreted
as an aggregation of all observed displacements. In other
words, the sequencing of displacements, which is present in
P(A | Lt), is not present anymore in P(A).

The model structure proposes an original hypothesis con-
cerning the interplay between the landmark-based cognitive

strategy and the path integration strategy for spatial navi-
gation. Whereas, in the literature, they are commonly pic-
tured as independent mechanisms hierarchically articulated
by a main system / back-up system relationship, in our
model, there is only one navigation system. When all sen-
sory information are available, this system corresponds to the
landmark-based navigation; when some sensory inputs are
missing, the same system can operate in a degraded mode,
and then exhibits properties of a path integration mechanism.

Relaxing our assumptions: towards experimental
predictions and new protocols
We now discuss the relevance of the simplifying assumptions
required by our model, which leads us to its possible exten-
sions and the experimental predictions it can provide.

We have assumed, in the model, that all landmarks could be
identified with no errors. In a real world navigation scenario,
it is of course highly improbable that visual landmarks are
never ambiguous. In the COSMOpoliS c© experiment, land-
marks were unique along the trajectory. However, the study
of the way places and intersections are identified is a complete
domain of investigation in itself. The goal is to distinguish
the intersection identity Lt from the perceived sensory cues
at that intersection P1, . . . ,Pk. For instance, landmarks are
not the only cues that can be used to identify intersections,
as configurations of landmarks could play a role (Mallot &
Gillner, 2000), and geometrical configurations of the inter-
section itself (T-shaped, X-shaped) is probably also encoded
(Stankiewicz & Kalia, 2007). In our model, we have assumed
that the intersection identity Lt to be readily available; in prac-
tice, it could be estimated according to P(Lt | P1, . . . ,Pk). De-
termining the perceptual components P1, . . . ,Pk and the struc-
ture of this perceptual model is subject of future work.

Another major simplification in our model is the lack of
temporal dependency between intersections. Indeed, it is
highly probable that pairs 〈Lt ,Lt+1〉 of landmarks perceived
in sequence, or even higher order sequences 〈Lt , . . . ,Lt+m〉
are used for memorizing paths. Sequences of actions might
also serve as large-scale cues for memorizing the paths. This
could be incorporated in m-order Markov models of the form
P(Lt , . . . ,Lt+m,At , . . . ,At+m). It might be interesting to use
future experimental data in order to estimate m, i.e., the length
of the sequences of sensory and motor cues used for path
memorizing.

Finally, we wish to discuss the way we generate simulated
paths with the model. Indeed, so far, we have assumed the
navigation could use probability distributions over actions,
and draw at random, at each intersection, directions to fol-
low. In the current simulation, no memory whatsoever is in-
cluded in this process. In other words, our simulated navi-
gator would not be able to know if it was “unlucky” in its
progress, and was deviating away from the memorized orien-
tation to the goal. However, it appears obvious that human
navigators would update their estimation of the orientation
to the goal as they progress towards it. Mathematically, it
would be straightforward to enrich our model to reproduce
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such a mechanism. Unfortunately, the current experimental
data would not enable us to determine the biological plausi-
bility of any such mathematical development.

Conclusion
We have presented a preliminary model of large-scale human
navigation in a virtual city. This model successfully quali-
tatively reproduces patterns of errors that were observed in
human participants. In the Landmark condition, where all vi-
sual cues are present, both the participants and the simulated
navigator accurately reproduce the learned path. In the Probe
Trial condition, where the visual cues needed to recognize
the current position are missing, both the participants and the
simulated navigator are still able to reach the goal, but both
do so using variants of the learned paths.

The proposed model is based on Bayesian modeling. A
single probability distribution encodes the learned path. It
encodes properties of the learned path, and can be used to
generate different strategies according to the availability of
cues. In the Landmark condition, the probability distribution
can be read directly, and the navigator performs as if using a
landmark-based navigation strategy. Whereas, in the Probe
Trial condition, the probability distribution can be used to
generate the best estimate about actions to perform, thanks
to Bayesian inference, and the navigation then performs as
if using a geometry-based navigation strategy. Having a sin-
gle model, which is the basis of several navigation strategies,
departs from the classical view where each strategy is inde-
pendently encoded and which requires an arbitrator for hier-
archically articulating them.

This could provide novel insights into the cognitive mecha-
nisms involved in human navigation and space representation,
and hopefully, could be transferred to biomimetic robotic ar-
chitectures, where managing hierarchical representations of
complex environments is still a challenge.
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