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Abstract

Brown and Heathcote (2008) proposed the LBA as the sim-
plest model of choice and response time data. This claim was,
in part, based on the LBA requiring fewer parameters to fit
most data sets than the leading alternative, the Ratcliff diffu-
sion model (Ratcliff & Tuerlinckx, 2002). However, parameter
counts fail to take into account functional form complexity, or
how the parameters interact in the model when being estimated
from data. We usedpD, or the “effective number of parame-
ters”, calculated from Markov Chain Monte Carlo samples, to
take these factors into account. We found that in a relatively
simple, simulated, data set and on average in a complex, real,
data set that the diffusion had fewer effective parameters than
the LBA.

Keywords: decision models; response time; Bayesian statis-
tics; model complexity.

A wide range of experimental tasks involve a decision be-
tween at least two alternatives. Some believe that the pro-
cess behind making simple decisions is the same regardless
of what the decision is about. The most successful class of
theories about simple decision processes are evidence accu-
mulator models. There are many types of evidence accumu-
lator model that differ slightly from one another. However,
the central assumption common to all is that, when making
a decision about a stimulus, evidence is gradually accumu-
lated for each alternative response. Once there is enough
evidence for one particular response that response is made,
and the time taken to accumulate that evidence is the deci-
sion time. The most frequently applied evidence accumulator
model for decisions between two alternatives is the Ratcliff
diffusion model (Ratcliff, 1978; Ratcliff & Rouder, 1998;
Ratcliff & Tuerlinckx, 2002). For example, Ratcliff and col-
leagues have used the diffusion model to account for the de-
cision process in lexical decision tasks (Ratcliff, Gomez,&
McKoon, 2004), recognition memory tasks (Ratcliff, 1978),
to investigate the effects of aging on cognitive performance
(e.g. Ratcliff, Thapar, & McKoon, 2004). Ratcliff, Segraves,
and Cherian (2003) also present neural evidence consistent
with the diffusion model.

Brown and Heathcote (2008) recently proposed an alterna-
tive evidence accumulator model of the decision process: the
Linear Ballistic Accumulator (LBA) model. The LBA was
proposed as a simpler model of decision than the diffusion
model. The claim of simplicity was based in part on the fact
that the LBA assumes one less source of noise in the decision
process. That is, in constrast to the diffusion model, evidence

accumulation in the LBA is ballistic (i.e. without moment-to-
moment variability). This simplification, enables the deriva-
tion of full analytic expressions for the model’s full probabil-
ity density function. Despite this simiplificaiton, Brown and
Heathcote (2008) show that the LBA is able to account for
benchmark data from two-choice tasks (Ratcliff & Rouder,
1998; Ratcliff, Gomez, & McKoon, 2004)1. LBA parameters
have also been shown to have neural correlates (Forstmann et
al., 2008; Ho, Brown, & Serences, submitted).

Brown and Heathcote (2008) also claimed the LBA is sim-
pler because, when fiting standard two-choice data, it re-
quired one less parameter than the most recent version of
the diffusion model (Ratcliff & Tuerlinckx, 2002). Myung
and Pitt (1997), however, explain that the number of free pa-
rameters,k, does not necessarily provide a full indication of
model complexity. Specifically,k fails to take into account
functional form complexity (i.e., differences in flexability be-
tween different mathematical functions), or how the parame-
ters interact when parameters from the model are estimated
from data. Spiegelhalter, Best, Carlin, and van der Linde
(2002) proposed a method to address these aspects of model
complexity using the deviance information criterion (DIC)
and an associated estimate,pD, of the effective number of
model parameters. These quantities are estimated using pos-
terior samples obtained by Bayesian Markov Chain Monte
Carlo (MCMC) methods. We use these methods to investi-
gate the claim that the LBA is a “simpler” model of the de-
cision process. To begin we provide a brief overview of the
diffusion and LBA models.

Overview of Models
Consider the following example – participants are shown a
patch of 64x64 pixels, each of which are either white or black,
and the asked whether the stimulus is mostly bright or mostly
dark. The Ratcliff diffusion model begins by assuming that
participants sample information continuously from the stim-
ulus. Each sample of information counts as evidence for one
of the two responses and is used to update an evidence total,
sayx, shown by the irregular line in the left panel of Figure 1.

1Brown and Heathcote (2008) also show that the LBA is able to
account for decisions between more than two alternatives becasue
it allows one accumulator for each choie. As the Ratcliff diffusion
model has not been extended to the multiple choice case we will
focus on the two choice case.
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Figure 1: Overview of the diffusion and LBA models (left and right panel, respectively)

Total evidence begins at some starting point,x = z, and evi-
dence that favours a “bright” response decreases the value of
x and evidence for a “dark” response increases the value ofx.
Evidence accumumlation continues untilx reaches one of the
response boundaries, the horizontal lines at 0 ora in Figure 1.
The choice made depends upon which boundary was reached,
a for “dark” and 0 for “bright” response. The time taken to
make the choice is the accumulation time plus a non-decision
time component,Ter, composed of things such as encoding
time and the time taken to make a motor response.

Consider a stimulus composed of almost 100% white pix-
els. When a participant samples from this stimulus almost all
of the evidence will favour a “bright” response, and so the
accumulation total will quickly increase towardsa. The av-
erage rate of this accumulation is called thedrift rate, v, and
variability in moment-to-moment accumulation is assumed to
take the values. Ratcliff (1978) added the additional assump-
tion that drift rate also varies from trial-to-trial according to
a normal distribution with meanv and standard deviationη.
Ratcliff and Rouder (1998) incorporated between-trial vari-
ability in the start point of acccumulation, assuming thatz fol-
lows a uniform distribution on [z− sz

2 ,z+ sz
2 ]. Finally, Ratcliff

and Tuerlinckx (2002) included between-trial variabilityin
non-decision timeTer in the form of a uniform distribution on
[Ter −

st
2 ,Ter + st

2 ].
In the LBA there are separate accumulators gathering ev-

idence for each of the “bright” and “dark” responses. These
accumulators are assumed to be linear, ballistic and indepen-
dent. That means evidence accumulation has a linear increase
with no within-trial variability (i.e,. is ballistic rather than
stochastic as in the diffusion model), and accumulation in one

accumulator has no effect on the other accumulator(s). The
amount of evidence an accumulator begins with on each trial
is sampled (separately for each accumulator) from the interval
[0,B]. The evidence in each accumulator increases at a linear
rate determined by the drift rate parameters,vb and vd , for
bright and dark responses, respectively. Accumulation con-
tinues until evidence in one accumulator reaches a response
boundary,a2 which is usually assumed to be the same for
all accumulators. The accumulator which reaches the bound-
ary first selects its associated response and accumulation time
plus non-decision time,Ter, gives the reaction time. As in
the Ratcliff diffusion model, the drift rate is assumed to vary
between-trials according to a normal distribution with mean
v and standard deviationη.

To sum up, the diffusion model has the parameters
(a,z,sz,Ter,st ,v,s,η) and the LBA has the parameters
(a,B,Ter,v1,v2,η), wherevi refers to the mean drift rate in
the accumulator for theith response. The parameterisation for
each model, however, differs depending on the design of the
data from which the data were obtained. There is, therefore,
no fixed difference in the number of parameters between the
models. There are, however, parameterisations of these mod-
els which are commonly applied. For example, when there is
no bias for one response over the other then thez parameter of
the diffusion model can be fixed ata

2, reducing the number of
free parameters in the diffusion model by one. Also, in order
to solve a scaling property common to all evidence accumu-
lator models, thes parameter is generally fixed at 0.1. Sim-

2In previous applications of the LBAa andB have been labelled
b and A, respectively. We adopt this alternative labelling here to
facilitate equality in parameter names across models.
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ilarly, when fitting the LBA, drift rates for correct and error
responses tend to be assumed equal for both choices unless
the choice corresponds to an experimental manipulation (e.g.,
word vs. non-word in a lexical decision task or studied vs.
unstudied in a recogniton memory task). Drift rates for error
responses are also typically assumed to be fixed at one minus
the drift rate for correct response, solving the scaling property
for the LBA. This means when the LBA has been applied then
usually only one drift rate parameter is estimated– the drift
rate for correct responses. Based on these standard parame-
terisations, Brown and Heathcote (2008) concluded that the
LBA uses one less parameter than the diffusion model to ac-
count for data typical of two-choice tasks. This finding, com-
bined with some apparently simpler structural assumptions,
led Brown and Heathcote (2008) to conclude that LBA was
simpler than the diffusion model. We now explore whether
the pD measure of model complexity agrees with the author’s
conclusions.

Model Complexity

An overly complex model can provide an excellent fit to a
given set of data, yet still not be considered to give a satisfy-
ing account of the underlying process. In particular, a more
complex model can “overfit” the data by fitting the random
error specific to a particular sample as well as the structure
due to the underlying processes. Becasue only the structre
re-occurs in new data, overfitting limits the model’s ability in
terms of prediction. Myung (2000) suggests that at least two
factors contribute to model complexity – the number of pa-
rameters in the model and the functional form of the model,
which determines how the parameters interact. Functional
form complexity can differ between models with the same
number of parameters when one model is able to produce a
wider range of predictions than the other. In any particular
experimental design, the degree to which the effects of func-
tional form complexity are observed depends on the interac-
tion between model and data.

A number of model selection methods take into ac-
count functional form complexity. We will focus on one
such measure: the Deviance Information Criterion (DIC)
(Spiegelhalter et al., 2002). DIC has been applied across
a wide range of fields including psychology (e.g., Myung,
Karabatsos, & Iverson, 2005). Vandekerckhove, Tuerlinckx,
and Lee (2008) used DIC to compare various instantiations
of the diffusion model. The DIC can be considered the
Bayesian version of the Akaike Information Criterion (AIC;
Akaike, 1973), but with a complexity penalty term which
takes into account functional form complexity, rather than
simply counting the number of free parameters, as in AIC.

DIC can be computed from MCMC samples of a model’s
posterior parameter distributions. Letθ represent such a sam-
ple. Deviance can be written asD(θ) = −2logL(y|θ), where
L(y|θ) represents the likelihood of data vectory given param-
etersθ. ThenD(θ) is the deviance of the estimated poste-
rior mean parameters andD(θ) is the mean of the distribution

of posterior samples. DIC can be expressed in two parts as
DIC = D(θ)+2pD, wherepD = D(θ)−D(θ), whereD(θ) is
a measure of misfit between data and model predictions, and
2pD is a penalty for the “effective” number of parameters in
the model (Spiegelhalter et al., 2002). ThepD measure ad-
justs the number of parameters in the model to take account
of functional form complexity. Larger values ofpD indicate a
more complex model able to potentially predict a greater the
range of patterns of data. A better model, which achieves a
balance between fit and complexity, has a smaller DIC.

Posterior sampling for both the Ratcliff diffusion and LBA
models have been implemented using the Bayesian MCMC
program WinBUGS (diffusion: Vandekerckhove et al., 2008;
LBA: Donkin, Averell, Brown, & Heathcote, 2009). We use
these implementations to calculate DIC andpD, allowing us
to compare the functional form complexity between the mod-
els. Because DIC andpD are dependent on the data to which
the models are applied we will present the results of fits to
two different sets of data: simulated data generated by the
diffusion model, and a benchmark data set from Ratcliff and
Rouder (1998).

Estimating pD and DIC for the LBA and
Diffusion Models

Simulated Data

The first set of data were generated from a diffusion process
with parameters given in Table 1. Our simulated data set was
intended to mimick data from a two-choice task with a single
experimental factor where stimuli were varied so as to only
affect the difficulty of the task. This meant that only the drift
rate parameter,v, was allowed to vary across the three con-
ditions. All other parameters(a,sz,Ter,st ,s,η) were assumed
to be constant across all conditions. We also fixedz to be a

2,
representing unbiased responding. This parameterisationis
standard for fitting data from experiments which have a sin-
gle within-subjects condition which varies from trial-to-trial
(e.g. Ratcliff, Gomez, & McKoon, 2004). The simulated data
can be thought of as coming from a single participant who
completed 1000 trials in each of the three difficulty condi-
tions.

When fitting both the diffusion model and the LBA model,
parameters were fixed to match the assumptions made when
generating the data; so only drift rate was allowed to
vary between the three difficulty conditions. This means
that for the diffusion model we have eight free parameters
(a,sz,Ter,st,η,v1,v2,v3), and for the LBA seven free param-
eters(a,B,Ter,η,v1,v2,v3). Unbiased responding in the LBA
corresponds to having the same values ofa andB for each
response. Posterior samples were obtained for both mod-
els using their WinBUGS implementations. For each model
three chains each containing 10,000 MCMC samples were
collected, with the first 3,000 samples for each chain were
discarded as burn-in. Visual inspection of the chains sug-
gested that after burn-in samples collected from each chain
were from the same stationary distribution, which we now
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assume to be the true posterior distribution.

Table 1: Mean of posterior samples for parameters from the
diffusion and LBA models for fits to data generated from dif-
fusion model. DIC andpD are also reported for each model.

Parameter Data Diffusion LBA
a .125 .128 .252

sz / B .044 .034 .432
η .133 .123 .237

Ter .435 .432 .237
st .196 .196 -
v1 .1 .103 .609
v2 .23 .226 .74
v3 .363 .369 .882

DIC - -183.76 -47.55
pD - 5.97 6.81

Table 1 contains mean posterior samples for each parame-
ter for both the diffusion and LBA models. The average pos-
terior diffusion model parameter samples are close to the pa-
rameters used to generate the data, as expected. The average
posterior LBA parameters are close to parameters estimated
using non-Bayesian methods of fitting (e.g. maximum likeli-
hood estimation) to the same data set.

DIC andpD values are also given in Table 1. As one might
expect, the DIC for the diffusion model is smaller than the
DIC value for the LBA model (-183.76 and -47.55, for dif-
fusion and LBA respectively), suggesting that the diffusion
model provides a better account than the LBA of data simu-
lated from a diffusion process. Quite unexpectedly, however,
the pD value for the diffusion model is also smaller than that
for the LBA model,pD equal to 5.97 and 6.81 respectively.
This suggests that – despite the diffusion model having more
free parameters than the LBA model – when functional form
complexity is taken into account, the number of “effective”
parameters is actually smaller than that of the LBA model.

At least for these simulated data, from a very simple exper-
imental design, the results seem clear – the diffusion model
is less complex than the LBA. As previously stated, how-
ever, functional form complexity depends upon the data being
modelled. We turn now to actual data, to a data set which has
become a benchmark data set for models of choice and re-
sponse time (Brown & Heathcote, 2008; Vandekerckhove et
al., 2008).

Ratcliff and Rouder’s (1998) Data
Ratcliff and Rouder (1998) performed a simple brightness
discrimination task with two within-subject factors: bright-
ness and instructions. There were 33 levels of brighness used,
determined by the proportion of white vs. black pixels in a
64x64 display (brightness was varied randomly from trial-to-
trial). Between blocks of trials, participants were given in-
structions on whether to respond with an emphasis on speed
or an emphasis on accuracy.

We fit diffusion and LBA models seperately to data from
three individual participants, each of whom completed al-
most 8000 trials. Both models have previously been fit to
the Ratcliff and Rouder (1998) data sets using non-Bayesian
estimation techniques (diffusion: Ratcliff & Rouder, 1998;
LBA: Brown & Heathcote, 2008). We used very similar pa-
rameterisations to that used in the original fits with three ex-
ceptions. First, for the diffusion model we included between-
trial variability in non-decision time. This variability was in-
cluded in the diffusion model as it has been standard practice
since Ratcliff and Tuerlinckx (2002). Second, for the LBA
both the upper bound of the uniform distribution of starting
point of accumulation,B, and response threshold,a, were al-
lowed to vary between speed and accuracy conditions. Brown
and Heathcote (2008) assumedB = a in the speed-emphasis
condition, but we found that fit was greatly improved by re-
moving this constraint. For the diffusion model we followed
Ratcliff and Rouder (1998) and assumed that only boundary
separation,a was allowed to vary between speed and accuracy
conditions. Third, we found that the diffusion gave much bet-
ter fits to data by estimating between-trial variability in start
point of accumulation for speed and accuracy conditions sep-
arately. This contrasts with Ratcliff and Rouder (1998) ap-
proch, wheresz was fixed ata/20 for both speed and accuracy
conditions.

For both models, only drift rate was allowed to vary
between brightness conditions. Although there were 33
brightness conditions in the original data, the conditions
were collapsed to seven since visual inspection suggested
that the majority of brightness levels which were ei-
ther very difficult or very easy were homogenous in RT
and accuracy. This meant that for the diffusion model
(aacc,aspd ,szacc ,szspd ,Ter,st ,η) were free parameters, and for
the LBA (aacc,aspd ,Bacc,Bspd ,Ter,η) were free parameters.
When combined with the seven drift rate parameters com-
mon to both models, there were 14 free parameters for the
diffusion model, and 13 free parameters for the LBA model.

A single chain of 10,000 samples was collected for each of
the LBA and diffusion models, with the first 3,000 samples
discarded from analysis as burn-in. Again, visual inspection
of the chain confirmed that stationarity after burn-in. Table 2
contains mean posterior parameter values for each model and
each participant. Though, for brevity we do not present them
here, plots of model predictions and data confirm that the av-
erage parameter values provide a good fit to the data. The
quality of fit between model and data was greater for the dif-
fusion model than the LBA. This is reflected in DIC andpD

values reported in Table 2: for all participants the diffusion
model had a smaller DIC value than the LBA model3. As

3Donkin, Brown, and Heathcote (2009) have shown that an LBA
model where the sum of correct and error drift rates are not over-
constrained to be one can provide a large improvement in quality of
fit. This comes, however, at the expense of an increase in the num-
ber of free parameters. Since we wish the present discussion to be a
retrospective look at the claims of Brown and Heathcote (2008) we
discuss this no further here.
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Table 2: Mean of posterior samples for parameters from the diffusion and LBA models for fits to individual participants from
Ratcliff and Rouder (1998). DIC andpD are also reported for each model.

Participant Model aacc aspd Bacc / szacc Bspd / szspd η Ter st DIC pD

JF
Diffusion .256 .061 .066 .006 .155 .245 .181-3478 11.93

LBA .603 .215 .373 .116 .263 .107 - -229311.59

KR
Diffusion .249 .065 .023 .015 .153 .227 .152-3793 10.05

LBA .615 .223 .383 .143 .341 .123 - -1327 12.79

NH
Diffusion .246 .086 .078 .003 .213 .259 .172-5938 11.85

LBA .479 .251 .27 .121 .307 .129 - -487011.15

was the case in the simulated example the decrease between
the nominal and effective number of model parameters due
to functional form complexity was greater for the diffusion
(-2.7 on average) than the LBA (-1.2 on average). Overall,
when applied to real data coming from a more complicated
design, the diffusion model tended to require fewer “effective
parameters” (11.3 on average) than the LBA model (11.8 on
average). At the level of individual participants, however, we
see thatpD was smaller for the LBA than the diffusion model
for two out of three participants.

Discussion
DIC is a model selection criterion which attempts to select the
model which is best able to predict new data. DIC, andpD, a
measure of model complexity, can be calculated from MCMC
samples from the deviance of posterior parameter distribu-
tions. ThepD measure takes into account functional form
complexity, and can be thought of as the effective number of
parameters used to fit the data. When using data simulated
from the diffusion model with a simple experimental design,
the diffusion model, perhaps surprisingly, had a smallerpD

value than the LBA model. In other words, for our simu-
lated data set the diffusion model was simpler than the LBA
in terms of functional form complexity. When the models
were fit to benchmark data from Ratcliff and Rouder (1998)
which model was simpler differed between participants. For
two out of three participants the LBA required fewer effective
parameters. Averaging over participants, however, suggested
the diffusion model was simpler.

There are a number of technical details associated with
DIC andpD should be addressed. Spiegelhalter et al. (2002)
state that DIC andpD are appropriate when: the distribution
of posterior samples are approximately normal, and the model
provides a reasonable account of the data. We have already
addressed the second point, i.e. the posterior parameters were
providing good predictions of data. In the models presented
here the posterior distributions for each parameter closely ap-
proximate normal distributions, making it more likely thatthe
joint distribution of these parameters are also approximately
normally distributed. DIC andpD are also dependent on the
prior distribution used and the “focus” of our analysis. We
have made an attempt to make these factors equivalent across
models.

First, we used numerical integration of the Winbugs re-
sults for the diffusion model in order to equate the focus of
inference for each model. The WinBUGS code given by
Vandekerckhove et al. (2008) for the diffusion model imple-
ments start point variability and non-decision time variabilty
hierachically –that is, by drawing a sample for each of these
parameters for each trial performed by a participant on each
MCMC iteration. This approch was necessitated because the
Ratliff diffuison does not have an analytic likelihood when
these sources of between-trial variability are included. In
contrast, the WinBUGS code takes advantage of the LBA’s
mathematical simplicity by using an analytic expression for
the likelihood of the LBA model which integrates out all
forms of between-trial variability. This difference makesthe
deviances for each model produced by WinBUGS incommen-
surate; for the diffusion model this deviance focuses on the
particular set of trials observed, whereas for the LBA the de-
viance is appropriate for the population of possible trials, and
hence prediciton of performance by each subject performing
new trials. As the latter focus is clearly more appropriate for
our purposes we numerically integrated the deviance for each
diffusion model posterior sample and used these integrated
deviances to calcualte DIC andpD.

Second, the prior distributions for diffusion model param-
eters are based on the range of parameter values estimated
from all of the published diffusion fits found by Matze and
Wagenmakers (submitted). Priors for LBA parameters were
obtained from simulations which took the range of diffusion
model parameters from Matze and Wagenmakers (submitted)
and mapped them onto changes in LBA parameters. This
gave a range of LBA parameters to be used as priors which
may account for approximately the same range of patterns
of data. In both cases the prior distribution of parameters was
assumed uniform within these ranges. These prirors are infor-
mative not only in excluding parameters outside the allowed
range, but also because the width of the range of allowed pa-
rameters determines the contribution made by the prior to the
posterior deviance. A narrower range reduces posterior de-
viance and hence improves DIC. The large sample sizes that
we examined means that the contribution of the prior is dom-
inated by the likelihood of the data when determining pa-
rameter estimates within a model. However, this does not
necessarily mean that differences in the prior for each model
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are not influential on thedifference in posteior deviance be-
tween models, and hence DIC. In ongoing work we are imple-
menting “vague” priors (i.e., priors with approximately equal
probability across a very broad range of parameters for both
models) in order to test the sensitivity of our results to the
prior specification.

In summary, we have provided a relatively preliminary in-
vestigation into the complexity of models of choice and re-
sponse time using a Bayesian model selection criterion. The
criterion, DIC, and an associated measure of model complex-
ity that takes into account differences in funcitonal form,pD,
are relatively easy to apply becasue it can be directly cal-
culated based on MCMC samples from posterior model pa-
rameter distributions. If we consider simplicity as the range
of potential data patterns which a model can predict, our re-
sults suggest that it may have been premature to claim that the
LBA is the simplest model of choice and response time. Our
results suggest that for these models a simple count of param-
eters will not suffice, and that more investigation is required.
Functional form complexity based on prediction, however, is
not the only aspect which might define a model’s simplicity.
For example, the mathematical tractability of the LBA, which
enables analytic likelihoods to be derived, make it possible to
more estimate parameters from data using even quite basic
software, such as Microsoft Excel (Donkin, Averell, et al.,
2009).

Although DIC has been found to be reliable (e.g. Myung
et al., 2005), there are alternative approches to defining func-
tional form complexity. For example, both DIC and Bayes
factors adjust for complexity, but DIC emphasizes posterior
prediciton whereas Bayes factors emphasize the selection of
a true model. Different approches have different strengths
and weaknesses. For example, DIC, like AIC, is inconsis-
tent, so that as sample size increases it tends to select overly
complex models. Bayes factors are less attractive in terms
of prediciton becasue they asses the degree to which the
prior rather than posterior predicts new data (Liu & Aitkin,
2008). As part of a larger project we are investigating the de-
gree to which conclusions about complexity are robust over a
range of such model selection measures (Myung & Pitt, 1997;
Myung, 2000).
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