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Abstract
Modeling crowd behavior is an important challenge for cog-
nitive modelers. Unfortunately, existing computational mod-
els are typically not tied to cognitive science theories, and
are rarely evaluated against human crowd data. We investi-
gate a general cognitive model of crowd behavior, based on
Festinger’s Social Comparison Theory (SCT). We evaluate the
SCT model on general pedestrian movement, and validate the
model against human pedestrian behavior. The results show
that SCT generates behavior more in-tune with human crowd
behavior then existing non-cognitive models. Moreover, we
examine the impact of the different SCT model components
on the generated pedestrian behavior.

Introduction
Modeling crowd behavior is an important challenge for cog-
nitive science and psychology (Le Bon, 1895; Allport, 1924;
Turner & Killian., 1972). Accurate models of crowd behav-
ior are sought in training simulations, safety decision-support
systems, traffic management, and organizational science. In-
deed, a variety of computational models have been proposed
that exhibit crowd-like behavior in different tasks. For in-
stance, cellular automata models are used to model pedestrian
movements (Blue & Adler, 2000; Helbing & Molnar, 1997)
or people evacuating an area in emergency (Helbing, Farkas,
& Vicsek, 2000; Kretz, 2007).

Unfortunately, only a handful of existing models of crowd
behavior have been evaluated against real-world human
crowd data. Moreover, essentially no computational cogni-
tive models have been proposed which are tied to cognitive
science theory. Instead, existing models are often inspired
by particle physics (modeling individuals as particles), or by
cellular automata. Thus fitting in the models with a deeper
cognitive model of humans, or the mechanisms of a cognitive
architecture, is difficult.

Recently, we presented a novel cognitive model of crowd
behavior (Fridman & Kaminka, 2007), which has two key
novelties (compared to previous models): First, there is a
single computational mechanism (algorithm) used to gener-
ate different crowd phenomena (Fridman & Kaminka, 2009);
and second, it is inspired by social psychology theory. In
particular, the model is based on Social Comparison Theory
(SCT) (Festinger, 1954), a popular social psychology theory
that has been continuously evolving since the 1950s. The key
idea in SCT is that humans, lacking objective means to eval-
uate their state, compare themselves to others that are similar.

We believe that social comparison is a general cogni-
tive process underlying social behavior of each individualin
crowd. Unlike previous crowd models that concentrate on
specific behavior, the SCT model can account for different

crowd behaviors, depending on the perceptions and actions
available to each individual (Fridman & Kaminka, 2007).
However, while the SCT model proved superior to other com-
putational models in behaviors-specific measures (e.g., the
formation of lanes in bidirectional movement), it was never
validated against human crowd data.

In this paper we evaluate the SCT model on the specific
task of general pedestrian movement which includes individ-
uals, couples, and groups, all walking with different speeds,
and in different directions. We contrast the performance of
the model with a popular baseline model (Blue & Adler,
2000; Helbing et al., 2000), and explore the impact of dif-
ferent parameters and model components (e.g., bounds) on
the generated behavior. The evaluation was carried out by 39
human subjects who compared the behavior generated from
the different models to movies of real-world pedestrians. The
results clearly justify the the particular parameters selected in
earlier work (Fridman & Kaminka, 2007), and also demon-
strate the SCT model is superior to others in its fidelity to
human pedestrian behavior.

Background and Motivation
Social psychology literature provides several views on the
emergence of crowds and the mechanisms underlying its be-
haviors. These views can inspire computational models, but
are unfortunately too abstract to be used algorithmically.In
contrast, computational crowd models often ignore cogni-
tive and psychological processes underlying human behavior.
Moreover, only a little work was done in validating computa-
tional models against data of human behaviors.

General crowd psychology. A phenomenon observed with
crowds, and discovered early in crowd behavior research is
that people in crowds act similar to one another, often act-
ing in a coordinated fashion, which is achieved with little or
no verbal communication. Moreover, the crowd may cause
its members to behave differently than they would have in-
dividually. There are several different theories that explain
this crowd characteristics, focusing on the cognitive process
underlying each individual within the crowd.

Contagion Theory (Le Bon, 1895) emphasized a view of
crowd behaviors as controlled by a "Collective Mind", and
observed that an individual who becomes a part of the crowd
is strongly affected by it, to the extent that she is transformed
into becoming identical to the others in the crowd. Le Bon
explains the homogeneous behavior of a crowd by two pro-
cesses: (i)Imitation, where people in crowds imitate each
other; and (ii)Contagion, where people in a crowd behave
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very differently from the way they usually do, individually.
On the other hand, Convergence Theory (Allport, 1924)

states that crowd behavior is a product of the behavior of like-
minded individuals. According to Allport’s theory, individu-
als become a part of the crowd behavior when they have a
"common stimulus" with people inside the crowd; for exam-
ple, a common cause (Allport, 1924). Allport agrees with Le
Bon (1895) about the homogeneous behavior of the crowd.

Turner and Killian (1972) investigated Emergent-norm
Theory, which hypothesizes that crowd members indeed im-
itate each other, but also create new norms for the crowd as
the dynamics of the situation dictate. Thus while crowds are
not entirely predictable, their collective behavior is a function
of the decision-making processes of their members.

Specific models.Researchers have developed computational
models for simulation of collective behavior. However, these
models are not often tied to cognitive processes underlying
individual behavior in crowd and have rarely been validated
against human data.

For instance, to simulate pedestrian movements, Blue and
Adler (2000) use Cellular Automata approach, Helbing et al.
(Helbing et al., 2000) focus on physical and social forces of
attraction and repulsion that underlying each simulated entity.
A common theme in all of them is the generation of behavior
from the aggregation of many local rules of interaction. These
models ignore cognitive theories of crowds.

There are several models that account for psychological
and cognitive processes underlying agent behavior in crowd.
For example, Yamashita and Umemura (2003), propose a
model for panic behavior in which each agent acts based on
its instincts such as escape instinct, group instinct and imita-
tional instinct. Osaragi (2004) proposed a model for simulat-
ing pedestrian flow by using the concept of pedestrian mental
stress which may increase or decrease as a result of density.
However, these models only focus on cognitive processes un-
derlying specific behaviors like flocking or evacuation and not
account for general individual behavior in crowd.

One of the challenges in modeling crowd behaviors is the
validation process. There is a great absence of human crowd
behavior data that simulated models can be compared against.
Only a handful of investigations have utilized experimentsto
validate computational models against human data.

For example, Kretz (2007) proposes the Floor field-and-
Agent based Simulation Tool model (FAST) which is an ex-
tension of probabilistic cellular automata and discrete-space,
discrete-time model for pedestrian motion. The FAST model
has been validated against human data. In particular, the
model simulation results of evacuation scenario was com-
pared to results of evacuation exercise at a primary school.

Wolff (1973) examined pedestrian behavior in typical city
block, and noted on the coordinated behavior of crowd, in
term of creation of lanes in bidirectional movement or spread
effect in unidirectional movement. However, in this experi-
ment no quantitative data was presented. To learn more about
pedestrian flows (density, speed), Daamen and Hoogendoorn

(2003) performed empirical experiments on human crowds,
in particular in terms of movement of pedestrians. However,
these experiment focused only on the movement of indepen-
dent individuals, rather than families or friends.

Our long-term goal is to provide a single cognitive mech-
anism that, when executed by individuals, would give rise to
different crowd behaviors, depending on the perceptions and
actions available to each individual. In previous work (Frid-
man & Kaminka, 2007), we presented such a mechanism,
based on Social Comparison Theory. The model was eval-
uated on specific pedestrian movement phenomena, such as
creation of lanes in bidirectional movement; it was not evalu-
ated against human pedestrian movement.

A Model of Social Comparison
Our research question deals with the development of a com-
puterized cognitive model which, when executed individually
by many agents, will cause them to behave as humans do in
groups and crowds. We build on earlier work on the SCT
crowd model, briefly described below; the interested reader
is referred to (Fridman & Kaminka, 2007) for details.

According to social comparison theory, people tend to
compare their behavior with others that are most like
them (Festinger, 1954). To be more specific, when lacking
objective means for appraisal of their opinions and capabili-
ties, people compare their opinions and capabilities to those
of others that are similar to them. They then attempt to correct
any differences found.

Translated into an algorithm, we take each observed agent
to be modeled by a set of features and their associated val-
ues. For each such agent, we calculate a similarity values(x),
which measures the similarity between the observed agent
and the agent carrying out the comparison process. The agent
with the highest such value is selected. If its similarity isbe-
tween the given bounds (Smax andSmin), then this triggers ac-
tions by the comparing agent to reduce the discrepancy. The
upper bound (Smax) prevents the agent from trying to min-
imize differences with someone who is already sufficiently
similar, since such differences are not meaningful. The lower
boundSmin filters agents that are too dissimilar, and so should
be ignored. Thus, within the bounds an agent compares it-
self with those that differ from it sufficiently to matter. In
experiments, we examine the impact of SCT bounds on the
generated simulated behavior.

To reduce discrepancy, we determine the list of featuresfi
that indicate a difference with the selected agentc. We order
these features in an increasing order of weightwi , such that
the first feature to trigger corrective action is the one withthe
least weight. The reason for this ordering is intuitive, andwe
admittedly did not find evidence for it in the literature. How-
ever, in this paper we examine the impact of the correction
order on the quality of the simulated behavior.

1. For each known agentx calculate similaritys(x)

2. c← argmax s(x), such thatSmin < s(c) < Smax
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3. D← differences between me and agentc

4. Apply actions to minimize differences inD.

To implement final step of the algorithm, we assume that
every feature has associated corrective actions that minimize
gaps in it, to a target agent, independently of other features.
Festinger writes (Festinger, 1954, p.131): “The stronger the
attraction to the group the stronger will be the pressure to-
ward uniformity concerning abilities and opinions within that
group”. To model this, we use a gain functionGain for the
actiono, which translates into the amount of effort or power
invested in the action. For instance, for movement, the gain
function would translate into velocity; the greater the gain,
the greater the velocity.

Gain≡
Smax−Smin

Smax−s(c)
(1)

Validation Against Human Data
The SCT model was previously evaluated separately on dif-
ferent crowd behaviors (Fridman & Kaminka, 2007). In par-
ticular, different types of pedestrian movement phenomena
(such as creation of lanes in bidirectional movement of in-
dividuals, movement in small groups with and without ob-
stacles, etc.). When evaluated on such specific behavior, it
is possible to use community-recognized standard measures,
such as flow, number of lane changes, etc. However, when
evaluating the model against human data, it must account for
a fuller set of behaviors, all mixed together. For example,
when watching pedestrians, we can observe people moving
as groups like family, friends and couples or as individuals,
all walking with different speeds in bidirectional fashion.

A different evaluation methodology is thus needed. One
of the greatest challenge in modelling crowd behaviors is
the great absence of human crowd behavior data that can be
used as a basis for comparison. The main difficulty in cre-
ation of such data is that controlled experiments are com-
plex to design, and costly to execute, since they have to be
in large scale. There does not exist a standard methodology
of evaluation; some researchers generate accurate behavioral
data by engaging crowds in virtual environments (Pelechano,
Stocker, Allbeck, & Badler, 2008), while others do qualita-
tive comparisons of their models’ predictions against movies
of crowds, i.e., via observation experiments, e.g., (Helbing et
al., 2000; Kretz, 2007). We follow the same approach. Be-
low, we describe the observation experiments we executed to
evaluate the SCT model on general pedestrian behavior.

Comparing to Human Behavior
In this experiment we focus on general pedestrian behavior
where individuals and small groups (e.g., family and friends,
couples) walk with different speeds in bidirectional fashion.
Our hypothesis is that generating pedestrian behavior with
SCT model is more in tune with human pedestrian behavior,
compared to other models from the literature. We also want
to examine the impact of the model components (bounds, cor-
rection order, gain) on the quality of the simulated behavior.

We used human crowd movies where different pedestrian
behavior phenomena are presented (Figure 1(a)) and created
screen-capture movies of different models of the same behav-
ior (Figure 1(b)). We rely on experiments with human sub-
jects which compare each of the resulting simulated behaviors
to human crowd behavior. In addition, the subjects also voted
for the most similar and dissimilar simulated behavior.

(a)

(b)

Figure 1:Real (a) and Simulated (b) Pedestrian Behavior.

Simulated Behavior: Experiment Setup. To simulate
pedestrian behavior, we used Net-Logo. We define a sidewalk
with 104 patches in length and 10 patches at width. To fit to
human crowd density, the sample population comprised 30
agents. Agents were able to move in a circular fashion from
east to west or in opposite direction with different speeds.
Agents that belong to the same group have the same color. In
order to create small groups, couples and individuals, we de-
fine our population with 15 different colors (a large number
considering the population size). Agents were placed in ran-
dom positions at the beginning of the experiment, each agent
had limited vision distance of 10 patches and cone-shaped-
field-of-view of 120 degrees.

Each agent has a set of features and their corresponding
weights. For simulating pedestrian movement, we used the
following features and weights:color (weight 3); Walking
direction east or west (weight 2); andposition (weight 1),
given global coordinates. To account for the western cultural
intuition that friends (and family) walk side-by-side, rather
than in columns, we used another feature: The similarity in
position along the x-axis -X-Coordinate(weight 0.5).

The rationale for feature priorities, as represented in their
weights, follows from our intuition and common experience
as to how pedestrians act. Positional difference (distance,
side-by-side) is the easiest difference to correct, and theleast
indicative of a similarity between pedestrians. Directionis
more indicative of a similarity between agents, and color
(which we use to denote sub-groups within the crowds) even
more so. For instance, if an agent sees two agents, one in the
same direction as it (and far away), and the other very close
to it (but in the opposite direction), it will calculate greater
similarity to the first agent, and try to minimize the distance
to it (this may cause a lane change) and only then try to locate
itself on the same X-coordinate.

The similarities in different features (fi) are calculated
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as follows. fcolor = 1 if color is the same, 0 otherwise.
fdirection = 1 if direction is the same, 0 otherwise,fdistance=
1

dist , wheredist is the Euclidean distance between the posi-
tions of the agents and finally,fx−coordinate= 1 if x-coordinate
is the same, 0 otherwise. Each agent calculatess(x) accord-
ing to the model. If the chosen feature for closing the gap is
distance, then the velocity for movement will be multiplied
by the calculated gainGain. For other features (which are
binary), the gain is ignored.

We wanted to examine the impact of the SCT model com-
ponents on the quality of the simulated pedestrian behav-
ior. In particular, we wanted to examine the impact of SCT
bounds (Smin andSmax), gain function, and correction order on
the generated behavior. We define seven models, each empha-
sizing a different SCT component. The models are explained
below, and summarized in Table 1.

First we wanted to examine the impact of SCT bounds on
the generated pedestrian behavior. We hypothesize that more
narrow bounds will provide more similar behavior to individ-
ual model. To examine this hypothesis, we define the follow-
ing models:
• SCT-B-2-6.5 We setSmax to 6.5 (practically: no agent too

similar) andSmin to 2 (which means that agents that dif-
fer only in distance and in X-axis are not consider similar).
The gain is calculated according to Eq. 1 and the correc-
tion order is from the low weight features (distance) to high
weigh features. In this domain agents cannot change their
color, thus, the last corrected feature is direction. Our hy-
pothesis that this model will provide most similar behavior
to human pedestrians.

• SCT-B-5-6.5 We set theSmin to 5 which mean that agents
that similar at least in color and direction are consider to
be similar. Thus, in this model only agents with same color
and direction will move together.
Another component that we want to examine is the impact

of correction order on simulated pedestrian behavior. In the
SCT-H-L model we define the correction order to be from
high to low. Our agents cannot change their colors, and in this
model if the selected agent is moving in opposite direction,
the agent will first change it direction and then will try to
close the distance gap.

Finally, we wanted to evaluate the importance of the gain
in the model. We define the following models:
• SCT-NoGain Defined to be without the gain function (i.e.,

gain is constant 1).

• SCT-G-C2 The gain function is constant (2).

• SCT-G-C3 The gain function is constant (3).

• SCT-G-C4.5 The gain function is constant (4.5).

The various SCT models are contrasted with theindivid-
ual choicemodel, commonly used in pedestrian crowd re-
search (Blue & Adler, 2000; Helbing et al., 2000). In the
individual model, when forward movement of an agent is
blocked, an agent will arbitrary chooses different lane. Each

agent make its decisions independently of its peers. This
model has been shown to be qualitatively compatible with
pedestrian motion, and is often used as a baseline technique
in crowd research (see, for instance, (Kretz, 2007)).

Comparison to Human Crowd. In order to compare to
general behavior and not to be connected to specific video
clip, we used several video clips of human pedestrian behav-
ior and several screen-captured movies for each model. In the
simulated behavior we created three screen-captured movies
for each model that was randomly chosen for each subject.
In human behavior we used two sets of video clips that were
taken from different locations and in different times. The first
set of movie clips were taken in the morning in downtown
Vancouver, during rush hour. People are mostly walking in-
dividually, and only few are moving in small groups. The
second set of movie clips were taken in the afternoon in a
street that leads to the Eiffel tower in Paris, during leisure
time. Most of the pedestrians are families and friends that
move in small groups, or as couples. Each real-world video
clip was cut to be one minute long. To generate a one-minute
clip in the simulated behaviors, each model was executed for
5000 cycles ( 6 minutes), and the last minute was used.

We build a web based experiment which enables the sub-
jects to participate in their free time. First we presented a
brief description about the experiments. The subjects were
told that the purpose of the experiment is to compare each
of the simulated behaviors to human crowd behavior. How-
ever, the purpose of the simulation is not to simulate each
seen pedestrian in the human crowd, but to simulate the gen-
eral pedestrian behavior. The experiment was carried out in
two phases, a training phase that was presented to the subjects
after the experiment description, and an experiment phase.

The experiment was carried out using 39 adult subjects
(males: 28). Additional 6 subjects were dropped due to tech-
nical reasons (such as network problems that prevented them
from watching the clips). The subjects were ask to watch the
human pedestrian movie that was randomly chosen in each
experiment. Then, they were ask to watch screen-captured
movie of each model that was also chosen randomly. Af-
ter each simulated movie, the subjects were ask to rank the
seen behavior, that followed by question: To what degree the
seen simulated behavior is similar to previously seen human
behavior? (1—not similar, 6—most similar). At the end of
the experiment, we ask the subjects additional two questions:
What simulated movie was the most similar to human behav-
ior and what simulated movie was the most dissimilar. To
control for order effects, the order of presentation on the page
was randomized.

Initially we wanted to compare eight different simulated
behaviors to human pedestrian behavior, the individual choice
model and seven SCT models. We run a short pilot in
which we presented to three subjects the experiment and af-
terwards ask their opinion. All subjects claimed that the ex-
periment was too long. Moreover, they claimed that SCT-
B-2-6.5 model provide very similar behavior to that of SCT-
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Component SCT-B-2-6.5 SCT-B-5-6.5 SCT-H-L SCT-NoGain SCT-G-C2 SCT-G-C3 SCT-G-C4.5
Smax 6.5 6.5 6.5 6.5 6.5 6.5 6.5
Smin 2 5 2 2 2 2 2
Gain Eq. 1 (func.) Eq. 1 (func.) Eq. 1 (func.) 1 (const) 2 (const) 3 (const) 4.5 (const)
Correction Order L-H L-H H-L L-H L-H L-H L-H

Table 1:SCT Models

H-L model and similar behavior was also observed in mod-
els SCT-NoGain, SCT-G-C2, SCT-G-C3 and SCT-G-C4.5.
Thus, we reduced the number of different models that pre-
sented to the subjects. In the experiment phase we compared
between four simulated behaviors. We used the Individual-
choice model, SCT-B-2-6.5, SCT-B-5-6.5 and one of ran-
domly chosen SCT-NoGain, SCT-G-C3 and SCT-G-C4.5
models. The models SCT-H-L and SCT-G-C2 were used only
in the training phase, and their results were not used.

Results
We first wanted to examine the ranking of the models in com-
parison to the actual crowd. The results are summarized in
Figure 2. The categories in the X-axis correspond to differ-
ent models. The Y-axis correspond to grades of the compared
models. Each set of bar shows the mean and median results.
A higher result indicates improved fidelity, i.e., greater simi-
larity to human pedestrian behavior.

Figure 2:Comparing to human pedestrian - Results

The results clearly demonstrate that the SCT-B-2-6.5
model provide most higher results than the compared mod-
els. While it may seem that the SCT-B-2-6.5 model results is
close to Individual and SCT-B-5-6.5 models results, accord-
ing to t-test (two-tailed) SCT-B-2-6.5 was found to be signif-
icantly different than the Individual model (p = 0.001) and
significantly different than SCT-B-5-6.5 (p = 0.03).

Another hypothesis underlying the experiment is that SCT
model with narrower bounds (Smin, Smax) will provide closer
behavior to individual model behavior, but not the same. In-
deed, the results demonstrate that SCT-B-5-6.5 is lying in be-
tween the SCT-B-2-6.5 and individual models. According to
t-test (two-tailed) SCT-B-5-6.5 was found to be significantly
different than SCT-B-2-6.5 (p = 0.03) and significantly dif-
ferent than the Individual model (p = 0.017).

Our last hypothesis was that SCT models without the gain
function will provide less similar behavior to human pedes-
trian behavior. The results clearly demonstrates that SCT-

NoGain, SCT-G-C3 and SCT-G-C4.5 models in which the
gain is fixed, get the lowest results.

When we ask the subjects: "What simulated behavior
was the most similar to human behavior?" The SCT-B-2-
6.5 model gets the highest number of votes. To the ques-
tion: "What simulated behavior was the most dissimilar to hu-
man behavior?", the subjects answered with the SCT-NoGain,
SCT-G-C3 and SCT-G-C4.5 models. The answers to these
two questions are shown in Figure 3.

Figure 3:Most similar/dissimilar: Results.

Discussion
The SCT model, described and evaluated above, stands on
two conceptual cognitive science legs. First, it draws a con-
nection between social comparison theory and crowd behav-
ior. Second, it interprets social comparison theory as admit-
ting superficial comparisons, i.e., at the level of visible dif-
ferences between agents, in addition to cognitive differences
(e.g., intentions). We address these two issues below.

Social Comparison in Crowds. To the best of our knowl-
edge, social comparison theory has never been connected to
crowd behavior phenomena. However, we believe that social
comparison theory may account for some important charac-
teristics of crowd behavior, as it clearly addresses processes
in groups, and no limit is placed on group size.

We focus here on one of the primary characteristics of
crowds is the similarity between individuals’ behaviors. This
is explained by a process ofimitation(Le Bon, 1895), conver-
gence of like-minded individuals (Allport, 1924), or emerg-
ing norms (Turner & Killian., 1972).

Social comparison processes can give rise to this phe-
nomenon. Festinger writes (1954, p. 124): "The existence of
a discrepancy in a group with respect to opinions or abilities
will lead to action on the part of members of that group to re-
duce the discrepancy". Indeed, one implication of SCT is the
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formation of homogeneous groups. Festinger notes (1954, p.
135):"The drive for self evaluation is a force acting on per-
sons to belong to groups, to associate with others. People,
then, tend to move into groups which, in their judgment, hold
opinions which agree with their own“. This quote, in particu-
lar, seems to be compatible with (Allport, 1924).

Do people engage in surface comparisons?Festinger hy-
pothesizes (Festinger, 1954, p. 117): "There exists, in the
human organism, a drive to evaluate his opinions and his abil-
ities". Thus a question that emerges with respect to the mech-
anisms described here is whether in fact the type of surface
comparisons are admitted by social comparison theory.

There has been extensive research clarifying the concepts
"abilities" and "opinions". Smith and Arnkelsson (2000) ex-
plain that ability evaluation refers to person performanceat
specific task. Festinger itself provide a link between abil-
ity and performance: "abilities are of course manifested only
through performance which is assumed to depend upon the
particular ability" (1954, p. 118). He then provide an exam-
ple: “Thus, if a person evaluates his running ability, he will
do so by comparing his time to run some distance with the
times that other persons have taken.” (1954, p. 118).

Moreover, the meaning of opinion comparison, was also
extensively investigated during the years. Goethals and Dar-
ley (1977) relate this concept to "Related Attributes Hypoth-
esis" meaning people will prefer to compare with others sim-
ilar to them on attributes that are related to their opinion or
performance. Festinger provide the basis for this research
claiming: "If persons who are divergent from one’s own opin-
ion or ability are perceived as different from oneself on at-
tributes consistent with the divergent, the tendency to narrow
the range of comparability becomes stronger" (1954, p. 133).
Goethals and Klein provide an example which directly ad-
mit surface comparisons: "An individual evaluating his or her
tennis-playing ability. He or she might compare with others
who are about the same age, who have the same degree of
recent practice and comparable equipment, and who are the
same sex" (Goethals & Klein, 2000, p. 25).

Summary
SCT is a cognitive model proscribing crowd behavior, in-
spired by Festinger’s social comparison theory (Festinger,
1954). A key novelty in SCT is its promise of domain-
generality. However, while SCT has been evaluated against
existing models in specific tasks, it was not validated against
human crowd data.

This paper presented validation of SCT model (and com-
peting models) against human crowd behavior. We evalu-
ate the SCT on pedestrian phenomena and showed that SCT
model generated pedestrian behavior more in tune to human
pedestrian behavior. The results are promising, and support
the general applicability of the SCT model. We are currently
exploring the use of SCT in this and other domains.
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