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Abstract 

In this paper a neural network model of visual short-term 
memory (VSTM) is presented. The model aims at integrating 
a winners-take-all type of neural network (Usher & Cohen, 
1999) with Bundesen’s (1990) well-established mathematical 
theory of visual attention. We evaluate the model’s ability to 
fit experimental data from a classical whole and partial report 
study. Previous statistic models have successfully assessed 
the spatial distribution of visual attention; our neural network 
meets this standard and offers a neural interpretation of how 
objects are consolidated in VSTM at the same time. We hope 
that in the future, the model will be developed to fit 
temporally dependent phenomena like the attentional blink 
effect, lag-1 sparing, and attentional dwell-time. 
 

Keywords: visual attention, visual short-term memory, the 
magical number 4, winners-take-all network  

Introduction 

For everyday life, it is important for us to be able to 

perceive, comprehend, and react to events in our 

environment. Often, our rate of success is heavily dependent 

upon how efficient and how fast we can process, interpret 

and react to sensory stimuli, e.g. like when we are driving a 

car. 

In the following we shall refer to visual attention as the 

process that enables us to focus our processing resources to 

certain important objects in the visual scene. Following the 

theory of visual attention (TVA, Bundesen, 1990) we 

assume that features have already been extracted and objects 

successfully segregated on the basis of their individual 

feature spaces. Our model deals with the important question 

of how only a limited sub span of all objects are actually 

selected and further encoded into VSTM. 

Cattell already in the late 19
th

 century demonstrated a 

surprising limit in how many objects that can be perceived 

at the same time – a limit only about 4 objects which may 

be held in the VSTM at the same time (Cattell, 1886; 

Cowan, 2000). This finding is independent of the number of 

objects visually presented at the same time (Sperling, 1960). 

Evidence further exist that the “magical number” of 3-to-4 

objects is largely independent of how many features are 

encoded for each object, i.e. the complexity of the visual 

object, does not hold an influence on the memorial capacity 

of the VSTM; see (Luck & Vogel, 1997), but see also 

(Alvarez & Cavanagh, 2004).  

Modelling the function of the VSTM, it is essential that 

the inherent capacity limitation is properly mimicked, since 

it seems a fundamental limit of the system. Most likely the 

VSTM would be heavily overloaded, should the system lack 

the ability to represent only the most salient of the visually 

appearing objects 

The model 

The model that we are presenting in this paper can actually 

be understood as three consecutive processes (See Figure 1).  

The first process is simply extraction of visual features, 

we speak of this process as ‘object matching’, since we find 

it relevant to think that objects in the visual field are to some 

extent ‘matched’ against objects representations in Visual 

Long-Term Memory (VLTM). In this paper we do not 

consider the problem of which feature extraction techniques 

are biologically most plausible or perhaps technically most 

appropriate to use. 

The second process that we shall consider in more detail 

is ‘the attentional race’. According to Shibuya & Bundesen 

(1988), all objects in the visual scene take a place in what 

one could think of as a race to become encoded. In Shibuya 

& Bundesen’s race model, the ‘odds’ that a given object is 

selected as a winner in the race is directly related to the rate 

value with which the object participates. It is worth noting 

that the race is a stochastic, rather than a deterministic 

process, meaning that no one can beforehand predict readily 

which objects will win the race. 

The third and last process that we shall consider is that of 

‘storage’ of object representation in VSTM. Inspired by 

(Usher & Cohen, 1999) we propose a competitive neural 

network model of VSTM, directly linking with several 

important assumptions expressed in Bundesen’s Theory of 

Visual Attention (Bundesen, 1990). 

 

354



 
 

Figure 1: The Model Scheme – a partial report example. The task is to report the targets, i.e. digits and ignore the 

distractors, i.e. letters. The model predicts how visual elements participate in a race, where the winners become selected to be 

encoded in visual-short-term memory. Generally targets are processed faster than distractors, however we also see that in the 

example homogeneity is not assured, i.e. the targets (and distractors) are not of equal size (could also be contrast, letter type 

etc.) and therefore in the example they are illustrated as being processed with slightly different rates.  

 

The neural theory of visual attention 

The theory of visual attention (TVA) proposed by Bundesen 

(1990) is a unified theory of visual recognition and 

attentional selection. TVA provides a mathematical 

framework describing how the visual system is able to 

select individual objects in the visual field S, based on the 

visual evidence, η and the setting of two different types of 

visual preference parameters (pertinence, π  and bias, β), 

representing the influence from higher cortical areas, 

including VLTM. 

The output of the TVA-model is a set of rate parameters v 

that are directly related to the probability that a given 

characterization, object x belongs to category i, is encoded 

into the VSTM. The rate parameters are given by: 
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Where the attentional wx weight of object x is:  
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Here η(x,i) is defined as the strength of the sensory evidence 

that object x belongs to the visual category i. The pertinence 

of the visual category j is denoted by πj and setting of these 

values effectively implements the so-called filtering 

mechanism. The perceptual decision bias of a visual 

category i is denoted by βi and setting of these values 

conversely implements a complementary mechanism called 

pigeonholing.  

The filtering mechanism increases the likelihood that 

elements belonging to a target category are perceived, 

without biasing perception in favor of perceiving the 

elements as belonging to any particular category.  

Pigeonholing, conversely changes the probability that a 

particular category i is selected without affecting the 

conditional probability that element x is selected given that 

category i is selected. 

A neural interpretation of TVA is given in (NTVA, 

Bundesen, Habekost, & Kyllingsbæk, 2005). Basically here 

pigeonholing (selection of features) is considered an 

increase in the rate of firing of neurons while filtering 

(selection of objects) is considered an increased 

mobilization of neurons. 

Corresponding to the interpretation in NTVA the fraction 

wx/∑wz in equation (1), which is the relative attentional 

weight of object x compared to the weight of all objects z in 

the visual field S, can be directly interpreted as the relative 

fraction of neurons allocated to process a given object x, 
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compared to the total number of neurons processing just any   

object z belonging to the visual field S. 

Each and every encoding generally takes the form object 

x belongs to category i.  

Denoting the set of all features as R the total processing 

capacity, can be considered a constant C, which equals the 

sum of all encoding rates v; see (Bundesen, 1990). 
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Shibuya and Bundesen (1988) assume target as well as 

distractor homogeneity in their whole and partial report 

paradigm. This means that processing capacity is distributed 

equally among targets as well as among distracotors. When 

this is the case the rates of encoding for targets, vT and for 

distractors, vD can be calculated according to the formulas: 
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Where T and D denote the number of targets and 

distractors presented, respectively. The ratio of 

discrimination between distractors and targets is denoted α. 

The effective exposure duration τ is smaller than the 

actual exposure duration t by an amount t0 corresponding to 

the temporal threshold before conscious processing begins. 

However the effective exposure duration can not be 

negative so computationally it is set to: 

 

 

 ( )0,0max tt −=τ  (5) 

 

In the neural network model that we shall now describe 

we adopt the parameters C, α and t0 and further, following 

Bundesen, we make use of equation (4) and equation (5).  

 

The neural network model of VSTM 

In TVA object features are encoded independently, and 

further there is the assumption that only one feature needs to 

be encoded for the object to be stored in VSTM. On the 

other hand; and in agreement with (Luck & Vogel, 1997), 

several features of the same object can be in the encoded 

state, and still it will only count as if one object is stored in 

VSTM. For this reason, and because here we are concerned 

about objects rather than features encoded, we simply sum 

over the entire number of object features, and in this way we 

obtain the total encoding rate vx for object x: 
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An object x can enter VSTM once it receives external 

excitation, G taking the shape of Poisson distributed spike 

trains, arriving with the rate parameter vx. (See Figure 2).  

A neural assembly that has obtained a positive level of 

activation will automatically seek to re-excite itself, so that 

it can stay in VSTM, at the same time trying to inhibit 

activation in other neuron assemblies representing other 

objects, i.e. working to suppress other object from co-

temporally being stored in VSTM. 

The initial condition for the simulations is that all neuron 

assemblies start with an activation of zero, i.e. no objects 

are initially stored in VSTM. As a consequence neither re-

excitation nor lateral inhibition exists, before the assemblies 

are externally activated. 

 

 
 

Figure 2: The neural network model of VSTM. The total 

number of neuron assemblies is N and each assembly is 

represented by a level of activation A 

  

Implementation 

The activation Ax of neuron assembly x (representing object 

x) is given by the first order differential equation: 
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The above equation characterizes a leaky accumulator 

model. There is passive decay of the activation towards the 

rest level, with a time constant chosen as 1, reflecting the 

time scale that physiologically is observed with synaptic 

currents (Usher & Cohen, 1999). 

F is a squashing function that keeps the activation within 

bounds:  
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As a consequence of the squashing function F, the 

parameter α*
 is the limiting value of maximal self-excitation 

that assemblies can up-hold and the parameter β
*
 is the 

limiting maximal value of inhibition that can be sent from 

one assembly to another. 

Also the model assumes we can not have negative self-

excitation, i.e. self-inhibition and further the model does not 

implement any terms that could account for excitation 

laterally between the assemblies. The latter effect could for 

instance be included if one wanted to account for 

semantically related objects and their effect on the number 

of reported objects. 

The attentional significance that object i is present in the 

visual field R is represented by the encoding rate vi. In our 

model we follow the approach from (Bundesen, 1990) and 

interpret this rate as the firing rate of a Poisson spike 

generator G. Hence γ
*
 characterizes the amplitude of the 

Poisson distributed input spikes arriving to the neuron 

assembly x. 

The model was implemented in Matlab’s Simulink 

toolbox. At least in the operated parameter domain we judge 

the stiffness of the system to be negligible so for simplicity 

we numerically apply Euler integration
1
. 

 

Model performance 

The dataset 

The data covers the performance of a single subject, 

participating in an extensive series of whole and partial 

report experiments. The subject was instructed to report 

targets, i.e. digits while ignoring distractors, i.e. letters 

displayed on an imaginary circle around a small fixation 

cross at the center of the screen. In practice experimental 

trials covered twelve whole and partial report conditions. In 

these the number of targets, T was between 2 and 6 and the 

number of distractors, D was between 0 and 6. Further, 

exposure durations t were varied systematically at 10, 20, 

30, 40, 50, 70, 100, 150 and 200 ms. Each experimental 

condition was repeated 60 times but trials were mixed so 

that the subject had no a-priori knowledge of the 

experimental condition. Moreover trials were grouped into 

blocks to minimize the element of fatigue. Each presented 

character was immediately followed by a mask lasting for 

500 ms. Further information can be found in (Shibuya & 

Bundesen, 1988).  

                                                           
1 Assuming that only one spike should be allowed in each time 

step we must keep the integration step size sufficiently small. If the 

processing capacity C is 60 Hz, and the integration step size is kept 

at dt = 0.001, then the risk that two or more spikes will be present 

in a given time step is as low as 0.36 %. 

Performance of the neural network model 

Figure 3 shows accumulated score distributions. The score 

is defined as the number of targets reported correctly. The 

upper most curve represents the accumulated score of j = 1, 

i.e. the probability of reporting 1 or more targets correctly. 

Other curves represent accumulated probabilities for 

reporting at least 2, 3, 4 or even 5 targets.  

Shibuya and Bundesen (1988) proposed a mixture model, 

mixing probabilities obtained with using a statistical model 

that assumed memorial capacities of either K = 3 or K = 4 

respectively. 

There is a relatively close fit between the proposed 

mixture model and the empirical data. We see however that 

data points obtained with exposure duration around 50 ms 

are generally under-fitted and more noticeably the model 

does not account for cases where more than 4 targets are 

reported, as is actually the case in two out of three of the 

lower most plots. 

What we observe with the previous model can be 

considered a trade-off between two conflicting demands. 

The first demand is to fit the initial part of the curves, i.e. 

the larger the processing capacity C the steeper the curves 

will rise, on the other hand the second demand, which is to 

keep the score distribution reasonably low for long exposure 

durations, require that the processing capacity C is not set 

too high. Hence the setting of C is set subject to a 

compromise. 

Addressing the performance of our neural network model 

we think it clearly meets the standard of Shibuya and 

Bundesen’s model. The neural model does however seem to 

have some trouble predicting 4 recognized items in the 

situations where no distractors were presented. Possibly this 

misfit can be diminished by running a more exhaustive 

optimization of model parameters. The parameters used for 

producing the figure were: α*
 = 5, β* 

= 0.1, γ
*
 = 2, C = 61.5 

Hz, t0 = 23 ms and α = 0.367. Moreover, and in contrast to 

Shibuya and Bundesen’s model, our new model readily 

demonstrates its capability of predicting extreme cases, 

where more than 4 objects are reported. 
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Figure 3: Accumulated score distribution for subject MP in (Shibuya & Bundesen, 1988). Probability of correctly reporting 

at least 1 target (blue, open circles), 2 targets (green, open squares), 3 targets (red, closed squares), 4 targets (cyan, closed 

circles) and 5 targets (magenta, open triangles). Empirically found values are plotted with symbols as markers. The dotted 

lines represent the fit by Shibuya & Bundesen (1988). Solid lines represent the performance of our neural network model. T 

and D denote the number of targets and distractors presented, respectively. 

 

 

Discussion 

 

This work represents an attempt to integrate the Theory of 

Visual Attention (Bundesen, 1990) with a simple type of 

winners-take-all type of network (Usher & Cohen, 1999), in 

the sense that the later implements a limited storage 

capacity of VSTM. Our new dynamic model of visual 

attention and VSTM is able to account for the complete set 

of data from whole and partial report experiments. Where 

the previous account by Shibuya and Bundesen (1988) 

treated extreme scores as outliers, the new model 

encompasses these as natural consequences of the internal 

dynamics. Further, the model explains VSTM capacity and 

consolidation as the result of a dynamic process rather than  

as a static store, which capacity is independent of processing 

capacity and the attentional set of the subject.  

From daily life we know that humans are able to identify 

a very larger number of different objects. Therefore, we 

might think that we would have to include a neural 

assembly for each of these many objects candidates in our 

model of identification. However, what we shall argue is 

that our model’s predictions are not affected if irrelevant 

neural assemblies (representing non-stimuli type of objects) 

are not included in the model, a useful feature which we of 

course make use of when we simulate with the model. The 

reason for this is that in the model only activated neural 
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assemblies affect other assemblies, and so there is no lateral 

inhibition from inactive neural assemblies (which irrelevant 

assemblies tend to be) upon any other assembly. This means 

that adding more irrelevant assemblies generally does not 

affect our conclusions, except that computationally 

simulations become slower. 

The model described gives no account of identification of 

individual features of an object; however it would be 

possible to approach this situation by having one neural 

assembly in the network per object feature, rather than just 

one neural assembly per object. In this case assemblies 

representing features that belonged to the same object might 

be modeled as having little or no lateral inhibition, ensuring 

that several features of the same object can be encoded 

without taking up additional VSTM storage space (Luck & 

Vogel, 1997). 

Speaking of adding more neural assemblies, we ought to 

touch upon what it is that we think an assembly represents. 

Does the assembly manifest itself in one or more neurons, 

and how would this relate to efficient or distributed 

processing? The way we think about the model is that the 

assemblies conceptually represent different states of neural 

activation. As assumed, these states interact and as we have 

described we suppose that feedback mechanisms play an 

important role in keeping the activation of the assembly 

sustained, allowing for visual short-term memories. 

A possible confound of the model is that it does not 

consider internal noise, which is likely to play a key role in 

many neural systems. A way to deal with this would be to 

transform the input stage (the Poisson distributed spike 

trains, arriving with the rate parameter v) to a stochastic 

diffusion process with wiener noise process included. For 

this to make sense the activation threshold for consciousness 

would have to take a higher value than the level of initial 

activation. 

In future studies, we think it would be relevant to explore 

the implication of transforming the model into a stochastic 

differential equation as mentioned above. Because the 

model is temporally dependent it would also be interesting 

to know if it would be able to address the dynamic 

consolidation in VSTM found in temporally extended 

paradigms such as the attentional blink paradigm and 

studies of attentional dwell time; e.g. (Ward, Duncan, & 

Shapiro, 1996). Here, consolidation in VSTM is strongly 

dependent on competition between items already encoded 

into VSTM and visual items presented at a later point in 

time. Incorporation of such a competitive process follows 

naturally from the dynamic architecture of the present 

model.  
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