Computational and Explanatory Power of Cognitive Architectures:
The Case of ACT-R

Holger Schultheis (schulth @sfbtr8.uni-bremen.de)
SFB/TR 8 Spatial Cognition, Universitit Bremen, Enrique-Schmidt-Str. 5, 28359 Bremen, Germany

Abstract

Cognitive architectures constitute a generally preferable ap-
proach to create computational accounts of human cognition.
Yet, cognitive architectures are also hard to assess. Following
up on and extending the work of Cooper (2007), we further
assess the popular cognitive architecture ACT-R in this paper.
It turns out that ACT-R fares worse than one may expect both
regarding the scope of empirical effects it has been shown to
account for and regarding its explanatory power.

Keywords: cognitive architectures; Lakatos; Turing ma-
chines; counter machines; ACT-R.

Cognitive Architectures and Their Assessment

One approach to building computational models is to develop
the model as part of a cognitive architecture. Cognitive archi-
tectures can be characterized as implemented theories of the
fixed mechanisms and structures that underlie human cogni-
tion. As such cognitive architectures strive to offer a frame-
work in which all of human cognition can be modeled. Build-
ing on the common mechanisms provided by the architecture,
computational models for particular domains or tasks can be
created by adding task and domain specific information to
the architecture (cf. Lehman, Laird, & Rosenbloom, 1998).
Thus, a cognitive model developed in the scope of a cognitive
architecture can be viewed as consisting both of the architec-
tural mechanisms and the task / domain specific information
(i.e., content) added to the architecture.

Employing cognitive architectures for modeling human
cognition has the advantage that otherwise isolated and frag-
mentary accounts of human cognition can be integrated to ul-
timately (hopefully) yield an account of human cognition as a
whole (Newell, 1990). In this sense, building models in cog-
nitive architectures is preferable to building isolated models.
Obviously, this advantage of cognitive architecture will only
hold, if the employed architecture is a good approximation of
the general mechanisms and structures that underlie human
cognition. To not jeopardize the aim of arriving at a veridical
account of all human cognition, the quality of the cognitive
architecture needs to be assessed and possibly improved by
changing the architecture.

As Cooper (2007) points out, assessing cognitive architec-
tures is less straightforward than assessing isolated models.
Whereas isolated models lend themselves naturally to Pop-
perian falsification, cognitive architectures do not. Against
this background, already Newell (1990) argued that the de-
velopment of cognitive architectures should be guided not by
Popperian falsification but by criteria as arising from the the-
ory put forth by Lakatos (1970). Following this suggestion
and further supporting it, Cooper (2007) employs Lakatosian

384

criteria to assess the two architectures Soar (Newell, 1990)
and ACT-R (Anderson, 2007).

In this paper we bring to the foreground further criteria for
assessing the merit of cognitive architectures. Moreover, we
combine these additional criteria with the Lakatosian crite-
ria described in Cooper (2007) to continue the assessment of
the cognitive architecture ACT-R. To do this, we first briefly
describe the notions and criteria relevant for the assessment.
Subsequently, we assess ACT-R regarding these criteria. This
comprises (a) describing those aspects of ACT-R which are
most relevant for the presented assessment and (b) conduct-
ing formal and literature analyses to assess ACT-R’s standing
with respect to the considered criteria. Finally, we close with
some implications the assessment’s results have for (the fu-
ture development of) ACT-R.

Assessment Criteria
Lakatosian Criteria

According to Lakatos (1970) scientific development occurs in
the scope of so called research programs. Roughly speaking,
each such research program comprises both a hard core and
a protective belt. The hard core consists of all those assump-
tions which are central to the program, that is, giving them
up would mean to give up the research program. In contrast,
the protective belt is made up of assumptions and hypotheses
of a more peripheral nature, that is, assumptions which may
help to further specify aspects of the research program, but to
which the research program is not irrevocably committed.

Research programs generally develop by (empirically) test-
ing predictions derived from the hard core and the protective
belt. If the predictions are confirmed, this supports the re-
search program. If the predictions are refuted, this may lead
to a change of the protective belt (i.e., some peripheral as-
sumptions) of the research program. Depending on the con-
sequences of the change of the protective belt, Lakatos (1970)
calls a research program theoretically progressive or not. A
research program is theoretically progressive if and only if
the change of the assumptions increases the empirical con-
tent of the research program, that is, allows the research pro-
gram to account for more empirical phenomena than before
the change. Importantly, research programs which are not
theoretically progressive are not scientific but only pseudo-
scientific. Lakatos (1970) further categorizes research pro-
grams as to whether they are empirically progressive or not.
If and only if a research program’s predictions are empirically
confirmed, it is empirically progressive.

Sticking to Lakatos’ terminology, cognitive architectures
are research programs. Accordingly, one can use the notions



of theoretical and empirical progressiveness to assess cogni-
tive architectures. Consequently, following up on and adding
to the work of Cooper (2007), we more closely consider ACT-
R’s theoretical progressiveness in this contribution.

To Can and Cannot

The above outlined Lakatosian criteria stress the ability of
a cognitive architecture to account for empirical findings!.
What a cognitive architecture can account for is, however,
only one part of an architecture’s quality. As Roberts and
Pashler (2000) remark, it is equally important to decide on
the quality of a given architecture to know what the architec-
ture cannot account for. Neglecting the “cannot” aspect is a
serious problem, because a cognitive architecture is intended
to provide the basis to explain human behavior and not arbi-
trary behavior.

To illustrate the problem, consider a certain architecture
S which allows to model a certain empirically found effect f.
Let us assume that f is a reaction time difference between two
experimental conditions A and B such that reaction times are
longer in A. Assume further that f is the hypothetical (i.e., not
observed) effect that reaction times are longer in condition B.
An interesting question now is whether S also allows to model
f. If S allows modeling f, S accounts for both the empirically
found effect and its opposite.

Given such a situation, the explanatory value of S is called
into question. S is a cognitive architecture and should, thus,
realize the mechanisms and structure underlying human cog-
nition. $’s ability to account for both f and f undermines its
assumed cognitive plausibility, because humans do only be-
have according to f but not according to f. If the structure
and mechanisms of the human mind constrains human cogni-
tion and behavior to f, a cognitive architecture which allows
modeling f is erring with respect to at least some part of the
structure and mechanisms underlying human cognition.

Thus, to fully judge the quality of a cognitive architecture,
it is equally important to know what the architecture cannot
account for as it is to know what the architecture can account
for. Ideally, the architectural mechanisms and structure con-
stitute a framework which constrains the content that can be
added to it such that the set of all models possible in the archi-
tecture accounts for and only for all phenomena empirically
observable in human cognition and behavior (cf. also Taat-
gen, 2003).

In line with its importance and in addition to theoretical
progressiveness, the question what can and cannot be mod-
eled in ACT-R is one major point of inquiry in the subsequent
assessment of ACT-R.

IStrictly speaking, cognitive architectures per se do not account
directly for any empirical findings. Only the models which can
be build in an architecture can account for empirical phenomena.
However, to ease the subsequent exposition we will talk of architec-
tures that account for findings instead of using the more cumbersome
wording of architectures that allow building models which account
for empirical findings.

385

ACT-R

ACT-R (see Anderson, 2007; Anderson et al., 2004) consists
of several components which are called modules. One of
these modules, called the production module, stores and ex-
ecutes a set of productions. Each production specifies under
which conditions it is applicable. If the current state of the
ACT-R system satisfies a production’s conditions, the pro-
duction can be executed which will lead to a change of the
state of the system. Additional modules of ACT-R include
the declarative module (storing declarative knowledge in the
form of proposition-like pieces of knowledge called chunks),
the goal module (managing the current goal), and several per-
ceptual motor modules (realizing ACT-R’s interaction with
the environment). Each of these modules is interfaced to
the overall system by a buffer. The working of the procedu-
ral module draws heavily on these buffers. Production con-
ditions and effects are specified nearly exclusively in terms
of buffer content. The productions conditions are checked
against the buffers’ content and production application will
normally change the content of one or more buffers.

Regarding the Lakatosian criteria of architecture assess-
ment mentioned above it is interesting to what extent one can
distinguish the hard core and the protective belt realized by
ACT-R. As Cooper (2007) remarks, although the developers
of ACT-R have never explicitly used Lakatosian terminology
to draw such a distinction, such a distinction suggests itself
from the descriptions of the notions underlying ACT-R’s de-
velopment. For example, Anderson (1976, pp. 114) proposes
several “preconceived notions” which constitute the skele-
ton of ACT-R. These preconceived notions, such as to distin-
guish between and to employ both procedural and declarative
knowledge, constitute the hard core of ACT-R and have re-
mained unchanged since their proposal in 1976. All aspects
of ACT-R other than the preconceived notions can be viewed
as constituting the protective belt. For instance, the formulas
and mechanisms used to select one of several productions or
one of several pieces of declarative knowledge are part of the
peripheral assumptions.

This protective belt of ACT-R is largely parametrizable.
Using the parameters the architecture provides one can de-
termine both which of the peripheral assumptions to employ
(e.g., whether to use certain formulas to determine which pro-
duction to select) and how the selected peripheral assump-
tions behave. Since ACT-R has been first proposed by An-
derson (1976), its protective belt has changed considerably.
In its current version (6.0 [r723], see Bothell, 2009) which
we consider here, ACT-R has about 50 parameters. Only for
few of them general recommendations of how to set them ex-
ist (Anderson et al., 2004).

The Cannot in ACT-R

As a cognitive architecture, ACT-R constitutes a computa-
tional framework for building cognitive models. Due to this
computational nature one manifest starting point to investi-
gate what ACT-R cannot do is to ask which subset of the set



of all computable functions cannot be realized in ACT-R. As
it turns out, there are no functions which can be computed, in
principle, but not in ACT-R. In the following, we prove this
constructively by presenting two particular ACT-R models?.

Universal Turing Machine A Turing machine is a com-
puting machine which was introduced by Turing (1936). A
Turing machine consists of an infinite tape partitioned into
cells and a control unit moving over the tape. Each cell con-
tains a single symbol and each machine can deal only with a
finite, predefined set of symbols. The control unit can read
and write on the tape one cell at a time and can move from
one cell to one of the two neighboring cell. At every point in
time the Turing machine is in one of a finite number of states.
Depending on the machine’s current state and what is read
from the cell currently in focus, the machine will write to the
cell in focus and / or move to an adjacent cell.

Although quite simple in their setup, Turing machines have
been found to be able to compute a wide range of functions
(see Minsky, 1967, for an in-depth treatment of Turing ma-
chines and several example machines). More precisely, it is
generally assumed—though unproven—that the set of func-
tions which can be computed by Turing machines is identical
to the set of all computable functions. What is more, certain
Turing machines, called universal Turing machines, are able
to emulate the working of any other Turing machine, that is,
universal Turing machines can compute anything that Turing
machines in general can compute. Put differently, universal
Turing machines are computing machines which can compute
all computable functions. In the remainder of this section we
describe an ACT-R model which emulates a universal Turing
machine. The chosen machine is a machine with 4 states and
6 symbols which has been proposed by Rogozhin (1996).

To emulate the chosen machine, the tape of the machine is
realized as the content of the declarative module. Each cell
on the tape is represented by a chunk in declarative memory.
Such a chunk c essentially stores (a) the symbol contained in
the cell ¢ represents, (b) the chunk which represents the cell
which would be to the right of the cell represented by ¢ on the
tape, and (c) the chunk which represents the cell which would
be to the left of the cell represented by ¢ on the tape.

The goal buffer contains the chunk representing the cell
that is currently in focus. In addition to the cell information
the goal buffer also stores the current state of the machine.

The reading and writing of information onto the tape as
well as the movement of the control unit is realized by pro-
ductions. Basically, four types of productions are employed
to realize the operations of the control unit:

e update: Depending on the current state of the machine and
the symbol in the current cell (i.e., the corresponding sym-
bol stored in the goal buffer), this type of production writes
a symbol into the current cell (i.e., updates the correspond-

ing slot in the goal buffer).

ZModel code is available from http://www.cosy.informatik.uni-
bremen.de/staff/schultheis/ICCM09-models/

386

e prepare transition: As described above, the combination of
a state and symbol also affords a move of the control unit.
This type of production prepares such a move. By draw-
ing on the information about the neighboring cells given in
the currently focused-on cell, the production requests the
retrieval of the appropriate chunk (i.e., the chunk repre-
senting the cell to move to).

get next: The “get next” type of production is applicable
whenever a chunk representing a cell on the tape is avail-
able in the retrieval buffer. The main purpose of this pro-
duction type is to modify the cell representation in the re-
trieval buffer such that it can serve as the representation of
the current cell in the goal buffer. This preparation com-
prises basically two things. First, the machine’s state as re-
sulting from the previously encountered state-symbol com-
bination is stored in the appropriate slot of the chunk in the
retrieval buffer. Second, the chunk currently in the goal
buffer is stored as either the right or left neighbor of the
cell represented by the chunk in the retrieval buffer. If the
control unit has “moved” to the left, the chunk in the goal
buffer is stored as the right neighbor and vice versa.

e do transition: This type of production replaces the chunk
currently in the goal buffer with the chunk currently in the
retrieval buffer.

These four types of productions when being executed in
the sequence in which they were described constitute one el-
ementary operation of a Turing machine: Read a symbol and
then, based on the combination of current state and the read
symbol, write a symbol, update the state and move to the next
cell. Since the movement direction, the state to change to,
and the symbol to be written depend on the previous state and
the read symbol, for each possible state-symbol combination
these four productions have to be slightly different. Conse-
quently, to emulate the universal Turing machine in question,
our model employs a variation of this 4-tupel of productions
for each of the 24 possible state-symbol combinations.

Representing the tape by declarative memory and the
working of the control unit by productions as described, al-
lows to emulate the universal Turing machine by running the
model in ACT-R. The only thing one has to do to emulate the
machine computing a certain function is to provide the ini-
tial tape configuration as chunks in declarative memory and
to set the initial focus to the appropriate cell of the initial tape
configuration. We have successfully emulated several Turing
machines using this approach. For these model runs we en-
abled sub-symbolic processing in ACT-R and set the latency
factor parameter to 0.1. All other parameters of ACT-R were
left at their default values as described in Bothell (2009).

Consequently, as the presented model runs completely in
ACT-R, ACT-R allows to emulate a universal Turing ma-
chine. This shows that there is no computable function which
cannot be computed in ACT-R. Moreover, the model we de-
scribe next demonstrates that this is not the only way to real-
ize universal computation in ACT-R.



Universal Counter Machine A second class of comput-
ing machines is called counter machines. A counter machine
comprises a finite number of registers and can interpret a fi-
nite set of instructions. The registers store integer values and
can be tested and manipulated by the instructions which are
part of the instruction set of the machine. To compute some
function f, a counter machine has to be equipped with an
initial set of values in its registers and a program, that is, a
sequence of instructions from the machine’s instruction set.
The machine will execute the program and once the end of
the program is reached, the result of the computation will be
available in one (or more) of the registers.

Minsky (1967, pp. 255) has proven that a counter machine
employing only three instructions and two registers can com-
pute any computable function. The required instructions are
INC(7;) (add 1 to register r; and go to the next instruction),
JZDEC(r;, n) (if r; = 0 go to instruction n, otherwise subtract
1 from r; and go to the next instruction), and GO(n) (go to
instruction xn). Since this counter machine is universal, for
any computable function f there exists a program (i.e., a se-
quence of instructions) and an initial value for both registers
such that the counter machine computes f.

As in the case of Turing machines, it is possible to emu-
late computation using counter machines by devising appro-
priate ACT-R models. To show this, it suffices to explain
how an ACT-R model can realize (a) the two registers, (b)
the three instructions, and (c) the sequence of instructions. In
our model, the two registers are realized as slots in a chunk,
where this chunk remains in the goal buffer for the complete
model run. The instructions are realized as productions. To
control the sequence of instructions a third slot in the chunk
in the goal buffer stores a label. This label is tested in the
condition of the productions such that only the production
corresponding to the current label is applicable. Against this
background the three types of instructions outlined above can
then be transcribed by productions as follows:

e INC(r;): This instruction is realized by reading the current
value of r; from the goal chunk, adding 1 to that value by
using the !bind! statement of ACT-R, and storing the re-

sulting value again in the goal chunk.

Go(n): To effect such a GO statement, a production needs
only to change the label in the goal chunk such that it cor-
responds to instruction #.

JZDEC(r;, n): Two productions are necessary to transcribe
this instruction. Both productions test the content of r; us-
ing the 'eval! statement of ACT-R. The first production
is only applicable if r; = 0 holds and essentially works as
the production mimicking the GO instruction. The second
production is only applicable if ; > 0 holds and subtracts
1 from r; analogous to the workings of the INC instruction.

Importantly, these methods for transcribing a program of
the universal counter machine as an ACT-R model, are not
program specific. Put differently, any program formulated for

387

the universal counter machine can be transcribed as an ACT-
R model. Consequently, the universal counter machine can be
completely emulated in ACT-R. To illustrate the emulation of
the counter machine, we implemented a model which com-
putes the sum of two numbers. The parameter settings for
this model are identical to those used in the Turing machine
model. By appropriately initializing the first register, running
the model computes the sum of the two numbers and encodes
the result as a number in the first register.

The possibility to emulate a universal counter machine in
ACT-R provides additional evidence that there is no com-
putable function that cannot be realized in ACT-R. Although
this second evidence may seem unessential, as explained in
the next section, the fact that universal computation can be
realized in ACT-R in more than one way is of relevance for
assessing the architecture.

Summary and Discussion Both models presented above
paint a clear picture of which functions cannot be realized
in ACT-R: There is simply no computable function that can-
not be computed using ACT-R. That is, ACT-R does not seem
to fulfill the requirement to constrain the models that can be
built in it too well. Consequently, at least regarding the “can-
not” criterion ACT-R fares poorly.

One may be inclined to object to this conclusion or the way
it was brought about. Therefore, we list and discuss several
possible objections in the remainder of this section.

First, one may argue that the fact that ACT-R is Turing-
complete is neither new nor problematic. Regarding original-
ity, Anderson (1976, pp. 140) already presented the sketch of
a proof of ACT-R’s Turing completeness. However, the proof
presented in Anderson (1976) refers to the initial version of
the cognitive architecture. Over the past 30 years the overall
setup of the architecture has changed considerably. In par-
ticular, certain changes (see e.g., Anderson & Lebiere, 1998,
p. 440) were explicitly implemented to reduce the compu-
tational power of ACT-R. Thus, the Turing completeness of
ACT-R in its current version could not be derived from the
1976 proof, but had to be newly established.

Yet, Turing completeness of ACT-R (or any cognitive ar-
chitecture) may not be considered a problem. In propos-
ing the physical symbol system hypothesis Newell (1980) ar-
gued that any system able to realize human-level intelligence
necessarily needs to be Turing-complete. Against this back-
ground, it may not be immediately obvious why the above de-
scribed models constitute problems for ACT-R. The problem
is that it is unclear and dubitable that the presented models
realize Turing completeness appropriately. As the two mod-
els indicate, Turing completeness can be realized in several
ways. When using universal computing machines to achieve
results in computation theory it may not be crucial which
of all possible realizations of universal computation one em-
ploys. For a cognitive architecture such as ACT-R, however,
the way universal computation is achieved is essential. Striv-
ing to constitute a theory of human cognition as a whole,
ACT-R must realize Turing completeness in the same way



as Turing completeness is achieved in the human cognitive
system. Among other things, this requires that the timing
behavior of the architecture and of human cognition match
closely. Thus, computing any function f in ACT-R should
take about the same time as human cognition requires to com-
pute f. Put differently, to live up to its aim of being a sat-
isfactory cognitive architecture, ACT-R should not allow to
compute f considerably faster or slower than the human cog-
nitive system computes f. This is not the case, since, as the
two models show, ACT-R can be made to compute any f in
a wide range of times. Different universal machines diverge
considerably with respect to the time they need to compute
any f (e.g., Woods & Neary, 2009). The two models prove
that there is a wide range of universal machines which can
be realized in ACT-R. Not only does ACT-R allow imple-
menting different types of universal computing devices (i.e.,
Turing machines and counter machines), but also for each of
these types numerous instances can be realized. For example,
one could implement a universal Turing machine with dif-
ferent states, symbols, and transition rules (Rogozhin, 1996).
Likewise, universal counter machines with different instruc-
tion sets and / or more registers (Minsky, 1967) can be built
in ACT-R analogously to the second model described above.
Thus, ACT-R allows to realize any function with a wide range
of times. In the worst case, it may even be possible that any
function can be realized in arbitrary time in ACT-R. Regard-
less whether this is the case, it seems clear that their is too few
which ACT-R cannot do, to consider ACT-R as satisfactorily
constraining what can be implemented in it.

A second objection that may be raised concerns the com-
pliancy of the models, that is, the extent to which the models
are formulated in keeping with the spirit of the architecture
(Young, 2003). Perhaps one may want to argue that some
of the model’s components are violating one or more theo-
retical stances implicitly being part of the architecture. One
difficulty with such an argument is that there is no clear and
explicit definition of what type of model components do and
which type of model components do not keep with the spirit
of ACT-R. In addition, for constituting a satisfactory account
of the fixed mechanisms and structures underlying human
cognition, it should be the architecture itself and not some
code of how to use the architecture that constrains what mod-
els one can build in the architecture. Thus, an objection in
terms of compliancy fails to address the core issue brought
up by the above presented models and considerations.

In summary, the presented analyses indicates that what
cannot be done in ACT-R is considerably less than desirable.
Multiple realizability of universal computation on several dif-
ferent time scales leaves too much room for implementing be-
havior which ACT-R should not allow to be implemented. As
a result, ACT-R’s ability to meet the “cannot” criterion is, to
say the least, debatable.

The Can in ACT-R

After having considered what ACT-R cannot do, we now turn
to the question what ACT-R can do. A first answer to this

388

question directly derives from the models presented above:
ACT-R allows to compute every computable function. How-
ever, this is, as also mentioned above, only a partially satis-
factory answer. To fully judge ACT-R’s “can” ability, it is
important to more closely consider whether ACT-R allows to
compute these functions as the human cognitive system com-
putes them (e.g., regarding timing). Essentially this amounts
to examine for which tasks and domains of cognition ACT-R
models can be built that closely mimic human behavior and
cognition. In Lakatosian terms, it is necessary to examine the
empirical content of ACT-R.

Judging from the plethora of publications on ACT-R (mod-
els) listed on the ACT-R web site one would expect that
ACT-R does well with respect to this empirical content cri-
terion. To verify this impression of ACT-R’s empirical con-
tent, we reviewed all papers presenting ACT-R models which
were listed on the ACT-R site as being published either 2007
or 2008. These two years were chosen because they presum-
ably represent the current state of the art in ACT-R modeling.

Overall 35 papers presenting models accounting for vari-
ous aspects of human cognition are available. This is an im-
pressive number which seems to indicate the large empirical
content encompassed by ACT-R. On closer inspection, how-
ever, it turns out that the empirical content of the current ACT-
R version is (a) unclear and (b) probably less than suggested
by the number of presented models. The reason for this is
the way the ACT-R community proceeds with the change of
parts of the protective belt of ACT-R—both across and within
different ACT-R versions.

Each change in version is accompanied by a change of at
least some of the peripheral assumptions in ACT-R. For ex-
ample, from ACT-R 4 to ACT-R 5 the goal stack was replaced
by the goal buffer and from ACT-R 5 to ACT-R 6 the for-
mula for computing production utility was considerably mod-
ified. Although there is, of course, nothing wrong with such
changes per se, for each of these changes it is mostly unclear
whether they are theoretically progressive, that is, whether
they increase the empirical content of ACT-R. To show that
the current ACT-R version’s content is increased compared
to its predecessors would require to prove (by reimplemen-
tation in the current version) that empirical phenomena ac-
counted for by older ACT-R versions can still be accounted
for by the current version. Such reimplementation is rarely
done. On the contrary, even 2008 published modeling work
is partly conducted in ACT-R 4 (e.g., Altmann & Gray, 2008)
and ACT-R 5 (e.g., Gunzelmann & Gluck, 2008).

Furthermore, even for single ACT-R versions, the empiri-
cal content is unclear. There are mainly two reasons for that:
First, by appropriately setting particular parameters several
peripheral assumptions can be and are switched on or off at
will. For instance, some models employ base-level learning
or production learning while others do employ neither. Sec-
ond, it is not unusual for ACT-R modeling work to modify
or extend the protective belt. Of the 35 modeling paper re-
viewed, 17 considerably changed the protective belt, for ex-



ample, by changing existing modules (e.g., Maanen & Rijn,
2007) or adding new modules (e.g., Juvina & Taatgen, 2007).
This frequent change of the protective belt across and
within ACT-R versions renders it difficult to judge the empir-
ical content of the current version of ACT-R. Whether all the
modeling work employing differing protective belts is recon-
cilable is an open question. Due to this problem, it is not clear
whether ACT-R is theoretically progressive. But even if it is,
ACT-R’s empirical content remains to be determined.

Conclusion

In this paper we picked up on and extended the methodology
proposed by Cooper (2007) to assess the merit of cognitive ar-
chitectures. We applied the methodology to one of the most
commonly employed cognitive architectures, ACT-R. In this
assessment, ACT-R fares worse than one may have expected.
For one, ACT-R’s ability to account for human cognition is
less evident than suggested by the available host of model-
ing papers employing ACT-R. It remains to be investigated
to what extent different modeling work can be integrated into
ACT-R without varying its peripheral assumptions. Even if
ACT-R’s ability to account for empirical data turns out to be
substantial, the explanatory value of this is called into ques-
tion by ACT-R’s computational power. Since ACT-R in its
current version must be assumed to allow computing func-
tions in a lot of ways different from human cognition, it is
unclear to what extent ACT-R mirrors and, thus, explains the
mechanisms and structure underlying human cognition.

Overall, ACT-R has served and still serves an important
function in providing a platform for modeling human cogni-
tion. Interesting accounts of various aspects of human cog-
nition have been formalized in ACT-R. Yet, to substantiate
ACT-R’s status as a cognitive architecture constituting a uni-
fied theory of cognition, it is necessary (a) to more closely de-
termine its actual empirical content and (b) to more strongly
constrain what ACT-R allows to be implemented.

Acknowledgments

In this paper work done in the project R1-[Image-Space] of
the Transregional Collaborative Research Center SFB/TR 8
Spatial Cognition is presented. Funding by the German Re-
search Foundation (DFG) is gratefully acknowledged. We
also thank Astrid Kurbjuweit for fruitful discussions and two
anonymous reviewers for their constructive comments.

References

Altmann, E. M., & Gray, W. D. (2008). An integrated model
of cognitive control in task switching. Psychological Re-
view, 115, 602-639.

Anderson, J. R. (1976). Language, memory, and thought.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Anderson, J. R. (2007). How can the human mind occur in
the physical universe? New York: Oxford University Press.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y. (2004). An integrated theory of
the mind. Psychological Review, 111(4), 1036 - 1060.

389

Anderson, J. R., & Lebiere, C. (1998). The atomic compo-
nents of thought. Mahwah, NJ: Lawrence Erlbaum.

Bothell, D. (2009). ACT-R 6.0 reference man-
ual. Retrieved February 5, 2009, from http://act-
r.psy.cmu.edu/actr6/reference-manual.pdf. [Computer soft-
ware manual].

Cooper, R. P. (2007). The role of falsification in the develop-
ment of cognitive architectures: Insights from a Lakatosian
analysis. Cognitive Science, 31, 509-533.

Gunzelmann, G., & Gluck, K. A. (2008). Approaches to
modeling the effects of fatigue on cognitive performance.
In Proceedings of the 17th Conference on Behavior Repre-
sentation in Modeling and Simulation.

Juvina, I., & Taatgen, N. (2007). Modeling control strategies
in the n-back task. In Proceedings of the 8th International
Conference on Cognitive Modeling.

Lakatos, I. (1970). Falsification and the methodology of sci-
entific research programs. In I. Lakatos & A. Musgrave
(Eds.), Criticism and the growth of knowledge. Cambridge,
UK: Cambridge University Press.

Lehman, J. F., Laird, J., & Rosenbloom, P. (1998). A gentle
introduction to Soar, an architecture for human cognition.
In S. Sternberg & D. Scarborough (Eds.), Invitation to Cog-
nitive Science, Volume 4. Cambridge, MA: MIT Press.

Maanen, L. van, & Rijn, H. van. (2007). An accumula-
tor model of semantic interference. Cognitive Systems Re-
search, 8, 174-181.

Minsky, M. (1967). Computation — Finite and infinite ma-
chines. Englewood Cliffs, NJ: Prentice Hall.

Newell, A. (1980). Physical symbol systems. Cognitive Sci-
ence, 4,135 - 183.

Newell, A. (1990). Unified theories of cognition. Cambridge,
MA: Harvard University Press.

Roberts, S., & Pashler, H. (2000). How persuasive is a good
fit? A comment on theory testing. Psychological Review,
107,358 - 367.

Rogozhin, Y. (1996). Small universal turing machines. The-
oretical Computer Science, 168, 215-240.

Taatgen, N. (2003). Poppering the Newell Test. Behavioral
and Brain Sciences, 26, 621 - 622.

Turing, A. M. (1936). On computable numbers, with an
application to the Entscheidungsproblem. Proceedings of
the London Mathematical Society, 2-42, 230-265.

Woods, D., & Neary, T. (2009). The complexity of small uni-
versal Turing machines: A survey. Theoretical Computer
Science, 410, 443-450.

Young, R. M. (2003). Cognitive architectures need compli-
ancy not universality. Behavioral and Brain Sciences, 26,
628.



