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Abstract

The procedure by which humans identify checks in check posi-
tions is not well understood. We report here our experience in
modelling this process with CHREST, a general-purpose cog-
nitive model that has previously successfully captured a vari-
ety of attention- and perception-related phenomena. We have
attempted to reproduce the results of an experiment investigat-
ing the ability of humans to determine checks in simple chess
positions. We propose a specific model of how humans per-
form this experiment, and show that, given certain reasonable
assumptions, CHREST can follow this model to create a good
reproduction of the data.
Keywords: CHREST; cognitive model; cognitive architec-
ture; chess; check detection

Motivation
In studying the general phenomenon of human perception,
we have looked at the specific task of perceiving checks in
the game of chess. This task involves a player being presented
with a chess position with a requirement to determine whether
or not the player’s king is being threatened by another piece.

Experiments on human subjects have provided data about
how well they perform this task, but we have no good model
of how the underlying psychological processes work in this
situation. Identifying threats in games is a complex task
which explores the process of visual attention when guided
by interpretation of higher goals. Understanding these pro-
cesses may help shed light on a variety of aspects of attention
and perception.

Although understanding these processes is a desirable goal
in itself, we are also interested in modelling this process as
part of a larger project to produce a cognitive model which,
whilst operating under human constraints, plays chess in a
human-like way. Successfully modelling the check percep-
tion process would be a step towards this aim, as well as a
verification of the parameters of the model itself.

Background
Saariluoma conducted a series of experiments (Saariluoma,
1984) relating to the perception abilities of humans through
the medium of chess. We are concerned with one experiment
in particular: this was to measure how quickly players could
determine, given a chess position consisting of a white king

and one other black piece, whether or not the king was in
check. The subjects of the experiment included chess players
with a mix of skill levels: two complete beginners, three un-
rated amateurs, two experts (ELO rating around 2,000 points)
and a high-class international Grand Master.

Analysis of the results of this experiment showed a very
significant (p < 0.001) correlation of reaction speed with
chess ability: the Grand Master took around a third of the
time to return a decision compared to the mean of the reac-
tion times of the beginners.

Saariluoma noted that experienced players must perform at
least some of the operations involved in the task more quickly
than less experienced players, but did not predict which ones.
It is known that a few of these processes are improved with
practice, such as recognition of pieces (Saariluoma, 1984),
speed of making moves in the mind’s eye (Church & Church,
1977; Milojkovic, 1982); these have been addressed in our
model (see below).

Whilst it is plausible that other cognitive processes in-
volved may be improved through practice, we hypothesise
that the greater relevant knowledge acquired by more experi-
enced players should account for the main part of the remain-
ing difference.

It is difficult to test this hypothesis on human subjects due
to the obvious challenges of controlling for the amount of
domain knowledge acquired and isolating the relevant pro-
cesses. In order to investigate this hypothesis, the use of a
cognitive model would be helpful in order to manipulate these
factors directly.

A successful model should be able to demonstrate the su-
periority of experts over novices in the check detection task,
and explain why.

CHREST
CHREST (Chunk Hierarchy and REtrieval STructures)
(Gobet et al., 2001) is a general-purpose cognitive architec-
ture designed to simulate certain aspects of the human mind1,
including, to the extent that these have been measured or can

1For information on CHREST beyond what is presented here,
the interested reader is referred to the CHREST website at
http://chrest.info
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Figure 1: An overview of the main components of the
CHREST cognitive architecture.

be estimated, its limitations (an important requirement of a
model that aspires to simulate human cognition is that it not
make use of any abilities in excess of that of a human (Simon,
1969)).

CHREST has previously been shown to be a successful
model of the mind in domains as diverse as physics represen-
tation (Lane, Cheng, & Gobet, 2000), language acquisition
(Jones, Gobet, & Pine, 2005; Freudenthal, Pine, Aguado-
Orea, & Gobet, 2007), and ageing (Smith, Gobet, & Lane,
2007); however, the simulation of perception and memory in
chess (de Groot & Gobet, 1996; Gobet & Simon, 2000; Gobet
& Waters, 2003) has been CHREST’s most studied applica-
tion.

Figure 1 shows a top-level overview of the CHREST archi-
tecture. It simulates the main divisions of memory in humans
as is generally agreed upon (Baddeley, 1990): a short-term
memory (STM) store, and a long-term memory (LTM) store.
In addition, it has an advanced perception/attention system.

CHREST’s memory system is based on chunking theory
(Chase & Simon, 1973), which holds that information in the
human mind is stored as chunks. Chunks are discrete col-
lections of features that have some meaning when grouped
together. In the domain of chess, the features that make up

chunks in CHREST are man-on-square combinations such as
“White king on square g1”. A chunk containing this feature,
and representing a standard castled white king could be rep-
resented as the set: {Kg1, Rf1, Pf2, Pg2, Ph2}, where the first
letter is the first letter of the piece’s name.

CHREST’s LTM is made up of a hierarchical network of
these chunks. Its organisation is primarily tree-based, though
the presence of semantic links adds a graph-like flavour.
Knowledge is added to LTM through two main learning pro-
cesses. When a new pattern is encountered, it is compared
to previously-learnt chunks: if it does not match any known
chunk, then a new chunk is created containing some of the
new information (discrimination); if it does match a known
chunk, then some of the information in the pattern is added to
that chunk (familiarisation).

CHREST’s STM has a capacity of up to four chunks. There
is good evidence that this is the approximate STM capacity
of young adult humans (Luck & Vogel, 1997; Cowan, 2001).
These chunks are references to chunks held in LTM (again,
as indicated by recent research (Gobet et al., 2001)).

Attention in CHREST is represented through simulated eye
movements (this is a slight simplification of the human atten-
tion system, but this approach is relatively easy to simulate
and its output can be verified against recorded human data).

CHREST’s attention is directed through information previ-
ously learnt and added to LTM, and a set of heuristics. The
basic heuristics, such as “look at the centre of the board”,
“look at objects grouped together”, and “follow a potential
move from an observed piece” guide the perception of basic
patterns, which are incorporated into LTM as chunks.

As more information-rich chunks are acquired, this learnt
information is used to guide the focus of attention. When an
observed pattern is recognised as a previously-learnt chunk,
a reference to the chunk is placed in STM, and this selected
information may be used to provide a new focus. If a chunk
referenced in STM is linked to another chunk in LTM, then
CHREST’s attention is directed towards locations contain-
ing objects in the linked chunk that are disjoint from the ob-
jects recorded in the recognised chunk. This process allows
CHREST to focus on the distinguishing features of a scene.

Patterns, then, are perceived on the board according to
previously-learnt chunks, and chunks are built up out of per-
ceived patterns; this interplay between the learning cycle and
the perception system results in complex emergent behaviour.
In previous work (de Groot & Gobet, 1996), the eye move-
ments generated by CHREST during a simulated presenta-
tion of a chess position have been shown to be comparable to
those of Masters.

See (Lane, Gobet, & Smith, 2008) for more details of the
attention system.

CHREST Configuration
The version of CHREST used for these experiments was the
3.0 beta version. The code base of this version has been
mostly rewritten from the 2.x version. It represents a sub-
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stantial evolution of the model and a major step forward to-
wards a full release of a complete CHREST 3. As well as
being more flexible and better able to make use of modern
computing technology, this version of CHREST has a num-
ber of new features: notably, it understands chess at a deeper
level, includes a customised experiment framework which au-
tomatically performs and reports on sets of experiments, and
has the ability to perceive and learn from full games rather
than selected positions.

In order to simulate the variety of individuals employed in
the human experiments, a series of CHREST subjects2 with
varying LTM sizes was produced: 20 each with a network
size of one of 100, 1,000, 10,000, 100,000 nodes. (These
different network sizes represented players of different skill
level).

Most of the training of these subjects was carried out using
a set of 10,000 games played during 2008 between players
with ELO ratings of above 2000. Each subject was allowed
to learn from the state of the game board at random inter-
vals during simulated play-throughs of the games until the
required network size was reached.

In addition, each subject was specifically trained on boards
with a king and one other piece (all possible configurations
of this type were produced to make up a training set). A total
of 10% of each subject’s LTM network was generated in this
way, reflecting the fact that checking positions are very com-
mon in rapid and speed chess games, which most chess play-
ers use as a form of practice (Gobet & Campitelli, 2007). This
figure is necessarily only an estimate of real-life behaviour
due to a lack of empirical data at this time, but it was esti-
mated in advance and not fitted to the model’s result.

As in the Saariluoma experiment, 60 chess positions were
generated for testing. A white king was placed on the board,
along with a black queen, rook, bishop, or knight. For each
position, the locations of the pieces were randomised, with
the constraint that the king was placed on a square in which
it was in check in half of the positions.

Timings played an important part in the experiments; time
was one limiting factor for CHREST’s perceptual cycle, and
the time taken for CHREST to decide if a position contained
a check was the main dependent variable in the experiments.

CHREST uses an internal clock which accumulates the
processing times of simulated operations. These times are
(where possible) taken from human experiments, or other-
wise (where experimentation has not yet been possible), taken
from sensible estimates (see (de Groot & Gobet, 1996) for de-
tails).

Unless otherwise noted, timings used were the standard
timings which have evolved in CHREST:

• A constant 200 ms was added to all trials to simulate ini-
tial reaction to the stimulus, motor preparation, and motor
response (i.e. pressing the button). Visual reaction times

2We use the term subject here to distinguish the computational
instantiation of a model (complete with data) from the theoretical
model

have been recorded as in the region 180 to 200 ms for
university-age students (Brebner & Welford, 1980), though
increasing with age (Welford, 1977).

• Saariluoma found, in a previous experiment (Saariluoma,
1984), that novices were slower than experts in recognising
chessmen. The mean difference between the two groups
was 57.1 ms; this value was added to the clock as time
taken to recognise each piece for the 100 and 1,000-node
network (this division was slightly arbitrary as it might be
expected that the delay would be a gradient rather than bi-
nary, but we have no better data).

• From their analysis of experimental results, de Groot and
Gobet (1996) proposed definite parameters for the time re-
quired to move pieces in the mind’s eye. These parameters
consisted of a base time, the time taken to begin making
a move, and a square time, the time taken per square to
move a piece. The first was estimated as 100 ms, and the
second as 50 ms for experts, and 100 ms for novices. We
have used these same values.

Modelling Check Perception
We have described the domain of interest, that of the hu-
man process of perceiving and determining checks, and the
general-purpose cognitive architecture that we are using to
investigate it. Now we consider how to specifically adapt the
model to the domain.

It has already been shown that the memorisation of chess
positions under human constraints — see (de Groot, 1978) —
can be improved through prior knowledge of chess positions.
We propose that the process of determining whether a king
is in check from another piece, given that the location and
types of both pieces have been established, benefits from the
presence in memory of previously encoded chunks of chess
positions.

Our hypothesis for the superiority of experts over novices
in detecting checks lies in chunking theory (Chase & Simon,
1973). Following previous work (Gobet & Jansen, 1994), we
hypothesise that links are formed between the learnt visuo-
spatial chunks and more abstract knowledge; for example,
moves associated with the chunk, the goodness of the chunk
in positional terms, and, of interest with respect to our partic-
ular domain, whether the chunk contains a check or not.

Our model, set up as above, simulates the experiment as
follows. The simulated subjects were presented with a test
position and allowed to perceive it until they had observed
two pieces. Once this was achieved, they attempted to decide
whether the king was being attacked by the other piece.

If the two pieces were recognised as a chunk already stored
in their LTM, then the subject was assumed to be able to
quickly (we have assumed 10 ms — the standard time taken
to traverse an LTM link) identify whether the position was a
check or not. Essentially, the subject would have exhibited
automaticity (Shiffrin & Schneider, 1977).
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If no such chunk was recognised, then a simulated attempt
to determine check was carried out, by ’moving’ the non-king
piece towards the king with simulated eye movements (pre-
vious work has demonstrated this proportionality to distance
effect (Church & Church, 1977)), and checking this by ’mov-
ing’ the king towards the other piece in a similar fashion. We
assume that double verification of the check relation occurs
here, but not when a chunk has been identified, as mentally
moving pieces in the mind’s eye is more likely to generate
errors than when a pattern has been recognized (for a dis-
cussion of the difficulty of generating moves in the mind’s
eye and playing blindfold chess, see (Saariluoma, 1984), and
(Campitelli & Gobet, 2005)).

Experiment 1: Standard Perceptual Strategies
For the first experiment, our initial model made use of stan-
dard strategies to guide perception when studying each po-
sition: i.e. the use of LTM guidance, and fall-back general-
purpose heuristics as described above and used in the training
of the networks. These results are shown in table 1 and figure
2. The human data collected in (Saariluoma, 1984) are shown
for comparison3.

The results demonstrate some success of the approach in
modelling the data (r2 = 0.92): specifically, they show the
required qualitative interaction of LTM size (acquired knowl-
edge) with time, and are within around 200 ms of the times
of the novice players. However, the results diverge from the
human data considerably when considering performance of
expert-level and above.

These strategies have previously been shown to be an ac-
curate model of expert eye movements in perceiving scenes,
but they clearly do not fully capture behaviour in this domain.

Table 1: Time taken to make a check perception decision as
simulated by CHREST for players of different skill levels us-
ing standard perceptual strategies (Experiment 1).

LTM Network Size (nodes) Time Taken (ms)
100 1,705
1,000 1,403
10,000 1,301
100,000 1,068

Experiment 2: Simplified Perceptual Strategy
Following the results of the first experiment, we hypothesised
that players are using their meta-knowledge about the prob-
lem to re-orient their perceptual strategies. As the model con-
sistently overestimated the time taken, we suspected that the
perceptual strategies used by CHREST were too involved and
that humans used a simpler strategy.

Our revised model was that the subject would automati-
cally perceive a man on the board using far peripheral vision

3The exact human data were not available and so have been read
from the graph supplied in (Saariluoma, 1984)

Figure 2: Time taken to make a check perception decision
as simulated by CHREST for players of different skill lev-
els using standard perceptual strategies (Experiment 1). The
human data are shown for comparison.

and direct their attention towards it. The subject would then
make use of their near peripheral vision (set at ±2 squares
from the focal point) to recognise another piece if one was in
range. If no piece was in range, the player would detect the
other piece using their far peripheral vision, and refocus on
that point following a saccade (thus, making one, or a max-
imum of two, eye fixations; in the previous experiment, the
focus could be directed towards empty squares).

The results of re-running the experiment using this strat-
egy are shown in table 2 and figure 3. This time the results
are a significantly better fit to the human data (r2 = 0.94),
again showing the qualitative interaction, but matching the
data quantitatively to within 200 ms at worst. In this experi-
ment, however, the results better match the data for advanced
players rather than novices.

Table 2: Time taken to make a check perception decision as
simulated by CHREST for players of different skill levels us-
ing standard perceptual strategies (Experiment 2).

LTM Network Size (nodes) Time Taken (ms)
100 1,320
1,000 1,010
10,000 883
100,000 606

Discussion of Results
Before discussing the results, we note that there are some lim-
itations to the study and suggest some other reasons for cau-
tion in interpreting the results.

We have assumed above that our choices of four net-
work sizes — {100, 1,000, 10,000, 100,000} — correspond
to Saariluoma’s categorisation of his subjects — {Fourth
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Figure 3: Time taken to make a check perception decision
as simulated by CHREST for players of different skill lev-
els using standard perceptual strategies (Experiment 2). The
human data are shown for comparison.

Class, Second, Class, Experts, Grand Masters} — but this
is not clear. For obvious reasons it is not possible to directly
measure the number of chunks learnt by a human subject,
so we used a logarithmic progression as an approximation.
100 chunks is probably too many for a beginner who is still
learning how the pieces move (though it makes no difference
to the result as no chunks were recognised by the 100-node
networks) and estimates of the number of chunks learnt by
a Grand Master differ, from 100,000 (Simon & Gilmartin,
1973) to 300,000 (Gobet & Simon, 2000) (but this may not
be an issue as we argue below that larger networks will prob-
ably not show much relative improvement).

The estimate that 10% of a subject’s training is on endgame
positions is difficult to verify. However, as noted earlier, it is
known that players play a large number of speed chess games,
where check situations are frequent, and the proportion was
estimated in advance of the experiment, so we believe that the
figure is reasonable pending other evidence.

A small number of errors were produced by the human sub-
jects: a mean of 3.0%, with a maximum of 4.1% by the ex-
perts. CHREST is theoretically able to produce errors (for
example, by over-generalising learnt information), but none
were produced in these simulations. This may be considered
a weakness of the model, but given the proportion of errors
made by humans, and that a number of these may have been
due to errors of attention (e.g. pressing the wrong key due to
fatigue), we do not think this is a serious drawback.

Despite these considerations, we find the results good evi-
dence for our hypothesis. We have proposed a model of how
humans carry out simple check detection and found that, with
a revision and accepting certain assumptions, it explains the
human data well, both quantitatively and qualitatively.

Our revised model shows poorer performance in modelling
the perception of weaker players. This may be natural vari-

ability, given Saariluoma’s small sample size, but we also
consider other possible reasons:

Our first model may have been partly right, and though
stronger players do use the more efficient, simplified, per-
ceptual strategy described in our revised model, weaker play-
ers use (a subset of) the unnecessarily complicated strategies
used for perceiving a regular game position.

Alternatively (or in addition), there is some evidence
(Reingold, Charness, Pomplun, & Stampe, 2001) that
stronger players make better use of their peripheral vision to
detect pieces, suggesting that we may have allowed weaker
players too much ability in our revised model.

Also, weaker players may spend more time checking their
decisions. We have assumed that a “double check” is carried
out (checking the relationship between the position of both
perceived pieces), but weaker players may find it necessary
to make additional checks. It would be expected that stronger
players would not feel the need to do this due to their im-
proved confidence in their own ability.

Finally, there may be additional mental processes involved
with weaker players which we have not considered. For ex-
ample, absolute beginners may spend some time trying to re-
member how each piece moves.

Looking forward, our theory makes predictions that can
be tested. Most obviously, players’ eye movements could be
recorded whilst carrying out this task to determine if our the-
ory of how attention is directed (i.e. very simply and directly)
is correct.

Our theory, that chunks are linked to further knowledge, in-
cluding information about whether a chunk includes a check
or not, also leads to some predictions.

First, there should be increased intra-subject variability
across different positions compared to the “general exercise”
hypothesis of several different mental processes being im-
proved as expertise is acquired: general-purpose processes
should not be affected by the specifics of an individual posi-
tion.

Second, there should be a ceiling to performance on the
task. The largest network we tested was 100,000 nodes, but
there are only 16,128 separate possible positions containing
only a king and one of {queen, rook, bishop, knight} of the
opposite colour. Our imposed end game-specific practice of
10% (estimated, but seeming to produce a good match of the
human data) of a 100,000 node network covers the majority of
these positions. If our theory is correct, performance on this
task should rapidly tail off above Grand Master level since
there will be fewer additional novel chunks to acquire.

Conclusions and Future Work
We have proposed a hypothesis of how humans perceive and
make decisions on checks in simple check positions and from
this produced a model that successfully reproduces the exper-
imental human data.

This theory may have wider implications in terms of
chunking theory. We have suggested that chunks are linked
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to extended information — specifically, information about
whether the king is in check or not. This theory (if correct)
raises a number of questions about the extent and types of in-
formation that may be linked to visuo-spatial chunks. Chunks
could, for example, be linked to additional semantic infor-
mation about their strategic value, their relationship to other
chunks, or a verbal description. Based on earlier work (Gobet
& Jansen, 1994), we are currently attempting to expand this
theory by investigating how move sequences in chess may be
learnt and attached to visual chunks in a similar manner.

Another, more direct, way to build on this work is to con-
sider checks involving multiple pieces, for example in mid
game chess positions. More complicated perceptual strate-
gies would undoubtedly be involved.

Finally, in order to successfully model the human data, we
have had to modify the perceptual strategies used, following
the assumption that this behaviour would be controlled by
conscious processes. Whilst this is a reasonable assumption
backed by evidence, it required human intervention; ideally,
the model would be able to alter its own behaviour in this
way, controlling what information entered STM and directing
its own perceptual strategies.
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