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Introduction 
The International Conference on Cognitive Modeling (ICCM) is the premier conference for 
research on computational models and computation-based theories of human behavior. ICCM is a 
forum for presenting, discussing, and evaluating the complete spectrum of cognitive modeling 
approaches, including connectionism, symbolic modeling, dynamical systems, Bayesian modeling, and 
cognitive architectures. ICCM includes basic and applied research, across a wide variety of domains, 
ranging from low-level perception and attention to higher-level problem-solving and learning. The 
10th ICCM was held at Drexel University in Philadelphia, PA, on August 5-8, 2010. 

All papers and abstracts in the ICCM 2010 proceedings may be cited as follows: 

Doe, J., & Doe, J. (2010). This is the title of the paper. In D. D. Salvucci & G. Gunzelmann (Eds.), 
Proceedings of the 10th International Conference on Cognitive Modeling (pp. 1-6). Philadelphia, PA: 
Drexel University. 

Sponsors 

 

Air Force Office of 
Scientific Research 

 

Air Force Research Laboratory, 
Human Effectiveness Directorate 

 

Aptima, Inc. 

 

Cognitive Science Society 
 

National Science Foundation 

 

Office of Naval Research 

 

 

Drexel University 

 



 ii 

Committees 

Organizing Committee 
Conference Chairs: Dario Salvucci & Glenn Gunzelmann 
Tutorials & Workshops: Frank Ritter 
Doctoral Consortium: Robert St. Amant 
Local Administration: Julie Fisher & Tuyet Sithiphavong 

Program Committee 
Erik Altmann 
Thomas Barkowski 
Martin Baumann 
Roman Belavkin 
Thierry Bellet 
Duncan Brumby 
Mike Byrne 
Nick Cassimatis 
Balakrishnan Chandrasekaran 
Richard Cooper 
Garrison Cottrell 
Fabio Del Missier 
Wai-Tat Fu 
Danilo Fum 
Kevin Gluck 
Fernand Gobet 
Tim Halverson 
Andrew Howes 
Christian Janssen 

Gary Jones 
Mark Keane 
David Kieras 
Boicho Kokinov 
John Laird 
Peter Lane 
Christian Lebiere 
Richard Lewis 
Yili Liu 
Michael Matessa 
Alain Mille 
Claus Möbus 
Shane Mueller 
Christopher Myers 
Josef Nerb 
Hansjoerg Neth 
David Noelle 
David Peebles 
Thad Polk 

Marco Ragni 
Frank Ritter 
Ute Schmidt 
Mike Schoelles 
Lael Schooler 
Christian Schunn 
Barry Silverman 
Patrick Simen 
Robert St. Amant 
Terry Stewart 
Andrea Stocco 
Ron Sun 
Niels Taatgen 
Greg Trafton 
Hedderik van Rijn 
Boris Velichkovsky 
Robert West 
Sharon Wood 
Richard M. Young 

Tutorials Committee 
Erik Altmann 
Mark Cohen 

Jim Davies 
Fabio Del Missier 

Olivier Georgeon 
Randolph M. Jones 

Awards Committee 
Erik Altmann 
Wai-Tat Fu 
Wayne Gray 

Andrew Howes  
Tiffany Jastrzembski 
Shane Mueller 

Terry Stewart 
Leendert van Maanen 
Richard M. Young 



 iii 

Awards 
The following awards honor the best paper and poster contributions in select categories as chosen 
by a committee of distinguished researchers. Congratulations to our winners and honorees! 

Siegel-Wolf Award for Best Applied Paper  
Sponsored by Aptima, Inc. 

This award, given for the best applied research paper, is named in recognition of Art Siegel and Jay 
Wolf, who worked on human performance models for more than 20 years at Applied Psychological 
Services in Wayne, PA. The winners are: 

Task-Constrained Interleaving of Perceptual and Motor Processes in a Time-Critical Dual Task as 
Revealed Through Eye Tracking 
Anthony J. Hornof & Yunfeng Zhang 

The Evolution of a Goal-Directed Exploration Model: Effects of Information Scent and Go-back 
Utility on Successful Exploration 
Leonghwee Teo & Bonnie E. John 

Honorable mention goes to the following papers: 

Modeling the Effects of Work Shift on Learning in a Mental Orientation and Rotation Task 
Tim Halverson, Glenn Gunzelmann, L. Richard Moore Jr., & Hans Van Dongen 

Exploration of Costs and Benefits of Predictive Human Performance Modeling for Design 
Bonnie E. John & Tiffany S. Jastrzembski 

Allen Newell Award for Best Student Paper  
Sponsored by the Office of Naval Research 

This award, given for the best full paper with a student as first author, is named in recognition of 
Allen Newell, one of the founders of the field of cognitive modeling. The winner is: 

A Cognitively Bounded Rational Analysis Model of Dual-Task Performance Trade-Offs 
Christian P. Janssen, Duncan P. Brumby, John Dowell, & Nick Chater 

Honorable mention goes to the following papers: 

A New Approach to Exploring Language Emergence as Boundedly Optimal Control in the Face of 
Environmental and Cognitive Constraints 
Jeshua Bratman, Michael Shvartsman, Richard L. Lewis, & Satinder Singh 

Rewards and Punishments in Iterated Decision Making: An Explanation for the Frequency of the 
Contingent Event Effect 
Antonio Napoli & Danilo Fum 

Neural Correlates of Temporal Credit Assignment 
Matthew M. Walsh & John R. Anderson 

Best Student Poster  
Sponsored by the Cognitive Science Society 

This award is given for the best poster presentation for a paper or abstract, submitted to the main 
program, with a student as first author and presenter. Committee members will visit student 
posters during the poster sessions and the award winner(s) will be announced on Sunday morning 
at the start of the 9am session.  



HOW TO INVESTIGATE THE LIVING COGNITION:  
AN APPLICATION TO DYNAMIC SIMULATION OF MENTAL ACTIVITIES WHILE DRIVING 
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Jean-Charles Bornard (jean-charles.bornard@inrets.fr) 
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Abstract 
This paper is dedicated to the “living cognition” issues, which 
concern the ability of a cognitive model to simulate humans’ 
mental activities when dynamically interacting with the 
external environment. After having introduced the theoretical 
foundations of this approach, an integrative COgnitive 
Simulation MOdel of the DRIVEr is presented (i.e. 
COSMODRIVE). The central process that supports the living 
cognition in this model is the deployment of a cognitive 
schema, corresponding to the driver’s mental representation 
of the driving situation as instantiated in the Working 
Memory. This dynamic visual-spatial mental model, defined 
as the driver’s situational awareness, is used by the driver for 
perceptive exploration of the road scene, decision-making, 
anticipation and action planning, in order to interact with the 
road environment. This dynamic process of regulation is 
based on both implicit and explicit mental simulations and is 
illustrated through an example in the last section of the paper.  

Keywords: Cognitive simulation, car driving, visual-spatial 
mental representation, dynamic cognition, implicit and 
explicit situation awareness. 

1.Theoretical foundation of the living cognition 
Although a familiar task of everyday life, car driving is 

however a complex activity that involves every levels of 
human cognition. Indeed, driving a car requires (i) to select 
relevant information from the environment, (ii) to 
understand the current situation and to anticipate its 
progression in the more or less long term, (iii) to take 
decisions in order to dynamically interact - via the vehicle - 
with the road environment and the other road users, (iv) and 
to manage owns resources (physical, perceptive and 
cognitive) in order to satisfy the time constraints of the task, 
inherent to the dynamic nature of the driving situation. The 
selective dimension of information collection is especially 
important as drivers cannot take in and process all the 
information available in the road environment. As we shall 
argue in this paper, this information is not selected 
haphazardly. It depends on the aims the drivers pursue, their 
short-term intentions (i.e. tactical goals, such as turn left at a 
crossroads) and long-term objectives (i.e. strategic goals, 
such as reaching their final destination within a given time), 
the knowledge they possess and the attentional resources 
allocated to the driving task. Information selection is the 
result of a complex process whose keystone is the driver’s 
mental representation of the driving situation. Indeed, from 
their interaction with the road environment, drivers build 
mental models of the events and objects that surround them. 
These mental representations are dynamically formulated in 
working memory through a matching process between (i) 

pre-existing operative knowledge (Ochanine, 1977) and (ii) 
perceived information extracted in the external environment. 
They are formulated by and for the action, and they provide 
interiorized models of the task (Leplat, 2005). When 
driving, these representations provide 3-Dimensional (i.e. 
visual-spatial) models of the environment, liable to be 
mentally manipulated by the driver, in order to support 
anticipation through cognitive simulations, and thus 
providing expectations on future situational states. Drivers 
continually update these mental models as and when they 
carry out their activity. This dynamic process, based on both 
implicit and explicit mental simulations (Bellet et al., 2009), 
is the central focus of the “living cognition” (Bellet, 2010) 
as investigated in this paper. At a theoretical level, the living 
cognition is jointly based on three scientific traditions: (i) 
the cybernetics and the human information processing 
theories, (ii) the Russian theory of activity, and (iii) the 
ecological approach of human perception. 

 

Figure 1: the car driving activity as a dual regulation loop  
 
According to Wiener’s cybernetics theory (1948), human 

can be defined as a self-adaptive system who interacts with 
the external environment through a feedback regulation 
mechanism. Humans’ mental activities are then described as 
a black box owning information processing mechanisms, 
able to generate outputs from perceptual inputs, in order to 
adapt itself to the situation. As and when this cycle repeats 
itself recursively, the human cognitive system perceptually 
assesses the effects of its action on the environment, and 
then determines which new action is needed to achieve the 
expected state of the surroundings. This iterative process 
start again until this state-goal is obtained. Although 
cybernetics has finally introduced an epistemological break 
with the behaviorist approach in Psychology, the initial 
model proposed by Wiener was fully compatible with the 
Skinner’s “S-R” approach, until the Pandora's black box 
was opened. However, with the development of the human 
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information processing theory, the internal mechanisms 
implemented into the black box, like mental representations 
elaboration, reasoning, or decision-making, became the new 
central topics of the cognitive sciences. Nevertheless, 
according to the experimental method used in laboratory for 
investigating cognition in well-controlled conditions, the 
Cybernetics "loop logic" has been progressively lost for two 
main reasons. First, the experimental paradigm applied in 
cognitive sciences requires to artificially break down human 
cognition into several functions to be individually 
investigated. Moreover, and maybe more critical from the 
living cognition point of view, in-lab investigation of human 
cognition are based on repetitive measures collected for 
similar artificial tasks, in similar conditions. Therefore, the 
story must re-start after each new stimulus, as if it was a 
totally “new story”, in order to allow the scientists to 
rigorously control the experiment. After each S-R sequence, 
the task is thus completed, without any expected feedback 
effect. Therefore, by using the experimental method, 
cognitive sciences ended up losing the notion of “cycle”, 
however so important in the cybernetics feedback process 
supporting the dynamic of the living cognition, in favor of a 
sequential string of processes, from perception to action. 

Like Cybernetics, the Russian Theory of Activity considers 
human operators through their dynamic interactions with the 
external environment. But in this approach, Activity is the 
starting point and the core topic of the scientific study of 
human cognition, because it is argued that activity directly 
structures the operator’s cognitive functions. The 
fundamental postulate of the Theory of Activity is well 
summarized by Smirnov (1966): human becomes aware of 
the surrounding world, by acting on it, and by transforming 
it. From this point of view, human is not a passive cognitive 
system whose undergoes the stimulus given by the external 
environment. S/he is an active observer, with inner 
intentions, able to voluntary act on the world and to modify 
the situation by their activity, in accordance with their own 
needs. Indeed, behind activity there is always a need, which 
directs and regulates concrete activity of the subject in the 
objective environment (Leontiev, 1977; p. 88). Such a 
consideration, so essential in our everyday life as 
psychological subjects with needs, intents and will, has been 
nevertheless progressively forgotten by the modern 
cognitive sciences, when based on the experimental 
paradigm. Through laboratory experiments, inner needs and 
spontaneous motives disappear, as well as the dynamic “life 
cycle” of the natural living cognition. 

The same criticism against the destructive effect of 
experimental method when applied to cognition has been 
formulated by Neisser (1976), through his ecological 
approach of human perception. Neisser's work was initially 
based on the direct perception theory of Gibson (1979), who 
postulates that some affordances, corresponding to 
properties of the objects, are directly perceived by the 
organism. By contrast with the Gibson “un-cognitive” 
theory of perception, Neisser admits the existence of mental 
functions, even if he criticizes the sequential vision of the 

cognition dominated the human information processing 
theory. In a synthetic way, Neisser considers perception as a 
skilled and iterative process. Like the Russian theorists of 
the activity, he argues that human are not passive receivers 
of perceptual inputs, but that they are active in the world, in 
accordance with their own motives, their abilities, and their 
expectations. His approach describes perception as a 
dynamic cycle focused on the relationships between pre-
existing knowledge and the human information-gathering 
activity. According with this perceptive cycle, the perceiver 
actively explores the surroundings, and then constructs a 
dynamic understanding of the current environment. The 
mental structure that supports such processes of perception 
is described as an active schema of the environment, which 
is continually modified by the new perceptual information, 
and which also contains anticipatory expectations. This 
mental schema includes a cognitive map of the world, and 
therefore directs perceptual explorations of the environment, 
or prepares the mind for perception of anticipated events. It 
can be consequently considered as a kind of control 
structure of the perceptive processes. 

2. An integrative model of the car driver 
In this section, we would like to present a comprehensive 

model of the human driver, so-called COSMODRIVE (for 
COgnitive Simulation MOdel of the DRIVEr, Bellet et al., 
1999, 2010), that combines in an integrative way the 
different theoretical approaches presented above. Several 
driver models have been developed during the last decades, 
even if the most of them are focused human's performance 
more than on cognitive simulation (for a discussion on this 
issue, see Bellet et al., 2007). One of the most advanced one 
is surely the driver model developed by Salvucci (2006), 
that is based on the ACT-R cognitive architecture 
(Anderson and al., 2004). Like COSMODRIVE, this model 
provides an integrative approach of the driver’s cognition, 
by considering 3 components of (i) control, (ii) monitoring, 
(iii) and decision making. Cognitive abilities at the 
monitoring level are conceptually close to our approach of 
mental representation simulation, even if they are different 
from the computational point of view (ACT-R chuncks in 
declarative memory versus visual-spatial [3D] and dynamic 
mental models in COSMODRIVE). Nevertheless, the aim 
of this paper is not to theoretically discuss on driver models, 
but only to provide an illustrative example of the living 
cognition, applied to a very familiar task. The figure 2 
provides a synthetic overview of the cognitive architecture 
of COSMODRIVE. The heart of the model are the drivers’ 
mental representations of the driving environment, 
corresponding to the driver’s Situation Awareness according 
to Endsley (1995) definition of this concept: the perception 
of the elements in the environment within a volume of time 
and space, the comprehension of their meaning, and the 
projection of their status in the near future. These mental 
models are built in working memory. At the tactical level 
(Michon, 1985), they provide an ego-centered and a goal-
oriented understanding of the traffic situation, including 
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anticipations of the future changes of the current driving 
situation, liable to be mentally investigated by the driver at 
an explicit level. At the operational level, which generally 
corresponds to the driver’s implicit awareness of the 
situation, driving activity is implemented through operative 
know-how for vehicle lateral and longitudinal controls 
(Bellet et al., 2009). This dichotomy between implicit and 
explicit cognition is well established in scientific literature, 
for example, with the distinction proposed by Schneider and 
Schiffrin (1977) between controlled processes, which 
require cognitive resources and which can only be 
performed sequentially, and automatic processes, which can 
be performed in parallel without any attentional effort. In 
the same way, Rasmussen (1986) distinguishes different 
levels of activity control according to whether the behaviors 
implemented rely on (i) integrated sensorial-motor reflexes 
(Skill-based behaviors), (ii) decision rules for managing 
familiar situations (Rule-based behaviors), or (iii) generic 
knowledge activated in new situations for which the driver 
doesn’t have any experience (Knowledge-based behaviors).  

 

Figure 2: Cognitive architecture of COSMODRIVE 
 

Four dynamic cycles regulate the internal functioning of 
the model. The perceptive cycle supports the human 
perception functions, allowing the driver to actively explore 
the road environment, according to their current needs and 
objectives (top down perceptive exploration process) and to 
integrate new information into their mental models (bottom 
up cognitive integration process). The memory cycle plays a 
central role for pre-existing knowledge activation (based on 
categorization and matching processes permitting to fit 
knowledge with the reality, Bellet et al., 2007) as well as in 
terms of new knowledge acquisition. The cognitive cycle 
corresponds to a set of cognitive agents (like mental 
representation elaboration, understanding, anticipation, 
decision-making, or action planning) which collectively 
handled the internal mental representations, in order to take 
appropriate decision and then, to act into the current 
environment. Lastly, the cognitive resources allocation 
cycle is in charge to dynamically regulate and control the 
life cycle of the driver’s cognitive system, in accordance 
with the attentional resources that are currently available. 

The central structure supporting to the living cognition in 
this cognitive architecture is the working memory. From this 
point of view, this architecture is directly inspired by the 

ACT-R theory (Anderson et al., 2006). However, the 
working memory of COSMODRIVE merges both 
procedural and declarative memories, and comes more 
from the operational memory concept of Zintchenko than 
from the Baddeley’s working memory model (1986). For 
Zinchenko (1966), the operational memory is a structure 
whose main function is to serve the real needs of the 
activity. Thus, it is a transitory rather than permanent 
memory. However, it should be distinguished from a short-
term buffer limited in storage capacities, in so far as the 
information it contains remains available for as long as the 
task is performing (for several hours in some cases).  

Through COMSODRIVE approach, car driving is 
modeling as a dynamic process of interaction between the 
driver and the environment through a dual iterative 
regulation loop, supporting the living cognition. In 
accordance with the Cybernetics theory, human activity is 
defined here as an continuous loop of regulation between (i) 
inputs, coming from the road environment, and (ii) outputs, 
corresponding to the driver’s behaviors implemented into 
the real world via the car, which generate (iii) feedbacks, in 
the form of a new inputs, requiring new adaptation from the 
driver. From this general point of view, the first iteration of 
the Perception-Decision-Action regulation loop corresponds 
to the moment when the driver starts up the engine, and the 
last iteration comes when the driver reaches the final trip 
destination, and stops the car. In accordance with the 
Human information processing theory, human is not 
described here as a closed black box, but as a set of 
perceptive, cognitive and behavioral functions allowing the 
driver to dynamically regulate their interactions with the 
surrounding environment. In terms of cognitive activities, 
mental representation of the driving situation plays a key-
role in the cognitive system functioning. This mental model, 
based on perceptive information extracted into the road 
environment, corresponds to the driver’s awareness of the 
driving situation, and therefore determines directly all their 
decision-making concerning the relevant adaptive behaviors 
to be carried out in the current driving context. In 
accordance with the Russian theory of activity, this mental 
representation is based on operative knowledge practically 
learnt “in situation”. Moreover, the driving task is 
performed by using an artifact (i.e. the vehicle), and the 
driving situation is directly transformed by the human 
operator's activity (e.g. car position on the road depending 
of the driver's action on the vehicle controls), as well as the 
situation modifies the driver's cognitive states (in terms of 
mental representation updating, for example, or new 
operative knowledge learning). Lastly, in accordance with 
the ecological theory of Neisser (1976), driver’s perception 
in figure 2 is based on a dynamic perceptive cycle when (i) 
an active schema directs gathering-information activity (i.e. 
top down processes) and (ii) focus driver’s attention on 
information currently available in the environment. Then 
(iii), this active schema provides a mental model that is 
continuously updated by dynamic integrating the new pieces 
of information collected into the road scene.  
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3. Computational and dynamic simulation of 
the driver’s mental activities while driving 

By considering this theoretical background, the 
COSMODRIVE model is composed of three main 
functional modules (i.e. the Perception, the Cognition, and 
the Action modules) in order to drive a virtual Car into a 
virtual Environment through two synchronized “Perception-
Cognition-Action” regulation loops (Bellet et al., 2010): an 
attentional control mode (mainly focused on Rasmussen’s 
rule-based behaviors, and simulated through Driving 
Schemas, and an automatic control loop (corresponding to 
the skill-based behaviors simulated through the Envelope 
Zones concept and the Pure-Pursuit Point method). 

 
3.1 Modeling the explicit cognition: the Driving Schemas  

Based on both the Piaget’s concept of operative scheme 
and the Minsky (1975) frames theory, driving schema is a 
computational formalism defined in order to implement 
operative driving knowledge a the tactical level of 
COSMODRIVE (Bellet et al., 1999). They correspond to 
prototypical empirical situations, actions and events, learnt 
by the driver from practical experience.  

 

Figure 3: The Driving Schemas formalism  
 

From a formal point of view (Figure 3), a Driving Schema 
is composed of (i) a functional model of road Infrastructure, 
(ii) a Tactical Goal (e.g. turn left), (iii) a sequence of States 
and (iv) a set of Zones. Two types of Zone are distinguished: 
Driving Zones (Zi), corresponding to the driving path of the 
vehicle as it progresses through the crossroads, and the 
Perceptive Exploration Zones (exi), in which the driver 
seeks information (e.g. potential events liable to occur). 
Each driving zone is linked to Actions to be implemented 
(e.g. braking or accelerating, in view to reach a given state 
at the end of the zone), the Conditions of performing these 
actions, and the perceptive exploration zones that permit 
checking these conditions (e.g. color of traffic lights, 
presence of other road users). A State is defined by a vehicle 
position and speed. The different sequences of the driving 
zones make up the Driving Paths that progress from the 
initial to the final state (achievement of the tactical goal). 

Once activated in working memory and instantiated with 
the road scene, the active driving schema becomes the 
tactical mental representation of the driver, which will be 
continually updated as and when s/he progresses into the 
current environment. Tactical representation corresponds to 
the driver’s explicit awareness of the driving situation and 
provides a mental model of the road functionally structured, 
according to the tactical goal pursued by the driver in this 
particular context (e.g. turn on the left). 

 
3.2 Modeling the implicit cognition: the Envelope-Zones 
and Pure Pursuit Point regulation strategies 

At the operational level (corresponding to the automatic 
control loop presented in fig. 1), COSMODRIVE regulation 
strategy is based on two implicit regulation mechanisms: the 
envelope zones and the pure pursuit point. From a 
theoretical point of view (Bellet et al., 2007), the concept of 
envelope zones recalls two classical theories in psychology: 
the notion of body image proposed by Schilder (1950), and 
the theory of proxemics defined by Hall (1966), relating to 
the distance keeping in social interactions with other 
humans. Regarding car-driving activity, envelope zones also 
refer to the notion of safety margins. At this last level, 
COSMODRIVE model approach (Fig.4) is more 
particularly based on Kontaratos’ work (1974), and 
distinguishes a safety zone, a threat zone, and a danger zone 
in which no other road user should enter (if this occurs, the 
driver automatically activates an emergency reaction).  

 

  
Figure 4: COSMODRIVE “Envelope-Zones” model 

The envelope zones correspond to the portion of the path 
of driving schema to be occupied by the vehicle in the near 
future. Moreover, as an “hidden dimension” of the social 
cognition, as suggested by Hall’s theory (1966), these 
proxemics zones are also mentally projected to other road 
users, and are then used to dynamically interact with them, 
as well as to anticipate and manage collision risks. This 
“virtual skin” is permanently active while driving, as an 
implicit awareness of our expected allocated space for 
moving. As with the Schilder’s body schema, it belongs to a 
highly integrated cognitive level (i.e. implicit regulation 
loop), but at the same time favors the emergence of critical 
events in the driver’s explicit awareness. Therefore, the 
envelope zones play a central role in the regulation of social 
as well as physical interactions with other road users under 
normal driving conditions (e .g. inter-vehicle distance 
keeping), and in the risk assessment of path conflicts and 
their management if a critical situation occurs (commitment 
of emergency reactions). 

The second hidden dimension of the implicit cognition 
implemented at the operational level of COSMODRIVE is 
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the Pure Pursuit Point method. This method was initially 
introduced for modeling in a simplified way the lateral and 
the longitudinal controls of an automatic car along a 
trajectory (Amidi, 1990), and has been adapted by 
Sukthankar (1997), and then Mayenobe (2004), for driver’s 
situational awareness modeling. Mathematically, the pure-
pursuit point is defined as the intersection of the desired 
vehicle path and a circle of radius centered at the vehicle’s 
rear axle midpoint (assuming front wheel steer). Intuitively, 
this point describes the steering curvature that would bring 
the vehicle to the desired lateral offset after traveling a 
distance of approximately l. Thus the position of the pure-
pursuit point maps directly onto a recommended steering 
curvature: k = -2x/l, where k is the curvature (reciprocal of 
steering radius), x is the relative lateral offset to the pure-
pursuit point in vehicle coordinates, and l is a parameter 
known as the look-ahead distance. According to this 
definition, the operational control of the car by 
COSMODRIVE can be seen as process of permanently 
keeping the Pursuit Point in the driving path, to a given 
speed assigned with each segment of the current tactical 
schema, as instantiated in working memory. 

4. The emerging living cognition 
By using the functional architecture and the cognitive 

agents of COSMODRIVE described in figure 2, (ii) the 
driving schemas as operative knowledge activated and then 
dynamically updated in the form of a functional mental 
representation matched with the road scene, and (iii) the 
operational skills corresponding to the pure-pursuit point 
and the envelopes zones regulation process, it becomes thus 
possible to dynamically simulate of the driver’s “living 
cognition”. The central process that supports the living 
cognition is the deployment of the active driving schema, as 
instantiated in Working Memory through the current mental 
representation. This deployment consists in moving the car 
along a driving path (cf. fig. 3), by successively traveling 
through the different driving zones of the schema, from the 
initial state (i.e. Z1) until reaching the tactical goal (i.e. Z4). 
This deployment process may occurs at two levels: (i) at the 
representational level (explicit and implicit mental 
simulations of the future activity to be carried out), when the 
drivers anticipate and project themselves mentally in the 
future, (ii) and through the activity itself, during the 
effective implementation of the schema while driving the 
car. This twofold deployment is not performed by a specific 
process in COSMODRIVE. It is an emergent collective 
product, resulting from the combined effect of several 
cognitive processes (like anticipation or decision-making), 
and merged with the computations based on the envelope 
zones and the pursuit point regulation laws. As a result, the 
deployment process generates a particular instance of the 
active schema execution, composed of a temporal sequence 
of mental representations, causally interlinked, and 
corresponding to the driving situation as it is progressively 
understood and anticipated, then experienced, and lastly 
acted by the driver, along the driving path progression. 

The figure 5 provides an example of COSMODRIVE 
simulation results, permitting to visualize the mental 
representation evolution of a novice driver (who has the 
intention to turn on the left), while approaching of an urban 
crossroads with traffic lights. In a first time (i.e. first left 
view, corresponding to the driver’s mental representation at 
a distance of 30 meters of the traffic lights), the driver’s 
situation awareness is centered on the near traffic and on the 
traffic lights color, that directly determine the short-term 
activity to be implemented. Then, as s/he progresses 
towards the crossroads, the driver’s attention is gradually 
focused on the ahead area, and the traffic flow occurring in 
the intersection center is progressively integrated into the 
driver’s mental representation (i.e. second left view, at a 
distance of 10 meters of the traffic lights).  

  

  
Figure 5: virtual simulation of a driver’s mental models  
 
The advantage of the driving schema formalism as 

defined in COSMODRIVE is to combine declarative and 
procedural knowledge in the unified computational 
structure. When associated with the operational regulation 
processes linked with the envelope zones and the pursuit 
point strategies, it is then possible to use such driving 
schemas as a structure of control for both monitoring the 
operative activity, as well as for supervising the mental 
derivation of the “schema deployment”, as this process is 
implemented by the human cognitive system in order to 
anticipate future situational status, or to mentally explore the 
potential effects of an action before applied it. In accordance 
with the activity theories, these cognitive structures 
guarantee a continuum between the different levels of 
awareness (implicit versus explicit) and the activity control 
(tactical versus operational), thereby taking full account of 
the embedding of operative know-how (i.e. the level of 
implementation) in the explicit and decisional regulation 
loop of the activity. 

5. Conclusion: “in silico veritas” 
By considering the challenge of the living cognition study, 

it is needed to apprehend the dynamic functioning of the 
human cognitive system in interaction with the environment 
where s/he is currently immersed. Thus, computational 
models able to virtually simulate the human mental activities 
on computer are required. One of the key issues of the living 
cognition is mental representations simulation, that are 
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dynamically elaborated and continually updated in the 
working memory of the human operator before (i.e. action 
planning) and during the activity, when practically carried 
out. Indeed, mental representations and operative activity 
are intimately connected. In the same way as the human 
activity fuels itself directly with mental representations, the 
operator’s mental representations are also fuelled “by” the 
activity, and “for” the activity, according to a double 
deployment process: cognitive and representational, on the 
one hand, and sensorial-motor and executive, on the other.  

The key mental structure supporting both drivers’ mental 
representations and their activity are driving schemas. From 
a metaphorical standpoint, such schemas can be compared 
to a strand of DNA. They “genetically” contain all the 
potential behavioral alternatives that allow the driver to act 
within a generic class of situations. Nonetheless, only a tiny 
part of these “genotypic potentialities” will finally express 
themselves in the current situation – with respect to the 
constraints and specific characteristics of reality – during 
the cognitive (i.e. mental deployment), and then executive 
implementation of this schema (i.e. effective activity carried 
out to drive the car). And it is only through this dynamic 
process of deployment of operative mental representations, 
involving a collective effort of several cognitive processes, 
that certain of intrinsic properties of the living cognition will 
emerge. From this point of view, the scientific investigation 
of the living cognition cannot forego the use of computer 
simulation of the human mental activities, without taking 
the risk of being largely incomplete. 
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Abstract

Computational experiments have been used extensively to
study language emergence by simulating the evolution of lan-
guage over generations of interacting agents. Much of this
work has focused on understanding the mechanisms of how
language might have evolved. We propose a complementary
approach helpful in understanding why specific properties of
language might have emerged as an adaptive response to joint
pressures from the environment and constraints on an agent’s
cognitive architecture. The approach suggests that linguistic
systems can be described as boundedly optimal policies in
multi-agent dynamic control problems defined by specific en-
vironments, agent computational structures, and task-oriented
(vs. communication oriented) rewards. We illustrate the ap-
proach with a set of computational experiments.
Keywords: language emergence, bounded optimality, cogni-
tive architecture, reinforcement learning, adaptive control

Introduction
The goal of this paper is to begin exploring a new approach
to understanding the emergence of language. The primary
scientific aim is understanding how pressures from the envi-
ronment and constraints on the agent’s cognitive architecture
jointly lead to the emergence of specific properties of lin-
guistic communication as optimal policies for obtaining well-
defined long-term task- or environment-related reward.

Taking this perspective allows us to abstract away from the
question of how language evolved and systematically explore
constraints explaining why language appeared in the form that
it has. We hypothesize that specific language-like proper-
ties (for instance, compositionality and systematic reliance
on surface cues such as order) can in part be explained as
bounded optimal solutions to control problems faced by com-
putationally limited agents in environments exerting specific
pressures. We propose investigating language through such
environments in which we can formulate control problems for
two or more bounded agents. If the optimal policies for these
agents exhibit certain linguistic properties, then we can be-
gin to define a mapping from the original pressures and agent
constraints to the properties exhibited.

Finding solutions to these control problems computation-
ally can be accomplished through various means such as rein-
forcement learning, game-theoretic analysis, or evolutionary

1The first two authors contributed equally to this paper.

algorithms. Thus, the approach allows us to step away from
assumptions about specific mechanisms of learning or evolu-
tion, and focus on the joint relationship of agent structure and
environment to derived linguistic systems. A feature of this
approach that distinguishes it from related efforts is the focus
on deriving control for internal cognitive processes and ex-
ternal actions generally rather than communication systems
specifically, with communication processes emerging only if
they are part of the optimal policy.

This paper proceeds as follows: first, we review related
work on language emergence and discuss ways in which our
approach complements this work. Next, we move to an ex-
ample (the “Treasure Box Domain”) designed to illustrate the
approach by exploring constraints leading to the emergence
of structured utterances — here the systematic use of serial
order and allocation of lexical items to aspects of the environ-
ment. Finally, we show how this domain, and the approach
in general, can be extended to investigate more sophisticated
phenomena and propose future directions of inquiry.

Related Work
Research into the origins of language has a rich and contro-
versial history. Chomsky addressed it in his early work on
generative grammar, prompting a longstanding debate on the
extent to which language is a biological adaptation arrived
at via natural selection (Chomsky, 1968; Pinker & Bloom,
1990; for a more recent treatment, see Hauser, Chomsky, &
Fitch, 2002; Pinker & Jackendoff, 2005; Fitch, Hauser, &
Chomsky, 2005; Jackendoff & Pinker, 2005). Chomsky’s
(Chomksy, 2010) own recent approach to the question at-
tempts to minimize—in fact, nearly eliminate—the role of
language-specific biological adaptation. A more recent line
of research by Nowak and colleagues (Nowak, Krakauer, &
Dress, 1999; Nowak & Krakauer, 1999; Nowak, Plotkin, &
Jansen, 2000; Nowak, Komarova, & Niyogi, 2002), estab-
lishes a mathematical framework used to explore the evolu-
tion of language from the standpoint of computational learn-
ing theory and evolutionary game theory. This work also pro-
vides evidence for coding constraints that may have resulted
in increased fitness for agents capable of multi-symbol utter-
ances.
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Several recent computational experiments explore the no-
tion that cultural adaptation and domain-general cognition
may be sufficient for the emergence of language (Beckner
et al., 2009, also see Christiansen & Chater, 2008; Steels,
1998; De Beule, 2008; Gong, Minett, Ke, Holland, & Wang,
2005). This work shows a number of features emerging from
repeated interactions of pairs of computational agents in a
population playing a language game. In a way, this work im-
plicitly frames language emergence as a function of environ-
ment, agent, and learning mechanism. Our work attempts to
remove the last of these and more explicitly address what as-
pects of environment and agent architecture are important—
potentially leading to a more deeply explanatory account.

The questions we are interested in are in part orthogonal to
these debates: we are not making claims about either domain-
specificity or the mechanisms of learning or evolution, but
rather the interplay of cognitive constraints and environmen-
tal pressures that lead to the emergence of particular language
features as adaptive. By leaving the mechanism of adaptation
unspecified, our approach is relevant to researchers working
in both biological and cultural frameworks.

Our work also departs from the approaches above in that
it does not create a pressure for language by explicitly re-
warding cooperation or communication of a particular type.
This approach considers communication not as an end-goal
but rather as the means to obtain some primary reward such
as sustenance, shelter or reproduction. This may give us a
principled way to examine and sharpen what it is about lan-
guage which directly contributes to effective behavior.

Environmental Pressures & Agent Constraints
Natural environments comprise extremely complicated sets
of pressures acting on agents. A key part of the work in this
approach is identifying tractable sets of specific pressures that
are independently motivated by the study of the environments
of early hominids or humans and that might plausibly be im-
portant in the emergence of language. It is not our intent in
this initial exploration to undertake this identification system-
atically, but we propose here a few plausible candidates as
starting points that suffice to illustrate the approach.

Many environments naturally limit agent’s ability to ob-
serve and act. For example human beings can only manipu-
late small pieces of the natural world. Furthermore, knowl-
edge and ability to act is not usually distributed uniformly
among agents, making information sharing between agents
potentially useful. The nature of tasks that must be performed
by agents may limit how immediately information can be
utilized, requiring memory and independent action. A re-
lated pressure is limitation on the lexicon size available to
the agents for communication. This could require generaliza-
tion and furthermore may be a natural consequence of coding
constraints on noisy information transmission (see Nowak et
al., 1999, for a complete discussion). Another important pres-
sure might be temporal: environment dynamics might require
speed or brevity in communication.

Figure 1: Treasure box domain.

Identifying structural constraints on agents is a second ma-
jor requirement for this approach. These constraints may be
independent of learning mechanisms and describe computa-
tional and physical capabilities of an agent. Our interests
initially are in cognitive and perceptual constraints, such as
limited attention and short-term memory. In the experiments
below we adopt highly idealized versions of such constraints,
but we always define computationally complete agents that
can condition their control of internal and external processes
on an internal state that combines memory and perception.

One concern about this approach is the prospect that pres-
sures in the real world and human cognitive capabilities are
so complex that our proposed analysis is impossible. How-
ever, this is an empirical question. It could very well be that
careful investigation will yield simple features or ones that
can be idealized while retaining their important aspects. It
could very well be that careful investigation will yield sim-
ple features or ones which could be idealized while keeping
their important aspects. It may also be possible to separate
and explain specific language properties on a large scale.

Example: Treasure Box Domain
To demonstrate this approach to understanding language
emergence we designed a set of experiments in which par-
ticular kinds of communication may emerge as optimal (or
approximately optimal) behavior in a simple domain popu-
lated by two computationally limited agents. We describe
next the structure of this domain and then discuss why it is
of potential interest for our purposes—why we expect inter-
esting linguistic systems to emerge.

Environment and agent structure
Figure 1 shows the Treasure Box domain. There are two
agents, SPEAKER and LISTENER, who share the goal of
opening a locked treasure box. These agents are in an en-
vironment containing two rooms: a first room, communica-
tion room, in which LISTENER can hear symbols uttered by
SPEAKER and a second room, box room, in which there are
B different boxes and K keys. At any one time, only one par-
ticular box contains treasure and can only be opened by one
particular key. To solve this problem, LISTENER must go into
box room and choose the correct box and key. However, LIS-
TENER knows neither which box contains treasure nor which
key opens it. The second agent, SPEAKER, knows the cor-
rect box and key, but cannot leave the communication room
and therefore cannot open the box itself. Instead, SPEAKER
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can communicate with LISTENER by uttering symbols from
a lexicon of size S which LISTENER observes while in com-
munication room.

When SPEAKER utters a symbol it is placed into LIS-
TENER’s immediate perception: a buffer holding a single
symbol (working memory). In addition to the working mem-
ory store, LISTENER has a second memory location to hold a
single symbol (long-term memory), the value of which can-
not be observed without retrieving it. LISTENER can move a
symbol from the working memory store into long-term mem-
ory and vice-versa (memory encoding and retrieval), but can
only observe the symbol in working memory. The agent does,
however, know whether long-term memory contains informa-
tion. SPEAKER remembers the last symbol uttered in an ob-
servable working memory.

Speaker. This agent observes: (1) The box containing
treasure; (2) the key which opens that box; and (3) last symbol
it uttered. It can act by either (1) waiting or; (2) uttering a
single symbol out of a limited set of size S.

Listener. This agent observes: (1) the room it is in; (2)
whether it holds a key; (3) whether it holds a box; (4) whether
its long-term memory contains information; and (5) the con-
tents of its working memory. It can act by (1) moving to the
box room; (2) encoding a symbol from working memory into
long-term memory; (3) retrieving a symbol from long-term
memory into working memory (4) picking up a specific key;
or (5) picking up a specific box.

Dynamics. The domain is structured as an episodic task
where each episode ends when LISTENER picks up both a
box and a key (at which point the key is automatically used
to open the box). If the key is correct and the box and the
box contains treasure then both agents will receive a positive
reward (of +1); otherwise no reward is received and a new
episode begins. At the beginning of an episode the box con-
taining treasure and the key that opens it are chosen randomly,
LISTENER is returned to communication room holding nei-
ther key nor box, and both agents’ memories are cleared.

Learning algorithm. Although the specifics of the learn-
ing mechanism are not the focus, we needed a method for dis-
covering good agent behavior. Both agents use the ε-greedy
Sarsa(λ) algorithm (Sutton & Barto, 1998). This algorithm
learns by estimating state-action values Q(s,a) that represent
the best expected discounted sum of rewards over an episode
that can be gained by following action a from state s and then
the best policy thereafter (we initialize the Q values to 0). At
each step actions are chosen greedily based on the current Q
function except with a probability of ε when a random action
is chosen instead (yielding exploration). We use a low explo-
ration rate of ε = 0.01 across our experiments. After action at
in state st at time t, the algorithm updates the Q value for all
state-action pairs (s,a) according to their eligibility et(s,a) as
follows earlier actions by

Qt+1(s,a)← Qt(s,a)+αδtet(s,a), ∀s ∈ S,∀a ∈ A

where before the update et(st ,at) is set to 1.0 and the eligibil-
ity for every other state-action is decreased by a multiplicative

factor of γ,λ (we used λ = 0.8 for all of our experiments); the
more recently a state-action pair is visited the higher its eli-
gibility and the more credit or blame it gets for the temporal
difference error δt = rt+1 + γQt(st+1,at+1)−Qt(st ,at) which
is the the current estimated value of the resulting (st+1,at+1)
plus the reward rt immediately gained minus the predicted
value of the pair (st ,at). The discount factor γ describes how
much less future reward is valued compared to immediate re-
ward; we used γ = 0.8 for all our experiments. The step-size
parameter α controls how fast the algorithm incorporates new
experience, we use α = 0.03 in all of our experiments.

Why this domain is of potential linguistic interest
Without any communication the best LISTENER can do is to
open an arbitrary box with an arbitrary key. Given KB possi-
ble box-key combinations the probability of success at each
episode is 1

KB . To improve beyond this, a communicative pol-
icy is required wherein SPEAKER informs LISTENER of the
correct box and/or key in some way.

Different environmental pressures and agent constraints
make different behaviors optimal. For example, we can ex-
plore how varying the size of the available lexicon alters be-
havior. If there are enough symbols (S ≥ KB), then a sin-
gle symbol suffices to describe each box-key combination.
If there are at least K +B but fewer than KB symbols, then
two symbols are required but each box and each key could be
given a unique symbol removing the need for symbol order.
Finally, with S=max(K,B) the meaning of symbols will have
to be shared between boxes and keys, so order may be impor-
tant. In all cases these interpretation of the symbols must be
learned by both agents.

We can explore the effects of changing other constraints
as well, such as agents’ memory or environment structure.
For example, if LISTENER can store two symbols in working
memory, then consistent symbol order may not matter. If the
environment is no longer divided into two rooms (so commu-
nication and box opening can occur simultaneously) symbol
order might still matter, but the LISTENER may not need to
encode anything into long-term memory, instead acting based
on the contents of its working memory at every step—in ef-
fect becoming a situated instruction-taker.

Linguistic Properties of Emergent Policies
We conducted three sets of experiments (eight individual ex-
periments) to demonstrate how environmental pressures and
agent constraints jointly effect communication properties; the
experiment structure and results are summarized in Table 1.
In all experiments the number of boxes and keys is equal
K = B = 4. The first set is the domain originally described
with two separate rooms where LISTENER has a working
memory of one symbol and a long-term memory of one sym-
bol. The second set modifies the agent constraints by giving
the LISTENER two symbols in working memory (no long-
term memory). The third set changes the environmental pres-
sures by removing the room separator.
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Table 1: Summary of three sets of experiments and policies learned. See text for detailed description.

ENVIRONMENT AGENT MEMORY LEXICON SIZE (S) PROPERTIES OF EMERGENT LINGUISTIC SYSTEM

Two Rooms

one symbol
working memory
+ one symbol
long-term
memory

3

Association and systematic order, where in addition
single symbols uttered in isolation denote specific box-
key combinations. Can only achieve 75% success.

4 Association and systematic symbol order. SPEAKER
first describes the box, then the key (see Figure 2b).

8
Highly context-dependent and idiosyncratic symbol
meanings. For example key 2 is represented by sym-
bol 4 if uttered before box, but symbol 5 after.

16 Each symbol denotes a box-key combination. For ex-
ample symbol 5 means key 1 and box 1.

Two rooms

two symbol
working memory
(no long-term
memory)

3 Similar to case with 3 symbols above.

4
Complex lexical forms. Describes entire box-key com-
bination with two symbols which can be observed si-
multaneously by LISTENER effectively creating a 2-
symbol length word (see Figure 3b).

One room

one symbol
working memory
+ one symbol
long-term
memory

3 Symbols act as direct orders to LISTENER, but other-
wise policy is similar to the cases of 3 symbols above.

4

Association and symbol order, but no storing or re-
trieving from long-term memory is necessary because
LISTENER can act immediately upon hearing a symbol
(see Figure 4b).

Experiment set 1: Exploring constraints on the lexicon.
We explore four different lexicon sizes: S = 16, S = 8, S = 4,
and S = 3. Figure 2 shows 30 independent learning trajecto-
ries for each value of S. The high variance is due to the nature
of the learning algorithm which may not converge for both
agents every trial (or may get stuck on a less-than-optimal
policy)—but what we are interested in are the best policies
learned (because the mechanism used can be improved sig-
nificantly beyond our initial implementation of Sarsa(λ) with
fixed parameters across all experiments).

The first four rows of Table 1 summarize the results. Here
we will discuss the resulting policies in more detail. For 16
available symbols, as expected, a different symbol is associ-
ated with each box-key combination and the agents arrive at
perfect performance. With eight symbols, again the best per-
forming policies use two-symbol utterances for each box-key
combination, but not always in the same order (i.e. for some
combinations keys are uttered first and in other boxes are ut-
tered first). For the case of four symbols, the best performing
policies communicate box and key in a particular order, with
each symbol able to refer to either box or key (see Figure 2b).
Of particular interest is that the the agents settle on a consis-
tent order across box-key combinations, but this order might
be different over seperate experiments: the linear position is

necessary but the specific order is not. Finally, for the case of
only three symbols the agents again learn a policy where lin-
ear symbol order matters. Curiously, this alone should only
afford success in 56% of combinations; some policies how-
ever achieved 75% success. The policy succeeds in the addi-
tional box-key combinations by associating each with a single
symbol uttered in isolation. That is, with limitations in sym-
bol size utterance length becomes informative in addition to
positional information.

As we can see, this method of systematically altering only
a single constraint (lexicon size) yields broad variation in lin-
guistic properties even in this extremely simple domain, in-
cluding the denotation of symbols and the use of order in-
formation. The case of three and four symbols suggests that
limited memory (paired with environmental pressures) leads
to the systematic use of symbol order in optimal performance,
especially when the lexicon size is limited.

Experiment set 2: Modified agent constraints. Here our
aim is to explore further what specific constraints led to the
systematic use of order in Experiment 1. We alter the con-
straints on the agents by allowing the LISTENER two symbols
in working memory instead of one (and no long-term mem-
ory). All the other dynamics of the Treasure Box Domain
are kept constant. The actions of store and retrieve have new
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(a) S = 4 (b) Sample of policy2 for S = 4.

(c) S = 3 (d) S = 8 (e) S = 16

Figure 2: Experiment set 1: Exploring constraints on the lex-
icon. Each figure shows 30 learning curves in the Treasure
Box Domain with B = 4 and K = 4. Success rate at each
point is the average success rate over all episodes since previ-
ous point. Dotted line marks where learning and exploration
are disabled. Best policy is highlighted and described in ta-
ble 1. Figure (b) is a sample policy for S = 4 showing the sig-
nificance of symbol order. In this case, agents have learned
to associate string ”3,2” with key 1, box 1, as can be seen in
the rightmost column where SPEAKER utters first symbol “3”
then symbol “2”.

(a) Best policies. (b) Sample of policy2 for S = 4.

Figure 3: Experiment set 2: Modified agent constraints; LIS-
TENER has two working memory locations. Left figure shows
learning curves for best policies for S = 3 and S = 4. Right
figure is a sample policy for S= 4 showing that the LISTENER
can act according to the length-2 string in working memory:
LISTENER’s last two actions are box and key pickups without
a retrieval in between, unlike the policy in figure 2.

(a) Best policies. (b) Sample of policy2 for S = 4.

Figure 4: Experiment set 3: Modified environmental pres-
sures: no room separator. Left figure shows learning curves
for best policies for S = 3 and S = 4. Right figure is a policy
sample for S = 4. The absence of a room barrier allows sym-
bols to act as direct orders: the ”utter 1” action by SPEAKER
is followed by LISTENER’s ”get key 1” on the next time step.

semantics now: moving symbols between the two working
memory locations. Figure 3 shows the best trial for each case
in this experiment (for lexicon size of 3 and of 4). With 4
symbols in the lexicon, pairs of symbols can be used to de-
scribe each box-key combination. This is possible because
unlike Experiment 1 both symbols are visible to the LIS-
TENER (when both stored in memory) and thus there is no
need for an association of order of symbol with object type
(key or box). What is perhaps surprising about this result
is that the more flexible agent structure in this experiment
yields a simpler communication system, whereas the puta-
tively more sophisticated linguistic system in Experiment 1
emerges as an adaptive response to the more computationally
limited agent structure.

Experiment set 3: Modified environmental pressures.
Here we alter the environmental constraints by removing
the separator between the communication room and the box
room. This modification relieves the pressure imposed by
delay between communication and utilization effectively re-
moving the need to remember information. Instead LIS-
TENER can act immediately from SPEAKER’s instructions.
Figure 4 shows the best trial S= 3 and S= 4. For the case of 4
symbols, SPEAKER’s utterances act as immediate instructions
to LISTENER. Word order still matters, but when a particular
symbol is uttered first it may correspond to a different object
(box-key) than if uttered second. Furthermore, the second
symbol uttered can have different meaning depending on the
context. For example if LISTENER has already chosen a box,
the second symbol will be associated with a key.

2Example policies show actions for the case key = 1 and box
= 1. Each row is one time step; e means empty memory location.
For readability, we are showing the contents of LISTENER’s long-
term memory and omitting current room. LISTENER does not have
a “wait” action, but instead uses an action which has no effect (e.g.
“pick up a key” while in the communication room). The SPEAKER’s
utterances do not impact LISTENER after it changes rooms so these
actions are unimportant.
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Conclusions and Looking Ahead
We have described and illustrated a novel approach to lan-
guage emergence hypothesizing that specific properties of
language may be understood as features of boundedly opti-
mal policies to control problems imposed on computationally
limited agents. What makes the approach distinctive is its
emphasis on the shaping of linguistic systems by the joint
constraints of agent and environment structure, and the emer-
gence of such systems as the solution to the problem of how
to optimally control both cognitive and physical actions in
service of task goals (rather than communication goals). This
means that there is no associative learning component or any
other learning mechanism beyond the reinforcement learning
algorithm described above. Any associations between sym-
bols and objects or actions are arrived at not because the
agents are explicitly trying to understand each other or arrive
at shared symbol-meaning mappings, but rather implicitly as
joint solutions to the control problem.

Our initial experiments yielded two key results. First, we
have shown that even simple environments and agent archi-
tectures give rise to linguistic systems with interesting proper-
ties, including systematically structured utterances and flexi-
ble use of limited lexical resources. Second, we have shown
that changes in environmental pressures or agent constraints
may yield dramatic changes in optimal communication struc-
ture. Some constraints and pressures yield communication
with systematic symbol order, other constraints yield policies
that break the association between single symbols and sin-
gle objects in the environment. The changes to environment
and agent may seem small, raising the question of how a ro-
bust communication system can emerge, but in the context
of the environment we explored the modifications are quite
large. We expect small changes in a complex environment
would not drastically alter the resulting communication sys-
tems. Furthermore, the fact that the communication system is
strongly shaped by specific constraints of the cognitive archi-
tecture is also unproblematic, because we expect such con-
straints to be relatively stable across conspecifics. Indeed, to
the extent that language is shaped by such constraints, this is
good news for the cognitive scientist, because their detailed
nature is likely to be more accessible that the relevant details
of the shaping environments.

Our results suggest that there is promise in develop-
ing a broad systematic framework for studying language
emergence by identifying mappings between pressures, con-
straints, and language properties independent of questions re-
garding the mechanisms of evolution or adaptation. Promis-
ing future avenues include investigating the emergence of
compositional mechanisms like recursion, categorical fea-
tures including distinctions between nouns and verbs, or more
sophisticated uses of language for representation of internal
mental states.
Acknowledgments: This work was supported by NSF grant
IIS 0905146. Any opinions, findings, conclusions, or recom-
mendations expressed here are those of the authors and do not

necessarily reflect the views of the sponsors.
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Abstract 
We model the gestures accompanying spoken descriptions of 
spatial information and propose a conception of spatial 
gestures that differs from previous proposals by making a 
distinction between gestures used for thinking (cognitive 
gestures) and gestures used to help express predetermined 
ideas (linguistic gestures), and positing a tighter integration 
between gesture and language production in the latter than 
most previous researchers. 

Keywords:  gesture; spatial reasoning; language production 

Introduction 
Symbolic speech-accompanying gesture, representing 
spatial information, has lately been an area of active 
research (Alibali, 2005).    Of particular interest is the 
relationship between gesture and the language it 
accompanies.    In considering this relationship, we think it 
is useful to distinguish between gestures that help us 
determine what to communicate/express (cognitive 
gestures) and gestures that help us to express what we have 
determined to say, that is, gestures concerned with how to 
communicate (linguistic gestures).   While these two 
functions clearly overlap in certain cases, we consider the 
distinction useful.   Specifically, we argue that, in general, 
cognitive gestures lead language, whereas language leads 
gesture in the case of linguistic gestures.   
   Cognitive gesture leads language indirectly by facilitating 
thinking, thereby helping us determine what to say.  Thus, 
they are used in situations with competing conceptual 
representations (Kita & Davies, 2009), high conceptual load 
(Melinger & Kita, 2007), mental rotation tasks (Chu & Kita, 
2008),  expert and novice scientific thinking (Trafton et al., 
2006), and problem solving (Lozano & Tversky, 2006), 
among others.  Such gestures are relatively independent of 
language, often expressing information different from that 
expressed in the accompanying language, and sometimes 
cognitively more advanced than the latter, e.g., in 
development (Alibali & Goldin-Meadow, 1993) or in  
problem-solving performance (Lozano & Tversky, 2006). 
While cognitive gestures sometimes aid communication 
(Lozano & Tversky, 2006), they are relatively independent 
of communication, as evidenced by their use when solving 
problems silently in solitude (Chu & Kita, 2008; Lozano & 
Tversky, 2006).  
    In contrast to cognitive gestures, linguistic gestures are 
more strongly tied to language and dependent upon 
language.  They convey little or no information beyond 
what is expressed in the accompanying language (Beattie & 

Shovelton, 1999; So, Kita, & Goldin-Meadow, 2009), 
except where the respective roles of gesture and language 
are predetermined as in deixis (“Look at that!”) or in 
language referring to gesture (“It was this big.”).  
Neurological as well as behavioral evidence suggests the 
absence of priming of words by gestures in comprehension 
(Bernardis & Caramelli, 2007)  or production (Beattie & 
Coughlan, 1999; Bernardis, Salillas, & Caramelli, 2008).  
On the contrary, language primes gesture comprehension  
(Bernardis & Caramelli, 2007) and cross-linguistic studies 
demonstrate that the grammatical organization of speech is 
predictive of the sequence and nature of symbolic gesturing 
(Kita & Ozyurek, 2003).   
   Also in contrast to cognitive gestures, linguistic gestures 
are typically associated with communication, as evidenced 
by the great reduction in gesturing when the listener cannot 
see the speaker (Alibali, Heath, & Myers, 2001) and the 
absence of gesturing outside of communication (e.g., in 
silence or solitude).   However, we do not claim that 
linguistic gestures always facilitate communication, since 
people gesture even when speaking on the telephone (de 
Ruiter, 1995). 
   Note that the outward form of both cognitive and 
linguistic gestures may appear very similar – they are iconic 
gestures typically tied to a spatial representation of what is 
being thought or said. The types of gestures may be 
distinguished by the degree to which the gesturer has 
difficulty determining the spatial ideas he/she wishes to 
express, which may vary by population (e.g., child vs. adult) 
as well as by situation (e.g., problem-solving vs. simple 
description). 
   We will focus in the remainder of this paper on linguistic 
gestures.  One question that researchers have considered is 
the extent to which the perceptual information being 
described by the speaker inputs directly into the generation 
of gestures, without the intermediary of language 
processing.  Some argue that direct perception accounts for 
the few features of gestures that are not conveyed in the 
accompanying language (Kita & Ozyurek, 2003).   Other 
theories (de Ruiter, 2007; Hostetter & Alibali, 2008)  
attempt to account for gesture solely on the basis of 
perception or imagery.  Both types of theory are challenged 
in explaining the process by which perceptual features are 
selected for inclusion in gestural representation.    
   We propose a model of linguistic gestures that posits a 
tighter integration between gesture and language than most 
previous models (as does McNeill, 1992) by adopting a 
broader view of language representation than typically used.  
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Our approach draws on a recent linguistic theory proposed 
by Ray Jackendoff (2002), according to which language 
representation includes some irreducibly spatial 
components.  It also draws on the construction grammar 
approach of Goldberg (1995), according to which linguistic 
structures containing both semantic and syntactic 
components  are central to language processing. Combining 
these two approaches, we hypothesize that people select a 
construction before retrieving words and gestures. The 
construction provides an abstract plan for speaking that 
includes the semantic-syntactic information used in the 
retrieval of both words and spatial representations at 
appropriate places in the utterance.  The spatial 
representations are the basis of symbolic gestures and so 
this approach helps to identify where specific gestures will 
occur. Following Jackendoff, we hypothesize that the spatial 
representations are abstract in nature (Avraamides et 
al.,2004).  We propose that these abstract representations 
may be instantiated either as internal mental images or 
externally as gestures. 
   This account predicts that the information conveyed in 
linguistic gesture will be tightly tied to the accompanying 
language, since both language and gesture derive from the 
same construction. This helps to explain why linguistic 
gestures provide little information not included in the 
accompanying language. What little extra information is 
included in gesture is information required for the 
instantiation of an abstract spatial schema (a spatial element 
of a linguistic construction) in a particular situation. For 
instance, a gesture representing an observed leftward 
movement is usually performed in a leftward direction (Kita 
& Ozyurek, 2003), since a linear gesture must have some 
direction.  But the gestural reproduction of the stimulus is 
limited to what is necessary to instantiate an abstract spatial 
schema as a physical hand movement.  Thus, this account 
provides a mechanism for selecting perceptual features for 
inclusion in gestural representation, in contrast to 
unconstrained perceptual accounts (de Ruiter, 2007; 
Hostetter & Alibali, 2008).  This account also helps to 
explain the observed temporal synchrony between gestures 
and utterances of similar meaning (McNeill, 1998). 

Modeling Language 
We evaluate our conception of linguistic spatial gesture by 
modeling the findings reported by Kita and Ozyurek (Kita & 
Ozyurek, 2003). Native speakers of English, Japanese, and 
Turkish were shown a cartoon and asked to describe it to 
another person.  In one scene, a cat (Sylvester) jumps out 
the window of an apartment building, grabs onto a hanging 
rope and swings across the street to another building. In 
another scene, the cat, after swallowing a bowling ball, rolls 
down the street.  English speakers described both path 
(down/across the street) and manner of locomotion (swing 
or roll) in a single clause, such as (with clauses marked by 
square brackets):  

 
 English-Swing:  [The cat swings across the street.] 

 English-Roll:  [The cat rolls down the street.] 
 

In contrast, speakers of Japanese and Turkish (hereafter J/T) 
described path and manner in two separate clauses, 
paraphrased roughly as: 
 
 J/T-Swing: [[The cat goes across the street], [ ]]  
 J/T-Roll: [[The cat goes down the street], [as he rolls]] 

 
Note that J/T lack an appropriate equivalent to “swings” in 
this context, an unusual lacuna  in both these languages, and 
so the manner is not described verbally, but is often 
depicted by a gesture following the spoken clause, the 
position where  a dependent clause describing manner 
normally occurs, as in the J/T-Roll sentence. 
    The clausal structure of the four sentences, above, 
corresponds to linguistic constructions as characterized by 
Goldberg (1995).  A linguistic construction is a semantic-
syntax pair that also specifies the mapping between 
semantics and syntax.  While her theory focuses primarily 
on clausal constructions, Goldberg considers the 
construction framework to be applicable to all levels of the 
language down to words.  Thus, the J/T description of the 
roll event consists of two constructions nested within a 
larger construction, as shown in J/T-Roll, above. 
    Table 1 outlines a simplified English intransitive motion 
construction, characterizing the semantic and syntactic 
components of the clause in English-Roll, adapted from 
Goldberg (1995). 
 
   Table 1: A simplified intransitive motion construction. 
 

Semantics THEME MOVE GOAL 

Lexical items “He” “rolls” “down the 
street” 

Syntax subject verb oblique 
prep. phrase 

We omit many details.  A construction has semantic content 
beyond that indicated by standard semantic categories, such 
as those shown here; for example, this construction denotes 
movement along a path.  For Goldberg, the verb has a 
centrality not depicted here and constructions include rules 
for mapping from semantics to syntax that we omit. Note 
that the lexical items are not part of the construction, but 
instead are added to the construction in the course of its 
application.   
   We adopt a simplified process model for language 
production based on constructions, consisting of the 
following sequence: 

 
1. Construction retrieval/instantiation. A construction 

is selected based on the match of its semantic 
components to the situation, in the process of which 
those semantic components are instantiated. 

2. Lexical retrieval. Lexical items (e.g., words) are 
retrieved for each semantic component in turn (from 
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left to right in Table 1) based on the semantics-syntax 
mapping specified by the construction as well as by its 
semantic content. 

 
In the course of the first, construction retrieval, step, 
semantic components in the construction are instantiated 
with concepts and/or spatial representations.  Following 
Jackendoff (2002), we hypothesize that some semantic 
categories are instantiated with irreducibly spatial 
representations.  In fact, Jackendoff argues that the 
semantics of the MOVE component in an intransitive 
motion construction is exclusively spatial in nature.   Note 
in English, the MOVE component represents the manner of 
movement (e.g., swinging, rolling).  In contrast, this manner 
of movement component is absent from the intransitive 
motion constructions in J/T; instead, the manner of 
movement is represented by a separate dependent clause 
following the intransitive motion clause.  
   We hypothesize that the instantiated spatial components of 
constructions at all levels (multi-clausal, clausal, lexemes), 
resulting from step 1, constitute the basis for gesturing 
during speech. 

Modeling Gesture 

Kita and Ozyurek (2003) categorize the manual gestures 
found to accompany utterances English/J-T-Swing/Roll, 
above, into one of three types: 
1. Manner only: e.g., a circular motion for rolling. 
2. Trajectory only: e.g., a straight-line motion from left to 

right. 
3. Conflated: depicting both manner and trajectory, e.g., a 

looping left-to-right movement for rolling. 
 
As a manner-only gesture is not possible for denoting 
swinging, only trajectory and conflated gestures 
accompanied the swing utterances.  In general, the authors 
found that the language groups differed in their gestures in a 
manner corresponding to the structure of their utterances: 
English speakers often made conflated gestures only, 
whereas J/T speakers more often made manner only and 
trajectory only gestures.  Note that the language groups did 
not differ in their overall production of conflated gestures, 
but in the tendency to produce only conflated gestures, 
which was more common in English. Based on these 
findings, the authors proposed that the production of 
gestures is influenced by the structure of language in the 
planning stage of speech production. 
   Kita and Ozyurek also noted that among all language 
speakers, the direction of gestures (e.g., left to right) 
generally corresponded to the direction observed in the 
cartoon, but was never mentioned in the utterances.   On this 
basis, they posited a separate line of influence of perception 
on gesture, unrelated to language.  In contrast to this, we 
propose a unified account of gesture and language 
production. 

    We hypothesize that the spatial components of 
constructions at all levels (discourse, multi-clausal, clausal, 
lexemes) constitute the basis for gesturing during speech.  
We explain the selection of spatial features of an event for 
gestural representation in terms of the requirement to 
instantiate an abstract spatial representation to produce both 
speech and gesture.  Since a translation gesture must have 
some direction, the reproduction of the observed direction is 
simply part of this instantiation process. 
   Although Kita and Ozyurek did not report the 
correspondence between gesture and language in a fine-
grained manner, we have inferred from their reported data 
the correspondence outlined in Tables 2 and 3. Note that 
there is no manner clause for Swing descriptions available 
to J/T speakers.  We make certain assumptions based on the 
common observation that symbolic gestures co-occur with 
like-meaning language (McNeill, 1998).   Thus, manner-
only and conflated (manner+trajectory) gestures accompany 
manner language (the verb in English, the adverbial post-
clause in J/T), while trajectory-only and conflated gestures 
accompany path language (the prepositional phrase in 
English, the intransitive motion clause in J/T).  The relative 
frequency of the two possible gestures for the two respective 
language segments of interest (path vs. manner language) is 
the focus of our model. 
 
   Table 2. Language and accompanying gestures during 
Roll description observed and predicted by model. 
 

 % Ss 
observed Model 

English   
Language Gesture   
Manner verb Conflated 66 51 
Manner verb Manner only 13 18 
Path phrase Conflated 53 68 
Path phrase Trajectory 

only 39 28 

Japanese / Turkish   
Language Gesture   

Manner 
clause Conflated 59 76 

Manner 
clause Manner only 40 16 

Path clause Conflated 25 31 
Path clause Trajectory 

only 67 66 
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Table 3. Language and accompanying gestures during 
Swing description observed and predicted by model. 
  

 % Ss 
observed Model 

English   
Language Gesture   

Manner verb Conflated 88 93 
Path phrase Conflated 81 88 
Path phrase Trajectory 

only 7 3 

Japanese/Turkish   
Language Gesture   

[Manner 
clause 
position] 

Conflated 
75 88 

Path clause Conflated 37 30 
Path clause Trajectory 

only 63 70 

 
   The construction approach provides a useful framework 
for understanding both planning and online production of 
speech.  In the present context, it offers an explanation of 
how ongoing speech can be influenced by elements of the 
speech plan that are executed before and after the currently 
executed (spoken) element, an explanation that can be 
extended to gesture. Specifically, we hypothesize that 
spatial semantic components within the same construction 
will have a greater influence on one another (via priming, 
etc.) than those in separate constructions.  Further, this 
influence will be greater the lower the shared construction is 
in the construction hierarchy, since spatial representations 
are more concrete  and less abstract lower in the hierarchy.  
Thus, conflated gestures, representing both trajectory and 
manner, are proportionally more common during the path 
language in English than in J/T because the path language in 
English shares the same construction as the manner 
language, in contrast to J/T where manner language is in a 
separate low-level construction.  However, conflated 
gestures do occur sometimes in J/T because the respective 
clauses describing path and manner are contained within the 
same higher-level construction. 
   Similarly, clause structure can help to explain how an 
executed gesture influences the selection of a subsequent 
gesture.  In English, the type of gesture selected to express 
manner has a great influence on the subsequent gesture 
selected to express path, whereas in J/T there is no apparent 
influence of the selection of path-describing gesture on the 
subsequent manner-describing gesture.   This finding is 
explained by the occurrence of the two gestures within a 
single clause in English, but in separate clauses in J/T. 

Model of Gesture and Language 
 The models of gesture and language production were 
developed within ACT-R (Anderson et al.,2004). ACT-R is 
a hybrid symbolic/sub-symbolic production-based system. 

ACT-R consists of a number of modules, buffers, and a 
central pattern matcher. Since ACT-R is not well-suited to 
represent structured representations, such as nested 
linguistic constructions, we attempt to capture the retrieval 
of spatial representations using ACT-R’s partial matching 
capability.  Specifically, the relative similarity of pairs of 
related spatial representations is modulated to reflect their 
proximity in the construction hierarchy, as is their capability 
to prime one another.    

To represent space, we have developed a version of ACT-
R, ACT-R/E, that utilizes a spatial theory called Specialized 
Egocentrically Coordinated Spaces (SECS) (Harrison & 
Schunn, 2003). SECS provides two egocentric spatial 
modules, which are responsible for the encoding and 
transformation of representations in service of navigation 
(configural) and manipulation (manipulative).  Our model 
currently includes configural spatial representations. 
   Non-default ACT-R parameter settings are listed in Table 
4.  Manner chunk similarity refers to the associative 
similarity between the manner chunk in a language 
construction and an imaginal or gestural spatial 
representation.   Similarly for path chunk similarity.  Note 
that similarities are greater in English than in J/T, reflecting 
the increased priming by a linguistic construction lower in 
the construction hierarchy compared to a higher-level 
construction. Overall, for both language groups, there was a 
higher rate of conflated gestures for the swing description 
than for the roll description, possibly due to the smaller 
number of gesture types available for swing (i.e., the 
absence of a manner-only gesture).  This may explain the 
need for weaker manner chunk similarities for the Roll 
models relative to the Swing models.  The reduction of base 
level learning rates in English relative to J/T reflects the 
priming of later gesture selection by the previously-selected 
gesture in English, unlike in J/T.   
 

Table 4. Non-default ACT-R parameter settings. 
 

Parameter English 
swing 

J/T 
swing 

English 
roll 

J/T 
roll 

Enable 
partial 
matching 

true true true true 

Activation 
Noise 

0.3 0.3 0.3 0.3 

Retrieval 
threshold 

-6.0 -6.0 -6.0 -6.0 

Base level 
learning 
rate 

0.2 0.9 0.5 0.9 

Manner 
chunk 
similarity 

-0.1 -1.0 -0.9 -3.0 

Path 
chunk 
similarity 

-0.2 -1.0 -0.1 -1.0 
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In describing the Roll situation, the English-language 
model first retrieves, and instantiates the semantics of, an 
intransitive motion clause construction, based on the 
observed event (see Table 1.)  The instantiated construction 
forms the plan for all further retrievals, gestures, and 
utterances for the clause.  First, the model retrieves and 
utters the first clause argument, the THEME (e.g., “the cat).  
Next it retrieves a manner verb corresponding to the MOVE 
argument.  The verb contains a spatial representation that 
strongly primes a manner gesture representation, but the 
clause construction itself carries path-following meaning 
and so contains a spatial representation that weakly primes a 
trajectory gesture representation—weakly, because the 
clause construction is a higher-level construction than the 
verb.  Although the priming of a trajectory gesture is weaker 
than that of a manner gesture in English, it is stronger than 
the priming of the corresponding “non-matching” gestures 
in J/T, because those gestures are primed by a still higher-
level construction. As a result, English speakers more often 
retrieved both manner and trajectory gesture representations, 
fusing them into a conflated gesture. However, when only 
the manner gesture representation is retrieved, then a 
manner-only gesture will be performed.  The manner verb is 
then uttered together with the selected gesture. 

Next, path description language (spec. a prepositional 
phrase) is retrieved based on the instantiated GOAL.  Once 
retrieved, this path phrase’s spatial trajectory representation 
strongly primes a trajectory gesture.  At the same time, the 
construction’s MOVE representation weakly primes the 
manner gesture, weakly because it is at a higher level than 
the path language.  Also, if the manner gesture was retrieved 
and performed earlier with the verb, that earlier retrieval 
makes an additional contribution to its activation, making it 
more likely to be retrieved again; no such priming occurs in 
J/T because the two successive gestures occur in separate 
constructions.  If the manner representation is retrieved 
together with the trajectory representation, then the GOAL 
utterance is accompanied by a conflated gesture.  If only a 
trajectory representation is retrieved, then it is accompanied 
by a trajectory-only gesture. 

The J/T models function in a similar manner to this 
illustration, differing primarily in the nested structure of its 
constructions. 
   Given that individual variability is typically quite high for 
gesturing, the predictions of our model are rather similar to 
the observed pattern of behavior (Tables 2 and 3) and were 
all within the 95% confidence interval.  r2 was .63 for Roll 
and .98 for Swing.   

Discussion 
   We have introduced the contrast between cognitive and 
linguistic spatial symbolic gestures in hopes of resolving 
apparently conflicting evidence in the literature.  Cognitive 
gestures help us to determine what to say in a spatially 
complex domain, while linguistic gestures help us to 
express what we have determined to say.  Obviously these 
two types of gesturing may be intermixed in a given 

situation, but certain experimental situations clearly 
encourage one type of gesturing over the other for a given 
population. 

With regard to linguistic gestures, we hypothesize that 
gestures are generated on the basis of spatial components 
within linguistic representations (Jackendoff, 2002).  The 
grammatical framework we adopt is that of constructions 
(Goldberg, 1995) in which lexical items, clauses, and more 
complex linguistic expressions may all be viewed as 
constructions, i.e., semantic-syntactic pairings whose 
semantic content, we hypothesize, includes abstract spatial 
components.  The spatial semantic content at all levels of 
the construction hierarchy constitutes the basis for 
gesturing. 

From this viewpoint, linguistic gestures are largely 
constrained by language generation. Specifically, perceptual 
information is incorporated in gesture during the course of 
instantiating linguistic structures.  This obviates the need to 
hypothesize a separate, independent source of perceptual 
input into gesturing, together with the problems such a 
hypothesis entails: of explaining that mechanism and, 
especially, of explaining the selection of perceptual features 
to represent gesturally.  As the information conveyed in 
gesture is largely limited to that conveyed in language, it 
would appear inappropriate to posit an unconstrained source 
of perceptual input into gesture production. 

From our perspective, linguistic gesture and language are 
intimately related.  Our model is an explicit computational / 
process account of McNeill’s proposal that gesture and 
speech arise from a single process of utterance formation 
(McNeil, 1992, p. 29-30). 
    Although not  addressed in this model, many factors 
modulate the rate  of  gesturing, such as social stimulation 
(Alibali et al., 2001), exposure to perceptual vs. verbal 
information (Hostetter & Hopkins, 2002), etc.  The idea of 
an activation threshold governing the elicitation of 
gesturing, proposed by Hostetter and Alibali (2008), may be 
useful in explaining the expression of spatial representations 
externally in gesture rather than internally in imagery. 
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Abstract 

A novel dual-task paradigm was used to investigate how 

people adapt their task interleaving behavior to meet a 

specific performance objective. The study required 

participants to encode and enter a series of route instructions 

from a secondary display while driving a simulated vehicle. 

Explicit instructions were given to give greater priority to 

either safe driving or rapid completion of the secondary 

navigation task. Results showed that participants met the 

required task objective by varying the frequency and duration 

of visits to the secondary task display, and by also varying the 

amount of time given up to steering control in between visits. 

We explain these data using a framework for modeling driver 

distraction effects. The model predicted the observed shift in 

task performance between the two focus conditions and also 

the observed change in task interleaving strategy. Taken 

together these results support the idea that people can 

strategically control the allocation of attention in multitask 

settings to meet specific performance criteria.  

Keywords: Multitasking, cognitive modeling. 

Introduction 

Consider for a moment a driver following a set of written 

directions to reach an unfamiliar destination. As the driver 

approaches a junction, they might want to consult their 

directions, and in doing so must consider the risks of taking 

their eyes off the road ahead. A safe driver, given the 

opportunity, might pull over to study their directions, or if 

this is not possible, they might choose to make many brief 

glances to the instructions. A risky driver, on the other hand, 

may choose to look away from the road for prolonged 

periods to study the directions in detail. In this way, the 

frequency and duration of attention shifts between tasks is 

determined by the relative importance of each task, and also 

a judgment of safe and acceptable behavior. 

It is well known that in many multitasking situations, such 

as the one sketched above, constraints on the human 

cognitive architecture limit the extent to which tasks are 

performed in parallel (Meyer & Kieras, 1997). How people 

control the allocation of resources to multiple concurrent 

tasks is a topic of considerable theoretical and practical 

interest (e.g., Navon, & Gopher, 1979; Norman & Bobrow, 

1975; Salvucci & Taatgen, 2008; Wickens, 2002). 

One important application of multitasking theory has been 

to understand driver distraction. Driving is a safety critical 

task performed by millions of people on a daily basis, and 

with the growing ubiquity of mobile and in-car devices there 

are concerns about the deleterious effects of driver 

distraction. In this area, many studies have investigated the 

impact of cell phone dialing on driving performance. 

Typical results show that drivers tend to dial chunks of 

digits at a time, returning their attention to driving in 

between each chunk (Brumby, Salvucci & Howes, 2009; 

Salvucci, 2005). This pattern of task interleaving might 

reflect the fact that the dialing task has a strong 

representational structure that is difficult to disrupt, and this 

could be used to guide decisions about when to switch 

attention between tasks (Salvucci, 2005). But how might 

people decide how to interleave tasks in situations where 

there are no natural cues to guide this decision?  

Salvucci and Taatgen’s (2008) threaded cognition theory 

assumes that relatively complex multitasking behavior can 

emerge from a simple bottom-up process without the need 

for any explicit top-down control structures. The theory 

assumes that the cognitive system processes task threads 

using a least-recently-processed scheduling heuristic. While 

this theory offers a parsimonious account of multitasking 

behavior, it is not clear how this account allows the 

cognitive system to make strategic decisions to favor one 

task over another. Indeed, a large body of empirical work 

demonstrated that people can make explicit decisions about 

how to allocate attention to different tasks in multitask 

settings by prioritizing performance on one task over 

another (e.g., Brumby et al., 2009; Horrey et al., 2006; 

Gopher et al., 1982; Gopher, 1993; Wang et al., 2007).  

One possibility for how people might adapt their dual-task 

strategy to meet a specific task objective is that they monitor 

the amount of time that has elapsed since they last checked 

on the more important task. Kushleyeva, Salvucci, and Lee 

(2005) found that when participants were required to 

monitor a safety-critical dynamic task, they adapted their 

monitoring behavior to changes in the temporal demands of 

the task. This suggests that the safer driver in the example 

above might simply set a lower threshold for the amount of 

time that they are prepared to take their eyes off the road, 

and in doing so, will interleave attention between tasks more 

frequently.  

Another possibility is that people select strategies to meet a 

desired dual-task performance tradeoff objective. Brumby, 

Salvucci, and Howes (2009) have shown that in the case of 

manually dialing a standard US telephone number while 

driving, dialing three or four digits at a time is a particularly 

efficient strategy because any more interleaving incurs 

additional time costs without significant improvement in 

lane keeping, and any less interleaving sacrifices safety. To 
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demonstrate this claim, Brumby et al. derived performance 

predictions for a range of dual-task strategies using a 

computational model. This approach of explicitly considering 

the performance tradeoffs involved for choosing between 

various dual-task allocation strategies is similar to that of 

defining a Performance Operating Characteristic (Norman 

& Bobrow, 1975; Navon & Gopher, 1979). The analysis by 

Brumby et al. showed that one limitation of the dialing-

while-driving paradigm is that interleaving at the natural 

subtask boundaries of this task often corresponds with the 

most efficient dual-task interleaving strategy, in terms of 

completing the secondary dialing task in a relatively safe 

and timely manner.  

In this paper, we investigate multitasking behavior using a 

novel dual-task paradigm. The paradigm, developed by Del 

Rosario (2009), requires participants to look at a secondary 

display to encode and enter a series of route instructions while 

driving a simulated vehicle. The benefit of this paradigm, 

over the classic dialing-while-driving paradigm, is that it 

does not have an external representational structure that can be 

used to guide decisions about when to interleave. Thus, 

participants are free to interleave the tasks how they like.  

We use this paradigm to investigate how people adapt 

their dual-task interleaving behavior to meet varying 

performance objectives. In particular, we manipulate the 

experimental instructions and feedback given to participants 

to encourage either safe driving or rapid completion of the 

secondary navigation task. We consider how this change in 

task objective affects task performance and also the decision 

about when to interleave attention between tasks. Finally, we 

seek to apply Brumby, Salvucci, and Howes’ (2009) model of 

how people interleave cell phone dialing and driving to this 

novel dual-task paradigm. An important question is whether the 

model will generalize to this new task setup, and if so, whether 

it will predict how people choose to interleave in each 

condition.  

Experiment 

Method 

Participants. Sixteen participants (five female) took part in 

the study. Participants were unpaid volunteers, aged 

between 21- and 42-years (M=28.3 years). All had a valid 

driver’s license and at least two years of driving experience.  

Materials. The experiment used a dual-task setup in which 

participants had to complete a secondary navigation task 

while driving a simulated vehicle. Figure 1 shows how the 

two task displays were arranged. 

For the driving task, participants were required to 

navigate the center lane of a three-way highway 

environment. The simulation environment was displayed on 

a 30-inch monitor and controlled by a Logitech G25 Racing 

Wheel. Participants were only required to steer the vehicle 

to maintain a central lane position. The vehicle’s speed was 

held at a constant 55 miles/h (88.5 km/h). To reinforce safe 

lane keeping, safety cones were placed at either side of the  

 
Figure 1. A schematic representation of how the driving  

and navigation displays were arranged. 

 

driver’s central lane. Noise was added to the vehicle 

dynamics, causing the vehicle to gradually drift about in the 

lane. This meant that the participant had to actively control 

and monitor the vehicle’s lateral position and heading to 

maintain a central lane position. 

For the navigation task, participants had to look at and 

enter a sequence of ten directions (lefts or rights). The to-be-

entered sequence was randomly generated with the 

constraint that five left and five right directions were 

included and that there were no more than three consecutive 

repeating directions. The sequence of commands was 

represented either graphically (<=) or textually (“Left”), and 

was presented as a single vertical list on a 17-inch monitor 

positioned to the left of the participant (see, Figure 1).  

The experiment was designed so that participants would 

be forced to sequentially interleave their attention between 

the two tasks. This was achieved by allowing only one of 

the task displays to be visible at any one time. By default 

the driving display was visible and the navigator display 

was blanked out. Participants activated the navigator display 

by moving their left hand from the steering wheel and using 

it to hold down the space bar on the keyboard in front of the 

navigator display. While the space bar was depressed the 

navigator display was presented and the driving display was 

blanked out. This meant that participants could not monitor 

the vehicle’s position in the lane while encoding instructions 

for the navigation task. After viewing the instructions on the 

navigator display, participants had to return their hand to the 

steering wheel to use the left and a right paddle controls 

positioned under the steering wheel to enter the route 

instructions from memory.  

Entry errors on the navigation task were associated with a 

time cost. If an input error occurred (e.g., a left paddle 

action was performed when a right action was required), the 

trial was terminated and the participant was instructed that 

they had to repeat the trial with a new list of instructions. 

Design. A 2x2x2 (task-focus x representation x visual cue) 

mixed design was used, where task-focus was the between-

subjects factor. To manipulate task priority, participants 

were instructed to either focus on completing the secondary 

navigation task as quickly as possible (the navigation-focus 

condition) or to focus on keeping the car as close as possible 

to lane center (the steering-focus condition).  

20



Features of the secondary navigation task were 

manipulated as within-subjects factors. The route 

instructions were presented in a graphical or a textual 

format. In addition, a salient visual cue, indicating the 

current position in the list, was either present or absent.  

The main dependent variables of interest were the time taken 

to complete the secondary navigation task and the impact that 

completing this task had on driving performance. The driving 

simulator logged the lateral distance of the vehicle from the 

center of the lane at a rate of 200 Hz. Driving performance 

was indexed by calculating the root mean square error 

(RMSE) of these lateral deviation samples over the period 

of time that the participant was working on the secondary 

navigation task. In addition, we were also interested in how 

participants chose to interleave the two tasks. To index task 

interleaving we consider the number and duration of each 

secondary task visit, as well as the time in between two visits.   

Procedure. Participants were randomly assigned to one of 

the focus conditions, with the exception that effort was made to 

balance gender across conditions. Participants were given an 

opportunity to practice both the navigation and driving task 

separately.  Once familiar with each task, participants 

completed four blocks of dual-task trials, one for each of the 

route representation and visual cue conditions. Trials were 

grouped by condition, and the order was counter-balanced 

across participants. For each block, participants were 

required to complete 10 error-free trials, up to a maximum 

of 15 trials per block. This dissuaded participants from 

making errors on the secondary navigation task.  

Experimental instructions were given to encourage 

participants to prioritize either safe driving (steering-focus) 

or rapid completion of the navigation task (navigation-

focus). To reinforce these instructions participants received 

feedback at the completion of every trial on their performance 

on the relevant variable. Specifically, participants in the 

steering-focus condition received feedback about the vehicle’s 

RMSE lateral deviation, while participants in the navigation-

focus condition received feedback on total trial time.  

Results and Discussion 

Due to space limitations we do not report data on how task 

performance was affected by manipulating features of the 

navigation task (see, Del Rosario, 2009, for details). Instead, 

we focus our analysis on how varying the instructions given 

to participants to prioritize one task over the other affected 

performance and decisions of how to interleave tasks. The 

primary dependent measures of interest were the time taken 

to complete the secondary navigation task and the lateral 

deviation of the vehicle from the center of the lane. We 

consider four separate measures to index task interleaving 

strategy: the number of visits to the navigator display per 

trial, the average duration of each visit, the number of 

navigation task items entered following each visit, and the 

average time between visits. 

Figure 2 shows task time for the navigation task plotted 

against average RMSE lateral deviation for the driving task. 

There is a clear effect of task objective on how participants   

 
Figure 2. Data plot showing task time and RMSE lateral 

deviation across for varying task objectives. Error bars on 

human data points represent 95% confidence intervals. 

Model data points show performance predictions for 

different task interleaving strategies. 

 

traded performance between the two tasks, in that, 

participants that were instructed to prioritize the navigation 

task completed it relatively quickly (M=13.76s, SD=2.31s), 

but in doing so had poor lateral control of the vehicle 

(M=1.07m, SD=0.41m). Conversely, participants that were 

instructed to prioritize safe driving completed the navigation 

task relatively slowly (M=27.30s, SD=5.57s) but were better 

able to maintain lateral control of the vehicle (M=0.48m, 

SD=0.10m). A 2x2x2 mixed factorial ANOVA found a 

significant effect of task objective on task time, 

F(1,14)=40.26, p<.001, MSE=72.76, and RMSE lateral 

deviation, F(1,14)=15.87, p<.001, MSE=.35.  

We were also interested in participants’ interleaving 

strategy, which was indexed by considering when 

participants choose to access the navigation task display. 

The data presented in Figure 3 show that the reason why 

participants in the steering-focus condition were better able 

to maintain lateral control of the vehicle than participants in 

the navigation-focus condition was because they made more 

visits to the navigation display (4.5 visits vs. 3.3 visits), 

F(1,14)=3.67, p=.07, MSE=6.49, entered fewer items 

following each visit (2.4 items vs. 3.4 items), F(1,14)=5.19, 

p=.04, MSE=3.23, and gave up more time to steering control 

between visits to the secondary display (5.34s vs. 2.57s), 

F(1,14)=21.05, p<.001, MSE=6.25. 

The results of the study show that participants in the 

steering-focus condition interleaved more frequently and 
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spent more time in between glances to the secondary display 

stabilizing the vehicle than participants in the navigation-

focus condition. However, it is not immediately clear why 

participants adapted their strategy in the way that they did. 

Changing the task priority lead to only a single extra item, 

on average, being encoded and entered following each visit 

to the secondary display. In contrast, participants spent 

nearly twice as long in between visits to the navigation 

display in the steering-focus condition. But why did 

participants opt to spend more time between visits rather 

than interleave much more frequently? To explain the 

observed pattern of task interleaving we apply a modeling 

framework developed to explain behavior in a dialing-

while-driving paradigm (Brumby et al., 2007, 2009).    

Model 

Our modeling approach focuses on deriving performance 

predictions for various strategies for completing the 

navigation task while driving. The model represents basic 

task operators (i.e., encoding a single instruction from the 

navigation display, or performing a steering control update) 

as discrete processing units that are limited by a serial 

bottleneck. Within this framework, we systematically 

consider every possible dual-task strategy that could have 

been adopted. Specifically, given that the navigation task 

required participants to enter 10 route instructions, we can 

consider at least 2
9 

= 512 different task interleaving 

strategies (i.e., where strategies differ in terms of whether 

after encoding an item, another item is encoded or attention 

is returned to driving). For each of these strategies we also 

consider varying the amount of time that is given up to 

steering control in between visits to the secondary display.   

We assume that glancing at the navigation display 

interferes with steering control. We estimate core 

parameters for the navigation task directly from the data. 

With these parameters fixed, we derive performance 

predictions for various dual-task interleaving strategies 

using a pre-existing model of steering control processes. For 

each strategy we derive predictions for critical performance 

metrics, namely, task time and lane keeping performance. 

The aim of this analysis is to explain the observed shift in 

dual-task performance between conditions, and also the 

precise change in low-level task interleaving behavior. 

Navigation task. The navigation task is modeled at the 

granularity of the time taken to encode and enter route 

instructions. We estimate the time taken to perform these 

basic activities from the empirical data. Specifically, we 

estimate the time taken to:  

• Shift attention from one task to the other 

• Encode an item from the navigation display 

• Input an instruction using the paddles 

The time to switch attention from the secondary display to 

the driving task can be approximated by considering the 

average time between the release of the space bar (signaling 

the end of a visit) and the first paddle action being 

performed after the visit. Analysis shows that the average 

time between these events was approximately 1 second. A 

limitation of this measure as index of the cost of switching 

attention between tasks is that it assumes that the participant 

immediately commenced entering the instructions prior to 

returning their hand to the steering wheel.   

We can approximate the time needed to encode a single 

route instruction by assuming that the number of items 

entered after a visit corresponds to the number of items that 

were encoded during that visit. Taking the average visit 

duration, we can calculate the average encoding rate to be 

approximately 500ms per item (i.e., in the navigation-focus 

condition, visits were on average 1.67s long and 3.4 items 

were entered after each visit). This assumes that participants 

never encoded items that were later forgotten or simply not 

entered. We shall revisit the implications of this assumption 

in the general discussion.  

Finally, to estimate the time taken to input an instruction 

using the paddle, we consider the average time between two 

consecutive paddle entries. This yields an average time 

interval of 250ms between each paddle event. We assume 

that participants were able to perform steering updates while 

using the paddle to enter the route instructions, and that all 

instructions were entered before the next visit occurred. 

With these basic parameters set we can consider how this 

task might have interfered with driving performance.  

Driving task. We use a simple mathematical model, taken 

from Brumby, Salvucci, and Howes (2009), which describes 

how people tend to adjust the heading of a vehicle based on 

its position in the lane. The model captures the basic idea 

that as the vehicle strays closer to the lane boundary, drivers 

react by making sharper corrective steering movements, 

which in turn, increase the lateral velocity of the vehicle, 

returning it to a central lane position more rapidly. The 

model assumes that discrete steering control updates are 

performed once every 250ms, which adjust the lateral 

velocity of the vehicle as follows:  

Velocity = 0.2617 x LD
2
 + 0.0233 x LD - 0.022        (1) 

where, LD represents lateral deviation from lane center, and 

there is an upper bound on velocity of 1.7m/s. In between 

steering updates, external factors can influence the vehicle’s 

heading. To model this, we permute the vehicle’s heading 

every 50 milliseconds with a value drawn from a Gaussian 

distribution with a mean of zero and a standard deviation of 

0.09. Next we describe how this model is used to derive 

predictions of changes in a simulated vehicle’s lateral 

deviation over time given discrete periods of driver attention 

and inattention. 

For each of the 512 different strategies, we consider 

alternatives that give more or less time up to steering control 

in between visits to the navigation display. Specifically, we 

consider steering periods of between 250ms and 5000ms, at 

intervals of 250ms. This combined with the number of basic 

task interleaving strategies considered yields a fairly large 

set of 6,644 alternatives. For each, 50 simulations were run 

and performance averaged. 
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Figure 3. Data and model predictions for various navigation task measures. Bar charts show human data, with error bars 

representing standard errors of the mean. Circular data points represent model predictions for each priority condition. The 

values are the means for model alternatives that fall within the Confidence Interval in Figure 2 (see text for details). 

 

Model Results 

Figure 2 shows the predicted RMSE lateral deviation and 

task time for each of the 6,644 strategies that were evaluated 

along with the human data for each priority condition. The 

model predicts a clear dual-task performance tradeoff 

between strategies that complete the navigation task quickly 

and have relatively poor lane keeping performance, and 

those that complete the navigation task more slowly giving 

relatively better driving performance.  

The shape of the tradeoff curve predicted by the model is 

noteworthy. There is a clear tipping point where 

improvements in lane keeping performance become smaller 

with increased task time. The human data for the steering-

focus condition lie at this tipping point in the tradeoff curve, 

suggesting that participant adapted their strategy to meet the 

performance objective of minimizing lateral deviation while 

completing the secondary task in a reasonable amount of 

time (note that time is represented on a logarithmic scale). 

In contrast, data from the navigation-focus condition lie at 

close to the leftmost extreme of the strategy space, where 

faster performance is associated with poor lane keeping.  

Figure 2 shows that there are many different strategies 

that fall within the predicted performance bounds of the 

human data for each condition. To get a better sense of how 

this performance tradeoff was achieved, we consider how 

these strategies allocated attention between the tasks. 

Specifically, we consider for each condition the subset of 

strategies that fall within the 95% confidence interval (CI) 

of the human data for each condition.  

For the navigation-focus condition there were 34 

strategies that fell within the CIs of the human data, while 

for the steering-focus condition there were 307 strategies 

that fell within the CIs of the human data. For each of these 

best-fitting strategies we define the same four measures of 

task interleaving behavior used in the analysis of the human 

data (i.e., the number of visits to the navigator display per 

trial, the average duration of each visit, the number of 

navigation task items entered following each visit, and the 

average time between visits). For each measure, we 

calculate the mean across the subset of best fitting strategies 

for each condition. In doing so, we get a better sense of how 

the best fitting strategies for each condition differed, and 

can compare these indexes of behavior to the human data.  

Figure 3 shows these mean model predictions along with 

the corresponding human data for each condition. The fit of 

the model to these low-level task interleaving measures is 

remarkable, in that the model explains why participants in 

the steering-focus condition would have chosen to double 

the time between visits and encode one extra item per visit 

in order to reach the tipping point in the tradeoff curve.   
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General Discussion 

A novel dual-task paradigm was used to investigate how 

people adapt their behavior to meet a specific performance 

objective. In the study, participants were required to encode 

and enter a series of route instructions while driving a 

simulated vehicle. Explicit instructions were given to 

participants to give greater priority to either safe driving or 

rapid completion of the navigation task. Results showed that 

participants met the required task objective by varying the 

number and duration of visits to the navigation display, and 

by also varying the amount of time given up to steering 

control between visits. These findings support the idea that 

people can strategically allocate attention in multitask 

settings (e.g., Brumby et al., 2009; Horrey et al., 2006; 

Gopher et al, 1982; Gopher, 1993; Wang et al., 2007).  

We explain participants’ decisions about how to allocate 

attention using an existing framework for modeling driver 

distraction effects (Brumby et al., 2007, 2009). The model 

represents basic task operators as discrete processing units 

that are limited by a serial bottleneck. To apply the model to 

this new dual-task context, a handful of parameters for the 

navigation task had to be estimated from the data (i.e., the 

time taken to encode a single instruction from the navigation 

display, shift attention back to road, and enter that 

instruction). With these basic timing estimates fixed, we 

model the effects of various allocation policies for attending 

to the secondary navigation display for critical task 

performance metrics.  

The modeling results help explain the observed shift in 

task performance between the two focus conditions. The 

model predicts a classic dual-task performance tradeoff 

between safer driving and shorter task time. Interestingly, 

the tradeoff curve has a clear tipping point, after which 

improvements in lane keeping performance become 

relatively small with increased time investment. Human 

performance data from the steering-focus condition lie close 

to this tipping point, and remarkably the modeled strategies 

in this region of the strategy space corresponded with those 

adopted by participants.   

However, the model did not explain data from the 

navigation-focus condition as well. Specifically, it under-

predicted the number of visits made to the secondary display 

and over-predicted the number of items entered after each 

visit (see, Figure 3). The likely explanation for this 

departure is that the model assumes a perfect and limitless 

memory, which could enter all ten of the route instructions 

after a single visit. This is clearly an implausible assumption 

given the known limits on memory. This aspect of the 

model could be informed by considering how many items 

participants would copy over in a single-task setting. 

Alternatively, we could build on existing work that has 

modeled memory retrieval processes in similar tasks. For 

instance, Gray et al.'s (2006) work on modeling the impact 

of memory constraints in the Blocks World paradigm.   

Moreover, because of space limits we could not present 

an analysis of how features of the navigation task affected 

performance. Del Rosario (2009) reports that participants 

could encode textual information faster than graphical 

information. Future work should point out how the model 

might explain any shift in strategy based upon changes in 

time take to encode an item from the display.   

In summary, we have used a novel dual-task paradigm to 

demonstrate that people can strategically allocate attention 

in multitask settings. A model was used to explain why 

particular strategies might have been favored in terms of the 

shape of the performance tradeoff between safer driving and 

shorter task time. 
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Abstract

Goals play an important role in human cognition. Dif-
ferent aspects of human mind influence the generation
of goals they pursue, and the goals guide their behav-
ior. In psychology, researchers made significant efforts
to study goals and their origin, and cognitive architec-
tures include various facilities to handle goals of arti-
ficial agents. One such architecture, ICARUS, supports
goal-driven behaviors while maintaining reactivity, and
the top-level goals play an important role by guiding the
behavior of ICARUS agents. However, the architecture
does not cover the origin of its goals or the management
of them, and this imposes restrictions like limited auton-
omy in ICARUS. In this paper, we extend the architec-
ture to provide the capability to manage top-level goals
using the notion of long-term, general goals. We show
some illustrative examples in an urban driving domain,
and discuss related and future work in this direction.

Introduction and Motivation
Goals play an important role in human cognition. People have
ideas on what they want to do or what they should do, and
these give rise to many different goals. Such goals, in turn,
guide people’s behavior by restricting the space of possible
actions to take. Traditionally, psychologists put significant
efforts on the study of this process (Simon, 1967; Sloman,
1987; Gray & Braver, 2002 to name a few). As computational
frameworks for models of cognition, most cognitive archi-
tectures (Newell, 1990), too, have some supports for goals.
At the very least, these architectures allow the specification
of goals or subgoals that guide the artificial agent’s behav-
ior. But some architectures provide more, including nomina-
tion and prioritization of goals. For instance, CLARION (Sun,
2007) has drive and goal mechanisms that correspond to psy-
chological accounts of goal nomination. In Soar (Laird et al.,
1986), the top-level operators can act as reactive goals and
there are rules that govern their nomination as goals.

Another cognitive architecture, ICARUS (Langley & Choi,
2006), operates in a goal-directed fashion, and uses multiple
top-level goals. However, the architecture lacks any mech-
anism to add, delete, or reorder such goals, limiting its ca-
pabilities significantly. In this paper, we present the ICARUS
architecture with a new goal management mechanism that is
reactive to the environment. We extended the existing archi-
tectural distinction between long-term knowledge and short-
term structures to goals by introducing general goal descrip-
tions associated with their own relevance conditions. The sys-
tem instantiates these goals with respect to the current situa-
tion of the world and nominates them as its own top-level
goals to guide its behavior. The extended architecture also
has a new ability to prioritize its nominated top-level goals

by modulating their priority values with continuous degrees
of match for the relevance conditions.

In the subsequent sections, we briefly review the ICARUS
architecture and explain the extension for nomination and pri-
oritization of goals in detail. Then we provide some illus-
trative examples in an urban driving domain. After that, we
conclude after a discussion on related and future work.

Review of the ICARUS Architecture
ICARUS shares its basic features with other cognitive archi-
tectures like Soar (Laird et al., 1986) and ACT-R (Anderson,
1993). It makes commitments to its representation of knowl-
edge, memory structures, and mechanisms for inference, ex-
ecution, and learning. The system provides a computational
framework for intelligent agents, which stays constant across
different domains. In this section, we review the basic ca-
pabilities of the architecture before we continue our discus-
sion on nomination and prioritization of goals. We start
with ICARUS’ representation of knowledge and memories
that support this, and then cover the architecture’s inference
and execution processes. Throughout this section, we show
examples from an urban driving domain, which we also use
for demonstration purposes in a later section.

Representation and Memories
The ICARUS architecture distinguishes conceptual and pro-
cedural knowledge. Its concepts describe various aspects of
the environment, whereas its skills define procedures that are
known to achieve corresponding concepts when executed un-
til completion. ICARUS also distinguishes long-term knowl-
edge and short-term structures. Long-term knowledge in-
cludes general descriptions of the environment and proce-
dures. The architecture instantiates them and gets short-term
structures relevant to the current situation.

The distinctions along these two directions result in four
main memories in ICARUS. Its long-term conceptual mem-
ory stores general definitions of concepts that use variablized
objects and their attributes to describe situations. A long-
term skill memory houses variablized skills that define gen-
eral procedures to achieve certain concepts, namely their
goals. When the system instantiates these general concepts
and skills, it deposits them in the corresponding short-term
memories. A short-term conceptual memory stores instanti-
ated concepts, which the system believes to be true in the cur-
rent situation. A short-term skill memory holds instantiated
skills, along with their corresponding goals. For this reason,
we often call the short-term memories as the belief memory
and the goal memory, respectively.
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Table 1 shows some sample concepts in an urban driving
domain. The first two concepts are primitive, and they in-
clude only perceptual matching conditions that ground on ob-
ject information from the environment in the :percepts
and :tests fields. On the other hand, the last concept
is non-primitive, since it refers to other concepts in the
:relations field. This hierarchical organization of con-
cepts allows multiple levels of abstraction, and facilitates the
description of complex situations in the world. Meanwhile,
Table 2 provides some examples of skills in this domain. In
a similar fashion to their conceptual counterparts, there are
primitive and non-primitive skills. The first skill shown is
primitive, and it consists of perceptual matching conditions,
preconditions, and a direct reference to an immediate action
in the world. The other two skills, however, are non-primitive,
and they provide subgoal decompositions instead of refer-
ences to actions. In the next section, we cover ICARUS’ pro-
cesses that work over these knowledge structures stored in its
memories.

Table 1: Some sample ICARUS concepts for the urban driving
domain.

((yellow-line ?line)
:percepts ((lane-line ?line color YELLOW)))

((at-turning-speed ?self)
:percepts ((self ?self speed ?speed))
:tests ((>= ?speed 15)

(<= ?speed 20)))

((ready-for-right-turn ?self)
:relations ((in-rightmost-lane ?self ?l1 ?l2)

(at-turning-speed ?self)))

Table 2: Some sample ICARUS skills for the urban driving
domain.

((in-intersection-for-rt ?self ?int ?c ?tg)
:percepts ((self ?self)

(street ?c)
(street ?tg)
(intersection ?int))

:start ((on-street ?self ?c)
(ready-for-right-turn ?self))

:actions ((*cruise)))

((on-street ?self ?tg)
:percepts ((self ?self)

(street ?st)
(street ?tg)
(intersection ?int))

:start ((intersection-ahead ?self ?int ?tg))
:subgoals ((ready-for-right-turn ?self)

(in-intersection-for-rt ?self ?int ?st ?tg)
(on-street ?self ?tg)))

((ready-for-right-turn ?self)
:percepts ((self ?self))
:subgoals ((in-rightmost-lane ?self ?l1 ?l2)

(at-turning-speed ?self)))

Inference and Execution
The ICARUS architecture operates in distinct cycles. On each
cycle, the system invokes a series of processes including the
inference of the current belief state and the execution of skill
paths relevant to the situation. ICARUS receives sensory data
from the environment at the beginning of each cycle. Based
on the perceptual information, the system infers its belief

state, namely, all the concept instances that are true in the
current state. It starts with primitive concepts at the low-
est level and moves up the hierarchy to non-primitive ones.
ICARUS performs this process on every cycle, and therefore,
any naive approach to the belief inference is susceptible to
the combinatorial effect found in domains with many objects.
In response, there have been several efforts to alleviate this
problem including Asgharbeygi et al. (2005).

When the system finishes inferring its belief state, it at-
tempts to execute its skills accordingly. ICARUS retrieves
skills that are relevant to its top-level goals, and finds one or
more executable paths through the hierarchy that start from
these skills. A skill path is executable when all the skill in-
stances on it are executable, from top to bottom. Although
a path might include a single primitive skill that achieves an
ICARUS agent’s top-level goal, a skill path usually starts with
a non-primitive skill for a top-level goal and continues down
several levels until it reaches a primitive skill at the bottom.
The primitive skill includes some actions the system needs to
perform in the environment. The ICARUS architecture takes
these actions and applies them to make changes in its sur-
roundings. Then the system repeats the processes based on
the updated sensory data. In the following section, we con-
tinue our discussion on the architecture in the context of the
new extension.

Reactive Goal Management
As seen in the previous section, the ICARUS architecture has
a goal memory that stores information on its top-level goals
and subgoals along with their corresponding skill instances.
Most contents of the memory are very specific and short-
lived, and they change as the agent moves along its path to-
ward achieving its goals. But the top-level goals themselves
did not change in this memory. It was as if a godly entity gave
the agent a set of goals it should always pursue, which does
not change over time.

This, however, is not very reasonable. When people are
pursuing some goals of their own, they do get distracted from
the environment, and sometimes more urgent matters come
up and they should deal with them first. To support this kind
of behavior, the top-level goals change dynamically in the ex-
tended architecture, rather than staying constant throughout
the course of execution. The system has a new goal nomi-
nation process that generates top-level goals for its agent on
each cycle. The nominated goals from this process are based
on the generalized descriptions stored in a new long-term goal
memory. In this new memory, we can program both general
and domain-specific rules for the nomination of goals. These
rules collectively represent a basic form of motivational struc-
ture in ICARUS.

Once the architecture finishes nominating goals that are
relevant to the current situation, it prioritizes them before start
executing for the goals. The programmer assigns a default
priority value to each general goal, and ICARUS modulates
this value based on a continuous measure for relevancy of the
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goal. The architecture computes the degree of match for the
relevance conditions of a goal whenever possible, and uses
this continuous matching value during the goal prioritization
process. This continuous degree of match represents the de-
gree of relevance for the goal in the current situation, and any-
thing less than the complete relevance will reduce the priority
value accordingly. In the subsequent sections, we explain the
new representation and processes in detail.

Representation
Perhaps the best way to describe the new representation is
through examples. Table 3 shows some sample goals stored
in the long-term goal memory. Each element takes the form
of a <conditions, goal> pair that specifies the generalized
goal and the conditions under which it is relevant. The rele-
vance conditions stored in :nominate fields are templates
for concepts that the system can match against its beliefs,
and the goals are concepts that use some common variables
that appear in the relevance conditions. The relation between
this long-term goal memory and the existing short-term goal
memory is similar to those between long-term concept and
skill memories and their respective counterparts. This is a
feature that has an architectural significance, which shows the
unified nature of ICARUS.

Table 3: Some sample <relevance conditions, generalized
goal> pairs stored in ICARUS’ long-term goal memory.

((stopped-and-clear ME ?ped)
:nominate ((pedestrian-ahead ME ?ped))
:priority 10)

((clear ME ?car)
:nominate ((vehicle-ahead ME ?car))
:priority 5)

((cruising-in-lane ME ?line1 ?line2)
:nominate nil
:priority 1)

The elements of ICARUS’ long-term goal memory also
have priority values associated with them, which represent
the relative importance of the goals compared to others in the
memory. Users predefine the goals and their associated pri-
ority values, providing a default prioritization measure. This
corresponds to the general idea people seem to have on what
is more important and what is less so. For instance, most
people agree that saving one’s life has priority over saving
his or her possessions. Many people will also save a child
before saving an adult if caught in an accident. There are
many examples like these, and we consider the default priori-
ties assigned to generalized goals in ICARUS’ long-term goal
memory as representing this behavior. Next, we continue our
discussion on the new processes that use this memory.

Nomination Process
When the ICARUS architecture finds a match for any rele-
vance condition stored in its long-term goal memory, it in-
stantiates the corresponding goal accordingly. The system

then stores the instantiated goal in its short-term goal mem-
ory. When this nomination process is complete, the system
has a series of top-level goals, which guide the behavior dur-
ing the particular cycle.

The nomination process starts after the architecture infers
its belief state based on the perceptual information from the
environment. The system goes through each <relevance con-
dition, generalized goal> pair stored in the long-term goal
memory, and makes attempts to match the relevance condi-
tions against the current state. Whenever its attempt is suc-
cessful, ICARUS instantiates the corresponding goal with the
variable bindings it has found from the match. This also
means that the retraction of goals happens without any ad-
ditional mechanisms. If a currently nominated goal loses its
relevance in the subsequent cycles, the system no longer nom-
inates the goal, effectively retracting it from the short-term
goal memory. During this retraction, however, ICARUS stores
some information on the previous nomination, and uses it at
a later time if the same goal instance is nominated again.

Figure 1 shows a simple situation that involves the nomi-
nation and retraction of a goal. Initially, there is nothing in
front of the agent’s car (shown as a green box) moving up-
wards in the figure. Therefore, it has a single goal to get to its
target location. Then a pedestrian, ped1 (shown as a yellow
smily face), suddenly starts to jaywalk the street in front of the
agent’s car and this causes a concept instance, (pedestrian-
ahead me ped1), to match in the state. In response, the sys-
tem generates the corresponding goal, (stopped me), and now
it has two goals as shown in the second column. When the
pedestrian moves away, the relevance condition disappears
and the goal is retracted. The agent has a single goal again,
as shown in the last column.

Goal: 
 (at‐loca+on ME TARGET) 

Goals: 
 (stopped ME)  
 (at‐loca+on ME TARGET) 

Goal: 
 (at‐loca+on ME TARGET) 

Figure 1: An example of goal nomination process in an urban
driving domain.

Prioritization Process
Once ICARUS completes the nomination process, it attempts
to reorder the currently nominated goals to prioritize them
under the given circumstances. Since all the top-level goals
have default priority values associated with them and ICARUS
orders the goals according to these values, we need a mecha-
nism to modulate these fixed values based on the current situ-
ation of the world. This modulation will then give goals with
lower default priorities a chance to overtake higher-priority
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ones. Our approach uses the continuous matching of con-
cepts, more specifically, the relevance conditions associated
with each goal.

As shown in the previous section, ICARUS’ concepts in-
clude perceptual matching conditions. Especially, some
primitive concepts have numeric tests in their bodies that of-
ten involve continuous variables. We take such variables as
the source of continuous matching. For example, consider a
concept that includes a numeric test on a variable, ?var, as in
0 <?var < 10. ICARUS normally checks if the value of the
variable is within the specified range, and returns true (1) if it
is larger than 0 and smaller than 10, but returns false (0) other-
wise. But if we make the boundaries of the tests smoother as
shown in Figure 2, we can get some partial matches between
0 and 1 when the variable falls right outside of the specified
region.

a  b 
vp 

test region 

regions of par/al match 

a  b 
vp 

test region 

regions of par/al match 

0  0 

1  1 

DM  DM 

Figure 2: Curves applied to the boundaries of numeric tests
for continuous matching.

When the relevance conditions associated with ICARUS’
goals include a primitive concept, we can get the degree of
match between zero and one using this mechanism. This
value will then represent how relevant the associated goal is,
and we can use it to modulate the default priority value of the
goal. In this manner, a very relevant goal with a low default
priority can overtake a barely relevant goal with a high de-
fault priority. We believe this explains people’s behavior in
extreme conditions like when people are extremely hungry or
thirsty. In such cases, people will probably drink fluids with
a bad smell that they would normally reject.

Illustrative Examples
With the extensions described so far, we believe the ICARUS
architecture provides a reasonable account of goal manage-
ment. Testing this hypothesis, however, is not of the standard
affair. As is often the case in the evaluation of cognitive archi-
tectures, capabilities like the goal management are innately at
a very high-level. We want to show performance improve-
ments we can get from the extended system over the previous
one, but doing so using several quantitative measures is not
immediately possible in this case, and those results will not
be quite representative either. Instead, we can demonstrate
the qualitative behavior of the extended system and confirm
that it is far more aligned with our intuition about human cog-
nition than the previous system. Cassimatis et al. (2008) sug-
gested that models of higher-order cognition should be eval-
uated in three aspects: their ability compared to humans, the

breadth of situations they cover, and the parsimony of their
mechanisms.

In this section, we challenge the original and the extended
systems with two scenarios. By comparing the two systems,
we show the advantages of the goal management in various
aspects like programmability and human-like behavior. Of-
ten the original system is not capable of demonstrating the
desired behavior at all, while the extended system can easily
simulate it.

Scenario 1: Cruiser
Imagine that you are driving a sports car cruising down the
street. You notice a car slowing down and stopping in front
of you, and you swerve around the car by changing your lane.
After a while, a group of careless pedestrians jump out to the
road all of a sudden and jaywalk the street. Startled, but deci-
sively you make a move to avoid hitting the pedestrians and
continue your cruise down the road. Unless you are driving
exclusively on freeways, this kind of situation should sound
very familiar.

In the previous version of the ICARUS architecture, we
would program this behavior by giving the system two goals,
(stopped-and-all-clear me) and (cruising-in-lane me ?line1
?line2) in this order. The system gives higher priority to the
first goal than the second one, so it correctly focuses its atten-
tion to maintaining a safe distance from pedestrians before
worrying about cruising on the street. However, we find sev-
eral issues with this program. In addition to the fact that the
system will have the first goal regardless of whether it is rele-
vant or not, a more notable problem is that the first goal does
not mention any specific pedestrian, and that the system will
need to pick a pedestrian dynamically within the skills for
this goal. This means that the system can cover for only one
pedestrian at a time. We will probably program it so that the
closest pedestrian from the ICARUS agent’s position gets the
attention, but no matter what we do, the system has no way
to consider any other pedestrians.

On the other hand, using the extended system with the
goal nomination capability, we would program three long-
term goals like, (stopped-and-clear me ?ped) with the nomi-
nation condition (pedestrian-ahead me ?ped), (clear me ?car)
with the nomination condition (vehicle-ahead me ?car), and
(cruising-in-lane me ?line1 ?line2) with a null nomination
condition. Table 4 shows ICARUS concepts and skills for
the extended system that we wrote this way. The first ad-
vantage of this system over the previous one is that the agent
has only the relevant set of goals at any given moment, much
like people would. But what is more important in this par-
ticular case is that, the ICARUS agent can consider each in-
stance of the goals separately. For instance, if there are mul-
tiple pedestrians jaywalking the street in front of the agent’s
car, multiple instances of the generalized goal, (stopped-and-
clear me ?ped) will be deposited into the system’s short-term
goal memory, and the system will be able to consider all of
them in the order of their corresponding priorities. By doing
so, the system can take an action for the highest priority goal
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and continue to the subsequent ones if resources are avail-
able. It is also notable that the system no longer requires a
complicated goal concept. Instead, all the individual cases of
different pedestrians are instantiated from a generalized goal
description, and deposited into the system’s short-term goal
memory.

Table 4: ICARUS concepts and skills for the Cruiser scenario
using the extended architecture.

((stopped-and-clear ?self ?obj)
:percepts ((self ?self))
:relations ((stopped ?self)

(clear ?self ?obj)))

((clear ?self ?obj)
:percepts ((self ?self)

(pedestrian ?obj))
:relations ((not (pedestrian-ahead ?self ?obj))))

((clear ?self ?obj)
:percepts ((self ?self)

(car ?obj))
:relations ((not (vehicle-ahead ?self ?obj))))

((stopped-and-clear ?self ?obj)
:percepts ((self ?self))
:actions ((*brake 1000)))

((clear ?self ?obj)
:percepts ((self ?self))
:start ((in-leftmost-lane ?self ?line1 ?line2))
:subgoals ((in-rightmost-lane ?self ?line3 ?line4)))

((clear ?self ?obj)
:percepts ((self ?self))
:start ((in-rightmost-lane ?self ?line1 ?line2))
:subgoals ((in-leftmost-lane ?self ?line3 ?line4)))

Let us analyze a typical run with this system. The agent
starts in the leftmost lane of a street segment. There are sev-
eral other cars in that stretch of the street, and the first one,
c6120 is far ahead of the agent in the same lane. For the first
10 cycles, the agent has a single goal, (cruising-in-lane me
?line1 ?line2) that is always nominated. On cycle 11, as the
ICARUS agent gets closer to the car, c6120, it detects that the
car is blocking its way and the predicate, (vehicle-ahead me
c6120), becomes true in the state. So, the system nominates
(clear me c6120) as its goal. On the next cycle, ICARUS re-
trieves a skill for the first goal with the same name, clear, and
the skill leads to an action, (*steer 35). While the agent is
changing its lane to the right, it notices on cycle 13 that its
speed is below the predefined cruising speed, and the second
goal cruising-in-lane is unsatisfied. The agent now executes
(*gas 20) concurrently with (*steer 35) to adjust its speed. It
continues steering to the right while it performs the speed ad-
justments as needed until cycle 20, but then it notices that it is
in the target lane, and starts aligning itself in that lane. By this
time, the agent successfully avoided the blocking vehicle, and
the concept instance, (vehicle-ahead me c6120), is no longer
true. So the goal, (clear me c6120), that was triggered by this
concept instance disappears.

Scenario 2: Ambulance
Now, to make the task more complicated, let us think about
driving an emergency vehicle, say, an ambulance. We some-
times see that an ambulance is moving quite normally, wait-
ing for pedestrians to pass, observing the speed limit, and
even stopping for red lights, although it has its lights and siren
on. Yet some other times we see an ambulance speeding by

almost like one driven by a reckless driver, blinking every sin-
gle light it has equipped on and making a very loud sound. We
can guess that the difference is on the severity of the problem
at their destinations, or onboard, and this factor affects the
behavior of the drivers.

Modeling this behavior in the previous version of ICARUS
is close to impossible, unless the programmer is patient
enough to write concepts and skills for all possible cases there
are. Even then, the space of search will be so large that the
performance will be below what is required during the exe-
cution. However, the extended system supports this behavior
easily, with some generalized goals encoded in its long-term
memory, coupled with their corresponding triggers. Table 5
shows the new concepts that we added for this scenario.

Table 5: ICARUS concepts and skills for the Ambulance sce-
nario using the extended architecture.

((emergency ?self)
:percepts ((self ?self status ?status level ?level))
:tests ((equal ?status ’emergency)

(= ?level 10))
:pivot (?value))

((not-emergency ?self)
:percepts ((self ?self))
:relations ((not (emergency ?self))))

To handle the task to get to the hospital with the proper
urgency based on the current situation, we encode the goal,
(okay-to-go ME ?signal) with priority 2, to have nomination
conditions, (signal-ahead me ?signal) and (not-emergency
me). This goal is what forces the agent to observe traffic
signals when there is no emergency. But when the emer-
gency strikes and the degree of match for the concept (emer-
gency me) starts to increase from zero, that for the concept
(non-emergency me) starts to decrease from one accordingly.
When this happens, the relevance of the above goal drops
with them, eventually making the architecture focus on the
other goal of getting to the hospital first.

Now we will show how the system behaves during a typ-
ical run. In a similar fashion as before, the agent starts out
by accelerating itself to reach its cruising speed. On cycle 7,
it finds a car blocking its path, and starts steering to the right
to clear the car. With occasional accelerations to maintain
its speed, it continues steering to the right. On cycle 13, it
notices that it is in the target lane, and starts to cruise there.
But it soon finds another car, and clear it in a similar man-
ner, but this time to the left lane, and finishes the move by
cycle 21. The agent then sees a traffic signal that is red, and
brakes to stop. During the wait, its emergency level changes
to 8, which, in turn, changes the degree of match for the
concept instance, (emergency me) to 0.8. The negation of
this instance, (not-emergency me), therefore, gets its degree
of match at 0.2. This is a nomination condition for one of
the current goals, (okay-to-go me c27224). Hence the system
modulates the priority value of the goal to be 0.4 (= 2× 0.2).
This causes the goal to be less important than the default goal,
(cruising-in-lane me ?line1 ?line2) that has the priority of 1.
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Therefore, the system now stops observing traffic signals, and
starts cruising even with the red traffic light. Later on cycle 95
when it reaches the next intersection, however, the emergency
level is back to 3, and the modulated priority value for (not-
emergency me) becomes 0.7. This once again puts the goal to
observe traffic signals before the default goal of cruising, and
the system starts observing signals again.

The two programs shown above, one for the original archi-
tecture and the other for the extended architecture, both result
in equivalent behaviors at the high level. However, the two
systems still have differences at lower level for basic driving
maneuvers, and the extended system shows much smoother
driving behavior. What is important to note in this scenario
is that the goal nomination capability leads to a much simpler
program that is more intuitive and reasonable to us.

Related and Future Work
Our work has been heavily influenced by related work in the
psychology literature. One can find a fair amount of research
related to motivation and goal selection there. Typically, these
also cover the topic of emotion. Simon (1967) recognized
that the central nervous system, despite being a serial infor-
mation processor, serves multiple needs in an organism sur-
rounded by unpredictable situations. He suggested that two
mechanisms, a goal-terminating mechanism and an interrup-
tion mechanism, would satisfy this requirements. Simon fur-
ther described the relationship among interruption, motiva-
tion, and emotion, and outlined an information-processing
system that covers these as wells as learning in relation to
them. More recently, Sloman (1987; 2002) suggested that
any system with priority in beliefs and actions naturally have
emotions. He argued that goals often conflict with each other,
and systems must have a mechanism to resolve such conflicts.
The author proposed that motivators can serve this purpose.

As mentioned earlier in this paper, there are also some re-
lated work in the architectural perspective. CLARION (Sun,
2007) and Soar (Laird et al., 1986) architectures possess their
own accounts of goal management. The former is more
psychologically positioned, providing interactions between
drives and goals. The latter has a rule-based mechanism to
nominate its top-level operators as its goals, which resembles
the conditionalized goals ICARUS has. Unlike ICARUS, how-
ever, the Soar architecture proposes a single goal at a time,
removing the need for prioritization or the advantage of inter-
actions among multiple goals.

Although the current work is an important first step toward
a cognitive architecture with the full capability for goal man-
agement, it still ignores a vast amount of psychological ac-
counts on human motivation and goal handling. First of all,
people can change priorities among different goal in a flex-
ible manner, depending on the current situation. We have a
way to model this behavior, and hope to report in this direc-
tion in a near future. More broadly, we should explain where
the long-term knowledge about goals comes from. It is very
likely that we will deal with even higher-level cognitions like

motivations, emotion, and obligations. We expect the the ev-
idences in the social psychology literature will help us in the
modeling process.

Conclusions
In this paper, we introduced an extension to the ICARUS ar-
chitecture for reactive goal management. We first conceived
the idea in the architectural perspective, but the extension
makes close connections to previous work in psychology and
other related fields. The extended framework supports the
nomination, retraction, and prioritization of goals based on
the current belief state. We have demonstrated in an urban
driving domain that the extension leads to simpler programs
while supporting new behaviors that connects to the context
better than the original architecture.
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Abstract 
Behavioural studies of individual differences have shown 
mild but significant correlations in performance on tasks that 
require the withholding of a response to a prepotent stimulus, 
i.e., on so-called response inhibition tasks. Several 
computational models of response inhibition tasks have been 
developed, but the dominant models of such tasks have been 
produced in isolation of each other. Consequently they fail to 
present a coherent unitary picture of response inhibition. In 
this paper we consider two established interactive activation 
models of distinct response inhibition tasks – the stop signal 
task and the Stroop task – and explore potential mechanisms 
within those models that might underlie the observed 
behavioural correlation. Only one plausible account of the 
correlation emerges: that it results from shared mechanisms of 
attentional bias. This account does not map onto the classical 
concept of response inhibition. It is concluded that either the 
accepted models are flawed or that the concept of response 
inhibition as applied to these tasks is misleading (and hence 
counterproductive). More generally the work may be taken to 
support an architectural approach to modelling, albeit at the 
level of interactive activation models, rather than the more 
traditional production system models.  
 

Keywords: Executive processes; cognitive control; response 
inhibition; individual differences; Stroop task; Stop signal 
task. 

Introduction 
The construct of “response inhibition” is frequently invoked 
when attempting to explain behaviours in tasks or situations 
that demand the withholding of a strongly prepotent 
response. Response inhibition is held to be a separable task-
general executive or cognitive control function, the efficacy 
of which varies across individuals. 

In the laboratory response inhibition is standardly 
explored in variants of the stop signal task (Logan & 
Cowan, 1984). This is a form of simple reaction time task in 
which subjects are normally required to respond as quickly 
and accurately as possible. However, on a small number of 
trials a compound stimulus is presented and on these trials 
and these trials only the subject is required to withhold their 
response. Such trials are referred to as “stop trials”. 
Typically the compound stimulus consists of a standard 
stimulus that might occur on any normal trial followed 
almost immediately by an auditory beep. Stop trials are rare 
in comparison to normal “go trials”. This and the need to 
respond on go trials as rapidly as possible ensures that the 
go response is prepotent. Performance is measured in terms 
of the number or proportion of stop trials on which a 
response is (incorrectly) produced. This measure varies 

reliably between subjects. Good response inhibitors produce 
few stop responses, while poor response inhibitors produce 
many. 

There is substantial behavioural and neuroscience 
evidence, as well as good theoretical reasons, for supposing 
that response inhibition is a task-general control function. 
From the theoretical perspective, response inhibition fits 
clearly within the supervisory system/contention scheduling 
framework of the control of thought and action of Norman 
and Shallice (1986). On this influential account, a system 
for the control of routine or well-learned behaviours, 
contention scheduling, is modulated by a deliberative 
system, the supervisory system, when routine behaviour is 
inappropriate and must be overridden. Contention 
scheduling is appropriate for generating the prepotent 
response, whatever the situation. If this is not appropriate, as 
in stop trials of the stop signal task, the supervisory system 
must override contention scheduling. A plausible way for 
this to be operationalised is in terms of response inhibition 
acting as a sub-function of the supervisory system. 

From a neuropsychological perspective, patients have 
been reported who are well-characterised in terms of a 
deficit in response inhibition. Thus, utilisation behaviour 
patients tend to exhibit behaviours that are driven largely by 
environmental contingencies rather than their stated 
intentions (Lhermitte, 1983). Alien hand patients show 
similar problems, but they are restricted to one hand 
(Goldberg et al., 1981). Both deficits may be seen as arising 
from a failure in response inhibition.  

One source of behavioural evidence for the task-general 
nature of response inhibition comes from a large individual 
differences study of Miyake et al. (2000). In this study, 137 
subjects were each tested on a total of 14 tasks. Performance 
on 3 of these tasks was argued, on a priori grounds, to 
specifically require response inhibition. Subsequent factor 
analysis of subject performance across the tasks supported 
this view, with performance on the response inhibition tasks 
being related to a single factor that differentiated those tasks 
from others in the study, which were held to primarily tap 
other executive functions (namely the functions of set-
shifting and memory monitoring and updating). 

The three response inhibition tasks of Miyake et al. 
(2000) were a) a forced-choice decision variant of the stop 
signal task, b) the Stroop colour naming task, and c) an anti-
saccade task. Our focus in this paper is on the first two, and 
so we described these in detail. In the stop signal task, 
subjects were required to indicate with a button press 
whether a (visually presented) word was an animal or a non-
animal. The first block of 48 trials were all “go” trials. 
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These were used to establish a mean response time for each 
subject. One quarter of the trials in the second block (of 192 
trials) were stop trials. In these trials, a beep was sounded 
shortly after presentation of the word (225ms prior to the 
subject’s mean response time, as determined in block 1), 
and subjects were required to withhold their response. The 
dependent measure was the proportion of stop trials on 
which a response was given. In the well-known Stroop 
colour naming task, subjects were presented with a “word” 
written in one of six colours. They were required to name 
the colour of the stimulus word. On neutral trials the word 
was a string of asterisk symbols, while on incongruent trials 
it was the name of another colour. The dependent variable 
was the difference in mean response times for incongruent 
and neutral trials.  

For our purposes, the critical result of this individual 
differences study was mild but significant positive 
correlations (r ≈ 0.20) between performance on the stop 
signal task and the Stroop task (and in fact between all pairs 
of response inhibition tasks). In general, these correlations 
were stronger than those between any single response 
inhibition task and any of the non-response inhibition tasks 
explored in the study. However, while the study is 
impressive in its scale, interpretation of the results is limited 
because Miyake et al. fail to provide process accounts of the 
various tasks. While it is perhaps unreasonable to expect 
such models of all 14 tasks, the absence of process models 
leaves unexplained the mechanism that is, on the account 
proposed by Miyake and colleagues, shared by the response 
inhibition tasks. Similarly, it leaves open the issue of why 
that function is not significantly involved in successful 
performance of the other tasks considered in the study. 

The purpose of the work presented here is to begin to 
address this limitation by exploring potential common 
mechanisms within established process models of two of 
Miyake et al.’s response inhibition tasks. We focus on 
models of the stop signal task and the Stroop task because 
there are established models of each task (due to Boucher et 
al., 2007, and Cohen & Huston, 1994, respectively) that 
bear some correspondence. This correspondence offers the 
possibility of relating the models to each other and thereby 
identifying a shared response inhibition mechanism. For 
such a mechanism to be explanatorily adequate, it must be 
parameterisable, with the observed behavioural correlations 
between tasks arising in part from variation in a shared 
parameter. To foreshadow, simulation findings derived from 
reimplementations of the existing published models suggest 
that directly shared parameters fail to yield the required 
correlation in performance. However, an appropriate 
correlation is forthcoming if attentional biasing mechanisms 
are yoked. Unfortunately, attentional biasing is not normally 
related conceptually to response inhibition. We conclude 
that either a) response inhibition is not the mechanism 
underlying the behavioural correlation in these tasks, or b) 
one or both of the accepted models requires updating. These 
simulation results extend those of a complementary analytic 
study (Davelaar & Cooper, 2010). 

The Stop Signal Task 

The Model 
Early work with the stop signal task demonstrated that 
behaviour on the task could be well accounted for by a race 
model consisting of two stochastic processes, a “go” process 
which is slow to activate but has a head start, and a “stop” 
process which is faster to activate but starts late (Logan & 
Cowan, 1984). Successful performance on a stop trial 
requires that the stop process reach threshold before the go 
process. Boucher et al. (2007) note that despite this model’s 
strengths, it is inconsistent with neural evidence of 
interaction between stop and go processes. They present the 
interactive race model, an update of the original model in 
which the stop and go processes compete through mutual 
lateral inhibition. The model, as applied to Miyake et al.’s 
semantic categorisation variant of the stop signal task, is 
shown in Figure 1. 

The model is extremely simple, consisting of just three 
nodes: one for each response and one for the stop process. 
Processing in the model is cyclic with each node operating 
as a leaky competing accumulator (Usher & McClelland, 
2001). On each cycle, the activation of a node is increased 
by an amount proportional to its external input, less an 
amount proportional to the activation of its competitors 
(corresponding to lateral inhibition), less an amount 
proportional to its current activation (its leakage), plus 
normally distributed random noise. Parameters control the 
contributions of the various sources to this accumulation. 
For default behaviour we assume ballpark parameters scaled 
from those of Boucher et al. to give a response threshold of 
1.0. Thus, we assume lateral inhibition, β, of 0.025 between 
all pairs of nodes, leakage of 0.0 (i.e., the accumulators do 
not leak), and the standard deviation of noise, σ, of 0.025 
units per cycle. 

In addition, it is assumed that on any trial external input to 
one of the response nodes (animal or non-animal) is 
provided by a semantic categorisation process (which is not 
modelled). The level of input is controlled by the parameter 
µgo, set to 0.005 units per cycle by default. It is assumed that 
the other response node receives zero external input. On 
stop trials it is assumed that at some point during the trial 

 
Figure 1: The interactive race model of the stop signal task. On 
any one trial, either the animal or the nonanimal node receives 
activation from a semantic categorisation process. On “stop” 
trials, the stop node also receives activation, though this activation 
is delayed relative to the activation from the semantic 
categorisation process. 
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external input is provided to the stop node. The level of this 
input is µstop, set to 0.030 units per cycle by default. Finally, 
we assume that the delay between input to the response 
nodes and input to the stop node is 250 cycles. This delay is 
the sum of the actual delay between presentation of word 
and stop stimuli, SSD, and the time to initiate the stop 
process, δstop. With these parameters, the model performs as 
desired – on go trials its response accuracy is approximately 
99% (with noise and lateral inhibition occasionally leading 
to error) while on stop trials it fails to stop on approximately 
65% of occasions. This compares well with mean subject 
performance of 67% as reported by Miyake et al. (2000). 

Simulation Results 
An initial set of simulation studies was performed to 
determine the relation between the model’s performance and 
the key parameters that could reasonably be argued to vary 
across individuals, that is: µgo, µstop, β (lateral inhibition), σ 
(standard deviation of noise) and δstop.1 Each parameter was 
varied about the default value (with the other four 
parameters fixed at default values) to determine the effect of 
that parameter on the proportion of stop errors. Figure 2 
summarises the results, based on 100 blocks per parameter, 
each of 100 trials. 

As can be seen from the figure, there is a slight non-
monotonic relation between β (lateral inhibition) and the 
model’s performance, with fewer stop errors at intermediate 
values. Similarly there is a non-monotonic relation between 
σ (noise) and stop errors. Perhaps surprisingly, when noise 
is very low there are more stop errors than when noise is at 
moderate values. This is because noise may delay the 
model’s decision, causing it to respond more slowly on 
some trials (but more quickly on others). On stop trials 
when noise acts against the go process this gives the stop 
process more time to affect behaviour. There is an optimal 
value for noise, however, and if it is too high successful 
stopping again becomes rare. Increasing µstop also reduces 
stop errors, though here the relation is monotonic and the 
explanation is more obvious: with stronger excitation of the 
stop node it is more likely to reach threshold on stop trials 
before one of the go nodes. Stop errors correlate positively 

                                                             
1 Indeed, Boucher et al. (2007) consider how their model may be 

fit to data from different monkeys by varying these parameters. 

with µgo and δstop. In both cases the effect of the parameter is 
transparent. With faster excitation of the go process or with 
greater delay, the stop process has less chance of reaching 
threshold before the relevant go process. Consequently stop 
errors are more likely. 

Relating the results to the concept of response inhibition, 
it appears that good inhibitors are those who either have a) 
near optimal levels of lateral inhibition or noise, b) slow go 
processes or short stop process delays, or c) fast stop 
processes. Miyake et al. (2000) do not report the 
behavioural data that would help to discriminate between 
these options.  

The Stroop Task 

The Model 
Many models have been developed of the Stroop task. We 
focus on the well-known model of Cohen and Huston 
(1994), as its principal functional mechanism, interactive 
activation, is shared with Boucher et al.’s interactive race 
model. The model, shown in Figure 3, consists of four sets 
of nodes, with nodes within each set competing for 
activation through lateral inhibition. There are two task 
demand nodes, three word input nodes, three colour input 
nodes, and two response nodes. One task demand node 
corresponds to the colour naming task while the other 
corresponds to the word reading task. The colour naming 
task demand node is connected to all colour input nodes, 
while the word reading node is connected to all word input 

 
Figure 2: Effects of varying key parameters on the proportion of stop errors produced by the interactive race model of the stop signal task. 

 
Figure 3: The Stroop model of Cohen and Huston (1994). 
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nodes. Colour input nodes and word input nodes are each 
connected to one response node. Crucially, the connections 
from word inputs to response nodes are stronger than those 
from colour inputs to response nodes. This is justified on the 
grounds that word reading is the more practiced of the two 
tasks. As in the stop signal model, the operation of the 
network is cyclic with activation accumulating over time. 
However, the accumulation functions differ. For the Stroop 
model activation accumulates according to the logistic 
function of the time-averaged input to a node. (See Cohen & 
Huston, 1994, for details.) 

Processing on any given trial occurs in two stages. First, 
input is provided to one of the task demand nodes (based on 
the task instructions). This causes that node to become 
active and the other task demand unit (through lateral 
inhibition) to become depressed. As a task demand unit 
becomes active, it excites the input nodes to which it is 
connected, raising the resting activation of either the colour 
input nodes or the word input nodes. The network settles 
into this temporary state, which, it is assumed, corresponds 
to a subject who is prepared for either a colour naming or 
word reading Stroop trial. Input is then provided to one 
colour input node and one word input node. If, for example, 
the trial was to name the colour of the word “RED” printed 
in green ink, then input would be provided to the GREEN 
colour node and the RED word node. In this case the colour 
nodes would already be moderately activated, and so the 
additional input to one colour node would tend to excite the 
appropriate response node (i.e. GREEN). At the same time, 
the less active word node for RED would also be receiving 
input and this would be tending to excite the RED response 
node. Hence both response nodes will receive excitation, 
and the balance of this excitation, plus the degree of lateral 
inhibition between the response nodes, will determine how 
quickly either response node reaches threshold.  

As is clear from the architecture, there is no dedicated 
parameter of response inhibition. Thus, verbal descriptions 
of performance on the Stroop task are at odds with the 
computational details of the models. Nevertheless, what 
may be interpreted as response inhibition may well have a 
different label at the computational level. 

Simulation Results 
As in the case of the stop signal model, an initial set of 

simulations was performed to determine the relation 
between the model’s performance and key parameters that 
could plausible be related to individual differences. 
Paralleling Miyake et al.’s study, the dependent variable 
was the difference in processing time between incongruent 
and neutral colour naming trials. Once again, five 
parameters were varied: lateral inhibition (β), the standard 
deviation of normally distributed noise (σ), the strength of 
the task demand units (µ), the gain of the activation function 
(γ) and the response threshold (τ). γ controls the rate at 
which a node’s activation accumulates. It is included 
because Cohen and Servan-Schreiber (1992) suggest that it 
corresponds to an attentional modulation parameter. τ 
controls the sensitivity of the network to produce a 
response. It is fixed at 0.60 in the Cohen and Huston (1994) 
simulations, but we consider varying it here as it has a 
demonstrable affect on Stroop interference and might 
reasonable vary across individuals. We do not consider 
varying the weights from input nodes to response nodes, as 
these are intended to capture learned contingencies which, 
while possibly varying across individuals, should not vary 
systematically with any specific executive function. 

The results of these five sets of simulations are 
summarised in Figure 4. The model is more complex than 
the stop signal model, and consequently the relations 
between the parameters and the relevant dependent measure 
– Stroop interference – are less intuitive. Nevertheless, four 
of the five relations are monotonic, with Stroop interference 
correlating negatively with β (lateral inhibition) and γ 
(gain), and positively with σ (noise) and τ (threshold). That 
is, good inhibitors correspond in the Stroop model to high 
lateral inhibition, low noise, optimal task demand weight, 
high gain or low threshold. 

Yoked Simulation Studies 
Recall the purpose of considering the effects of the various 
parameters on the performance of the two models: we are 
concerned with understanding the source of common 
variance in the tasks to which the models relate. It is 
hypothesised that this might be achieved by identifying a 
parameter that could plausibly vary across individuals and, 
in so doing, could underlie the observed behavioural 
correlation between Stroop colour naming interference and 
stop signal errors. 

 
Figure 4: Effects of varying key parameters on the difference in processing time for correct incongruent and neutral colour naming trials 
produced by the interactive activation model of the Stroop task. 
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We are now in a position to consider candidate 
parameters. For example, both models share a mechanism of 
lateral inhibition, and pre-theoretically one could suggest 
that it is this mechanism, and individual differences in the 
shared parameter β, that underlies the behavioural 
correlation. The left-most panels of Figures 2 and 4 suggest 
that this is implausible. The issue is not the absolute size of 
the parameter’s default value (0.025 for the stop signal 
model and 3.0 for the Stroop model). One can envisage re-
engineering the models so that lateral inhibition in both is of 
a similar magnitude. The issue is that relatively high values 
of β lead to a reduction in Stroop interference accompanied 
by, if anything, a slight increase in stop errors, i.e., a 
negative correlation between the tasks. This is in direct 
contrast to the observed positive correlation. 

In fact, because the relation between β and stop errors is 
non-monotonic, low values of β can yield a positive 
correlation between the tasks. This is shown in Figure 5 
(left-most panel). The figure shows simulation results from 
5 studies in which the value of a parameter in one model is 
yoked to the value of a corresponding parameter in the other 
model. In all 5 cases the relevant parameter values vary 
across the full ranges explored in Figures 2 and 4. Thus, the 
data in the left-most panel was generated by random 
sampling a dummy variable uniformly distributed between 
0.0 to 1.0, and mapping the value of this onto a) the interval 
0.00 to 0.05 to give a value of β for the stop signal model, 
and b) the interval 2.0 to 6.0 to give a yoked value of β for 
the Stroop model. This procedure was repeated 100 times 
for each of the five scatter-plots in Figure 5.2 

From the figure we may immediately rule out several 
potential factors underlying the observed correlation 
between performance on the tasks and hence several 
candidates for the response inhibition function. Neither of 
the parameters shared by the models – lateral inhibition (β) 
or noise (σ) – produce correlations of the appropriate form. 

                                                             
2 One can envisage other approaches to yoking the parameters, 

e.g., by restricting attention to sub-ranges of a parameter in which 
its effect on the relevant dependent variable is monotonic. A 
further alternative focuses on the ranges of parameter values 
chosen. As yet there is no principled way of selecting the ranges 
other than through a cognitive architecture approach. Due to space 
limitations we do not consider these approaches here. 

Hence, it would seem that individual differences in these 
parameters cannot underlie the observed correlations. 
Equally, as shown by the third plot in Figure 5, yoking the 
strength of the go process and the strength of task demand 
weights – an account not immediately related to any 
conceptual mechanism of response inhibition but one which, 
nevertheless, relates two parameters with similar 
functionality – fails to yield a positive correlation between 
the relevant dependent measures. 

The desired positive correlation is shown, however, in the 
two right-most plots of Figure 5. Thus, the models predict 
that performance on the two tasks will correlate positively if 
a) the strength of the stop process and the strength of task 
demand weights are (positively) correlated, or b) the 
strength of the stop process and the gain in the Stroop model 
are (positively) correlated. There is no apriori reason to 
suppose the latter, but the former is plausible as both 
parameters concern the strength of deliberative or 
attentional bias. Thus, these simulation results fail to 
provide support for the idea that the positive behavioural 
correlation between Stroop interference and stop signal 
errors is due to a shared mechanism of response inhibition. 
Rather, they suggest that the correlation arises because 
subjects who are able to provide stronger activation to the 
stop process in the stop signal task are also able to provide 
stronger attentional bias to the colour naming task in Stroop. 
This suggestion is backed up by the right-most plot which 
shows a positive correlation resulting from yoking µstop and 
γ (gain). Recall that γ was also associated (positively) with 
attentional bias by Cohen and Servan-Schreiber (1992). 

Discussion and Conclusion 
In a companion paper (Davelaar & Cooper, 2010), we 
consider closed-form approximations to the same two 
models discussed here. It is demonstrated that the 
explanation of the behavioural correlation in terms of a 
shared process of response inhibition is suspect, and an 
attentional biasing account is proposed as a plausible 
alternative. The simulation results reported here corroborate 
both of these conclusions. 

Our suggestion of attentional biasing, rather than response 
inhibition, as the locus of shared variability on the tasks 
resonates with the approach to response conflict 

 
Figure 5: Effects of varying key parameters in a yoked fashion on the correlation between Stroop interference and the proportion of stop 
errors produced by the two models. 
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management of Botvinick et al. (2001). They demonstrate, 
within the context of three models including the Cohen and 
Huston Stroop model, how trial-by-trial regularities in 
behaviour might be accounted for in terms of a mechanism 
of conflict monitoring which measures the degree of conflict 
in the network’s output nodes and modulates attentional 
bias, increasing it under conditions of high conflict and 
decreasing it under conditions of low conflict. Thus, rather 
than addressing response competition through response 
inhibition, Botvinick et al. (2001) do so through attentional 
biasing. 

We are reluctant to fully endorse this account, however. 
Critically, the account is not fully consistent with the results 
of Miyake et al. (2000). They hold that while stop signal 
errors and Stroop interference are dependent upon response 
inhibition, they are also not dependent on two other putative 
executive functions – task shifting and memory monitoring 
and updating. Thus, if we are to account for the behavioural 
correlation between these tasks in terms of attentional bias, 
it is also necessary to show that attentional bias does not 
systematically affect behaviour on the other tasks of Miyake 
et al. which were held to tap these other two functions and 
not to tap response inhibition. Here there is reason to be 
cautious. Gilbert and Shallice (2002) consider performance 
on a task switching variant of the Stroop task in which 
subjects switch between colour naming and word reading. 
They model the critical behavioural affects by using 
essentially the same mechanism proposed here (i.e., by 
biasing task demand units) in exactly the same model (the 
Cohen and Huston model). Yet these are effects that, on the 
decomposition of Miyake and colleagues, should be 
explained in terms of a distinct task shifting function. 
Moreover in the study of Miyake et al. (2000) all 
correlations between putative task shifting tasks and 
putative response inhibition tasks were non-significant. 

The concept of response inhibition held by Miyake et al. 
(2000) to underlie good performance in the stop signal and 
Stroop tasks was also held to underlie good performance in 
the anti-saccade task. Thus, a fuller analysis of response 
inhibition requires also consideration of process models of 
the anti-saccade task. This remains to be attempted. We 
would hypothesise, however, that performance in this task 
will also correlate with an attentional bias parameter.  

Returning to the two models considered, it should also be 
noted that while they share principles of interactive 
activation, there are also major differences between them. 
For example, different equations govern the accumulation of 
activation in each model. Whether these differences are 
substantive or cosmetic remains to be demonstrated. 
However, these differences really only serve to reinforce our 
primary conclusion, namely, that until we have unified 
process models of the various putative separable executive 
functions, any theoretical account of their supposed unity 
and diversity is incomplete. By extrapolation, to understand 
the executive functions which underly the battery of tasks 
used by Miyake et al. (2000), we need to develop, within a 
single unified framework, models of all of those tasks. Such 

models must, of course, demonstrate the hypothesised 
shared mechanisms. Only then can we be confident that we 
have a plausible account of the various executive functions 
that contribute to the control of complex behaviour. This is, 
of course, one of Newell’s arguments for the utility of 
Unified Theories of Cognition (Newell, 1990). 
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Abstract 
The ACT-R cognitive theory models forgetting in general with a 
constant “decay due to passage of time” parameter. However, this is 
not sufficient to predict learning for frequently executed tasks in 
dense arrangements of items. Prominent examples are two-
dimensional location learning in finding keys on a keyboard or 
clicking on items on a web page or in a graphical user interface. Our 
work presents a new way to theoretically model the effect of 
Proactive Interference, i.e. the effect of the history of events on 
location learning, through an extension to ACT-R’s mathematical 
model of declarative memory strength. It predicts that each time an 
item is searched for and found, the item gets “stronger”, i.e. easier to 
remember. However, this strength diminishes not only through the 
passage of time, but also due to interference from other (non-target) 
items that have been encountered in the past. We tested the 
predictions of our new model against empirical measurements from 
two previous studies that involve simple visual search and selection. 
The predictions fit the experimental data very well. 
 
Keywords: ACT-R declarative memory; Proactive Interference; 
Location Learning; User Interfaces 
 
 

Introduction 
Forgetting occurs not only due to passage of time but also through 
interference from information learned at other times (Wickens & 
Hollands, 2000, p. 252). Proactive interference (PI) is one 
explanation for this phenomenon, where some activity prior to 
encoding the target disrupts the retrieval of that target (Underwood, 
1957; Keppel & Underwood, 1962).  

Proactive Interference (PI) effects have been shown to be 
relevant for two-dimensional spatial memory tasks (Leung & Zhang, 
2004). Spatial knowledge in two-dimensional spaces is built up 
primarily through interaction. That is, people remember locations 
after having had experience with that location (Darken and Sibert, 
1996). When people are completely new to a spatial layout, such as a 
new grid-like arrangement of characters on a keyboard or a new 
arrangement of city names in a list, they will resort to visual search 
for the target stimulus. In the process of searching for the target, they 
may come across multiple non-target stimuli, i.e. irrelevant characters 
or city-names before they arrive at the target. These irrelevant stimuli 
get visually encoded during the visual search for the target. As a 
consequence, these non-target items, often called distractors, will 
interfere with the encoding of the memory for the target item. 

The aim of our work is to model the effect of this PI together 
with the effect of the passage of time on the learning of spatially 
stable, two-dimensional layouts. More precisely, we limit ourselves 
to grid layouts in graphical user interfaces or keyboards. We choose 
the ACT-R cognitive theory (Anderson & Lebiere, 1998) as our 
mathematical modeling foundation.  

The current ACT-R theory models PI through the probability of 
recall using a soft-max equation (Altmann & Schunn, 2002). 
However, previous work has established that latency to recall, i.e. 
reaction time, is a more sensitive indicator of proactive interference 
(Wixted & Rohrer, 1993, p. 1034) or interference in general 

(Anderson, 1983, pp. 271-272). Motivated by this fact, we modify 
ACT-R to generate better predictions of PI through a new model. We 
accomplish this as follows: 1) we replace the standard decay constant 
of the base-level activation equation of ACT-R theory with two 
terms – a constant term and a varying term. The constant term models 
the decline of memory strength with time, thereby preserving the 
standard notion of decay in ACT-R theory. The new varying term 
adds a function that depends on the proportion of distractor items that 
get visually encoded prior to encoding the target item. Thus, this 
newly extended model of base-level memory activation accounts for 
the decline of memory strength of a target item not only due to 
passage of time but also due to the number of distractors visually 
encoded while searching for the target. The result of this new 
activation function, later called PI activation equation, is then used by 
ACT-R to predict the (recognition or recall) reaction time, and 
therefore we generate more accurate predictions. 2) we compare the 
fit of reaction time responses, as opposed to recall probability 
responses, arising from the newly extended model of memory 
strength against empirical data from two previous studies involving 
visual search in two-dimensional layouts. This is a first step towards 
validating the new model. We choose studies involving visual search 
since repeated search for items leads to learning of the respective 
locations, and this learning process is impeded by the PI phenomenon 
owing to attention given to distractor items during that search. 

We calculate the theoretical predictions for the empirical data as 
described by the equations presented in this paper through an Excel 
spreadsheet. 

 
ACT-R Theory 

The ACT-R cognitive theory (Anderson and Lebiere, 1998) describes 
a modular system that aims to replicate the human mind. It can be 
viewed from two perspectives: one, as a computer program that 
simulates the dynamic behavior of the mind; second, as a framework 
of mathematical equations that models the neural computations in 
order to realize human dynamic behavior. 

Viewed from the perspective of a computer program, the ACT-R 
system is composed of memory, perceptual, and motor modules. The 
memory modules consist of a procedural memory and a declarative 
memory. The procedural memory is a subsystem that consists of a set 
of production rules and a computational engine for interpreting those 
rules. The production rules coordinate cognition, perception and 
motor actions. The declarative memory module contains chunks. 
Each chunk represents the memory trace of an item. A chunk can be 
retrieved or updated by the production rules. The activities of the 
memory modules together with the actions of the perceptual and 
motor modules enable ACT-R to simulate several dynamic aspects of 
the human mind. 

Viewed from the perspective of a mathematical framework, 
ACT-R consists of independent sets of equations, each set driving the 
neural computation for the relevant ACT-R module. In this work, we 
choose to pursue this mathematical perspective. We replicate the PI 
effect in location learning by manipulating some of the equations 
embedded in the declarative memory module. We focus our 
upcoming discussion solely on those parts of the theory behind the 
declarative memory that are relevant for our objective.  
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ACT-R Equation of Base Level Learning 
In declarative memory, chunks, i.e. memory traces of items, have 

different levels of activation to reflect their past use: chunks that have 
been used recently or chunks that are used very often receive a high 
activation. This activation decays over time if the chunk is not used. 
The activation of a chunk controls both its probability of being 
retrieved and its speed of retrieval. In the case where there are 
multiple candidates for retrieval, the chunk with the highest 
activation has the highest probability of being retrieved. A retrieval 
threshold sets the minimum activation a chunk can have and still be 
retrieved successfully. 

The equation describing the base-level activation of a chunk i 
(representing item i) is given by 
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where n is the number of practices of item i completed so far, tj is the 
age of the j-th practice of the item, and d denotes the constant time-
based decay parameter. More specifically, Ai is the strength of the 
memory trace of item i after n practices of that item. A practice of an 
item occurs whenever a trace of that item is presented to the 
declarative memory. Presentation may happen because of either 
recognition or recall of that item.  
 
ACT-R Equation of Reaction Time of Declarative Memory 
The time required for  the declarative memory to respond to a request 
(recognition or recall) for an item i (represented by the chunk i) is 
given by the following equation: 
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i FeT −=       Reaction Time Equation 
where Ai is the activation of chunk i and g is the latency exponent 
scale parameter. F is called the latency scale parameter, and maps 
activation to time. Traditionally, a constant term reflecting the fixed 
time cost of visual encoding and motor response has also been added 
to the right-hand-side of this equation. Since the effect of that 
constant term as well as the latency scale parameter, F, is only to 

scale the critical quantity igAe− onto the range of the latencies 
(Anderson et al. 2004, p. 1044), we drop the constant term in favor of 
modeling simplicity. Instead, we account for the constant term by 
adjusting F, whenever necessary. 

Given that the equation depends mainly on the activation of the 
chunks, any differences in activation will result in different times to 
respond to different tasks or trials. 
 

Type Of User Interface, Task,  
User, And User Behavior 

In this work, we consider only user interfaces, which contain items in 
a grid layout based on rows and columns. We assume that the user is 
initially not familiar with the layout of the items. In this case, it is not 
easy for a person to discriminate a target item from all distractors. 
We further limit ourselves to layouts that have only one item per 
location in this grid. Also, when we refer to an item on an interface, 
we are also referring to its location and vice versa. Examples of such 
interfaces include keyboards with an unfamiliar layout, Personal 
Digital Assistants (PDAs) that show a grid layout of similar looking 
textual or graphical items/icons, or an unfamiliar graphical 
application menu with items arranged in a list. 

The task we consider is a simple visual search of items in such an 
interface, followed by a selection of the target item using a finger, a 
stylus, or a mouse pointer depending on the input device used. 

Our aim is to mathematically model the gradual transition of 
novices – who do not have knowledge of item locations on the layout 
 – to experts – who can recall multiple items and their locations 

successfully and ideally can do this for all items. We stay within the 
core mathematical framework of ACT-R’s declarative memory.  

With regards to learning of interface layouts by novice users, we 
point to the arguments of Nilsen (1991), Lee & Zhai (2004), and 
Cockburn, Gutwin et al. (2007). All of them describe in one form or 
the other that visual search and recall of item locations are of primary 
concern in spatial knowledge acquisition on a two-dimensional 
interface since these factors play a significant role in the early stages 
of skill development in such location learning. 

A fundamental assumption behind our work is that at any given 
instant, the user will have zero or more items in a user interface that 
she can recall. Moreover, there will be zero or more items that she 
cannot recall and therefore she needs to visually search the interface 
to find and select them. 
 

Model Extension For PI Effect 
We next propose our extension to the base-level activation equation 
of ACT-R in order to account for the PI effect. We explain our model 
extension within the domain of tasks involving simple visual search 
and selection of items in user interfaces. 
 
Decay Rate as a function of number of distractors 
One way to predict the cost of searching for a target item in an 
interface with several similar looking items is through tracking the 
number of distractor items visually encoded before arriving at the 
target item. The number of visually encoded distractor items during a 
search contributes to the PI effect: The lower the number of 
distractors visually encoded during a search for a target item, the 
lower should be the decay of activation of the memory trace of the 
target item. Hence, the next recall of that item will be affected by the 
higher activation of its memory trace, leading to the lowering of its 
retrieval time. This will result in an improvement in the search-and-
selection time during the use of the corresponding user interface. The 
effect of the number of visually encoded distractor items in a search 
task discussed here is analogous to the primary research results of 
Underwood (1957), Wickens (1972), and Wixted and Rohrer (1993) 
on Proactive Interference. Namely, they describe the effect that the 
number of previously learned similar items has on the recall of a 
target item: The higher (lower) the number of previously learned 
similar items is, the higher (lower) is the forgetting effect and 
therefore the higher (lower) is the recall latency for the target item. 

In order to account for the PI effect in visual search-and-selection 
tasks in user interfaces, we propose a decay rate, dj, for an item, after 
j practices of this item have been completed, as follows: 

        )( 1−+= jj Xfad            Decay Rate Equation 
where a represents the decay-due-to-time constant replicating the 
portion of decay that occurs with passage of time, and f represents a 
decay-due-to-PI function which we will discuss shortly. Xj-1 is the 
number of distractors visually encoded, at the time of jth practice. 
Naturally, j has to be larger or equal to 1. X0 denotes the number of 
distractors visually encoded during the first practice and is assumed 
to be the total number of items on the user interface. When Xj-1 is 0, 
i.e. when user is able to complete the task by direct recall, without 
going through any explicit visual search, the decay rate equation 
degenerates to dj = a. This implies that in the absence of the impact 
of distractors, the decay in activation of the item will occur only with 
the passage of time as in case of the traditional base-level activation 
equation discussed earlier.  

Let us now turn to the decay-due-to-PI function, f. We introduce 
this function as one that replicates the memory decay due to proactive 
interference. As such, its job is to transform the number of 
distractors, Xj-1, to a valid decay-due-to-PI value. We assume valid 
decay-due-to-PI values to be between 0 and 0.5, both inclusive, i.e. 
0.0 <= f(Xj-1) <= 0.5. Since 0 implies no decay, it can be considered 
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as a valid lower bound on decay-due-to-PI values. The decay value of 
0.5 is widely used as the decay constant in the traditional ACT-R 
literature and therefore can be safely considered as a valid upper 
bound on decay-due-to-PI values.  

We assume that the maximum possible number of distractors in 
an interface is equal to the total number of items on it. The maximum 
possible number of distractors is therefore equivalent to X0, the 
number of distractors visually encoded at the first practice. Hence, we 
set f(X0) = 0.5, using the upper bound on decay-due-to-PI. On the 
other hand, f(0) = 0.0 implies the absence of the impact of distractors, 
and hence the absence of PI effect as a consequence. This occurs 
when the user is able to complete the task by direct recall. 
 
Modified ACT-R equation of Base-level Activation 
With the decay rate equation now in place, we modify the base-level 
activation equation to 
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where the decay dj is not a single constant anymore, but a 
combination of the traditional decay-due-to-time constant and decay-
due-to-PI function. The latter is a function of the number of 
distractors that builds up the PI effect on the recall of an item during 
the next practice. The factor q in the equation acts as the strength 
scale parameter. The usage of such a strength scale parameter, albeit 
in a different form and context, has been suggested previously by 
Anderson (1983, p. 277) as well as Stewart and West (2007, p.235). 

Note that when dj = a and q = 1, the PI Activation equation 
collapses to the traditional base-level activation equation.  

Our proposal for combining the effect of decay-due-to-time 
constant and decay-due-to-PI function is analogous to the results of 
experiment 3 of Keppel and Underwood (1962). There, the authors 
concluded that forgetting is a combined effect of the passage of time, 
i.e. the ‘retention interval’, and the number of previously visually 
encoded items, i.e. ‘proactively interfering items’. 
 
Activation boosts on distractors 
The distractors visually encoded on the way to finding a target should 
be considerably less salient than the target itself. Hence, their base-
level activations should receive considerably less boost compared to 
that of the target. Since our main interest is in replicating PI effect on 
the learning of target item and its location, we focus on the effect of 
the number of distractors rather than the negligible increments in 
strength they receive, as they are considerably less salient. For 
convenience of modeling, we set the reference level of activation 
boost to zero and consider the relative difference in boost between a 
target and every distractor involved during the search. We let the 
target get its full quota of boost during a given trial of search and 
selection, but set the activation boosts of distractors to the reference 
level, i.e. zero. This helps us to keep our analysis simple during 
model validation, as we will see in the next section. 
 

Validation of Model Extension 
We validate our new extension against two empirical studies on 
location learning in user interfaces. In order to adapt the observed 
data to the goal of analyzing only the PI effect, we first make a few 
assumptions. These assumptions help us to get an estimate of the 
number of distractors at any given instant. We then validate our 
extension by fitting it to the Reaction Time equation discussed 
earlier, using the data from those experiments. More precisely, we 
predict the average reaction time per item and per trial.  

Note that the reaction time is dependent only on activation, as 
determined by the PI Activation Equation. All fits in this article are 

performed using the R2 and root mean square deviation (RMSD) 
statistics. 
 
Assumptions for adaptation of observed data 
The heart of our extension lies in the term Xj-1 of the decay rate 
equation. This term denotes the number of distractors seen at the time 
of jth practice. In order to extract this information from the empirical 
data, we make the following assumptions: (i) Target items are always 
visible in the user interface. (ii) Target items are not easy to 
discriminate from the distractors. (iii) The position of an item on the 
interface layout does not change. (iv) We expect the user to search all 
items that cannot be directly recalled before finding the desired target 
item. This exhaustive search strategy is based on the findings of 
MacGregor et al. (1986). There, the authors carried out a visual 
search study on (database) menus and found that 59% of all visual 
searches were exhaustive in nature. (v) At any given instant, the 
searchable set of items is the set of all non-recallable items on the 
interface at that instant. (vi) On average, the visual search time is 
linearly proportional to the number of all items that the user cannot 
recall. This is warranted, since the visual search time is roughly a 
linear function of a given searchable set of items in the tasks where 
the target is not easy to discriminate from the distractors (Wolfe, 
2000). 

We compute Xj-1 as follows: We first obtain the average search 
time per item corresponding to each session from the empirical data. 
Then, we use the formula  

    NIS = NISPS ∗ ST         Distractor Computation Equation 
where NIS is a rough estimate of Xj-1, i.e. the number of items 
searched before finding the target, NISPS expresses the number of 
items searched per second, and ST is the search time for NIS number 
of items. We later show a sample use of this formula during our 
discussion of model validation. Note that in the strictest sense, NIS 
for a given trial includes the target as well. However, considering that 
throughout the model validation process we deal only with values 
that are relative and average in nature, using NIS as an estimate for 
Xj-1 is an acceptable compromise. 

Next, we show how we compute the PI-caused decay from Xj-1 
values using the decay-due-to-PI function f.  In order to simplify our 
model validation process, we define f as a simple linear formula 
             f (Xj-1) = DVD ∗ Xj-1              Decay-due-to-PI Equation 
where DVD is the decay value per unit distractor. The linear nature of 
this decay-due-to-PI equation makes it a closed-form approximation 
of PI on location learning. This, in turn, makes the decay rate dj 
a closed-form expression as well. We later show a sample use of the 
decay-due-to-PI equation during our discussion of model validation. 
 
Location Learning on a Graphical Virtual Keyboard 
Cockburn, Kristensson et al. (2007, fig. 2, p. 1574) carried out an 
experiment that tests how well users learn the location of keys on a 
graphical virtual keyboard with one label per key. The labels were 
iconic symbols chosen from the Microsoft Webdings font. For the 
validation of our model, we focus only on the condition where the 
labels on the keys are always visible, i.e. the Visible Interface 
condition in that study.  

All participants trained for 5 minutes through 10 iterations of 
searching and selecting symbols on the interface containing 18 iconic 
symbols, which were pre-cued in a separate target-cuing region. For 
our validation, we had to make a few assumptions, as the 
corresponding information was not given explicitly in that paper. 
These assumptions are as follows: An iteration consists of a sequence 
of trials. Each of the 10 iterations takes roughly equal time and each 
of them gets completed in 30 seconds on average – since 10 iterations 
took 5 minutes or 300 seconds as stated in that paper. We also 
assume inter-trial, and inter-iteration periods to be constant. Also, 
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except for the target-precue, we assume that environmental context 
cuing is minimal and can be ignored for our purposes. 

Based on this, we now detail a sample computation of Xj-1 using 
our Distractor Computation Equation. For iteration #1, we assume 
that the user exhaustively searches all 18 keys before hitting the 
target, i.e. the NIS corresponding to iteration #1 is 18. From the 
measured data we see that the search time, ST, corresponding to 
iteration #1 is 2.4 sec. Consequently the number of items searched 
per second, NISPS, is 7.5. Next, using NISPS = 7.5, we compute the 
NIS value corresponding to the ST for each iteration. These NIS 
values are then used for Xj-1 (j = 1 to 10) in the Decay-due-to-PI 
Equation.  

Note that for a given iteration or session, it is sufficient to use the 
average number of distractors, Xj-1, directly for computing an average 
activation per target through the PI Activation equation. This is 
possible since we consider the relative activation boost for distractors 
to be zero at any given trial, as mentioned previously. 

We now detail a sample computation of f using our Decay-due-
to-PI Equation. For iteration #1, we use the boundary condition 
f(X0) = 0.5, which implies DVD ∗ X0 = 0.5. Since X0 = 18, the decay 
value per unit distractor, DVD, is 0.028. Using this value for DVD, 
we compute the f value based on the Xj-1 for each iteration. 

Table 1 shows the NIS and the corresponding f(Xj-1) values for 
each iteration. Note that for simplicity, we assume the average NISPS 
to be same over all iterations. The same holds for the average DVD as 
well. The assumptions are warranted since the average NIS and DVD 
values themselves are only relative in nature. 

 
Table 1.  Relative estimate of the number of distractor items 

searched before finding the target item, in each iteration (for 
NISPS = 7.5) and the corresponding decay-due-to-PI value 
(for DVD = 0.028). 

Iteration 
j 

ST 
(observed 

search time 
per item, in 

secs) 

NIS  
(approx. 

number of 
distractor 

items 
searched, Xj-1) 

f(Xj-1)  
decay-due-to-

PI 

1 2.400 18 0.500 
2 2.031 15 0.417 
3 1.892 14 0.389 
4 1.708 13 0.361 
5 1.673 13 0.361 
6 1.592 12 0.333 
7 1.569 12 0.333 
8 1.431 11 0.305 
9 1.465 11 0.305 

10 1.408 11 0.305 
 

Figure 1 shows our model fit to the observed data. We have set 
the values for the model fit parameters as follows: (i) The decay-due-
to-time constant a in the decay rate equation is 0.058. In absence of 
any inter-trial and inter-iteration data in this empirical study, we 
assume that there have been insignificant pauses between any two 
consecutive trials or between any two consecutive iterations. Hence, 
we choose a relatively small value for the decay-due-to-time 
constant, implying that the decay due to passage of time had been 
minimal. (ii) The latency scale F is 0.96. This maps an activation 
value to its corresponding time value. Further, it also takes the fixed 
costs associated with visual encoding and motor response into 
account. (iii) The strength scale q is 150. (iv) The latency exponent 
scale g is 0.2. The last two parameters help in an overall adjustment 

of the activation value. With R2 = 0.992 and RMSD = 0.074 for our 
prediction, our model extension closely agrees to the observed data.  

 
As evident from Figure 1, the prediction from our modified 

equations with a RMSD of 0.074 is significantly better than the 
prediction of reaction based on  the standard ACT-R declarative 
memory equations with a RMSD of 0.824. In case of the standard 
ACT-R based calculations, the constant time-based decay parameter 
d in the base-level activation equation was left at its default value of 
0.5 and the latency exponent scale parameter g in the reaction time 
equation was left at its default value of 1. 

It should be noted that our choice of 0.058 for the decay-due-to-
time constant a is so small that the term can be removed without 
incurring any significant change in the shape of the predicted curve. 
With this simplification, we can claim that we have introduced only a 
single new parameter into ACT-R theory of declarative memory, 
namely the strength scale q (see the PI Activation Equation). 

 
Learning of Static and Unfamiliar Menu 
Cockburn, Gutwin et al. (2007, fig. 2, p. 632) carried out an 
experiment that tests how well users learn the location of menu items 
in a single column, single level menu where the items are never 
relocated and all items are displayed at the same time to the user. The 
menu items were words that were unfamiliar to the user in this study. 
We are thus referring to the “Static+Unfamiliar” menu condition in 
that study.  

The menu-item search and selection trials were executed by the 
participants in a series of 7 blocks. Participants began each trial by 
clicking on a ‘Menu’ button, which caused the menu to be shown and 
also the name of the target to appear beside it. For our model 
validation, we assume a menu of 8 items. We use this length since it 
is the next highest integer to the average of the menu lengths studied.  

For our model validation and due to the lack of more accurate 
information, we assume the following: Each block consisted of a 
collection of trials. Each of the 7 blocks takes roughly equal time and 
gets completed in 10 seconds on average. We also assume inter-trial, 
inter-block periods to be constant. Again, except for the target-
precue, environmental context cuing is assumed to be minimal and 
therefore ignored for our purposes. 

We compute the Xj-1 for the 7 blocks using the same technique as 
in the previous study. For block #1, let us assume that the user 

 
Figure 1. Mean Reaction Time, RT (in secs) per item (label) 
selected on a graphical keyboard, as observed in (Cockburn, 
Kristensson et al. 2007, fig. 2, p. 1574), named C-K-A-Z, the 
solid line with filled circles. Our prediction is the dashed line 
with unfilled circles (R2=0.992, RMSD=0.074). Prediction by 
Standard ACT-R at d=0.5 (fixed default decay), g=1, q=1, is 
the dashed line with filled triangles (R2= 0.952, RMSD= 
0.824). 
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exhaustively searches roughly all 8 menu-items before hitting the 
target, i.e. NIS corresponding to block #1 is 8. In figure 2, we see that 
the observed search time, ST, corresponding to block #1 is 0.819 sec. 
Therefore, the number of items searched per second, NISPS is 
roughly 10. Using NISPS = 10, we compute the NIS value 
corresponding to the ST for each block. These NIS values become the 
values for Xj-1 (j = 1 to 7) in the Decay-due-to-PI Equation. 

 
Next we compute f using our Decay-due-to-PI Equation. For 

block #1, we use the boundary condition f(X0) = 0.5, which implies 
DVD ∗ X0 = 0.5. Since X0 = 8, therefore the decay value per unit 
distractor, DVD, is 0.0625. Using this value for DVD, we compute 
the f value based on the Xj-1 for each block. 

Figure 2 shows the fit of our model to the observed data. We 
have set values for the model fit parameters following similar 
arguments as in the previous example:  (i) The decay-due-to-time 
constant, a, in the decay rate equation is 0.058. (ii) The latency scale, 
F = 0.362. (v) Strength scale, q = 150. (vi) Latency exponent scale, 
g = 0.2. 

As evident from Figure 2, with R2 = 0.978 and RMSD = 0.026, 
our adapted model shows good correspondence to the observed data. 
Also, the prediction generated from our modified equations is much 
better than the prediction based on the standard ACT-R declarative 
memory equations, with an RMSD of 0.264. Similar to the previous 
example and for the standard ACT-R based calculations, the constant 
time-based decay parameter d and the latency exponent scale 
parameter g were left at their default values of 0.5 and 1 respectively. 
 

Discussion 
General Comments 
Our proposed mathematical extension to the ACT-R theory of 
declarative memory model closely predicts the PI effect on location 
learning in user interfaces. The model is based on the number of 
distractor items visually encoded on the way to finding the target 
item. Our proposal directly quantifies the PI effect on location 
learning at a high level of abstraction, and is based on well 
established results from PI studies. There are few potential concerns 
with the analysis described above that we enumerate below. 

In our model, we implicitly assume that the number of distractors 
visually encoded at the time of jth practice, i.e. the value for the term 
Xj-1 in the decay rate equation, will be estimated by some visual 
search module whose implementation lies beyond the scope of this 
work. 

We set the latency scale parameter F to different values for the 
two predicted curves; one being relevant to our model extension and 
the other being relevant to the original ACT-R equations of 
declarative memory. We decided to do this in order to match their co-
ordinates for the first session (i.e. iteration #1 in the first example and 
block #1 in the second example) to the co-ordinates of the first 
session of the observed data. Such adjustment merged the session #1 
co-ordinates of the three curves (two predicted and one empirical) 
into a single reference point thereby making visual as well as 
quantitative comparison of data easier. Since the effect of F in the 

reaction time equation is only to scale the critical quantity igAe− onto 
the range of the latencies (Anderson et al. 2004, p. 1044), we can 
safely consider that changing F has a negligible effect on the shape of 
the curve. Hence, we can state that our decision to set F to different 
values for different predicted curves was an acceptable compromise. 

We set the value of the strength scale q to 150 and the latency 
exponent scale g to 0.2 in order to match the shape of our predicted 
curves to the corresponding observed data as closely as possible. 
While traditionally q and g have been left at their default values of 1, 
still our choice of the same value for q and g across both the studies, 
albeit different from the default, avoids compromising the fidelity of 
our new model to a considerable extent. 

In order to validate our model, we needed to extract the number 
of distractors at a given practice (i.e. Xj-1 in decay rate equation) from 
the empirical studies, which did not report this information directly. 
Hence we were forced to make assumptions that enable us to extract 
a rough average estimate of the number of distractors per practice, at 
a given session, from those studies. Although these relative estimates 
seem sufficient to demonstrate our model’s ability to replicate the PI 
effect, we feel that a future empirical study that directly measures the 
number of distractors visually encoded by a novice user on the way to 
finding a target item in a given layout would be worthwhile. 
However, this would involve eye tracking and a very carefully 
constructed experiment. Such an effort would enable us to identify 
more accurate values of Xj-1, thereby increasing the fidelity of our 
model extension further. 

 
Comments on computational design: A suggestion 
We now briefly suggest one possible way to implement the 
computation model to simulate the PI effect as presented here. 

We assume that we are given a visual search module that is based 
on the attentional vision module of standard ACT-R software. We 
use this module as a black box and assume that it is able to return us a 
list of distractors for every time the layout in question is scanned for 
a pre-cued target item. We also assume that the positions of items in 
the layout do not change; the target item always exists in the layout 
and is found whenever searched for. 

The distractors visually encoded on the way to finding a target 
should be considerably less salient than the target itself. Hence their 
memory strengths should get significantly smaller boosts than the 
target. For simplicity of our design, we assume that, every distractor 
gets zero boost in its memory strength, while in comparison the target 
gets the full quota of boost it deserves, at every execution of the 
visual search and selection task. One way to realize this would be 
through exercising appropriate control on buffer clearing in the 
productions. The other way to realize this would be through explicitly 
using the getter and setter functions for manipulating base-level 
activations of the chunks from within the productions. 

In the Lisp implementation of ACT-R, there are many side-
effects, i.e. situations where code in the model that explicitly does 

 
Figure 2. Mean Reaction Time, RT (in secs) per item selected 
on a graphical menu, as observed in (Cockburn, Gutwin et al. 
2007, fig. 2, p. 632), named C-G-G, the solid line with filled 
circles. Our prediction is the dashed line with unfilled circles 
(R2= 0.978, RMSD= 0.026). Prediction by Standard ACT-R 
at d=0.5 (fixed default decay), g=1, q=1, is the dashed line 
with filled triangles (R2= 0.969, RMSD= 0.264). 
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one thing also causes other actions to be performed that are not 
explicitly represented in the model code (Stewart and West, 2007).  
In order to avoid such side-effects, we recommend to avoid 
manipulating the attributes of visual location chunks or the visual 
object chunks of the vision module; instead, we recommend to 
maintain a parallel set of user-defined chunks, each containing 
information related to an item on the layout. Whenever a pre-cued 
target item is found and the distractors involved in the search are 
identified by the aforementioned visual search module, the memory 
strength of the user-defined chunks representing the target and its 
distractors can then be updated appropriately. 
 
Summary 

The work reported in this paper developed a model extension that 
captures the proactive interference effect on two-dimensional 
location learning. The extension was added to ACT-R’s model of 
declarative memory strength and recognition/recall reaction times. 
The model was then validated by fitting the data of two previous 
experiments that tested location learning on a graphical virtual 
keyboard and a graphical menu. The new model resulted in a 
significantly better fit to the observed times. 
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Appendix 
We show values from few functions corresponding to the first study, Location Learning on a Graphical Virtual Keyboard. Constant parameters are 
a=0.058, F=0.96, q=150, g=0.2. All are average values per target.  Xj-1 values are from Table 1. Human data (search time) is rightmost. 

Iteration#  j Xj-1 dj tj  (sec) e-gA T = F * e-gA    (sec) Observed search time (sec) 

1 18 0.558 30 2.556 2.454 2.400 
2 15 0.475 60 2.097 2.013 2.031 
3 14 0.447 90 1.889 1.813 1.892 
4 13 0.419 120 1.745 1.675 1.708 
5 13 0.419 150 1.661 1.595 1.673 
6 12 0.391 180 1.577 1.514 1.592 
7 12 0.391 210 1.521 1.460 1.569 
8 11 0.363 240 1.458 1.400 1.431 
9 11 0.363 270 1.413 1.356 1.465 
10 11 0.363 300 1.377 1.322 1.408 
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Abstract 
Computer simulations, or microworlds, have been used for 
studying various topics including problem solving. This work 
investigates strategies for complex, dynamic problem solving 
in a fire-fighting microworld. Using data from a study by 
Cañas, Antolí, Fajardo & Salmerón (2005), an ACT-R 
cognitive model is developed with the aim of providing 
insight into the development and selection of strategies 
participants use. One particular behavior observed in 
participants when trained repetitively on the same scenario, 
the creation of a fire-break barrier to prevent the fire 
spreading, is discussed. It was found that selection of a 
particular strategy depends on the fine-tuning of ACT-R 
production rule utilities as a consequence of environmental 
rewards, highlighting the role of reward size and timing. The 
model is able to capture various aspects of the data by 
promoting a free competition of small blocks of behavior 
based on rational analysis. A key finding is that good 
performance is linked to effective combination of strategic 
control with attention to changing task demands reflecting 
time and care taken in informing and effecting action. 

Keywords: Cognitive Modeling; ACT-R; problem solving; 
strategy; microworlds.  

Introduction 
Microworlds are computer simulations that represent a 
middle point between naturalistic scenarios and laboratory 
tasks (Brehmer and Dörner, 1993). Although microworlds 
are relatively simple, they embody the essential 
characteristics of real-world dynamic decision-making 
environments (Gonzalez, Vanyukov and Martin, 2005). 
Microworlds allow for an economic and standardized 
presentation of scenarios, data registration and computing of 
results (Frensch and Funke, 1995; Brehmer and Dörner, 
1993). These tasks have been used for studying various 
domains including problem solving (Frensch and Funke, 
1995; Brehmer and Dörner 1993; Taatgen 2005).  

Microworlds have three characteristics. Firstly, 
complexity, owing to the number of elements and number 
(and nature) of their interrelationship (Frensch and Funke, 
1995). Second, lack of transparency; the problem solver 
does not have access to all relevant task information, 
making interaction with the world necessary for knowledge 
requirements. Last, the problem state changes both 
independently and as a consequence of the participant’s 
actions. Microworlds consequently place a variety of 
cognitive demands on the problem solver. According to 

Anderson et al. (2004) dynamic tasks require considerable 
goal-directed processing within demanding perceptual 
displays and execution of motor commands under severe 
constraints. They require continuous processing of feedback 
in order to select appropriate actions within an ever-
changing situation (Brehmer and Dörner, 1993). This paper 
focuses on the demands posed by these dynamic task 
characteristics, in particular the way performance feedback 
from a dynamic environment is processed, and how this 
allows the consolidation of strategies. 

Frensch and Funke (1995) suggest that it is important to 
understand the process of Complex Problem Solving (CPS), 
rather than the product; this process is an interaction 
between the problem solver, the task and the environment. 
A cognitive model is able to reveal the internal processes for 
selecting actions together with their interaction with the 
environment, increasing our understanding of these 
processes. Cognitive modeling has been used in dynamic 
environments such as air traffic control (Taatgen, 2005). 
The work presented here uses the FireChief fire-fighting 
microworld (Omodei & Wearing, 1995).  

The FireChief Microworld 
FireChief participants combat fires spreading in a landscape 
using truck and copter units. Trials last 260 seconds. A 
FireChief scenario is specified by a variety of properties 
such as landscape distribution of forest, clearings and 
property, the number and position of initial fires, the 
direction and strength of the wind, and the initial position of 
fire-fighting units. Figure 1 shows the central cells of a 
FireChief trial display converted for model use. Copters 
(shown as CR) and trucks (TR) can move between 
landscape grid cells (R, L & H) and can Drop Water (DW) 
over cells to extinguish fires (Fn where n indicates fire 
intensity). Copters are three times faster than trucks and 
cannot be destroyed by fire, but a truck’s water tanks have 
twice the capacity and are able to Control Fire (CF) by 
creating a fire-break. Commands are issued through a 
combination of mouse and keyboard operations and their 
execution takes a fixed amount of time, 4 seconds to DW, 2 
seconds to CF, and a variable amount of time to Move a unit 
depending on distance and type of unit. Wind strength and 
direction are in the upper right-hand corner of the display. 

FireChief is a dynamic decision-making problem solving 
task environment where a series of interdependent decisions 
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are required to reach the goal, the environment changes over 
time, and user actions change the state of the world 
(Gonzalez et al., 2005). The problem solver is engaged in a 
strategic situation where he or she has control over a limited 
number of fire fighting units and has to use them to 
accomplish one mission: to fight and quell the fire. Task 
performance is inversely proportional to the number of cells 
destroyed by fire at the end of the trial.   

 
 

Figure 1: Central cells of the model version of a FireChief 
trial display using ‘buttons’ (Lisp) 

ACT-R Architecture 
The CPS model is implemented in ACT-R 6.0 (Anderson et 
al., 2004). ACT-R is divided into various modules 
according to the kind of information they process: a visual 
module for identifying objects in the visual field (in Figure 
1 the focus of attention is on the cell in the fourth row of the 
penultimate column), a manual module for controlling the 
hands (the mouse pointer is located in the same cell), a 
declarative module for retrieving information from memory, 
and a goal and imaginary modules for keeping track of 
current goals and intentions. Communication between 
modules is achieved through buffers where the content of 
any buffer is limited to a single declarative unit of 
knowledge, a ‘chunk’. Thus the system can only respond to 
a limited amount of information. Behavior in ACT-R occurs 
through interaction of its specialized modules via the 
buffers, coordinated by a central production system.  

There are two types of knowledge in ACT-R: chunks 
encode declarative knowledge whereas procedural 
knowledge is represented by production rules, where each 
rule corresponds to a cognitive processing step. Each ACT-
R production has two elements: the condition, a 
combination of states from the different buffers, and an 
action, which can perform transformations over the state of 
buffers and trigger actions in modules. ACT-R functionality 
is achieved through many mechanisms, but two are of the 
utmost importance in this model: utility and reward. 

Utility designates the value of executing a rule; it 
represents the perceived value of a production and is 
updated by rewards from the environment. Utility of 
productions is compared during the process of conflict 
resolution where only the rule with the highest utility is 

acted upon. From a computational perspective, a participant 
can be considered as a collection of utility values. By 
interacting with FireChief, these utility values are tuned 
throughout a sequence of trials in a unique fashion within 
constraints imposed by the properties of the FireChief task, 
the procedural knowledge represented by rules, and rewards 
from the environment. The combination of ACT-R utility 
learning mechanisms with the dynamic nature of FireChief 
means the model can run a number of times under the same 
task conditions with the same knowledge and yet produce a 
different pattern of behavior each time. Rewards are the 
ACT-R mechanism for giving the model feedback from the 
environment. When a reward is triggered the utilities of all 
productions that have fired since the last reward are 
updated. The amount and distribution of rewards have an 
important impact on model’s behavior (Janssen, Gray and 
Schoelles, 2008).  

Human Study Data 
The data used for specifying and fitting the CPS model 
comes from a study by Cañas et al. (2005). Those 
participants trained on the same, reliably predictable 
FireChief scenario for 16 trials were found to increasingly 
preferentially select the fire-fighting strategy that achieved 
the best outcome. This paper focuses on modeling strategy 
selection during constant training in order to understand this 
process and thereby gain insight into strategy formation. 
The constant scenario is characterized by a strong, constant 
easterly wind. Participants are limited to 2 copters and 2 
trucks. To begin with there are two groups of fire in close 
proximity which quickly spread eastward (Figure 1 shows 
their initial distribution). A variety of different strategies can 
be used to stop the fire, as described in the next section.  

Strategy Use 
In total, 1728 protocols from 72 participants were analysed 
to identify four main strategies. In the Non-Barrier strategy 
CF commands are issued with noticeable spatial dispersion 
and are interleaved with DW commands. In the Stop 
strategy DW commands are used alone and are issued over 
the most intense fires within sufficient proximity to stop the 
fire. In the Follow strategy only DW commands are used but 
they do not target the strongest fires nor are they issued in 
close proximity to each other. The most structured strategy 
is called Barrier and it turns out to be very effective in the 
constant training scenario; it is used twice as often (50 vs. 
27) by the top four performers compared to the four worst. 
For these reasons it is discussed here in more detail.   

The Barrier strategy 
The Barrier strategy presents a very characteristic way of 
dealing with the fire: the issuing of an ordered pattern of CF 
commands in a shape, similar to a barrier, intended to stop 
the fire spreading. There are many forms in which the 
barrier is created but a semicircle or straight line is the most 
frequent. In Figure 2 the barrier has the form of a semicircle 
where the black squares represent CF commands and the 
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grey squares represent DW commands. The strategy recruits 
top-down processes in constructing a fire-break but is 
sensitive to bottom-up perceptual processes so the final 
form of the barrier is a function of the shape of the fire that 
is being controlled.  
 

 
 

Figure 2: A typical Barrier strategy formation. 

The Cognitive Model 
To allow interaction between ACT-R and the FireChief task 
a Lisp version of FireChief was developed following the 
original specification provided in the FireChief manual 
(Omodei & Wearing, 1993). This is able to control all 
relevant aspects of the task: the landscape, development of 
fire, execution of commands, and performance calculations. 
Before running the model a FireChief scenario is loaded in 
an experimental window in the form of a matrix of multi-
colored labeled buttons. Buttons enable interaction between 
the model and the experimental window by means of mouse 
and keyboard commands 
   The model implements all four main strategies, deciding 
which to use (based on initial utility comparisons) or 
switching to another (as utilities change) during the trial if 
the fire is not under control. An ineffective strategy, poorly 
rewarded, can be abandoned at any point, therefore. A 
chosen strategy is held in the imaginal buffer and affects 
model behavior by defining, for example, whether the 
model will use a mixture of DW and CF commands, 
whether or not a barrier will be created, or which ways of 
attacking the fire are preferred. In the very first trial the 
rules that select a strategy have an initial random utility 
determined by the standard ACT-R utility equation that has 
a random component. After the trial ends the utility of these 
productions is modified according to the final result. In this 
way, the actual means of executing a strategy emerges by 
rewarding certain rules over others (so a strategy is more 
precisely a set of strategies manifesting similar behaviour). 

Creating a barrier 
The functional block of rules described here belong to the 
set of strategies for creating barriers (see Figure 3). These 
rules represent a small subset of all the productions that are 
available to the model which is able to select and perform 
any of the four main strategies identified from the human 
data analysis. A FireChief trial lasts 260 seconds and a 

typical barrier is created in 60 seconds. Each cell in a barrier 
requires a Move followed by a CF command and the 
average number of grid cells needed for a barrier is 15. The 
average number of commands in a trial is 110. 

First the model must specify a starting point for the 
barrier. This will depend upon the current state of fire and 
wind conditions. Second, the location of the next section of 
the barrier must be determined. A design decision was that 
the form of the barrier should be the result of a competition 
for locating the next cell of the barrier; top-down and 
bottom-up processes compete through the ACT-R conflict 
resolution mechanism. The selection of a target cell follows 
a process in which the candidate cell is proposed and then 
various tests (based on perceptual actions) are conducted. 
Third, a truck is moved to the selected cell before executing 
a CF command comprising a sequence of steps: locate the 
target, store location of target in working memory, find a 
truck, attend the unit, move the cursor to the unit, click the 
unit, attend target, move mouse to target, click mouse. Of 
these actions moving a cursor shows the highest time 
variability in the model (this information is not recorded in 
the human study protocols) stressing its importance in the 
total latency of the command and its corresponding 
importance to overall performance. When the truck has 
finished moving a CF command can be initiated. Fourth, the 
status of the barrier is monitored. Eventually, the barrier is 
considered complete when the fire-break is sufficient to 
contain the fire. The shape of the resulting barrier is a 
product of competition between various rules and the 
reward they receive when executing commands.  

In the excerpt shown in Figure 3, the model is following 
the Barrier strategy and has just started a Move command 
with a truck. The current intention of the model is to create a 
fire-break barrier using CF commands. In step 1 the model 
must choose between waiting for the truck that has initiated 
its movement (and is disabled until it arrives) or using the 
other truck. In this step the utilities of productions 1-A and 
1-B are compared and the one with the highest expected 
value is fired. In this case the model decides to wait. In step 
2, the model searches for a visual-location that satisfies a set 
of constraints. In this example the model is verifying if the 
truck has arrived at its destination. The first constraint is 
spatial: the column and row of the destination cell. The 
second constraint is graphical: the cell must have a light-
grey color (if the destination cell is white it means that the 
truck is still moving). The result of this search determines 
step 3. If the truck has not yet arrived, the model returns to 
step 1. When the model detects that the truck has arrived at 
its destination a shift of attention is made to that location. At 
the end of this attention shift the visual buffer is loaded with 
a chunk representing the content of the cell, namely the type 
of landscape and whether the cell is on fire (plus its 
intensity). Step 4 starts by checking whether the visual 
chunk encoded in the visual buffer is a product of an explicit 
shift of attention or the product of buffer stuffing. Buffer 
stuffing is an ACT-R mechanism in which a chunk is stored 
in the visual buffer without an explicit request from a 
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production rule. This can be a recurrent source of distraction 
for the visual system but also allows the detection of 
unforeseen events (for example new fires appearing in the 
scenario). In this example, if the model is distracted a visual 
chunk (that does not represent the location details for where 
the CF is going to be executed) is placed in the visual 
buffer. If the model proceeds with step 4 it will move the 
mouse pointer to the cell that distracted its attention instead 
of the correct cell. If the visual element encoded in the 
visual buffer is a product of the explicit attention shift 
executed in step 3, the CF command can be applied there 
because now the unit is in position. Before issuing a CF 
command the mouse pointer must be located over the truck, 
so step 4 initiates a mouse movement towards the attended 
cell. During this time the target cell may catch fire; in this 
case the model aborts the execution of the CF command. In 
step 5, after the mouse movement is complete, the CF 
command is initiated by pressing a key. In the normal flow 
of events the CF command would start after the click. 
Figure 3 shows a different outcome: just after rule 5-A fires 
the target cell catches fire, rendering the execution of a CF 
command impossible and consequently an alarm is emitted. 
Following this, the model is able to detect this alarm and, 
making use of the contents of the imaginal buffer, can select 
an appropriate course of action based on its strategy choice.  

 

 
 

Figure 3: Sequence of Barrier strategy rules 
 

A model run lasts 4160 seconds (16 sessions of 260 
seconds). The model was run 40 times, following the same 
experimental design as in the Cañas et al. (2005) study. The 
data generated by the model provides a complete protocol of 
interaction with FireChief, as for each human participant, as 
well as a detailed trace of the operations being executed 
inside its various modules. 

Data Fitting 
During initial development, the simplest natural model 

was implemented based on a GOMS (Card, Moran, and 
Newell, 1983) analysis of the task and then fitted to the 
human study data. This initial model was highly efficient: 

all units were used all the time so time wasted was 
negligible. This initial model also followed a rigid strategy 
specification; however, the data reveals that participants do 
not use time as efficiently as in the initial model nor do they 
repeatedly execute the same strategy, making the 
importance of achieving flexibility in behavior evident. The 
approach adopted was to provide the model with complete 
knowledge about all the available strategies (cf. Gray & 
Boehm-Davis, 2000) but to allow them to compete freely 
based on their perceived utility. 

Various reward schemes were tried, the most successful 
being the one that focuses on individual commands. In the 
‘single reward’ scheme a reward (based on final 
performance) is given at the end of the trial. In the ‘reward 
sub-task’ scheme the completion of salient tasks is 
rewarded. For example, in the Barrier strategy stages are 
completion of a barrier, refilling a unit, or extinction of the 
fire. The problem with both these schemes is that, because 
several hundreds of rules may fire between rewards, the 
utility values of the most recent rules are changed only. This 
affects the model’s behavior because the rules responsible 
for achieving good performance may not receive the proper 
reward and hence appropriate learning is deterred. In the 
scheme selected for use here positive rewards are awarded 
for successfully completing individual commands and 
negative rewards for executing unsuccessful commands and 
wasting time. Executing Move and CF commands generates 
a fixed amount of reward but the reward of a DW command 
is a function of the intensity of the fire that is extinguished.  

In fitting the model there was no attempt to obtain the 
exact behavior of any individual; rather, data fitting centered 
on identifying decision points, encoding rules for executing 
actions and assigning rewards.  

Results 
Three metrics are used here to compare behaviour: task 
performance (reflecting appropriate strategy use); command 
duration (reflecting underlying cognitive and other 
processing steps); and interactions between commands 
(reflecting performance-related functional relationships 
between the Move and the CF and DW commands). There 
are other metrics not discussed here.  

 

 
Figure 4: Comparison of performance between model and 

Cañas et al (2005) study participants 
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Figure 4 compares performance in the constant training 
condition for participants and the model. As can be seen, the 
model is able to replicate performance levels and also 
capture the incremental improvement in performance 
(R=.538). A significant performance increment was 
obtained by comparing the first and last four trials for both 
participants and the model.  (F(1,33)=4.417, p<.05 and 
F(1,33)=5.17 p<.05 respectively).  

 
  Performance  Frequency(%) 

Strategy  Data  Model  Data  Model 

Barrier  81.59  81.05  0.65  0.66 

NonBarrier  72.38  71.74  0.17  0.18 

Stop  91.98  71.3  0.02  0.11 

Follow  57.69  66.42  0.16  0.06 
 

Table 1: Strategy use during constant training trials 
 

Table 1 shows that Barrier is the most frequently used 
strategy during constant training1. Due to the high wind 
strength in the constant training scenario it is very difficult 
to stop the fire using DW commands only.  
  

 
 

Figure 5: Increase in production utilities during 
consolidation of the Barrier strategy 

 
A typical run of the model involves around 200 decisions, 
and the execution of each decision requires between 1 to 6 
rules. On average the model executes 103 commands and 
participants execute 110 commands per trial. The model 
improves performance due to the tuning of its production 
utilities to the constant training trial scenario. Figure 5 
shows how the utility of productions related to the creation 
of the barrier steadily increases as trials are completed. This 
continuous increment of utility values implies that FireChief 
commands are being completed with success with more 
frequency over trial runs.   

                                                             
1 The good performance shown in the human data for the Stop 

strategy is based solely on two participants who used it extremely 
successfully from the outset whilst other less proficient participants 
rapidly abandoned it in favour of more reliable strategies. 

Good vs. Bad Performers 
A comparison of the best and worst performers in the 
constant training condition is presented with the aim of 
showing how utility values can be used for understanding 
more about participant behavior. Performance metrics for 
the top four participants in the constant training group are 
compared with the worst four participants and the same is 
done with model data. The best performers use the Barrier 
strategy twice as often as the worst performers (50 vs. 27 
times) and performers/model-runs have an average 
performance per trial of 86.80/87.41 while the worst 
performers have an average performance of 70.91/71.80 
when using this strategy.  
   All participants and model-runs, take a similar amount of 
time to issue a CF command that forms part of a fire-break 
barrier (F(78,1)=.637, p=.427) and (F(81,1)=1.792, p=.185), 
so the performance differences do not lie here. However, 
there is a functional dependence between moving a unit and 
issuing a CF command. Before executing a CF command 
the truck must be moved to the right place. The model 
embodies the assumption that the decision about where to 
move the truck is taken when the execution of the 
movement is initiated. There is a significant difference 
between the best and worst participants in the time it takes 
to execute a movement prior to issuing a CF command 
when forming a barrier (F(1260,1)=67.980, p<.001). The 
model captures latency times for the best performers only; 
worst performers spend much less time on this activity than 
the model. The best approximation to worst performance 
provided by the model is to execute only a single perceptual 
action to ascertain the fire location without checking 
whether the target fire-break cell is on fire. The model uses 
the fire-front for selecting where in a particular row the next 
fire-break cell should be, and poor performers often get this 
wrong (see next section). Even so, the model remains slower 
than participants by 800ms. on average. Even if all 
perceptual and cognitive processing could be removed from 
the model it cannot reduce the time taken by a sufficient 
amount to match human latencies. An explanation for this 
could be connected to the duration of motor commands: a 
Move command requires two key-presses and two mouse 
pointer moves. Perhaps poor performers execute these 
actions with more hastiness. Evidence to support or refute 
this explanation is subject to ongoing research 

Utility profile 
With the aim of gaining insight into what differentiates best 
and worst performers, two profiles were created based on 
utility values for each group from the model run. To obtain 
the profiles, the utility of relevant productions for each 
group is queried at the end of the training phase and 
averaged. In doing this, the comparison is focused only on 
the rules relating to the creation of a barrier: the way trucks 
are used, how they are moved, and how the barrier is 
created.  

The comparison shows that the most striking difference 
between good and bad performers is that good performers 
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successfully combine top-down and bottom-up processes to 
create a barrier, while the worst performers apply only top-
down processes successfully, failing to combine them well 
with bottom-up processes so that cells selected for the fire-
break prove less effective. The key differences are that the 
best performers pay more attention to the fire-front, and also 
that they wait for the trucks to finish their (short) 
movements before executing a CF command, thereby 
completing the sequence of commands successfully. These 
differences can be identified by looking at the utility values 
of the productions that compete at the relevant decision 
points (as in Figure 5).  

Discussion 
This paper is focused on the adaptive selection of strategies 
for fire fighting with the aim of demonstrating how 
cognitive modeling can improve our understanding of 
problem solving behavior when interacting with dynamic 
microworlds, with implications for real-world complex 
problem solving. The model continuously interleaves 
cognitive with perceptual-motor operations, selects different 
strategies and implements them according to the reward 
structure of the task. A particular implementation of a 
strategy depends on the fine-tuning of ACT-R production 
rule utilities as a consequence of environmental rewards and 
thus is a product of both the configuration of the trial (in this 
case the constant training trial) and the history of 
interactions between problem solver and task (which is 
stored in the collection of utility values). As noted by Cañas 
et al. (2005) the constant training condition allows 
participants to consolidate strategies (see Figure 5). 

The most important learning mechanism for the model is 
the one that updates utility. The main objective during the 
fitting of the model was to allow rules to be rewarded (or 
punished) by their effects in the environment, however the 
set of available strategies was not altered. In other words, 
fitting the model was restricted to affecting the competition 
between strategies.  

This work highlights the role of size and location of 
rewards for strategy selection. As pointed out by Janssen, 
Gray & Schoelles (2008) the definition of reward has an 
important influence on model behavior. Due to the large 
number of rules being fired in each trial, it is necessary to 
arrive to an appropriate reward frequency to enable 
appropriate learning. Rewarding productions for their 
effectiveness in successfully completing individual 
commands seems a good criterion; however, in doing this it 
is important to identify where cognitive effort is made. In 
the case of FireChief relevant cognitive effort for e.g., 
placing a new section of barrier, is traced to the time a 
sequence of actions is initiated prior to the final successful 
movement being executed, and not just when that final CF 
command is issued (that is, there is a causal link between 
the CF command and those actions previously taken).  

The process by which a barrier is created is only one 
amongst many others that occur during a model run. A 
similar analysis based on utility comparisons can be carried 

out for other strategies by identifying the rules that govern 
them. Understanding strategy selection as a consequence of 
previously learned utility also offers a means to understand 
more about performance differences. Worst performers 
reflect a different pattern of utility values in rules used for 
the creation of the fire barrier, owing to impoverished 
attention to the dynamic problem solving state and apparent 
lack of care in issuing commands. Overall the work 
presented demonstrates that complex dynamic tasks can be 
fruitfully explored through a cognitive modeling approach. 
By providing a loose strategy definition the model is able to 
implement complex patterns of behaviour which in turn are 
able to successfully stop the fire while replicating many 
other aspects of the human study data. 
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Abstract 
Efficient access to large declarative memories is one 
challenge in the development of large-scale cognitive models. 
Prior work has provided an initial demonstration of 
declarative retrievals using ACT-R and a relational database. 
In this paper, we provide extended analysis of the 
computational challenges involved. We detail data structures 
and algorithms for an efficient mechanism over a large set of 
retrievals, as well as for a class of activation bias. We have 
implemented this work in Soar, and present detailed 
evaluation on synthetic data as well as the WordNet 3 lexicon. 

Keywords: large-scale cognitive modeling; declarative 
memory; cognitive architecture; Soar. 

Introduction 
Typical cognitive models have very modest declarative 
memory (DM) requirements. In these cases, naïve data 
structures and algorithms, despite inefficiencies, suffice for 
declarative retrievals. However, prior work (Douglass et al., 
2009) has shown that cognitive models of complex tasks 
require more substantial DMs, such as a large subset of the 
WordNet lexicon (Miller, 1995), and that existing retrieval 
mechanisms, such as the ACT-R implementation, do not 
scale to large DMs. If we are ever going to study human 
behavior in knowledge-rich, temporally extended tasks, 
additional research is required on the underlying 
computational data structures and algorithms that support 
declarative memory storage and retrieval. 

In an effort to efficiently support large declarative 
memories in ACT-R (Anderson et al., 2004), Douglass et al. 
developed a DM using the PostgreSQL relational database 
management system. While their work produced an ACT-R 
module supporting persistent declarative access to large 
declarative knowledge stores, there are significant 
opportunities for extension and improvement. First, while 
achieving significant empirical performance improvements 
over the ACT-R retrieval mechanism, the authors do not 
address the analytical computational profile of the DM 
retrieval problem, thereby missing, for instance, situations 
in which even DBMS query optimizers will not support 
efficient performance. Additionally, their presented 
evaluation is limited to their target application and DM, and 
does not include any calculation of chunk activation. 

In this paper, we extend that work along many 
dimensions. First, we contribute an extended analysis of the 
computational challenges of efficient declarative retrievals. 

To address many of these problems, we describe system-
independent methods for efficient retrieval functionality. 
Also, while not achieving the full functionality of ACT-R 
activation, we move towards that goal by formulating and 
efficiently supporting a simpler class of activation bias. 

To evaluate this work, we have implemented a semantic 
memory system in the Soar cognitive architecture (Laird, 
2008). We evaluate the system on a scalable, synthetic data 
set, as well as the entire WordNet 3 lexicon. For successful 
retrievals on data sets scaling to millions of declarative 
chunks, we achieve retrieval times that are two orders of 
magnitude faster than previously reported results. 

A forewarning: much of the presented work delves into 
the details of data structures, algorithms, and complexity 
analysis, which are critical for communicating the results of 
our work to developers of cognitive architectures. However, 
these details may be of less interest to model developers. 
We recommend that modelers focus on the problem 
formulation sections and the empirical evaluation. 

Symbolic DM Retrieval Problem 
To begin, we develop an abstract problem formulation of 
symbolic declarative retrievals. To exemplify this 
formulation, we then map it onto the ACT-R DM. 

Problem Formulation 
We define a declarative memory (DM) as a set of elements. 
A DM element is decomposed into a set of symbolic 
augmentations. For example, consider the following 
example DM, in which the letters A-D identify elements and 
lower-case Greek letters represent augmentations: 

A: {α, β, ε, φ} 
B: {α, ε} 
C: {γ} 
D: {γ, φ} 
We define a DM symbolic retrieval cue as having a 

required positive component and an optional negative 
component, each of which is expressed as a set of symbols 
(corresponding to the augmentations of a DM). For instance, 
consider the following retrieval cue, corresponding to the 
example DM above, consisting of both positive (+) and 
negative (–) components: +{α, ε}, –{γ}. Semantically, the 
positive set specifies augmentations that an element must 
contain, and the negative set those that it must not contain. 

49



Given a DM and a cue, we define the result of a 
declarative retrieval to be a single element from the DM, 
including all augmentations, that satisfies the constraints 
represented semantically by the cue. Thus, the result of the 
example cue and the example DM would either be element 
A or B (with respective augmentation set {α, β, ε, φ} or {α, 
ε}). A retrieval is considered a success if there exists a result 
(as with our example) and a failure otherwise. 

ACT-R DM 
We now compare our symbolic declarative retrieval 
problem formulation to ACT-R’s declarative memory 
module retrieval interface. We begin with a review of the 
ACT-R DM and then map it onto our definitions above. 

In ACT-R, declarative knowledge is encoded as a set of 
chunks, which are collections of labeled slots that have 
values. For example, consider this chunk, representing one 
of the noun senses of the word “roach” from the WN-
LEXICAL interface to WordNet (Emond, 2006): 

(S-105261088-1 ISA S  
SYNSET-ID  105261088  
W-NUM   1  
WORD    "roach"  
SS-TYPE   "n"  
SENSE-NUMBER  1  
TAG-COUNT   0) 

To retrieve declarative knowledge, a production rule issues 
a request to the declarative module by populating the 
declarative buffer with positive and negative slot-value 
pairs. These pairs are interpreted as hard constraints that 
either must be met (positive tests) or must not be met 
(negative tests). The DM module also supports non-
symbolic tests (<=, >, etc), but we do not consider them.  

For example, consider a cue that requests a sense chunk 
(“ISA S”) where the value of the WORD slot is equal to 
“roach” and the SS-TYPE is not equal to “v” (verb): 

+retrieval> 
 ISA   S 
 WORD  “roach” 
         - SS-TYPE “v” 

Given this request, the ACT-R DM module searches the 
store for matching chunks. If any are found, the module, 
given default module parameter settings, indicates a 
successful retrieval and selects randomly amongst the 
candidates chunks and reconstructs it in the appropriate 
buffer. The module also supports the use of non-symbolic 
activation to bias selection amongst candidate chunks, 
functionality that is used in many cognitive models. We 
comment on this functionality later in this paper. If no 
perfect match is found, the default behavior of the DM is to 
report a retrieval failure. The module also supports the use 
of customizable partial matching. While some modelers 
may use this functionality, it makes the retrieval problem 
strictly harder computationally, and we leave research on an 
efficient implementation of it to future work. 

We now map the ACT-R DM to our abstract formulation. 
First, without loss of generality, we interpret the chunk type 
(above, “ISA S”) as a slot-value pair (slot label “ISA” and 
value “S”). Next, since we are considering qualitative 
matching (equality is defined as symbolic equivalence), 
each distinct slot-value pair can be equivalently represented 
as a single, composite symbol (by concatenating the slot 
label and value with a unique separating character, such as 
“ISA:S”). Since slot-value pair order is arbitrary, a chunk 
instance can be equivalently represented as a set of 
[composite] symbols. In ACT-R, all chunks of a given type 
must contain values for the same set of slots and a chunk 
type can only have one slot of a given label; without loss of 
generality, we eliminate both of these constraints. Given the 
analysis above, a chunk maps to a declarative memory 
element, and slot-value pairs to augmentations.  

We apply a similar analysis to DM retrieval requests, with 
distinct slot-value pairs compressed to a single composite 
symbol. If we require that equivalent slot-value pairs in 
chunks and retrieval requests resolve to the same composite 
symbols, then the set of positive tests form the positive cue 
component and the negative tests the negative component. 

With this analysis, we claim that the symbolic ACT-R 
DM retrieval interface is an instance of our problem 
formulation. Thus, results from our work, though 
implemented in Soar, extend to ACT-R models, and any 
other system that can be similarly mapped. 

Supporting Efficient Retrievals 
In this section, we discuss indexing structures and processes 
to efficiently support a large class of symbolic DM 
retrievals, accompanied by a brief computational complexity 
analysis. We decompose our description into the required 
positive cue component, followed by the negative. Prior to 
getting lost in the weeds of data structures and algorithms, 
however, let us first consider what is meant by efficient 
support with respect to our problem formulation. 

Contextual Meaning of Efficient Support 
As a baseline, consider a naïve retrieval mechanism that 
iterates through the DM, comparing each element to the cue, 
and returning the first valid result, if one exists. To 
understand the costs, we define E as the set of elements in a 
DM, and a as the average number of augmentations per 
element. Given a cue C, we define P as the positive cue 
component and N as the negative cue component. Sets 
surrounded with vertical bars, such as |E|, refer to the 
cardinality, or number of items contained in the set. 

Assuming no specialized indexing, the memory cost of 
the baseline mechanism grows with the product of the 
number of elements and the average augmentation 
cardinality (a|E|). In the worst case, the baseline mechanism 
must traverse all of this memory for each cue element, and 
thus the time cost multiplies by the size of the cue (a|E||C|). 
In context of large declarative memories, it is likely that |E| 
will dominate a and |C|, and thus memory and retrieval costs 
will scale linearly with the number of elements in the DM. 
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Memory, though not unlimited, is generally considered 
cheap and plentiful, while time is expensive and limited, and 
thus our goal is to minimize retrieval time, possibly at the 
cost of memory. Thus we pose efficient support for 
declarative retrievals as sub-linear in the number of 
elements in the DM, |E|, while remaining linear in memory. 
We further require that these computational bounds hold in 
the general case of our problem formulation, supporting a 
broad variety of DMs and retrieval cues, as opposed to an 
optimized mechanism for a specific knowledge-base and/or 
query load. We now present our mechanism, revisiting these 
requirements for theoretical evaluation. 

Positive Cue Component 
To review, the positive cue component for symbolic 
declarative retrievals is a non-empty set of augmentations 
that a declarative element must contain. To assist in our 
analysis, we define Rp as the elements that contain an 
augmentation p and, accumulated over all p in P, R to be the 
bag of candidate elements (which may contain duplicates, if 
an element contains more than one augmentation, p, in P). 

Before presenting our mechanism, we note that this 
component of the retrieval problem is a constrained form of 
a subset query on set-values, which has been widely studied 
in database and information retrieval (IR) communities 
(Terrovitis et al., 2006). In its general form, the worst-case 
time cost is known to be linear in the sum of the number of 
candidate elements for each positive cue augmentation, |R|, 
though clever indexing methods have shown massive 
average-case improvements in real-world data. 

Indexing Building on this prior work, the primary indexing 
structure for our mechanism is an inverted table of DM 
elements, combined with cached frequency statistics. The 
structure contains a sorted list of each augmentation, p, in 
the DM, each paired with a sorted list of elements in which 
they are contained as well as the size of this list, Rp. We note 
that this structure roughly doubles the size of the store and 
can be updated very efficiently as the DM changes. 
Consider the following index over the example DM above: 
α (2): [A, B] 
β (1): [A] 
γ (2): [C, D] 
ε (2): [A, B] 
φ (2): [A, D] 

Algorithm To retrieve based only on the positive cue 
component, we first generate a sorted list, Q, of all 
augmentations p in P, keyed ascending on Rp, which 
requires |P| queries on the inverted index. Q represents a 
specialized query plan, sorted in ascending order of 
candidate element list size. With the example positive 
component above, Q is either [α,β] or [β,α] (as Rα = Rβ), 
and we use the former for the remainder of this analysis. 

Next, we pop the first augmentation from Q (α) and 
retrieve a pointer, w, to the head of the element list in the 
inverted index (initially referring to the first element, A). 
Note that since this list is updated incrementally with 

changes to the DM, we do not have to compute this list in 
response to the query. Iterating over the remaining 
augmentations in Q ([β]), we verify, using the original DM, 
that w satisfies all remaining positive constraints. If so, 
return w and success. Otherwise, increment w to point to the 
next element in the inverted index and retry verification. If 
no element successfully verifies, the retrieval is a failure. 

Analysis In the worst case, this retrieval mechanism grows 
linearly with |E| (as demonstrated later). However, the small 
amount of indexing and query optimization bounds element 
iteration to min(Rp), the set of elements containing the most 
selective positive query augmentation. Furthermore, we 
only need to fully examine this list in the failure case, 
which, as we see in the later empirical evaluation, can be 
achieved in near constant-time queries in many cases. 

Negative Cue Component 
The negative cue component for symbolic declarative 
retrievals is an optional set of augmentations that a 
declarative retrieval must not contain. 

We have struggled with how to efficiently support this 
type of constraint given our problem formulation. What 
makes this component difficult is that given a large DM 
with a sparse distribution of augmentations, it can be 
prohibitively expensive to maintain an index of the elements 
not containing an augmentation, analogous to issues 
surrounding the closed-world assumption and negated 
conditions in production matching (Doorenbos, 1995).  

Initial Integration Currently, we integrate this functionality 
with the positive cue component above by special-casing 
negative augmentations. First, |R’n|, the number of candidate 
elements that do not contain a particular augmentation n, 
equals (|E| - |Rn|), the total number of elements less the 
number of elements that do contain the augmentation. This 
quantity can be computed efficiently and used to order Q 
with negative augmentations. Second, because we cannot 
efficiently enumerate R’n, w is initialized as the head of the 
list of the first positive augmentation in Q. Finally, when 
verifying a candidate element, we simply invert the result of 
the set-inclusion query on E. 

Analysis Using this approach, our mechanism loses a major 
performance benefit. This forfeiture arises when there exists 
an augmentation in the negative component that is more 
selective than any positive component augmentation, which 
is probably not uncommon. While we are theoretically able 
to integrate this functionality, we have neither implemented 
nor evaluated this work empirically in Soar, and plan to 
address this deficiency in the future. 

Supporting Efficient Activation Bias 
A major contribution of the ACT-R DM module to 
cognitive modeling is the sub-symbolic influence of the 
current context and prior retrievals as a form of activation 
bias for declarative retrievals (Anderson et al., 2004). This 
functionality, however, has been shown to come at a 
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significant computational cost that does not scale to large 
declarative memories (Douglass et al., 2009). 

While we have not achieved the functionality of all 
aspects of ACT-R’s activation scheme, we have made 
progress by formulating and efficiently supporting a simpler 
class of activation bias. In this section, we first extend our 
problem formulation to include retrieval bias, then define 
the class of activation update processes we can efficiently 
support, and discuss how we achieve this functionality. 

Problem Formulation Extension 
To integrate activation bias in our problem formulation, we 
extend our definition of a declarative memory element to 
include a numerical activation value, as exemplified below 
by the numbers in square brackets: 

A [1.41]: {α, β, ε, φ} 
B [1.73]: {α, ε} 
C [3.14]: {γ} 
D [2.72]: {γ, φ} 

We refine our previous definition of a retrieval result as an 
element from the DM, including all augmentations, that 
satisfies the constraints represented semantically by the cue 
and has the maximal activation value. Given the example 
cue (+{α, ε}, –{γ}) and this expanded DM, the result is now 
unambiguously B (and its associated augmentations), as it 
has a greater activation value than A. 

Efficient Activation Bias Updates 
The expanded retrieval mechanism described in the next 
section efficiently incorporates activation. However, just as 
the DM must support efficient updates to elements and 
augmentations, so too must it support efficient updates to 
activation values. In this context, for large DMs, we propose 
that an activation value update process must be locally 
efficient. An activation update process is locally efficient if 
it satisfies two properties: (1) the update can affect the 
activation value of at most a constant number of elements 
and (2) updating the activation value of an element takes 
time strictly sub-linear in the number of DM elements.  

The locally efficient activation update process we 
implement in Soar is a straightforward mechanism to bias 
retrievals towards recency. After each successful retrieval, 
the activation value of the retrieved element is updated to be 
one greater than the previously largest activation value. This 
update process is local, as it only changes a single element 
per retrieval, and it is efficient, as the largest activation 
value can be cached to avoid any search over E. 

In ACT-R, chunk activation includes retrieval history 
(base-level), current context (spreading), partial matching, 
and noise. Both the base-level approximation and permanent 
noise computations appear to be local, so it should be 
possible to extend our approach to cover those components. 
However, transient noise, partial matching, and spreading 
activation appear to be global to the elements of the DM, 
which suggests significant further theoretical and 
engineering research are necessary to develop locally 
efficient mechanisms. For reference, the mechanism in 

Douglass et al. does not efficiently compute any portion of 
ACT-R chunk activation, and those components were not 
included in their empirical evaluations. 

Efficient Support 
The most direct method of integrating activation values in 
our efficient algorithm is to sort the candidate list (w) by 
activation values on demand. This approach, henceforth 
referred to as Scheme I, suffers from retrieval times that are 
always dependent upon augmentation selectivity, as the 
candidate list must be fully computed to be sorted. 

Another method of integrating activation values, Scheme 
II, is to maintain, for each augmentation, an element list 
sorted by activation value. Thus, w is sorted in order of 
activation, independent of augmentation selectivity. 
However, the time required for updating activation values is 
dependent upon the number of different augmentations an 
element can have (its augmentation cardinality), and for 
large cardinalities, this cost can be prohibitive. 

Our approach to integrating activation values combines 
these schemes by exploiting an assumption that most 
elements will have “small” augmentation cardinality. Given 
this information, we explain how we can extend our 
implementation to yield efficient retrievals and then we 
validate our assumption empirically by studying three large, 
commonly used knowledge bases. 

Our Approach. If an element has small augmentation 
cardinality, Scheme II is efficient, independent of DM size. 
If few elements must be sorted per retrieval, Scheme I is 
efficient, independent of element augmentation cardinality. 
To resolve this tension between augmentation cardinality 
and element selectivity, we apply these schemes on a per-
element basis: we apply Scheme II when an element has 
small augmentation cardinality, and otherwise apply 
Scheme I. What we describe here are the data structure 
modifications and additional processing necessary to 
efficiently implement this split strategy. 

First, we introduce a threshold parameter, t, which 
represents a small value of augmentation cardinality. By 
default, we integrate activation bias as described in Scheme 
II above. However, if the augmentation cardinality of a 
particular element is greater than t, we associate a one-time 
special “infinity” (∞) activation value with all its 
augmentations and maintain a separate list associating the 
element with its activation value, per Scheme I. For 
instance, if t=3, we would have a list wherein [A=1] and our 
inverted index would contain the following information: 
α (2): [A=∞, B=2] 
β (1): [A=∞] 
γ (2): [D=4, C=3] 
ε (2): [A=∞, B=2] 
φ (2): [A=∞, D=4] 

By default, an update to an element’s activation value will 
involve updating a small number of references (≤t) 
throughout the inverted index. For elements with 
augmentation cardinality greater than t, such as A, we need 
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only update this value once, thereby bounding the update to 
constant time and addressing the weakness of Scheme II. 

During retrieval, as we are populating the list of 
augmentations, Q, which is sorted by activation level, we 
may now encounter one or more infinite activations at the 
head of the list. If so, we perform a lookup for its true 
activation level and execute insertion sort into a second, 
special list, Q’. We then merge Q and Q’ to form our query 
plan. Notice that if the size of Q’ is small (i.e. few elements 
have augmentation cardinality greater than t), this process is 
cheap and independent of augmentation selectivity, the 
weakness of Scheme I. Thus, if we can select an appropriate 
value of t, we will achieve efficient activation bias support. 

Validation. To validate that our split strategy works well on 
real data sets, we studied three large, commonly used 
knowledge bases (KBs): SUMO (Niles et al., 2001), 
OpenCyc (Lenat, 1995), and WordNet (Miller, 1995). For 
each KB, we extracted the number of features of each 
named entity. Each distribution was unimodal and exhibited 
strong right skew, suggesting that while most elements had 
a similar feature size, there were rare cases with 
exceptionally large cardinalities. Then, we sampled from 
these distributions to form synthetic data sets that were 
reasonably large (5040 elements) and empirically valid in 
augmentation cardinality. We then collected empirical 
retrieval data, summarized in Table 1, showing that for each 
KB there was a range over the value of t that optimally 
balanced the performance effects of cue selectivity and 
augmentation cardinality. For two of the KBs, we could 
efficiently employ Scheme II above for more than 99% of 
elements, versus only about 93% for the SUMO data set. 

Important components of this analysis for future 
examination are (1) automatically selecting a value of t for a 
given DM and (2) tuning this value online for changing DM 
contents. As to the former, we see in Table 1 that the 
optimal threshold typically covers greater than 90% of the 
elements using augmentation cardinality, but that value is 
not constant across data sets. Further analysis of the KBs 
may uncover why this is the case and suggest better factors 
for prediction. As for the latter, we expect that caching t in 
indexing structures will allow the algorithm to adapt in real 
time, while maintaining efficient retrievals. 
 

Table 1: Optimal Thresholds. 
Data Set Optimal t Range Element Coverage 

SUMO 50 – 70 92.78 – 93.86% 
OpenCyc 40 – 60 99.17 – 99.74% 
WordNet 20 – 40 99.50 – 99.90% 

Evaluation 
To evaluate our work, we implemented our data structures 
and algorithms as the Semantic Memory long-term, 
symbolic memory system in the Soar cognitive architecture 
(Laird, 2008). We used version 3 of the SQLite in-process 
relational database engine to manage the semantic store and 
all experimental results were run on a 2.8GHz Core 2 
Extreme processor with 4GB of RAM. 

Our final evaluation spans two data sets: (1) the WordNet 
3 lexicon and (2) a scalable synthetic benchmark of our 
design. WordNet offers a large, ecologically valid 
knowledge base with which we can compare to previous 
results in this space (Douglass et al., 2009). Our synthetic 
dataset offers us the ability to exhaustively benchmark our 
retrieval mechanism on arbitrarily large DMs.  

WordNet 
As with Douglass et al., we used the WN-LEXICAL 
WordNet 3 data conversion (Emond, 2006). The data set has 
over 820K chunks, which includes over 212K word/sense 
combinations. Once imported, Soar’s semantic store, 
including all indexing structures, is about 400MB. 

Our first experiment was to verify (a) that retrieval time 
was independent of augmentation selectivity and (b) that the 
activation bias was processed efficiently in under-specified 
cues. We performed DM retrievals on 100 randomly chosen, 
single-augmentation cues, averaged over 10 trials. Retrieval 
time was 0.1887 msec. each (0.0216 std. deviation). 

Our next experiment focused on larger cues. We 
randomly chose 10 nouns and formed a cue from their full 
sense description (such as the “roach” example above). 
Retrieval time was an average of 0.2973 msec. over 10 trials 
each (0.0108 std. deviation). 

Douglass et al. used a derived subset of the WN-
LEXICAL dataset, so direct replication of their work is 
difficult. They reported retrievals of about 40 msec. with 
cues of 1-4 augmentations on a DM with about 232.5k 
chunks. Our results show 100x faster retrievals on a 
comparable set of cues scaling to a 3x larger DM. 

Synthetic Data 
In addition to running on a known data set, we tested our 
implementation more exhaustively to measure how it scales 
with much larger DMs. We developed a scalable, synthetic 
DM generator and, in Table 2, we list statistics of the data 
sets we used as they scale with k, the size control parameter: 

 
Table 2: Synthetic Statistics. 

k Elements Store Size (MB) 
7 5,040 3.00 
8 40,320 27.81 
9 362,880 291.95 

10 3,628,800 2048.00 
 
While we have a DM generator, we do not have a model of 
what are typical cues used to access a DM and how those 
cues could interact with the performance profile of the DM 
retrieval mechanism. For instance, we do not know how 
selective the cues are likely to be, meaning how many 
elements, termed candidates, could possibly satisfy any part 
of the cue. Furthermore, we do not know the proportion of 
cues that will have no perfect matches. To allow us to test 
these different interactions, we constructed the DMs so that 
we can generate cues with independently controlled  
selectivity. In each KB, there are k! elements and each 
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element has augmentation cardinality of (k+1). For i = 2 … 
k, the ith augmentation of an element has selectivity (k!/i). 
The 0th augmentation of each element is shared by all 
elements and the 1st augmentation is unique. 

Selectivity Sweep. Our first question is whether the DM 
mechanism provides bounded retrievals for under-specified 
cues, independent of the number of candidate elements. For 
each distinct augmentation in the DM, we constructed a cue 
and measured retrieval time. We found nearly constant-time 
retrievals within each data set, independent of augmentation 
selectivity, measuring just under 0.4 msec. for k=10. 

Cue Sweep. Our next question is whether combinations of 
augmentations result in complex cues that adversely affect 
retrieval time. We constructed all possible lengths of cues 
using all combinations of augmentation selectivity and 
measured retrieval time. As shown in Figure 1, the only 
factor affecting retrieval time within a data set was the 
number of augmentations in the cue (R2≈1), achieving a 
maximum of about 0.5 msec. for k=10. 

Failure Sweep. For our mechanism, retrieval failure is the 
algorithmic worst-case, as it must examine and fail to verify 
all candidate elements. We constructed our last experiment 
to measure retrieval time for cues that fail only after 
examining significant proportions of the elements in the 
KB. While our mechanism minimizes the chance of this 
situation, these results are useful to set an expectation for 
the unlikely worst-case retrieval time in any given DM. As 
shown in Figure 2, the number of inspected candidate 
elements was the only factor affecting retrieval time, 
independent of the data set. Because the time is linear in the 
number of candidates, and not the total number of KB 
elements, our mechanism, for even worst worst-case cues, 
scales to arbitrarily large data sets when cue augmentations 
are sufficiently selective. 

Conclusions 
In this work, we formulate and address the computational 
challenges involved with supporting efficient symbolic 
retrievals for the core functionality required in representing 
and accessing large DMs. We extend the research of 

Douglass et al., demonstrating two orders of magnitude 
improvement in retrieval times for comparable functionality 
on significantly larger data sets. There are still challenges 
ahead to efficiently support partial match, spreading 
activation, and other non-local biases for retrieval for large 
data sets, for which it may be necessary to explore algorithm 
approximations or massively parallel computation. 
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Abstract 

To behave effectively and flexibly in complex situations, 

models specified in cognitive architectures must be able to 

store and access large amounts of declarative knowledge. 

However, as research efforts employing cognitive modeling 

grow in scope and complexity, currently available modeling 

tools, languages and cognitive architectures are being pushed 

to their practical limits. This paper describes research looking 

specifically at how a large declarative memories challenge the 

current implementation of ACT-R and describes an applied 

effort to develop an alternative implementation of ACT-R’s 

retrieval process. The alternative exploits concurrency 

features of the Erlang programming language to extend the 

practicality of ACT-R’s retrieval mechanisms to new levels of 

scale. The ideas and methods underlying the alternative 

implementation are general and illustrate how concurrency 

can accelerate calculation in other architectures struggling to 

support large associative declarative memories. 

Keywords: declarative memory; concurrent activation 

calculation; semantic networks; ACT-R; Erlang. 

Introduction 

As research efforts employing cognitive modeling grow in 

scope and complexity, available modeling tools and 

languages are being pushed to their practical limits. For 

example, the implementation of ACT-R within the Lisp 

programming language may hinder the development of 

large-scale models due to limitations in declarative storage 

capacities (Douglass, 2009). If cognitive modeling is to 

grow in scope and complexity, we must meet the challenges 

underlying these limits. 

An AFRL large-scale cognitive modeling (LSCM) 

initiative is currently exploring potential solutions to these 

challenges. The LSCM initiative is committed to integrating 

well understood mechanisms from cognitive architecture 

research into new modeling approaches that facilitate model 

scaling. For example, the empirical strength of ACT-R’s 

declarative system (Anderson, 2007) has motivated us to 

ensure that the LSCM initiative’s solutions preserve ACT-

R’s declarative memory mechanisms. 

LSCM initiative efforts to develop domain-specific 

modeling languages (DSML-s) supporting increased model 

scale and persistence involve efforts to increase the scale 

and persistence of a declarative memory system that mimics 

ACT-R’s. This paper describes recent efforts to retain and 

scale ACT-R's memory mechanisms in a modeling and 

simulation framework supporting RML1 (research modeling 

language), the first DSML developed in the LSCM 

initiative. RML1 is a generic DSML tailored to the needs of 

cognitive modeling. RML1 has a hybrid (graphical and 

textual) syntax, and executes in a runtime environment 

implemented in the Erlang programming language 

(Armstrong, 2007). 

Modeling with Large Declarative Memories 

In the following sections we provide a brief overview of 

ACT-R and describe how to extend ACT-R’s declarative 

retrieval process by ―carving it up at the joints.‖ We 

conclude this section with a discussion of replicating top-

down (i.e., endogenous) and bottom-up (i.e., exogenous) 

constraints on ACT-R’s memory retrieval process. 

Brief Overview of ACT-R 

ACT-R is a cognitive architecture for developing 

computational cognitive process models (Anderson, 2007). 

In ACT-R, cognition revolves around the interaction 

between a central production system and several modules. 

There are modules for vision, motor capabilities, memory, 

storing the model’s intentions for completing the task (i.e., 

the control state), information retrieved from memory, and a 

module for storing the mental representation of the task at 

hand (i.e., the problem state). Each module contains one or 

more buffers that can store one piece of information, or 

chunk, at a time. Modules are capable of massively parallel 

computation to obtain chunks. For example, the memory 

module can retrieve a single chunk from long-term memory 

and place it into the module’s buffer.  

Chunks are defined by the modeler to have a particular 

type, or chunk-type, and a set of key-value pairs. Retrieval 

in ACT-R is based on a combination of: (1) endogenous 

influences expressed in retrieval constraints; and (2) 

exogenous influences originating from chunks in the slots of 

buffers assigned activation weights by the modeler. When 

retrieving a chunk, the modeler must specify the type of 

chunk to retrieve, and all chunks of that chunk-type are 

candidates for retrieval. All candidates’ activations are 

computed, and the one with the highest activation is 

retrieved. Chunk activation can be exogenously influenced 

(i.e., primed) by spreading activation from other modules—

any module that contains a chunk as the value in a key-value 

pair spreads activation to related chunks. As the number of 

chunks in declarative memory increases, the number of 

candidates during retrieval also increases. As retrieval 

candidates increase, retrievals may become slow, and in 

some instances too slow to support large-scale models that 

must interact with other system components in real-time. 

55



Increasing Scale by Externalizing Chunk Storage 

Our initial efforts to extend the viability of ACT-R’s 

retrieval system to large-scale modeling contexts focused on 

the storage of chunks outside of ACT-R and Lisp. Database 

management systems (DBMS) such as PostgreSQL can be 

effectively used to store a large and persistent set of ACT-R 

declarative memories (Douglass, et al, 2009). This research 

determined that services provided by the PostgreSQL 

DBMS can be integrated into ACT-R via a custom 

―persistent-DM‖ module. We found that the persistent-DM 

module greatly reduced ACT-R’s storage burden and 

significantly increased the practical size of declarative 

memory sets that could be accessed by cognitive models. 

The effectiveness of the persistent-DM module was based 

on the fact that ACT-R’s application of retrieval constraints 

mimics the behavior of a DBMS executing a SQL query. 

When the persistent-DM module is employed, requests for 

instances of a particular chunk-type possessing specific sets 

of key-value properties are translated into SQL queries and 

then executed to recover matching chunk instances from an 

external database. ―Outsourcing‖ the storage and recovery 

of matching chunks through SQL queries in this way is 

beneficial because of the capacity of PostgreSQL databases 

and the effectiveness of indexing in relational databases. 

Unfortunately, while persistent-DM assumed some of the 

retrieval burden by efficiently isolating the subset of chunks 

that had to have their activations re-calculated, the module 

simply relayed them to ACT-R’s default serial activation 

calculation mechanism. 

Carving the Retrieval Process at the Joints 

We started the development of RML1’s memory system by 

asking ourselves three questions: 

Q1.  How do the equations that explain activation and 

associative strengths in ACT-R define the fundamental 

nature of the ACT-R retrieval process? 

Q2.  How does the current ACT-R implementation 

computationally realize the retrieval process? 

Q3.  Can the fundamentals of the retrieval process be 

computationally realized in other ways? 

Q1 Human memory is more than an information storage and 

retrieval system. Likewise, declarative memory in ACT-R is 

more than just a mechanistic account of information storage 

and retrieval (Anderson, 2007). Human memory is a part of 

a system that learns and acts in the world. Human behavior 

is as flexible as it is because we know lots of things and can 

use what we know to craft contextually appropriate and 

effective actions in many different circumstances. It is not 

enough to know a lot; we also have to be able to quickly cull 

through all that we know in order to retrieve and apply the 

right knowledge given our circumstances. The crown jewels 

of ACT-R’s memory system are a set of equations 

explaining how sub-symbolic calculation, learning, and the 

utilization of activations and associative strengths enable 

these critical properties of human memory (see Anderson, et 

al., 2004 and Anderson, 2007 for detailed descriptions). The 

equations are presented in Table 1 below so that their 

details—specifically their indexing of chunks i and j—can 

be used to confirm a claim that they describe how sub-

symbolic properties related to the activations and associative 

strengths of individual chunks influence the probabilities 

and time costs of their retrievals. That is, the equations 

precisely explain how activation is calculated for individual 

chunks in what can be considered independent calculations. 

Table 1: Equations describing chunk activation. The key 

components of the equations are a single focal chunk 

indexed as i and chunks in context indexed as j. 

Common Name Equation 

Activation 𝐴𝑖 = 𝐵𝑖 +  𝑊𝑗𝑆𝑗𝑖
𝑗 ∈𝐶

 

Base-Level Learning 
𝐵𝑖 = ln   𝑡𝑘

−𝑑

𝑛

𝑘=1

  

Attention Weighting 𝑊𝑗 = 𝑊
𝑛  

Associative Strength 𝑆𝑗𝑖 = ln 𝑝𝑟𝑜𝑏 𝑖 𝑗 /𝑝𝑟𝑜𝑏 𝑖   

Retrieval Time 𝑇𝑖𝑚𝑒 = 𝐹𝑒−𝐴𝑖  
Retrieval Probability 𝑃𝑟𝑜𝑏 = 1/ 1 + 𝑒− 𝐴𝑖−𝑡 /𝑠  

 

Any declarative memory system adhering to ACT-R’s 

theory of human associative memory must minimally 

calculate each chunk’s activation according to these 

equations. The equations define a fundamental unit of 

computation scoped around each chunk in declarative 

memory and abstract away from how the process of retrieval 

executes all the chunk activation calculations underlying a 

single retrieval. 

Q2 The current ACT-R implementation (ACT-R 6) 

sequentially realizes all the chunk activation calculations 

underlying a single retrieval.  Hence, chunk activation 

calculations occur one after the other as a process, not 

described in the equations above, searches for and retrieves 

the chunk with the highest activation. To ensure that this 

point is clear, the retrieval process in ACT-R will now be 

summarized. 

Retrieval in ACT-R is influenced by bottom-up 

contextual cues and the application of top-down constraints. 

Retrievals based on top-down constraints generally proceeds 

in the following way. An ―ISA‖ property in a retrieval 

request is used to isolate type-compatible chunks in 

declarative memory into a candidate set. Slot value 

constraints representing additional properties required of a 

chunk contained in retrieval requests are then used to further 

reduce the candidate set. The activations of chunks 

surviving all these top-down constraints are then computed 

in accordance with the equations above. The chunk meeting 

all top-down retrieval constraints with the highest activation 

is returned in the retrieval buffer. 

The impact of the serial calculation of activation is 

illustrated in Figure 1 below. The top and bottom diagrams 
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in the figure represent two extreme situations. When 

activation calculations are computed sequentially, the total 

time cost is roughly equivalent to a per-activation 

computation time, t, multiplied by the number of chunks. 

When activation calculations are computed concurrently, the 

total time cost will be slightly more than t. Given that the 

ACT-R activation equations function in the scope of single 

chunks and in so doing ―modularize‖ the calculation of 

chunk activations, we argue that the challenge to extend the 

scale of ACT-R’s memory system is really a challenge to 

maximize the concurrency of chunk activation calculation 

during retrieval events. 

 

Figure 1: Costs of serial & concurrent activation calculation. 

Q3 To find a way to incorporate concurrent activation 

calculation into the persistent-DM module, we set out to: (1) 

extend persistent-DM with the ability to compute 

activations; and (2) develop ways of partitioning databases 

across multiple PostgreSQL DBMS instances. The first of 

these challenges was low-hanging fruit; queries to an 

extended persistent-DM can now include a query capturing 

top-down retrieval constraints and a representation of 

context capturing bottom-up sources of activation. 

Retrievals executed by this version of persistent-DM isolate 

a sub-set of chunks meeting the top-down constraints, re-

compute their activations, and then return the set sorted by 

activation. Stymied by the second of these challenges, we 

turned away from trying to find ways of improving query-

based retrieval with concurrency and started researching 

more radical alternatives for realizing massively concurrent 

retrieval processes. We quickly realized that two problems 

oppose the development of a memory system utilizing 

concurrent activation calculation: 

P1.  To parallelize activation calculation, one needs a 

language supporting concurrent computation. What 

language can do this for us? 

P2.  To continue allowing retrievals to be based on top-

down retrieval constraints, we have to integrate the 

processing of top-down information with the process of 

concurrently computing chunk activations. How can a 

retrieval process utilizing concurrent activation 

calculation use top-down information and constraints? 

Concurrently Computing Activations in Erlang The 

semantic anchoring of RML1 is currently realized in a 

modeling and simulation framework developed using the 

Erlang programming language (Armstrong, 2007; Cesarini 

& Thompson, 2009). Erlang is an open-source general-

purpose functional programming language developed by 

Ericsson. Erlang is chiefly used to develop persistent, fault-

tolerant, dynamically re-configurable, soft real-time 

constrained control systems that use large databases. 

Furthermore, it supports multiple process threads and 

automatically exploits multi-core and networked computing 

resources. In Erlang, program components are represented 

as sets of separate parallel threads. Erlang manages threads 

through a middleware framework called the Open Telecom 

Platform (OTP) which simplifies the development and 

execution of programs consisting of large numbers of 

concurrent processes. Programs written in Erlang can 

contain millions of concurrent processes (Armstrong, 2007). 

RML1’s Erlang-based semantic anchoring represents 

declarative knowledge in OWL-compatible ontologies 

(Smith, Welty, & McGuiness, 2008) that describe the 

classes, class properties, object properties, data properties, 

and instances constituting a domain. Each node in a 

semantic network is realized as a separate OTP process 

thread in Erlang. These process threads maintain 

information about: (a) retrieval parameters; (b) reference 

histories; (c) last activation level; (d) lists of class, object, 

and data relations constituting the defining properties of the 

individual; and (e) lists of object relations the individual 

serves a range role in. Process threads also receive and 

respond to messages sent to them by OTP supervisor 

processes. Each individual process thread is capable of 

responding to requests to re-compute and report their 

activation. Activity spreads in RML1 semantic networks as 

messages are asynchronously exchanged between the 

process threads constituting their nodes. Since process 

threads in Erlang execute concurrently, spreading activation 

achieved through asynchronous message passing and 

activation re-computing are massively parallel. The retrieval 

of declarative knowledge from a RML1 semantic network 

involves all concurrent multi-core computation available.  

In order to maximize the parallelization of the activation 

computation, retrieval in the RML1 declarative memory 

system is based solely on the spread of activation in 

semantic networks. At first blush, it is not obvious how 

something functionally equivalent to an ACT-R top-down 

―isa‖ constraint can be obtained through bottom-up 

spreading activation. The following discussion explains how 

this is accomplished. 

Replicating Top-Down Constraints with Message 

Filters and Endogenous/Exogenous Message Sources 
Table A1 (in Appendix) shows how the behavior of top-

down retrieval request patterns in ACT-R can be replicated 

in RML1. Deliberate retrieval constraints introduce top-

down network activity into semantic networks as 

endogenous messages. Endogenous messages introduce 

network activity into semantic networks but do not convey 

weighted activation to nodes and therefore do not influence 

a receiving node’s calculation of its activation.  Contexts 

t

t

t

t

t

t

S F

t t t t t tS F

S      Start
F      Finish
t      Time to compute activation of a chunk
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introduce bottom-up network activity into semantic 

networks as exogenous messages. Exogenous messages 

function just like spreading activation in ACT-R; network 

activity introduced into semantic networks by exogenous 

sources convey weight and fan and therefore do influence a 

receiving node’s calculation and reporting of its activation. 

Message filters prevent network activity from being sent to 

nodes lacking defining properties corresponding to the 

properties in them. For example, the ―k1,v1‖ message filter 

in example 3 of Table A1, prevents the endogenous message 

―type,c1‖ from passing network activity into nodes lacking 

the ―k1,v1‖ property. 

Retrieval in RML1 proceeds in the following way: 

1)  An OTP supervisor process sends, in parallel, “spread 

network activation” endogenous and/or exogenous 

messages to nodes serving domain roles in the relations 

expressed in the messages that pass any present message 

filters. For example, in example 1 of Table A1, the OTP 

supervisor process will send a message to c1. Since 

―type,c1‖ is an endogenous message in this circumstance, 

the message will convey a weight of 0. 

2)  Nodes receiving ―spread network activation‖ messages 

relay them, in parallel, to instances serving domain roles in 

relations with them. In example 1 of Table A1, any node 

serving a domain role in the ―type,c1‖ relation will receive 

network activation. As mentioned earlier, individuals 

maintain lists of the relations they participate in with other 

individuals. Instances receiving these messages store the 

weighted activation increments they contain and notify the 

OTP supervisor that their activation has been influenced by 

network activity. Because ―weights of activation spread‖ 

incorporated into endogenous supervisor messages are 0, 

stored activation increments from endogenous sources force 

the individual to re-compute their activation but do not 

increase spreading activation. If, as is the case in example 2 

of Table A1, context produced an exogenous message 

―k2,v2‖, the ―weight of activation spread‖ incorporated into 

exogenous supervisor messages would reflect attentional 

weight and fan. 

3)  The OTP supervisor process sends, in parallel, “report 

your re-computed activation” messages to nodes that 

reported contributions to their activations. Individual 

processes receiving these messages concurrently re-compute 

their activation. Individuals that received only messages 

containing 0 weights of activation spread report activation 

values based solely on changes to their base level 

activations. 

4)  Finally, the OTP supervisor posts the defining properties 

of the node reporting the highest activation to RML1’s 

working memory. 

Retrieval in a Large Declarative Memory 

To determine the impact of concurrency in RML’s retrieval 

process, a basic comparison study was conducted. In this 

comparison study, the wall-clock retrieval times of ACT-R 

and RML1 executing retrievals in large declarative 

memories were compared. To stress test the declarative 

systems of ACT-R and RML1, portions of the Moby 

Thesaurus II synonym database were transcribed into ACT-

R’s declarative memory and RML1’s semantic network. 

The Moby Thesaurus II contains 30,260 root words that are 

related to each other by 2,520,264 synonyms. Compound 

root words were excluded from the comparison study. This 

exclusion process reduced the number of root words to 

24,890. Five different declarative memory sets were created 

using this reduced set. Sets consisted of proportions of the 

reduced set of root words and the synonyms relating them. 

Table 2 below summarizes the properties of these sub-sets, 

and Figure 2 represents a portion of the smallest of these 

sub-sets. 

Table 2: Properties of the synonym sets used in the 

comparison study.  

Proportion 20% 25% 33% 50% 100%

Synonyms 53,560 77,313 145,073 318,435 1,281,763  

 

Figure 2: Portion of the Moby II semantic network showing 

a subset of the root words and synonyms related to the root 

words ―coquettish‖, ―mazy‖, and ―whimsical‖. 29, 52, and 

67 word/syn relations involving coquettish, mazy and 

whimsical are not shown. 

To create a declarative memory in ACT-R, instances of a 

root_word chunk-type were used to represent root words 

and instances of a synonym chunk-type were used to 

represent word/synonym relationships between root words. 

Figure 3 shows chunk types and chunk instances that would 

allow an ACT-R model to represent and process some of the 

root words and relations displayed in Figure 2. To create an 

ontology-based semantic network in RML1, root_word and 

synonym classes were defined. Object properties necessary 

to relate words to syn in synonym instances were also 

defined. Figure 3 shows the definitions of the root_word 

and synonym classes and definitions of employed object and 
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data properties. Representing these in an ontology allows 

RML1’s runtime environment to search the semantic 

network and make inferences about arbitrary descriptions or 

entities lacking class identifiers. 

 

 

Figure 3: ACT-R (top) and RML1 (bottom) root_words and 

synonyms matching some of the Figure 2 information.  Note 

the object and data property specifications in RML1 . 

Equipment 

A Dell Precision T7500 was used in the comparison study. 

The Dell’s physical configuration included 2 quad core Intel 

3.33Ghz Xeon (W5590) CPUs and 48 GiB of RAM. The 

computer’s software configuration included the openSUSE 

11.2 Linux-based OS, SBCL 1.0.35 running ACT-R6 r845, 

and Erlang R13B04. 

Procedures 

Context-sensitive retrievals of chunks from the sub-sets of 

the Moby Thesaurus II were carried out in ACT-R and 

RML1 using the request patterns and context representation 

shown in Table A2.  Real-time costs of executing retrievals 

in ACT-R were measured by: (1) placing three chunks 

corresponding to root word chunks into slots of a goal 

chunk representing retrieval context; (2) initiating a retrieval 

request corresponding to the ―+retrieval> isa synomym‖ 

request pattern; and (3) measuring elapsed system time until 

the retrieval process returned a chunk. The real-time costs of 

executing retrievals in RML1 were measured by: (1) 

distributing messages from endogenous and exogenous 

message sources that passed through message filters into the 

semantic network; and (2) measuring elapsed time until the 

OTP supervisor process managing the retrieval determined 

the network node with the highest activation. 

Results 

The same retrieval parameters were used in both systems: 

maximum associative strength was set to 5.0, the base-level 

constant was set to 0, and the base-level learning rate was 

set to 0.5. All chunks were initialized with 7 references. 

Retrievals executed through ACT-R and RML1 returned 

the same synonym chunks, computed equivalent chunk 

activations, and retrieval latencies. The use of the ―isa 

synonym‖ constraint in the ACT-R retrieval pattern required 

that the activations of all synonym chunks be calculated 

before the retrieval process could finish. Treating ―type, 

synonym‖ as if it were from an endogenous message in the 

RML1 retrieval process correspondingly lead to all 

synonym instances re-computing and reporting their 

activations. Table 3 summarizes the results of the 

comparison study. 

Table 3: ACT-R and RML1 performance. Times (seconds) 

represent average wall-clock time to execute 10 retrievals. 

20% 25% 33% 50% 100%

Synonyms 53,560 77,313 145,073 318,435 1,281,763

ACT-R 3.22 6.00 18.63 86.39 NA

RML1 0.44 0.64 1.21 2.65 10.90

 

The most important thing to notice in Table 3 is that while 

ACT-R (SBCL) performance time is increasing at a rate 

faster than the increase in chunks, RML1 (Erlang) is 

essentially scaling linearly. Added concurrency from 

additional processor cores will further improve the relative 

performance of RML1. 

Conclusion 

The declarative system underneath RML1 discussed in this 

paper is interesting because it: (1) does not depend on a top-

(chunk-type root_word name)

(chunk-type synonym word syn)

(add-dm
...

(coquettish ISA root_word name "coquettish")

(inconstant ISA root_word name "inconstant")

(flighty ISA root_word name "flighty")

(mazy ISA root_word name "mazy")

(whimsical ISA root_word name "whimsical")

...

(syn1 ISA synonym 

word coquettish

syn flighty)

(syn2 ISA synonym 
word coquettish

syn inconstant)

(syn3 ISA synonym 

word flighty

syn mazy)

...

)

(set-all-base-levels 7 0)

{class, {root_word, [{subclass_of, thing}]}}.

{class, {synonym, [{subclass_of, relation}]}}.

{object_property,

{word, [{sub_property_of, base_object_property},

{domain, synonym}, {range, root_word}]}}.

{object_property,

{syn, [{sub_property_of, base_object_property},

{domain, synonym}, {range, root_word}]}}.

{data_property,

{name, [{sub_property_of, base_data_property},

{domain, root_word}, {range, string}]}}.

{individual,

{coquettish, [{type, root_word}], [],

[{name, "coquettish"}], 7}}.

{individual,

{inconstant, [{type, root_word}], [],

[{name, "inconstant"}], 7}}.

{individual,

{mazy, [{type, root_word}], [],

[{name, "mazy"}], 7}}.

{individual,

{whimsical, [{type, root_word}], [],

[{name, "whimsical"}], 7}}.

{individual,

{s1, [{type, synonym}],

[{word, coquettish}, {syn, inconstant}], [], 7}}.

{individual,

{s2, [{type, synonym}],

[{word, inconstant}, {syn, coquettish}], [], 7}}.

{individual,

{s3, [{type, synonym}],

[{word, mazy}, {syn, whimsical}], [], 7}}.

{individual,

{s4, [{type, synonym}],

[{word, whimsical}, {syn, mazy}], [], 7}}.
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down retrieval process that functions like a query against a 

relational database followed by activation calculation; (2) is 

capable of producing behavior that is functionally 

indistinguishable from ACT-R; (3) exploits concurrency in 

Erlang and therefore scales nearly linearly; (4) is part of the 

runtime environment supporting RML1, the first DSML 

researched and developed by the LSCM initiative. If 

cognitive modeling is to successfully grow in scope and 

complexity, it must find effective ways of meeting the 

challenges associated with maintaining and using large 

declarative memories. RML1’s declarative system illustrates 

how concurrent knowledge activation calculation in large 

declarative memories can be technically realized and is 

therefore progress towards meeting LSCM challenges 

associated with modeling human memory on a large scale. 
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Appendix 

Table A1. Examples of how query-based retrieval behavior in ACT-R can be replicated using message passing in RML1 

semantic networks. The character ―*‖ is used in messages to represent a wildcard that is free to match against any relation. 

The ―*‖ is necessary because contextual priming in ACT-R is insensitive to the key component of the key/value pairs in 

context chunks. Notice that examples 3 and 4 yield the same retrieval behavior while using the ―type,c1‖ and ―k1,v1‖ 

messages in different ways. Since it is likely to be the case that the fan of v1 is less than the fan of c1, treating the ―k1,v1‖ 

message as endogenous will greatly reduce the spread of network activity and therefore expedite retrieval. 

 

Table A2. ACT-R retrieval requests and contexts & RML1 message filters and message sources employed in the declarative 

memory system comparison study. To ensure the fairness of the comparison, all exogenous messages conveying activation 

due to contextual priming had to be insensitive to relation (they all had to use ―*‖). Parenthesized numbers indicate fan. 

 

Example 
ACT-R RML1 

Retrieval Request Context Message Filters 

Message Sources 

Exogenous Endogenous 

1 
 +retrieval> 
  isa   c1 

    type,c1 

2 
 +retrieval> 
  isa   c1 

 isa   c2 
  k2   v2 

  k2|*,v2  type,c1 

3 
 +retrieval> 
  isa   c1 
   k1   v1 

    k1,v1   type,c1 

4 
 +retrieval> 
  isa   c1 
   k1   v1 

  type,c1     k1,v1 

5 
 +retrieval> 
  isa   c1 
   k1   v1 

 isa   c2 
  k2   v2 

 type,c1 k2|*,v2    k1,v1 

 

Example 
ACT-R RML1 

Retrieval Request Context Message Filters 

Message Sources 

Exogenous Endogenous 

1 
+retrieval> 
 ISA synonym 

=goal> 
 c1  whimsical(73) 
 c2  mazy     (60) 
 c3  coquettis(31) 

type,synonym 
*,whimsical 
*,mazy 
*,coquettish 

 type,synonym 

2 
+retrieval> 
 ISA synonym 

=goal> 
 c1  vexing   (20) 
 c2  heavy   (249) 
 c3  operose  (42) 

type,synonym 
*,vexing 
*,heavy 
*,operose 

 type,synonym 

3 
+retrieval> 
 ISA synonym 

=goal> 
 c1  entangle (63) 
 c2  stare    (65) 
 c3  woo      (33) 

type,synonym 
*,entangle 
*,stare 
*,woo 

 type,synonym 
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Abstract 

In this study, we explore dimensions of comparison 
amongst complex agent-based models. Specifically, we 
look at holistic models of leaders-in-context. We focus our 
analysis on alternative models of the same phenomenon, 
that of the rise and fall of two corporations, respectively. 
The models were built by students with introductory 
training on the methodology and modeling framework. We 
extract dimensions and examine good vs. bad modeling 
behavior. We divide these dimensions into ones that are 
related to modeling leader context and ones that are related 
to leader profiling. We use these dimensions to address 
how to facilitate modeling alternative theories across a 
broad range of topics and how to compare resulting 
models. 

Introduction 

Studying the “traits of the great man” sitting atop a 

traditional organizational hierarchy is no longer sufficient 

to understand leadership. This approach like other schools 

of leadership study (e.g, cognitive, networks, cultural, 

etc.) tends to be singularly focused. Lichtenstein et al. 
(2006) and Avolio (2007) argue that leadership research 

today must be holistic and synthetic (see Silverman et al., 

2007). Synthetic leadership theory underlines the 

necessity to integrate various theories on cognition, traits, 

and situational contingencies (e.g. context, culture, social 

networks, etc.) to provide a picture of the whole. This is 

what a leader encounters in the real world in the contexts 

he or she must manage. Hazy (2007) highlights the 

importance of hybrid computer modeling techniques to 

support experimentation on the holistic perspective. Hazy 

(2007) claims that hybrid models that include various 
techniques are likely to become abundant with increasing 

adoption of a holistic look at leadership. We feel that the 

most suitable approaches to a holistic perspective are 

socio-cognitive agent-based models where leader traits 

and affective reasoning in context are richly defined as 

endogenous parts of a complex system.  

The reasons to model leaders are 1) to try and 

understand mechanisms that cause them to think under 

varying circumstances, and 2) once that is known and 

validated, to use these models to explore what-if 
possibilities, alternative courses of actions, and how to 

influence them.  

In the social sciences, there are no set principles, no 

one-theory-fits-all situations. So ideally one wants to try 

different theories and factors. The modeling architecture 

must support this testing of theories allowing users to 

shift in different ideas and see if they better explain what 

is making leaders function as they do.  

As a result, we want greater ability to plug theories and 

sub-models in and out of the framework. The holistic 
leader-in-context movement means that modelers must 

use a framework that covers many dimensions (cognitive, 

personality, cultural, socio-economic, etc.). How to model 

this breadth of topics while simultaneously permitting 

ease of trying different models is one question we explore 

here. In particular, this study examines how novice 

modelers (student trainees) can use a socio-cognitive 

architecture to plug in differing models of a leader-in-
context. 

The second author has developed a socio-cognitive 

modeling framework called PMFserv (Silverman et al., 

2007) that provides a model of an agent’s cognitive-

affective state and reasoning abilities that is applied to 

profile the traits, cognitions, and social reasoning of 

agents alone and in groups. PMFServ utilizes cognitive 

appraisal theory where each agent goes through an 
observe, orient, decide, and act (OODA) loop (Boyd, 

1995). For each agent, PMFserv operates its perception 

and runs its personality/value system to determine 

individual action decisions to carry out the resulting and 

emergent behaviors. The PMFserv framework also 

permits the modeling of groups, economic behavior, and 

socio-cultural factors. Hence, the framework is a 

reasonable candidate for analyzing leader behavior within 
varying contexts.  

It is possible to build different versions of 

computational models when systems are complex. Yet, 

when these computational models are built, there are no 

existing common dimensions on which to evaluate them. 

A second question of interest is, “How can we compare 

models that claim to model the same phenomenon?” 

Recently, comparison amongst cognitive models has been 
studied by Lebiere et al. (2009) and John (2010). Lebiere 

et al. take on the task to compare cognitive models built 

by different individuals or teams that use different 

approaches. The hardest part of their approach is to come 

up with common grounds for comparison amongst 

different approaches. John explores the reduction in 

variation between novice modelers via guidance of 

CogTool (John, 2009). John first identifies common 
mistakes of modelers and then compares the variation 

between modelers with and without the tool support.  

In this study, we take a different approach. We establish 

dimensions for comparison of a certain type of holistic 

leader models built by novice modelers (students) using a 
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common framework, i.e. PMFserv’s existing socio-

cognitive appraisal framework. Specifically, the 

framework allows modelers to define: 1) Context, i.e. 

how leaders perceive the world; 2) Decision making 
behavior, i.e. how leaders process information flowing in 

and determine actions accordingly; and 3) World 

behavior, i.e. how the world gets affected by these 

individual actions. In this study, we define world behavior 

beforehand and restrict modelers to focus on the first two 

parts to replicate a given scenario. Next, we specify 

dimensions of comparison in leader-in-context models by 

identifying the differences amongst models. Unlike John 
(2010), there are no errors in modeling but there is good 

or bad modeling. Finally, we use these dimensions to 

specify desired features for models of leader-in-context.  

The next section summarizes the PMFserv framework 

focusing on cognitive appraisal theory. The methodology 

section describes the dimensions of comparison and 

outlines the good and bad practices of leader-in-context 

modeling. The subsequent section describes the specifics 
of the scenario and task given to modelers. The results 

section analyzes the differences amongst the models 

based on the dimensions explored. The last section 

concludes with discussion and related future work.  

Cognitive Appraisal within PMFServ 

The Performance Moderator Function Server (PMFserv) 

was designed by Silverman et al. (2006) as a modular 
system and socio-cognitive modeling framework for 

implementing and evaluating performance moderator 

functions (PMFs). PMFserv operates what is sometimes 

known as an observe, orient, decide, and act (OODA) 

loop. PMFserv agents utilize cognitive appraisal theory to 

help them cope with these contexts. This involves a 

perception system, a values system, an emotion model 

and a decision module.  

Perception Module 

Perception of agents and objects around each agent 

determine the context. The perception is based on 
“affordances” (Cornwell, 2003) which is a form of 

distributing perceptions so that an agent's knowledge of 

the world is marked up onto the perceived objects, instead 

of the perceiving agents. Each entity in the world, agents, 

objects, groups, organizations etc., applies perception 

rules to determine how it should be perceived by each 

perceiving agent. Hence, each agent can perceive the 

same entity differently based on these rules. For example, 
a bike might afford the actions ‘ride’, or ‘walk alongside’ 

to an agent if it knows how to ride a bike but it might only 

afford the ‘walk alongside’ action to another agent that 

does not know how to ride a bike. In this case, the mark-

up rules that reveal actions depend on properties of the 

perceiving agent. An example of a company that is 

marked up for such perceptions is given in Figure 1. Each 

gray box represents one way the company can be 

perceived. Each element of the grid is called a perceptual 

type (p-type). These p-types are not mutually exclusive. 

 

 
Figure 1: Company P-types 

Modelers establish appropriate context via rules on a p-

type. For example, a CEO might see that ‘Not Enough 

Budget for Customer Service’ is active and be afforded 
actions ‘Decrease Customer Service’ or ‘Fire employees’ 

whereas this context is not valid for a customer agent. 

Hence, p-type rules might require that the perceiving 

agent works at the company or that it is the CEO of the 

particular company. The set of active p-types determine 

the actions afforded to perceiving agents. We define the 

parameters that affect the p-type rules as input parameters. 

Activations and Value System 

An afforded action provides activations to those taking 

that action. These activations are fixed and irrespective of 

the agent that is afforded the action. Agents assess the 

activations of each action against their values system to 

compute the utility of taking that action. By comparing 

utility of all alternative actions, agents complete the 

primary appraisal, i.e. how alternative contexts affect their 

personal well-being, emotions etc. They then select the 

action that maximizes their utility. 

For this to work, PMFserv requires every agent to have 
goals, standards, and preferences (GSP) trees filled out. 

GSP trees are multi-attribute value structures where each 

tree node is weighted with Bayesian importance weights. 

Within a simulation, each agent has the same tree 

structure, i.e. nodes are the same but the weights differ 

among agents. The assignment of node weights 

determines the traits of a certain agent. Figure 2 provides 

an example of a simple GSP tree structure for a company 
CEO. 

In order to determine a specific agent’s importance 

weights, modelers utilize differential diagnosis (Bharathy, 

2006) and analytical hierarchy process (AHP). This 

provides a systematic and valid methodology for 

assessing the weight of each node to effectively 

 

  
Figure 2: An example GSP tree 
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profile the agents and settings of interest. Using 

differential diagnosis, modelers collect and assess 

relevant evidence to attribute behavior. In this process, 

each hypothesis corresponds to a node in the GSP tree, 
i.e. behavior or traits.  The output is organized in tabular 

form called an ‘evidence table’ with additional attributes 

such as reliability, frequency of occurrence, and 

relevance. Evidence tables allow one to consider all 

competing hypotheses at once and rank them accordingly 

by assigning confirmation scores to each hypothesis. 

Figure 3 provides a shortened example of an evidence 

table. The table shows that the first evidence relates to the 
nodes ‘Risk Aversion’ and ‘Risk Seeking’. From the 

evidence table, the weights are estimated through the 

AHP process by pair-wise comparison of their confidence 

index.  

 

 
Figure 3: Evidence Table 

Emotion model  

This is the module that calculates how each agent is likely 

to feel from taking an action based on arousals, i.e. 
combining activations and values system (GSP tree). Each 

afforded action has an activation mapping on the GSP 

trees. The activation mapping is a collection of 

success/failure levels on a set of GSP nodes. For a simple 

example, an activation mapping on the values system (in 

Figure 2) of the action ‘Decrease Customer Service’ is 

given in Figure 4. It shows that the result activates two 

nodes positively, ‘personal well-being’ and ‘neglect 

human resource’, and one node negatively, ‘company 

well-being’. The set of emotions that each agent generates 

from taking an action is determined by the sum of their 

activations weighted by node weights. Thus an 
importance-weighted values system results in differing 

emotions being generated within the same context by 

different personalities. For mathematical underpinnings of 

the implemented model, see Silverman et al. (2006).  

 

 
Figure 4: Activation mapping for action ‘Decrease 

Customer Service’  

Decision Module 

The decision model receives information from the value-
driven emotion model and implements utility theory to 

select actions. A decision in PMFserv is a choice made by 

an agent when choosing between alternative afforded 

actions. A decision-making algorithm runs to select the 

decision with the highest subjective expected utility. 
Subjective expected utility (SEU) for each decision is 

determined by appraising all possible emotions that will 

be generated if the decision is taken by that agent. The 

decision taken is called an action. An action may generate 

effects on the environment – actor, target and other 

entities – based on its result. These result effects are 

called action bindings. We will refer to parameters that 

these action bindings affect as output parameters. Figure 5 
gives an example of an action binding for the action 

‘Decrease customer service’. The output parameters are 

‘capital’ and ‘customerServiceQuality’ of the target of the 

action.  

 

 
Figure 5: Action Binding rule table 

Methodology 

In this section, we introduce the dimensions of 

comparison amongst the models. These dimensions also 

highlight good versus bad modeling behavior. We divide 

the dimensions of comparison into two major clusters: 1) 

Dimensions related to modeling leader-context 

interactions, i.e. how context, afforded actions, leader 

responses and its effects on the world are modeled, and 2) 

Dimensions related to modeling leader personality, i.e. 

how agent value systems are constructed. 

Dimensions Related to Modeling Leader-Context 

Interactions 

These are the dimensions that provide feedback on how 

conditions that lead to leader actions (p-types and 

afforded actions) and effects of leaders actions on the 

world are modeled. It is possible to further divide these 

dimensions into two: context richness and action-result 

balance.  

Context Richness It refers to the depth of the model with 

respect to leader perception. Within the PMFserv 
framework, context is determined by p-types. If one wants 

to have finer levels of granularity in perception modeling, 

it is necessary to increase the number of p-types. This will 

enable one to pin down the reasons for events in finer 

detail. However, increasing only the number of p-types is 

not always sufficient. Number of input parameters that 

affect the perception rules often needs to be correlated 

with number of p-types. If number of affecting parameters 
is much smaller than number of p-types then there is a 

strong indication of overloading parameters with multiple 

meanings which in return means p-types are not clearly 

defined. This will often require accurate estimation of 

these parameters. In short, the context which affords 
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actions to agents should be clearly defined so that agents 

consider the correct set of actions at the right set of 

circumstances.  

Action-Result balance It refers to the relations between 
actions and parameters that are affected by the results of 

those actions. One must consider all aspects of taking that 

action when one is defining an action’s effects on the 

world. Often, results of actions come with trade-offs. The 

modeler has to reflect these trade-offs via output 

parameters.  

Dimensions Related to Modeling Leader Traits 

While the previous cluster of dimensions may reflect on 
how leaders perceive and how their actions affect the 

world, it is really the personality that determines how 

leaders vary from one another within the same context. 

The dimensions in this section refer to assessment of 

leader personality models.  

Quality and Quantity of Evidence Organizing 

information from otherwise diverse or amalgamated 

sources is critical to the success of the modeling activities. 

Although differential diagnosis and AHP process 

minimizes subjectivity and biases within the process, the 
validity of results depend on the quality and number of 

pieces of evidence. Quality of evidence refers to the 

relevance and reliability of evidence. A modeler should 

try to obtain reliable evidence that is relevant to the story. 

Additionally, one would want to increase the number of 

pieces of quality evidence attributed to each node.  

Coverage in Tree to Activation Mapping Activation 

mappings on GSP trees are used for emotion calculations 

which in return get used in decision-making. If a node 

does not get covered by an activation mapping from any 
of the actions then that node will be idle throughout the 

simulation. In other words, it will not have any effect on 

the decision-making calculations. Modelers need to make 

sure that each node gets mapped to an activation by at 

least one action.  

Sensitivity Analysis If change in a parameter value 

causes significant changes to the main outcome of the 

model then it means that the model is sensitive to that 
parameter. This would require that parameter to be 

estimated with higher precision. The behavior of a 

validated cognitive model should ideally be fairly robust 

with respect to tweaking changes on a single personality 

trait. Within the PMFserv framework, sensitivity to a 

node indicates that for certain key actions, activation 

mappings affect mainly that node. The modeler has to be 

aware of this sensitivity and carefully use techniques 
discussed in the previous section and try to find additional 

evidence for more accurate determination of node 

weights.  

Task and Scenario 

After approximately 25 hours of framework and 

methodology training, students were given strict 
guidelines to come up with a working model that 

replicates a given scenario as one part of their coursework 

requirement. The class consisted of junior and senior 

Systems Science and Engineering (SSE) students with the 

exception of one Economics major. Most students are also 
completing a double major or a minor degree in our 

business school. Students were given two weeks to 

complete their assignment and they had support from 

experienced model builders. The students worked in 

groups of four or five. They were given a benchmark 

model that required certain tasks to be completed to fully 

function. Each individual had to model an agent by 

picking a theory of behavior and reflect this theory onto a 
values system for their agent. The set of agents to model 

were given to them. Team members had to decide on 

which agent each student would model. Each group had to 

come up with important parameters, contexts, afforded 

actions, activations and results of taking those actions for 

the set of agents. The benchmark model contained a set of 

rules that govern the dynamics of the world and groups 

were fully aware of how the world would function. 
Lastly, they were required to replicate scenario outputs 

within their model.  

Specifically, students were given the story of Circuit 

City (CC) going bankrupt and Best Buy (BB) excelling. 

They were given a news article that overviews the story. 

Additionally, they were encouraged to do their own 

research on the story and their specific agents. The 

minimum required set of agents included Circuit City 
CEO, Best Buy CEO, and two or three (depending on 

group size) types of consumers. Further, two companies 

were modeled and placed under the control of the 

respective CEO. Each student focused on profiling a 

single agent. The decisions of consumers were predefined 

within the world dynamics as ‘Shop from Best Buy’ or 

‘Shop from Circuit City’. The teams were required to 

maintain these two actions and were not allowed to add 
new actions for the consumers. CEO agents did not have 

any predefined actions, thus the teams had to work on all 

parts of the OODA loop for those agents.  

Results 

This section provides examples of dimensions discussed 

in the methodology section from student models. We 

provide a summary of the models in Table 1. Out of the 
eight teams, six teams were able to create a model that 

replicated the desired output behavior, i.e. CC’s fall and 

BB’s rise. Two teams (Model_5 and Model_8) were not 

able to complete their model within the given time frame. 

In Table 1, we provide a collection of p-types from each 

model (except Model_3) that afford actions only to CEOs 

(BB CEO or CC CEO). P-type rules, action binding code, 

and a portion of the p-types have been omitted due to 
space restrictions. 

The first set of examples relate to context richness. 

Teams had a hard time balancing affordances, actions and 

activations to create meaningful context. In Model_4, 

CEO gets afforded actions such as ‘Acquire New 
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Business’ and ‘Expand to Prime Locations’ via the p-type 

‘Business Expansion Possible’. These actions have no 

clear context because they get afforded to the CEO all the 

time. In fact, in Model_4, CEO gets afforded all the 
actions (listed in Table 1) at all times, i.e. the only 

requirement is for the agent to be CEO of that company. 

In Model_6, CEO agents are afforded the actions 

‘Increase customer service’ and ‘Increase number of new 

products’ as long as companies have positive capital. 

Similarly in Model_2, p-types ‘BB Customer Service 

Savings Available’, ‘BB Improvement’, ‘BB Price’ are all 

active if parameter ‘customerServiceQuality’ is greater 
than zero. In other words, the CEO does not distinguish 

between these p-types. Additionally, Model_3 uses  the 

parameter set ‘Inventory’ and ‘capital’ to define five 

different p-types indicating possible overloading. 

However, this group used different values of ‘Inventory’ 

and ‘Capital’ as thresholds to trigger these five p-types. 

Unlike the previous examples this kind of rule format is 

acceptable to define varying context but not desired as it 
relies on fine tuning of these parameters. Finally, we refer 

to Model_7 as an example model that defines context 

appropriately. Model_7 uses differing combinations of 

input parameters to define various contexts.  

A majority of the modelers were able to capture the 

trade-offs of actions inside the action bindings. One 

obvious violation was in Model_6. ‘Decrease number of 

new products’ only has an effect on the parameter 
‘amount of products’. One would imagine that this action 

would have direct and immediate positive effect on the 

‘capital’ of the company. As an example, in Model_4 the 

action ‘Expand to Prime Locations’ increases 

‘Accessibility Rating’ but at the same time it hurts 

company’s ‘capital’. 

In order to construct the GSP structure for their agents 

of interest, students were asked to collect evidence that 
could help to profile their agents. The number of evidence 

that students organized ranged from 8 to 25. Students 

were encouraged but not required to use reliability or 

relevance scores for their evidence tables. Most of the 

students utilized a low-medium-high scale and rated their 

evidence as medium or highly reliable. On the average, a 

team had 11 nodes for Goals, Standards, and Preferences. 

Hence, there was an average of 33 nodes in total on 
average. This meant that roughly 33 hypotheses existed 

within an evidence table. Students cross-compare these 

hypotheses with each piece of evidence. Furthermore, 

students were able to provide evidence for each node. 

Given the limited time the modelers had, we consider this 

an acceptable effort. 

Each individual had to incorporate a theory and justify 

how their theory reflects on the values system (GSP 
structure and node weights) of their agents. Students 

utilized theories such as individual theory, marketing 

theory, Maslow’s theory on the hierarchy of needs, 

economic buyer theory, utility theory, agency theory, 

consumer behavior theory, etc. GSP node names 

(hypotheses) were formed by these theories. Each team 

came up with a common GSP structure but each 

individual had to incorporate a different theory for their 

agent. The key here was to look at whether that theory 
was confirmed for their individual agent via pieces of 

evidence. The majority were able to justify that their 

individual theory applied to their agent.  

As a final requirement for their coursework, students 

were required to come up with an if-then hypothesis 

based on a change in personality trait of the agents that 

each person was responsible for modeling. An example if-

then hypothesis is: “If ‘Save Money’ node weight of CC 
CEO is reduced then CC would remain in business for a 

longer time.” In short, students related a macro-level 

metric to a change in micro-level values. Out of the 12 

students who modeled either CC or BB CEO for their 

teams, only four (only one of them was BB CEO) 

reported that their model was sensitive to the changes that 

were made on the GSP trait they analyzed. All reported 

that the change in behavior was in parallel with their 
initial expectations, i.e. their if-then statement. The rest 

reported that their model is relatively insensitive to their 

parameter changes and the hypothesis is disconfirmed.  

Concluding Remarks 

This study placed a benchmark model of two firms, CC 

and BB, in the hands of student trainees and challenged 

them to research and build alternative models of leaders 
in context. The leaders they built had to account for the 

cognitive and personality variables that may have caused 

the decline of CC and the success of BB. Further, these 

leader models had to operate in a holistic environment 

and cope with many types of networks and social 

dynamics that are spawned at run time: ego-networks, 

economic networks, transaction networks, and so on.  

Six teams successfully completed the assignment. They 
researched alternative theories and built differing models 

of leaders-in-context. Thus they illustrate answers to 

question number one – can users build and plug-in 

alternative models covering the breadth of socio-cognitive 

dimensions dictated by the modern leader-in-context 

theory. Their results also address the answer to the second 

question and give us ample fodder to begin to understand 

how to compare different models of the same 
phenomenon.  

 We explored dimensions for comparison of leader-in-

context models. The first set of dimensions concentrated 

desired features on modeling parts of the OODA loop and 

the second set concentrated on leader personality 

modeling and its effects on the model. We extracted these 

dimensions from working student models by focusing on 

differences between models. We realize that this 
variability between models is likely to reduce when 

models are built by experienced modelers. A future 

research direction is to analyze whether these dimensions 

remain salient and sufficient for assessment of expert 

models.  
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Table 1: Summary of student models (Input parameters, p-types, afforded actions, and output parameters) 

 

Model comparison is fairly straightforward in 

traditional mathematical models that are tractable. 

However, cognitive agent-based models are hard to 

compare because each model includes a diverse library of 

models that have different assumptions and perspectives. 
This is the main reason why knowledge produced by 

different complex social models does not accumulate. In 

fact, every modeler prefers to start from scratch to build 

their own model which they can build confidence in. 

Furthermore, even under strict guidelines, modelers still 

come up with a whole variety of models.  

Throughout the paper, we use dimensions instead of 

metrics of comparison to distinguish the fact that these 
dimensions of comparison are not quantified. In the 

future, we hope to be able to quantify these dimensions 

into metrics for assessment of socio-cognitive leader 

models. 
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Models Input Parameters P-Types that afford actions to CEOs Afforded Actions Output Parameters 

customerServiceQuality BB Customer Service Savings Available 1. Decrease customer service capital, customerServiceQuality 

customerServiceQuality BB Improvement 1. Increase customer service capital,  customerServiceQuality Model_2 

customerServiceQuality BB Price 1. Reduce Price Price 

  Business Expansion Possible 1. Acquire New Business 

2. Expand to Prime Locations 

capital, product Range 

capital, accessibilityRating 

  Employee Quality 1. Allow Flexible Scheduling 

2. Train Employees 

capital, customerServiceQuality 

capital, customerServiceQuality 

  Marketing Improvements Possible 1. Implement Centrizing capital, customerServiceQuality, 

brandImage 

  Payroll Increases Possible 1. Increase Top Management 

Salaries 

capital, productRange,  brandImage 

Model_4 

  Payroll Savings Possible 1. Decrease Salesman Salaries 

 

capital, customerServiceQuality,  

brandImage, accessibilityRating 

Capital Improvements available 1. Increase customer service capital, customerServiceQuality 

amountOfProducts Not spending money on new products 1. Decrease number of new 

products 

amountOfProducts 
Model_6 

Capital Products available 1. Increase number of new 

products 

amountOfProducts 

location Liquidate Stores 1. Close 100 Stores capital, location 

location, capital Locations Available 1. Open 100 New Stores capital, location 

newTechnology, capital New Technology Available 1. Invest in New Technology capital, newTechnology 

promotions, capital Promotion Available 1. Hold Promotion  capital, promotions 

brandNames Savings Available by Canceling 

Partnership 

1. Cancel Partnership capital, brandNames 

promotions Savings Available by Cancelling 

Promotion 

1. Cancel Promotion capital, promotions 

websiteQuality Web Savings Available 1. Decrease Online Presence capital, websiteQuality 

Model_7 

websiteQuality, capital Website Improvement Available 1. Improve Online Presence capital, websiteQuality 
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Abstract 

This paper describes changes to a model of reading 
comprehension to improve its reading rate and bring it into 
closer alignment with human reading rates. The broader 
context of the research is development of language capable 
synthetic teammates that can be integrated into team training 
simulations. To use synthetic teammates in team training 
without detriment, we believe the synthetic teammates must 
be both functional and cognitively plausible. By functional, 
we mean that the synthetic teammate operates in real time, 
performs the task, and handles the range of linguistic inputs 
that are encountered. By cognitively plausible, we mean that 
the synthetic teammate adheres to well established cognitive 
constraints on human language processing—including the 
incremental and interactive processing of language at human 
reading rates. Achieving human reading rates in a cognitively 
plausible and functional model of reading comprehension is a 
research challenge that has not been met to date. 
 
Keywords: human language processing, reading rate, 
synthetic teammate, functional, cognitively plausible 

Introduction 

We are developing a model of reading comprehension 

called Double-R-Language (Ball, 2007; Ball, Heiberg & 

Silber, 2007). Double-R stands for Referential and 

Relational—two key dimensions of meaning that get 

grammatically encoded in English. The initial application of 

the reading model is development of a synthetic pilot for use 

in a three-person UAV simulation. The synthetic pilot flies 

the simulated UAV from a ground control station and will 

eventually communicate with a human navigator and 

photographer in the completion of reconnaissance missions. 

A prototype system has been developed (Ball, et al., 2009) 

using the ACT-R Cognitive Architecture (Anderson, 2007). 

The synthetic pilot prototype communicates with 

lightweight agent versions of the navigator and 

photographer developed outside ACT-R.  

The prototype communicates with the navigator and 

photographer using text chat and must be capable of reading 

and comprehending the messages it receives from them. The 

reading comprehension model is capable of incrementally 

processing linguistic inputs and generating linguistic 

representations of referential and relational meaning. These 

linguistic representations are interactively mapped into a 

non-linguistic representation of the objects and situations 

referred to in the linguistic input. The non-linguistic 

representation—called the situation model (cf. Zwann & 

Radvansky, 1998)—drives the task behavior of the synthetic 

pilot and determines when to communicate with the other 

teammates to acquire needed information.   

A significant challenge for the reading comprehension 

abilities of the model is input variability. A corpus of text 

chat communications that was collected in an experiment 

involving human subjects and the UAV simulation is full of 

variability in the form of linguistic input (see Table 1). For 

competent readers, misspelled words activate the intended 

lexical items because they contain many of the same letters 

and trigrams (Perea & Lupker, 2003). Hence, key 

requirements of the reading model include the ability to 

handle misspellings in input; the ability to separate 

perceptually conjoined units (e.g. separating punctuation 

from words as in ―He went.‖, but not ―etc.‖; separating 

words lacking spaces as in ―yougo‖ for ―you go‖); and the 

ability to recognize multi-word expressions (e.g. ―speed 

up‖) and multi-unit words (e.g. ―a priori‖, ―h-area‖).  

 

Table 1. Messages seen during a UAV simulation 

 

To satisfy these requirements, the model includes a word 

recognition subcomponent that uses ACT-R’s spreading 

activation mechanism to influence lexical item retrieval. 

The subcomponent maps orthographic input directly into 

DM representations without recourse to phonetic 

processing, although a phonetic mapping is not precluded. 

The model uses the spreading activation mechanism of 

ACT-R to retrieve words from the lexicon that are not an 

exact match to the input. Letters and trigrams in the input 

spread activation to the words containing those letters and 

trigrams in the mental lexicon. These processes and 

encodings are based on the Interactive Activation model of 

word recognition (McClelland & Rumelhart, 1981), with the 

addition of trigrams based on ―letter triples‖ (Seidenberg & 

McClelland, 1989). The subcomponent is embedded in the 

reading comprehension model as a whole; the effects of 

context and previous activation levels are taken into 

consideration when encoding each individual word 

(Freiman & Ball, 2008). The reading model also includes a 

verification stage to check the retrieved lexical item against 

the perceptual input. The verification stage aligns with the 

Activation-Verification model of Paap et al. (1982). It splits 

concatenated words in the input (e.g. ―yougo‖) to match the 

MESSAGE: VARIANT: 

i need to be beloe 3000 for f area i; beloe; f area 

effective radiu 

any requirements for altitde/speed? 

can yougo faster yet or is it stll 200 

radiu 

altitde 

yougo; stll 
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retrieved word (e.g. ―you‖), leaving a residual (e.g. ―go‖) 

for subsequent processing. If the retrieved lexical item is not 

a sufficiently close match to the input, the model treats the 

input as an unknown word. 

Even without considering the mapping of the linguistic 

representations into the situation model, the previous 

version of the reading model was much slower than humans 

in both cognitive processing time and real time 

performance. Adult readers read at a rate of 200-300 words 

per minute (Taylor, 1965; Carver 1973a; Carver 1973b). 

The average reading rate of the model—prior to the 

introduction of the changes described in this paper—was 96 

words per minute (cognitive processing time), making it 

impossible to match the model’s performance against 

human performance. Since we are interested in building a 

model of reading comprehension that is cognitively 

plausible as well as functional, this presents a real challenge. 

The prior reading model read slowly for several reasons: 1) 

it required multiple declarative memory (DM) retrieval 

requests per word; 2) it lacked the ability to read units of 

language larger than the word; and, 3) it built complex 

linguistic representations necessitating the execution of 

multiple productions. In addition, the model relied on 

parallel spreading activation to retrieve lexical items, which 

is computationally expensive for large DMs on serial 

hardware.  

It is important to distinguish between reading rate as 

measured by the real time functional performance of the 

model and the rate as measured by the cognitive processing 

time. ACT-R provides support for measuring cognitive 

processing time—how long it would take a human to 

perform some cognitive process. Execution of a single 

production in ACT-R takes 50ms of cognitive processing 

time; plus, the time it takes to retrieve a chunk from DM 

depends on the activation of the chunk and can be measured. 

Typical ACT-R models with small DMs are capable of 

executing much faster than real time while measuring 

cognitive processing time. However, large DMs tax the 

computational resources of serial hardware and can lead to 

models that run slower than real time or not at all (cf. 

Douglass, Ball & Rodgers, 2009). Although it is important 

to distinguish cognitive processing considerations from real 

time considerations, these considerations are intertwined. 

For example, reducing cognitive processing time by 

eliminating retrievals also reduces the computation of 

parallel spreading activation, speeding up the real time 

performance of the model. For each of the shortcomings 

listed above, one or more remedies is described below and 

its impact on cognitive and real time processing is 

considered. 

Reducing retrievals 

When the model retrieves chunks from DM, the ACT-R 

Declarative Memory module calculates the activation across 

all chunks that match the retrieval template, selecting the 

most highly activated chunk for retrieval. The retrieval 

template provides hard constraints on memory retrieval—

which are difficult to justify from the perspective of 

cognitive plausibility. Only chunks exactly matching the 

retrieval template are eligible for retrieval. The spreading 

activation mechanism provides more cognitively plausible 

soft constraints on retrieval. Chunks may be activated which 

are not an exact match to current input or context. For 

cognitive plausibility, we prefer ACT-R’s spreading 

activation based soft constraint retrieval mechanism, 

minimizing the use of hard constraints in the retrieval 

template. For example, we do not want to use a hard 

constraint exact match to the input which would preclude 

retrieval of a word which is not an exact match (e.g. 

―altitde‖ should retrieve ―altitude‖). However, use of hard 

constraints reduces the amount of computation significantly 

by eliminating non-matching DM elements from the 

spreading activation computation. 

Instead of relying on hard constraint retrievals to reduce 

the amount of computation, we have pursued the more 

cognitively plausible alternative of reducing the number of 

retrievals. An example of this is discussed next. 

Combining Word Form and Part of Speech Chunks 

In the previous version of the model, there was a word-form 

chunk for each word that encoded the graphical form of the 

word, including the letters and trigrams in the word (e.g. 

speed-wf), and part of speech chunks that encoded the 

various parts of speech of the word (e.g. speed-noun and 

speed-verb). The performance of the reading model has 

been improved significantly by collapsing the word form 

and part of speech chunks into a single word-form-pos 

chunk (e.g. speed-wf-noun, speed-wf-verb). Now, a single 

retrieval is required to determine the part of speech of a 

linguistic input. Since the production which initiates a 

retrieval takes 50ms to execute, by combining the word 

form and part of speech chunks for each lexical item, 50ms 

plus the retrieval time were saved per word. 

From a representational perspective, combining the word 

form and part of speech chunks is not ideal. The word-form-

pos chunks combine two distinct types of information (i.e. 

graphical vs. grammatical) which are better kept separate. A 

better solution would retain separate chunks, but support 

retrieval of part of speech chunks given the linguistic input. 

This could be achieved via multi-level activation spread if 

the linguistic input activated a word form chunk which in 

turn activated related part of speech chunks. Unfortunately, 

ACT-R does not support multi-level activation spread, 

although its predecessor ACT* (Anderson, 1983) did. It 

should be noted that single level parallel spreading 

activation is already computationally expensive for large 

DMs. Supporting multi-level spreading activation would 

add an additional multiple to the computation for each level.   

Expanding the Perceptual Span 

By default, ACT-R’s vision module splits input text into 

perceptual spans at spaces and punctuation. The module 

even splits at word internal punctuation, so ―ACT-R” 

becomes “ACT” “-“ “R”, requiring three movements of 
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attention to read. This behavior was changed to a more 

plausible splitting of the input text, thereby reducing the 

number of retrievals per input. Words with internal 

punctuation are no longer split up and retrieved separately.  

The width of the perceptual span is now determined 

dynamically, based on the length of the first word (wordn) in 

the perceptual span. The boundary of wordn is determined 

by the first space. If wordn is greater than twelve letters in 

length, it takes up the entire length of the perceptual span. If 

wordn is fewer than twelve letters in length, up to six letters 

of the next word (wordn+1) can also be seen in the perceptual 

span. No more than twelve letters are contained in the 

perceptual span.  

The size of the revised perceptual span is deliberately 

conservative, so that even though three very short words 

(e.g. ―out of the‖) could be perceived at a single attention 

fixation, the model never retrieves information for more 

than two words. There is a great deal of evidence that the 

perceptual span of adult readers is about 14-15 letters to the 

right of fixation (DenBuurman et al., 1981; McConkie & 

Rayner, 1975; Rayner, 1986). We implemented a span of up 

to twelve letters, with the greatest amount of activation 

spreading from the first few letters of the span and 

decreasing toward the end of the span. As a result, incorrect 

letters at the beginning of words are more detrimental to 

correct retrieval than misplaced letters later in the word. 

Activation spreads from the letters, trigrams, and length of 

the first word (wordn). If there is more than one word in the 

perceptual span, wordn+1 spreads activation from its 

trigrams. The section of the perceptual span containing 

wordn is roughly equivalent to the fovea; the perceptual span 

at wordn+1 is roughly equivalent to the parafovea. 

The revised perceptual span is generally larger than ACT-

R’s default span. Just as for adult readers, information to the 

right of fixation is obtained when the next word is 

predictable from the preceding text (Balota, Pollatsek, & 

Rayner 1985). Again, we were deliberately conservative in 

determining how much information could be perceived from 

wordn+1. Our intent was not to model in high fidelity the 

perceptual span in reading, or movements of attention in 

reading; movement of attention is not our primary focus. 

We merely wanted to make the vision module more 

serviceable to our language comprehension model, and 

more faithful to human perceptual spans in the process. 

An example of the reduction in reading time can be seen 

in the phrase ―take us to h-area‖. Previously, ACT-R’s 

vision module would chop the input into seven parts: 
 

―take‖    ―us‖    ―to‖    ―h‖    ―-―    ―area‖ 
 

The model would retrieve each part from DM, integrate it 

into a linguistic construction, and then move on to the next 

word. The last three sections of the input would need to go 

through additional processing for the model to recombine 

them into a single word. Reading the entire sentence took 

2.8 seconds. If ACT-R does not chop up the input at spaces 

and punctuation, the same phrase takes only 1.74 seconds to 

read. In the next section, the advantage of the expanded 

perceptual span for processing multi-word expressions is 

described. 

Multi-Word Expressions 

To facilitate reading and word recognition we have 

modified the ACT-R architecture and the reading model to 

better interpret multi-word expression (i.e. lexical units 

containing spaces). By not splitting the perceptual input at 

all spaces, multi-word expressions and multi-unit words can 

be retrieved as a single chunk (e.g., "of course" and "a 

priori"). To accommodate multi-word expressions we 

modified our lexical chunks in DM to reduce the number of 

retrievals necessary per word. Multi-word expressions are 

treated in much the same way as singleton words. Many 

multi-word expressions are not syntactically alterable units 

and need not be parsed (Sag et al. 2002), so the model treats 

them as ―words-with-spaces‖. 

An important side effect of the new perceptual span 

mechanism is that it also increases the reading rate of the 

model in the process. Since the perceptual span can cross 

spaces as well as punctuation, multi-word units like ―to go‖, 

―want to‖, and ―believe in‖ can be recognized as a single 

unit and processed in a single attention fixation. This 

capability is really the key to getting Double R-Language to 

approach adult human reading speed.  

Before the multi-word expression capability was 

implemented, the phrase ―we need to go‖ took 1.99 seconds 

for the model to process. After the perceptual span was 

expanded, the model reads the same phrase in 1.79 seconds. 

In this phrase ―to go‖ is treated as a single unit, since it is an 

infinitive verb. There is one fewer retrieval, and the 

infinitive can be integrated into the phrase as a whole 

without having to recombine ―to‖ and ―go‖. Whenever there 

are multi-word units, the model now saves time in retrievals 

and processing. There is no difference in the time it takes to 

process other sorts of words. In addition, multi-word 

expressions are less ambiguous than individual words. ―To‖ 

in isolation is very ambiguous, whereas ―to go‖ is much less 

ambiguous.  

Linguistic Representations 

The reading model incrementally processes the linguistic 

input and builds a representation of referential and relational 

meaning that is mapped into the situation model. The 

building of linguistic representations is driven by the 

execution of productions which retrieve or construct 

linguistic elements and integrate them into the evolving 

representation. It takes more productions and retrievals to 

build complicated linguistic structures. In an effort to reduce 

the number of productions and retrievals that are required, 

we investigated how linguistic representations could be 

simplified or reduced. Our current approach attempts to 

build the minimal structure needed to represent the 

linguistic input, but must support more complex structures 

when they are needed.  
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Retrieving object referring expressions 

Determiners are words that project definiteness and 

(sometimes) number information to nominals (Ball, 2010). 

In the reading model, nominals are called object referring 

expressions (ORE) to emphasize their referential (referring 

expression) and relational (object) functions. Determiners 

include the articles ―a‖, ―an‖, and ―the‖, as well as the 

negative ―no‖, demonstrative pronouns ―this‖, ―those‖, etc. 

Linguists have long known that the determiner ―the‖ is the 

most commonly used word in the English language (cf., 

Zipf, 1932); other determiners are nearly as common. As the 

most commonly used words, determiners are likely to be 

highly proceduralized or simplified in their use (Zipf, 1949). 

Therefore we concentrated on consolidating the processes 

associated with determiners. 

Previously, the model identified a word as a determiner, 

then executed a production which projected an ORE. The 

determiner was integrated as the specifier of the ORE. 

Given that determiners are used so regularly and frequently, 

it seems likely that there is an ORE in DM associated with 

each determiner that can be retrieved without first 

identifying the part of speech of the word. By retrieving the 

associated ORE rather than first identifying the word as a 

determiner, the processing of determiners becomes more 

proceduralized, faster, and more cognitively plausible. 

Where separate, general productions were required to 

retrieve the part of speech, followed by projection of an 

ORE if it’s a determiner, now a single specialized 

production projects an ORE directly from determiners. 

Although we manually created this specialized production, 

we would prefer that the model learn how to compile such 

productions automatically. 

Reducing structure in nominal heads 

Retrieval or projection of an ORE by a determiner 

establishes the expectation for a head to occur. In the 

previous version of the model, when a word following the 

determiner was identified as a noun, a subsequent 

production projected an object head and integrated the 

object head as the head of the ORE (Figure 1). Projection of 

the object head from the noun supported the integration of 

pre- and post-head modifiers (e.g. the post-head modifier 

―on the runway‖ in ―the airplane on the runway‖). When a 

post-head modifier occurred, it could be integrated into the 

object head in the post-head modifier slot. However, in the 

absence of a post-head modifier, projection of an object 

head is unnecessary and the noun could be integrated as the 

head of the ORE. The current version of the model adopts 

the simpler approach, integrating the noun as the head of the 

ORE (Figure 2). The tree diagrams below were generated by 

the previous and current versions of the model and show the 

contrast between the two approaches for the linguistic input 

―the restriction‖ (the pre- and post-head modifier slots in the 

object head are not displayed): 

 

 

Figure 1. Original nominal structure (including a 

determiner, projected ORE and object head) 

 

 
 

Figure 2. Reduced nominal structure (the retrieved 

determiner ORE and no object head) 

 

But what happens when a post-head modifier occurs, or 

when the pre-head modifier slot turns out to be needed? In 

the processing of the input ―the altitude restriction‖, when 

―altitude‖ is processed it is integrated as the head of the 

nominal projected from ―the‖. When ―restriction‖ is 

subsequently processed there is no expectation for its 

occurrence. The previous version of the model projected an 

object head, so ―restriction‖ was accommodated by shifting 

―altitude‖ into the pre-head modifier slot so that 

―restriction‖ could be integrated as the head. In the current 

version, we have adopted a similar strategy. In parallel with 

the integration of ―altitude‖ as the head of the ORE, an 

object head is constructed in which ―altitude‖ is the head. 

This object head is available if needed to support subsequent 

processing. When ―restriction‖ is processed, the object head 

overrides ―altitude‖ as the head of the ORE and ―altitude‖ is 

shifted into the pre-head modifier slot so that ―restriction‖ 

can be integrated as the head (Figure 3). Note that the object 

head is projected in parallel to facilitate processing. A single 

production integrates the object head as the head of the 

ORE, shifts ―altitude‖ to the pre-head modifier slot and 

integrates ―restriction‖ as the head. It takes no more time to 

process ―restriction‖ than in the previous version of the 

model, but it does require parallel projection of the object 

head.  

 

 
 

Figure 3. Accommodating ―restriction‖ 
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Real Time Processing & Spreading Activation 

Cognitive time is the time it takes the productions and 

retrievals in ACT-R to happen, with each production taking 

a fixed amount of time. When a production fires, 50ms of 

cognitive time elapses, so having many productions firing 

for the processing of each word takes up a great deal of 

cognitive time. Retrievals also take cognitive time—chunks 

with high activation are retrieved more quickly than 

chunks with low activation.  

Retrievals take real time to calculate the activation of all 

eligible chunks. Real time is the wall clock time that 

passes while the computer executes the model. When a 

retrieval request is not very specific, for example, 

specifying only the chunk-type, then the activation for all 

chunks of that type must be calculated before the most 

highly activated chunk can be selected. There are 

thousands of chunks of type WORD, so when the chunk-

type WORD is the only retrieval specification, thousands of 

activation calculations must be performed before a chunk is 

retrieved. While this is a parallel process in the brain, it is a 

serial process for a microprocessor. Since the language 

model specifies only the chunk type, and relies on spreading 

activation to retrieve words, thousands of calculations bring 

the real time reading rate down to 53words per minute 

(wpm). 

Disjunctive Retrieval  

One way to retrieve chunks faster in real time is to impose 

stronger hard constraints on the retrieval. Instead of a weak 

chunk-type specification that matches thousands of chunks, 

a strong constraint that matches only a limited set of chunks 

can be specified. For example, the model could try to 

retrieve an exact match to input text form, which might only 

match a single chunk in DM. However, imposing such 

constraints makes the model less flexible and less 

cognitively plausible. If the model relies on a hard 

constraint to match the input form against words in DM, 

variants cannot be read. Even a hard constraint on just the 

first letter means that words where the first letter is 

transposed with the second, or in any other way misplaced, 

cannot be read by the model. 

The model needs the flexibility of a soft-constraint 

retrieval with the real time speed of a strong hard-constraint 

retrieval. In order to achieve this affect, we implemented a 

disjunctive retrieval mechanism. Using an ACT-R function 

called get-chunk, the model checks DM for the largest 

constituent of the perceptual span. If it does not find that 

constituent, it chops the perceptual span at the last 

punctuation mark or space. If that constituent is not found, it 

chops at the second to last punctuation mark or space, and 

so on. If an entire word does not match at any point, a 

simple soft constraint is attempted.  

For example, if the input sentence is ―og to h-area‖, we 

want the model to be able to retrieve GO for ―og‖ (see Table 

2). The get-chunk function is used to try to find chunks that 

correspond to smaller and smaller parts of the visual input. 

If at any point the function finds what it is looking for, the 

model uses that specification to make the retrieval. Get-

chunk is a simple search function into a hash table—it is not 

computationally expensive, and it functions outside of the 

cognitive processes of ACT-R, so it does not take any 

cognitive time. 

 

Table 2. Perceptual span contains ―og to h-area‖ 

 

Using the disjunctive retrieval, the average reading rate 

for the model is 249wpm in real time. The cognitive time is 

unaffected, and the model runs with disjunctive retrieval are 

identical to the model runs using a pure soft-constraint. The 

results of retrieval requests are identical. Since the two 

retrieval methods are equivalent in ACT-R, the disjunctive 

retrieval is acceptable as a way to make our model fast 

enough to be functional in real time while we try to catch up 

in cognitive time. 

Conclusions 

Although we have not yet succeeded in achieving human 

reading rates, we have improved the reading rate of the 

Double-R-Language significantly. The initial version of the 

model read at a rate of about 96wpm, far from our goal of 

200-300wpm, the average reading rate of adults. The model 

now reads at an average rate of 143wpm in cognitive time, 

and 249wpm in real time. This rate is the average, achieved 

while reading a text of just under 2,100 words, without 

counting punctuation as separate words.  

The perceptual span is closer in size to that of human 

readers than previously. The expanded perceptual span 

allows for the expansion of the model’s lexicon to include 

multi-word units, as well as speeding up the reading rate. 

An additional advantage of multi-word units is that they are 

less ambiguous than words in compositional phrases. 

The model was improved by simplifying various 

linguistic constructions. Parallel constructions allow for 

simplified nominal heads, and object referring expressions 

in declarative memory allow the model to avoid 

constructing object referring expressions whenever 

determiners are encountered. We posit that the simplified 

representations are not only more expedient, but more 

cognitively plausible as well. Avoiding unnecessary 

constructions in the model is more likely to track the 

efficiency of human language use. 

Ultimately, we believe that achieving human level reading 

rates will require a capability to recognize multi-word units 

that exceed a single perceptual span. Recognition of a 

linguistic unit as forming a part of a larger linguistic unit 
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across perceptual spans should minimize the amount of 

higher level processing required to integrate the recognized 

unit into the evolving representation and speed up the 

reading rate, allowing the model to approach adult human 

reading rates. 

Although reading rate is important, the language 

comprehension model is being developed to model the full 

range of linguistic processes of a competent adult reader, 

rather than just modeling the reading rate. It is our hope that 

any improvements we make in the reading rate of our model 

will be accompanied by improvements in the models 

accuracy and cognitive plausibility. 
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Abstract 
This work demonstrates a mechanism that autonomously 
organizes an agent’s sequential behavior. The behavior 
organization is driven by pre-defined values associated with 
primitive behavioral patterns. The agent learns increasingly 
elaborated behaviors through its interactions with its 
environment. These learned behaviors are gradually organized 
in a hierarchy that reflects how the agent exploits the 
hierarchical regularities afforded by the environment. To an 
observer, the agent thus appears to exhibit basic self-
motivated, sensible, and learning behavior to fulfill its inborn 
predilections. As such, this work illustrates Piaget’s theories 
of early-stage developmental learning. 

Keywords: Developmental learning; cognitive architectures; 
situated cognition; computer simulation. 

Introduction 
We report the implementation of an agent that 
autonomously engages in a process of hierarchical 
organization of behavioral schemes as it interacts with its 
environment. This mechanism moves towards taking on 
developmental constraints as Newell (1990, p. 459+) called 
for, and generates high-level and long-term individual 
differences in representation and behavior that arise from 
lower level behavior. 

This implementation also refers to an “emergentist” and a 
constructivist hypothesis of cognition. According to these 
hypotheses, an observer can attribute cognitive phenomena 
(such as knowing, feeling, or having motivations) to the 
agent while observing its activity, provided that the agent’s 
behavior can appropriately organize itself. These hypotheses 
have often been related to Heidegger’s philosophy of mind, 
e.g., cited by Sun (2004). Additionally, these hypotheses 
correspond to work featuring constructivist epistemologies 
(Le Moigne, 1995; Piaget, 1937), situated cognition 
(Suchman, 1987), and embodied cognition (Wilson, 2002). 

We describe the agent as self-motivated because it does 
not seek to solve a problem pre-defined by the modeler, nor 
does it learns from a reward that is given when reaching a 
pre-defined goal. Rather, the agent learns to efficiently enact 
its inborn predilections by exploiting regularities it finds 
through its activity. As such, the implementation constitutes 
a model of agents exhibiting intrinsic motivation, pragmatic 
and evolutionist learning, as well as sensible behavior.  

To situate the technical approach in the field of artificial 
intelligence, we can refer to Newell and Simon’s (1975) 
physical symbol hypothesis. We subscribe to the 

hypothesis’s weak sense. We are using computation to 
generate intelligent behavior. We, however, do not 
subscribe to the hypothesis’s strong sense, in that we are not 
implementing symbolic computation based on symbols to 
which we would pre-attribute a denotation. Instead, we will 
discuss how knowledge appears to emerge (to an external 
observer) from the agent’s activity, and how the agent 
seems to make sense of the knowledge because it is 
grounded in the agent’s activity (Harnad, 1990).  

Although we did not follow a symbolic computational 
modeling approach, we have, nevertheless, implemented 
this model in a cognitive architecture, namely Soar 9.  We 
chose Soar because it has proven efficient for implementing 
mechanisms for behavior organization. In particular, we 
found Soar 9’s mechanisms for graph querying and operator 
selection based on valued preferences very helpful. 

Knowledge representation 
The agent’s behavioral patterns are represented using two 
kinds of objects: schemas and acts. We use the term schema 
in its Piagetian (1937) sense, meaning a behavioral pattern 
or sensorimotor pattern. An act is a notion specific to our 
work that refers to a schema’s enaction. By schema’s 
enaction, we mean the association of a schema with the 
feedback the agent receives when enacting the schema. 
Concretely, an act associates a schema with a binary 
feedback status: succeed (S) or fail (F). Hence, each schema 
is associated with at most two acts: its failing act and its 
succeeding act. Schemas and acts are organized in a 
hierarchy as shown in Figure 1. 

 
Figure 1: Example schema and act hierarchy. 
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At its lowest level, Figure 1 shows primitive schemas S1, 
S2, and S3. Primitive schemas define the agent’s primitive 
possibilities of behavior within a given environment. For 
example, as further detailed in the experiment section, S1 
may correspond to turn right, S2 touch ahead, and S3 
attempt to move forward. Primitive acts are represented 
above primitive schemas. For example, act [S3, S, 5] 
corresponds to succeeding in moving forward, while [S3, F, 
-5] corresponds to bumping into a wall. Each act has a value 
associated with it, in this case: 5 and -5 (in parentheses in 
the figure). These values inform the selection of the next 
schema to enact, as explained later.  For now, we can 
understand these values as the agent’s satisfaction for 
performing the act.  

Primitive satisfaction values are chosen and hard-coded 
by the modeler according to the behavior she intends to 
generate. In our example, act [S3, S, 5] means that the agent 
enjoys moving forward, while act [S3, F, -5] means that the 
agent dislikes bumping into walls. Similarly, act [S2, S, -1] 
means that the agent touches a wall in front of him, which 
he slightly dislikes; while [S2, F, 0] means that the agent 
touches an empty square, which leaves him indifferent. 
Therefore, primitive satisfaction values are also a way for 
the modeler to define the agent’s intrinsic motivations. 

Higher-level schemas are learned through experience, by 
combining lower level schemas. Schema learning consists 
of adding the new-learned schema to the agent’s memory as 
a node and two arcs pointing to the schema’s sub-acts. For 
example, schema S5 is learned when the agent has turned to 
the right and then touched an empty square. Schemas have a 
context act (dashed line in the figures throughout this 
paper), an intention act (doted line), and a weight (w). So, 
S5 means that, when the agent has successfully turned right, 
the agent can expect to touch an empty square. Similarly, S4 
is learned when the agent has successfully turned right and 
touched a wall. S4 thus generates the opposite expectation 
from S5. A schema’s weight corresponds to the number of 
times the schema has been enacted. Over the course of the 
agent’s interactions, the relative schema weights thus 
balance the agent’s expectations in specific contexts. 

When a higher-level schema is learned, its succeeding act 
is also learned with a satisfaction value set equal to the sum 
of the satisfaction values of its sub-acts, e.g., [S4, S, -2] (-1-
1) and [S5, S, -1] (-1+0). When a higher-level schema gains 
enough weight, it can be selected for enaction. Enacting a 
higher-level schema consists of sequentially enacting its 
sub-acts. For example, enacting S5 consists of enacting S1 
with a succeeding status, then enacting S2 with a failing 
status. Hence, the satisfaction for enacting a high-level act is 
equal to the satisfaction for individually enacting its sub-
acts. 

When a high-level schema fails during enaction, it is 
interrupted. This happens if a status returned by the 
environment does not match the expected status of a sub-
act. In this case, the failing act of the schema is learned or 
reinforced, as well as the actually enacted act. The 
satisfaction value of the failing act is set equal to the 

satisfaction value of the actually enacted act. For example, if 
schema S6 fails because S2 succeeds, then [S6, F, -1] is 
learned. Because high-level schemas can potentially fail at 
any step of their sequence, their failing act’s satisfaction 
values are averaged over their different failures. 

When a high-level schema is enacted, it generates the 
learning of higher schemas. For example, when S5 is 
successfully enacted and followed by succeeding S3, then 
S7 is learned. In this example, S7 consists of turning right, 
touching an empty square, and then successfully moving 
forward. [S7, S]’s satisfaction is set equal to 4 (-1 + 5). 
Similarly, S8 (learned after S7) consists of touching a wall, 
turning right, touching an empty square, and moving 
forward. 

Algorithm 
The algorithm follows two overlapping cyclical loops. The 
control loop consists of: 1: selecting a schema for enaction, 
2: trying to enact the selected schema, 3: learning what can 
be learned from this trial, 4: computing the resulting 
situation, and finally looping to step 1. We call this loop the 
control loop because it is at this level that the agent decides 
what schema to try to enact. 

Step 2: (trying to enact a schema) constitutes a nested 
loop that goes through the selected schema’s hierarchical 
structure and tries to enact each of its primitive acts 
sequentially. We call this loop the automatic loop because 
this loop enacts sub-schemas below the agent’s decision 
process. Figure 2 illustrates this procedure. 

 

 
Figure 2: Algorithm procedure. 

 
In Figure 2, the large white circle represents the control 

loop while the small white circle represents the automatic 
loop. The gray circle represents the environment’s loop. 
Each revolution of the automatic loop corresponds to a 
revolution of the environment’s loop that returns the status 
of the enacted primitive schema. From the viewpoint of the 
control loop, the schema’s enaction constitutes only one 
step, whatever the schema level is in the hierarchy. 
Therefore, at the control loop level, any schema is handled 
similarly as a primitive schema, which makes possible the 
recursive learning of higher-level schemas. 
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The four steps of the control loop are:  
Step 1: All schemas whose context act matches the 

previously assessed situation propose their intention act. 
The weight of this proposition is computed as the proposing 
schema’s weight multiplied by the intention act’s 
satisfaction. The schema with the highest proposition is 
selected (if several schemas are equal, one is randomly 
picked among them). In essence, this mechanism selects the 
schema that will result in the expected act having the 
highest satisfaction, balanced by the probability to obtain 
this expected act. This probability is based on what the 
agent has learned thus far concerning the current context. 
Due to this mechanism, the agent appears (to an observer) as 
though he was seeking to enact the act associated with the 
highest believed expected satisfaction and avoiding the acts 
with the lowest ones. Figure 3 illustrates this mechanism. 

 

 
Figure 3: Enaction mechanism. 

 
Figure 3 details the 84th iteration of the control loop in the 

experiment reported in Figure 5. On the 83rd iteration, 
schema S6 was successfully enacted (touch empty square, 
move forward), which resulted in a base situation of [S6, S], 
[S3, S], and [S11, S] (and other acts on top of [S6, S] not 
reported in the figure).  In this context, S9 and S10 were 
activated and proposed to enact S8 with a proposition 
weight of 4x3+4x3 (sum of the proposing schema’s weight 
multiplied by [S8, S]’s satisfaction) (the agent never 
experienced S8 failing). This proposition happened to be the 
highest of all the propositions, which resulted in S8 being 
selected for enaction.  

Step 2: The algorithm next enacts all the selected 
schema’s sub-acts. If all the sub-acts meet their 
expectations, the control loop proceeds to step 3. If the 
enaction of one of the sub-acts is incorrect, then the 
automatic loop is interrupted; the schema’s enaction status 
is set to fail; and control is returned to the control loop. In 
Figure 3’s example, the enaction of schema S8 consists of 
the enaction of acts [S2, S], [S5, S] (made of [S1, S] and 
[S2, F], as shown in Figure 1), and [S3, S] in a sequence. In 
this case, S8 was successfully enacted, resulting in the 
enacted act [S8, S]. 

Step 3: New schemas are learned or reinforced by 
combining the base situation and the current situation. In 
Figure 3’s example, S9’s weight is incremented from 6 to 7, 
and S10’s weight is incremented form 4 to 5. In addition, 
new schemas are learned based on the penultimate situation 
and on [S10, S] (e.g., S12 and S13 are created with a weight 
of 1, as well as other schemas not represented in the figure). 

Step 4: The base situation becomes the penultimate 
situation and the current situation becomes the base 
situation for the next cycle. A situation is made of the acts 
that surround the enacted act (i.e., the enacted act, the acts 
directly below it, and the acts directly above it). In Figure 
3’s example, the situation is made of [S8, S], [S7, S], [S9, 
S], and [S10, S]. The situation can be understood as the 
agent’s situation awareness, that is, a representation of the 
agent’s situation in terms of affordances (Gibson, 1979) 
capable of activating behavior. Limiting the situation to the 
acts directly surrounding the enacted act prevents the agent 
from being overwhelmed by a combinatorial explosion as 
the agent creates new schemas.  In essence, the agent 
focuses on the current level of abstraction for representing 
his situation, for making his choices, and for finding and 
learning higher-level regularities. When a high-level schema 
fails during enaction, the agent constructs the actually 
enacted schema and falls back to a lower abstraction level. 

Experiment 
To test the algorithm, we developed an environment that 
afforded the agent hierarchical sequential regularities to 
learn and organize. Although the interaction’s structure—
resulting from the coupling of the environment with the 
agent’s primitive schemas—is fundamentally sequential, the 
environment appears to external observers as a two-
dimensional grid represented in Figure 4, implemented from 
Cohen’s (2005) Vacuum environment. 
 

 
Figure 4: Experimental environment. 

 
In Figure 4, white squares represent empty squares where 
the agent can go, and filled squares represent walls. The 
agent’s primitive schemas and acts are defined as described 
above (S1=turn 90° right (-1/NA), S2=touch the square 
ahead (-1/0), S3=attempt to move one square forward (5/-
5)). Additionally, we have primitive schema S0 consisting 
of turning to the left (-1/NA) (turning schemas S0 and S1 
always succeed in this environment). These settings offer a 
first notable regularity, namely that the agent can increase 
his average satisfaction by touching ahead before trying to 
move forward, and not moving forward if he touches a wall. 
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Next, the agent can increase his satisfaction by repeating the 
sequence consisting of moving forward twice and turning 
once. Higher-level regularities consist of repeating this later 
sequence. The effects of this learning mechanism are shown 
in detail in Figure 5 that reports an example run. Videos of 
other runs can be seen online1. 

In Figure 5, an attempt to move forward is represented as 
an arrow to the right, a turn-left as an upward arrow, a turn-
right as a downward arrow, a touch as a O. Succeeding 
primitive schemas use a black font, while failing primitive 
schemas use a white font, i.e., white rightward arrows mean 
that the agent bumped into a wall, and white Os mean that 
the agent touched an empty square in front of him. Enacted 
schemas are represented at the lowest level in each line with 
a black outline. Learned schemas are represented on top of 
the enacted schemas. Failing higher-level schemas are 
represented as white boxes with gray outlines (steps 68 and 
72). The numbers from 1 to 91 indicate the control-loop 
iterations (steps). 

At the beginning, the agent acts randomly because he has 
not yet learned appropriate schemas that could propose their 
associated intention sub-schema. However, every cycle, the 
agent constructs or reinforces several schemas. For clarity, 
Figure 5 only reports the construction and the reinforcement 
of the schemas that matter for the purpose of explanation, 
and references these schemas when they are mentioned in 

                                                             
1 http://e-ernest.blogspot.com/2009/07/ernest-64.html 

the text. Schema S4 is constructed on step 8. S4 is then 
reinforced on step 28, 34, and 49. The agent attempts to 
enact S4 for the first time on step 68 but fails and enacts S5 
instead.  

Notably, a schema turn right-turn right (not named in this 
paper) is constructed on step 19. This schema is reinforced 
on steps 33, 42, and 43. It is then enacted twice on steps 44 
and 45.  It is, however, not used any further because other 
options prove more satisfying (its satisfaction value is -2). 

On step 46, the agent constructs the schema S5 (using act 
[S1, S] that is the schema turn right-turn right’s intention 
act). Then, on step 47, the agent finds the schema S6 (touch 
empty, move forward), and also constructs the schema S7 
on top of S5. After step 47, the schema S6 always prompts 
the agent to try to move forward after touching an empty 
square; therefore, from then on, S6 is quickly reinforced in 
steps 55, 59, 63, and 71. The agent tries to enact S6 for the 
first time on step 72, but unsuccessfully, which results in 
falling back to [S2, S]. This experience instructed the agent 
that schema S6’s failing act has a satisfaction of -1, which is 
still better than trying to move forward without touching 
first and bumping into a wall (satisfaction -5). Therefore, 
from then on, the agent learned to touch before moving 
forward. S6 is then successfully enacted on steps 74, 77, 80, 
83, and 85. 

As said previously, on step 68, the agent intended to enact 
S4 but actually enacted S5. Because S7 is directly above 
enacted schema S5, S7 is included in the agent’s situation 

 
Figure 5: An example run among the 18 reported in row 6 of Table 1. 
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awareness, which results in the learning of the fourth-order 
schema S8 on step 69. Then, on step 73, the enaction of 
schema S7 generated the learning of schema S10. As 
detailed in Figure 3, S8 is enacted for the first time on step 
84, which generated the learning of S12. S10 starts to be 
enacted on step 87. 

After step 87, the agent keeps on performing the sequence 
touch empty, move forward, touch wall, turn right, touch 
empty, move forward.  This regularity introduces repeated 
circuits that lead to higher-level repetitions of this sequence. 
With this sequence, the agent obtains a satisfaction of 8 
within 6 primary steps, i.e., 1.33 per primary step.  

In this example, the agent did not learn the optimum 
sequence in the environment. In fact, the agent has no way 
to know whether the stabilized sequence is optimum or not. 
The agent only repeats a sequence when other actions 
appear less likely to bring satisfaction, based on what he has 
learned before. In most instances, the agent first learns to 
touch before moving, after which he begins to build other 
regularities based on this initial pattern. 

The experiment was run 100 times, stopping each run 
when the agent has reached a stable sequence, and clearing 
the agent’s memory between each run. The results are 
summarized in Table 1. 

 
Table 1: Summary of hundred runs.  

 
Row Runs Satisfaction/step Cycles 

1 22 3.00 50 
2 22 2.25 79 
3 4 1.80 75 
4 4 2.00 69 
5 16 1.60 62 
6 18 1.33 84 
7 1 1.40 76 
8 1 1.17 109 
9 1 1.00 108 

10 2 0.75 116 
11 3 1.00 61 
12 1 0.80 95 
13 3 1.00 71 
14 2 0.40 96 

 100 1.92 72 
 

In Table 1, the runs are aggregated by average satisfaction 
per step obtained when the agent has reached a stable 
sequence. The column Cycles reports the average number of 
control loop cycles before reaching this sequence. Rows 1 
through 6 report 86 runs where the agent learned to go 
around his environment and got a satisfaction per step 
greater than or equal to 1.33.  Rows 7 to 14 report 14 runs 
where the agent has stabilized on a sequence that results in 
staying on one edge of the environment, and reached a 
satisfaction per step that ranged between 0.40 and 1.40.  

The summary row shows that the average reached 
satisfaction per step was of 1.92. It was reached in an 
average of 72 cycles. In comparison, other experiments 
yielded an average satisfaction values per step of -0.93 
without any learning and -0.38 with only the first-level 

schema learning. This data demonstrates that, in all the runs, 
the hierarchical learning mechanism has substantially 
increased the agent’s satisfaction, compared to no or non-
hierarchical learning. 

Related work 
To our knowledge, this work constitutes the first 
implementation of an intrinsically motivated agent who 
recursively learns to exploit hierarchical sequential 
regularities to fulfill drives. The closest related work is 
probably Drescher’s (1991) attempt to implement Piagetian 
constructivist learning through what he called the 
constructivist schema mechanism. Like our implementation, 
Drescher’s work constructed hierarchical schemas that 
associated context, actions, and expectations. In Drescher’s 
implementation, however, schemas were neither associated 
with satisfaction values nor did the agents exhibit self-
driven behavior. The agent’s exploration was rather random 
and resulted in a combinatorial explosion as the agent 
encountered increasingly complex environments.  

Chaput (2004) proposed the Constructivist Learning 
Architecture (CLA) to address Drescher’s scalability issues. 
The CLA implemented a scheme harvesting mechanism at 
each hierarchical level. This harvesting, however, depended 
on goals defined by the modeler. Chaput’s solution, 
therefore, relies upon a problem-solving approach that in 
fact differs from our self-driven mechanism of interest. 

In developmental robotics (Weng et al., 2001), the 
literature often refers to Brooks’s (1991) pioneering work. 
For example, Blank, Kumar, Meeden, and Marshall (2005) 
describe the principles for a self-motivated/self-organizing 
robot. They use the robot’s anticipation reliability as a 
motivational regulator for the robot. As opposed to our 
work, these implementations do not make explicit the 
robot’s driving satisfaction values. They also rely on a 
limited number of predefined hard-coded hierarchical 
layers, which restricts the agent’s learning possibilities. 

As for the testbed environment and self-driven learning 
paradigm, our approach appears to be rather unique. We 
must note that our learning paradigm substantially differs 
from maze solving experiments (e.g., Sun & Sessions, 2000) 
or from hierarchical sequence learning as depicted in the 
classical taxi cab experiment (Dietterich, 2000). In these 
experiments, the learning occurs over multiple runs (often 
thousands), and comes from a reward value that is given 
when the goal is reached and then backward propagated 
during subsequent runs. On the contrary, in our paradigm, 
there is no final goal that would provide a reward; the 
learning occurs through each run; and all the agent’s 
memory is reinitialized between each run (including all 
forms of reinforcement).  

Discussion and conclusion 
Besides the quantitative results of the agent’s measured 
satisfaction and that it learns at a nice pace (neither one shot 
nor thousands shots learning), this work offers qualitative 
results in the form of the agent’s exhibited behavior. When 
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observing the agent, an observer can infer that the agent 
seems to enjoy certain behaviors (such as moving forward) 
and dislike others (such as bumping into walls). Moreover, 
the agent appears to learn to endure unpleasant behaviors 
(such as turning or touching) to have more opportunities to 
move forward. The agent thus appears to be self-motivated 
and appears to learn knowledge about his environment that 
he uses to satisfy his predilections. More elaborated 
behaviors can be watched in videos online2. 

In addition, the agent appears to learn to use certain 
schemas as perceptions (e.g., schema S2 to sense the square 
forward), and to determine subsequent actions based upon 
these schema’s outcomes. Therefore, the agent seems to 
simultaneously learn to perceive his environment and to 
make sense of his perception. This result is original in that 
the agent’s perception was not pre-defined by the modeler in 
the form of a perceptual buffer, as it is in many cognitive 
models. In our case, perception emerges from the agent’s 
behavior, which grounds the meanings of the agent’s 
perceptions in his activity. 

Moreover, the agent constructs an internal data structure 
made of elaborated behavioral patterns, and uses this data 
structure to deal with his environment. The behavioral 
patterns used in this data structure are only those confirmed 
through experience, which helps the agent deal with the 
environment’s complexity. These data structures can be 
seen as the agent’s situation awareness that is constructed 
through his interactions, and that activates subsequent 
behavioral patterns based on expected enjoyment. At each 
point in time, the current agent’s knowledge frames how the 
agent sees the world, which makes possible the recursive 
learning of higher-level regularities and which accounts for 
the agent’s individualization through his development. 

Preliminary experiments in more complex environments 
show that this algorithm faces two notable limitations. One 
limitation is that the algorithm may represent the same 
primitive sequence by different schemas that have different 
hierarchical structures. These different schemas are useful to 
find appropriate hierarchical regularities but they impede the 
agent’s performance in more complex environments. Future 
studies should find a way to merge these schemas. The 
second limitation is that the algorithm is not good at finding 
spatial regularities. For example, if we replace the central 
wall square with an empty square, the agent becomes less 
likely to find the most satisfying regularity, that of making a 
continuous circuit around his environment. 

We, nevertheless, believe that these limitations are not 
insurmountable, and we plan to gradually increase the 
complexity of the agent and of the environment in future 
studies. We will add new drives to the agent, for example 
homeostatic drives (similar to hunger) or boredom-
avoidance based on top-level regularity detection. We will 
also add other primitive schemas, especially schemas 
associated with distal perception.  These schemas should, 
we believe, help the agent deal with open spatial 
environments. 

                                                             
2 http://e-ernest.blogspot.com/2009/10/enrest-72.html 
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Abstract 
Circadian rhythms cause alertness declines at night, 
producing performance decrements across cognitive domains 
and tasks. Building on the learning mechanisms for 
declarative knowledge instantiated in the ACT-R cognitive 
architecture, this research seeks to explain the effects of 
circadian rhythms on performance of an orientation task 
performed repeatedly across two weeks by participants 
working either day or night shifts. The differences in 
performance between the two groups are best explained by 
varying the decay rate in declarative knowledge as a function 
of the time of day the task was performed. The model 
accounts well for task learning reflected in decreases in 
response times across days, as well as differences in learning 
between the day and night shift conditions. 

Keywords: sleep; circadian rhythm; fatigue; learning; shift 
work; declarative memory; spatial; ACT-R 

Introduction 
Variations in alertness due to circadian rhythms and sleep 
loss have been shown to affect various components of 
cognitive functioning (e.g. Jackson & Van Dongen, in 
press). For example, vigilant attention (Lim & Dinges, 
2008), perceptual learning (Mednick, Nakayama & 
Stickgold, 2003), and motor learning (Walker, Brakefield, 
Morgan, Hobson & Stickgold, 2003) are all affected by 
fluctuations in alertness associated with time awake and 
circadian rhythms. 

Despite well-documented behavioral changes, it is not 
well understood how nighttime operations affect learning in 
different contexts. Most research on night and shift work 
has focused on how shift differences affect sleep and 
frequency of accidents (e.g. Åkerstedt, 1988). The affect of 
changes in alertness (e.g., as associated with work shift 
differences) on learning is one area of research where a 

better understanding of the mechanisms involved is needed. 
More detailed explanations hold the promise of enabling 
predictions about how learning experiences at different 
times of the day may differ, and how this may impact 
eventual task performance. 

Previous cognitive modeling efforts have explored some 
effects of moderators on cognitive processes. In fact, several 
studies have examined such effects in the context of 
declarative knowledge. For instance, the effects of caffeine 
on memory retrieval have been modeled by increasing the 
activation of declarative knowledge (Kase, Ritter & 
Schoelles, 2009). Conversely, the effects of sleep loss on 
memory retrieval have been explained using decreases in 
declarative activation (Gunzelmann, Gluck, Kershner, Van 
Dongen & Dinges, 2007). The negative effect of time-on-
task on response accuracy has been explained by increasing 
noise, making misretrievals more common (Fu, Gonzalez, 
Healy, Kole & Bourne Jr, 2006).  

These research efforts focused on processes associated 
with retrieving declarative knowledge by impacting the 
availability or confusability of chunks when they are 
requested. In contrast, the effects of alertness on the learning 
and retention of declarative knowledge have not been 
addressed. 

In the research presented here, we investigate how long-
term learning may be affected by fluctuations in alertness 
resulting from circadian rhythms during laboratory-
simulated shift work. This is accomplished within the 
context of a spatial direction task based on Gunzelmann, 
Anderson, and Douglass (2004), which was performed 
repeatedly by participants over two weeks. A computational 
cognitive model is presented that accounts for changes in 
observed response times across successive days of the 
study, including differences in learning rates as a function of 
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simulated work shift. Differences in performance between 
shift conditions are explained by manipulating the decay 
rate parameter in ACT-R’s declarative knowledge activation 
function. Increased decay (reduced learning) in the night 
shift condition leads to performance decrements that match 
the human data. The details of the task, the human 
performance data, and the model are described in the 
following sections. 

Orientation Task 
This experiment was conducted as part of a larger study to 
understand how circadian rhythms and sleep disruption 
affect performance in a variety of domains. The participants 
were screened to be healthy and without sleep disorders, 
with no evidence of brain damage or learning disabilities, 
and free of drugs of abuse. Participants gave written 
informed consent, and were paid for their participation. 

Figure 1 shows the orientation task used in this study. 
There are 8 possible target locations (left) and 8 possible 
misalignments (right; 45 degree intervals). Twenty-five 
randomly ordered trials were presented per session — 5 
target locations (bottom, near, middle, far, and top) crossed 
with 5 misalignments (0, 45, 90, 135, and 180 degrees). 
Because performance is roughly equivalent for right-left 
mirrored stimuli for both target location and misalignment 
(see Gunzelmann, Anderson & Douglass, 2004), the 
location was selected at random from the left or right 
positions. 

Participants received instructions that encouraged them to 
mentally rotate the relative positions of the viewpoint 
(indicated by the “You” arrow) and the target on the 
overhead view (left side filled circle) to align them with the 

viewpoint indicated on the map view (right side arrow). 
Specifically, they were taught to imagine an angle that 
connects the viewpoint to the target on the overhead view, 
with the vertex at the center of the field (a 90 degree angle 
in Figure 1). They were then told to mentally shift to the 
map view, and to rotate the angle so that the arrow in the 
overhead view was aligned with the arrow in the map view 
(a rotation of 90 degrees clockwise in the trial shown in 
Figure 1). At this point, the answer could be determined by 
finding the target end of the angle. 

Participants responded using the numeric keypad portion 
of a computer keyboard, which was spatially mapped to the 
possible response locations on the map view. So, if the 
target was in the bottom position on the map (as it is in the 
sample trial shown in Figure 1), participants responded by 
pressing the “2” on the numeric keypad. 
 

Method Thirteen participants, ranging in age from 22 to 
39 years old (mean = 28), were in the laboratory for 
fourteen consecutive days. The first day was a baseline day 
with 10 hours in bed for sleep (22:00–08:00). Subsequently, 
some of the participants (n = 6) changed to a simulated 
night shift. Night shift participants were given five hours in 
bed (15:00–20:00) on the second baseline day, before 
starting five consecutive work days with 10 hours in bed 
during the daytime (10:00–20:00) on each day. On the 
seventh and eighth day, night shift participants had a 
simulated “day off” during which they had 5 hours in bed 
(10:00–15:00), 7 hours awake, 10 hours in bed during the 
night (22:00–08:00), 7 hours awake, and then 5 hours in bed 
(15:00–20:00), before resuming their night shift schedule 
for the next 5 days. This schedule represented a common 

schedule for individuals working a 
night shift, who frequently switch 
back to a nighttime sleep schedule 
during weekends. After the last night 
shift day, night shift participants 
received 5 hours in bed (10:00–
15:00), 7 hours awake, and then, on 
the final day of the study, were given 
10 hours in bed at night (22:00–
08:00) for recovery. 

Participants on the day shift (n = 7) 
were subjected to the same pattern of 
two baseline days, five consecutive 
work days, a “day off”, another five 
consecutive work days, and a 
recovery day. They maintained the 
same sleep schedule throughout the 
study, however, with 10 hours in bed 
(22:00–08:00) each night. Note that 
participants on the day shift and night 
shift schedules were given the same 
amount of time in bed over the 
course of the experiment; it was 
merely distributed differently.  

Figure 1: An example trial. The target on the overhead ego-oriented view (left side), 
indicated by the filled circle, is at middle distance to the right of center. The 

perspective on the map view (right side), indicated by the arrow, is misaligned by 
90° clockwise. The correct response in this example trial is “2.” 
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Over the course of the study, participants completed fifty-
one test sessions of the spatial direction task, with 2 to 4 
sessions per day. Before the first session, participants were 
presented with instructions for the task. 

Eight to sixteen days prior to the first session (mean = 14 
days), participants were given baseline training on the 
spatial direction task. This included a set of instructions for 
the task and four training sessions (these data are not 
modeled here).  

Observed Data 
Average response times for each day of the study are 
presented in Figure 2 for both the day and night shift 
conditions. Performance during the baseline days of the 
study (days 1 and 2) was similar for the two groups, and 
there was no significant difference in mean RT at that point. 
However, when the conditions diverged, so did performance 
on the spatial direction task. The performance of the night 
shift group did not recover during the simulated “day off”, 
and differences in mean response time remained at the end 
of the experiment. 

To evaluate the differences between shift conditions, we 
compared response times on the days when they were awake 
for different shifts (ten days; excluding the baseline, day off, 
and recovery day) using a linear mixed-effect model with 
subject as a repeated-measure grouping factor. This was 
planned a priori to most effectively evaluate the impact of 
shift on performance. However, for the model comparisons 
later in the paper, all of the observed data was used. See 
Halverson, Gunzelmann, Moore, and Van Dongen (in press) 
for more complete analyses of the human data. 

Figure 2 shows the mean participant response times (solid 
lines) as a function of day in study and simulated work shift. 
There was a steady decrease of response time between days 
1 and 14, as corroborated by a main effect of day, F(9, 
7769) = 112.2, p < .001. While there was no evidence of an 
overall effect of shift, F(1, 11) = 0.8, p = .37, there was an 
interaction between shift and day, F(9, 7769) = 2.1, p = .03. 
Response times did not improve as quickly when a 
participant was on the night shift. Observed error rates were 
low (M = 4%, SD = 3%) and are not addressed in this work. 

Mental Rotation Model 
A computational cognitive model of the orientation task was 
developed using the ACT-R 6.0 cognitive architecture 
(Anderson et al., 2004). The model behavior is primarily 
driven by mental rotations and learning. The mental rotation 
operation is implemented using ACT-R’s imaginal module 
and the imaginal-action buffer. Learning in the model 
occurs both in the declarative module and through the 
compilation mechanisms in procedural knowledge. The task 
procedure implemented in the model was based on the 
instructions given to the participants in the empirical study. 

Model Overview 
The model executes the task as follows: In the overhead 

view, the model encodes the angle defined by the target 
(blue circle), the center of the overhead view, and the 
viewpoint (circle nearest the “You” arrow) by visually 
attending those locations and encoding their coordinates in 
the imaginal buffer. The model then switches to the map 
view, encoding the vector defined by the viewpoint (circle 

Figure 2: Observed and predicted mean response times as a function of day and simulated work shift (night or day). The 
shaded regions indicate simulated “days off” in which night shift participants (and the model) performed the task during the 

day at the same time as day shift participants. Shaded days are not included in the human data analysis. 
Error bars indicate ±1 standard error. 
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nearest the arrow) and center of the map view by attending 
those locations and encoding their coordinates. 

The angle that was encoded in the overhead view is then 
translated to center it on the map view (an imaginal action; 
200 ms) and rotated to align the viewpoints of the overhead 
and map views. The model visually attends the response 
location closest to the transformed location of the target, 
encodes the response digit, and presses the corresponding 
keyboard key. 

Mental rotations were implemented using the ACT-R 
imaginal module. The time to perform the rotation was 
based on previous mental rotation research (e.g. Bethell-Fox 
& Shepard, 1988) and was a linear function of the angle of 
rotation. The slope of the linear function was a free 
parameter, as the slope can vary by task depending on the 
relative complexity of the object to be rotated. 

Learning 
The model’s performance improves over time by learning 

in three ways. First, the angle from the overhead view is 
encoded in declarative memory when the first subtask is 
completed. In subsequent trials, the model attempts to 
retrieve an existing chunk based on the target’s location. If a 
chunk exists and gets retrieved before the model completes 
the process of visually encoding the angle, then the 
information from the chunk that was retrieved from 
declarative knowledge is used. Over time, retrievals become 
more likely and faster than explicitly encoding the angle 
using perceptual and imaginal actions. This leads to a speed-
up in the model’s execution of the task. 

In addition to an increasing reliance on declarative 
representations for target location information, the second 
step of the solution process is also stored in declarative 
knowledge once the response is made. These chunks contain 
information about the target location from the overhead 
view as well as the perspective on the map view (i.e., the 
misalignment). Consequently, with experience the model 
can attempt to retrieve the response based on the target 
location and map view perspective location. Like encoding 
the target location on the overhead view, if a chunk is 
retrieved before the model completes the mental 
transformations on the map view, the response is based 
upon the chunk retrieved from declarative knowledge. 

The final learning process in the model involves ACT-R’s 
production compilation (i.e. proceduralization). Production 
compilation is a process by which new productions are 
created dynamically to represent in one step the 
consequences of two productions that execute 
consecutively. With experience, it becomes increasingly 
likely that the new production will be used, as the model 
learns that the utility of the new production is greater than 
the utility of the original, separate productions. However, 
due to the many constraints imposed on production 
compilation by the architecture and the structure of this 
model, the only compilation that occurs in the current model 
involves encoding the mental rotation into productions 
specific to each pair of overhead target and map view 

perspective locations. Therefore, the only savings 
introduced by production compilation were the infrequent, 
but substantial, time savings from the mental rotation of trial 
layouts that were only seen once per session. 

Explaining Night Shift Performance Decrements 
Several alternatives were explored to explain the 

decrement in performance observed for participants on the 
night shift. The solution that resulted in the best explanation 
of the data was a variation of the decay rate of declarative 
chunks activation as a function of simulated work shift. 
Alternative solutions that did not explain the observed 
trends as well are described in the Results and Discussion 
section. 

By default, the decay rate parameter is not allowed to 
vary in the implementation of ACT-R. That is, the decay 
rate can be set, but it assumes the same value for the 
duration of a model run. There have been various efforts to 
implement more dynamic mechanisms for decay in ACT-R. 
Most of these have been related to accounting for the 
spacing effect (Anderson, Fincham & Douglass, 1999; 
Jastrzembski & Gluck, 2009; Pavlik & Anderson, 2005). 

In our case, we utilize the decay rate to represent 
differences in the effectiveness of learning as a function of 
when during the day the task was performed. To implement 
the mechanisms, the equation to calculate the base-level 
activation of declarative chunks was modified (Equation 1). 
The only change to the standard ACT-R base-level learning 
equation is that the value of the decay rate parameter can 
vary according to the time when a chunk was added to 
declarative memory or when the chunk was rehearsed (dj), 
as opposed to a constant decay rate across all rehearsals (d) 
in the original equation. This modification does not change 
the effect of decay for current ACT-R models. 

             (1)  

The current model was implemented with the simplifying 
assumption that the level of alertness, and thus the value of 
dj, is constant across all hours of a work shift (day or night). 
It is well known that alertness due to circadian rhythms 
varies throughout the day and night (Van Dongen & Dinges, 
2005). However, while the model executed the task the 
same number of times as the participants did through a 
simulated workday, we aggregated the data across each day 
to reduce noise. We have not yet evaluated the capacity of 
the mechanism to account for finer grained circadian rhythm 
fluctuations or varying inter-session intervals. 

The model was fit to the day shift data using the retrieval 
threshold (best fit = 1.2), retrieval latency factor (8.0), and 
rotation slope (0.009 sec/degree) parameters. The rotation 
slope is similar to the slope found in previous research for 
simple rotations (Bethell-Fox & Shepard, 1988). The base 
level learning, which controls the rate of activation decay 
(dj), was left at the ACT-R default (0.5) during sessions 
when participants were on the day shift. For predicting the 
night shift data, the declarative chunk decay rate was 
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allowed to vary. The best fitting decay parameter for the 
night shift sessions was 0.6.  

Results and Discussion 
Figure 2 shows observed (solid lines) and best fitting model 
(dashed lines) mean reaction times as a function of day in 
the study and simulated work shift (night or day). For both 
shifts, the observed behavior is well predicted (RMSD = 65 
ms, r2 = .98 for day shift; RMSD = 79 ms, r2 = .98 for night 
shift). The night shift predictions are particularly 
noteworthy, as only one parameter was varied relative to the 
day shift model. 

The model is able to predict the observed response times 
well across fourteen days, including differences across work 
shifts (i.e. the interaction of day and shift). The model is 
able to predict the effects of work shift changes well with 
variations in declarative memory decay rates based on the 
time at which the tasks are performed. While the declarative 
decay mechanism explains the observed decrements well, 
several alternative mechanisms for explaining the trends 
were considered. 

One alternative mechanism involves manipulating overall 
declarative chunk activation at the time of retrieval, as was 
done in Gunzelmann et al. (2007). This model did fit the 
observed data on most days, but did not correctly predict the 
effect on the overall learning rate when the participants in 
the night shift condition temporarily switched to the day 
shift on days 8 and 14. On these days, the model predicts 
that the performance of participants in the night shift group 
is nearly equivalent to that of participants in the day shift 
group. This is because the model assumes that the 
participants’ alertness recovers when performing the task 
during the day. There is some evidence in associated data 
(not reported here) to support this, although we do not have 
conclusive evidence. Regardless, if the impact of degraded 
alertness were only on activation levels, then the knowledge 
should be more available during the day. As the human data 
illustrate, however, the deficits associated with performing 
the task on the night shift persisted. 

Another alternative mechanism for explaining the 
decrements of alertness is a decrement to utility values 
associated with production selection and execution. This 
mechanism has been used to predict performance 
decrements due to decreased alertness in vigilance tasks 
(e.g. Gunzelmann, Moore Jr, Salvucci & Gluck, 2009). 
However, such a mechanism in the model presented here 
does not explain the observed data for the current task. The 
same issue is encountered as with the previous alternative 
— the model recovers to day shift levels of performance on 
the “day off” and “recovery” days. This is likely a result of 
the current task requiring constant engagement, over short 
periods, and thus mechanisms employed for sustaining 
attention throughout the task would not be stressed. 

A third alternative mechanism that was explored is a 
variation in procedural learning as a function of shift. The 
model presented in this paper has both procedural and 
declarative learning enabled. It may be that the observed 

night shift decrement resulted from a slowing of procedural 
learning rather than a slowing of declarative learning. To 
test this, the rate of learning for productions rule utilities 
was varied. This made little difference in the predicted 
results. This lack of predictive power may result from either 
the way in which the model was constructed, with an 
emphasis on declarative knowledge, or a result of the study 
design, with most of the procedural learning occurring early 
in the protocol when all participants performed the task 
during the day.  

Thus, the model presented here provides support for the 
hypothesis that variations in alertness have an impact on 
learning that may persist beyond immediate task 
performance. This is consistent with previous research that 
has indicated that sleep loss causes deficits in encoding 
declarative knowledge (see Jackson & Van Dongen, in 
press, for a review). In the ACT-R theory of memory, decay 
rate is arguably the parameter that most closely corresponds 
to encoding and rehearsal, as this parameter determines how 
much the previous exposures to knowledge will affect future 
retrievals. While there is no conclusive evidence in the 
literature to attribute either encoding or retrieval deficits to 
the observations, the current modeling helps support the 
claim that decreased alertness affects encoding. 

A useful future extension to the proposed mechanism for 
predicting the effects of alertness on learning would be to 
account for the inter-session intervals. Currently the model 
does not specifically take into account the 2 to 26 hour 
intervals between consecutive sessions, which is 
problematic if we want to generalize the model to tasks in 
which the time between sessions varies. Incorporating 
mechanisms proposed in previous modeling to account for 
inter-session intervals (Anderson, et al., 1999) or practice 
spacing effects (Jastrzembski & Gluck, 2009) may allow the 
current model to predict these inter-session intervals. 

Conclusion 
Performance variations based on alertness have both 
theoretical and real-world importance. The present results 
illustrate how specific cognitive processes may be affected 
by circadian rhythms, and have implications for task 
training and performance in real-world contexts. 

The cognitive modeling presented here illustrates how 
learning rates may be impaired at night, during the nadir of 
circadian rhythms. Because degraded learning has potential 
consequences that extend beyond the immediate situation, 
brief transitions to day shift may not result in immediate 
recovery. While the benefit in response time was fairly 
small in this study (300 ms), the modeling suggests that the 
effects of learning under conditions of lower alertness may 
accumulate over time and thus the benefit of training during 
the day will grow. Moreover, tasks in which exposures to 
declarative facts are less frequent, as seen in many real 
world tasks, are expected to encounter an even greater effect 
of decreased alertness due to a greater time between 
rehearsals and a greater (exponential) decay rate. 
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Several mechanisms were explored to explain the 
observed night shift response time decrement. Some 
mechanisms that have been used previously to explain 
observed decrements of alertness could not explain the 
results found in this research. We do not find this outcome 
particularly troublesome, or even surprising. Rather, in the 
current study and others, the tasks were specifically selected 
to ascertain the various ways in which reduced alertness 
may affect performance on particular mechanisms within 
the ACT-R architecture. 

Our goal is to identify a general set of mechanisms to 
account for the ways in which variations in alertness impact 
various components of cognitive functioning. Focusing on 
laboratory tasks allows us to better isolate various 
components and evaluate particular computational 
mechanisms. Such an understanding is necessary in order to 
predict performance in more complex tasks where various 
cognitive functions, and mechanisms, interact in complex 
ways. This represents the focus of this research in the long 
term (e.g. Gunzelmann & Gluck, 2009; Gunzelmann, 
Moore, Salvucci, & Gluck, 2009; Tucker et al., 2010). 
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Abstract

Cognitive models can be used to generate the behavior of vir-
tual players in simulation-based training systems. To learn
from such training, the virtual players must display realistic
human behavior, and trainees need to understand why the other
players behave the way they do. This understanding can be
achieved by explaining the underlying reasons for the virtual
players’ behavior. In this paper, it is discussed how to design
cognitive models in such a way that they are able to explain the
behavior they generate. Three users studies were carried out to
assess what type of explanations are useful for training, and
how that relates to cognitive model design. Several guidelines
for developing explainable cognitive models are proposed.
Keywords: Explanation, Cognitive modeling, Task analysis,
Virtual training.

Introduction
Virtual training systems are increasingly used for training of
complex tasks such as fire-fighting, crisis management, ne-
gotiation and social skills. To create valuable learning ex-
periences, the virtual characters in the training scenario, e.g.
the trainee’s colleagues, opponents or team members, must
display realistic behavior. Realistic behavior can be ensured
by letting humans play these roles. However, the characters
in virtual training systems often have specialist tasks which
can only be played by experts, and human experts are of-
ten scarcely available. Alternatively, required human be-
havior can be represented in cognitive models, which gives
trainees the opportunity to train whenever and wherever they
like (Heuvelink, 2009).

A valuable learning experience requires more than inter-
action with virtual players displaying realistic behavior. To
learn from training, trainees must (eventually) understand the
behavior of the other players. Instructors can explain the mo-
tives behind other players’ behavior, but that would reintro-
duce the availability problems with experts just mentioned.
Preferably, cognitive models representing human behavior
also have the ability to explain that behavior.

There are several systems providing explanations about
non-human player behavior in virtual training systems, e.g.
Debrief (Johnson, 1994), XAI I (Van Lent, Fisher, & Man-
cuso, 2004) and XAI II (Gomboc, Solomon, Core, Lane,
& Lent, 2005; Core et al., 2006). However, none of these
systems obtain their explanations directly from the cognitive
models of virtual players. The XAI I system only provides
explanations about the physical states of virtual players, e.g.

1This research has been supported by the GATE project, funded
by the Netherlands Organization for Scientific Research (NWO)
and the Netherlands ICT Research and Innovation Authority (ICT
Regie).

their location and health. Debrief determines what must have
been the beliefs of a virtual player, but does not have access
to its actual beliefs. XAI II gives explanations in terms the
underlying motivations of virtual players if those are repre-
sented in simulation, but this is often not the case. Moreover,
as far as we know, the explanations of these systems are not
empirically evaluated.

We advocate an approach that connects behavior genera-
tion and explanation. In other words, the cognitive mod-
els used to generate behavior can also be used to explain
that behavior. The models are not necessarily similar to hu-
man reasoning, as long as they generate useful explanations.
In this paper, we discuss three explorative studies in which
users evaluate explanations generated by explainable cogni-
tive models on their usefulness for learning. Based on the
results, we present guidelines for designing explainable cog-
nitive models.

The paper is organized as follows. First, we discuss what is
known about how people explain behavior. Second, we intro-
duce an approach for explainable cognitive models. Then, we
describe three user studies evaluating explanations of these
models, and discuss the results. From this discussion, we ab-
stract guidelines for modeling and explaining virtual player
behavior. We end the paper with a conclusion and sugges-
tions for future research.

Explaining behavior
Keil provides an extensive overview of explanation in gen-
eral, in which he categorizes explanations according to the
causal patterns they employ, the explanatory stances they
invoke, the domains of phenomena being explained, and
whether they are value or emotion laden (Keil, 2006). Hu-
mans usually understand and explain their own and others’
behavior by adopting the intentional stance.

Dennett distinguishes three explanatory stances: the me-
chanical, the design, and the intentional stance (Dennett,
1987). The mechanical stance considers simple physical ob-
jects and their interactions, the design stance considers en-
tities as having purposes and functions, and the intentional
stance considers entities as having beliefs, desires, and other
mental contents that govern their behavior. The intentional
stance is closely related to the notion of folk psychology. Folk
psychology refers to the way people think that they think, and
determines the language they use to describe their reasoning
about actions in everyday conversation (Norling, 2004).

Attribution theory is one of the most important theories
on people’s behavior explanations, and focuses on the vari-
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ous causes that people assign to events and behavior (Heider,
1958; Kelley, 1967). External attribution assigns causality to
factors outside of the person, e.g. the weather. Internal attri-
bution assigns causality to factors within the person, e.g. own
level of competence. Related to attribution theory is the con-
cept of explanatory style, i.e. people’s tendency to explain
causes of events in particular ways (Buchanan & Seligman,
1995). People with a negative explanatory style believe that
positive events are caused by things outside their control and
that negative events are caused by them. People with a posi-
tive explanatory style, in contrast, believe that positive events
happened because of them and that negative events were not
their fault. Explanatory style is part of someone’s personality.

Attribution theory is criticized for not making a distinction
between the explanation of intentional and unintentional be-
havior (Malle, 1999). In reaction, Malle provided a frame-
work with different explanation modes. One explanation
mode considers explanations about unintentional behavior,
and three explanation modes consider explanations about in-
tentional behavior: reason, causal history, and enabling fac-
tors explanations. Reason explanations are most often used
and consist of beliefs and goals, causal history explanations
explain the origin of beliefs and goals, and enabling factors
explanations consider the capabilities of the actor.

A lot of research on explaining computer program behav-
ior has been done in the field of expert systems (Swartout &
Moore, 1993). Usually, outcomes like diagnoses or advices
are explained by the steps that lead to it, e.g. the rules that
were applied. It was found that the purpose of explanation
has to be taken into account during system design. The infor-
mation needed in explanations must be present, even though
not necessary for the generation of behavior.

Putting these findings into the perspective of cognitive
modeling and virtual training: trainees should get to under-
stand the intentional behavior of virtual players. Different
explanation theories use different terms for people’s expla-
nations of (intentional) human behavior. But whether called
intentional, folk or reason explanations, they all refer to ex-
planations in terms of mental concepts like beliefs, intentions
and goals. Furthermore, when a cognitive model has to deter-
mine the behavior of a virtual player, it must be executable,
e.g. by implementing the model in a cognitive architecture.
From explanation research on expert systems we learned that
the concepts needed for explanation must be present in the
design. Consequently, to develop explainable cognitive mod-
els, concepts like motivations, beliefs, and goals need to be
explicitly represented in the model.

An explainable cognitive model
Virtual players in training systems usually perform relatively
well defined tasks. We therefore represent their behavior
in the form of task hierarchies. Hierarchical task analy-
sis is a well established technique in cognitive task analy-
sis, and connects internal reasoning processes to external ac-
tions (Schraagen, Chipman, & Shalin, 2000). A task hierar-

chy has one main task, which is divided into subtasks, which
are divided into subtasks, etc. Subtasks that are not divided
are actions that can directly be executed in the environment.
Adoption conditions are connected to each subtask, specify-
ing the conditions under which a subtask can be adopted. Sar-
dina et al pointed out the similarities between task hierarchies
and BDI (Belief Desire Intention) models (Sardina, De Silva,
& Padgham, 2006). The tasks and adoption conditions in a
task hierarchy can be seen as goals and beliefs, respectively
(see Figure 1). In earlier work we have elaborated the use of
goal hierarchies for the representation virtual player behavior,
and shown how these models can be implemented in a BDI
(Beliefs Desire Intention) architecture, and thus be made ex-
ecutable (Harbers, Bosch, & Meyer, 2009a).

Figure 1: Example of a goal hierarchy.

There are four goal-subgoal relations: an all relation means
that all subgoals must be achieved to achieve a goal, one
means that exactly one subgoal must be achieved to achieve
a goal, seq means that all subgoals must be achieved in a par-
ticular order to achieve a goal, and if means that a subgoal
must only be achieved under certain conditions, i.e. when
the player has certain beliefs. These relations yield different
action types, i.e. the relation of an action to its parent goal.

An action can be explained by the goals and beliefs respon-
sible for that action. However, providing the whole trace of
beliefs and goals delivers long explanations with irrelevant
information (Keil, 2006), in particular, with big goal hierar-
chies. Instead, a selection of ’explaining elements’ can be
provided to the trainee. For example, Action C in Figure 1
could be explained by Goal B, Goal A, belief 3, belief 1 or
Action E (provided that E must follow C). More general, an
action can be explained by different explanation types, re-
spectively, the goal directly above an action (G+1), the goal
two levels above an action (G+2), the beliefs one level above
an action (B+1), the beliefs two levels above an action (B+2),
and the goal or action that will be achieved after an action
(Gnext).

Theories on human behavior explanation do not describe
which explaining mental concepts should be part of an ex-
planation. Malle’s framework, for instance, does distinguish
beliefs and goals in reason explanations, but does not (yet)
describe in which situations which type is used more of-
ten (Malle, 1999). We performed three user studies to in-
vestigate which explanation types are considered useful to in-
crease understanding of the training task. In particular, we
investigated which explanation type is preferred for which ac-
tion type. Our hypotheses are related to explanation stance,
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length and type: 1) explanations in terms of beliefs and goals
are appropriate for explaining virtual player behavior, 2) pre-
ferred explanations are relatively short and contain a selection
among explaining beliefs and goals, and 3) preferred expla-
nation type depends on the type of the action to be explained.

Three user studies

In this section we will give overviews of Study 1 (Harbers,
Bosch, & Meyer, 2009b), 2 (Harbers, Bosch, & Meyer, 2010)
and 3 (Broekens et al., 2010), and then discuss the results to-
gether. Only the results that are relevant for the discussion
in this paper are presented. In all studies, the subjects were
provided with a training scenario, and then asked to provide,
select or judge explanations for several of the actions of the
player(s) in the scenario. The independent variable in the
studies is action type (actions with an all, seq, one or if re-
lation to their parent) and the dependent variable is preferred
explanation type (G+1, G+2, B+1, B+2, or Gnext). The ex-
planations presented to the subjects were generated by imple-
mented cognitive models of the virtual players.

Study 1: Onboard firefighting

Domain and task. The domain was onboard firefighting.
The role to be trained was that of Officer of the Watch (OW),
the person in command when there is a fire aboard a ship.

Subjects. The subjects (n=8) were instructors of the Royal
Netherlands Navy and all expert on the training task.

Material. We used the CARIM system, a virtual training
system for onboard firefighting (Bosch, Harbers, Heuvelink,
& Van Doesburg, 2009). Three of the characters in the train-
ing scenario were modeled and implemented. The implemen-
tation was done in the programming language 2APL (Dastani,
2008). Questionnaires were administered to the subjects.

Procedure. Subjects played one scenario (approx 20 min-
utes), using the CARIM system, in which they were con-
fronted with a fire aboard a Navy ship. Subsequently, they
received a list with 12 actions of players in the scenario, and
were asked to explain them in a way they considered useful
for increasing trainees’ understanding. Then, they received
the same list of 12 actions, this time with four explanation
alternatives (G+1, G+2, B+1, B+2) for each action. The sub-
jects were asked to indicate which of the alternatives they
considered most useful for increasing trainees’ understand-
ing.

Results. Regarding the first part of the questionnaire, we
counted the number of elements in each of the subjects’ own
explanations, where an element is a goal, a fact, etc. Of the
88 explanations in total, 62 contained 1 element and 26 con-
tained 2 elements. Furthermore, we categorized the elements
in the subjects’ explanations in different mental concepts. We
were able to categorize all elements as either a belief or a
goal: 52 beliefs and 62 goals. Table 1 shows the results of the
second part of the questionnaire, the multiple choice ques-

Action type Explanation type
G+1 G+2 B+1 B+2

All (3 actions) 33% 50% 13% 4%
Seq (9 actions) 51% 21% 28% 0%

Table 1: Percentages of preferred explanation types per action
type (n=8).

tions. The agreement among the subjects for these results
differed per action: for 5 actions at least 75% of the subjects
preferred the same explanation, for 6 actions at least 50%,
and for 1 action there was no explanation which at least 50%
of the subjects preferred.

Study 2: Firefighting
Domain and task. The domain of this study was civil fire-
fighting, and the role of the trainee was leading firefighter.

Subjects. The subjects (n=20) in Study 2 were unfamiliar to
the training task. An advantage of non-expert subjects is that
they do not have to imagine how useful the provided expla-
nations are for understanding the training task. Instead, they
can introspect to determine which explanations they consider
useful. A disadvantage, on the other hand, is that non-experts
cannot be expected to provide useful explanations for expert
task actions themselves.

Material. A cognitive model of a leading firefighter was
developed and implemented, again in 2APL. Questionnaires
were used for the evaluation.

Procedure. The subjects were briefed about the training
scenario, which involved a fire in a house. Subsequently, they
received a list of 16 actions of the leading fire-fighter in the
scenario with each four explanation alternatives (G+1, G+2,
B+1, and Gnext). They were asked to indicate which expla-
nation they considered most useful for understanding the task
of leading fire-fighter.

Action type Explanation type
G+1 G+2 B+1 Gnext

All (5 actions) 25% 16% 50% 9%
One (4 actions) 8% 8% 85% 0%
Seq (4 actions) 43% 14% 34% 10%
If (3 actions) 2% 2% 97% 0%

Table 2: Percentages of preferred explanation types per action
type (n=20).

Results. Table 2 gives an overview of the results. For 7 of
the actions at least 75% of the subjects preferred the same
explanation, for 8 actions at least 50%, and for 1 action there
was less than 50% agreement.

Study 3: Cooking
Domain and task. The domain of this study was cooking,
and the training task was making pancakes. We purposely se-
lected a simple training task, so that it was easy to find people
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that could be considered experts.

Subjects. The subjects (n=30) were all familiar to this task.

Material. A cognitive model of a cook able to make pan-
cakes was developed. The model was implemented in the
programming language GOAL (Hindriks, 2009). Again, ques-
tionnaires were used for the evaluation.

Procedure. First, the subjects were briefed about the train-
ing scenario. Subsequently, they were asked to explain 11 of
the cook’s actions as they would to a student cook. Next, the
subjects had to rate given explanations for all the 11 actions
on their naturalness and usefulness on a scale of 1 to 5. The
subjects were divided over condition 1, 2 and 3 in which they
had to rate explanations of type G+1, B+1 and Gnext, respec-
tively. In the last part of the questionnaire the subjects were
shown the underlying goal hierarchy of the virtual player, and
they were asked to indicate in the hierarchy by which beliefs
and/or goals they would use to explain each of the 11 actions.

Results. The results of the subjects rating the usefulness of
given explanations are shown in Table 3 (one of the actions
was excluded from the analysis). The numbers are the av-
erage ratings of 10 subjects on 3 or 4 actions. The average

Action type Explanation type
G+1 B+1 Gnext

All (3 actions) 3.2 2.5 3.4
One (3 actions) 3.0 2.4 2.0
Seq (4 actions) 2.9 2.8 1.8

Table 3: Average usefulness scores (scale 1-5) of action type
per explanation type (n=30, n=10 per condition).

number of goals and/or beliefs that the subjects selected in
the goal hierarchy for using in an explanation themselves was
1.7. One of the 30 subjects scored very high, and without this
subject the average number of selected elements was 1.5.

Discussion

In this section we discuss the results of the user studies aiming
to extract guidelines for developing and explaining cognitive
models. The discussion is organized according to the three
hypotheses concerning explanation stance, length and type.

From literature we learned that people adopt the intentional
explanatory stance when they explain (intentional) human
behavior. In other words, human(-like) behavior is explained
by mental concepts such as beliefs and goals. The results of
Study 1 show that it is possible to categorize the subjects’ ex-
planations in beliefs and goals, i.e. they are compatible with
the intentional stance (we do not claim that this is the only
way to categorize these explanations). In Study 3, the sub-
jects’ explanations were not categorized systematically, but
an examination of the explanations provides a similar picture.
Thus, the results confirm that people explain human-like vir-
tual player behavior by the underlying beliefs and goals.

The results confirm our hypothesis that preferred explana-

tions are relatively short. We expressed explanation length
by the number of elements in an explanation, where an ele-
ment is a fact, a goal, etc. In Study 1, the subjects’ expla-
nations had an average length of 1.3 elements, and in Study
3 the subjects selected an average of 1.7 elements from the
goal hierarchy (1.5 if one outlier is eliminated from the data).
The lower average in Study 1 might be due to the fact that the
subjects had to write down complete explanations, whereas
in Study 3 they only had to mark numbers of elements. So as
expected, people’s explanations about virtual player behavior
usually only contain one or two elements.

As the results discussed so far confirm that explanations
contain a selection of beliefs and goals, it makes sense to ex-
amine people’s preferred explanation type. In Study 1, ex-
cept for explanations of type B+2, all explanation types (G+1,
G+2, B+1) were sometimes considered most useful by more
than 50% of the subjects. In Study 2, for actions of type one
and if, explanations containing a belief (B+1) were clearly
preferred, and for actions of type all and seq, also explana-
tions of other types (G+1 and G+2) were sometimes preferred
by more than 50% of the subjects. These results are consis-
tent with Study 1, in which only all and seq actions were
examined. In Study 3, unlike Study 2, for all action types,
explanations of type G+1 were on average rated higher than
those of type B+1. Like in Study 2, for action types one and
seq, Gnext explanations received relatively low ratings, and
for actions of type all, they were highly rated. The usefulness
of type Gnext explanations is closely related to the underlying
cognitive model, which will be discussed in the next section.
Interestingly, in the last part of Study 3, subjects often se-
lected both a belief and a goal as their preferred explanation.

A remarkable difference between Study 1 and 3 on the one
hand, and Study 2 on the other hand is that goal-based ex-
planations were generally stronger preferred in the former,
and belief-based explanations in the latter. A possible reason
is that the subjects in Study 2 were unfamiliar, and those in
Study 1 and 3 familiar with the training task. Data suggest
that, on average, beliefs carry more idiosyncratic information
and are harder to infer than goals (Malle, 1999). For subjects
unfamiliar with a training task, belief-based explanations may
provide more information underivable from the context than
goal-based explanations. And expert subjects may not realize
that goal-based explanations are easier to infer for trainees.
Another explanation is that experts, more than non-experts,
focus on the bigger picture of a virtual character’s behavior.
The subjects in Study 1 may be expected to know what would
help trainees as they were instructors and had, besides being
expert on the training task, didactical knowledge.

To conclude, action type is sometimes, but not always pre-
dictive for preferred explanation type. Of all studies, only
Study 3 indicates to what extend explanations are preferred.
The highest usefulness scores on action type all, one and seq
are 3.4, 3.0 and 2.9, respectively. The scores are not low (all
above the average of 2.5), but not very high either. In the ex-
periments, we only provided subjects with explanations con-
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taining one element, but the results seem to indicate that both
beliefs and goals carry important information.

Modeling and explanation guidelines
Though the results of the three studies give no conclusive ev-
idence, they provide directions for modeling and explaining
virtual player behavior. In this section we present a set of
guidelines for designing and explaining cognitive models.

The design and explanation of cognitive models are closely
related in our approach. Though a virtual player’s beliefs and
goals remain unknown for users when a cognitive model is
executed, they become visible when its behavior is explained.
Thus, the elements in a cognitive model determine the content
of its explanations. Guideline: the goals and beliefs in a goal
hierarchy should be meaningful. Furthermore, two cognitive
models with different underlying structures may display the
same behavior, but generate different explanations. Figure
2, for instance, shows two possible positions of action E in
a goal hierarchy. When both relations in this hierarchy are
of the type seq, the position of action E does not effect the
model’s observable behavior, but it may influence they way
it is explained, e.g. when explanations of the type G+1 are
generated. Of course, developing a cognitive model always

Figure 2: Same behavior, different explanations.

should be done with care, but as illustrated, this holds for ex-
plainable cognitive models in particular. Guideline: careful
attention should be paid to the internal structure of the goal
hierarchy. Though obvious, these two guidelines are crucial
for developing useful explainable cognitive models.

In the previous section, we concluded that both beliefs and
goals carry important information for explanations. The re-
sults showed that beliefs directly above an action (B+1) were
considered most useful for explaining that action. Regard-
ing goal-based explanations, the studies are less conclusive;
several goal-based explanation types were considered useful
(G+1, G+2 and Gnext) for different actions. But all together,
goal-based explanations of type G+1 were most often pre-
ferred and highest rated. Moreover, people tend to use expla-
nation types B+1 and G+1 together. Guideline: explanations
should contain the belief(s) B+1 and the goal G+1.

The guidelines presented so far are general for all action
types and supported by the results of all three studies. More
specific guidelines that take action type into account can im-
prove the default explanations. In the remainder of this sec-
tion we will propose two additional, more specific guidelines.

In some cases an explanation of type Gnext can be added
to the default explanation of G+1 and B+1. In contrast to
G+1 and G+2 explanations, Gnext explanations do not con-

tain goals from a particular level above the action. The level
of the Gnext goal depends on the relations in the goal hi-
erarchy. Here again, the usefulness of a Gnext explanation
strongly depends on the underlying cognitive model. Con-
sider, for instance, the two goal hierarchies in Figure 3. Goal
B and C can be modeled as two neighboring goals or as goal
and subgoal, e.g. when goal A, B and C represent Report to
head officer, Go to the head officer and Report new informa-
tion, respectively. In the first case, achieving goal B enables
the achievement of goal C, and in the latter, goal C is achieved
by achieving B. In Study 3, Gnext explanations were consid-

Figure 3: Neighbors or parent and sub-goal.

ered useful for actions of type all, where for all these all type
actions it holds that their parents had a seq relation to their
parents. Guideline: for actions of type all, when their par-
ent goal has a seq relation, the explanation should contain the
goal Gnext besides B+1 and G+1. Addition of a Gnext goal
to the explanation may also be useful for other action types,
but we have no evidence for that.

Another exception to the default rule concerns actions of
the type one. The left side of Figure 4 represents a situation
where action B is followed by action C or D, for example, the
action Take money is followed by either Cycle to the shop or
Drive to the shop. Action C and D are explained by goal A
(G+1), e.g. Buy ingredients. However, a goal can only have
one relation to its subgoal/actions, so the goal hierarchy in the
left side is not allowed. The right side of Figure 4 shows how
this situation should be represented. Goal A has a relation seq
to its children, and a new goal X is introduced, e.g. Go to the
shop, with a relation one to its children. Now, when action C
and D are explained by their parent goal X, the explanation is
not informative (I cycle to the shop because I want to go to
the shop). In this case, it would be better to provide goal A as
an explanation (I cycle to the shop because I want to buy in-
gredients). Although it may result in redundant goal-subgoal

Figure 4: Explanation of actions with a one relation.

relations, we believe that from an explanation point of view
a goal should have only one relation to its subgoals, as this
simplifies interpretation of the cognitive model. Guideline:
to explain actions of type one, instead of goal G+1, goal G+2
should be provided (i.e. B+1 and G+2).
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Conclusion
In this paper we analyzed the results of three user studies in-
vestigating people’s preferred explanations of virtual player
behavior. From the analysis, we extracted a set of guidelines
for developing and explaining cognitive models. In general,
modeling should be done carefully, and by default, an ac-
tion should be explained by the goal and belief directly above
the action, i.e. explanation types G+1 and B+1. In addition,
we introduced two guidelines for specific action types, which
show how default explanations can be improved by providing
extra or other elements in the goal hierarchy. More exper-
imentation is needed for introducing more of these specific
guidelines.

Another way to improve the explanations is by extending
the cognitive model, for instance, by adding beliefs. Be-
liefs can contain information about the environment, e.g. re-
sources that are available or events that just occured. Such
beliefs are useful in particular and most often connected to
if and one type actions. Beliefs can also contain information
about internal reasoning processes, e.g. the given action is
not yet executed, or a preceding action is executed. Such be-
liefs are more often connected to all and seq type actions. In
these cases, it can be useful to add extra beliefs containing
background information as adoption conditions. These back-
ground beliefs are always believed by the virtual player, so
they do not effect the player’s observable behavior, but they
do add useful information to explanations.

There are many other directions in which this work can be
extended. For instance, the cognitive models can be extended
with emotions, a user model in which the trainee’s knowledge
is modeled can be used to select explanations, and the success
of the approach in other domains can be examined. In future
work we will first validate the present approach by comparing
understanding of played training scenarios of trainees who
did and did not receive explanations about virtual player be-
havior.
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Abstract

It is generally well acknowledged that humans are capable of
having a theory of mind (ToM) of others. We present here a
model which borrows mechanisms from three dissenting ex-
planations of how ToM develops and functions, and show that
our model behaves in accordance with various ToM experi-
ments (Wellman, Cross, & Watson, 2001; Leslie, German, &
Polizzi, 2005).
Keywords: cognitive architectures; theory of mind

Introduction
The concept of “theory of mind” (ToM) refers to one’s ability
to infer and understand the beliefs, desires and intentions of
others, given the knowledge that one has available; without
it, people can be severely impaired in their ability to interact
with others (Baron-Cohen, Leslie, & Frith, 1985). A large
body of research has tried to explain how this critical ability
functions by studying its development in children (Wellman
et al., 2001), but has led to many contradictory accounts.

We have built a model that borrows ideas from various ex-
planations of how ToM develops and functions to form a co-
hesive theory of ToM, and show that it produces behavior in
accordance with various ToM experiments (Wellman et al.,
2001; Leslie et al., 2005). While the similarities between a
model’s behavior and data is not a certain indicator of cogni-
tive plausibility (Cassimatis, Bello, & Langley, 2008), it can
distinguish between models that show performance and data
fit (which, to us, are preferred) and models that do not.

Theories of the Theory of Mind
There are, in general, three competing views for how ToM
takes place at a cognitive level. They are typically described
in the context of “belief and desire” reasoning: ToM is the
understanding that different people can have different beliefs,
not all of which may be actually true; people also have in-
ternal desires that cause them to act in certain ways, physi-
cally, in the world. There is also a distinction between “true-
beliefs,” or beliefs that are true in the physical world, and
“false-beliefs,” which others may have but which are not ac-
tually true. The ability to understand a false-belief task, then,
indicates evidence that a person can appreciate the distinction
between the mind and the world (Wellman et al., 2001).

Conceptual change (commonly called theory-theory) is
one possible explanation for ToM (Wellman et al., 2001).
Theory-theorists believe that children learn a set of causal
laws, or theories, about the beliefs and desires of people in
general (Gopnik, 1993). Children then use these causal laws
to explain behavior observed in others, to predict desires and
behaviors, and to perform other related ToM tasks.

Simulation theory is a second view (Gallese & Goldman,
1998). It posits that when a person (“A”) tries to understand
another (“B”), A simulates what he/she would do in B’s place,
and attributes the result to B. More specifically, the theory
states that humans perform ToM by representing the mental
states of others, and then using their own decision-making
systems to operate on these foreign mental states to predict
others’ behavior; similar processes can be used to explain ob-
served behavior, making backward inferences. Gallese and
Goldman (1998) describe the distinction between this and
theory-theory as, while theory-theory is performed as a “‘de-
tached’ theoretical activity,” simulation theory involves at-
tempting to mimic or impersonate the mental state of another.

A third body of literature posits that the mind has two sep-
arate mechanisms that work together to provide ToM (Leslie,
Friedman, & German, 2004). The theory of mind mecha-
nism (ToMM) allows people to generate and represent multi-
ple possible beliefs. It is argued that this mechanism is fully
functional in even very young children. The second mecha-
nism provides a selection process (SP) that uses inhibition to
reason about others’ beliefs, such as inhibiting a true-belief
to select a false-belief answer; this processing ability, it is ar-
gued, develops in children during the pre-school years. To
describe how the mechanisms work together as “ToMM-SP”
to provide ToM, the authors break it down into four steps:
(1) identify candidate belief possibilities; (2) provide a priori
weights to the candidates, with true-belief receiving the high-
est weight; (3) adjust the weights given the belief inquiry; and
(4) select the highest-weighted candidate as the answer.

A variety of experiments, primarily in developing children,
have led to a range of results that supports each of these the-
ories. We describe next some of these experiments, followed
by our interpretation of the data and our overall view of ToM.

Experiments in Developing Children
The majority of experiments in this area concerns false-belief
tasks. Arguably, the most well-known false-belief task (and
the one on which we focus in this paper) is the Sally-Anne
task (Baron-Cohen et al., 1985), in which a child is shown
a play with two characters, Sally and Anne (Figure 1). The
true-belief answer (to where Sally believes the marble is) is
that the marble is in Anne’s box (the “TB box”), since that is
where the marble actually is. In contrast, the correct answer
is the false-belief answer, Sally’s box (the “FB box”).

Variations on the Sally-Anne task have also been explored.
One is the avoidance false-belief task (which we shorten to
“avoidance task”). In a sample set-up, the marble is replaced
by a kitten that crawls between boxes while Sally is out of
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Figure 1: A diagram of the Sally-Anne task. A child watches
while: (1) Sally puts a marble in her box; (2) Sally leaves the
room; (3) Anne moves the marble to Anne’s box; (4) Sally
returns to the room. The child is then asked where Sally be-
lieves the marble is.

the room; when Sally returns, she wants to put a piece of
fish under the unoccupied box so that the kitten will not eat
the food and get sick. Therefore, the correct answer to the
question “where will Sally try to put the fish” is the TB box.
This task involves not only identifying Sally’s false belief,
but also taking into account her avoidance desire to predict
her behavior, presumably making the task more difficult.

To individually consider all the experiments in this area is
nearly impossible. Instead, we focus on a meta-analysis that
compiled a broad range of false-belief experiments (Wellman
et al., 2001), and a more detailed experiment performed after
the meta-analysis was compiled (Leslie et al., 2005). These
two studies involve two developmental shifts that are believed
to occur in children. The first is at about 3-4.5 years of age,
when children go from being mostly incorrect to mostly cor-
rect on the standard false-belief task; this seems to corre-
late with the ability to recognize and identify beliefs of oth-
ers. The second developmental shift is at around 4.5-6 years,
when children go from having difficulty with the avoidance
task to performing it mostly correctly; this seems to correlate
with a child’s ability to account for both beliefs and desires,
and to use them to predict the behavior of others.

The meta-analysis performed by Wellman et al. (2001) pro-
vides three results pertinent to this paper. First, it identified
several task components that were statistically insignificant,
including the exact type of task being performed as well as
the phrasing of the false-belief question (e.g., whether it asks
where Sally will look, what Sally believes, or what she will
say). Other factors such as whether the characters in the task
are dolls, photographs, etc., are also inconsequential. Our fo-
cus on the Sally-Anne task, then, and the exact experimental
set-up we chose should not affect the validity of the results.

Secondly, several task components were identified as main
effects, which improve performance but do not interact with
age, including whether the child participated in the experi-
ment (e.g., helped to set up props), whether Sally’s absence
was explicitly emphasized, and in which country the experi-
ment took place. We do not model such task variations.

Thirdly, the compiled results show a significant, if noisy,
effect between age and the proportion of children that an-
swered the false-belief query correctly (p < 0.001). Figure
2 shows the findings; it plots the results from each individ-
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only what we termed primary conditions. These were
conditions in which (1) subjects were within 14
months of each other in age, (2) less than 20% of the
initially tested subjects were dropped from the re-
ported data analyses (due to inattention, experimen-
tal error, or failing control tasks), and (3) more than
80% of the subjects passed memory and/or reality
control questions (e.g., “Where did Maxi put the
chocolate?” or “Where is the chocolate now?”). Our
reasoning was that age trends are best interpretable if
each condition’s mean age represents a relatively nar-
row band of ages; interpretation of answers to the tar-
get false-belief question is unclear if a child cannot re-
member key information, does not know where the
object really is, or cannot demonstrate the verbal facil-
ity needed to answer parallel control questions. In
most of the studies, few subjects were dropped, very
high proportions passed the control questions, and
ages spanned a year or less, so primary conditions in-
cluded 479 (81%) of the total 591 conditions available.
The primary conditions are enumerated in Table 1;
they were compiled from 68 articles that contained
128 separately reported studies. Of the 479 primary
conditions, 362 asked the child to judge someone
else’s false belief; we began our analyses by concen-
trating on these conditions. On average in the pri-
mary conditions, 3% of children were dropped from a
condition, children were 98% correct on control ques-
tions, and ages ranged 10 months around their mean
values.

In an initial analysis only age was considered as a
factor. As shown in Figure 2, false-belief performance
dramatically improves with age. Figure 2A shows
each primary condition and the curve that best fits the
data. The curve plotted represents the probability of
being correct at any age. At 30 months, the youngest
age at which data were obtained, children are more
than 80% incorrect. At 44 months, children are 50%
correct, and after that, children become increasingly
correct. Figure 2B shows the same data, but in this
case the dependent variable, proportion correct, is
transformed via a logit transformation. The formula
for the logit is:

,

where “ln” is the natural logarithm, and “

 

p

 

” is the
proportion correct. With this transformation, 0 rep-
resents random responding, or even odds of predict-
ing the correct answer versus the incorrect answer.
(When the odds are even, or 1, the log of 1 is 0, so the
logit is 0.) Use of this transformation has three major
benefits. First, as is evident in Figure 2B, the curvilin-
ear relation between age and proportion correct is

logit ! ln p
1 p–
------------ 

 

 

straightened, yielding a linear relation that allows
systematic examination of the data via linear regres-
sion; second, the restricted range inherent to propor-
tion data is eliminated, for logits can range from
negative infinity to positive infinity; and third, the
transformation yields a dependent variable and a
measure of effect size that is easily interpretable in
terms of odds and odds ratios (see, e.g., Hosmer &
Lemeshow, 1989).

The top line of Table 2 summarizes the initial anal-
ysis of age alone in relation to correct performance

Figure 2 Scatterplot of conditions with increasing age show-
ing best-fit line. (A) raw scatterplot with log fit; (B) proportion
correct versus age with linear fit. In (A), each condition is rep-
resented by its mean proportion correct. In (B), those scores are
transformed as indicated in the text.

Figure 2: Results from (Wellman et al., 2001) showing a scat-
terplot of the results and best-fit curve.

ual study considered, as well as the curve that best fits it.
They found that at an age of about 44 months, the odds of
answering correctly are even, or 1.0; then, the odds of being
correct increase 2.94 times for every year. The linear regres-
sion model which considers only age is y = −3.96+ 0.09 ·
[age in months], with r2 = 0.391. Their best statistical model,
which had six variables (including age, the country in which
the experiment took place, and child participation), yielded an
R2 of 0.55. The results clearly document the developmental
shift that seems to happen between roughly 3 to 4.5 years of
age where children go from being mostly incorrect to mostly
correct on the standard false-belief task.

We also consider an experiment involving the avoidance
task (Leslie et al., 2005). The experiment, performed with
4.75-year-olds on average, supports the belief that this task is
more difficult than the standard task, and provides evidence
for the second developmental shift. After several children
were eliminated for failing the false-belief task, only 25%
of 16 children correctly answered the query of “Where will
Sally try to put the fish.” The experiment showed, however,
that by asking the question in terms of where the first place
Sally will try to put the fish is, almost three times as many
children (71%) passed the task; we refer to this as “look-first
avoidance.” Overall, the results suggest that children gain the
ability to understand others’ desires and their implications af-
ter they gain the capability to understand their beliefs.

Discussion of Experiments
The area of how children develop theory of mind remains
controversial. One of the pressing questions that emerges
from the literature is whether the various developmental shifts
are due to learning concepts and causal laws (for clarity, we
refer to this as “learning”), as the theory-theorists strongly
posit, or due to increasing capabilities/functionality of mech-
anisms of the brain (we refer to this as “maturation”), as oth-
ers argue. There is certainly evidence for both.

1This model transformed the proportion correct, p, via a logit
transformation, ln(p/(1− p)) where “ln” is the natural logarithm.
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Leslie et al. (2004) argues that maturation of processing ca-
pabilities and resources, alone, can account for all ToM devel-
opments, and have designed reasonable process models (e.g.,
ToMM-SP) demonstrating the idea’s plausibility. Further ev-
idence shows that the capabilities of specific mechanisms in
the brain (such as selection processing and inhibition of be-
liefs) play a crucial role in ToM (German & Hehman, 2006;
Carlson, Moses, & Claxton, 2004).

Wellman et al. (2001), however, makes several arguments
for learning over maturation based on the results of the meta-
analysis; specifically, the strong presence of task manipula-
tions that act as main effects (e.g., child participation). If
maturation were true, presumably many task manipulations
would interact with age since they should help younger chil-
dren’s processing competence more than older children’s;
however, they do not. The presence of such manipulations
does, however, support conceptual change accounts. Over-
all, the authors argue that there is a potential interrelation of
learning and maturation: children improve as they grow and
acquire conceptual understanding of ToM but, within an age
group, processing capabilities could be highly correlated with
performance and could account for much of the variance.

Many of the above papers argue against simulation the-
ory based on these results; however, much of the arguments
are neither substantive nor well supported. Wellman et al.
(2001) argues that, since children do not systematically err
about their own false beliefs, simulation theory is not as plau-
sible; however, this could easily be explained by children re-
membering their own past mental states. Leslie et al. (2004)
simply says about simulation theory, “it is also hard to see a
role for ‘simulation’ in accounting for this data... the mech-
anisms of theory of mind might simply figure out what one
would do... there is currently no evidence that it is the first-
person singular.” The opposite argument could just as eas-
ily be made. Unfortunately, there are few developmental ac-
counts available for simulation theory; (Harris, 1992) is an
exception, and states that a child’s inability to perform simu-
lation early on may be due to memory limitations. In general,
simulation theorists support their arguments as in (Gallese &
Goldman, 1998), with the presence of mirror neurons that fire
both when one views an action and when one performs it.

Overall, we agree in part with Wellman et al. (2001), who
say that the ability of children to recognize false-beliefs in
others is due to both learning and maturation, accounting for
the first developmental shift we discussed where children gain
the ability to recognize and predict beliefs in others. We ar-
gue, however, that the second developmental shift that oc-
curs, which results in children being able to account for both
beliefs and desires to predict another’s behavior, is due to
children gaining the ability to perform simulation. This ac-
counts for 4.75-year-olds’ inabilities to reliably answer the
avoidance query: they are still in the middle of learning and
maturing this ability. Note that this view is not necessarily
incompatible, at the process level, with some of the others;
e.g., in highly complex situations, there is not much differ-
ence between Leslie et al. (2004)’s SP mechanism inhibiting

everything that should not be used and operating only on what
is left, and identifying pertinent beliefs and decision-making
processes and subsequently using them in simulation.

Some recent experiments also suggest that very young chil-
dren (15 months of age) can perform implicit (non-verbal)
false-belief tasks (Onishi & Baillargeon, 2005). This sup-
ports the theory of processing mechanisms in the brain that
work with false-beliefs and, further, suggests that the ability
to recognize situations involving false-beliefs develops before
the ability to explicitly reason about them. We anticipate fur-
ther modeling work concerning this would be compelling.

Core Cognitive Architecture
As our core cognitive architecture we use ACT-R, a hybrid
symbolic/sub-symbolic production-based system (Anderson,
2007). ACT-R consists of a number of modules, buffers and a
central pattern matcher. Modules contain a relatively specific
cognitive faculty typically associated with a specific region
of the brain. For each module, there are one or more buffers
that communicate directly with that module as an interface to
the rest of ACT-R. At any point in time, there may be at most
one symbolic item, or “chunk,” in any individual buffer; the
module’s job is to decide when to put chunks into a buffer.
Chunks are used to represent knowledge or memories related
to any of the modules/buffers, and, in addition to symbolic in-
formation, contain subsymbolic information (e.g., activation).
The pattern matcher uses the contents of the buffers, if any,
to match specific productions which, when fired, can modify
the current contents of the buffers. Ties between competing
productions are broken based on the productions’ expected
utilities, which can be initially set and adjusted via a rein-
forcement learning process; random noise can also be added
in during execution to affect production selection.

The relevant modules of ACT-R to this paper are the in-
tentional and declarative modules. In addition, ACT-R in-
terfaces with the world through the visual, vocal, motor and
aural modules. The open-source, robotic simulation environ-
ment Stage (Collett, MacDonald, & Gerkey, 2005) was used
as the “world” of the model in order to enable fast model de-
velopment and data collection.

ACT-R is able not only to learn new facts and rules, but
also to learn which rule should fire (called utility learning in
ACT-R). It accomplishes this by learning which rule or set
of rules lead to the highest reward. ACT-R uses an elabora-
tion of the Rescorla-Wagner learning rule and the temporal-
difference algorithm (Fu & Anderson, 2006). This algorithm
has been shown to be related to animal and human learning
theory.

Any time a reward is given (e.g., children being told they
responded with the correct answer), a reward is propagated
back in time through the rules that had an impact on the model
getting that reward. Punishments are performed similarly.

Model Description
As stated above, our model is based on the conjecture that,
as children grow, they learn and mature simultaneously; i.e.,
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as they develop, they learn to take advantage of their matur-
ing ability to select between competing beliefs. Further, we
believe that being able to select between beliefs acts as a pre-
curser for simulation, which allows people to use the beliefs
and desires of others to predict and understand their behavior,
and is ultimately what provides full-fledged ToM.

In our model, the Sally-Anne task takes place in the Stage
simulator, which feeds the model visual information; i.e., it
passes the model visual locations to fixate on and, when at-
tended to, what is at that location. This allows the model to
“watch” the Sally-Anne play unfold. As the story unfolds,
the model explicitly notes what happened (e.g., Sally moved
the marble into her box), and who saw it happen (e.g., only
Anne saw herself move the marble into her box). After the
play completes, the model is asked several false-belief ques-
tions. If the model answers a question correctly, the model is
rewarded; otherwise, it is punished.

We first describe the core mechanisms that enable ToM.
Then, we describe how the model learns to effectively use
these mechanisms (as well as develops the ability to use
them). Although much of the description is in the context
of the Sally-Anne task, as are our experiments, recall that this
acts as a proxy for false-belief tasks in general and our results
are not specific to this task (Wellman et al., 2001).

Theory of Mind Mechanisms
When its goal is to answer a query about someone’s belief,
a fully-developed model will answer the question similar to
Leslie et al. (2004)’s ToMM-SP. As the story unfolds, the
model generates possible beliefs for the marble’s location;
for the standard Sally-Anne task, then, this set is {sallys-box,
annes-box}. The model first retrieves the TB answer because
it has the highest activation. It realizes, however, that the an-
swer is not correct since Sally does not know about it. To
address this, it considers the various possible beliefs of the
marble’s location and, from these, it selects the most salient
belief that Sally was known to be privy to, the FB box.

When faced with an avoidance task, a fully-developed
model will first use the above process to select knowledge
to use as input to its simulation. For the Sally-Anne avoid-
ance task variant, the simulation’s input would be the differ-
ent boxes, as well as Sally’s belief of the location of the kitten.
All subsymbolic information of the knowledge, including ac-
tivation levels, is preserved. The model next performs simu-
lation by spawning a sub-model with: this input; access to the
model’s productions and cognitive resources; and the goal of
deciding where to put the kitten (Kennedy, Bugajska, Harri-
son, & Trafton, 2009). Then, the sub-model can infer that, if
Sally wants to put the fish under a box without the kitten, she
will put it under the TB box.

Developmental Mechanisms
As stated, our model both learns and matures as it develops
ToM. The learning mechanism is similar to standard ACT-
R learning. The model begins with a production that answers
false-belief queries simply by retrieving the belief chunk with

the highest activation, and returning it. It can learn, however,
to consider an alternate competing production that, upon the
retrieval of the belief, considers whether the person the query
is about knows about the belief. This production acts as the
gateway to the selection process. Learning over time can
teach the model to exclusively favor this production, as it ul-
timately leads to the correct answer. A similar process occurs
when learning to perform simulation.

ACT-R does not normally model increasing functionality
in the brain. In order to model maturation, therefore, we in-
troduce the notion of a “maturation parameter.” This parame-
ter determines whether a model has the ability to fire certain
sets of productions (i.e., whether the model is mature enough
to have that functionality). Since maturation is not an “all
or nothing” concept, and happens gradually, the parameter
acts as a guideline for how strong the model’s abilities are at
that moment. Any time the model attempts to fire a matur-
ing set of productions, their availability is random according
to the parameter (e.g., if a randomly selected number is less
than the parameter, the productions will be able to fire). Intu-
itively, maturation parameters should be correlated with age:
the older the child, the higher the parameter.

In the case of selecting between different beliefs, the matu-
ration parameter is called the “selection parameter” and deter-
mines the availability of the productions that select between
beliefs. A model with a selection parameter of 0 would never
be able to correctly select a false-belief as the involved pro-
ductions would be unable to fire; a model with a selection pa-
rameter of 0.5 would be able to do so on half of its attempts;
and a model would a selection parameter of 1 will always be
able to fire the involved productions.

In the case of simulation, the model should be able to per-
form larger and larger simulations as it ages. This is in accor-
dance with Harris (1992)’s view that children have difficulty
performing simulation early on due to memory limitations.
The “simulation parameter” determines the availability of the
productions that perform simulation, given the size of sim-
ulation that is being attempted; for low sizes, the model is
more likely to be able to do it, but at high sizes the model be-
comes overwhelmed and cannot process all the data, and so
simulation is less likely. Specifically, any time a simulation
is attempted, the probability that the simulation productions
will be available is min(1,sp/s), where sp is the simulation
parameter and s is the size of the attempted simulation. The
size of the simulation is discussed in the subsequent section.

Modeling Developmental Progress
The model begins at approximately 2 years of age with the
ability to generate multiple possible beliefs (Leslie et al.,
2004). Model development mirrored the two ToM develop-
mental phases. With respect to the first phase and the stan-
dard false-belief task, the model has a selection parameter of
0.5, but does not yet know to do the selection; i.e., when it
initially retrieves the most salient belief, it does not know to
check whether Sally saw it and simply returns the belief. Of
course, the most salient belief is likely the true-belief, and so
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the model will be incorrect, leading to a punishment. This
causes the model to begin to explore using the selection pro-
cess. If the model is able to access that functionality (i.e., if
a number randomly selected at the time of the attempt is less
than the selection parameter), it will attain the correct answer
and receive reward; otherwise, it will default to returning the
initially-retrieved belief, likely leading to punishment. Note
that if this occurs, the productions leading to the selection at-
tempt will incur lower expected utility, making it less likely
that the model will attempt selection during the next trial.

Experience is simulated by engaging the model in false-
belief trials and by slowly increasing the selection parameter.
Therefore, as the model grows more experienced, it concur-
rently learns to utilize its selection mechanism and is able
to more reliably perform selection: by the age of about 44
months (3.7 yrs), the selection parameter is up to 0.8, and
by the age of 68 months (5.7 yrs) that parameter equals 0.95.
Note that, as the selection parameter increases, so does the ef-
ficacy of learning, since more trials that attempt to select the
false-belief do so successfully and receive positive reward.
Learning was concentrated such that about 2 trials approxi-
mates 12 months of experience; the function relating learning
trials to age was determined post hoc after comparing our re-
sults with those of (Wellman et al., 2001).

The second developmental component (concerning the
avoidance task) occurs in an analogous way. Whenever the
child successfully answers the standard false-belief task, it is
queried about the look-first avoidance task (and, upon suc-
cessfully answering that, is further queried on the standard
avoidance task). The model first tries to calculate Sally’s be-
lief exactly as in the standard false-belief task; note that, es-
pecially at early ages, it may or may not be able to do so and
may end up thinking about either the TB or FB box. Once a
belief is in hand, the model initially does not know what to do
with it; so it defaults to where it would put the kitten, the FB
box, resulting in punishment. Over time, the model will start
using the initial belief as input to simulation. If the model is
able to simulate, it will return the box other than the belief;
otherwise, it will again default to returning the FB box.

As mentioned, the model’s ability to perform simulation
is dependent on a simulation parameter, which in turn is de-
pendent on the “size” of the simulation. For the look-first
avoidance query, the simulation size is 1, as the child is being
asked to predict Sally’s actions only one step in the future.
For the standard avoidance query, the simulation size is set to
32. When the model begins at age 2, the simulation parameter
is 0 and so no simulation is possible; by age 56 months (4.7
yrs), it is 1, and by age 72 months (6 yrs), it is 5.

For all models, we kept most of the ACT-R parameter de-
faults. We did change the utility noise parameter (set at a
moderate 1.0) to allow low-use productions to occasionally
fire. Because the rate of learning is dependent entirely on the
utility learning rate parameter (set at the default of 0.2), learn-

2Although this is ad hoc, with such limited data to match, a more
pleasing parameter choice and justification is not possible.
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Figure 3: Model results showing a scatterplot of the standard
false-belief results and best-fit curve.

ing occurred quite quickly in this model. Utility learning rate
could be scaled down substantially to match actual develop-
ment and learning time. In order to do this correctly, it would
be important to know approximately how often children en-
counter false-belief and avoidance tasks, and learn from them.

Model Results
In our first experiment, corresponding to the first phase of
model development, we started testing the model at age 32
months (2.7 yrs), and test roughly every 7 months until the
model reaches around age 92 months (7.7 yrs), for a to-
tal of 10 tests. Each test period consisted of 8 repetitions
of the Sally-Anne task, including all three queries. During
these tests, learning is turned off in order to reliably test the
model’s abilities at that age. To simulate the variability of
children’s development, we randomly perturbed the models’
starting ages around their a priori value of 2 years, selecting
uniformly in the range [17, 31] months. This made the age of
the models in our experiment comparable to the ages of the
children in the meta-analysis (Wellman et al., 2001).

Figure 3 shows the results for the false-belief task, and
plots each model’s age during a test period against the propor-
tion of correct answers the model gave during the test. The
graph appears very similar, visually, to that of Figure 2, and
shows a clear learning trend as well as noise which presum-
ably stems from different maturation levels. Using Wellman
et al. (2001)’s linear regression model (which considers only
age) on this data, r2 = 0.51 with a residual standard error of
1.73. This is considerably higher than their r2 = 0.39. It also
approaches the R2 of their multi-variate model, 0.55. We ar-
gue, then, that our model is stronger since it is both a process
model that learns to perform this task, as compared to a sta-
tistical model, and depends on fewer parameters.

Note that this curve is due to an interaction between the
selection parameter increasing, and the model learning that
attempting to select between beliefs often leads to the correct
answer. We expect, therefore, that if the selection parameter
increased more slowly, learning would be impeded and mod-
els’ performance would not improve as quickly.
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Our avoidance false-belief results were also compared to
those of (Leslie et al., 2005), which showed that 71% of chil-
dren around the age of 4.75 years could answer the look-
first avoidance query but only 25% could answer the stan-
dard avoidance query. We were able to match these results,
but further experimental data is needed in order to distinguish
our parameterization from other valid possibilities.

Discussion
We have shown in this paper a cognitive model for theory of
mind. Our model borrows ideas from all three main postu-
lates of ToM to develop a cohesive explanation for how ToM
functions. The model uses a selection process to identify the
beliefs and knowledge others may have; then, to predict the
desires and behaviors of others, it uses the identified concepts
as input to its own decision-making mechanisms, simulating
what the model would do in the other’s place. This ToM func-
tionality develops by concurrent learning and maturation of
the required functional capabilities. The model was found to
be a good match to existing data from developing children.

One of the strengths of this model is that it generalizes to
many other types of false-belief and ToM tasks. The matu-
ration parameters are very general, and can be applied with
little change to other tasks. The same holds true for simu-
lation; the cognitive mechanism which enables it can accept,
and work with, any input. The learning of ToM in this paper is
not as general, as it chooses between productions which are
relatively task-specific; however, if the model were to have
experience on a variety of ToM tasks, we expect that it would
generalize what it learns into a broader concept.

Our work is also distinguished from previous work in cog-
nitive architectures. Laird (2001)’s QuakeBot performs men-
tal simulation of opponents to predict their behavior, for ex-
ample, but to our knowledge their approach has not been
matched against human cognitive data.

A future step is to explicitly address other observed ToM
phenomena. One experiment added a third “neutral” box to
the avoidance task, introducing a second correct answer, and
had both children and adults as subjects (Leslie et al., 2004).
The study showed that children have a bias towards the TB
box, whereas adults have a bias towards the new neutral box.
Our model does predict this phenomena for children, since
the TB box is the correct box with the highest activation (it is
the last box to receive a kitten, and it is identified as the true-
belief of the kitten’s location before the selection of beliefs
begins), and so it is the answer that simulation will select.
As far as the results for adults, we believe that with further
learning, simple simulations can be avoided in favor of gen-
eral, learned inference rules. In this case, therefore, adults
are simply returning an answer that is true from anyone’s per-
spective. The paper describes further experiments that our
model can predict, but that is outside the scope of this paper.
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Abstract
A multimodal dual task experiment that contributed to the 
original development and tuning of the EPIC cognitive 
architecture is revised and revisited with the collection of new 
high  fidelity human performance data, most notably detailed 
eye movement data, that  reveal the complex overlapping of 
perceptual and motor processes within and between the two 
competing tasks.  The data permit a new detailed evaluation 
of assumptions made in previous models of the task, and 
contribute to the development  of new models that explore 
opportunities for overlapping visual-perceptual, auditory-
perceptual, ocular-motor, and manual-motor activities.  Three 
models are presented:  (a) A hierarchical  task-switching 
model in which each task  locks out the other;  the model 
explains reaction time but does not account for eye movement 
data. (b) A maximum-perceptual-overlap model that 
maximizes parallel processing and predicts the trends in the 
eye movement data, but  performs too quickly.  (c) A 
moderately-overlapped model that introduces task-motivated 
constraints and predicts both reaction time and eye movement 
data.  The best-fitting model demonstrates the complex task-
constrained interleaving of perceptual and motor processes in 
a time-pressured dual task.

Keywords: Cognitive strategies, EPIC cognitive architecture, 
eye tracking, multimodal dual task, multitasking.

Introduction
A critical task domain for the research enterprise of 
cognitive modeling is that of multimodal (auditory and 
visual) multitasking.  Psychologists and cognitive modelers 
puzzle over the question of how people engage in two or 
more time-pressured tasks that compete for perceptual, 
cognitive, and motor processes, such as for air-traffic 
control or in-car navigation (Byrne & Anderson, 2001; 
Howes, Lewis, & Vera, 2009; Meyer & Kieras,  1997; 
Salvucci & Taatgen, 2008).  Gaining an understanding and 
ability to predict aspects of multimodal multitasking is of 
critical scientific and practical importance.  This paper 
advances an understanding of such tasks by presenting 
cognitive models of time-critical multimodal multitasking 
and evaluates these models in detail using eye tracking data.

The Time-Critical Multimodal Dual Task
An earlier version of the experiment that forms the basis of 
this theoretical exploration was conducted in the early 1990s 
at the Naval Research Laboratory (NRL) (Ballas, 
Heitmeyer, & Perez, 1992).  The experiment produced 
human speed and accuracy data that proved useful for 
developing detailed computational cognitive models of dual 

task performance (Kieras, Ballas, & Meyer, 2001).   In the 
NRL dual task, participants use a joystick to track a moving 
target on one display and, in parallel, key-in responses to 
objects that appear on a secondary “radar” display.   This 
paper presents an experiment that extends the original NRL 
dual task in numerous important ways, including that (a) eye 
movements are recorded, (b) eye tracking is used in some 
conditions to hide objects on the not-currently-looked-at 
display, (c) auditory cues relate more directly to required 
responses, and (d) participants are rigorously trained, 
financially motivated, and given extensive feedback so that 
performance approaches that of an expert.

Figure 1 shows an overview of the two displays used in 
the multimodal dual task modeled in this paper.   Two tasks 
(or subtasks) were performed in parallel: a tracking task and 
a tactical classification task.  The tracking task consisted of 
keeping a small circle on a moving target using a joystick.  
When the circle was positioned as such, it turned green, and 
the participant was financially rewarded at a constant rate.  
The tactical classification task consisted of monitoring 
groups of icons or “blips” (fifty-seven in a nine-minute 
scenario) that moved down a radar display, and keying-in 
the blip number and “hostile” or “neutral” as soon as the 
blip changed from black to red, green, or yellow, indicating 
that it was “ready to classify”.  When a blip became ready to 
classify, a financial bonus was awarded though it diminished 
at a constant rate until the blip was keyed-in, or classified.  
Red blips were hostile; green were neutral; yellow blips 
were classified based on their shape, speed, and direction, 
following practiced rules.

Two important factors were manipulated in the 
experiment: (a) peripheral visibility on or off and 

Figure 1: An overview of the visual and auditory displays 
and input devices used in the multimodal dual task.
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(b) auditory cues present or absent.  Peripheral Visibility 
manipulated whether participants could see the contents of 
the other display—radar or tracking—that they were not 
currently looking at.  This simulates a task environment in 
which visual displays are separated by enough distance such 
that they cannot be monitored with peripheral vision.  
Auditory Cues (Sound On) indicates that a blip’s initial 
appearance (as black) and color change (to red, green, or 
yellow) were indicated with spatialized auditory cues.  Each 
nine-minute scenario maintained a constant setting of 
peripheral visible or not-visible and sound on or off.

Figure 2 summarizes the most important eye and hand 
movement data from the experiment, which is described in 
more detail in Hornof, Zhang, Halverson (2010).  Figure 2 
shows the time required for the four consecutive stages of 
classifying a blip: (a) Initiate the eye movement from the 
tracking display to the tactical display; (b) once on the 
tactical, find the target and move the eyes to it; (c) keep the 
eyes on the blip long enough to identify it and then move 
the eyes back to tracking; and (d) after the eyes are back on 
tracking, key-in the blip (keying-in was consistently 
performed after the eyes were back on tracking).   These data 
serve to reveal the complex interleaving of perceptual, 
cognitive, and motor processing, and provide a basis for the 
current modeling endeavor.

The EPIC Cognitive Architecture
The EPIC cognitive architecture (Executive Process-
Interactive Control; Kieras & Meyer,  1997) was used to 
model the multimodal dual task, as it was used previously to 
model the earlier version of the same task (ibid.; Kieras, 

Ballas, & Meyer, 2001).   EPIC is particularly well-suited for 
exploring a range of explanations of multitasking 
performance because of its specific commitment, at the 
architectural level, to only enforcing sequential processing 
for motor activities, such as to constrain the eyes to rotate to 
only one point at a time, and the hands to only execute one 
sequence of movements at a time.  Perceptual information 
can flow into the auditory and visual processors in parallel, 
and multiple production rules—IF-THEN statements that 
represent the strategy used to do a task—can fire in a single 
50 ms cycle.  Strategies can be written to permit only one 
rule to fire at a time (as in our initial model) or to explore 
the full potential of overlapping (as in our second model).

Extensions to the EPIC Cognitive Architecture
Initial sets of production rules that were constructed to put 
the eyes and hands through the tasks revealed two 
extensions to the EPIC cognitive architecture that would be 
needed to model this task: (a) a computational solution to 
the binding problem, which is the question of how people 
assemble perceptual stimuli to maintain a seamless 
conscious experience, and (b) a temporal processor to 
determine, entirely from within the simulated organism, 
when a certain amount of time has elapsed.

To address the binding problem, the visual processor in 
the EPIC cognitive architecture was updated (by EPIC’s 
creator David Kieras) so that psychological objects in 
EPIC’s visual working memory maintain their identity even 
as they disappear and reappear in the physical environment.  
In other words, if the simulated human moves its eyes so 
that a blip disappears (as in the peripheral-not-visible 
conditions), and then moves its eyes so that the same blip 
reappears, EPIC would previously have created a new 
psychological object for the reappeared blip.  Now, provided 
that the initial psychological object associated with the blip 
did not fully decay, the reappeared blip is reconnected to the 
already-existing psychological object.

The second extension to EPIC was to add a temporal 
processor that replicates the temporal processor added to the 
ACT-R cognitive architecture (Taatgen, van Rijn, & 
Anderson, 2007).  This gives the models a way to make self-
motivated periodic checks of the tactical display when there 
was no peripheral visibility or auditory cuing.

Modeling Overview
Each of the models below were presented with the exact 
same auditory and visual stimuli in identical nine-minute 
scenarios that were presented to our human participants.

The following parameters were used in the models:  The 
time required to determine the classification of a yellow blip 
based on its speed and direction was set to 800 ms.  Alarm 
sounds are identified 300 ms after their onset in auditory 
perception rather than with their onset, to give enough time 
to distinguish the alarm from the blip appearance sound.

A common element within all strategies include that 
tracking adjustments (by moving the joystick with a Ply) 
were made only when the tracking circle was not green, 
consistent with a strategy that maximizes payoff.

Figure 2.  Time preceding eye movements across the 
lifetime of a colored blip. Each panel shows a unique 
combination of the factors of peripheral visibility and 
sound on/off.  The x-axis shows a sort of timeline of

the stages involved in classifying a blip.
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The model development presented here follows the 
“bracketing” approach advocated by Kieras & Meyer (2000) 
in which the analyst attempts to “bracket” the human data 
with a slowest-reasonable and fastest-reasonable strategies.  
Three corresponding task strategies are developed: 
(a) Hierarchical task-switching (the slowest-reasonable 
model); (b) Maximum-perceptual-overlap (the fastest-
reasonable model); and (c) Moderately-overlapped (the 
fastest-reasonable model slowed down based on task 
constraints).   Models based on these three strategies, and 
comparisons of each model’s predictions with the human 
data, are presented next.

Hierarchical Task-Switching Model
The hierarchical task-switching (the slowest-reasonable) 
model represents a straightforward translation of the 
multimodal dual task into a hierarchical task with strict 
serial processing of each subtask.   Figure 3 shows the 
corresponding hierarchical task analysis.  The production 
rules were generated by first creating a GOMS model (John 
& Kieras, 1996) of the task,  and then translating that model 
into the corresponding production rules.  Parallelism existed 
in the model primarily in terms of auditory and visual 
information getting deposited in EPIC’s perceptual stores. 

A key characteristic of the model includes that, once it 
determines that a blip is ready to classify,  it holds the eyes 
on that blip until the keystrokes for that blip are initiated.  
During this period, the cognitive processor is dedicated to 
just classifying the blip.  Tracking is completely locked out.  
This aspect of the model resembles the original EPIC 
models of the task, in which “the dual-task executive 
enforces mutual exclusion between the tracking task and the 
tactical task.” (Kieras, Ballas, & Meyer, 2001, p.10)

Figure 4 shows the mean blip classification times across 
the four combinations of peripheral-visibility and sound-on-
or-off, and for red/green versus yellow blips.  The model 
explains the overall reaction time data very well across all 
eight conditions, with an average absolute error (AAE) of 
4.6%.  (Note that all AAEs presented in this paper are 
calculated using the overall observed mean as the 
denominator for each percentage calculation, to reduce the 
distortion that would otherwise result from observed and 
predicted values that are very close to zero.)

If an analyst were primarily interested in the classification 
task and hence did not proceed to model the tracking task 
with any degree of fidelity, and if the analyst did not have 
any eye movement data to work with, the modeling project 
would likely be done at this point, and we might declare 
victory—we modeled the primary data of interest with good 

accuracy.  But a deeper look at the data that are available in 
this modeling exercise reveal a dark truth—the model is not 
accounting for the complex overlapping of visual and motor 
processes that participants are exhibiting with their eye 
movements.  As well,  a look at the tracking task data show 
that the model is performing far worse than skilled 
participants,  predicting an overall mean tracking error of 42 
pixels compared to the observed tracking error of 29 pixels.

Figure 5 shows the same observed data presented in 
Figure 2, along with the eye movement times predicted by 
the hierarchical task-switching model.  As can be seen in 
Figure 5, the model is spending far too long looking at each 
blip.   The tracking-to-keypress is negative (and hence a 
value of zero is used) because the model returns the eyes to 
tracking after the classification.  Participants spent far less 
time on each blip, and spent substantial time with the eyes 
back on tracking before keying-in a classification.

 The hierarchical task-switching model, though intended 
as a slowest-reasonable bracket, does a good job of 
predicting the mean classification times.  But the model 
does not capture the interleaving of perceptual and motor 
processes that people clearly exhibited.  The next model 
attempts to capture and maximize such an interleaving.

Do dual task

Determine if a blip 
is ready to classify

If a blip is ready to 
classify, do tactical.

If no blips are ready to 
classify, do tracking.

Check for auditory 
alarm or visible 
change in blip.

Select blip
to classify

Look at
blip

Get blip
features

Key-in
response

Move eyes 
to tracking 
cursor

If tracking 
cursor is not 
green, move 
joystick.

If no peripheral 
visibility or sound, and 
time has passed, 
move eyes to tactical.

Figure 3: The hierarchical task analysis used to generate the hierarchical task-switching model.

Figure 4: The mean classification time of blips as a function 
of blip color, observed (dark bars) and predicted (light bars) 

by the hierarchical task-switching model.  The average 
absolute error (AAE) of the prediction is 4.6%.
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Maximum-Perceptual-Overlap Model
The maximum-perceptual-overlap (fastest-reasonable) 
model is written to maximize all aspects of parallel 
processing that are built into the EPIC cognitive 
architecture.  The production rules are written such that 
ocular-motor and manual-motor processing proceed entirely 
independently of each other, with manual-motor processing 
resulting from visual-perceptual features that become 
available based on ocular-motor activity.

Figure 6 shows two state transition diagrams that 
represent how one set of production rules moves the eyes 
between tracking and tactical to acquire visual information, 
and another set of rules independently shifts manual motor 
activity between tracking and tactical.  When the model 
runs, both sets of rules—ocular-motor and manual-motor—
spend most of their time on tracking.  When a blip appears, 
the ocular-motor rules shift to tactical just long enough to 
perceive blip features, which become available to the 
manual-motor rules, which switch briefly to tactical to key-
in a response.   Each set of rules returns to tracking as soon 
as its tactical subtask is completed.

Figure 7 shows the classification time predictions of the 
maximum-perceptual-overlap model.  As can be seen, the 
model is too fast, as would be expected for a fastest-
reasonable model.  Looking at the predicted eye movement 
times in Figure 8,  however, reveals that the model does a 
good job predicting the overall trends in how long the eyes 
took to move through the stages involved in classifying a 
blip,  especially in the peripheral-visible conditions. The 
comparably good fit of the eye movement data,  especially 
when compared to the first model’s poor fit with the same 
data, suggest that participants may truly have developed 

expert strategies that include independent parallelism 
between ocular-motor and manual-motor decision making.  
But, as might be expected, the fastest-reasonable model is 
overall too fast.  The predicted mean tracking error is also 
substantially better (20 pixels) than the observed (29 pixels).  

Figure 6: State transition diagrams that represent the 
independent ocular-motor and manual-motor processing

in the maximum-perceptual-overlap model.
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Figure 5: The time preceding eye movements observed 
(solid lines) and predicted (dashed lines) by the

hierarchical task-switching model.  (AAE = 91.4%)

Figure 7: Classification times observed (dark bars)
and predicted (light bars) by the maximum-
perceptual-overlap model.  (AAE = 29.2%)
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The final strategy explores constraints that can be 
introduced to the fastest-reasonable model.

Moderately-Overlapped Model
The moderately-overlapped model was constructed by 
starting with the maximum-perceptual-overlap (fastest-
reasonable) model, presented in the previous section.  Three 
analyses were conducted.  First, the model traces and 
observed data were studied side-by-side to reveal subtle 
differences between the predicted and observed eye and 
hand movements. Second, opportunities were explored to 
adjust strategies to maximize payout (see Howes et al., 
2009).  Third, the manual-motor devices were examined to 
improve the fidelity of their simulation. 

These analyses led to the following five adjustments to 
the model, all of which are represented by the bold italic 
additions in Figure 9:  (a) Eye-to-radar time is delayed by 
having the tracking task finish any joystick Ply underway, 
waiting for the tracking circle to turn green, to leave that 
task in a money-making mode.  (b) The time on yellow blips 
is extended to permit identification of speed and direction 
(set to 250 ms).  (c) Tracking-to-keypress time is extended 
by assuming that, when moving the eyes from tactical back 
to tracking, people make one joystick adjustment before 
keying-in the blip classification; this increases tracking 
payment while further considering the classification.  
(d) The timing for a Ply was increased (to a coefficient of 
300 and minimum time of 400 ms) assuming that the Ply 
effectively requires separate joystick movements to start and 
then stop the tracking circle.  (e) The Punch was replaced 
with a Keypress to represent how the fingers are not 
positioned directly above the keys, but need to travel.  

Figures 10 and 11 show how the moderately-overlapped 
model does a good job of predicting both classification and 
eye-movement timings.  The model also accurately predicts 
tracking error, predicting 26 pixels compared to the 
observed 29 pixels.  Table 1 shows how this model provides 
the best overall fit with the observed data.
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*

Figure 9: The moderately-overlapped model, with
additions to the previous model shown in bold italics.

Figure 8: The time preceding eye movements observed 
(solid lines) and predicted (dashed lines) by the maximum-

perceptual-overlap model.  (AAE = 32.6%)
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Figure 10: Times observed (dark bars) and predicted (light 
bars) by the moderately-overlapped model.  (AAE = 7.1%)
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Conclusion
The models presented here demonstrate the difficulty in 
accurately modeling complex multitasking behavior.  First, 
there is the challenge of collecting enough data to evaluate 
the accuracy of a model; the initial hierarchical task-
switching model accurately predicted the classification time, 
but not eye movements.  Then, there is the challenge of 
correctly identifying opportunities for expert,  overlapped 
behavior; the maximum-perceptual-overlap model presented 
here relied on the massive parallelism of the EPIC 
architecture’s cognitive processor to demonstrate that expert 
strategies might manage ocular-motor and manual-motor 
processes largely independently.  Lastly, there is the 
challenge of determining which task-based constraints 
should be introduced to govern the use of perceptual 
information that passes within and between two tasks that 
compete for motor processing; those presented for the 
moderately-overlapped model may or may not accurately 
capture the true constraints that governed behavior.

The models presented here do not clearly subscribe to the 
notion of an independent process that actively coordinates 
between two task strategies, whether that process be an 
executive process, as in the original models for a similar 
task (Kieras, Ballas, & Meyer, 2001) or an independent 
mechanism, as in Salvucci and Taatgen (2008).  This paper 
explores the possibility that a dual task strategy is perhaps 
an altogether new, carefully interleaved strategy.
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Table 1. Average absolute error of each model’s predictions.

Model Classification
Time

Time Preceding 
Movements 

Tracking
Error

Hierarchical 
Task-Switching
Maximum-
Overlap
Moderately-
Overlapped

4.6% 43.6%

29.2% 32.6% 31.2%

7.1% 10.1% 13.9%

91.4%
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Abstract 
The process of interleaving two tasks can be described as 
making trade-offs between performance on each of the tasks. 
This can be captured in performance operating characteristic 
curves. However, these curves do not describe what, given the 
specific task circumstances, the optimal strategy is. In this 
paper we describe the results of a dual-task study in which 
participants performed a tracking and typing task under 
various experimental conditions. An objective payoff function 
was used to describe how participants should trade-off 
performance between the tasks. Results show that 
participants’ dual-task interleaving strategy was sensitive to 
changes in the difficulty of the tracking task, and resulted in 
differences in overall task performance. To explain the 
observed behavior, a cognitively bounded rational analysis 
model was developed to understand participants’ strategy 
selection. This analysis evaluated a variety of dual-task 
interleaving strategies against the same payoff function that 
participants were exposed to. The model demonstrated that in 
three out of four conditions human performance was optimal; 
that is, participants adopted dual-task strategies that 
maximized the payoff that was achieved. 

Keywords: multitasking; performance operating 
characteristic; cognitively bounded rational analysis 

Introduction 
Multitasking behavior often involves trade-offs in 

performance (e.g., time, errors, extension, etc.) between the 
tasks. Such trade-offs can be described graphically with 
Performance Operating Characteristics, which show how the 
performance of separate tasks vary together systematically 
(Navon & Gopher, 1979; Norman & Bobrow, 1975). Trade-
offs reflect strategic choices and can be modified, for 
example, in response to instructions to prioritize one task 
over another (e.g., Brumby, Salvucci, & Howes, 2009; 
Janssen & Brumby, in press). 

Consideration of the strategic choices made in 
multitasking (i.e., of why a specific way of performing the 
tasks is chosen) naturally supposes some optimal trade-off. 
Why time is allocated differentially to the tasks, and why 
particular patterns of interleaving are adopted, must 
reference the relative success of those different strategies. In 
this paper we use an objective payoff function to integrate 
into a single score the performance rewards in a tracking-
while-typing dual-task situation. Such payoff functions have 
been used before in multitask studies, but only to show that 
performance is sensitive to isolated factors such as changes 
in reward structure (e.g.,Wang, Proctor, & Pick, 2007). 
Objective payoff functions have not previously been used to 

support explanations of multitasking strategy choices, or to 
assess the optimality of strategies.  

Combined with a cognitive model that can perform 
alternative multitasking strategies (i.e., alternatives for when 
to interleave and execute multiple tasks), a payoff function 
enables an evaluation of the success of each of the strategies 
(Howes, Lewis, & Vera, 2009). Strategies with the highest 
payoff can be determined and compared with human 
performance in experimental settings. This can be used to 
explain the strategic choices participants make.  

We developed a tracking-while-typing dual-task to test 
the hypothesis that people can hone their dual-task behavior 
to maximize the payoff that is achieved. The task required 
participants to keep a randomly moving cursor inside a 
circular area and to type a string of digits. Tracking tasks 
have been used in several multitasking studies (e.g., Gopher, 
1993; Hornof, Zhang, & Halverson, 2010; Kieras, Meyer, 
Ballas, & Lauber, 2000; Lallement & John, 1998; Salvucci 
& Taatgen, 2008). For example, Gopher (1993) showed that 
performance trade-offs in a tracking-while-typing task can 
be influenced by instructions to spend more time on one of 
the tasks. Within the cognitive modeling literature, the work 
by Lallement and John (1998) is interesting as it compares 
performance of models developed in several cognitive 
architectures on a tracking and choice task. We attempt to 
extend this work by showing how a payoff function enables 
us to bind normative cognitive models with experimental 
observations of multitasking behavior, and specifically, to 
show how multitasking strategy choice can be better 
explained by seeing it in relation to optimal performance.  

Experiment 

Method 
Participants Eight participants (4 female) between 20 and 
35 years of age (M = 23 years) from the subject pool at UCL 
participated for monetary compensation. Payment was based 
on performance (details are provided in the Materials 
section). The total payment achieved by participants ranged 
between £7.13 and £11.45 (M = £9.14).  
Materials The dual-task setup required participants to 
perform a continuous tracking task and a discrete typing 
task, presented on a single monitor. Figure 1 shows the 
layout of the tasks on the display. The typing task was 
presented on the left side and the tracking task on the right. 
Each task was presented within a 450 x 450 pixels area, 
with a vertical separation of 127 pixels between the tasks.  
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The tracking task required participants to keep a square 
cursor that drifted about the display in a random fashion 
inside a target circle  (see Figure 1). The cursor was 10 x 10 
pixels and the target had a radius of either 80 (small target) 
or 120 pixels (large target). A random walk function was 
used to vary the position of the cursor in the display every 
20 milliseconds. The rate at which the cursor drifted about 
the display was varied between different experimental 
conditions. In a low noise condition the random walk had a 
mean of zero and standard deviation of 3 pixels per update, 
while in a high noise condition the random walk had a mean 
of zero and standard deviation of 5 pixels per update.   

Participants used a Logitech Extreme 3D Pro joystick 
with their right-hand to control the position of the cursor in 
the tracking display. The drift function of the cursor was 
suspended whenever the joystick angle was greater than 
0.08 (the maximum angle was 1). The speed was scaled by 
the angle, with a maximum of 5 pixels per 20 milliseconds.  

The typing task required participants to enter a string of 
twenty digits using a numeric keypad with their left-hand. 
The string was made up of the digits 1 to 3, where each digit 
occurred at least six times in a given sequence. Digits were 
presented in a random order with the constraint that no 
single digit was presented more than three times in a row in 
the sequence (e.g., “11233322132123132123” as in Figure 
1). When a digit was entered correctly it was removed from 
the to-be-entered sequence. In this way, the left-most digit 
on the display was always the next one to be entered.  

The study used a forced interleaving paradigm, in which 
only one of the two tasks was visible and could be worked 
on at any moment. By default the typing task was visible 
and the tracking task was covered by a gray square. In order 
to see and control the tracking task, participants had to hold 
down the trigger of the joystick. When the trigger was 
released, the tracking task was covered by a gray square and 
the typing task revealed.  
Design The study manipulated aspects of the tracking task 
using a 2 (cursor noise: low vs. high) x 2 (target size: small 
vs. large) within-subjects design. The main dependent 
variables were the time required to complete the typing task 
and maximum distance of the cursor from the center of the 
target circle.  

Participants were remunerated based on performance, as 
determined by an objective payoff function that was 
calculated for each dual-task trial. The function was 
designed to encourage fast completion of the typing task, 
while keeping the cursor inside the target. The payoff (in 
pounds) for a given trial was defined as: 

 
Payoff = Gain + Digit Penalty + Tracking Penalty 

 
The minimum payoff for a given trial was limited to £-0.20. 
The gain component was based on the total time required to 
complete a dual-task trial (in seconds): 
 

Gain = 0.15 * e
-1*TotalTrialTimeInSec/20 + 0.25 

 

This function was determined using pilot studies, to make 
sure participants mostly gained money. To encourage 
accurate typing, a digit penalty deduced £0.01 from the total 
payoff whenever an incorrect digit was entered. To 
encourage participants to keep the cursor inside the target 
circle of the tracking task, a tracking penalty was applied: 

 
Tracking Penalty =  - 0.1*eSecOutside/1.386 - 0.6931 
 
This penalty was crafted such that £0.10 was lost when 

the cursor was outside of the radius for 0.5s, and £0.20 was 
lost when it was outside of the radius for 1s. In the 
remainder of this paper we will not look at the effect of digit 
penalty on payoff. 
Procedure Participants were informed that they would be 
required to perform a series of dual-task trials and that they 
would be paid based on their performance. A participant’s 
payment was based on the cumulative payoff over the 
course of the study, in addition to their base payment of £3. 
Participants were told that they would gain more points by 
completing the typing task as quickly as possible, but that 
they would lose points if they made a typing error or if the 
cursor drifted outside of the target area in the tracking task. 
We chose not to give participants a formal description of the 
payoff function, but instead provided explicit feedback after 
every dual-task trial with the payoff score achieved. 

After explaining how to perform each of the tasks 
participants performed two single-task training trials for 
each task and two dual-task practice trials. Participants were 
instructed that for dual-task trials only one of the two tasks 
would be visible and controllable at any moment in time, 
and they were instructed how to switch between tasks.  

Participants then completed four blocks of experimental 
trials (one for each experimental condition). The order of 
conditions was randomized and counter-balanced across 
participants, with the exception that blocks of the same 
noise level were grouped together. The order of radius sizes 
was repeated across the first two blocks and the second two 
blocks.  For each block, participants completed five single-
task tracking trials, five single-task typing trials, and twenty 
dual-task trials. The dual-task trials were further grouped 
into sets of five trials, with a short pause between each set. 
The total procedure took about one hour to complete. 

Figure 1: Position of the two tasks in the interface 
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Results 
We focus on performance during the last five dual-task 

trials of each experimental condition, as these reflect a 
period during which the participant has had time to adapt 
behavior to the objective payoff function. A 2 (cursor noise) 
x 2 (target size) analysis of variance (ANOVA) was used for 
all statistical analysis with a significance level of .05.  
Overall performance We first consider the effect of 
varying aspects of the tracking task on the time required to 
complete the typing task and the maximum distance of the 
cursor from the center of the target circle in the tracking 
task. It was found that trial time was significantly longer 
when there was greater noise in the tracking task (M = 
11.17s, SD = 4.32s) than when there was a lower level of 
noise in the tracking task (M = 7.51s, SD = 2.00s), F(1, 7) = 
15.07, p < .01. Trials were also longer when the target in the 
tracking task was smaller (M = 10.59s, SD = 4.01s) than 
when it was larger (M = 8.09s, SD = 3.22s), F(1, 7) =11.84, 
p = .01. There was no significant interaction, F(1, 7) = 0.22.  

In the tracking task we consider the maximum distance of 
the cursor from the center of the target over the course of a 
trial. It was found that the cursor drifted more when there 
was a higher level of noise  (M = 95 pixels, SD = 15 pixels) 
than when there was a lower level of noise  (M = 61 pixels, 
SD = 8 pixels), F(1,7)=33.42, p < .001. There was no effect 
of target size on the maximum distance that the cursor 
drifted over a trial (F(1,7) = 1.19, p = .31), nor was the 
interaction effect significant (F(1,7) = 0.07).  

These differences in overall task performance between 
conditions are somewhat expected and unsurprising because 
they partly reflect differences in the difficulty of the 
tracking task. We were far more interested in how this 
performance was achieved. We next consider the dual-task 
interleaving strategy that was adopted in each condition.  
Strategies Two aspects determine a strategy: (1) the number 
of digits typed during each visit to the typing window and 
(2) the amount of time spent in the tracking window per 

visit to this window. Figure 2 shows these two basic 
strategy dimensions for each of the four conditions. It can be 
seen that for each experimental condition there is a unique 
point in this strategy space – strategies differ between 
conditions. The number of digits entered per visit increased 
with an increase in target size (F(1, 7) = 17.4, p < .01), and 
it also increased with a decrease in cursor noise (that is, 
more digits were typed when it took longer for the cursor to 
cross the boundary; F(1, 7) = 15.18, p < .01). There was no 
significant interaction (F(1, 7) = 3.24, p = .12).    

It can also be seen in Figure 2 that the time spent in the 
tracker window per visit increased with an increase in the 
noise associated with the cursors movement (F(1,7)=14.98, 
p = .01). An interaction effect was present as visit time was 
particularly short in the low noise, large radius condition 
(F(1,7)=11.55, p = .01). There was no significant effect of 
radius (F(1,7)=0.54).  

A CBRA Model of Tracking-while-Typing 
The results show that participants adapted their dual-task 

behavior to changes in the difficulty of the tracking task. 
However, what these results do not show is whether 
participants were adopting a strategy that is optimal in terms 
of maximizing the expected payoff that could be achieved in 
each condition. To answer this question we developed a 
cognitively bounded rational analysis model (Howes, et al., 
2009). This framework is particularly useful for comparing 
the performance of alternative strategies, allowing strategies 
to be discriminated based on the payoff achieved. The 
model developed here is inspired by our previous work in 
developing models of a dialing-while-driving dual-task set-
up (e.g., Brumby, Salvucci, & Howes, 2007; Brumby, et al., 
2009; Janssen & Brumby, in press). Both dual-task 
environments share core characteristics, but the current 
work differs in that it incorporates an explicit payoff 
function against which various dual-task interleaving 
strategies can be evaluated.  In the next section, we use a 
model to determine whether people were selecting strategies 
that would maximize the financial payout that could be 
achieved in each condition.   

Model Development 
Tracking Model The crucial question for developing a 
model of the tracking task was at what angle participants 
held the joystick given their current distance from the center 
of the target. Figure 3 shows the mean values for discrete 
bins of 5 pixels for the horizontal axes (vertical data is 
similar). We fitted a linear function (shown as a dotted line): 

 
Angle = -0.01 * current distance from target 
 
The joystick had a maximum angle of (-)1. As in the 

experiment, the speed of the cursor is calculated by 
multiplying the angle of the joystick with a value of 5 
pixels. Speed is calculated once every 250 milliseconds of 
tracking, and the cursor position is updated every 20 
milliseconds based on this speed value. As in the 

☐  low noise, small target 
Ο   low noise, big target 
Δ   high noise, small target 
  high noise, big target 

Figure 2: Number of digits typed and tracking time, 
both per visit. Error bars depict standard errors.  
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experiment, the cursor could only be controlled when the 
tracking window was open. The total time spent tracking in 
dual-task was varied as part of the strategy (see below). 
Typing Model To model the typing task we fitted model 
performance to human single-task typing performance data. 
The time taken to type a digit (260 milliseconds) is identical 
to the mean inter-keypress interval measured in single-task.  
Dual-Task Model The dual-task model works as followed. 
The model starts of with typing a series of digits (the length 
of which is varied as a strategy). For switching between 
typing and tracking a switch cost of 250 milliseconds is 
incurred, based on experimental data (time between last key 
press and pressing the trigger on the joystick: 247 
milliseconds). The model then tracks the cursor for a 
designated amount of time (varied between runs as a 
strategy aspect). When it switches back to typing, a switch 
cost of 180 milliseconds is incurred (time between releasing 

the trigger and pressing the first key press minus single task 
inter-keypress interval: 185 milliseconds). Noteworthy, 
switch cost values are close to those in ACT-R models (e.g., 
Borst, Taatgen, & Van Rijn, 2010) and in the Cognitively 
Bounded Rational Analysis driving models. 
Strategies We used this basic model to explore performance 
of a variety of strategies. A strategy is determined by the 
number of digits that are typed in sequence during a visit to 
the target window. We consider only a subset of twenty 
simple strategies that placed a consistent number of digits 
during each visit (between 1 and 20), with the exception of 
the last visit during which the remaining digits were placed 
(e.g., strategy 6-track-6-track-6-track-2, but not 6-track-4-
track-6-track-4). In addition, for each visit to the tracking 
task, more or less time can be spent on tracking. We 
systematically explored performance for models that spent 
between 250 to 3000 milliseconds on tracking during each 
visit to the tracking window, using steps of 250 milliseconds 
(i.e., 12 alternatives). This gave a total of 229 (20 x 12 – 11) 
strategy alternatives.  

The objective function for rating performance is similar as 
in the experiment with the exception that the model does not 
make typing errors. For each strategy alternative 100 runs 
were performed. Mean performance is reported. 

Model Results 
The first question of interest was whether the model 

would fit the experimental data. In particular, if we 
hardcode a strategy that types the same number of digits per 
visit and spends about the same amount of time tracking as 
participants did in each condition (with both measures lying 
within two standard errors of human means), does this then 

Figure 3: Angle of the joystick as a function of distance 
from the target. The dashed line shows a fitted function.  

Figure 4: Maximum deviation versus predicted payoff per trial for the ten best (black crosses), and other strategies (gray 
crosses) per condition. Human results are shown as circles with standard error. The dotted line shows the target boundary.  

Low Noise, Small Target Low Noise, Large Target 

High Noise, Small Target High Noise, Large Target 
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result in similar total trial time and maximum deviation in 
each experimental condition (again with performance within 
two standard errors of the mean)? This is important so as to 
know that we have a reasonable calibration of the model’s 
performance relative to the human data. This was the case. 

Given that we can be confident that the model is 
reasonably calibrated to the human data on the observed 
strategy, we can now use the model to evaluate the payoff 
achieved by different (unobserved) dual-task interleaving 
strategies. Figure 4 shows a plot of the average maximum 
deviation versus payoff. We plotted the ten highest scoring 
strategies with black crosses, and the other strategies with 
gray crosses. In each condition there is a strong peak, 
though the shape of the distribution of scores differs 
between experimental conditions. In three out of four 
conditions the human data (black circles) lies in the region 
of maximum deviations that can achieve the highest 
performance. In each figure a vertical line shows the 
boundary of the target. Note that in the low noise, large 
radius condition participants could have let the cursor drift 
more to improve their score slightly (they would never cross 
the target boundary). Due to space limitations, we omitted a 
plot of total time data versus score; the pattern is similar. 

Traditionally, differences in dual-task performance are 
plotted in Performance Operating Characteristics (POCs), in 
which performance on one measure or task is shown against 
performance on the other measure or task (Navon & 
Gopher, 1979; Norman & Bobrow, 1975). In Figure 5 we 
show the POC of total time and maximum deviation for the 
model and human data. The ten best performing strategy 
alternatives are again plotted with black crosses. There are a 
couple of interesting aspects to these graphs. First, the best 

performing models lie on the outer edge (left side, and 
bottom side) of the strategy space: the trade-off curve. That 
is, the best strategies make an optimal trade-off between 
performance on the two tasks. Furthermore, the position of 
the optimum strategies is at a different section (e.g., top left, 
or bottom right) of this curve for each condition.  The model 
is essential for this assessment, as traditional POCs cannot 
predict optimal regions by themselves.  

Human data again lies in the region of optimum payoff 
for three out of four conditions. Only in the low noise large 
target condition could participants have scored better by 
spending less time on the tracking task (increasing 
maximum deviation, but decreasing trial time). In all other 
conditions, the model illustrates that participants made good 
performance trade-offs to optimize their payoff. 

General Discussion 
In this paper we have presented an experiment and a 

model of a tracking-while-typing dual-task setup. A good 
feature of the task environment, in which participants need 
to track a cursor and type in digits, is that it translates 
performance on both tasks into a single performance score. 
Due to this feature, we were able to move beyond 
observations that participants trade-off performance in tasks, 
as done in classical dual-task research (Navon & Gopher, 
1979; Norman & Bobrow, 1975) and in research on dual-
task driving behavior (e.g., Janssen & Brumby, in press). 
Here, we were able to demonstrate that participants mostly 
made performance trade-offs in an optimal manner, so as to 
maximize pay-off (cf. Howes et al., 2009).  

These claims are possible because of the use of a payoff 

Figure 5: POCs of model performances for the ten best (black crosses), and other strategies (gray crosses) per condition. 
Human results are shown as circles with standard error. The dotted line shows the target boundary.  

Low Noise, Small Target Low Noise, Large Target 

High Noise, Small Target High Noise, Large Target 
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function that explicitly describes how participants ought to 
trade performance on each task to gain payment. The goal of 
this paper is not to argue that objective functions are the 
most prevalent aspect of performance in the real world. 
However, they make it possible to quantify how good 
performance is. This contrasts with previous work where 
verbal instructions on how to trade performance on each 
task is given (e.g., Gopher, 1993; Horrey, Wickens, & 
Consalus, 2006; Levy & Pashler, 2008), or where 
performance is sensitive to a change in payment (e.g., 
Wang, et al., 2007). In contrast, we can define optimal 
performance in terms of maximizing payoff.   

There was however one condition (the low noise, large 
target condition) in which participants did not maximize the 
payoff that was achieved. In this condition, participants 
could have typed all of the digits in one sequence (i.e., 
without multitasking) to receive a slightly higher payoff 
than was actually observed. Two possible explanations for 
suboptimal performance are that participants overestimated 
the danger of the cursor crossing the boundary (which 
would give a severe penalty), or they were biased to switch 
between the two tasks (which is necessary in the other 
conditions). In this sense, participants not always adapt their 
behavior to maximize the payoff function. Further research 
is required to investigate such biases.  

The model was developed with a minimal set of 
assumptions. This was already enough to demonstrate that 
people mostly adapt performance to an objective function. 
Further research can investigate how people adapt their 
behavior to different payoff functions, which, for instance, 
give greater weight to performance on one of the two tasks. 
Also, the model of the typing task might be refined to 
predict typing errors, and to predict the effect of the 
different times needed to type repeating digits versus non-
repeating digits (cf. Janssen, Brumby, & Garnett, 2010). At 
a different level of analysis, the role of eye-movements can 
be considered to explore a wider variety of strategies (cf. 
Hornof, et al., 2010), such as strategies in which some visits 
to the typing task window are only spent on studying, and 
not typing digits.  
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Abstract 

The Predictive Performance Equation (PPE) is a 
mathematical model of learning and forgetting developed 
to capture performance effectiveness across training 
histories, and to generate precise, quantitative point 
predictions of performance by extrapolating the unique 
mathematical regularities indicative of the learner. This 
equation is implemented in the Predictive Performance 
Optimizer (PPO) cognitive tool, designed to help learners 
and instructors make principled training decisions through 
examination of the learning and retention tradespace. 
Because the point predictive nature of the model implies a 
high degree of certainty, decision-makers could be misled 
into making less than optimal decisions in applied settings; 
and with regards to basic science, the model lacks 
prediction error and uncertainty which would more 
accurately represent the predicted range of human 
performance. Implementation of prediction intervals into a 
point predictive model of human performance is 
unprecedented in the psychological literature. We must 
balance the competing factors of reduced performance 
variation as practice accumulates, and greater prediction 
uncertainty as time spans increase. In this paper, we 
explore new methodologies for incorporating prediction 
intervals into quantitative predictions of future 
performance. 

Keywords: point prediction; mathematical model; 
prediction interval; knowledge retention; skill retention 

Introduction 

The Predictive Performance Equation (PPE) is a 

mathematical model of learning and forgetting developed 

to capture performance effectiveness across training 

histories, and to generate precise, quantitative point 

predictions of performance. This is accomplished by 

extrapolating unique mathematical regularities indicative 

of the learner from training history, while additionally 

accounting for the spacing at which knowledge and skills 

were trained to estimate the stability of performance 

across time. This equation is based upon robust findings 

in the psychological literature, and designed with the 

intent to be relevant in applied learning domains. As such, 

the PPE is implemented in the Predictive Performance 

Optimizer (PPO)–a cognitive tool designed to help 

learners and instructors make principled training decisions 

through examination of the learning and retention 

tradespace.  

What the PPE currently lacks is a measure of 

uncertainty, because it contains no noise or error 

parameter in its current form. If the model is run 100 

times, it will produce the same answer again and again. 

We know that if a human performs a task 100 times a 

range of performance values will be produced due to the 

usual suspects (e.g., distractions, fatigue, fluctuating 

motivation, random noise) coming into play. Thus, the 

point predictive nature of the model could be misleading 

due to the high degree of accuracy implied in its 

predictions. Therefore, it is necessary to incorporate 

principled measures of uncertainty, or prediction intervals 

(PIs), around model point predictions. This provides the 

likely range of performance that is expected, and equips 

decision-makers with a more thorough picture. 

Unfortunately, implementation of PIs into a hybrid 

point predictive model of human performance (to be 

detailed in the next section) is unprecedented in the 

psychological literature. By hybrid, we are referring to the 

notion that one step of the model functions by calibrating 

parameters to available historical data, while the other 

step extrapolates mathematical regularities beyond known 

data, to make true a priori predictions of performance for 

practical applications and purposes (e.g., Kahrs & 

Marquardt, 2007; Psichogios & Ungar, 1992).   

 

 

 

 

 

 

 

 

 

 

Figure 1: Example of prediction uncertainty in the 

meteorological domain. 

Other disciplines, including meteorology, 

econometrics, and the physical natural sciences, have 

well-established methods for incorporating uncertainty 

into time-series model predictions, such that in general, 

prediction uncertainty increases as time increases (see 

Figure 1). We may think of this trend as an expanding 

cone of uncertainty as lead time increases. 

In the human performance domain, this is also a fair 

assumption to make. As the length of time between 

known data and a prediction increases, uncertainty would 

be expected to increase (see Figure 2). 
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Figure 2: Notional training historical data and predicted 

refreshers to maintain performance from 1-10 months out. 

  What meteorological and econometric disciplines do 

not have to contend with is the fact that as practice 

accumulates, variability in human performance decreases 

(e.g., Ericsson, 1996; Rabbitt & Banjeri, 1989).  Thus, 

model uncertainty should decrease as practice amasses 

(see Figure 3). 

Figure 3: Expected levels of uncertainty for 3 regimens 

immediately following a 45-day lag and within a 2-4 day 

training block. 

Furthermore, if multiple predictions are made, as 

shown in Figure 3, uncertainty is conditionally dependent 

on all previous model predictions. Thus, prediction 

uncertainty n-steps ahead of known empirical training 

history should generally grow incrementally larger-and 

prediction uncertainty should additionally be greater after 

a 12-month lag compared to a 1-month lag. 

Thus, we are in the unique predicament of requiring a 

PI calculation method that balances the competing factors 

of reduced performance variation as practice amasses, and 

greater prediction uncertainty as lead time increases. 

Furthermore, to adhere to both basic and applied science 

demands, we need to ensure our methods are based on 

principle, while concurrently providing useful and 

relevant guidance for decision-making purposes. Before 

we turn our attention towards the new methodologies we 

are exploring to achieve alignment with these trends, we 

must first detail the nature of the hybrid point predictive 

human performance model.  

The Performance Prediction Equation  

The PPE is built upon the strengths of the General 

Performance Equation (GPE) (Anderson & Schunn, 

2000), which handles effects of recency and frequency 

very well, but is ill-equipped to handle effects of massed 

versus distributed practice. As such, the PPE formally 

extends the GPE by capturing effects of spacing, while 

providing the additional capability to predict performance 

at later points in time in an a priori fashion. The PPE is 

expressed as: 

 

  Performance =  
    (Equation 1a) 

 

where free parameters include S, a scalar to accommodate 

any variable of interest, c, the learning rate, and d, the 

decay rate. Fixed parameters include T, the true time 

passed since the onset of training, and N, the discrete 

number of training events that occurred over the training 

period. The term St, defined in Equation 1b, is short for 

Stability Term and is responsible for capturing effects of 

spacing by calculating experience amassed as a function 

of temporal training distribution and true time passed.  

 

St = ; 

(Equation 1b) 

 

Lag is computed as the amount of wall clock time passed 

between training events and P is computed as the true 

amount of time amassed in practice. As such, experience 

and training distribution attenuate performance by 

affecting knowledge and skill stability at the macro-level 

of analysis.  

Descriptive Adequacy across Data  

We have validated the descriptive adequacy and 

predictive validity of this mathematical model across 

multiple types of previously published datasets available 

in the cognitive/experimental psychology literature, 

including empirical studies spanning knowledge 

acquisition, knowledge retention, skill acquisition, and 

skill retention. Goodness-of-fit measures across those 

domains have achieved an average R
2
 of 0.98 (see 

Jastrzembski & Gluck, 2009, for additional information).  

These results are encouraging.  However, the datasets 

available in the psychological literature are from simple 

laboratory tasks, possessing few data points over an 

extensive retention period (e.g., Bahrick et al., 1993, 

study measured performance at seven points over the 

course of eight years), or measuring performance at short 

timescales (e.g., Glenberg, 1976, examined monotonic 

versus non-monotonic effects within one paired-associate 

training session). These datasets are useful to include in a 

larger test harness of empirical data to thoroughly validate 

model mechanisms, but their ecological validity is 

questionable. 

Thus, it is necessary to validate against empirical data 

from more applied realms - where the interplay of 

knowledge and skill are often inextricably linked, 

extended lags between practice opportunities are on the 
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order of several weeks to multiple months, and 

knowledge and skill decay across extended lags can have 

a real impact on mission success. These features often 

characterize the nature of military training, where 

resources are both costly and scarce. As such, we 

validated PPE in a team coordination Unmanned Air 

Systems (UAS) reconnaissance task (Cooke, 2005), and 

with F-16 simulator air-to-air combat data collected in the 

Distributed Missions Operations testbed at the Air Force 

Research Laboratory (see Jastrzembski, et al., 2009). 

These highly complex datasets possess significantly 

longer inter-stimulus intervals than those found in the 

literature, and provide excellent opportunities to evaluate 

the incorporation of uncertainty within training blocks 

and across extended lags, where the need to provide 

estimates of uncertainty have very clear ramifications.  

Predictive Performance Equation Methodology 

We will now explain the two distinct, non-stochastic 

sequential steps in our performance prediction 

methodology. The first step in using PPE deals with 

calibrating, or optimizing (using maximum likelihood 

estimation), the learning and decay parameters to the 

unique mathematical regularities of the learner, identified 

by tracking training history. The second step is 

extrapolating the mathematical regularities to make true a 

priori predictions of performance at specified future 

times. We make this distinction because it is 

commonplace for modelers in the cognitive science 

community to use the term prediction when fitting 

empirical datasets, often in a post-hoc manner; whereas 

we use the term calibration to refer to that fitting process, 

and prediction for out of sample calculations.  

With regard to the UAS reconnaissance study 

(Cooke, 2005), teams of three individuals were required 

to coordinate to fly a UAS and attain pictures of targets. 

They completed five 40-minute missions on the first day 

of training (the training baseline used for model 

calibration), and returned either one or three months later 

to complete an additional three missions (used to validate 

model a priori predictions) (see Figure 4). 

The design of the DMO study was similar in nature, 

but required teams of four F-16 pilots to fly air-to-air 

combat missions over a more extensive training baseline 

(one to two hour-long missions trained each day over for 

five days), allowing us to examine skill acquisition and 

decay patterns both within days (where prediction 

uncertainty should decrease) and across days (where 

prediction uncertainty should increase). Teams were 

reassessed either three or six months later and completed 

three hour-long missions over the course of two training 

days (see Figure 5 for individual team level analysis).  

The need to incorporate valid PIs around model point 

predictions becomes extremely evident in the following 

potential use cases, as PPO is indeed intended to help 

decision-makers make informed training decisions. As 

shown in Figure 6, PPO may be used to help determine 

how many additional practice opportunities unique 

learners (an F-16 pilot team in this case) need to achieve a 

desired level of performance (denoted as achievement of a 

wing standard of 0.015 in this particular case).  

 
Figure 4: Aggregate team performance in a UAS task, 

with a three month lag. 

 
Figure 5: Number of times enemy airspace was violated 

by an individual F-16 team, with a lag of three months.  

PPO takes in the historical data for each unique team, 

optimizes the learning and decay parameters to the 

mathematical regularities inherent in the training history, 

and makes customized team performance predictions by 

extrapolating those learning trends into the future. Thus, 

Team 115 (shown in Figure 6, Panel A) is predicted to 

require six additional training events to achieve the 

desired performance level, while Team 112 (shown in 

Figure 6, Panel B) is predicted to require 20 more events.  

Panel A: 

 
Panel B: 

 
Figure 6: Model predictions for two unique F-16 pilot 

teams to achieve the same criterion. 

Calibration (R2 = 0.95) Prediction  
(R2 = 0.98) 

 

Within 

Day 

Between 

Day 

Calibration  
(R2 = 0.98) 

 

Prediction 
(R2 = 0.98) 
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In line with statistical principles, as PPO makes 

multiple time-series dependent predictions, significant 

uncertainty will build for predictions made farther and 

farther ahead in time from actual historical data.  Thus, in 

the example above, Team 115’s predicted attainment of 

criterion is actually more certain than Team 112’s, simply 

due to the fact that criterion is reached with fewer 

timesteps ahead from the historically calibrated data.   

Another potential use case that nicely demonstrates 

the need to incorporate “risk” into model point predictions 

is revealed by PPO’s capability to examine performance 

implications across a multitude of potential future training 

regimens.  

 
Figure 7: Future training regimen comparisons to identify 

which training routine best meets desired goals. 

 

The graph revealed in Figure 7 is calibrated upon the 

historical F-16 pilot team performance data shown in 

Figure 6, Panel A, and depicts predicted levels of 

performance under three distinct training regimens. The 

green line depicts two training opportunities given in each 

training block (occurring every 45 days), while the red 

line reveals three, and the black line reveals four. Noting 

that a desired performance effectiveness level of 0.015 is 

to be reached by the intended deployment date, the learner 

or instructor may easily inspect and assess the efficiency 

and effectiveness each potential future training regimen 

will likely provide.  

As shown in Figure 7, the red and black lines both 

achieve the desired performance level by deployment, 

while the green line does not. However, PIs for the black 

line should theoretically be smaller than those in the red 

line - because more training opportunities are provided 

meaning performance variability should be reduced. Thus, 

less risk would be involved in deploying trainees who 

completed the black training regimen.   

Given the potential ramifications these types of 

prospective use case decisions entail, it becomes very 

clear why the incorporation of prediction uncertainty 

measures is needed. Further, equipping PPE with these 

measures will better aid decision-makers’ understanding 

both learning and training needs, as well as the risks.   

Prediction Interval Calculation Methodology 

As previously expressed, there is no precedent for 

incorporating PIs into a human performance point 

prediction model of this nature. As such, we have 

developed and are investigating new methods to achieve 

our goals of both reducing variability as practice amasses, 

and increasing variability at longer lead times.  

 

Extrapolation of Residuals 
 

The first method we are investigating involves 

extrapolating residuals from calibrated model predictions 

and human empirical data to model point predictions.  

Residuals are often used to add uncertainty to models in 

other disciplines, like econometrics (see Chatfield, 2001, 

for a review); but as previously mentioned, other 

disciplines do not have the added phenomenological 

complexity of uncertainty decreasing as practice 

increases, nor do they have good solutions for estimating 

how much larger PIs should be after lags of increased 

length.  Thus, in order to base a PI method on residuals in 

the human performance domain, a good deal of 

innovation will be required to ensure estimates stay true 

to expected human performance trends.   

 As such, we have modified the residuals by the 

stability term (see Expression 1) and will illustrate PI 

incorporation based on this method later in this paper.  

 

                                 ;  

     (Expression 1) 

 

The Coefficient of Variation 
 

The second method we have developed and are 

continuing to investigate deals with adding variability into 

the learning and decay parameters themselves. The 

amount we have chosen to vary parameters by is the 

coefficient of variation (CV), selected because it is a 

unitless measure of deviation between model predictions 

and human empirical data, generally ranging between 

zero and one (Schweickert, et al., 2003), and it has 

previously been used to incorporate stochasticity into 

other types of cognitive and task performance models 

(Patton, et al., 2009; Patton & Gray, submitted; 

Schweickert, et al., 2003). It is calculated across historical 

training calibration data using Equation 2: 

 

                     CV = RMSD/model mean; 

                    (Equation 2) 

and integrated into PPE in the following way (see 

Expression 2): 

 

        ; 

                 (Expression 2) 

thus producing upper and lower PI bounds. 

 Desirable qualities of this measure include a readily 

available mapping to the learning and decay rates, which 

also range from zero to one; and greater variability being 

added into models that produce lower quality calibrated 

fits to empirical data, producing larger PIs as a result.  
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Prediction Interval Utility in the Applied Domain 
We now illustrate the PI incorporation across four unique 

F-16 pilot teams, possessing differences in learning 

regularities and quality of calibration fit – leading to 

differences in PI spans as a result (see Figures 8 and 9).  

Panel A: 

 
Panel B: 

 

Panel C: 

 

 

 

 

 

 

 

 
 

Panel D: 

 

 

 

 

 

 

 

 
 

Figure 8: CV PI incorporation for F-16 pilot teams. 

 As revealed by Figures 8 and 9 (Figure 9 displays 

identical empirical data displayed in Figure 8, Panels A 

and D), each method produces larger PIs between training 

days and smaller PIs within training days – thus, mapping 

nicely onto human empirical findings showing that 

performance variation decreases as practice amasses. 

They also reveal wider PI bands following the three or six 

month lag relative to other predicted points; thereby 

aligning with the notion that longer lead time predictions 

are more uncertain than predictions at shorter lead times. 

 An added unexpected, but very desirable effect, of 

the CV method was that the PI bands are asymmetrical in 

nature – thereby diverging from standard symmetrical 

estimates of confidence or error (as revealed by the 

residual-based method). This is pleasing in cases where 

human performance is bounded by a floor or ceiling, 

(ceiling performance was zero on the y-axis in Figures 8 

and 9). Thus, there is more room to err (the higher end of 

the y-axis) and less room to gain (performing closer to 

zero), mapping nicely to CV-based error bars having 

longer upper than lower whiskers. 

Panel A: 

  

 

 

 

 

 

 

 
Panel B: 

 

 

 

Figure 9: Residual-based PIs across unique F-16 teams. 

 Comparison of these PI methods to empirical data 

reveal that utilization of residuals, compared to the CV-

based method, tends to produce larger error bars in 

general (it is more liberal, but covers more of the data), 

produces error bands outside the bounds of possible 

performance (below zero in this case), and is more 

sensitive to noisy data (see Figure 9, Panel B – the same 

empirical data as Figure 8, Panel D). This raises concerns 

for how useful a residual-based approach will be as a 

decision-making guide. As such, additional modifications 

are being examined. 
 

Resolution of Data In our last set of analyses, we will 

limit our discussion to the CV PI methodology, due to 

limitations of the residual-based method described above. 

Using data collected in the UAS reconnaisance task 

(Cooke, 2005), we applied PIs to models aggregated at 

different grains of analysis. Given the intended utility of 

the PPO as a principled training decision guide, it is 

important to understand the implications of using a 

predictive model at the aggregate, team, and individual 

learner levels of performance (see Jastrzembski, et al., 

2006), as aggregate data, by definition, reduces noise 

through averaging procedures that smooth out the shape 

of human performance curves. Thus, data will always be 

noisier at finer and finer grains of resolution, implying PIs 

should be wider and wider as aggregation decreases. We 

inspect the ability of the CV PI method to align with this 

phenomenon as shown in Figures 10-12 below. 

R2 = 0.99 
RMSD = 0.002 

CV = 0.205 
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RMSD = 0.012 
CV = 0.271 

R2 = 0.71 
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CV = 0.522 

Between 

Day 

Within 

Day 
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RMSD = 0.015 
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Within 
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 As we might expect, PIs for the first point prediction 

after the lag are indeed larger after the long delay (PIrange 

= 146) compared to the short delay (PIrange = 129), 

revealed in Figure 9, showcasing the fact that predictions 

at longer lead times will be less certain than predictions at 

shorter lead times. This effect is generated in PPE because 

the upper and lower CV bounds are placed in the learning 

and decay exponents, which interact with the number of 

training opportunities accumulated, as well as the actual 

amount of time passed. 

 
Figure 10: Aggregate performance across all teams in the 

UAS reconnaissance task, with lags of 30 or 91 days.  

 
Figure 11: Individual UAS team performance. 

 
Figure 12: Individual UAS team member performance. 

 Finally, we note that the CV increases as we move 

from aggregate to team to individual levels of 

performance, as expected (see Figures 10-12). This is a 

useful property to note because it shows that decisions 

may be riskier at finer grains of resolution.  One way to 

help circumvent this problem at finer grains of analysis is 

to in fact accumulate larger training histories to calibrate 

PPE upon, allowing variability and noise to be smoothed. 

 These illustrative exercises help lend credence to the 

notion that use of this newly developed CV PI calculation 

method may have merit as being a useful way to help 

guide training decisions in a way that nicely accounts for 

the competing trends of reduced performance variability 

expected with increases in practice, and increased 

prediction uncertainty expected for longer lead times.  

Conclusions 

The incorporation of estimates of uncertainty into model 

point predictions is a necessary extension to our point 

predictive model in order to provide learners and 

instructors with relevant and useful guidance concerning 

the amount of predictive uncertainty that should be 

expected at specific future points in time and under 

competing future training regimens.  Because there are no 

precedented existing methodologies to apply to this 

problem, we plan to further the validation effort across the 

two potential solutions we proposed in this paper against 

human empirical data, and we are hopeful this new 

capability will apply not only to our modeling effort, but 

also for others who are working on the optimization of 

training (e.g., Lindsey, et al., 2009; Pavlik, & Anderson, 

2008; van Rijn et al., 2009).   
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Abstract 
Human performance modeling promises to be a valuable tool 
for early evaluation of user interface designs, predicting 
different performance for different design alternatives and, 
recently, different performance on a single design between 
younger and older adults (Jastrzembski & Charness, 2007; 
Jastrzembski, et al., 2010). When using modeling in the 
development process, the costs of creating models must be 
traded-off against the accuracy needed to guide design 
choices. It is therefore a meaningful exercise to examine and 
weigh the costs and benefits of different modeling 
approaches, to provide practitioners information to help them 
choose the modeling approach best suited for their needs.  We 
compare younger and older adult human performance data 
captured from dialing and text-messaging tasks, across two 
mobile phones, against age-specific GOMS (Card, Moran & 
Newell, 1983) and various CogTool models (John, et. al. 
2004), and examine the trade-offs between time and effort 
required to build those models and the predictive validity each 
model produces. 

Keywords: predictive human performance modeling, design. 

Introduction 
Research in computational cognitive process modeling 
continues to progress by creating models able to account for 
human data on more tasks across more domains, often 
through years of effort by PhD students, post-docs and/or 
senior researchers. However, when practitioners wish to use 
cognitive modeling approaches in user interface (UI) design, 
issues of costs and benefits become a stark reality. It is 
therefore often necessary for the practitioner to base the 
selection of a modeling approach by trading off the costs of 
producing the human performance models against the 
desired accuracy of the predictions of those models. 

The costs of producing models for design include how 
much knowledge the practitioner must have to develop an 
appropriate cognitive model in the task domain of interest 
for the intended user group, learning and understanding the 
modeling theory that underlies a modeling tool, learning 
how to use the modeling tool itself, and the time it takes to 
accurately implement the models after learning the 
modeling theory and associated tools. Benefits include the 
ability of a modeling approach to detect differences between 
design alternatives and the ability to make accurate 
predictions of quantitative measures of performance (e.g., 
time for a skilled user to execute a task or number of errors). 

As the consumers of interactive systems age it is 
becoming economically important to evaluate designs 
specifically for the older adult. Thus, an additional concern 
we address in this paper, are costs related to modifying 
existing modeling approaches and tools to account for the 
human processing capabilities of the older adult. Given the 
range of knowledge, time, and effort required to make these 
model modifications, this paper compares the quality of 
predictions against the efficiency of each approach. 

To put these issues into context, consider a practitioner 
who is under a tight deadline to choose a final design that is 
efficient for both younger and older adults from among 
several design alternatives. A less time-intensive modeling 
approach may be required to fit into the development life 
cycle, even if use of that modeling approach comes at the 
cost of producing less accurate predictions. This paper 
begins to address cost-benefit concerns by assessing the 
accuracy of a variety of modeling approach predictions 
against empirical data, and examining the costs incurred to 
produce those predictions. 

The Designs, Tasks & Empirical Results 
We chose to examine two tasks on two mobile phones 
because Jastrzembski and Charness (2007) provides pre-
existing empirical data for younger and older adults. The 
tasks are dialing a 10-digit phone number (dialing) and 
sending a text message to a person in the contact list 
(texting). Participant groups included a sample of younger 
adults (Mage = 20) and older adults between the ages of 60-
75 (Mage = 69). The purpose of their study was to validate 
elemental model human processing parameters updated to 
account for the older adult, which had been estimated 
through a comprehensive literature review. These parameter 
values were then used to build age-specific GOMS (Goals, 
Operators, Methods, and Selection rules) models (Card, et 
al., 1983) to predict skilled performance of younger and 
older “average” adults in the mobile phone tasks. 

Figure 1. Mobile phones 
studied by Jastrzembski and 
Charness (2007) and used in 
this analysis: the Nokia 3595 
(left) and the Motorola C155 
(right). 
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Predictions were compared to empirical data at each button 
press required by the task.1  

Since GOMS models are designed to predict performance 
of skilled users on routine tasks, the participants were 
required to complete extensive practice sessions to ensure 
that they were skilled in the performance of these tasks on 
these devices. “Skill” was operationally defined as 
completing three consecutive trials with less than a 1s 
deviation from each other.  Upon successfully achieving 
criterion in the practice sessions, participants were then 
given new stimuli to complete three repeated blocks of five 
different trials for each task. This allowed the authors to 
average the human performance data for a single stimulus 
over three trials – thus producing the empirical findings 
displayed in Figure 2. 

The following results were revealed (Figure 2, Table 1). 
• Older adults took significantly longer than younger 

adults to complete both tasks on both phones. 
• Dialing completion times were not significantly 

different across phones for either age group. 
• Text-messaging completion times were significantly 

longer using the Motorola compared to the Nokia phone 
for both age groups. 

These findings give us an interesting spread of results to 
assess the evaluation of the designs across modeling 
approaches from a cost-benefit perspective. In order for a 
model to be useful in practice, it must account for all three 
results, i.e., detecting a difference between devices and age 
groups where this is one in the empirical data and detecting 
no difference where there isn’t. 

The Modeling Approaches & Their Results 
Seven modeling approaches were implemented for the 
dialing task and four for the texting task, as described below 
(Table 1 displays completion time results). 

GOMS-MHP. A pre-existing model by Jastrzembski & 
Charness (2007), this approach updated Model Human 
Processor (MHP) parameters through extensive literature 
review, to allow GOMS models to predict older adult 
performance. These models most closely match the “K2” 
models put forth by Card, et al., (1983, p. 166), where 
operators are at the level of hundreds of milliseconds, and 
map closely to MHP cycle times. The cognitive task 
analysis that underlies these models was informed by 
observing pilot participants using an eye-tracker while 
performing the tasks. Eye-fixation operators and subsequent 
decisions operators were placed in the models guided by 
these data. These models achieved excellent fits to the 
human data for tasks, phones, and age groups. 

CogTool-OotB. The next modeling approach we examine 
is CogTool (John, et al., 2004), a tool for prototyping UI 
designs and automatically producing Keystroke-Level 
Models (KLM, Card, et al., 1983) through demonstration. 

                                                             
1 The original GOMS parameters were set with data from younger 
adults, therefore we will use the original GOMS parameters for 
younger adults unless otherwise noted in this paper. 

KLM is a simplified form of GOMS that sums each key 
press, K (including typing on a keyboard and mouse clicks); 
pointing movement, P; homing movement between devices, 
H; system response time, R; and “mental operator”, M (an 
averaged amalgamation of visual search, perception and 
cognitive operations like deciding, recalling commands, 
etc.), required to do a task.  

CogTool automates KLM model construction through a 
demonstration of a task on a storyboard of a UI, adding 
perceptual operations in line with Salvucci (2001), and 
cognitive operations similar to Card, Moran And Newell’s 
Ms2, called “Think operators.” The resulting script 
approximate a KLM produced by an expert modeler. The 
storyboard and script together compile into an ACT-R 
model (Anderson & Lebiere, 1998), which runs to produce 
quantitative predictions of skilled performance time. 
CogTool allows people with no cognitive psychology or 
modeling background to make accurate predictions with 
little variance (John et al., 2004; John, 2010).  

This approach used CogTool “out of the box” examining 
its default predictions without modifications of the script it 
produced or to any of its parameters. This approach resulted 
in far better predictions for the texting task than for the 
dialing task. The remaining approaches progressively add 
information to this “out of the box” approach. 

                                                             
2 Card, et. al. (1983) set the duration of M to 1.35s, but CogTool 
uses 1.2s because it has separate processes for eye movement and 
visual perception, which require about 0.15s processing time. 

Panel A: Dialing Task 

 
Panel B: Texting Task 

 
Figure 2. Empirical data for younger and older adults 
completing tasks on the Nokia and Motorola phones. 
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CogTool+KLM. To improve predictions for the dialing 
task, our third modeling approach brought knowledge of the 
KLM to bear, editing out Think operators where they 
violated Card, Moran & Newell’s M-placement rule 
concerning cognitive units. We deemed this approach 
reasonable because people separate US telephone numbers 
into cognitive units consisting of a 3-digit area code, a 3-
digit exchange, and a 4-digit station number. Because 
CogTool-OotB does not automatically identify these units, 
analysts must use their knowledge to delete unnecessary 
Think operators from the scripts. (Such modification was 
reasonable for the dialing task, but not for the texting task 
where CogTool-OotB = CogTool+KLM.) 

CogTool+KLM+RatioThink. Since CogTool generates 
predictions specific to younger adults, it cannot make 
predictions for older adults without modifications.  
Therefore, our fourth modeling approach augments 
CogTool+KLM by applying Hale and Myerson’s (1995) 
findings that older adults take 1.5 times as long as younger 
adults to process linguistic information. This means that the 
analyst simply copies the original CogTool+KLM script for 
a task and edits each Think to be 1.5 times as long as the 
standard younger adult time (i.e., 1.8s v 1.2s). This resulted 
in an average absolute percent error of less than 10% for the 
texting task, but 36% for the dialing task – vastly over 
predicting the time it takes both young and old to dial a 
phone number (see Table 1). 

CogTool+KLM+RatioThink+ExtremePractice. 
Reflecting on the previous method’s poor fit to the dialing 

task data, we realized that participants in 2005 would have 
had almost a lifetime of experience dialing touch-tone 
phones and substantially less practice sending text messages 
on mobile devices. Prior research in extreme practice has 
shown that pauses indicating mental operations almost 
disappear. Thinking is both getting shorter with practice and 
also presumably happens in parallel with the perceptual and 
motor actions necessary to do the task (e.g., Card, et al., 
1983, pp. 279-286). Simulating extreme practice is an easy 
process in CogTool; the analyst simply deletes every Think 
step in the script except the first (which is still required 
because the digits must be visually acquired from a sheet of 
paper). This resulted in predictions that better fit the 
younger and older adult data. However, these predictions 
were within 10% of each other, meaning that these models 
no longer detected the main effect of age. 

CogTool+KLM+RatioThink+ExtremePractice+Older 
WMcapacity. Our next approach examines the accuracy of a 
CogTool model created by analysts possessing additional 
information about older adult performance, as was 
uncovered by Jastrzembski & Charness’ (2007) literature 
review. That review revealed that the working memory 
(WM) capacity of older adults is smaller than that of 
younger adults. This may cause a strategy change in older 
adults; they may spend more time with written instructions 
than younger adults, trading off time for accuracy. With this 
insight, we put the Think steps associated with looking at 
the paper for the area code, exchange and station digits, 
back into the older adult dialing task models. This reduced 

Table 1. Modeling approach predictions for the mobile phone dialing task with percent deviations from empirical data.  

Abs Avg
Source of data or predictions %diff Time (s) %diff Time (s) %diff Time (s) %diff Time (s) %diff
Dialing Task

Human Data 6.606 9.442 6.268 8.812
GOMS-MHP 0.6% 6.559 -0.7% 9.369 -0.8% 6.228 -0.6% 8.804 -0.1%
CogTool-OotB 169.9% 16.451 149.0% n/a n/a 18.227 190.8% n/a n/a
CogTool+KLM 44.1% 9.171 38.8% n/a n/a 9.359 49.3% n/a n/a
CogTool+KLM+RatioThink 36.0% 9.171 38.8% 11.571 22.6% 9.359 49.3% 11.759 33.4%
CogTool+KLM+RatioThink 
+ExtremePractice 15.5% 5.976 -9.5% 6.576 -30.4% 6.302 0.5% 6.902 -21.7%
CogTool+KLM+RatioThink 
+ExtremePractice                
+OlderWMcapacity 5.0% 5.976 -9.5% 8.092 -14.3% 6.302 0.5% 8.387 -4.8%
CogTool+KLM+RatioThink 
+ExtremePractice                
+OlderWMcapacity               
+LitReviewACT-Rparameters 6.4% 5.830 -11.8% 9.505 0.7% 6.205 -1.0% 9.520 8.0%

Texting Task
Human Data 24.905 35.127 32.186 44.991
GOMS-MHP 0.0% 24.901 0.0% 35.126 0.0% 32.153 0.1% 44.989 0.0%
CogTool-OotB (=CogTool+KLM) 13.9% 27.582 10.7% n/a n/a 37.664 -17.0% n/a n/a
CogTool+KLM+RatioThink 9.4% 27.582 10.7% 35.382 0.7% 37.664 -17.0% 49.064 9.1%
CogTool-KLM+RatioThink 
+LitReviewACT-Rparameters 11.7% 27.148 9.0% 37.442 6.6% 37.118 -15.3% 52.177 16.0%

Nokia Motorola
Younger Older Younger Older
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the average absolute percent error to 5% for the dialing task. 
CogTool+KLM+RatioThink+ExtremePractice+Older 

WMcapacity+LitReviewACTRparameters. The last 
modeling approach modifies the ACT-R models running 
under the hood of CogTool. This approach requires both 
more cognitive psychology knowledge and programming 
skill. It leverages the aforementioned literature review as 
well as Jastrzembski, et al.’s (2010) translation and 
extension of age-specific parameters to ACT-R. We ran 
CogTool in a development environment rather than as an 
executable, and edited four specific underlying ACT-R 
parameters identified by Jastrzembski, et. al. (2010), in 
order to account for age. We modified the best of the 
CogTool approaches previously mentioned 
(CogTool+KLM+RatioThink+ExtremePractice+OlderWM 
capacity for dialing and CogTool-OotB for texting), but 
results produced overall goodness-of-fit values slightly less 
than other approaches, for both dialing and texting tasks. 

Cost and Benefit Metrics 
We now assess the costs each modeling approach would 
incur, based upon the estimated amounts of knowledge, 
time, and effort required to produce predictions using each 
method. Benefits are assessed relative to the empirical data 
collected by Jastrzembski and Charness (2007), which will 
be considered “the gold standard” - that is, the “truth” 
against which the models will be compared. Costs are 
assigned a value pertaining to the length of time required to 
attain the appropriate knowledge base and perform the 
modeling itself. A large cost entails months of experience to 
learn and/or use the method; a medium cost requires weeks 
of training and use; a small cost requires days.  

Of course, actual costs to an organization depend on both 
workforce and resources. For instance, empirical collection 
of human data is characterized as having a large cost in this 
analysis because many practitioners are not trained in 
experiment design, they lack data collection laboratories, 
and they often do not possess statistical packages or analytic 
know-how to properly interpret the empirical data. These 
costs may be much smaller for organizations like Google or 
Microsoft, which already have highly equipped labs, PhD-
level experimentalists and statisticians, and a network for 
recruiting appropriate participants. 

In addition, the costs are estimated for moving into a new 
domain or user group where parameters are not already 
routinely used in models or built into tools. Many of these 
estimates would reduce as modeling knowledge increases 
and tool functionality is enhanced to embody that 
knowledge. Given these caveats, we identified the following 
costs for the analyses described in this paper. 

Collect Human Data. Cost = Large because of expertise 
and resource issues discussed above, and because 
participants must be trained to a skilled level of performance 
on the tasks and devices studied. 

Literature Review. Cost = Large for a full review and 
meta-analysis (it took Jastrzembski approximately nine 
months to complete the parameter estimation alone). Cost = 

Small if only a rule-of-thumb 50% increase (as reported by 
Hale & Myerson (1995)) is used. 

Program a running prototype. Cost = Large due to 
required programming skill expertise (UI designers often 
possess graphic design backgrounds rather than a computer 
science backgrounds to compound the problem). 

Measure for Fitts's Law. Cost = Small because estimates 
of size and distance between all keys are required for 
movement times to be integrated into models. (Although it 
does not take days to learn or accomplish this, the sheer 
tedium bumps this, in our estimation, into a real cost). 

Build a Storyboard. Cost = Low because building a 
storyboard in CogTool (John, et. al., 2004) involves only 
creating a frame using a picture of what the device looks 
like, placing button widgets on that frame, and drawing 
transitions to represent user actions required to accomplish 
the task. Storyboards for the two phones used in this 
investigation took the first author about 15 minutes to build. 

Know GOMS/MHP. Cost = Large. In the first author’s 25 
years of experience teaching GOMS, it takes engineers 
several sessions to learn the typical version of GOMS but 
requires feedback on multiple exercises and often an 
apprenticeship with an expert GOMS model builder to be 
able to produce high-quality models. The GOMS-MHP 
models assessed here were built with PhD-level knowledge 
of cognitive psychology guided by eye-tracking 
observations (Jastrzembski, 2006). 

Know KLM. Cost = Small. In the first author’s 25 years 
of experience teaching GOMS, KLM can be taught in a 
single class session but requires feedback on several 
exercises to be able to remove mental operators 
appropriately to account for “cognitive units” (John, 1994). 
The cost increases to Medium when knowledge of different 
strategies due to older adults’ smaller WM span and the 
effects of extreme practice are required in the model. 

Know CogTool. Cost = Small. Recent research has shown 
that CogTool can be taught in one class session and novice 
modelers building their first model produced predictions 
within 4% of an expert’s model prediction, with a CV of 
only 7% (John, 2010). 

Edit ACT-R. Cost = Large. In the final approach we 
studied, the practitioner must edit an ACT-R file to modify 
specific parameters to those established for younger and 
older adults (Jastrzembski, et al., 2010). This requires 
accessing CogTool’s open source code, editing the code in 
the Eclipse programming environment, and knowing how 
and where to change the parameters. Although it is only four 
lines of Lisp code, the knowledge necessary to perform this 
procedure is, in our estimation, daunting, and would be 
required until CogTool could be enhanced to provide a GUI 
to switch between user groups. 

There are two types of benefits possible in our analysis: 
the ability to correctly detect a difference between devices 
or user populations, and the numeric accuracy of its 
predictions. An approach is assigned a large thumbs-up 
when it correctly detects a statistically-significant difference 
present in the human data and, just as important for design, 
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does not claim a difference when there is no statistically-
significant difference in the human data; a large thumbs-
down is assigned when this is not the case. With respect to 
numeric accuracy, we assigned each prediction to one of 
four categories as shown in the key in Table 2.  

Discussion of Costs & Benefits 
The results of our assessments appear in Table 2. As 
mentioned before, collecting human data is considered the 
gold standard in UI design practice, but its cost is high, 
particularly for organizations with little staff or resources 
for experiment design, collection and analysis. Jastrzembski 
and Charness’s GOMS-MHP modeling produced excellent 
predictions, but required eye-tracking and PhD-level 

understanding of the psychology literature and the Model 
Human Processor in order to attain those levels of predictive 
accuracy. 

CogTool-OotB is less costly to learn and use, even for 
people with no psychology background. It correctly detected 
the difference between the devices when there was one in 
the data (for texting), but it was not designed to detect age-
related performance differences, as it applies only to the 
performance of younger adults. Only by augmenting that 
tool with levels of knowledge of KLM and age-related 
literature, do models constructed within CogTool approach 
the level of accuracy useful for UI design if age is a factor. 
In fact, when only consideration of extreme practice is taken 
into account, the CogTool models produced fail to detect the 

Table 2. Assessment of costs and benefits of empirical data collection and seven modeling approaches. 
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age-related differences in the dialing task. Only when the 
combination of extreme practice and WM capacity for older 
adults were incorporated, did the predictions fall into 
alignment with the empirical results. This requires 
substantial knowledge of the psychology literature that 
many practitioners would likely not possess.  

Finally, the addition of specialized ACT-R parameters for 
younger and older adults in fact increased the average 
absolute percent error, demonstrating that utilization of 
substantially increased requirements of knowledge and skill 
(ACT-R, Eclipse & Lisp) does not always improve 
predictions sufficiently to warrant the increased effort. 

Conclusions & Future Work 
This research compares the efficiency and effectiveness of a 
variety of modeling approaches across tasks, designs, and 
user populations. There is no “right answer” for any 
particular development project, as each will vary in their 
need for accuracy, the current knowledge and skill of their 
team, and the value placed on acquiring modeling skill for 
future use. For example, if a design project must have 
predictions for all tasks within 5% of the “gold standard”, 
the only approaches we examined achieving that criterion 
are empirical data collection3 or GOMS-MHP modeling, 
with their associated high costs.  However, if slightly less 
accurate predictions are acceptable, CogTool models 
augmented with some knowledge of KLM and psychology 
may be useful. Table 2 should be considered a guide when 
considering modeling, not a table of definitive 
recommendations. 

Furthermore, advocates of using models in the 
development process always suggest that modeling can be 
used in conjunction with empirical testing, i.e., quick and 
easy CogTool modeling could be used as a means of 
weeding out detectibly poor designs from an assortment of 
design options in a tractable amount of time, so that 
empirical data collection may then be used to evaluate the 
few remaining candidates where accuracy is of high value. 
No one method need stand alone. 

Several areas of future tool development are suggested by 
this investigation, pending, of course, repeatability of these 
results. First, if age-specific Think values detect age-related 
differences on other tasks on other devices, it would be a 
simple matter to put a radio button in the CogTool UI to 
allow analysts to select younger or older adults and attain 
appropriate predictions without editing scripts. Likewise, if 
future research showed that age-specific ACT-R parameters 
increased accuracy in the majority of cases, they also could 
be brought into play without analysts touching the 
underlying ACT-R Lisp code. Thus, it is beneficial to 
examine the costs and benefits of modeling approaches 
periodically, because such examinations may be used to 
improve model tool development, and allow us, as a field, to 
change the costs associated with the most useful approaches. 
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Abstract 
Human reactions appear to be controlled by two separate 
types of mental processes: one fast, automatic, and 
unconscious and the other slow, deliberate, and conscious. 
With the attention in the literature focused on the taxonomy 
of the two processes, there is little discussion of how they 
interact. In this paper, we focus on modeling the slower 
process’s ability to inhibit the fast process. We present 
computational cognitive models in which different strategies 
allow a human to consciously inhibit an undesirable fast 
response. These general strategies include (a) blocking 
sensory input, (b), blocking or interrupting the fast process’s 
response, and (c) slowing down or delaying processing by 
introducing additional task. Furthermore, we discuss an 
approach to learning such strategies based on the inference of 
the causes and effects of the fast process.  

Keywords: dual-processes, impulse control, inhibition, social 
behavior 

Introduction 
People appear to have two processes or systems controlling 
their actions: one fast, unconscious, or automatic and one 
slow, conscious, and deliberative (Kahneman 2003). Thus 
far the focus in the literature has been on discussing the 
differences in the processes in support of developing dual 
process theories of cognition (Evans 2008).  

Evans (2008) provides an excellent review of the dual 
process theories of reasoning and decision-making. 
Although researchers use different terms for the two 
systems, almost all distinguish one system as “unconscious, 
rapid, automatic, and high capacity” while the other as 
“conscious, slow, and deliberative” (Evans, 2008). 
Researchers also differentiate between the systems saying 
the faster process is implicit and automatic and the slower is 
explicit and controlled. Many researchers also include the 
point that the faster process’s control of behavior occurs 
without our being aware of the fact. The faster processing 
was described as “associative” and the slower process as 
“rule-based”. Another theme reported was that the faster 
process was more concrete and situation specific and the 
slower, rational process more abstract and general. The key 
concept here is the characterization of the two systems by 
awareness and volition. 

Our focus is on building a computational model of the 
interaction of these processes; specifically, we look at the 
ability of the slow, conscious process to inhibit the faster, 
automatic process. Blinking, for example, is one such fast, 

automatic action that with some effort can be inhibited. 
Under normal circumstance, blinking is an unconscious 
process occurring periodically whose rate is influenced by 
environmental conditions as well as internal, emotional 
state. But it is also well known that we can resist blinking. 
However, it is best described as “resisting” because it takes 
cognitive effort to not blink. The maintenance of our 
concentration is an example of the slow, cognitive process’s 
inhibition on the blinking behavior. But when the 
concentration is broken, the fast, unconscious, and 
automatic process is back in control.  

We propose that there are general strategies that humans 
use to inhibit the undesirable fast processes based on our 
ability to infer the causes and to detect the effects of those 
processes. We propose that a learned conscious process can 
effectively control the execution of the faster process 
through the control of the focus of attention and the 
deliberate common-resource management.  

With this introduction, we will first discuss how the slow 
process can perceive the fast process and how the slow 
process can inhibit the fast process. We will then propose a 
general model integrating the fast and slow cognitive 
processes, present three instantiations of that general model, 
and discuss learning in these models before concluding. 

Perception of a Fast Process 
As Evans reported, many researchers noted that the faster 
process occurs without our awareness. Even though we may 
not be cognitively aware of the faster process while it is in 
progress, we can note its effect and infer its cause. When 
physical motion is involved, we have ability to attend to our 
own movement. In other words, we can sometimes sense the 
resulting action as soon as after it has been initiated, and 
definitely sense it after it has been completed. This is 
subject to the speed and the extent of the response as well as 
our focus of attention. Furthermore, Gladwell (2005) 
provided evidence that such fast, unexplainable processes 
can be the result of deep expertise we cannot easily 
articulate, but have ability to control including using them to 
our benefit as well as to inhibit them.  

Humans are also capable of inferring a cause of a 
response. Whether it is attending to an environmental 
stimulus resulting in a movement, or an association between 
a memory and our emotional state resulting in an expression 
change, we can make the association.   
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For example, consider those nearly thoughtless responses 
to what we see, such as ducking a fast moving object, to 
what we hear, such as jumping at an unexpected sound, or 
even what we feel, such as uttering expletives or grimacing 
when we stub our toe, or smiling at a pleasant memory.   

The ability to detect such effects and to infer the causes of 
the fast processes allows us to learn strategies to inhibit 
these fast processes. These general strategies for inhibiting 
them include (a) blocking the sensory input, (b) blocking (or 
interrupting) the response, and (c) running an additional 
process concurrently with the fast process. A general model 
of interaction of the two processes is shown in Figure 1. The 
undesirable fast process is represented as a direct Sense-Act 
thread while the desirable but slow process is shown below 
as a Sense-Think-Act thread. In the figure, the radar circle 
indicates the extent of changes to the focus of attention and 
the vertical lines are the boundaries between the cognitive 
model and the outside world. Attending to our own actions 
including vocalizations or facial expressions (indicated by 
the question mark icon in the figure), supports a deliberate 
choice or development of a control strategy. 

Control of a Fast Process 
To present how we envision a slow process can control a 
fast process, we begin by grounding both processes within a 
cognitive architecture. We will present three 
implementations of the general model as computational 
models within the ACT-R cognitive architecture (Anderson, 
2007; Anderson et all, 2004). ACT-R is a symbolic and sub-
symbolic, production-based cognitive architecture. The 
internal modules of ACT-R represent relatively specific 
cognitive functions (and regions of the brain) including 
declarative and procedural memory, auditory and visual 
perception, vocalization, and motor functions (based on the 
hand).  

During each cycle, modules representing sensors fill 
buffers with representations of the environment. Like many 
production systems, ACT-R repeatedly matches production 
conditions with the contents of the buffers, but only selects 
a single production to fire, and then executes that production 
resulting in changes to internal buffers and module requests. 

ACT-R, and more recently, jACT-R (Harrison & Trafton, 
2010), have been embodied on a robotic platform which 
necessitated extension of motor functionality to control face 
muscles, head and limbs movements. For this project, we 
also added a rudimentary “emotional module” to allow us to 
keep track of the internal state of the robot. The emotions 
are based on appraisals according to the Appraisal Theory 
(Scherer, 2001; Marinier, et al, 2009), which are provided 
during the execution of the model. For example, unexpected 
stimulus is recorded automatically as it is being attended to, 
but the modeler could also issue an appraisal within a 
production to signify a successful completion of a goal or a 
failure. The intensity of the emotion is based on the number 
and recency of the appraisals along the dimensions 
indicative of the specific emotion. Unless the emotion is 
fueled after the initial event, it will decay over time; we 

modeled the activation of the emotion on the base-level 
activation equation used in the recall of declarative memory 
(Anderson, 2004).     

 

 
Figure 1. A General Model of Fast and Slow Process 

Integration.   
 

Our theory of control of the fast process centers on the 
points at which its execution can be foiled. The alternative 
strategies leading to inhibition of the fast process are: (1) to 
block the perception of or attending to the relevant stimulus, 
and (2) to block the reaction to the stimulus, as indicated by 
the traffic cones graphic in Figure 1, and (3) running an 
additional process concurrently with the fast process, as 
indicated by the light bulb. It is also possible to interrupt or 
override, to certain degree, actions in progress, such as most 
large motions including face expressions. 

Recall in the discussion of blinking, a slow, cognitive 
process could inhibit the fast, automatic blinking, but it took 
cognitive effort. We propose that, in general, it takes 
sustained cognitive effort to block fast responses. The 
blocking may not be completely effective in that there is 
evidence that like interrupting the non-blinking 
concentration, fleeting micro-expressions of emotion will 
still occur (Ekman & Friesen, 1969). An extreme example 
of blocking involves the patellar reflex test (the knee-jerk 
reaction). A patient can inhibit the normal knee jerk reaction 
but interrupting the patient’s concentration allows the 
normal reaction to be observed. The common technique to 
break this concentration is the Jendrassik’s Maneuver 
initially described in 1883 (Zehr & Stein 1999).  

We propose that the slow process can both inhibit the 
faster process through the following alternative strategies: 
   (1) Intentionally blocking the stimulus by physically 
removing the stimulus, for example: by closing eyes or 
covering the ears, or by shifting the perceptual attention. 
   (2) Intentionally blocking the response by keeping the 
efferent processor busy, for example: performing another 
movement or subvocalizing to render the processor 
unavailable for other processes, or 
   (3) Intentionally performing another task at the same time.  
ACT-R supports this model of process interaction through: 

(a) Allowing productions of various specificities. 
(b) Buffer status queries including buffer contents and 

status at various phases of motor processing. 
(c) Serialization of processing.  
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Below is a sample ACT-R production implementing a fast 
movement in response to an unexpected sound, which could 
be undesirable in context of many office tasks: 

 
(p fast-response-to-sound ;production name 
   =aural-location>       ;aural module detects 
     isa    audio-event   ;  a sound 
   ?aural-location>       ;the sound was 
     buffer unrequested   ;  not expected 
   ?manual>               ;the motor controller 
     state  free          ;  is free, (not busy) 
==>                       ;THEN 
   +manual>               ;initiate a manual 
     isa    press-key     ; action, press 
     key    "return"      ; ”return” key 
) 
 

For this production, the strategy to block the sensory input 
would be any action that would block the detection of an 
auditory event, such as covering one’s ears with one’s 
hands. To block the reaction part of this production, one 
needs to engage and keep the motor module unavailable 
because it is busy. Furthermore, due to ACT-R’s adherence 
to serial processing, any other production whose utility is 
greater than this production would decrease the probability 
of the undesirable response. 

Note that these strategies are temporary and require 
continuous attention, i.e., cognitive effort, to maintain the 
strategy. If the cognitive focus is interrupted and the sensory 
input is still present, the original fast response production 
will be able to fire.  

Model Implementation 
We will demonstrate the applicability of the general model 
by discussing its instantiation in three different models, 
specifically: (1) inhibiting the Stroop Effect through 
deliberate shift of visual attention, (2) inhibiting the startle 
reflex with respect to eye blinking, and (3) inhibiting 
socially unacceptable response in an emotional situation. 
Due to space constraints, we will present the model of only 
one of the alternate control strategies for each of these tasks, 
but other strategies are applicable as well. 

Task: Inhibiting Stroop effect by blocking stimulus 
Stroop (1935) identified a large increase in the time taken 

by participants to complete the color reading in the 
experiment that presented the participant with incongruent 
ink color and text, as compared to the naming of the colors 
of basic shapes. Original experiment has been extended and 
thoroughly studied over the years to determine in excess of 
18 other effects (MacLeod, 1991). In this work we focus on 
the interpretation of the behavior within the dual processes 
presented earlier. 

Our ACT-R model only captures relative speed difference 
between the color naming and word reading. Other 
researchers (Lovett 2002; van Maanen, van Rijn, & Porst, 
2008) provide better models of an actual response times in 
the task, but ability to detect one’s errors and to improve the 
performance at the cost of the response time is a focus of 
our model’s implementation of the dual process theory. 

When the fast word-reading process generates an incorrect 
response and it is detected due to a disparity between fast 
verbal response and the result of the intentional, but slower 
color naming process. As the response is being vocalized or 
as it was heard depending on the duration of the color 
vocalization process, an alternative strategy can be initiated. 
The easiest strategy simply calls for delaying, or in essence 
blocking the response, by pausing before giving the verbal 
response allowing time to reevaluate the color of the text. 

As another strategy, Besner (2001) provides evidence that 
priming a location of a letter within the word eliminates the 
Stroop Effect. It stands to reason that a good, and in fact 
optimal, strategy would be for the participant to adjust 
visual attention accordingly hence blocking the word 
reading entirely. An easy way to achieve this is to upon or 
even prior to presentation of the stimulus, to shift attention 
to the right-most character of the text. With no competing 
response there is no need to confirm the answer and 
response can be given immediately.  

To block the stimulus in our model, the automatic left-to-
right visual search production competes with an intentional 
visual search production for the right-most symbol from the 
current location. As long as the expected location is 
attended to, the word reading (fast process) will not have a 
chance to happen resulting in a single and correct response. 

 
Figure 2. Inhibiting Stroop Effect by shifting gaze.  

Task: Inhibiting startle reflex by blocking response 
The startle reaction, also startle reflex, is the response to a 
sudden unexpected stimulus, such as a flash of light, a loud 
noise, or a quick movement near the face. These reactions 
include movement away from the stimulus, a contraction of 
arm and leg muscles, a verbal response, and often blinking. 
It also includes blood pressure, respiration, and breathing 
changes that are often described as being startled or scared.  
    In this section, we focus on the acoustic startle reflex, a 
response to an unexpected, loud, and near sound on the 
order of 40ms in duration.   Specifically, we present an 
ACT-R model in which intentionally keeping eyes open 
inhibits blink-response to the acoustic event. Like other 
strategies described in this paper, muscle contraction is only 
a temporary strategy since it requires constant focus to 
maintain; any lapse in attention will result in muscle 
relaxing and ability for any process including the startle or 
routine physical maintenance reflex to control the muscle. 
Our ability to control blinking is often tested in a staring 
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contest. Due to the speed of the response, which on average, 
takes between 300 and 400 milliseconds to complete, this 
strategy works best when initiated before the stimulus is 
heard to act to prevent rather than override the reflex or fast 
response. 

Our ACT-R system is capable of perceiving and attending 
to a sound. The general model strategy to engage the muscle 
in expectation of the stimulus translates in ACT-R to 
keeping motor module busy. Assuming the concentration 
can be maintained and the muscle stays engaged, the fast 
process’s impulse to blink will be blocked. To capture the 
cognitive effort involved in this strategy, we allow the goal 
to be removed from focus of attention and the motion to be 
no longer than 350 ms. The model detects the unintentional 
motion, based on lack of the intention to move the muscle 
and presence of the motion. 

 
Figure 3. Preventing blinking. 

 
This is definitely not the only strategy that can be used. 
Interestingly, Fillon, et al. (1993) presented an experiment 
which showed that an attended pre-pulse, a weaker pre-
stimulus, produced greater blink inhibition at the 120 ms 
lead interval than an ignored pre-pulse. Obviously, covering 
your ears (or closing your eyes in the case of visual 
stimulus) is an effortless strategy and guarantees better 
performance, but is only feasible when task allows for it.  

Both of these instantiations of the general model involve 
blocking the fast process. The next instantiation of the 
general model develops an acceptable alternative to an 
emotional response.  

Task: Inhibiting emotional response by distraction 
Thomas Jefferson is credited with having said "When angry, 
count to ten before you speak. If very angry, to a hundred," 
which even nowadays is considered a sound advice since 
time and distraction are key to anger management. An 
emotional response is a fast process behavior that rarely 
leads to positive result, especially in social interactions. 
However, given time to calm down, most people can get a 
handle on their initial impulses. 

Evans reported that although some researchers ignore 
emotions in their discussions of the two systems, others 
place emotions within the faster process and some 
contemporary work includes an emotional influence in the 
slower, more deliberative process. Due to this lack of 

consistency, Evans considered emotions outside the scope 
of his review of dual systems theory, but we will regard the 
basic, spontaneous emotional responses as the fast 
processes. 

Ekman identified basic emotions including joy and anger, 
as being universally recognized from facial expressions 
(Ekman, 1992; Ekman, 1999). The automatic nature of his 
basic emotions included specification that the processing 
was very fast, between 150 and 250 ms. Another researcher, 
Griffiths (1997), suggested some emotions are higher-level 
introspective processes, i.e., belonging to the slower, more 
deliberative process. Others have suggested classifying 
emotions based on the part of the brain that is activated by 
the emotion, either the amygdala or prefrontal cortex 
(Evans, 2001; Frank, 2009). This later differentiation is 
useful here because although both classifications involve the 
brain in the response to emotions, the separation of the high-
level cognitive function from the low-level processes based 
on the region of the brain involved, serves our purposes.  

While an emotion can be treated as either a stimulus or as 
a response, for the sake of our argument, we will consider 
an emotion state as a perceivable stimulus. The emotional 
responses vary widely and include changes in vocalization 
characteristics and content, flailing arms or legs, and 
obviously as facial expressions. For ease of explanation, in 
the current instantiation of the model, we assume that 
emotions can be perceived as form of an internal state akin 
to perception of time (Taatgen, Van Rijn,  & Anderson, 
2007). 

In this instantiation of the general model, we simulate the 
behavior of an individual that is impatiently waiting for a 
stimulus to appear (e.g. imagine waiting for a bus or a friend 
while time is wasting). Since we will be focusing on 
blocking the undesirable response, the actual stimulus that is 
cause of the anger is not relevant. Upon stimulus 
presentation, specifically, the bus or friend’s arrival, the 
subject vocalizes the response based on the emotional state 
of the model. (See Figure 4.) The model monitors its 
emotional state as well as the response. A negative reward is 
associated with the undesirable response (or positive reward 
is associated with the socially acceptable response).  

 
Figure 4. Preventing an emotional response. 

 
As the passage of time is attended to, a negative appraisal is 
recorded and the model becomes angry. When the stimulus 
is detected, a fast response process is initiated. At first, the 
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process does not include the counting to ten and results in a 
negative, unacceptable response. The counting process 
triggered by intention to speak while angry, has the property 
of delaying the response to allow the emotion to decay, and 
it also distracts the perception of time process from “adding 
fuel to the fire.”  

A similar delay tactic can be employed during Stroop task 
to reinforce the color-naming process. Before giving the 
answer, the participant could confirm that the response is 
indicative of the task, which would force the color 
information of the stimulus to be processed independently. 
Detecting the conflict is resolved by the conduct (repeat) of 
a deliberate process to produce the correct answer. Our 
model of this strategy rewards the response from the 
deliberate process and may explain the observed brain 
activity associated with conflict detection and cognitive 
control (Egner & Hirsch, 2005). 

Role of Learning 
The feasibility of the strategies discussed in the previous 
section relies on two forms of learning. First, the alternative, 
slow process has to be crafted based on the input and output 
characteristics of the fast process. Second, the model has to 
learn that the alternative process is useful.    

Our general model calls for learning of a control strategy 
upon detection of an unexpected and undesirable condition. 
The strategies presented in the task models were hand-
crafted. We expect that a problem-solving process focused 
on addressing the causes of the undesired behavior can 
develop these strategies. Based on the realization that the 
causes involve both a stimulus and a response, we expect to 
be able to learn strategies that involve blocking both the 
stimulus as in the model of the first task and the response as 
in the model of the second task. Additionally, introducing a 
delay or distraction process can be learned if it can be 
inferred that the causes are time sensitive. This is, of course, 
subject for future research.   

Once the control strategy, i.e., the slow, conscious 
process, has been crafted, it will eventually become 
procedurelized and compete with the fast, unconscious 
process productions. ACT-R utility learning provides the 
necessary mechanism. In accordance with the ACT-R 
theory, the utility of a production is determined based on its 
presence and position in the sequence leading to the reward; 
specifically, a negative reward issued upon detection of an 
unexpected and undesirable model behavior leads to relative 
increase of alternate processes. Since, in the tasks presented 
here, the fast process is the cause of the unexpected events, 
this reward mechanism results in the reinforcement of the 
slower processing path. For example, by punishing the 
sequence of productions leading up to undesirable response, 
we lower their utility allowing the counting process to have 
the higher utility and be included in execution on 
subsequent runs. Due to this approach, our task models 
make testable predictions that human error rates in 
experiments like the Stroop Effect should decrease over 

time and the response times should be representative of the 
shift between the two processes.  

Essential to both forms of learning is detection of an 
incorrect or undesirable response. We define an error as an 
inconsistency between the fast and slow processes’ 
responses indicating a need to decide which is the intended 
response. Within an ACT-R model, such inconsistencies are 
described by contents of the relevant buffers. For example, 
as we have described in the startle reflex task, the detection 
of a movement when none is expected indicated that a fast, 
unconscious process was being executed. It should be noted 
that attending to these cues requires additional processing 
and given the dynamics of the processing, such cues can be 
easily missed. Due to this approach, our task models make 
testable predictions that learning can be part of repeated 
tests of the Stroop Effect and that learning will not occur if 
the task dynamics preclude detection and adaptation.  

Discussion 
In the tasks modeled here, the fast process provided the 
wrong or undesirable response; this is not true in general.  
Humans have long depended on these impulses or reflexes 
to keep us safe as well as to provide the fast responses 
required in many tasks. Essentially, while slow, rational 
thinking has its role in our behavior, so does actually 
allowing the fast, irrational process guide us in a controlled 
manner. We have described how the slow process can 
control the fast process. However, this is only a beginning. 

However, we have not yet presented evidence that our 
integration of the two processes matches experimental data. 
Several experiments are suggested by this work including 
re-visiting the Stroop Effect looking for learned strategies 
and performance over time. 

Conclusions 
We have shown that what has been widely discussed as a 
dual processes, one fast, automatic, and unconscious and the 
other slow, deliberate, and conscious, can be implemented 
within a single cognitive architecture and we provided a 
general model of their integration. We instantiated this 
general model using the ACT-R architecture and showed the 
slow process’s control of the fast process in three different 
tasks. The general model’s fast-process-control strategies 
we implemented and demonstrated included: (a) blocking 
the sensory input for the fast process, (b) blocking (or 
interrupting) the response from the fast process, and (c) 
substituting a slow process for the fast process. Finally, we 
discussed the architectural ability to reinforce the slow 
process’s control of the fast process and an approach to 
learning the alternate processes.  
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Abstract

This paper describes a classic data set on visual search of 
100-object displays that differ in size, shape, and color and 
presents a cognitive architecture model  based on the active 
vision  concept that  accounts for the effects using differential 
visual acuity  and fixation  memory provided by a persistent 
visual store. The results provide an approximate upper bound 
on  the duration of fixation memory, and some approximate 
acuity functions for modeling visual search.
Keywords: visual  search;  cognitive modeling; eye 
movements.

Introduction
Many everyday and work activities involve visual search, 

the process of visually scanning or inspecting the 
environment to locate an object of interest that will then be 
the target of further activity. An especially tractable form of 
visual search takes place in many human-computer 
interaction tasks in which a particular icon coded by color, 
shape, and other attributes must be located on a screen and 
then clicked on using a mouse. Such visual search takes 
place in a visual environment that is much simpler than 
natural scenes, and so is a both a good theoretical and 
practical domain to model visual search processes: it 
combines relative simplicity of the visual characteristics of 
the searched-for objects with practical relevance: the task is 
a natural one in the sense that such activities are very 
common in current technology; an example is current radar 
displays in military applications, which can contain a large 
number of icons and other objects (cf. Kieras & Marshall, 
2006). Thus understanding in detail how visual search 
works in such domains can lead to better system designs. 

This paper presents a model for the results of a classic 
study on visual search of large and dense displays of 
multiple items that can be searched by multiple attributes. 
This paper follows Kieras (2009), who presented a model 
for the Peterson et al.  (2001) results demonstrating memory 
for fixations in a visual search task. In the Peterson et al. 
task, a single object, identified by shape, had to be located 
in field of a dozen objects which were very small and 
widely separated, meaning that each object had to be 
fixated before it could be identified.  This paper presents a 
model for a task at the other extremes: A large number of 
objects, differing in several attributes had to be searched, 
but they were large enough and closely spaced enough that 
the properties of several objects could be considered in a 
single fixation.  Memory for fixations still plays a role, but a 
critical role is also played by the differential availabilities 
of visual properties in extra-foveal vision, termed 
differential acuity in what follows.

Visual Search and Active Vision
In a laboratory visual search task, a display of objects is 

presented, and the participant must locate a particular 
object specified by perceptual properties and make a 
response based on whether such an object is present or 
exactly which properties it has (e.g. the specific shape). In 
most experiments, the display is static and contains some 
number of objects,  only one of which is the target that must 
be responded to; the others are distractors. The properties 
of the display or the displayed objects are manipulated,  and 
reaction time (RT) and/or eye movements are measured. 

The empirical literature on visual search was dominated 
for a long time by studies that measured only RT, and often 
for tachistoscopically presented displays that ruled out eye 
movements. But more recently the cost of eye movement 
data collection has decreased to the point that it has become 
much more common, and deservedly so. While any 
behavioral measurement only indirectly reflects the mental 
processes that produce it,  RT is clearly much less 
diagnostic of what goes on during visual search than eye 
movements. Furthermore, tasks in which the eye is free to 
move about a static display in a naturalistic manner, typical 
of eye movement studies of visual search, will be more 
representative of the normal operation of the visual system 
and the role of attention in visual activity. This point was 
argued eloquently by Findlay & Gilchrist (2003) in 
presenting an active vision framework for understanding 
visual activity; it is markedly different from traditional 
approaches to visual attention which have ignored both the 
role of eye movements and extra-foveal information.

In active vision, a key process is choosing the next object 
for inspection. A variety of studies (see Findlay & Gilchrist,
2003, for a review) have shown that this choice is not at all 
random; rather the color,  shape, size,  orientation, or other 
visual properties of objects influences which object is 
chosen for the next fixation; the phenomenon is called 
visual guidance. In the active vision framework, these 
properties are available in extra-foveal or peripheral vision 
to some extent, meaning that visual attention,  which in the 
context of normal visual activity is almost synonymous 
with where the eye is fixated, is a process of selecting for 
detailed examination one of a large number of objects 
currently perceived to be in the visual scene, and doing this 
selection on the basis of the visual properties available in 
extra-foveal vision.

The availability of a perceptual property in extra-foveal 
vision depends heavily on the eccentricity (the distance in 
degrees of visual angle from the center of gaze) of the 
object, normally referred to in degrees of visual angle, and 
on the size of the object (also measured in degrees of visual 
angle), and on the specific property involved. For example, 
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the color of an object of a given size in the periphery is 
usually more likely to be visible than its shape.

The EPIC Cognitive Architecture
The EPIC architecture for human cognition and 

performance directly supports an active vision approach to 
visual search and provides a general framework for 
simulating a human interacting with an environment to 
accomplish a task. Due to lack of space, the reader is 
referred to Kieras (2004), Kieras & Meyer (1997), Meyer & 
Kieras (1997) for a more complete description of EPIC. 

The EPIC architecture consists of software modules for 
the simulated task environment, or device, that interacts 
with a simulated human, which consists of perceptual and 
motor processor peripherals surrounding a cognitive 
processor. The device and all of the processors run in 
parallel with each other. To model human performance of a 
task,  the cognitive processor is programmed with 
production rules that implement a strategy for performing 
the task. When the simulation is run, the architecture 
generates the specific sequence of perceptual, cognitive, 
and motor events required to perform the task, within the 
constraints determined by the architecture components and 
the task environment. 

Figure 1 shows the visual system of EPIC. The eye 
processor explicitly represents differential retinal 
availability in terms of acuity functions that specify 
whether each visual property of each object is currently 
visible as a function of the size of the object and its 
eccentricity. The currently available visual properties for 
each object are represented in the sensory store; the 
perceptual processor then encodes the properties of each 
object, possibly in relation to other objects, and passes the 
encoded representation on to the perceptual store where 
they are available to the cognitive processor to match the 
conditions of production rules. The perceptual store thus 
contains the current representation of the visual world that 
cognition can reason and make decisions about, including 
decisions about where to move the eyes next by 
commanding the ocular motor processor.  The perceptual 
store retains the representations for all objects currently 

visible, with more information and detail about those that 
have been fixated.
Persistence of the visual perceptual store

When the eyes move away from an object, the properties 
of the object persist for a short time (e.g. 200 ms) in the 
sensory store, and when lost, the perceptual processor notes 
that the corresponding property in the perceptual store no 
longer has sensory support. After a relatively long time, the 
property will then be lost from the perceptual store. But if 
the object disappears completely, it and all of its properties 
will be removed from the perceptual store fairly quickly. 

The concept is that as the eyes move around the visual 
scene, a complete and continuous representation of the 
objects currently present in the visual situation will be built 
up and maintained in the perceptual store, allowing the 
cognitive processor to make decisions based on far more 
than the properties of the currently fixated object. The 
notion that this information persists for a considerable time 
as long as the scene is present is supported by studies 
summarized by Henderson & Castelhano (2005): a 
naturalistic visual scene is continuously present, but using a 
gaze-contingent forced-choice paradigm, subjects are tested 
for their memory of a previously fixated object; retention 
times at least several seconds long were observed. The 
model for the Peterson task (Kieras, 2009) provided a good 
fit to the repeat-fixation data with a retention time of at 
least 4 sec.

The Williams Study
A classic study using early eye-movement recording 

methodology was done by Williams (1966, 1967), who 
ventured into experimental territory commonly avoided 
even today. This study manipulated the size of the objects 
along with their color and shape, an unusual combination in 
the visual search literature,  and used a very large number of 
objects, which provides an upper bound on the difficulty of 
search tasks of this sort. 

The task required visual search of 100 objects varying in 
size,  color, and shape, each with a unique two-digit label. 
The 100 objects represented all combinations of 4 sizes, 5 
colors, and 5 shapes.  The search task was to locate the 
object with the matching label. Depending on the 
experimental condition,  additional attributes of the target 
object were cued; all combinations of size, color, and shape 
cues were tested in addition to the Number-only cue, which 
was only the object label. The hypothesis was that if a 
specification is an effective cue for visual guidance, more 
fixations should be on objects matching the cue than 
expected by chance. 

The entire display is 39° X 39° (all degrees are degrees 
of visual angle), and the search objects range from 0.8° to 
2.8° in size and distributed at random into the 13 X 13 grid 
of 3° X 3° cells. The cue specifications were shown in the 
center of the display. To convey an overall impression of 
the task, Figure 2 provides an example display produced by 
the model to be described later. Due to space restrictions 
this figure is too small for the details to be visible in  a 
paper printing, especially in monochrome, but the details 
can be seen easily by zooming in with the original pdf file. 
In this example,  the specified target is the medium-size 
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yellow cross labeled 38, which is in the upper-left of the 
display. The concentric circles at center left show the 
current location of EPIC's eyes; the small inner circle has a 
1° diameter corresponding to the conventional fovea size; 
the outer circle is a calibration ring with 10° diameter. The 
display is shown to scale, except that to maintain legibility, 
the numeric labels are shown as magnified and left-justified 
in the object bounding boxes; in the actual stimuli and 
model representation, they are only 0.3° high, which would 
require foveation to recognize, and centered in the object.

The specification names for color and shape were the 
obvious names, but the four sizes were described as small, 
medium,  large, and very large. The specifications appeared 
first in the center of the display; when a button is pressed, 
the search objects were added to the display.  The 
participant pressed another button when he or she had 
located the specified object.

Eye movements were recorded with a corneal-reflection 
film camera system and scored by hand. The total number 
of fixations were counted, and classified by whether they 
fell on objects whose size, color, and shape matched the 
specifications. While 61% of the fixations were attributed 
to a specific object, 29% were deemed unclassifiable, a 
relatively large number by current methodological 
standards. 

Unlike modern practice, Williams obtained approximate 
reaction times (RT) indirectly by counting the number of 
fixations and dividing by 3.25, the observed average 
number of fixations per second. Because the observed 
number of fixations and the reported RTs are perfectly 
correlated, the RTs will only be mentioned occasionally. 

The Data
This being an early and basically descriptive study, 

Williams did not report confidence intervals or information 
sufficient for their calculation, and conventional statistical 
tests were not relevant.  However, the data set consisted of 
many thousands of fixations collected from 30 participants 
who performed 200 trials spread over 8 conditions. Based 
on the original reports, it appears that a typical sample size 
for the statistics for any one condition as reported below is 
in the neighborhood of about 1000. The proportions of 
fixations on objects of various types are the most important 
results; for an observed proportion of 0.5, the 95% binomial 
confidence interval for a sample size of 1000 is about 
0.47-0.53; this ±0.03 range can be used as an approximate 
confidence interval for this important subset of the data.

Figure 3 shows the observed proportion of fixations on 
objects that matched the cued properties (the predicted 
values will be discussed below). E.g., if the color was the 
only specified cue, about 60% of the fixations were on 
objects with the specified color. Figure 4 shows the number 
of fixations for each cue type. 
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Figure 3. Observed (solid bars) and predicted (shaded bars) 
proportion of fixations on objects that matched each cue type. The 
95% confidence intervals would be roughly ±0.03 for each 
observed proportion.
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Figure 2. An example of the physical display in a Williams (1966) 
task trial after several fixations as depicted in EPIC's 
automatically-generated display. Zoom in on this figure in the pdf 
file to see the detail.
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Visual guidance produced by color, size, and shape
It is clear from the results that color is the strongest cue 

for visual guidance,  resulting in the highest proportion of 
fixations on matching objects (0.61), the fewest fixations 
(25) and the fastest RTs (not shown, 7.6 s). Size comes 
next, and shape is a distant third.  There is a tendency for 
each cue to have little or no effect if a stronger cue is also 
present. If only the label is provided (the Number-only cue), 
the fixations on objects that match the target properties is at 
chance level, the number of fixations is large (74),  and the 
RT is quite long (23 s).

The importance of color in visual search is consistent 
with many results ranging from classic human factors 
studies (e.g. Sanders & McCormick, 1987) to recent HCI-
oriented studies (e.g. Fleetwood & Byrne, 2006). But in the 
active vision framework, color is not specially privileged in 
some way, but rather, various direct measurements show 
that the color of an object is visible over a wide range of 
eccentricity and object sizes (e.g. Gordon & Abramov,
1977), and so can often serve as an effective cue about 
where to look next. The relative ineffectiveness of shape is 
likewise not due to a fundamental problem with shape, but 
rather that in many cases, recognizing the shape requires 
resolving detailed features that can only be seen close to the 
fovea. As an extreme of shape recognition, recognizing the 
text label involves detecting small features, and so requires 
foveation unless the text is quite large (Anstis, 1974). 
Repeat fixations and memory failures

One overall feature of these results is that many more 
fixations are required than should be necessary if each 
object only received one fixation; for example,  it should 
require no more than 50 fixations on average in the 
Number-only condition to find the labeled object. Williams 
reports a small number (3%) of immediate repeat fixations, 
but does not report how many repeat fixations appeared 
over longer time periods.  Apparently objects are frequently 
looked at repeatedly; e.g. the 74 fixations in the Number-
only condition implies a repeat rate of about 33%! 

In contrast,  recent observation and modeling of repeat 
fixations (see Peterson et al.  2001,  Kieras & Marshall, 
2006, Kieras, 2009) suggests that repeat fixations are 
relatively rare, around 5%, implying a good memory for 
previous fixations, and almost all are performed 
immediately, being due to recognition (encoding) failures 
rather than failures of the memory for previous fixations. 
The 3% immediate repeat rate reported by Williams is 
consistent with this, but not the much higher overall repeat 
rate implied by the total number of fixations. 

However, the low-rate results were obtained in search 
tasks involving many fewer objects and that took much less 
time than Williams' task. Perhaps the much higher repeat 
rate in Williams' results is due to time decay of the fixation 
memory. In fact, in Peterson's task, repeat fixations at long 
lags become more frequent if the trial has gone on for an 
unusually long time (Peterson, personal communication). 
This issue will be important in modeling the Williams data. 

Model for the Williams Task
Constructing an EPIC model for the Williams task 

required a choice of (1) visual acuity parameters, (2) a 

parameter for the decay time of visual properties in the 
perceptual store that are no longer sensorily supported, and 
(3) a set of production rules that implemented the visual 
search strategy. Each of these will be described briefly.
Acuity functions

Despite the many decades of research on vision, the 
literature does not contain a comprehensive set of 
parametric data on acuity for different visual properties as a 
function of their eccentricity and size, especially for the 
properties and values typical of computer displays. Space 
limitations do not allow even a cursory review of the 
available data (but see Findlay & Gilchrist, 2003). To deal 
with this non-definitive picture, a simple family of acuity 
functions were proposed, and their parameters determined 
by a combination of general constraints set by the literature 
and iterative maximization of fit in the models. A separate 
function was specified for each property: encoded size 
(small, medium, etc.),  color, shape, and text label. The text 
acuity function was specified as text being available within 
1° of the current eye position, corresponding to the 
conventional definition of foveal vision and the small size 
of text used. A psychophysical acuity function was used for 
the other properties: For the property to be available, its 
size s must exceed a threshold which increases 
quadratically with eccentricity e and includes a Gaussian 
noise component X whose variability increases with the 
object size and coefficient of variation v:

threshold = ae2 + be + c
P(available) = P(s + X > threshold)
X ~ N(0, vs)

Such a function produces a wide area of highly probable 
availability, with a sharp tapering-off towards the periphery. 
The quadratic form was selected for simplicity: the 
parameters can be easily set to reflect a minimum size, 
general trend, and degree of curvilinearity, and were set to 
be consistent with models for other tasks not described 
here, and to have as much uniformity in the parameter 
values as possible. The function for color availability used 
in the model had parameter values of v=0.7, a=0.035, 
b=0.1, c=0.1. The acuity functions for encoded size and 
shape had the same values except for larger quadratic 
coefficients a of 0.2 and 0.3 respectively. Thus, consistent 
with the literature, the availability of the size and shape 
properties drops off with eccentricity much more rapidly 
than for color.

The availability for each property at the retinal and 
sensory store level is independently resampled for all 
objects whenever the eye is moved. Figure 5 shows an 
example of EPIC's visual sensory store after several 
fixations, corresponding to Figure 2, showing what is 
currently available around the fixation point. In EPIC's 
display, objects whose location, but no other properties, are 
known are represented as light gray open circles. Objects 
which are close enough to the current fixation point to have 
their color available, but not their shape, are represented as 
colored open circles. In Figure 5, the shape, color, encoded 
size,  and label are available for the currently fixated object. 
The colors of several extrafoveal objects are also available, 
and even the shape for a nearby large object. As the eye 
moves around, the available properties of the same object 
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can fluctuate, and will not be reliably available from one 
fixation to the next.
Perceptual store persistence time

Once a property of an object is visible, that property is 
attached to the object representation in the visual perceptual 
store where it can serve to match conditions of production 
rules. The visual perceptual store is persistent,  in that as 
long as an object is within the visual field, its properties, 
once acquired, will persist for a long time and thus can 
serve as a memory for previous fixations, as described in 
Kieras (2009). Figure 6 shows a sample of EPIC's visual 
perceptual store, corresponding to Figures 2 and 5, several 
seconds into the visual search, showing the information 
persisting from previous fixations.  Previously fixated 
objects have all properties including the label, but will 
eventually lose this information until fixated again. But in 
the meantime, their color,  size, or shape can be used to 
guide the choice of which object to fixate next. 

The duration parameter was estimated iteratively by 
fitting the model, starting with the 4 sec lower bound 
determined in Kieras (2009); a good fit was found with a 
duration of 9 seconds.
Task strategy

The visual search strategy in the model is an application 
of a basic strategy, shown in Figure 8, that has been used in 
several EPIC visual search models. There are two threads 
of execution. Nomination rules in the first thread propose 
objects to fixate based on available visual properties, and 
also nominate a random choice. Choice rules then pick a 
single candidate from the nominated objects according to a 
priority scheme, and launch an eye movement to the chosen 
candidate. The rules in the second thread wait for all 
relevant properties of the fixated candidate to be fully 
visible and either respond if it is a target, or discard the 
candidate if not. Given the typical 100 ms transduction and 
encoding times for visual properties and the 50 ms 
production rule cycle time, the overlapped processing 
provided by the two threads enables the time between 
successive eye movement initiations to be short, in the 
range of 250 to 300 ms, which is commonly observed in 
high-speed visual search tasks.

For the Williams model, the strategy nominates candidate 
objects that have the cued properties, such as the cued color 
or cued shape. The fixation memory effect is implemented 
by only nominating objects whose text label property is 
currently unknown; either because the object was never 
fixated, or it was fixated a long time ago and has been lost 
from the perceptual store. The priority scheme for choosing 
a fixation target favors the more available information, and 
so chooses an object with a matching color over one with a 
matching size over one with a matching shape. For 
simplicity, given the apparent very high repeat fixation 
rates in the data, the mechanism for the relatively rare 

Figure 6. An example of the contents of the perceptual store after 
several fixations, showing the accumulated object information. 
Zoom in on this figure in the pdf file to see the detail.
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Figure 5. An example of the contents of the sensory store 
corresponding to the lower left corner of Figure 2, showing 
available properties of objects near the current fixation point.
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encoding failures used in previous models (e.g. Kieras, 
2009; Kieras & Marshall, 2006) to trigger repeat fixations 
was not implemented in this model, corresponding to an 
assumption that most of the revisits are due to memory 
failure in this task. 

Model Results
The model was run for 500 trials in each experimental 

condition, and the simulated eye movements and response 
time data were collected and tabulated analogously to the 
original experiment. Figure 3 above shows the observed 
and predicted proportion of fixations of each type. Clearly 
the fit is very good using the acuity function and perceptual 
store persistence parameters listed above (R2 = .99; average 
absolute error (AAE) = 3%). 

The observed and predicted number of fixations is shown 
in Figure 4 above. Again there is a very good fit (R2 = 0.98, 
AAE = 12%). The observed and predicted RTs (not shown) 
also fit well (R2 = 0.98 and AAE = 9%), although there is a 
general tendency for the model RTs to run longer than 
William's results. Given the unusual methodology used to 
determine the RTs, it is not clear that attempting to improve 
the fit to the absolute value would be worthwhile.

In an analysis of the model output, the proportion of 
repeat fixations was found to increase substantially as the 
perceptual store duration was decreased, and the number of 
fixations (or RT) increased.  The persistence parameter was 
adjusted to produce the overall good fit on the number of 
fixations shown in Figure 4, and the proportion of repeat 
fixations on search objects was then determined with the 
final parameter value. The range was 11% repeats in the 
best condition to 33% in the Number-only condition.  This 
proportion was highly linear with the predicted number of 
fixations (R2 = 0.95). This suggests that the loss of fixation 
memory over time is a good account for the excess number 
of fixations in the data.

Conclusion
This model, along with the one in Kieras (2009), 

represents a realization of the active vision concept in terms 
of a computational cognitive architecture that incorporates 
differential acuity and a persistent visual store that 
represents the current visual situation and provides a 
memory of previous fixations. Two more specific points 
emerge: (1) Simplistic statements about which properties 
can guide visual search must be replaced by statements 
about which properties are available in a specific visual 
situation. For example, color should not be very effective if 
the objects were very small, and shape should be more 
effective if the objects were larger. (2) Repeat fixations 
have two causes: the persistent visual store is capacious and 
reliable at short durations, meaning that repeat fixations are 
due just to encoding errors, but if the search takes a very 
long time, information from previous fixations is lost, and 
more repeat fixations are the result. 

This general model appears to be ready for practical 
application in situations where the to-be-searched display 
contains uniform-color objects with simple geometric 
shapes and very small distinguishing features such as text 

labels. The specific acuity functions determined here 
should be useful approximations in modeling such displays. 

At the theoretical level, this type of model appears to be a 
simple and sound approach to representing visual activity, 
and is ready to use either as a component in models of more 
complex tasks that involve visual search as a subtask, or as 
a basis for models of more advanced visual processing.
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Abstract 
Predicting the results of one’s own actions is a powerful 
cognitive capability that can aid in determining which action to 
take in a given situation. In this paper, we describe a task-
independent framework based on the Soar cognitive architecture 
in which rules, episodic memory, semantic memory, mental 
imagery, and task decomposition are available for predicting an 
action’s consequences. We include results from two domains 
and make predictions for human behavior based on these results.  

Keywords: Action modeling; prediction; cognitive architecture 

Introduction 
When faced with a decision between alternative actions, an 
intelligent agent may have sufficient knowledge to 
immediately determine which choice is best. However, in 
situations where directly available knowledge is insufficient 
or in conflict, an agent can often use predictions of how its 
actions will change the environment to make its decision. 
We call the knowledge used to make such a prediction an 
action model. Using this approach to make a decision 
typically involves the following steps: 
1. Choose one of the alternative actions to evaluate. 
2. Create an internal representation of the situation. 
3. Apply the action model to the internal representation to 

generate a prediction. 
4. Repeat for all other actions. 
5. Choose the action that leads to the best predicted state.  
This approach to decision making is ubiquitous in humans 
(de Groot, 1965; Newell & Simon, 1972) and has been used 
throughout artificial intelligence (AI) systems, where the 
agent internally simulates multiple steps into the future. A 
critical ingredient in this process is the action model: the 
means by which the results of actions are predicted. Action 
modeling is important because it allows an agent to move 
beyond reactive behavior – an agent can plan and deliberate 
about the implications of its actions before choosing one. 

Historically, AI systems have used rule-like structures as 
action models, such as STRIPS operators (Fikes & Nilsson, 
1972). Cognitive science research has addressed action 
modeling, but it has typically been isolated within specific 
cognitive processes, such as mental imagery (Johnson, 
2000; Wintermute & Laird, 2009) or episodic memory 
(Atance & O’Neill 2005, Schacter & Addis 2007). 

Rather than focus on one particular approach to action 
modeling, we investigate the problem in general. We 
propose that different combinations of memory and 
processing systems can be used for action modeling, and 
that domain characteristics and the agent’s knowledge 

determine which mechanisms are used for a specific task. 
The mechanisms we propose include rule-based procedural 
knowledge, episodic knowledge, semantic knowledge, 
mental imagery, action decomposition, and arbitrary 
combinations thereof. These mechanisms vary along many 
dimensions including generality, reportability, learnability, 
computational expense, and the types of problems where 
they are appropriate. Forbus & Gentner (1997) have 
previously posited a similar diversity of processing to 
support mental models, although they did not focus on 
detailed architectural mechanisms as we do here. 

Included in our work is task-independent knowledge that 
dynamically combines these mechanisms, implemented 
within Soar (Laird, 2008). Soar has the requisite 
representational capabilities to support the diverse forms of 
memories, processing units and knowledge required for 
action modeling. In the next section, we give an overview of 
Soar and our approach to using action models in support of 
decision making. This is followed by descriptions of the 
different forms of action modeling, with demonstration of 
them on a simple blocks world task. We then demonstrate 
them together on a simple board game, and analyze their 
relationship to human behavior.  

Framework for Action Modeling in Soar 
Figure 1 shows the structure of Soar, including its long-term 
and short-term memories and processing components. 
Working memory is a shared, symbolic memory that 
maintains the agent’s primary representation of the current 
situation. Long-term symbolic memories hold procedural, 
semantic, and episodic knowledge, which are retrieved 
based on either the total contents of working memory (for 
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Figure 1: Structure of Soar 
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procedural) or cue structures created in working memory 
(for episodic and semantic). Soar has a non-symbolic, 
spatially-based perceptual short-term memory (STM) from 
which symbolic information can be extracted into working 
memory. This memory is the medium of mental imagery. 

Behavior in Soar is driven by rules stored in procedural 
memory. Rules that successfully match the contents of 
working memory fire in parallel. Operators are the locus of 
sequential behavior in Soar and only a single operator can 
be selected at a time.1

If there is insufficient knowledge to select or apply an 
operator, an impasse arises, and a substate is created. Within 
the substate, operators can be proposed, selected, and 
applied to resolve the impasse. A side effect of resolving an 
impasse in a substate is that Soar builds a rule that 
summarizes the processing in the substate. This process is 
called chunking. The learned rule fires in similar situations 
so that the same impasse is avoided in the future. 

 Operators are implemented via rules 
that propose, evaluate, and apply them. Rules that propose 
and evaluate an operator create preferences, while rules that 
apply an operator modify elements in working memory 
when that operator is selected.  

Conceptually, operators are either external, in that they 
initiate action in the environment, or internal, in that they 
change the internal state of an agent. Throughout this paper, 
we call external operators actions, so that an action model 
refers to an internal model of the changes that result from 
the application of an external operator.  

Figure 2 shows how action modeling arises in Soar. When 
an agent is unable to make a decision using its directly 
available knowledge, it internally simulates the effects of 
proposed actions to aid in decision making. In this example, 
the agent is attempting to create a stack of blocks, with A on 
B, B on C, and C on the table. In the upper left corner of the 
figure, the agent’s state is shown, with the lower half 
corresponding to a representation of the problem state as it 
might be in the agent’s perceptual short-term memory. The 
top half of the state shows the symbolic relations that the 
agent extracts from perception, and it is these relations that 

1 Operators in Soar correspond most closely to rules in ACT-R 
(Anderson, 2007); however, operators in Soar provide a richer 
representation for organizing action than do rules in ACT-R because of the 
independent representations of knowledge (as rules) for proposing, 
selecting, and executing the actions associated with an operator. 

are available in working memory.    
We assume the agent has sufficient knowledge to propose 

the three legal actions for this state: move B onto C, move C 
onto B, and move C onto the table. However, there are no 
rules to create preferences, so an impasse arises (1), and 
Soar automatically creates a substate (2). 

To resolve this impasse, the agent tries out each proposed 
action on a copy of the state and then evaluates the quality 
of the result. Task-independent knowledge (TIK), encoded 
as rules, carries out this strategy. The only additional task-
dependent knowledge required in this processing are action 
models and state evaluations, both of which can use the 
various forms of knowledge presented below.   

As shown in Figure 2, following the impasse, operators 
are selected (at random) to evaluate the actions. In the 
example, move C to the table is evaluated first (3). In this 
case, the agent does not have rules to evaluate this action 
directly, and thus, another impasse arises. In the resulting 
substate (4), the TIK copies the contents of the original task 
state and uses a model of the action being evaluated to 
predict the resulting state. Once this state is computed (5), 
the agent must also have some knowledge (usually encoded 
as rules) for evaluating it. In this case, we use an evaluation 
that counts the number of blocks in their desired positions, 
which assigns the state an evaluation of 1. The creation of 
this evaluation terminates the evaluate operator, which is 
followed by the selection of operators to evaluate the 
remaining actions (6, 7). When all the evaluations are 
computed, preferences are created for the actions, leading to 
the selection of the action to move C to the table, and 
resolving the first impasse. The action is then performed. 
Chunking learns rules for evaluating each of the actions 
(from the substates where the action modeling occurs), and 
for creating the preferences based on those evaluations. 

Different Forms of Action Modeling 
In this section, we describe how action modeling can be 
implemented using different processing and memory 
systems, with the blocks world serving as an example. 

Procedural Knowledge 
The most direct way to encode an action model in Soar is as 
rules. These rules test features of the state, features of the 
selected action, and that the state is an internal copy of the 
task state. They modify the internal copy in the same way 
the external action would modify the real state. For complex 
actions, the model can be implemented with multiple rules 
that fire in parallel and/or in sequence. 

Episodic Memory 
Soar has an episodic memory that automatically stores 
“snapshots” of working memory over time (Nuxoll & Laird, 
2007). Soar’s episodic memory is an idealization of human 
episodic memory, and emphasizes basic functionality, such 
as efficient storage and associative retrieval of temporally 
organized episodes. For action modeling, episodic memory 
requires that the agent has a previous experience when the 
action being considered was applied in the environment. 
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(on A Table) 
(on B Table) 

(on C A) 

(on A Table) 
(on B Table) 

(on C A) 

 

(on A Table) 
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prefer move(C, Table) move(C, Table) 
move(C, B) 
move(B, C) 
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Figure 2: Soar processing using an action model. 
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The agent can then use its memory of that experience to 
make a prediction as to what will happen when the operator 
is applied to a similar situation (Xu & Laird, 2010). 

When episodic memory is used, the behavior of the agent 
is as follows. The first time the agent gets to the point where 
the action is selected in Figure 2, an impasse would arise 
because there is no rule to apply the action. In the resulting 
substate (not shown in Figure 2), the TIK for using episodic 
memory selects an operator which creates a cue consisting 
of the task state with the action selected, in an attempt to 
retrieve a similar previous episode. Once the cue is created, 
the episodic memory system retrieves the most recent, best 
match to the cue and reconstructs it in working memory. If 
no match is found, then this approach to action modeling 
fails, and the agent must either try other methods, or assign 
a default evaluation value to the action being evaluated. 
Chunking does not create rules to summarize processing in 
substates where episodic memory retrieval failed.  

If the retrieval is successful, the agent then retrieves the 
following episode. The agent continues retrieving 
subsequent episodes until it finds one where the action is no 
longer selected, which indicates the action has terminated. 
The agent then compares the task state in that episode to the 
current task state and modifies the internal copy of the task 
state to reflect any changes. Chunking creates a rule that 
summarizes the processing, so that in the future, the 
retrievals are not required.  

Figures 3 and 4 compare results for using the rule-based 
versus the episode-based approaches to action modeling. 
Both figures show the progression of performance across 
four identical trials of the blocks world problem described 
above, and both use log scales for the y-axis. Figure 3 
shows the number of external actions that the agent takes to 
solve the problem, while Figure 4 shows the number of 
decisions (processing cycles in Soar). These results are not 
intended to precisely model human behavior (for example, 
we are not including time for perception or motor actions); 
however the comparisons should be meaningful in 
predicting qualitative differences across methods and trials.  

In Figure 3, the top line shows the average performance 
of an agent using episode-based action modeling where 
episodes are not learned, so that a random selection is 
always made. The next line shows the performance when 

episodes are being learned. Initially there are no relevant 
episodes, so the selections are random, but with experience, 
the episodes accumulate and the agent’s performance 
improves as it is able to correctly predict future states and 
select the correct action, until finally it achieves optimal 
performance. Even the first trial gets some improvement 
from learned episodes. The bottom line shows the 
performance with the rule-based action model, which 
always makes the correct predictions. 

Figure 4 shows the performance in terms of decisions, not 
just external actions. The top line corresponds to the steps 
required when episodes are not learned. The next line shows 
the performance as episodes are learned. The dashed line 
that starts at the same point for trial 1 shows that when 
chunking is used with episodic memory, it eliminates the 
need for episodic retrievals over time as the agent learns 
action models based on rules that replace those based on 
episodic memory. The agent eventually learns rules that 
choose actions directly, eliminating the need for action 
models. Thus, there is a combined gain with episodic 
memory improving solution quality, and chunking 
improving the efficiency of the problem solving process. 
Note that external actions take orders of magnitude more 
time to execute than internal reasoning steps, so the 
differences are more pronounced in real environments.  

The next line shows the performance for the rule-based 
action model without chunking, which serves as the optimal 
base line for action modeling. The final line shows the 
impact of using chunking with the rule-based action model, 
where after one trial, rules are learned that eliminate the 
need for the action model. As these figures show, in only a 
few trials, the combination of episodic memory and 
chunking converts an agent with little task knowledge  into 
one that solves the problem in few actions (due to episodic 
memory-based action modeling), while eliminating the need 
for purely internal decisions (due to chunking).  

Semantic Knowledge 
Whereas episodic memory is based on specific experiences, 
semantic memory consists of decontextualized facts – such 
as knowledge about objects and their structure, independent 
of when they were experienced. This makes semantic 
knowledge more difficult to learn than episodic knowledge, 
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but more useful across a variety of tasks. Soar as yet does 
not have a theory of how semantic memories are 
automatically learned, and instead Soar agents must 
deliberately store semantic data they encounter.   

The use of semantic memory for action modeling is 
analogous to the use of episodic memory – when there is no 
action model encoded as rules, an impasse arises, and in the 
resulting substate, an operator is selected which queries 
semantic memory to retrieve knowledge that can aid in 
predicting the result of applying that action. Semantic 
memory covers a broad range of knowledge, and one can 
imagine many ways it can aid in action modeling. For 
example, the fact boiling kettles are hot can be useful when 
predicting the consequence of touching one. Here, we use 
declarative instructions that specify how to modify the 
internal task state to model the action.  

To use semantic memory, the agent selects an internal 
operator that initiates a retrieval for instructions related to 
the action being evaluated. If the relevant instructions are 
retrieved, TIK selects the “interpret” operator, whose 
purpose is to apply the instructions to the copy of the task 
state. The interpret operator is not implemented directly in 
rules, but leads to a substate where operators are selected 
and applied for each of the instructions. The processing in 
the substate allows for arbitrarily complex implementations 
of instructions, and is similar in spirit to how declarative 
instructions are used in ACT-R (Anderson 2007; Best & 
Lebiere 2003); however, in those cases the instructions are 
interpreted to control the execution of a task, while here 
they are used to model the execution of an action.  

The format of declarative instructions is like that of an 
imperative programming language or a recipe. We have 
developed task-independent declarative representations for 
common control flow instructions and state modifications. 
In the blocks world example, instructions specify additions 
and deletions of predicates. The rules that interpret those 
instructions assume a specific representation of predicates in 
working memory. Figure 5 shows the instructions for 
moving a block. When using semantic memory, the number 
of decisions decreases after one trial, as chunking creates 
action model and action selection rules.  

Mental Imagery 
Mental imagery involves the maintenance of a separate 
memory structure grounded in perception, which represents 
objects and their spatial properties. While the contents of the 
memory is mostly created bottom-up from perception, an 
agent can create new “imagined” structures and manipulate 
them by operations such as translation, rotation, and scaling, 
as well as simulate complex motions, such as the path of a 
car (Wintermute, 2009). The agent can extract spatial 
predicates from perceptual memory, such as the relative 
positions of objects and whether they collide. When applied 

to perceived structures, this can be used to create the initial 
symbolic representation of the problem. When applied to 
imagined structures, symbolic consequences of actions can 
be predicted. The use of mental imagery for action modeling 
is restricted to actions that involve spatial motion, or actions 
that can be mapped onto such motion. 

As in the use of episodic and semantic memory, mental 
imagery is employed when there are no rules for an action 
model, and an impasse arises. Mental imagery takes 
advantage of the spatial representation and maps the action 
to be modeled onto imagery operations. Making the 
connection between the action and mental imagery 
operations can involve accessing knowledge in semantic 
memory, or such knowledge can be encoded in rules. In our 
example, the agent knows that to move a block, it should 
imagine it centered on top of the destination block. Once the 
perceptual memory has changed, relevant predicates can be 
extracted, creating a symbolic description of the situation 
that serves as the resulting state.  

Mental imagery involves processing that cannot be 
analyzed by chunking because the results of the processing 
are not uniquely determined by the symbolic structures 
available in working memory. Therefore, chunking does not 
create rules that summarize mental imagery processing. This 
is similar to ACT-R avoiding rule compilation for 
processing over external interactions (Anderson, 2007).  

Although not as general as the other methods, mental 
imagery has wide applicability because of the ubiquity of 
spatial problems. Imagery-based action models are effective 
in a range of problems, from simple tasks in the blocks 
world (Wintermute & Laird, 2009) to complex tasks such as 
path planning for cars (Wintermute, 2009). 

Action Decomposition 
The final alternative approach is to model an action by 
decomposing it into simpler actions that can be modeled 
using any of the approaches described above. In Soar, 
hierarchical operator decomposition is ubiquitous, and arises 
when complex operators are selected, and then implemented 
in substates by simpler operators. In the blocks world 
example, when move-block is selected, it can be 
decomposed into pickup-block and put-down-block actions. 
When these actions are selected, any of the previous 
methods can be used as models for them, including further 
decomposition. One typical use of action decomposition is 
to take an action that involves complex spatial interactions 
and decompose it into simpler parts until those parts can be 
mapped onto imagery operations. Chunking will create rules 
for the action model of a complex operator as long as mental 
imagery was not used in any substate processing.  

A Policy for Controlling Action Modeling Approaches 
We have presented these action modeling approaches as 
alternatives, with no attention to when each would be used 
in an integrated agent. Inherent to Soar is that it uses rules 
for action modeling if they are available. That is the default 
behavior and it is not under control of the agent. When rules 
are not available, an impasse arises, and in the ensuing 

Figure 5: Instructions encoded in semantic memory. 

Move-block(blk, dest): 
  1. Del-predicate ontop(blk, x) ∀ x ≠ dest 
  2. Add-predicate ontop(blk, dest) 
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substate, operators are proposed for the alternative methods, 
as well as any operators that decompose the selected action. 
This structure introduces an extra level of deliberation, 
which adds flexibility at minimal cost to the agent (the 
results in Figure 4 are without this additional layer). 
Although it may be possible for an agent to learn when best 
to use each method, that could be a difficult learning 
problem and we leave it to future research. As an 
alternative, we encoded a simple ordering preference for 
these approaches in the TIK and use this method in the 
board game demonstration below. 

Integrated Demonstration 
To provide additional illustration of how these approaches 
work, both independently and in unison, we present an agent 
that plays a simple board game, shown in Figure 5. In this 
game, the agent must slide the hexagonal marker on the left 
along the directional paths to numbered nodes until it gets to 
the end (node 10). As the marker slides along a path, it may 
touch one of three different objects, labeled X, Y, and $. If 
the marker hits an object, the agent gets points. The agent 
has semantic knowledge that the $ is worth 20 points, but 
does not initially know the values of the other objects (X is 
worth 10 points and Y is worth 5). The goal is to get to the 
end with the highest possible score, which is achieved via 
path A, C, F, H, I, K. We assume that the agent can sense 
the marker position, the paths, and the objects, but it does 
not a priori know whether the marker will hit a nearby 
object as it slides along a path.  

To perform the task, the marker starts at position 1, and 
the agent is faced with making a decision to take path A or 
B. To make this decision, the agent will attempt to predict 
the result of each move. At this point, the agent does not 
have any action model rules, nor does it have any episodes 
or relevant information in semantic memory. However, it 
can use mental imagery to imagine moving the marker along 
each of the paths. Mental imagery predicts that if it moves 
along A, it will intersect with object X, while for B, it will 
intersect with Y. In both cases, it does not know how 
encountering those objects will affect its score, so it chooses 
at random. We assume it picks path B. It executes that 
action, encountering Y and getting 5 points.  

Once at 3, the agent picks path D to get to 4. Here, the 
decision is between going along path E or F. This time, after 
it uses mental imagery to detect that it will encounter object 
Y, it then uses episodic memory to recall that the last time it 
encountered object Y it received 5 points. When it considers 

path F, it uses imagery to predict it will encounter object $, 
and then semantic memory to predict that it will receive 20 
points. Based on these evaluations, it chooses path F. It 
receives 20 points, moves to 6 and then 7. At this point, it 
uses a combination of mental imagery and episodic memory 
to predict the result of moving to 8 (10 points). In imagining 
moving to 9, imagery shows that it will not encounter Y, so 
it will get a score of 0. It selects moving to 8, and then 
finishing by moving to 10, getting a total score of 35. 

The next time the agent plays the game, it uses episodic 
memory to predict the results of the paths it took the first 
time (B, F, I). Since it has no episodic memories of moving 
on paths A, E, and J, and cannot chunk over imagery action 
models, it must continue to use imagery for those paths.2

Figure 7 shows the progression of how the agent’s 
decisions are distributed across using imagery versus 
episodic memory over multiple trials. The highest line 
shows the total number of internal reasoning steps. The 
bottom two lines are the number of decisions that involve 
imagery and episodic memory operations. In the first trial, 
imagery dominates as the agent has no prior experiences it 
can draw on. In the second run, the agent must still use 
imagery for those cases where it has not taken a path, but it 
uses episodic memory for those cases where it had prior 
experiences. Although not evident in the graph, chunking 
replaces the use of semantic memory with a rule. For the 
third run, chunking decreases the total number of steps by 
eliminating the use of episodic memory. In the final trial, 
some imagery is still required for those paths the agent 
never actually tried, and episodic memory is no longer used 
as it has been replaced by rules learned through chunking. 

 
Thus, in its second attempt, it will use imagery and episodic 
memory to predict a 10 score for A, while it will use only 
episodic to predict a score of 5 for B. Similar use of imagery 
and episodic memory will be used at nodes 4 and 7. As a 
result, the optimal path is taken, resulting in a score of 40.  

Predictions 
From these examples and an understanding of the 

approach, we can make some predictions about the behavior 

2 Soar’s episodic memory does not capture subgoal processing, so the 
agent has no episodic memories of previous predictions. Otherwise, these 
steps could also be removed. 
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of an agent with the capabilities we described. 
In a spatial environment, an agent initially relies on 

mental imagery for action modeling (and semantic 
knowledge if it is available). As the agent gains experience, 
it switches to using episodic memory when possible. With 
further experience, rules learned via chunking replace 
episodic memory, and eventually rules are learned that 
choose actions directly, eliminating action modeling.   

Concurrent with learning, the agent’s ability to report on 
its internal reasoning should change, as different structures 
become available in working memory (which is the basis for 
our predictions about reporting). Initially, for spatial 
problems, the agent can report imagining spatial situations, 
which then transitions to reports of using episodic memory 
(things it “remembers”). When using semantic memory, it 
can report on the instructions and facts it is using (things it 
“knows”). With practice, the agent loses the ability to report 
on its reasoning as intermediate structures are no longer 
generated in working memory and processing is done purely 
with rules.  The rules produce behavior without the creation 
of a declarative trace that the agent can report.  

As shown in Figure 7, our model predicts there are also 
changes over time in terms of which mechanisms are used 
in action modeling, and thus decision making. The obvious 
prediction is that in humans the brain areas used for action 
modeling, and thus decision making, will change based on 
characteristics of the task (whether it is spatial or symbolic) 
and a subject’s experience (whether it has access to relevant 
semantic, episodic, or procedural knowledge). 

Conclusions 
The major claim of this paper is that intelligent agents, 
including humans, have a variety of available mechanisms 
that can be used to predict the results of their actions in 
service of decision making. A related claim is that internal 
prediction does not occur in any specific architectural 
module, but results from a combination of characteristics of 
the domain, the agent’s background knowledge, prior 
experience, and the agent’s available memories and 
processing elements. We have demonstrated two agents in 
two domains using rules, episodic memory, semantic 
memory, mental imagery, and action decomposition for 
action modeling. Although the domains are simple, the 
results predict significant changes in behavior as knowledge 
accumulates in episodic memory and is compiled into rules. 

Central to achieving these results are the various 
memories and processing units in Soar as presented in 
Figure 1, as well as the task-independent knowledge that 
controls the use of these knowledge sources. A critical 
component of Soar’s ability to support these methods is its 
employment of impasses when knowledge is incomplete. 
Impasses are critical for identifying when action modeling is 
necessary (a tie among competing actions) and for invoking 
alternative approaches when rule-based action modeling 
knowledge is missing. In addition, substates provide the 
representational structure needed to support retrieving and 
combining knowledge without disrupting the state of the 

problem being attempted. These components appear to be 
missing, or at least difficult to achieve, in other 
architectures, and it would be informative to attempt to 
duplicate the qualitative structure achieved here in other 
cognitive architectures. 
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Abstract 

The efficient detection and resolution of conflicts represent 
the key tasks of Air Traffic Controllers in enroute 
environments. The complexity of these tasks imposes 
significant challenges on the design of cognitive models that 
are capable of adequately simulating them. Yet, the 
availability of such models is crucial for a number of 
applications, including the evaluation of current and future 
Air Traffic Control concepts. In this paper, we will propose a 
novel modeling approach which adopts the principles of the 
A* graph search scheme from Artificial Intelligence to 
represent the cognitive decision making process of the human 
operator. Results of an initial version of this model will be 
presented, showing that the proposed approach has promise. 

Keywords: Cognitive Modeling; Cognitive Systems 
Engineering; Artifical Intelligence; Decision Making; Air 
Traffic Control. 

Introduction 

In most western economies, the volume of air traffic is 

currently growing at a rate of 4 to 6 percent per annum. 

According to its 2006 annual report, the US Federal 

Aviation Administration (FAA) acknowledges that air 

traffic controllers will not be able to handle traffic at 

25 percent above today’s level, and that traffic may increase 

this much by 2016 (ICAO, 2004). In response to this 

problem, the United States Federal Aviation Administration 

and Eurocontrol are currently pursuing programs to greatly 

increase airspace capacity (FAA, 2010; Eurocontrol, 2008), 

without raising either the workload or number of air traffic 

controllers. 

Cognitive modeling could provide an important vehicle 

for the evaluation of new operational concepts if it is 

possible to simulate performance on challenging air traffic 

control operations. For example, models making reasonable 

estimates of sector workload could inform evaluations of 

safety and staffing. One of the more cognitively complex 

tasks of controllers is the detection and resolution of 

conflicts (Lehmann, Bolland, Remington, Humphreys, 

Fothergill, Hasenbosch, & Neal, 2010). The n-aircraft 

conflict resolution problem is highly combinatorial and 

cannot be optimally solved using classical mathematical 

optimization techniques. This inherent complexity imposes 

significant challenges on the design of corresponding 

models. 

This paper will propose a new method that simplifies the 

task of modeling expert decision making in Air Traffic 

Control (ATC) environments by relying on domain-specific 

simple heuristics that humans deploy to produce accurate 

decisions (Todd & Gigerenzer, 2007). The conflict 

resolution mechanism adopts the principles of the A* search 

algorithm (Felner, Stern, Ben-Yair, Kraus, & Netanyahu, 

2004; Lee, Osman, & Sabudin, 2009; Leigh, Louis, & 

Miles, 2007). The resulting scheme implements a search 

through a space of conflict solutions. System states are 

evaluated using optimization criteria encapsulating the 

controller’s goals. Each optimization criterion is associated 

with a number of individual cost functions that penalize 

deviations of the system states from the goal states. The 

focus on psychologically plausible strategies, rather than 

representative psychological processing mechanisms, was in 

part a response to the complexity of decision making in 

ATC and the large number of unobservable factors that 

would need to be incorporated (e.g., memories for previous 

or typical solutions). Moreover, the strategies we use were 

elicited from highly experienced controllers and thus 

encapsulate experts' insights and knowledge. Our working 

hypothesis is that the use of psychologically plausible 
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solution heuristics and optimization criteria in conjunction 

with the constraints imposed by the environment will 

produce human like behavior. 

We first describe the conflict detection mechanism, then 

detail the manner in which the model selects solutions using 

the optimization criteria to find a path in the search tree. 

Finally, we present empirical tests of an initial 

implementation of the model showing good but not perfect 

fits to data from human controllers. 

Conflict Detection Scheme 

The current implementation of the conflict detection scheme 

is based on the model proposed in Loft et al. (2009). It 

detects pairs of conflicting aircraft in a hierarchical fashion. 

Its decomposition into three operational stages allows for a 

run-time efficient implementation. Potential conflicts are 

verified by extrapolating the flight paths of all aircraft that 

are present in the given scenario, and by subsequently 

identifying violations of separation standards between the 

flight paths. Positional aircraft uncertainty is accounted for 

in this process. The three stages proceed as follows: 

 

Stage 1: Coarse check of vertical separation 

A coarse check is performed to verify the vertical separation 

between aircraft. This stage checks if the vertical corridors 

of any two aircraft of interest are separated by more than 

1000 ft, where the vertical corridors are defined by the 

aircraft’s target altitude and cleared altitude respectively. 

 

Stage 2: Lateral separation check 

If the first stage (coarse check) reveals the existence of a 

possible vertical conflict between two aircraft, the model 

deploys the so-called Trajectory Modeller to check for a 

lateral conflict. At any given time t, the Trajectory Modeller 

extrapolates the flight paths up to time t + 10 min in discrete 

∆T = 5 sec steps. The aircraft positions at each time step are 

subject to positional uncertainty, where the uncertainty 

increases successively over time based on a step function. 

More specifically, the extrapolated aircraft position at a 

discrete time step tk=k∆T, k=0, 1, 2, 3,… is associated with 

a discrete uncertainty interval [ak∆T, bk∆T], where the 

coefficients ak and bk associated with the lower and upper 

limits of the interval are: 
 

)98.0(trunc kak ⋅=    Equation 1 

])1[02.1(trunc +⋅= kbk    Equation 2 

 
Stage 3: Final vertical separation check 

If the second stage (lateral separation check) verifies a 

potential lateral conflict between two aircraft of interest, a 

third stage will be deployed to check for vertical conflicts. 

For this purpose, the respective flight paths are vertically 

extrapolated based on the maximum and minimum climb or 

descent rates of the aircraft. Response times of the aircraft 

are currently not considered. That is, the aircraft are 

assumed to instantaneously initiate the actions associated 

with the controller’s interventions. 

Decision Making Model 

The proposed decision making model adopts the principles 

of the A* graph search algorithm (Felner, Stern, Ben-Yair, 

Kraus, & Netanyahu, 2004; Lee, Osman, & Sabudin, 2009; 

Leigh, Louis, & Miles, 2007). This algorithm relies on a 

state-space search engine to evaluate the decision 

alternatives in a hierarchical fashion. Hierarchical search 

has been shown to produce good modeling solutions to 

complex aeronautical problems in the past (Nason & Laird, 

2005; Rosbe, Chong & Kieras, 2001). 

A* finds the minimum cost path in a decision tree through 

a partial search in the solution space. The avoidance of an 

exhaustive search presents a significant advantage for its 

application in the ATC domain, where the decision making 

process poses a complex problem that typically leads to an 

extensive search tree in general traffic scenarios. That is, the 

topology of the search structure does not need to be known 

a-priori. In our model, the search space consists of solution 

types, each representing an action that could be taken to 

resolve the conflict. The solution types are based on simple 

heuristics that have been obtained from experts (using 

interviews and controlled experiments), and from data 

mining (using radar track data). 

Solution Types 

The current implementation of the conflict resolution model 

provides a set of three different solution types which may be 

applied to the aircraft involved in potential conflicts. Before 

a solution can be considered for exploration, one or more 

conditions of applicability must be satisfied. Each solution 

has a particular weight. A smaller weight corresponds to a 

more favourable solution. The effective weight of a solution 

is the sum of a base weight and a penalty value. The purpose 

of the penalty values is to impede the selection of solutions 

that would severely disturb an aircraft’s intended flight path. 

The individual solution types and their weights are: 

 

A. Assign closest level below or above conflict zone 
 

The principle of this solution type is to ensure sufficient 

vertical separation by assigning one of the two aircraft of 

the conflict pair a safe altitude either beneath (low solution) 

or above (high solution) the other aircraft whilst they are in 

the region of the airspace where a loss of lateral separation 

is possible. More specifically, assuming two conflicting 

aircraft A and B, the low solution is applicable if A is not 

already descending through the low solution. Alternatively, 

the high solution is applicable if A is not already climbing 

through the high solution. This avoids direct transitions 

from a descent into a climb or from a climb into descent 

respectively. 

Figure 1 illustrates an example where both aircraft A 

and B are on climb from Flight Level (FL) 110 to FL150 

and from FL120 to FL160 respectively. 
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Figure 1: Assign closest level below 

 

The climb of aircraft A is halted below aircraft B by 

assigning FL130 to aircraft A. 

The base weight of this solution type is (-0.5). Penalty 

values in the amount of +0.1 are additionally applied if the 

solution applied to A falls outside the transitional altitude 

band defined by A’s current and cleared altitudes. 

 

B. Assign separated levels 
 

The second solution type involves modifying the levels of 

both aircraft, assuming a pair of conflicting aircraft where 

one aircraft is climbing and the other aircraft is descending. 

Figure 2 illustrates the basic concept of this solution, once 

again using a conflict pair of aircraft A and B. In this 

example, aircraft A is climbing from FL110 to FL150, while 

aircraft B is descending from FL150 to FL110. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Assign separated levels 

 

In this case, the applicable solution is to interrupt both the 

climb of aircraft A and the descent of aircraft B by assigning 

FL130 to aircraft A and FL140 to aircraft B, thereby 

ensuring that sufficient vertical separation between the 

aircraft is maintained. 

The base weight of this solution type is (-0.5). Penalty 

values in the amount of +0.1 are added to the weight for any 

reverse climb or reverse descent intervention. 

 

C. Vector behind solution 
 

The vector behind solution proceeds as follows: A circle 

with a radius of 6nm (nautical miles) is placed around 

aircraft B at its current position. Aircraft A is pointed behind 

aircraft B by vectoring it to the heading that establishes a 

tangent to this circle, thereby ensuring sufficient lateral 

separation between the two aircraft. 

This solution is generally applicable to all conflicting 

aircraft. Its base weight is (-0.5). There are no additional 

penalties. 

Adaptation of A* to the ATC decision making task 

The search space of the A* algorithm can be graphically 

represented by a decision tree. An example graph is shown 

in Figure 3. Each node in the decision tree represents a 

system state that, with the exception of the start node (S), 

results from the path of previous actions leading to it. The 

edges between the nodes represent the path of actions. Each 

edge has a value (shown as an integer in Figure 3) 

representing the cost incurred by traversing that edge. It is 

worthwhile to note that apart from the goal node (G), each 

node has at least one decision alternative associated with it, 

leading to a so-called child node. 

 

 
 

Figure 3: A* example graph 

 

The decision making process is effectively driven by the 

cost function f(x). That is, A* ranks each path currently 

under consideration based on f(x) to find the path with the 

lowest traversal cost. f(x) is decomposed into a so-called 

path-cost function g(x) reflecting the cost from the starting 

node to the node of interest, and a “heuristic estimate” h(x) 

of the distance to the goal node. 

 

,)()()( xhxgxf +=    Equation 3 

 

where x denotes some partial path. In other words, f(x) 

represents the estimated final cost of the path leading to the 

goal and including x. Under the right conditions, A* 

guarantees to find the path with the lowest traversal cost 

(Leigh, Louis, & Miles, 2007). The performance of A* 

relies heavily upon the heuristic estimate h(x). A necessary 

condition for A* to find the shortest path is that the heuristic 

must underestimate the remaining distance. 

One of the key aims in adopting the A* search scheme to 

the ATC conflict resolution task consists in achieving a 

model behavior that is closely aligned to the behavior of 

human controllers. For this purpose, the concept of 

optimization criteria was introduced. Each optimization 

criterion Cn encapsulates the n
th

 goal of the controller. 

Table 1 shows three examples for possible optimization 

criteria: 

 

Table 1: Three exemplary optimization criteria 

 

n Optimization criterion Cn 

1 Minimization of total number of aircraft interventions 

2 Minimization of disruption to aircraft flow 

3 Minimization of the controller’s workload 
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Each optimization criterion Cn is associated with a set of 

descriptive attributes, Ank. These attributes are represented 

by corresponding cost functions 

 

.nknknk hgf +=     Equation 4 

 

Summing up all the cost contributions across the 

individual attributes yields the final cost function for the 

individual criterion Cn:  

 

( )∑ +=

k

nknkn hgf    Equation 5 

Our initial version mainly aims at the implementation of 

optimization criterion C1 from Table 1. That is, it tries to 

resolve all conflicts given in the scenario with the fewest 

aircraft interventions. However, the second criterion listed 

in Table 1, C2, was additionally integrated into the model, to 

account for the attempts of controllers to minimize 

unfavorable flight maneuvers. Table 2 shows the individual 

attributes for C1 and C2. 

 

Table 2: Attributes of the optimization criteria as per the 

current model implementation 

 

Cn k Attribute Ank 

C1 1 Preference of graph nodes of lower depth level 

C1 2 Preference of nodes showing fewer remaining conflicts 

C1 3 Number of conflicts of the aircraft subject to intervention 

C1 4 Number of occurrences of the solution of interest 

C2 1 Obstruction of unfavorable flight maneuvers 

 

As Table 2 shows, C1 is represented by four attributes 

and C2 by one attribute respectively. The aim of the 

attribute A11 in Table 2 is to prioritize the selection of 

solutions that belong to graph nodes at low depth levels. 

The depth level of a node is determined by the number of 

subsequent nodes lying in the decision path, that is, by the 

number of actions leading to it. Therefore, the node depth 

defining the corresponding cost function g11(x) represents 

the number of interventions that have already occurred in 

the path of interest x, and that have consequently already 

imposed a penalty on the achievement of optimization 

criterion C1. 

Generally, the number of remaining conflicts in a given 

node establishes a good indicator for the expected number 

of remaining interventions. Consequently, this measure was 

taken to define the cost component h12(x) for the 

corresponding attribute A12 in Table 2. The metric was 

encapsulated in the heuristic component h of the cost 

function f as it represents a predictive cost estimate. The 

number of conflicts that the aircraft the solution acts upon is 

involved in represents an additional indicator for the 

efficiency of the solution with respect to achieving 

criterion C1 in the remaining path to the goal. The number of 

remaining conflicts therefore forms the cost component 

h12(x) corresponding to attribute A12. The underlying idea is 

that in comparison to solutions that are applied to aircraft 

that are involved in a single conflict only, solutions applied 

to an aircraft involved in multiple conflicts have a greater 

than zero probability of resolving multiple conflicts this 

aircraft is subject to in one go. This likelihood of efficiently 

minimizing the intervention count is further increased if in 

addition to acting on aircraft involved in multiple conflicts, 

the particular solution is suggested multiple times by the 

solution logics for resolving different conflicts. The number 

of total occurrences of the solution under consideration was 

therefore taken to define cost component h13(x) 

corresponding to attribute A13. 

The cost function for attribute A21 is simply the sum of the 

base weights of the solutions and the respective penalties as 

described in the subsection entitled Solution Types. While 

the base weights for the individual solutions are identical for 

all solution types in the current implementation, the 

additional penalties depend on the situational context. Their 

purpose is to prevent the selection of solutions yielding 

unfavorable aircraft maneuvers, such as reverse climbs and 

reverse descents. 

Based on this set of individual cost components, the cost 

functions f0(x) and f1(x) are computed using Equation 5. The 

final cost function f(x) is then just formed by adding f0(x), 

f1(x), and a Gaussian noise term that accounts for the 

probabilistic nature of the human decision maker. This noise 

term is characterized by a relatively small variance and 

therefore predominantly influences the selection of solutions 

belonging to the same search tree level. Impacts of this 

noise on solutions belonging to different tree levels are very 

unlikely. All parameters required for the formulation of the 

cost functions, including the variance of the noise, were 

empirically chosen in the current implementation. The 

effective cost f(x) establishes the basis for the decision 

making process in the ATC search tree. This process will be 

discussed in the following subsection. 

ATC Search Tree 

An example of the resulting ATC search tree is depicted in 

Figure 4. 

 

 
 

Figure 4: ATC search tree 
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In this example, the conflict detection model initially detects 

four potential conflicts between aircraft pairs in the 

scenario, as depicted in the root node within Figure 4. A set 

of potential solutions is then constructed for each of the 

potential conflicts present in this node. The entire set of 

potential solutions is then evaluated by assigning individual 

cost values fi,j to the solutions, where i (i = 0 for root node) 

and j denote the indices of the current node and the solution 

under consideration respectively. The solution having the 

smallest cost value will finally be selected and applied, 

creating a new child node with an associated set of conflicts. 

In the example in Figure 4, the solution selected in the root 

node resolves one of the four problems, leaving the 

respective child node with three remaining problem pairs. 

The process applied to the root node is then repeated for the 

child node in a recursive fashion. Figure 4 also demonstrates 

that solutions selected via a-priori evaluation may be 

deemed to be inefficient via a-posteriori evaluation. For 

example, the solution entitled ‘Give XXS new level’ creates 

a new conflict, which leads to back-tracking behavior in the 

search process. That is, the subsequent search evaluation 

step may select a solution associated with the parent node, 

rather than propagating further down from the child node 

produced by the previous, inefficient solution. The overall 

optimization scheme effectively leads to a downhill search 

which is driven by the available set of solution types 

(heuristics) and shaped by the situational context 

(constraints). 

Experiments 

Aim and Methodology 

To compare the model’s behavior against the behavior of 

controllers, we simulated performance on a set of four 

different scenarios of varying complexity that were also 

presented to 14 En-Route, radar endorsed air traffic 

controllers from Brisbane Centre. Figure 5 shows the 

scenario with the highest complexity. 

 

 
 

Figure 5: Scenario of highest complexity 

 

The time participants had been endorsed as a controller 

ranged from 10 to 20 years. Controllers were asked to 

resolve the scenario by issuing restrictions to one or more of 

the aircraft. They were instructed to work through the 

scenario step by step, and to explain their actions in detail, 

including the evaluation of potential problems, and the 

processes of considering options and deciding on actions or 

priorities. The interviews were based on the critical decision 

method (Klein, Calderwood & MacGregor, 1989). 

The simulation consisted of 100 runs of our decision 

making model for each scenario. Our interest centers on the 

degree to which the model used the same intervention rates 

and types as the human controllers. Table 3 shows the 

intervention types. 

 

Table 3: Intervention types 

 

Type Description 

H0 Intervention other than H1, H2,…, H8 

H1 Vector aircraft to the left 

H2 Vector aircraft to the right 

H3 Issue climbing instruction 

H4 Issue descent instruction 

H5 Extend an existing climb 

H6 Extend an existing descent 

H7 Interrupt an existing climb 

H8 Interrupt an existing descent 

 

Results 

The results for the scenario with the highest complexity are 

presented in Figures 6 and 7. Figure 6 shows the total 

average intervention rates for the individual aircraft for both 

controllers and model runs. Figure 7 shows the selection 

rates of the individual intervention types. 

It can be seen from Figure 6 that there is a reasonable 

agreement between controllers and the model in selecting 

the aircraft that are subject to intervention. However, 

controllers appear to intervene with a wider range of aircraft 

than the model, at more variable intervention rates: Aircraft 

‘VHETR’ is excluded by the model in Figure 6. 
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Figure 6: Total average intervention rates for the aircraft 
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Figure 7 demonstrates a reasonable agreement between 

controllers and the model in the selection of the intervention 

types. However, a reduced variability of the model can be 

observed: In contrast to controllers, the model essentially 

excludes the generation of intervention types H0 

(‘Intervention other than H1, H2,…, H8’) and H5 (‘Extend 

an existing climb’). 
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Figure 7: Average selection rates of the intervention types 

 

Conclusions and Outlook 

This paper describes a novel approach for modeling the Air 

Traffic Control (ATC) task using intelligent graph search. 

The A* algorithm was adopted to model human decision 

making under uncertainty and environmental constraints. 

This model relies on the definition of optimization criteria 

and associated attributes, where the attributes are 

represented by corresponding components of the overall 

cost function. The optimization criteria encapsulate 

properties of the situational context that influence the 

decision strategies of a human controller. They can 

consequently enable the model to alter its behavior 

accordingly. An initial implementation of this model is 

proposed that aims at minimizing the total aircraft 

intervention count under preservation of the realism of the 

generated solutions. Empirical tests demonstrate good but 

not perfect fits to data from human controllers. A reduced 

variability of the model over controllers was observed, in 

the selection of both the aircraft for intervention and the 

actual types of intervention. This variability might be 

induced by psychological processes that the model does not 

capture, such as human attention and perception. 

The results suggest that the modeling concept has promise 

for its application to decision making in complex, dynamic 

task environments. We therefore plan to extend the 

approach in our future work by incorporating additional 

optimization criteria; by advancing the current decision 

making mechanisms; and by integrating adaptive behavior 

into the model. 
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Abstract

Humans have a remarkable ability to adapt their perceptual
acuity to the task at hand, commonly referred to in the liter-
ature as perceptual learning. Understanding this ability at a
computational level may have important implications across
a wide variety of different psychological phenomena. There
is evidence suggesting this ability plays an important role in
speech comprehension, mathematics, and perceptual expertise,
for instance. Computational models of perceptual learning
have largely focused on hypothesizing how one or more mech-
anisms might explain the observed perceptual learning for a
single task. Here we explore how a single model might ex-
plain the learning curves across two auditory perceptual learn-
ing tasks. Our results suggest that an ideal observer model
with noisy input can predict learning when daily limits are not
reached, and that daily limits on learning can be modeled by
a decay of memory for trials observed on the current day of
practice.

Keywords: perceptual learning; ideal observer; plasticity vs.

stability; frequency discrimination; duration discrimination;

temporal interval discrimination

Introduction

Humans have a remarkable ability to adapt their perceptual

acuity to the task at hand, commonly referred to in the liter-

ature as perceptual learning (Fahle and Poggio, 2002). Per-

ceptual learning has been demonstrated in many different ex-

periments. In vision for instance, there are studies of vernier

hyper-acuity (Poggio et al., 1992), orientation discrimination,

and spatial frequency discrimination (Fiorentini and Berardi,

1980). Examples in the auditory domain include results for

frequency discrimination (Demany, 1985), and temporal in-

terval discrimination (Wright et al., 1997). Perceptual learn-

ing is often characterized as being highly specific both to the

task (Fiorentini and Berardi, 1980), and to the specific loca-

tion or range within a dimension (Wright and Zhang, 2009;

Poggio et al., 1992).

There is evidence that perceptual learning is important for

a great variety of real world tasks humans face (Kellman and

Garrigan, 2008). There is data suggesting that perceptual

learning helps us during speech comprehension (Norris et al.,

2003), that it can help children with dyslexia (Hayes et al.,

2003) and that it has an important role to play in the compre-

hension of mathematical formulae (Kellman et al., 2008).

Computational models of perceptual learning have the po-

tential to enable better predictions and to help us better under-

stand human data. Past computational work studying percep-

tual learning has largely focused on how specific mechanisms

might explain the particular properties of perceptual learn-

ing for a single task (e.g. Poggio et al., 1992; Petrov et al.,

2005; Jacobs, 2009). Such studies focus on the question of

how and/or where perceptual learning occurs within the hu-

man brain for a single perceptual task. Our goal here is to

develop a model of multiple perceptual learning tasks. By

looking across several tasks we can ultimately constrain our

model by requiring that a single parameter explain qualita-

tively different results across several tasks. Our research also

differs from past work in that, to the best of our knowledge,

there are no computational studies of perceptual learning for

auditory tasks.

Here we model auditory perceptual learning across two

tasks: temporal interval discrimination and frequency dis-

crimination, as discussed in Wright and Sabin (2007). By

modeling learning across several tasks our goal is to gain a

better understanding of why learning does or does not occur

under various training conditions. Our focus here is on mod-

eling the daily limits of learning: it was observed in Wright

and Sabin (2007) that training beyond some point in a sin-

gle day does not yield extra learning. Our results suggest

that limits on daily learning can be modeled by a decay of

the memory of trials observed on the current day of practice.

This decay is consistent with numerous studies of consolida-

tion suggesting newly acquired information in a day begins

in a volatile state, and is not made permanent until memories

are consolidated (e.g. McGaugh, 2000).

Human Data

This section reviews the human data and results originally

described in Wright and Sabin (2007). In this paper, they ex-

amined how varying the number of training trials practiced

per day affected learning over multiple days on two auditory

discrimination tasks: frequency discrimination and temporal-

interval discrimination. The basic question asked in the paper

was “how much daily training is sufficient for learning to oc-

cur?” The set of relevant findings we model here is that extra

trials practiced per day, past a certain point, do not appear to

lead to any further learning.

During the experiments, subjects practiced either a tempo-

ral interval discrimination task or a frequency discrimination

task for a single session each day of practice, for six days

over no more than two weeks. Each task was a two inter-
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val forced choice: on each trial participants must pick which

of two stimuli is longer (higher) for the interval (frequency)

discrimination task. The stimuli were adjusted adaptively as

practice continues. As subjects do better, the difference be-

tween the standard (shorter) and comparison (longer) stimu-

lus gets smaller. This is a common procedure used in psy-

chophysics to find a performance threshold. The experiments

consisted of a two-by-two design over number of trials in a

day (360 or 900) and task type (frequency or interval). Each

of the four conditions used a different set of participants. Fur-

ther details of the training procedure can be found in Wright

and Sabin (2007).

The data suggest there are important within-day limitations

on human perceptual learning: extra practice past some point

does not improve learning any further and insufficient prac-

tice in a day yields little to no learning across days. Further,

the number of trials needed for learning is task dependent.

Specifically, if a subject practiced the temporal interval task

for 360 trials per day this yielded the same amount of learn-

ing as 900 trials per day. During the practice of frequency

discrimination, 900 trials of practice produced significantly

more learning than 360 trials. All the above observations

were statistically verified. Details can be found in Wright

and Sabin (2007).

Here our focus will be on modeling this first observed limit

within a day: past a certain point no further trials within a day

appear to yield further learning.

Method

This section describes and justifies the basic principles of our

model (which is evaluated in our Results section).

In terms of Marr’s (1982) levels of analysis, we restrict

ourselves largely to the informational level. When operating

at this level we make no claims about what algorithm is used

internally or how that algorithm is implemented in the human

brain. Since the informational constraints are not yet fully

understood for the modeled experiments, we believe this is

an appropriate level of analysis for the time being.

Specifically, we utilize an ideal observer analysis (Geisler,

2003). The idea is to consider human performance in refer-

ence to an ideal observer, which processes information in a

way that is ‘optimal’ in some sense. This can help to avoid

conflation between two distinct types of limitations on human

behavior. These are, respectively, informational and psycho-

logical limits. Informational limits are those limits that are

inherent to the task: even if an observer were to be perfect

they would still be subject to informational limits. An ex-

ample of an informational limit would be noise in the input:

any learner, no matter how smart, would have to deal with

the problems introduced by noise. Psychological limits on

the other hand are a product of resource limitations on the

part of the observer: if the observer was ‘smarter’ they might

be able to improve their behavior. An example of a psycho-

logical limit would be memory: with limited memory only so

many units of information can be stored, but a smarter learner

would be able to store more, and so improve behavior.

Since any observer is subject to informational limits, we al-

ways assume these are present. Psychological limits are then

only hypothesized as necessary: if a behavior could be ex-

plained solely in terms of informational limits, then no addi-

tional psychological limits would be hypothesized. Through-

out our discussion we make a distinction between the ideal

observer and the proposed psychological limits.

Based upon this principle we designed a system capable of

modeling the observed limits on the amount of useful daily

practice, as observed in Wright and Sabin (2007). We begin

by describing the commitments we made regarding what in-

formation is available to humans when performing this task.

We then describe an ideal observer model, and then identify

the ways in which our model of human performance differs

from the ideal observer.

Input

The input to our model is consistent with the following prop-

erties, which are explained in more detail below. These

choices represented a number of educated guesses as to

the form of the information humans receive, based on psy-

chophysical and physiological findings.

1. Differentiation along task relevant dimensions: e.g. 1 kHz

is represented differently than 2 kHz.

2. Corruption by noise.

3. Range specificity: e.g. energy near 1 kHz is encoded sepa-

rately from energy near 2 kHz.

4. Weber’s law.

Each of these properties is based on many observations.

Clearly the input is differentiated along task relevant dimen-

sions: if there was no differentiation at all along a task rele-

vant dimension, different stimuli of a task would appear the

same to us. Second, there are many evident sources of noise

to perceptual data, from noise in the world, noise during the

transduction of sound to neural impulses, and noise in the

nervous system itself. Range specificity is consistent with

the narrow generalization patterns observed during percep-

tual learning tasks (e.g. Poggio et al., 1992; Fiorentini and

Berardi, 1980; Wright and Zhang, 2009) and with the great

multitude of physiological data suggesting that neurons are

responsive to specific, limited ranges of stimuli (e.g. Brugge,

1992; De Valois and De Valois, 1980). Range specificity is

distinct from differentiation: for instance a single source of

information can differentiate between 1000 Hz and 200 Hz

by using a single number, 1000 or 200, which would not be

specific to a particular range; range specificity means that the

sources of information (e.g. neurons) representing 1000 Hz

and 200 Hz would be at least somewhat disjoint.

Weber’s law—which states that the minimum discernible

difference (or just noticeable difference) between stimuli

along a particular dimension is proportional to the magnitude
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of the stimuli along that dimension—has long been estab-

lished as a useful rule of thumb for perceptual data (Moore,

2006).

In addition we make a number of simplifying assumptions.

We assume that, prior to perceptual learning, the input has

been correctly broken down into the various experimentally

relevant units (i.e. each input to our model represents a single

stimulus). How this happens in humans is not the focus of

this modeling experiment. Our second assumption is that the

dimensions of the stimulus are independent cues for the tasks

in question, which is correct for the two tasks we consider.

Frequency and temporal interval are represented on a log

scale. The frequency representation is found directly from the

model described in (Wang and Shamma, 1994)1. Our interval

representation is found based on a windowed autocorrelation

of the stimulus onsets. Both of these choices yield a repre-

sentation consistent with our above assumptions. The input

to the observer is a vector x of 228 terms: 128 features rep-

resenting frequency and 100 features representing temporal

interval. There are 128 bins for frequency because this is the

resolution of the model from (Wang and Shamma, 1994). The

number 100 for the interval representation was chosen arib-

trarially. The observations made in the Results section did not

change when this number was changed to 50 or 200.

We permute the input by an experimentally determined

amount of noise specific to each dimension of the stimulus

(σ2
t for the interval noise and σ

2
f for the frequency noise).

Note that since the representation is deterministic, when it is

applied directly to an ideal observer it would always respond

correctly. Choosing to represent all error in the system as in-

put noise is conservative in the sense that the ideal observer

will do more poorly under these conditions than if some of

the error was modeled as output noise, for instance.

Ideal Observer

We implement the ideal observer using a Bayesian approach

to learning: a probabilistic model which is learned during the

course of practice is used to determine the correct response on

each practice trial. This model is not meant to be a psycho-

logically plausible model of perceptual discrimination. It is

an optimal decision maker for this task, whose performance

can thus be used to identify in what ways humans are different

from an optimal choice.

For a single trial, there are two stimuli, and each stimulus

is encoded as a vector, x, of 228 terms: 128 features for the

frequency representation and 100 for the interval representa-

tion. Since we know that this input is permuted by Gaussian

noise the likelihood of each stimulus type—the standard (or

longer) and the comparison (or shorter)—can be modeled us-

ing a Normal distribution. We calculate the posterior model

analytically by assuming a conjugate prior (Gelman, 2004).

Learning and use of this model then follows a straightforward

application of Bayes rule and conjugate priors, described be-

1An implementation of this model can be found at
http://www.isr.umd.edu/Labs/NSL/Register.htm.

low.

Specifically the ideal observer learns a model of the stan-

dard (e.g. shorter) stimulus, S, and one for the comparison

(e.g. longer) stimulus, C for each task. Each model is a

multivariate Normal distribution, describing the probability

of observing a given input vector x. This distribution is spec-

ified by the mean vector µS for the standard model and µC

for the comparison. Each mean has 228 terms (one for each

frequency and interval value) and covariance matrix ΣS,or ΣC

with 228 rows and columns. Hence, the probability of ob-

serving a given input vector, assuming it is the standard is as

follows.

p(x|µS,ΣS) ∝ exp
[

(x−µS)
T

Σ
−1
S (x−µS)

]

(1)

To learn the model of S and C the observer must be pro-

vided with examples of the standard and the comparison.

These can be used to determine the probability of a given

µs and ΣS, using Bayes rule. Below xt represents the exam-

ple of the standard (shorter) stimulus observed at time t. On

each practice trial, feedback is given to the observer after it

responds, so on each trial the observer is provided with an-

other example of both the standard and the comparison.

p(µS,ΣS|x1) ∝ p(x1|µS,ΣS)p(µS,ΣS) (2)

p(µS,ΣS|x1,x2) ∝ p(x2|µS,ΣS)p(µS,ΣS|x1) (3)

...

p(µS,ΣS|xt , · · · ,x1) ∝ p(xt |µS,ΣS)p(µS,ΣS|xt−1, · · · ,x1)
(4)

Equation 2 requires that the prior probability p(µS,ΣS) be

known, which we will discuss shortly. Subsequent equations

show how an example xt updates the distribution of parame-

ters for S. Given a set of training examples, the probability of

x for model S is defined as follows:

p(x|S) =
ZZ

p(x|µS,ΣS)p(µS,ΣS|xt , · · · ,x1)dµS dΣS (5)

Equation 5 can be calculated given that conjugate priors are

used. Once p(x|S) and p(x|C) are known, Bayes rule can be

used to find the probability that the model should indicate that

the first (or second) stimulus is the longer of the two stimuli

presented on a trial.

To use this Bayesian learner we must define the prior of the

model (p(µ,Σ)), representing what people know before they

practice the task. There are many deep questions that might

be asked about what humans know about task before practice

and how they know it. Here we choose a simple approach

to selecting a prior: starting with a naive model (with mean

vector 0, and an identity matrix for covariance) the learner is

presented an experimentally determined number of trials of

each task (Nt trials of the interval task, and N f trials of the

frequency task).

147



Psychological Limits

We consider two modifications of the ideal observer de-

scribed in the previous section to model psychological lim-

its. The first is a direct result of the observation in (Wright

and Sabin, 2007) that for these tasks people do not appear

to learn within a day but only across days, hence our ‘daily’

model. The ‘daily’ model learns as per the ideal observer, but

responds based only on data from previous days of practice,

and not from the current day. This is used as a baseline model

during our evaluation in the next section. Our second mod-

ification models the hypothesis that there is a daily limit on

training: it does this by introducing a decay on the knowledge

obtained from trials on the current day. The ‘decay’ model

incorporates this limit, in addition to the limits of the ‘daily’

model. This proposed decay is a novel contribution of this

paper in that it has not been considered as an explanation for

the observed daily limit in these tasks before.

The decay in the model is implemented as follows. Given

a new example, xt+1 at trial t + 1, normally the model of

the standard (or comparison) stimulus is updated according

to Bayes rule in the following manner.

ft,d(µ,Σ | Dt+1,C) ∝

p(xt+1 | µ,Σ) ft,d(µ,Σ | Dt) fT,d−1(µ,Σ |C) (6)

In Equation 6, the function ft,d is the distribution over stimu-

lus parameters µ and Σ, on trial t of day d. Dt represents all

training examples observed for the current day, and C repre-

sents all examples observed on previous days (i.e. the con-

solidated information). T is the maximum number of trials

observed in a day. This expresses the same relation expressed

in Equation 4. However, with memory decay, this optimal

update is changed to the following rule.

ft,d(µ,Σ | Dt+1,C) ∝

p(xt+1 | µ,Σ) ft,d(µ,Σ | Dt)
1−L fT,d−1(µ,Σ |C) (7)

Equation 7 means that memory decay occurs for trials ob-

served on the current day. The distribution learned from a

previous day of practice remains in the same state it was at

the end of that day of practice (as determined by fT,d−1), in-

cluding any decay that occurred on that day. This decay is a

reasonable representation of loss of information within a day.

If L = 0 then the model is equivalent to the ‘daily’ model. If

L = 1 the daily practice has no effect on the model. Values

between 1 and 0 represent a continuum between these two

extreme conditions.

Note that it’s possible the decay should be over some

shorter period of time, rather than including all trials within a

day. For instance, it has been suggested that if a short nap is

taken this has the same benefit as a night of sleep for purposes

of perceptual learning (Mednick et al., 2003). This could eas-

ily be explained by our model by having Dt contain only those

trials that occur after the last period of sleep, and C contain

all other trials. However, this is beyond the scope of the ex-

periments modeled in this paper.

Results

Our hypothesis is that the observed daily limits on learning

can be modeld as a decay of the memory of trials on the cur-

rent day (while leaving memory of previous days’ trials un-

touched). We compared a computational model that had this

hypothesized limit (the ‘decay’ model) to one that did not (the

‘daily’ model). To compare these models to human data we

ran the same adaptive track blocks used in (Wright and Sabin,

2007) to determine thresholds. On each trial the original au-

dio input was represented to the model and a response was

given, and then feedback about the correct answer was used

by the model to learn. This procedure was repeated 30 times,

to simulate 30 different experimental subjects. This number

was chosen to yield satisfactory statistical power for our anal-

ysis.

Results for the two models are discussed below. Figure 1

displays the results of these two models alongside human per-

formance, as observed in (Wright and Sabin, 2007). From the

graphs it appears that both models appear to fit the results well

for the 360 trials/day interval discrimination condition and the

900 trials/day frequency discrimination condition. The decay

model appears to also fit the data for the 900 trials/day inter-

val discrimination condition better than the daily model.

Our statistical tests supported this observation. For each

iteration, condition and day of a model we found the squared

error to the mean human performance on that day. Table 1

shows the mean squared errors across conditions and models.

Because the human and model data were qualitatively dif-

ferent in the 360 trial/day frequency condition we excluded

it from the below analysis, since any differences between the

two models in this condition will not be meaningful. A 3x2x6

ANOVA across conditions and models and within days of

these squared errors showed a main effect across condition

and model (p < 0.028). A Tukey’s HSD test suggested that

the decay model’s mean squared error was significantly less

than the daily model’s mean square error (p < 0.014).

Interval Frequency

360 900 360 900

daily 2.68(0.32) 3.40(0.37) 18.09(1.1) 1.24(0.11)

decay 2.77(0.29) 2.03(0.19) 24.60(1.2) 1.19(0.14)

Table 1: Mean squared errors for the daily and decay model.

Errors are the difference between a model threshold and the

mean for the human data on a given day and condition. Num-

bers in parenthesis indicated standard errors.

Model parameters (which determined noise and prior

knowledge) were adjusted so that the daily model matched

human performance on day 1 and day 6 of all conditions ex-

cept the 360 trials/day frequency condition, using the opti-

mization algorithm described in Huyer and Neumaier (2008).

These conditions were chosen because this was where learn-

ing appeared to occur. Since the noise of the model strongly

influences the final performance of our model on day 6 (after

learning), it should be fit to those conditions where learning
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Figure 1: Results for ‘daily’ and ’decay’ models compared to human performance. Results are averaged across 30 runs of

each model. ∆ f represents the difference between the standard (lower) and comparison (higher) frequency stimuli for the

frequency task, and ∆t the difference between the standard (shorter) and comparison (longer) stimuli for the interval task. The

adaptive track method used finds the 79% accuracy of a subject or model. Lower delta’s indicate that the human participants

are performing better. A model is accurately predicting the human data if its curve is closer to the human curves. Bars indicate

standard errors.

appears to occur. The parameters for prior knowledge are de-

pendent on this noise and so we fit it jointly and under the

same conditions as the noise. For reasons that will become

clear below we also matched this data to human performance

on day 2 of the 900 trials/day interval discrimination task.

An analogous procedure was used for the decay model ex-

cept that the decay parameter (L) was also adjusted, and fit

to the same days as above. The data was fit to day 2 for the

900 trials/day interval. This single day was chosen so as to

be minimal (to avoid overfitting) and such that it was a place

where L might cause an observable change in the results. This

same day was used for the daily model above so that both

procedures had access to the same information. All parame-

ters were selected so as to maximize the posterior probability

of the selected days given the human thresholds (assuming

thresholds on a day are Normally distributed, which is con-

sistent with the analysis in Wright and Sabin (2007)).

Discussion & Conclusions

In this paper we evaluated a model of learning across two

simple auditory tasks. Our goals differed from that of pre-

vious work (e.g. Poggio et al., 1992; Petrov et al., 2005; Ja-

cobs, 2009) in that we considered auditory tasks rather than

visual tasks, and in that we considered a single model that

could explain results across several tasks. To the best of our

knowledge, ours is the first computational model of auditory

perpetual learning.

Our contributions in this paper were to show that our

‘daily’ model could accurately model two of the four con-

sidered experimental conditions and that our ’decay’ model

(which included a decay of memory for the trials observed on

current days) could model an additional condition (900 tri-

als/day of interval discrimination). This result suggests that

the minimal difference in learning for this condition and the

360 trials/day of interval discrimination could be caused by

memory loss.

Modeling this condition using memory decay is consistent

with numerous studies of consolidation suggesting newly ac-

quired information begins in a volatile state, and is not made

permanent until consolidation occurs after practice is com-

plete (McGaugh, 2000). In cases where consolidation is in-

terfered with, perhaps what happens is that the memory of

observed trials on a task decays before it can be stored in long

term memory. The 900 trial/day interval discrimination con-

dition would then represent an intermediate case where con-

solidation has yet to occur (perhaps because practice is still
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ongoing), and hence memory decay degrades part of what

has been learned. Once practice is complete consolidation

can commence given that no other interfering effects occur.

The model presented here does not explain one of the ex-

perimental conditions we considered (the condition with 360

a trials of frequency discrimination a day). In this condition

people did not appear to learn but our model did, suggest-

ing that the human results cannot be explained simply by

the fact that fewer trials were observed, which is consistent

with the observations made in Wright and Sabin (2007). We

have considered several possible factors that might explain

this condition, but as of yet, no factor we have considered

can explain both the 360 trial interval discrimination task and

the 360 trial frequency discrimination task using a single pa-

rameter. Any model using a different parameter per condition

would be meaningless in that any such model would fit the

data. This suggests to us that more perceptual learning tasks

must be considered before a meaningful model for this condi-

tion and others like it can be proposed, and is a goal of future

work. In the future, it is also our plan to consider conditions

where people practice several tasks at once, to help us under-

stand why learning does or does not occur, such as in (Banai

et al., 2009).

This paper thus represents a first step toward developing a

model that can explain learning across a number of percep-

tual learning tasks, rather than modeling behavior on a single

task. Such a model must consider more constraints than one

that doesn’t, which can help provide a better understanding

of how and when perceptual learning occurs and why.
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Abstract
This paper demonstrates how a human-Markov Chain Monte
Carlo (MCMC) method can be used to investigate models of
facial expression categorization. Data were collected from four
participants. At each step participants were asked to select a
representation from a pair, that most resembled a particular
emotional state; this was repeated iteratively. As such, they
formed a component in the MCMC process. The representa-
tions were line drawn facial images with 10 nodes and four
degrees of freedom. The judgements formed samples for a set
of interleaved Markov Chains. These were mapped to a two-
dimensional plane using Generalized Discriminant Analysis.
We contrast the results of the MCMC task with those of a sec-
ond discrimination task.
Estimates of the distributions along each of the four dimen-
sions showed that for the outer eyebrow and lip corner vari-
ables one of the categories could be discriminated with confi-
dence.
The average examples from both MCMC and discrimination
tasks were both plausible. However, the MCMC method al-
lowed for greater sampling from areas of high interest. Finally,
we show that a naive Bayes classifier trained on the MCMC
data can be used to successfully predict human classification
in a discrimination task.
Keywords: MCMC; categorization; representations; facial ex-
pressions; emotion.

Introduction
The face provides an important channel for communicating
affect. Much emotional information is encoded in people’s
facial expressions (Darwin, Ekman, & Prodger, 2002). How-
ever, affect label mapping from facial expressions is often dif-
ficult to define. In this paper we apply a Markov Chain Monte
Carlo (MCMC) method (Neal, 1993) to investigate facial ex-
pression categorization. Using humans as components in a
MCMC process we demonstrate how we can sample from
cognitive representations of facial expressions.

MCMC is a sampling method that can be used to estimate
probability density functions. A parameter space is searched
via Markov Chains. The sampling procedure forms a chain
that can be shown to tend to the correct distribution (Neal,
1993). In an environment where the distributions of interest
are likely to occupy a small subspace only, MCMC can be an
efficient sampling method.

Emotions are controversially defined. However, Ekman
and Friesen’s (Ekman & Friesen, 1978) set of six basic emo-
tions are an accepted set of simple examples. These six are
used as a starting point for our study: anger, disgust, fear,
happiness, sadness and surprise.

This paper investigates how people map observed facial ex-
pressions to affect labels. Griesser et al. (Griesser, Cunning-
ham, Wallraven, & Bulthoff, 2007) consider a psychophysi-
cal investigation of facial expressions. Scene parameters were

systematically manipulated in order to investigate the impor-
tance of particular facial regions in expression recognition.
Padgett (Padgett & Cottrell, 1997; Padgett, 1998) investigates
representations of facial images for emotion classification.
However, only 97 images are included in the data set. As a
result there are a limited number of examples in a high dimen-
sional space from which participants were forced choose one.
Both these studies consider a pre-scripted set of stimuli and
do not allow efficient exploration of each participant’s psy-
chological representations by allowing them to accept and re-
ject samples based on how they fit with the category. Padgett
represents human face judgements under multi-dimensional
scaling (MDS). Such a method allows for a quantitative mea-
sure of similarity in the relationships between facial expres-
sions.

This work considers human labels for expressions rather
than the subjects state when displaying the emotion. It is im-
portant to consider that a persons evaluation of another affect
given their facial expression may not be representative of their
actual internal state.

Reasonable facial expressions for a particular emotion la-
bel are likely to occupy only a small subspace of the total
space of possible expressions. This motivates the use of an
MCMC method. MCMC allows regions within a facial action
feature space to be populated with labels more efficiently that
a discrimination task.

In particular, we investigate the significance of each feature
dimension in the categories found. We estimate the density
distributions for each category along each dimension. For a
simple three category case considered, certain dimensions al-
low a particular category to be discriminated with confidence.

This is the first work I am aware of that models the relation-
ship between emotional states and facial expressions drawn
from continuous values within a multi-dimensional feature
space. We allow the participants to navigate to an area of high
association with the particular label and sample from this re-
gion more frequently (Neal, 1993). Representations are not
limited by the number of examples in a data set but only by
the ranges placed on the variables.

Related Work

Nosofsky’s Generalized Context Model (GCM) of classifica-
tion proposes that people represent categories by storing ex-
emplars in memory (Nosofsky, 1986). The prototype theory
assumes a category’s mental representation is based on a pro-
totypic exemplar (Dopkins & Gleason, 1997). In contrast,
the exemplar theory assumes a set of exemplars are encoded
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Figure 1: Face representation used in the tests. There are
four degrees of freedom. 1. Position of outer eyebrows, 2.
Position of inner eyebrows, 3. Position of lip corners and
4. Lip center separation. Center of the eyebrows was fixed
(black node). Point about which lip center separation was
measured was fixed (black node).

in the category’s mental representation (Nosofsky & Palmeri,
1997). A new entity is compared to the exemplars in order to
establish whether it belongs to the category.

Sanbourn et al. (Sanborn & Griffiths, 2008; Sanborn, Grif-
fiths, & Shiffrin, 2009) were the first to demonstrate the use
of people as components in an MCMC algorithm, in order
to explore psychological categories. A method was verified
and used to demonstrate that human-MCMC can be used to
estimate the structures of real-world animal shape categories.

Padgett (Padgett & Cottrell, 1997) considered representa-
tion of facial images for emotional classification. However
this study is constrained by the fact that the facial image data
set used was limited to a small number of images. The train-
ing data relied upon is limited in many cases as the images
must be subject to agreement by expert labelers.

Methodology
This is the first investigation, to my knowledge, using cartoon
representations of faces in order to investigate categorization
of affect by facial expressions. As such it was necessary to
begin with a facial representation having a small number of
degrees of freedom. A cartoon representation was created
with four degrees of freedom that allowed variation of eye-
brows, lip corners and lip separation. These are demonstrated
in Figure 1.

The limits placed on the displacement of each node are
shown in Figure 2. The representation was symmetrical
(eyebrows mirrored one another as did the left and right
sides of the mouth). A restriction was applied in all tests that
prevented the center of the eyebrows being the lowest point.
This was the only restriction on the movement other than
parameter range limits described. The degrees of freedom

Figure 2: Continuous ranges of four free parameters on the
face. Representations of the extreme cases are shown at either
end of the scales.

loosely correspond to the following action units which
are identified in Ekman’s (Ekman & Friesen, 1978) Facial
Action-unit Coding System (FACS).

Outer Eyebrows - Outer Brow Raiser (AU2).
Inner Eyebrows - Inner Brow Raiser (AU1), Brow Lowerer
(AU4).
Lip Corners - Lip Corner Puller (AU12), Lip Corner Depres-
sor (AU15).
Lip Separation - Lips Part (AU25), Jaw Drop (AU26), Mouth
Stretch (AU27).

In a set of initial tests two participants performed discrim-
ination tasks with three facial representations. The first pre-
sented a mouth, nose and eyebrows where the nodes were
joined by straight lines. The second added an outline of the
face to the image. The third joined the nodes with smooth
curves and also contained the outline of the face, as in Fig-
ure 1. The participants more consistently labeled the expres-
sions given the third representation. As a result, this was used
for the subsequent tests. This was a male face. Investigation
into the effects of gender and ethnicity in this domain are not
considered here.

All tests described in this paper were performed on a 15”
MacBook Pro. Processing of the data and all GUI interfaces
were created in MATLAB. None of the participants in the
study were given rewards for completing the tasks. This study
was approved by the Massachusetts Institute of Technology
Committee On the Use of Humans as Experimental Subjects
(COUHES).

Experiments
Three experiments were designed. The preliminary experi-
ment was carried out to identify appropriate categories for the
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Figure 3: Histogram of results from the preliminary experi-
ment, showing the frequency with which each category was
chosen. Four participants labeled 40 different faces each.

human-MCMC tests. The human-MCMC experiment was
then conducted to collect samples from these categories. The
discrimination experiment was carried out to validate the dis-
tributions formed by the MCMC tests.

Preliminary Experiment

In a preliminary experiment four participants were separately
shown a series of 40 cartoon faces and were asked to visu-
ally categorize them as angy, disgusted, fearful, happy, sad,
surprised or other. The visual stimuli were generated from a
uniform distribution over the parameter ranges shown in Fig-
ure 2. Representations outside these ranges were not consid-
ered as they were significantly different from natural move-
ments, as judged by two participants in the initial tests.

Figure 3 shows a histogram of results from the preliminary
discrimination experiment. Surprised, disgusted and fearful
were each identified as the expression label in less than 5%
of cases.

The results demonstrate that the four degree of freedom
faces were not versatile enough to clearly represent all of the
states. For instance the widening of the eyes that might be
expected in a fearful expression was not represented.

There are likely to be many other indicators that influence
our judgement of a person’s affect that are not captured here.
Ekman’s facial action coding system (FACS) contains over
60 facial actions and movements many of which have been
shown to discriminate between affective state (El Kaliouby &
Robinson, 2005). These include skin texture changes, more
subtle facial actions and movements. Examples are: nose
wrinkles, head nods, shakes and tilts. Contextual information
is also absent in our stimuli.

As a result, the affect categories were restricted to happy,
sad and angry, which were the 3 most commonly identified
categories in the preliminary experiment.

Human-Markov Chain Monte Carlo Experiment

Markov chain Monte Carlo (MCMC) is a sampling technique.
At each step of the algorithm a proposed state is compared
to the current state and one is rejected. The accepted state
becomes the current state for the next step. The desired dis-
tribution is approximated using the Markov chain formed by
the accepted samples. In this experiment, the MCMC analy-
sis was performed by presenting two representations, one the
current state in the chain and the other a proposed represen-
tation. The participants were asked: ‘Which one is the more
happy face?’ for chain one, ‘Which is the more sad face?’
for chain two and ‘Which is the more angry face?’ for chain
three. They selected the appropriate choice using a mouse
click on a button below the appropriate picture.

Sanborn et al. identified in their human-MCMC analy-
sis of animal representations that decision rule biases could
form towards the current state or proposal (Sanborn et al.,
2009). This led to unfavorable effects on the outcomes. In or-
der to reduce the effect of such problems the MCMC chains
for happy, sad and angry were interleaved. The decision to
sample from a particular chain at any point was random and
occurred with equal probability for all chains. As such, over
many trials an approximately equal number of samples were
taken from each category. The current and proposed states
were displayed side by side on the screen during the tests.

Each of the MCMC chains was initialized by drawing a set
of values from a uniform distribution over the lower 20% of
the ranges in Figure 2. The proposed states were drawn from
a multivariate Gaussian distribution with the current state as
the mean and a diagonal covariance matrix. The standard de-
viation of the variables was set to 8% of their total range. In
preliminary tests this was found to give a proposal acceptance
rate from 30-50%. The ranges of the variables for the MCMC
test are shown in Figure 2. If a proposal was outside the range
then it was rejected and another set of samples taken.

Many studies fail to carefully consider the the impact of
the experimental design on the data collected. To mitigate the
effect of biases due to the participants not moving the cursor
an unbiased coin flip was used to decide whether the current
state would appear on the right or the left hand side of the
screen. The select buttons were placed close together in order
to minimize the effort required to change between the two.

Four participants performed the task. Participants 1, 2 and
3 evaluated 750 pairs over three chains and participant 4 eval-
uated 350 pairs over three chains, they all took between 30
and 60 minutes to complete the task. Table 1 shows the statis-
tics from the MCMC experiment. The acceptance rate aver-
aged over the whole participant pool was 36.5%.

In carrying out these tests we must be aware of assump-
tions made that may affect the results. Firstly, the MCMC
method assumes that participants accept proposals by a rule
that accepts less likely proposals with a certain probability.
Secondly, the Markov assumption is that decisions are based
on the current pair of stimuli. In such an experiment where
the participants were each asked to evaluate a large number of
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No. of Samples Acceptance %
Happy Sad Angry Happy Sad Angry

P1 241 267 242 38 43 34
P2 231 271 248 53 41 37
P3 237 244 274 33 38 41
P4 113 114 123 30 20 30

Table 1: Participant’s statistics. Number of samples per chain.
Acceptance % per chain.

images they may make judgements based on previous images
or may become bored with a particular image.

Discrimination Experiment
In this task the participants were presented with a single rep-
resentation and asked to categorize it as happy, sad or an-
gry. The representations were drawn from uniform distribu-
tions over the ranges shown in Figure 2. 750 different stimuli
were categorized. The human-MCMC method allows sam-
pling from the probability from the distribution in the the pa-
rameter space associated with each category. Thus even in
the same context discrimination and MCMC would produce
different information (Sanborn et al., 2009).

Results and Discussion
Human-MCMC is a sampling method. The data collected
was in four dimensions (outer eyebrow, inner eyebrow, lip
separation and lip corner dimensions). The samples obtained
from the MCMC tests were mapped to a two dimensional
plane that best discriminated between the expression distri-
butions. This was carried out in order to create a visual struc-
ture of the expression categories (Olman & Kersten, 2004).
The dimensionality reduction was performed using General-
ized Discriminant Analysis (GDA) with a Gaussian kernel.
GDA is a method of combining features so as to separate
classes within the data. Figure 4 shows the resulting chains
for all four participants. Using this visualization a judgement
was made on how many samples should be rejected in order
that the distributions were stationary. The number of sam-
ples burned (samples removed from the start of a chain) per
chain was 40, leaving the average chain length 213 samples.
The GDA was then performed on the samples in four dimen-
sional space that remained after burn-in. Figure 5 shows the
resulting samples for the four participants. The average faces
for each participant and each category are shown in Figure 6.
A mean face for each category, aggregated across the whole
participant pool is shown in Figure 5. These faces appear to
be reasonable examples of the three categories. This result in
part supports the use of the MCMC method.

In these tasks, with only three categories in a limited di-
mensional space the categories can be separated effectively.
However, if there were a great number of categories a Multi-
Dimensional Scaling (MDS) representation could be created.
We can calculate the similarity of categories by counting the
confusions between pairs of stimuli (Rothkopf, 1957; Nosof-

Figure 4: MCMC chains from all participants, before burn-in
samples were removed, mapped to the plane that best dis-
criminates between the categories. The dotted lines show
the burn-in lengths chosen visually, the first 40 samples from
each chain. Chain one - happy (green), chain two - sad (blue),
chain three - angry (red).

sky, 1987). A potential downside of MDS is that it does not
find an explicit mapping function from the parameter space.
Sanborn et al. (Sanborn et al., 2009) use Dimensionality Re-
duction by Learning an Invariant Mapping (DrLIM) (Hadsell,
Chopra, & LeCun, 2006) that does provide an explicit func-
tion. This was not tried here but would be worth considering
in future work.

Within a large parameter space the categories are likely
to occupy small subspaces only. As a result a method such
as MCMC that allows sampling from the whole parameter
space but enables navigation to a particular region is useful
compared to a discriminative test that samples from the space
randomly.

However, in Figure 6 we compare the mean faces from the
MCMC task and the discrimination task for one participant.
In both cases the mean representations are reasonable exam-
ples. This suggests that the advantage of the MCMC method
is not seen in this four dimensional space with the ranges de-
scribed. As we increase the ranges and the number of de-
grees of freedom the space will increase greatly in size and it
is likely that the benefit of the MCMC method will become
apparent.

The discrimination experiment stimuli were categorized
using the distributions found from the MCMC results. A
naive Bayes classifier with Gaussian kernal was fitted to the
four dimensional human-MCMC samples. Using this model
the most likely label for each of the discrimination stimuli
was chosen. These labels were then compared to the human
responses.

The model matched the human identification of the stimuli
in 70.1% of cases. This is much better than chance at 33%.
The error is likely to be due to the fact that the discrimination
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Figure 5: Scatter plot of samples from the four participants,
after burn-in, mapped to the plane that best discriminates be-
tween the categories. The average face for each category is
shown. Samples from: chain one - happy (green), chain two
- sad (blue), chain three - angry (red).

stimuli were generated from uniform distributions over the
ranges. As such, many were far from the samples generated
by the MCMC method. It is likely that many of the discrim-
ination stimuli would not have been classified as any of the
three categories if there had been other alternatives. Testing
on results of a discrimination task with an ‘other’ option may
produce even stronger performance.

For each of the dimensions the probability distributions for
each category were estimated from the human-MCMC sam-
ples. The samples were separated into 25 equal size bins.
Gaussian Process Regression (GPR)1 was then used to ap-
proximate the distributions. A squared exponential (SE) co-
variance summed with an independent noise function was
used. This does not make the assumption of an underlying
structure but rather assumes the function is infinitely smooth.
The characteristic noise scale and signal variance were set to
one and the noise variance also to one. The hyper-parameters
could be adjusted further. However, for a qualitative repre-
sentation of the distributions given by the data these were
reasonable choices.

Figure 7 shows the estimated density plots for each dimen-
sion after aggregating the data from all participants. It shows
that in some dimensions (lip separation, inner eyebrow) none
of the categories are significantly distinguished from the other
two. However in the cases of the outer eyebrow and lip corner
dimensions one of the categories was distinct. For the outer
eyebrow dimension the distribution for anger is significantly
different from the distributions for happy and sad. For the lip
corner it is happy that is more distinguishable. The sad cat-
egory distributions were not significantly different from both
of the other two in any of the cases.

There are certain assumptions and limitations within the

1Rasmussen and William’s GPML toolbox was used for this task.

Figure 6: Comparison of mean faces for one participant in the
discrimination task and MCMC task.

experiment that must be noted. As described above, when a
proposal was outside the range set it was automatically re-
jected. In certain cases this rule was enforced and the dis-
tribution met one of the boundaries. This is not necessarily
a negative point as the ranges restricted the participants to
move within a space of reasonably natural expressions. We
see from Figure 7 that for the inner eyebrows and lip corners
the distributions did push up against the boundaries to a cer-
tain extent. This is something to consider in future work.

We should also note some general comments about aspects
of the experimental set up. We must consider the impact
of participants becoming bored during the experiment and
selecting their response arbitrarily. Many samples were re-
quired in order to generate stationary distributions. Ways of
minimizing the effects of boredom should be considered in
future.

Conclusions
This paper demonstrates that human-MCMC methods can be
used to gain insight into facial expression categorization us-
ing simple cartoon representations. We demonstrated that
from 750 samples over three categories the method provides
reasonable mean representations for each of the categories
and reasonable distributions. By using GDA we were able
to map the four dimensional points to a plane and after burn-
in reveal three categories. The sad and angry chain samples
were not separable in two dimensions. The happy chain sam-
ples were separable.

We also show estimates of the distributions for each of the
categories along each of the four dimensions. This reveals
that for the features tested the lip corner is the best discrimina-
tor for happy expressions and the outer eyebrow the strongest
for angry expressions. The sad distributions were not distin-
guishable from both happy and angry distributions in any of
the cases.

The mean faces generated by the human-MCMC and dis-
crimination tasks were both reasonable and neither signifi-
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Figure 7: Density estimates for each of the four parameters aggregated over all the participants. The parameter dimensions
correspond to the ranges shown in Figure 2. Chain one - happy (green), chain two - sad (blue), chain three - angry (red).

cantly more realistic than the other.
A naive Bayes classifier trained on the aggregated samples

generated from the MCMC task performed strongly predict-
ing over 70% of the human labels in the discrimination task
correctly.

Further Work

This paper describes the first investigation evaluating hu-
man facial expression categorization using a human-MCMC
method. It justifies a basis for applying a human-MCMC
method for exploring people’s representations of facial ex-
pressions. Griesser et al. (Griesser et al., 2007) demonstrate
the use of detailed computer avatars that can realistically
demonstrate skin texture changes as well as facial actions.
This type of stimuli could be used in order to seriously inves-
tigate a wider range of categories. It would also allow more
detailed investigation of the degree to which specific dimen-
sions allow discrimination in terms of affect.

Sanborn et al. (Sanborn et al., 2009) suggest that the
human-MCMC method may be used to test models of cate-
gorization. Prototype models produce unimodal distributions.
Exemplar models are more flexible. As such it is difficult to
establish whether a category distribution more closely resem-
bles a prototype or exemplar model in many cases but rather
we can test whether a distribution has properties that rule out
a prototype model (Sanborn & Griffiths, 2008; Sanborn et al.,
2009).
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Abstract 

This paper presents the development of a cognitive model of 
cognitive lockup: the tendency of humans to deal with 
disturbances sequentially, possibly overseeing crucial data 
from unattended resources so that serious task failures can 
appear—e.g., in a cockpit or control centre. The proposed 
model should support the design and evaluation of user 
interfaces that prevent such failures, being used outside the 
academic community. Based on the practical cognitive task 
load theory of Neerincx (2003), this model distinguishes time 
pressure and number of tasks-to-do as two factors that 
increase task switch costs and the corresponding risk of 
cognitive lock-up. The CASCaS architecture proved to fit best 
with the requirements to incorporate these factors and to 
support the UI engineering process. 

Keywords: cognitive lockup; cognitive modeling; cognitive 
task load model; cognitive architectures; user interface 
engineering. 

Introduction 

Aircraft pilots are faced with a complex traffic environment. 

Cockpit automation and support systems help to reduce this 

complexity. Currently, a lot of research is done to improve 

the onboard management of flight trajectories and the 

negotiation of trajectory changes with Air Traffic Control. 

During the flight, many factors may induce changes to the 

original flight plan, e.g. bad weather, traffic conflicts, or 

runway changes. Safe operation of aircrafts is based on 

normative flight procedures (standard operating procedures) 

and rules of good airmanship, which we will refer to as 

normative activities. We define pilot errors as deviations 

from normative activities.  

In the past, several cognitive explanations and theories 

have been proposed to understand why pilots deviate from 

normative activities (e.g. Dekker (2003)). The European 

project HUMAN, in which the research described in this 

paper is done, strives to pave a way of making this 

knowledge readily available to designers of new cockpit 

systems. We intend to achieve this by means of a valid 

executable flight crew model which incorporates cognitive 

error-producing mechanisms leading to deviations from 

normative activities. The model interacts with models of 

cockpit systems in a virtual simulation environment to 

predict deviations and its potential consequences on the 

safety of flight. The ultimate objective of HUMAN is to 

apply this model to analyze human errors and support error 

prediction in ways that are usable and practical for human-

centered design of systems operating in complex cockpit 

environments. 

At the initial stage of HUMAN we performed 

questionnaire interviews with pilots and human factor 

experts based on a literature survey of error-producing 

mechanisms. We identified cognitive lockup to be among 

the most relevant mechanisms for modern and future 

cockpit human machine interfaces. We take the definition of 

cognitive lockup from Moray and Rotenberg (1989) who 

define the term ‘cognitive lockup’ as the tendency of 

operators to deal with disturbances sequentially. This has as 

a result that operators focus on a subpart of a system and 

ignore the rest of it (Meij, 2004).  

In this paper, we discuss factors that can cause cognitive 

lockup and an architecture of a cognitive model that can be 

used to help prevent lockup failures during User Interface 

engineering. 

Cognitive Lockup 

Previous Research 

As the definition from Moray and Rotenberg (1989) shows, 

cognitive lockup does not occur when people can perform 

all their tasks consecutively. Therefore they designed a task 

where this was not possible. Participants were asked to 

supervise a simulated thermal hydraulic system that 

consisted of four subsystems. In one scenario they needed 

only to focus on one fault in one of the subsystems. In 

another scenario a first fault was followed by a second fault 

in a different subsystem, which occurred before the 

participant could have handled the first fault. It was shown 

that participants shifted attention much later to the second 

fault then they did to the first fault. Moray and Rotenberg 

attributed this to limited information processing capacities. 

In another study that demonstrated cognitive lockup 

(Kerstholt et al, 1996), participants had to supervise four 

dynamic subsystems and deal with disturbances. The system 

included the option to stabilize a subsystem in which 

additional faults occurred, with which participants 

acknowledged their understanding of the development of a 
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disturbance over time. Most participants did not use this 

option and handled the disturbances sequentially.  

Cognitive lockup as a phenomenon is related to the rise of 

automation, but the tendency to proceed with the current 

task is not new. Meij (2004) investigated cognitive lockup 

in relation to planning, task-switching and decision making. 

He found that both prior investments into a task as the time 

that is needed to complete the task increases the probability 

of cognitive lockup. No support was found for refrainment 

of monitoring (a second fire was detected, but not tended to 

before the first fire was solved), too optimistic scenarios, 

and lack of resources (the complexity of the first task did 

not influence the degree of cognitive lockup). 

Cognitive Task Load Model 

A model that specifies core aspects of cognitive lockup is 

the cognitive task load (CTL) model of Neerincx (2003). 

The development of this model is driven by the need for 

limited and practical theories and models on human 

cognition to take validation of the theories and models out 

the laboratory and into the real world, where the 

environment is more dynamic.  

The CTL-model describes load in terms of three 

behavioral factors: time pressure, level of information 

processing and number of task set switches (see Figure 1). 

 

Time Pressure The time pressure is dependent on the 

scenario and the actions of tasks. The scenario provides 

information on the number of tasks due to events and the 

actions that are called upon by the tasks can take a long or a 

short time to handle. A standard measure for the time 

pressure is: 

Time pressure =  time required for tasks  

time available for tasks 

 

Humans reach overload when the time pressure is more 

than 70-80% (Beevis et al., 1994).  

 

 
 

Figure 1: CTL model, with the three dimensions task set 

switches, level of information processing, and time occupied 

(time pressure). 

 

Level of Information Processing The level of information 

processing factor is measured as the percentage of 

knowledge-based actions using the Skill-Rule-Knowledge 

framework from Rasmussen (1986). Input information that 

can be processed at skill level (e.g. when you touch 

something hot with your hand, you immediately react by 

removing your hand from the heat source) is not cognitively 

demanding. When input information triggers a routine 

consisting of rules (i.e. procedures with rules of the type "if 

<event/state> then <actions>") it takes some cognitive 

capacities to resolve the if/then, but the rest of the procedure 

is quite automatic. Cognitive demanding are the situations 

where there is problem analysis needed on the input 

information and knowledge to reason about it, this can have 

a large influence on the working memory. 

Rasmussen’s framework corresponds to the cognitive 

theory of skill acquisition of Anderson (1982) that 

distinguishes three memory representations: cognitive, 

associative and autonomous. These three levels are linked to 

different memory representations; declarative, procedural 

and implicit. 

 

Task Set Switches To take into account situations where 

people have to perform different tasks that appeal to 

different sources of human knowledge and different objects 

in the environment, the CTL-model comprises the task set 

switches factor. A task set contains both the human 

resources and environmental objects with momentary states, 

which are involved in the task performance. A switch occurs 

when the applicable task knowledge on the operating and 

environment level change. A task set can thus be seen as a 

goal that is comprised of several (sub-)tasks.  

Rubinstein, Meyer and Evans (2001) distinguish two 

types of task switching: task switching in successive tasks 

and task switching in concurrent tasks. With successive 

tasks the first task is responded to and finished before the 

second task is presented. Concurrent tasks on the other hand 

are tasks where the second task is presented before the first 

task has been finished. We are only interested in concurrent 

tasks, because a pilot usually has multiple concurrent tasks 

that can be executed, e.g. monitoring different interfaces in 

the cockpit. Successive task switching studies show that 

task switching takes time (Jersild, 1927, Rogers & Monsell, 

1995). In concurrent task switching studies (De Jong, 1995; 

Schumacher et al., 1999), it is observed that people are 

unable to deal with multiple tasks. They postpone the 

second task until the first task is completed. In these 

experiments the second task is not of such importance that it 

should be handled immediately, but in real life situations not 

handling the second task before finishing the first can cause 

life threatening situations (e.g. the crash of flight 401 of 

Eastern Air Lines in 1972 (NTSB, 1973)). Tasks can be 

interrupted, but with every switch time and effort is needed 

to do context acquisition to bring the environment 

information up-to-date (Olsen & Goodrich, 2003). 

In the CTL-model, the task set switches can be seen as the 

number of task set switches possible at a particular moment 
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in time. This number comes thus forth from the environment 

and the situation a person is in. 

 

Cognitive Lockup in the CTL Model The three factors of 

the CTL model are interrelated (Figure 1). Cognitive lockup 

is independent of information processing level, but does 

occur when both time pressure and number of task set 

switches is high. That the information of processing level is 

not of importance seems counterintuitive, but in an 

experiment of Meij (2004) (experiment 2) this is supported. 

In the experiment of Meij, participants were asked to 

monitor for fires on a ship. When a fire was detected it had 

to be diagnosed on both priority and treatment. Two fires 

could exist simultaneously and the participant had to decide 

which fire to fight. The complexity of this task was varied 

by making the diagnosis of priority and treatment harder 

and by varying the moment of introduction of the second 

fire (e.g. after diagnosis of the first fire or during diagnosis). 

The data showed that an increasing level of complexity had 

no influence on when the second fire was detected. 

Pilots and Cognitive Lockup 

The most famous example of cognitive lockup comes from 

the aviation domain. In 1972 a plane from Eastern Air 

Lines, flight 401, crashes. During the landing the pilot is 

warned about a problem with the landing gear. He cancels 

the landing and sets the plane in autopilot so that he can 

solve the problem. Unfortunately, due to his occupancy with 

the landing gear, the pilot missed the warning signals 

(alarms and air-traffic control) about decreasing altitude, 

and the plane crashed (NTSB, 1973). 

Modeling of Cognitive Lockup 

Cognitive Architecture 

Cognitive architectures were established in the early eighties 

as research tools to unify psychological models of particular 

cognitive processes (Newell, 1994). These early models 

only dealt with laboratory tasks in non-dynamic 

environments (Anderson, 1993; Newell, Rosenbloom, & 

Laird, 1989). Furthermore, they neglected processes such as 

multitasking, perception and motor control that are essential 

for predicting human interaction with complex systems in 

highly dynamic environments like the air traffic 

environment addressed in HUMAN with the AFMS target 

system. Models such as ACT-R and SOAR have been 

extended in this direction (Anderson et al., 2004; Wray & 

Jones, 2005) but still have their main focus on processes 

suitable for static, non-interruptive environments. Below we 

provide a short overview of the requirements we have for 

the cognitive model and how these requirements are met by 

ACT-R 6.1.4, SOAR 9.3.0 and EPIC. Note that we evaluate 

the requirements only for these versions. ACT-R and SOAR 

are under constant development and requirements that are 

not met at the moment might be met in future versions.  

The first requirement is that the cognitive model should 

support multitasking. The three best known cognitive 

architectures all support a form of multitasking; ACT-R 

with threading (e.g. Salvucci & Taatgen, 2008), to SOAR 

(Newell, Rosenbloom, & Laird, 1989) and EPIC (Meyer & 

Kieras, 1997) it is inherent to the architecture. Secondly, 

because we want to test interfaces there is a need for 

perception and motor action abilities. This is inherent to 

EPIC (Meyer & Kieras, 1997), ACT-R is able to do this 

since ACT-R/PM (Byrne, 2001), and SOAR cannot do this 

without coupling with EPIC, although since SOAR 9 there 

is a vision module (Laird, 2008).  All three need interface 

coupling with a model of the interface (e.g. developed with 

SegMan (Amant et al., 2005)). Thirdly, the model should be 

able to learn, SOAR and ACT-R are able to learn, but EPIC 

is not. Fourthly, we want an explicit Skills-Rules-

Knowledge separation (Rasmussen, 1983) to make it easier 

for users to choose a level on which they want to work and 

to make it more clear for end users where errors came from. 

When it is from rules (procedures), adapting procedures can 

be a solution, when it comes from the knowledge level the 

solution can be more difficult, because the problems that 

arise from this level are inherent to people. Finally, it is very 

important that non-expert users can use the cognitive model 

in the design and testing process of interfaces. With none of 

the three discussed cognitive architectures this is possible, 

because they all require a high level of knowledge of the 

model, in addition to programming skills, before being able 

to adapt them to a certain domain or interface.  

In the following, we describe shortly the architecture used 

in the HUMAN project. We choose to describe the 

architecture to show that our theory of cognitive lockup is 

embedded in a broader concept. However, this description 

will only be short and will not go into (implementation) 

details, as for the theory of cognitive lockup, these details 

are not necessary.  

The cognitive architecture CASCaS (Cognitive 

Architecture for Safety Critical Task Simulation) is used to 

model the cognitive process described in the previous 

section. For a more detailed description of the CASCaS 

architecture see Lüdtke et al. (2009). CASCaS has 

multitasking abilities, has a perception and motor module, is 

able to learn (e.g. production compilation), has a skills, a 

rules (associative layer) and a knowledge (cognitive layer) 

based level. Finally, only when you really want to change 

something of the architecture programming skills are 

necessary. Otherwise there are editors for the procedures 

(domain knowledge) and for the interface description. The 

procedure editor (Frische et al., 2009) can be used by any 

domain expert, which has been shown by an informal 

review that was performed by one of the end user partners in 

the HUMAN project. And UsiXML (Limbourg et al., 2005) 

which describes the interface in a way that it can be used by 

the model can automatically transfer HTML pages into the 

right format, has a graphical editor so that interface 

designers can use tools that are similar to what they know 

and XML programming is also possible. UsiXML is 

developed by human factor experts at the Belgian 

Laboratory of Computer-Human Interaction (BCHI). 
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The core of CASCaS is formed by the layered knowledge 

processing component that contains the associative and the 

cognitive layer. 

A task that is encountered for the first time is processed 

on the cognitive level with maximal cognitive effort. This 

processing is goal driven; alternative plans to reach a goal 

are evaluated usually through mental simulation, and finally 

one plan is selected to be executed. With some experience, 

the associative level is used, where solutions are stored that 

proved to be successful; the pilot has for example learned 

how to handle the cockpit systems in specific flight 

scenarios. According to Rasmussen (1983), processing is 

controlled by a set of rules that have to be retrieved and then 

executed in the appropriate context. On the autonomous 

level routine behavior emerges that is applied without 

conscious thought, e.g. manually maneuvering an aircraft. 

When solving a task, people tend to apply a solution on the 

lower levels first, and only revert to solutions on higher 

levels when lower-level ones are not available (Rasmussen, 

1983) or when the situation requires very careful handling 

due to unusual and safety relevant conditions. 

The associative layer selects and executes rules from 

long-term memory. It is modeled as a production system. 

Characteristic for such systems is a serial cognitive cycle for 

processing rules: A goal is selected from the set of active 

goals (Phase 1), all rules containing the selected goal in their 

goal-part are collected and a short-term memory retrieval of 

all state variables in the Boolean conditions of the collected 

rules is performed (Phase 2). If a variable is absent in 

memory, a dedicated percept action is fired and sent to the 

percept component to perceive the value from the 

environment and to write it into the short-term memory. 

After all variables have been retrieved, one of the collected 

rules is selected by evaluating the conditions (Phase 3). 

Finally the selected rule is fired (Phase 4), which means that 

the motor and percept actions are sent to the motor and 

percept component respectively and the sub-goals are added 

to the set of active goals. This cycle is started when a 

Boolean condition of a reactive rule is true. In Phase 2 

reactive rules may be added to the set of collected rules if 

new values for the variables contained in the State-Part have 

been added to the memory component (by the percept 

component). In Phase 3, reactive rules are always preferred 

to non-reactive rules. The cognitive cycle is iterated until no 

more rules are applicable. 

The cognitive layer reasons about the current situation 

and makes decisions based on this reasoning. Consequently, 

we differentiate between a decision-making module, a 

module for task execution and a module for interpreting 

perceived knowledge (sign-symbol translator). In the 

following, we will describe the decision-making module in 

more detail, as it is relevant to modeling cognitive lockup. 

For more information on the cognitive layer see Lüdtke et 

al. (2009). 

The decision-making module determines which goal is 

executed. Goals have priorities, which depend on several 

factors: goals have a static priority value that is set by a 

domain expert. In addition, priorities of goals increase over 

time if not executed. Implicitly, temporal deadlines are 

modeled in this way. If, while executing a goal, another goal 

has a distinctively higher priority than the current one, the 

execution of the current goal is stopped and the new goal is 

attended to. This decision depends on the priorities of the 

goals and is extended by the parameter Task Switching 

Costs (TSC), which determines the difference the priorities 

need to have to halt the execution of a goal to select a 

different goal to be executed. TSCs are described 

extensively in literature (e.g. Jersild, (1927); Rogers & 

Monsell (1995)). The higher the TSC is, the higher the 

priority of another goal needs to be to switch to that goal. To 

determine whether a goal should be interrupted and a 

different goal should be executed, the TSC is added to the 

current task priority. Only if a priority of another active goal 

is above this threshold, this other goal is chosen to be 

executed. For a visualization of the goals see Figure 2. 

 

 
Figure 2: Visualization of the goals on the cognitive layer. 

Dark gray and green goals are active. The framed goal is 

currently executed. The yellow staff represents the 

additional task switch costs. 

Cognitive Lockup Model 

In this section we describe how cognitive lockup is modeled 

in the cognitive architecture described above. We model 

cognitive lockup on the cognitive layer. The main reason for 

this is that, as described above, on the cognitive layer we 

have an explicit goal decision mechanism in which 

cognitive lockup can easily be integrated. However, this can 

be extended to the associative layer, as the principles 

explained below are generally applicable to the goals of the 

associative layer as well. 

 

Time Pressure As described in Neerincx (2003), the time 

pressure for a person plays an important role for cognitive 

lockup. If a person has a value for the time pressure of more 

than 0.75 (Neerincx, 2007), the task switch cost increases. 

In general, this factor depends both on the time pressure of 

the associative and cognitive layer. However, to simplify 

matters, we will model this temporarily only related to the 

cognitive layer, but will extend the concept later to the 

associative layer. As written above, the formula that we use 

is the following:  

 

Time pressure =  time required for tasks  

time available for tasks 
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For example, if we have a task that can be done in 25 

seconds and we have 100 seconds before it needs to be 

finished, the predicted time pressure is 0.25.  

The time required for a task is the time needed for 

cognitively processing the task. This knowledge comes both 

from the analysis of normative behavior, i.e. discussions 

with experts that give an indication of the time a task takes, 

in addition to cognitive theories on which the cognitive 

architecture is based (e.g. (Anderson, 1993; Kieras & 

Meyer, 1997)).  

Modeling the time that is available for a task is quite 

complex. For some tasks this knowledge is given in the 

normative behavior. For example, a pilot needs to have set 

the flaps before reaching the final approach phase. The time 

that is available for a task can thus be calculated by the 

knowledge of the current task, and a prediction of when the 

approach phase begins, which can be gained from the 

environment. For other tasks, it is not that easy to know the 

time that is available to execute it. For example, for a 

monitoring task, there is no standard deadline at which 

monitoring has to be finished. However, the time pressure 

will slowly increase, without having a clear deadline of the 

task, as there is no unlimited time to execute any task.  

Thus, for each task, it has to be evaluated whether the 

time pressure can be based on a calculation of elements of 

task knowledge and the environmental input, or whether it 

has to be given a general estimate.  

The time pressure is inherent to each goal as it only takes 

aspects of the individual goal into account, but is dynamic 

as the time until it needs to be finished is constantly 

diminishing. We decided that this calculation is done each 

50 ms, which is the cycle time of our architecture. 
 

Level of Information Processing As described above, the 

level of information processing does not play a relevant role 

for cognitive lockup. This factor is not taken into account in 

the model of task switching costs. 
 

Task Set Switches As described above, task set switches 

are defined as possible goal switches at a given moment. 

The number of task sets is modeled as the number of goals 

that are active at the moment. Temporarily, we only look at 

goals in the cognitive layer. 

The value of the task set switches is thus the number of 

active goals in the environment. We assume that the model 

always has activated all possible tasks that play a role at the 

moment in the environment and are needed to handle the 

current situation. 

The Model 

Above, we have described different aspects that increase the 

probability of cognitive lockup. In our model, this is 

simulated by increasing the task switch costs (TSCs) of the 

goal that at that moment is processed. The TSC determines 

the difference that the priorities need to have to halt the 

execution of a goal to select a different goal to be executed. 

The TSC depends on the number of goals that at that 

moment is also active and could be selected to be processed, 

and on the time to spare to execute the current goal. The 

TSC is higher when there is high time pressure. 

Furthermore, the higher the number of active goals is (i.e. 

the possible task set switches) the higher are the costs to 

switch to another goal. The following formula determines 

the TSC:  

TSC = StartTSC * (Time pressure + Task set switches),  

with Time pressure = 0 if  Time pressure < 0.75.  

This means that the task switch costs depend on a start 

value, which is a constant, and the sum of the two factors of 

the time pressure and the task set switches.  

As at each moment if there are active goals, at least one 

goal is selected and executed, the task set switches 

parameter is always at least 1. If there is only one goal, and 

the task pressure is not high, the TSC is equal to the 

constant start value. The moment there are several active 

goals or the time pressure for the currently selected goal is 

above the threshold of 0.75, the TSC is increased. 

Conclusion 

This paper presented the development of a cognitive model 

of cognitive lockup: the tendency of humans to deal with 

disturbances sequentially, possibly overseeing crucial data 

from unattended resources so that serious task failures can 

appear—e.g., in a cockpit or control centre. The model is 

based on real life examples of cognitive lockup and the 

psychological theories that are derived from these examples, 

and laboratory experiments. It distinguishes time pressure 

and number of tasks-to-do as two factors that increase task 

switch costs and the corresponding risk of cognitive lockup. 

A heightened task switch cost leads to less task switching, 

even when another task has a higher priority, as the 

difference between the priorities needs to be higher.  

The proposed model should support the design and 

evaluation of user interfaces that prevent such failures, 

being used outside the academic community. The CASCaS 

architecture proved to best fit with the requirements to 

incorporate these factors and to support the UI engineering 

process. 

At the moment, we calculate the time pressure as a value 

inherent to the individual goal. The interdependencies 

between the timing of several goals will be taken into 

account in the next version of the cognitive model (i.e., 

several tasks might in themselves not have a high time 

pressure, but might together be time-critical, as all of them 

might need to be finished before all of them can be 

executed).  

The values for the parameters we have chosen for our 

cognitive model are mainly based on literature, and are 

currently being evaluated in both laboratory experiments 

and realistic simulator experiments. In this way, we refine 

and validate the model, improving its plausibility and 

predictions about the behavior of pilots. Application of the 

model will provide user interfaces and procedures that 

reduce the risks for lockup errors. Due to the cognitive 

plausibility, we predict that the model can also be used in 

other domains without substantial changes. 
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Abstract 

John R. Anderson proposed a correspondence between ACT-
R modules and brain regions (Brain Mapping Hypothesis). 
Using a paradigm requiring rule-based matching of chemical 
structures (pseudo formulae) with their respective names, we 
compared ACT-R-generated blood-oxygen-level dependent 
(BOLD) signal curves with BOLD curves obtained from 
functional Magnetic Resonance Imaging (fMRI) scans. We 
found significant correlations between ACT-R generated and 
human BOLD curves for sensory and motor modules and 
regions in particular, whereas a lack of significant results was 
observed for mappings between internal modules and regions. 
This result was ascribed to the fact that in contrast to 
Anderson’s studies, our subjects were not urged to follow a 
single strategy. Instead the task allowed them to construct 
their personal strategy within a constraint-based strategy 
space. Accordingly, the mapping hypothesis was tested 
strategy-specific. As subjects are generally not able to reliably 
identify their own in a retrospective manner, we used 
Response-Time (RT) data in combination with a Bayesian 
Belief Net to identify personal problem solving strategies.  

Keywords: ACT-R; BOLD signal prediction, brain-mapping 
hypothesis 

Introduction 

The ACT-R architecture (Anderson, 2004) provides a set of 

modules with sensory, motor, and internal functions. 

Anderson (2007a; Anderson, et al., 2008b) proposes a 

neurophysiologic analogy and postulates a mapping 

between these modules and brain regions (Table 1). For 

instance, the Procedural module is mapped onto the basal 

ganglia, while the Declarative module is mapped around the 

inferior frontal sulcus. The ACT-R 6.0 implementation 

provides a set of tools which directly predict BOLD signals 

for these brain regions. Indeed, Anderson has “[..] defined 

these regions once and for all and use them over and over 

again in predicting different experiments” (2007b). 

Several studies were conducted by Anderson et al. in 

order to empirically validate the mapping hypothesis. These 

included experiments from various domains, like algebraic 

problem solving (Danker & Anderson, 2007; Stocco & 

Anderson, 2008), associative learning (Anderson et al., 

2008a) or insight problems (Anderson et al., 2009). One 

particular feature in common of all these experiments was 

the fact that participants had to employ the same problem 

solving strategy on all tasks. 

The empirical validation of the mapping hypothesis is 

among the research goals of our multidisciplinary research 

project (see Section Acknowledgements). While also the 

effects of affective and informative feedback on learning are 

being studied (Özyurt, Rietze, & Thiel, 2008) an 

accompanying fMRI study offers us the possibility to 

compare BOLD signal predictions generated from strategy-

specific ACT-R models with BOLD signals obtained from 

actual fMRI scans.  

 

Table 1: ACT-R module/regions mappings according to 

Anderson (2007a) with positions in Talairach coordinate 

and dimensions (D, W, H) in voxels 

 

 

Results of the present study suggest a further refinement 

of our modeling methods. In contrast to the experiments 

described by Anderson et. al. (2008a; Danker & Anderson, 

2007; Stocco & Anderson, 2008), the tasks in our 

experimental setting were far more complex; because in 

order to solve these tasks, participants were free to choose 

their personal strategies. Because different strategies lead to 

different predictions of brain region activation, we had to 

model these different strategies and identify the chosen 

subject-specific strategy without using fMRI data (Möbus & 

Lenk, 2009). We would work unduly in favor of the 

mapping hypothesis if we would assign subjects to 

strategies according to similarity of their BOLD curves with 

the strategy-specific ACT-R-BOLD curves. 

Module Region X Y Z D W H 

Declarative Prefrontal ±40 21 21 5 5 4 

Imaginal Parietal ±23 -64 34 5 5 4 

Manual Motor ±41 -20 50 5 5 4 

Goal ACC ±5 10 38 5 3 4 

Procedural Caudate ±15 9 2 4 4 4 

Visual Fusiform ±42 -61 -9 5 5 4 

Aural Auditory ±46 -22 9 5 5 4 

Vocal Motor ±43 -14 33 5 5 4 
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Experiment 

All participants were lower-grade schoolchildren with ages 

ranging from 11 to 13. The exercises which the children had 

to solve came from the domain of the chemical formula 

language (Heuer & Parchmann, 2008), which is generally 

unknown to children of that age. However, instead of real-

world chemical elements, pseudo-elements (like Pekir or 

Nukem) were used to ensure that the children exclusively 

applied the rules of the artificial formula language. The 

children were asked to answer 80 trials in two sessions 

during fMRI scans. A single trial consisted of the auditive 

and visual presentation of a chemical compound name and 

the visual presentation of a pair of structural formulae 

(Figure 1). The subjects were asked to decide which of the 

two structural formulae (one on the left, the other on the 

right matches the compound name. The total presentation of 

a structural formula lasted for 4.5 seconds. An additional 

time of 1 second for the answer has been granted, so that the 

maximum response time amounted to 5.5 seconds. 

 

Figure 1: A typical experimental trial: The compound 

name is at the top, structural formulae left and right below.  

 

If the response had occurred in time, a feedback was 

given after a jitter time of 2-18 seconds. The feedback 

consisted of two parts: one part informed about the 

participant's performance; a second, affective part informed 

about the performance of a fictional peer group. The total 

feedback presentation lasted for 2.5 seconds.  

In order to find the correct structural formula for a 

compound name, six rules, which were part of the 

instruction given to all participants, had to be applied and 

checked for violations: 

1. The abbreviation for an element is defined by two 

letters 

2. The first letter of the abbreviation is the same as 

the first letter in the name of the element 

3. Both letters appear in the element’s name 

4. An element may have a multiplicity from 1 to 4 in 

the compound. Distinct numerals are used to 

denote the multiplicity: 

 -/one 

 pli/two 

 pla/three 

 plo/four 

5. The position of a numeral is always in front the 

element in the compound name 

6. The central or inner element of the structural 

formula is always the first in the compound name 

In Figure 1, the left structural formula actually matches 

the compound, while the right formula’s cardinalities 

mismatch. These rules define the constraints of a strategy 

space from which correct personal strategies can be 

constructed by the subjects. There is no explicit order in 

which the rules should be applied. Either the left or the right 

formula violates at least one of the rules. The trials are thus 

classified by the position of the faulty formula (left/right) 

and by the number of the violating rule. 

The rules were well known by the children because they 

went through an extensive instruction phase in multiple 

sessions. They familiarized themselves with the rules using 

age-based material and games especially designed for that 

purpose. They also passed 20 trials on a computer and 

another 40 in an fMRI simulator prior to entering the actual 

fMRI experiment. 

Overall, 33 participants were included in our study 

concerning the brain-mapping hypothesis. They were 

distributed among five experimental groups defined by 

design matrices, which described the sequential order of 

trials and jitter times. These 33 participants scored an 

average 54.64 correct answers from a whole of 80 problems 

with a standard deviation of 11.9. On the average, they were 

able to signal the correct solution to the problem in a trial 

within 3.78 seconds with a standard deviation of 0.8s.  

A SONATA MRI system (Siemens, Erlangen, Germany) 

operating at 1.5T was used with a standard whole-head coil 

to obtain T2*-weighted echoplanar (EPI) images with 

BOLD contrast (matrix size: 64x64, pixel size: 3x3 mm
2
). 

Participants completed two experimental runs consisting of 

40 trials each. During each functional run 408 volumes of 

30 three mm-thick axial slices were acquired sequentially 

with a 0.6 mm gap (TR = 2 sec, TE = 50 msec). Data were 

preprocessed with the Statistical Parametric Mapping 

software SPM5
1
. Following rigid body motion correction, 

the time series of each voxel was realigned temporally to the 

middle slice to correct for differences in slice acquisition 

time.  Structural and functional  volumes were coregistered 

and spatially normalised to a standard T1 template based on 

the Montreal Neurological Institute (MNI) reference brain 

(resampled to 2x2x2mm
3
 voxel). The data were then 

smoothed with a Gaussian kernel of 8 mm full-width-half-

maximum to accommodate intersubject anatomical 

variability. 

Models 

Two input channels are available to the problem solver. The 

visual input channel is mandatory, while the auditory input 

channel is auxiliary. This fact adds to the complexity of the 

problem, especially as both channels may be perceived in 

parallel or consecutively. Either the left or the right formula 

                                                           
1 http://www.fil.ion.ucl.ac.uk/spm/software/spm5 6/16/2010 
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or both have to be evaluated visually. This results in a 

variability of conceivable strategies, which differ in 

efficiency as well as module activation. A set of basic tasks 

is derived from the rules. These tasks are shared by all 

strategies, though not necessarily in the order presented 

here: 

1. Visually and/or auditorially perceive and encode 

the different parts of the compound name 

(mandatory for any successful strategy) 

2. Count the outer elements of a structural formula 

and compare them with the second numeral in the 

compound name 

3. Count the inner elements of a structural formula 

and compare them with the first numeral 

4. Compare the inner element with the first element 

of the compound name 

5. Compare the outer element with the second 

element of the compound name 

6. Indicate the correct formula 

Tasks 2-5 may be applied to both formulae, or, more 

efficiently, to either the left or the right formula. It should be 

noted that some concurrency can take place if the compound 

name is encoded using only auditory input. Tasks 4 and 5 

may be split into two different tasks as the abbreviation of 

an element always consists of two letters. Since the first 

letter is easier to compare with the name, it may be more 

appropriate to prioritize the first comparison and leave the 

second letter for later. A second open question which is not 

reflected within the above list of tasks is the position of the 

retrieval for the numerals. It can take place very early when 

encoding the compound name, but there is also the 

possibility to retrieve the numeral later on between the 

counting and comparison stages. 

A strategy is defined by the order of task processing and 

the formulae Tasks 2-5 are applied to. While all the 

strategies share the same basic set of tasks, they all perform 

differently on each trial. Some trials may only be solved by 

counting the elements as in Figure 1, others by name-

element comparisons, still others by both. A strategy shows 

higher performance (shorter response time) if it concentrates 

on a single structural formula to decide whether it matches 

or not. Each trial class (the violated rule and location of the 

violating formula) may have an impact on the performance 

of the strategy. 

Several, though so far not all possible, strategies were 

modeled, at first on an abstract layer as UML activity 

diagrams, and subsequently within the ACT-R environment 

as a set of production rules. As only expert participants were 

modeled, all modeled strategies find the correct answer but 

with a large variation in performance. So far, four different 

strategies, S1 to S4, have been modeled (Table 2). They 

differ in that they either process the structural formula and 

the compound name simultaneously using the different 

input channels, or by processing the compound name first 

and then proceed to the structural formulae. Thus they either 

process the trial single- or multithreaded, or single-formula 

or both formulae. 

 

Table 2: Characteristics of strategies/models 

 

 Multi-Thread Single-Thread 

Single Formula S1 S3 

Both Formulae S2 S4 

 

Apart from these single- vs. multi-tasking and single vs. 

both formulae considerations, even more design options are 

available to the modeler yet. For instance, the exact time 

when certain tests are carried out may be varied. Thus, the 

model could compare the element's abbreviations with their 

respective names before comparing the cardinalities. Also, 

the costly checking of the second letter of the abbreviation 

may be postponed by the strategy in order to save time. A 

heuristic approach could leave the second letter out of 

consideration completely.  

The models perform quite differently on the various trials, 

which is reflected in the ACT-R module traces. This affects 

the BOLD prediction. Any realization of Task 1, perceiving 

and encoding the compound name, would surely engage 

ACT-R's Visual or Aural module, if not both, and the 

Imaginal module. Tasks 2 and 3, which encompass 

encoding and counting the structural formulae, would 

involve the Imaginal, the Visual and the Declarative 

module. Tasks 4 and 5 would also require at least the 

Imaginal module, but it could involve the Visual module if 

the second letter of the symbol has to be checked for 

occurrence in the compound name. As Tasks 2-5 can be 

arranged in any arbitrary order, or even be split into 

subtasks which could run in parallel, quite different patterns 

of module activation would emerge. This implies that even 

models which produce similar behaviors may predict 

distinct BOLD signals, if the productions involved activate 

different modules. 

Data Analysis 

It is doubtful whether the participants are able to remember 

their problem solving strategy for each trial. It is also 

possible that they applied varying strategies to trials. The 

choice of strategy may be related to the trial class. However, 

we assume that the participants already settled for a single 

strategy after the extensive instruction and training phases. 

In order to determine which of our models is suitable to 

explain the performance of the actual strategy used by the 

participant, we devised a Bayesian Classifier with a 

Bayesian Belief Network (BBN) (Jensen, 2007) as 

diagnostic tool. The BBN (Figure 2) is trained with data 

from ACT-R model runs. Subsequently, behavioral data 

from the actual experiment is entered as evidence for 

identifying the personal trial-independent strategy of the 

subject. Strategies are thus classified by response times 

(RT). 

The main idea is that all models produce distinct response 

times for each trial. We assume that response times for a 

strategy are dependent on the trial. This is reflected in the 

BBN in Figure 2. The probability tables of the BBN are 
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being learned by running all of the strategy-specific ACT-R 

models to generate cases. This results in a data matrix 

whose columns correspond to the nodes from the BBN and 

whose rows correspond to trials. During model runs, the 

default values of ACT-R’s parameters were used.  

 

Figure 2: BBN for strategy classification 

 

The trial is entered as evidence into the “Trial”, “Matrix”, 

and “Session” nodes. The response time of the participant is 

entered as evidence into the “RT” node. It is then possible to 

infer on the strategy most likely used by the participant in 

the “Strategy” node. In Figure 2, the trial in question is the 

14
th

 trial from the second session of the experimental group 

defined by design matrix 1407. In this particular case, for 

participant with a response time between 4 and 4.5 seconds, 

S2 and S3 are equally probable. 

The collected fMRI data is analyzed by using the Regions 

of Interest (ROI) approach (Jäncke, 2005). The regions are 

specified by the module positions and dimensions given by 

Anderson’s Brain Mapping Hypothesis in Table 1. The 

Talairach coordinates were transformed into MNI 

coordinates. The raw values of each voxel lying in the ROI 

are extracted from the images and averaged per region, 

resulting in an activation timeline for each person and 

region (Figure 3). 

An averaged BOLD curve for each region is obtained by 

applying a strategy-specific weighted means function to and 

subsequent aggregation of the individual BOLD curves. For 

each trial 𝑡 of the 80 trials, a probability 𝑝𝑠,𝑡  for a particular 

strategy 𝑠 is inferred with the BBN from Figure 2. In order 

to neutralize the effects of varying base levels of individual 

BOLD signals, we employed ipsative measures: the 

deviations from the individual’s BOLD curve averages are 

aggregated as weighted averages using trial- and strategy-

specific weights and compared with the deviations from the 

predictions. 

For each ROI/Module pair, the averaged BOLD curve 

deviations are tested for correlation with the respective 

BOLD prediction computed from the ACT-R module 

activation (Anderson et al., 2008). The default parameters of 

the ACT-R BOLD module were used for this computation. 

Each time series consists of 400 data points. 

As the Pearson’s correlation coefficients were calculated 

independently for each experimental group, the resulting 

values were averaged among the experimental groups by 

using the Fisher-z transformation. Table 3 shows the final 

correlation results for each strategy separately for left and 

right brain hemispheres. If the correlation coefficient is 

higher than 0.098, the null hypothesis is rejected with 

𝛼 = 0.05. In this case, nearly all correlations between the 

BOLD signal in the ROI and the ACT-R module’s 

prediction can be considered statistically significant. This is 

due to the large 𝑁. The practical significance depends on the 

percentage of explained variance 𝑟2 ∙ 100. This is the basis 

of our discussions. 

 

Figure 3: Aggregation of BOLD curve per ROI and correlation test with ACT-R prediction 
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Table 3: Correlations between ACT-R predictions and ROI activities. Each module’s prediction has been tested for 

correlation with any of the regions from Table 1. Correlations marked with an asterisk are highest for the postulated mapping 

Discussion 

Correlations between the Aural Module’s predictions and 

left and right ROIs alike are high for every strategy. This 

might be expected, as the aural input is only available to 

each model for a short time, and thus the productions which 

perceive and encode that information fire at approximately 

the same time for all models.  

The same applies to the Visual Module. The visual 

presentation lasts 4.5 seconds. During this time span, any 

model will perceive and encode visual information. Models 

S2 (multi-threaded, both formulae) and S3 (single threaded, 

single formula) perform with the highest correlation here. 

Both models show the same behavior regarding response 

times. However, the visual module is more engaged in the 

S2 model, which examines both formulae. Correlation is 

also the highest for this model. 

The Manual Module’s predictions are higher for the left 

than for the right hemisphere. This was expected as all 

subjects responded with their right hand. All strategies 

except S4 (single-threaded, both formulae) have a moderate 

correlation coefficient. The moderate correlation is 

surprising, as models were matched to the participants’ 

BOLD signals according to their response time, which 

would suggest a higher correlation coefficient.  

The Procedural Module offers fair correlations for both 

hemispheres and all strategies, even if the correlations for 

S1 are somewhat lower than those for the other strategies. 

The correlations of the Declarative Module’s predictions are 

moderate for the left hemisphere and low for the right 

hemisphere. The higher prediction for the left Retrieval 

Module is in line with previous research showing a left 

hemispheric dominance for the retrieval of verbal 

information (Petrides Alivisatos, & Evans, 1995; 

McDermott, Buckner, Petersen, Kelley, and Sanders, 1999).  

The opposite is the case for the Imaginal Module’s 

prediction: These correlate better with the right than with 

the left hemisphere. The Goal Module’s correlation is 

negative in all cases.   

In general, the correlations are higher for the sensor 

modules, the Visual and Aural Modules. The internal 

modules, Procedural, Declarative, and Imaginal, show lower 

correlations alike. However, this cannot be ascribed to 

faulty assumptions in the modeling process, as they are still 

high when tested for significance. Rather, they suggest that 

participants may be occupied with other processes which the 

models do not account for. This could especially be the case 

as the experimental design provided large jitter times or 

delays, during which the participant remained inactive. This 

has also been observed by Danker and Anderson (2007).  

All of our models assume a single goal which is created at 

the beginning of a trial.  The negative correlation 

coefficients suggest that this assumption is wrong. Thus, the 

creation of sub-goals for individual tasks should be 

considered an alternative. A model using sub-goals would 

have a decreased performance and higher response times 

due to goal chunk creation costs. Using the Competing 

Strategies paradigm (Taatgen, Lebiere, & Anderson, 2006), 

the model would optimize performance by production rule 

learning. 

The models’ deficiencies are also evident from the scatter 

plots in Figure 4. These show predictions versus 

experimental evidence. Ideally, experimental evidence 

would increase with model predictions with little variance to 

the regression line, which would indicate similar peaks and 

depressions for both curves. This is clearly not the case for 

the Goal module on the right. Instead, both scatter plots 

show clustering on the prediction axis. This indicates 

monotonous activity patterns in the respective modules, 

which is due to the chunk loading and manipulation actions 

as implemented by the model.  

    
 

Figure 4: Scatter plots of predictions vs. evidence for S2 

Conclusion 

The correlations presented here are generally lower than in 

previous studies (Danker and Anderson, 2007). However, 

the experimental design, which does not account for 

functional separation, might contribute to that fact. For a 

Hemisphere Strategy Production Declarative Imaginal Visual Goal Manual Aural 

Left 

S1 0.458 0.365 0.258 0.525 -0.262 0.389 *0.691 

S2 0.489 0.402 0.259 *0.647 -0.267 0.403 *0.691 

S3 0.495 0.408 0.258 *0.617 -0.264 0.414 *0.692 

S4 0.489 0.414 0.246 *0.367 -0.265 0.194 *0.693 

Right 

S1 0.428 0.191 0.389 0.556 -0.218 -0.052 *0.659 

S2 0.438 0.220 0.397 *0.606 -0.218 -0.049 *0.660 

S3 0.450 0.216 0.389 *0.596 -0.218 -0.044 *0.659 

S4 0.432 0.231 0.397 0.295 -0.218 -0.065 *0.660 
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complex task which allows for a multitude of strategies to 

be pursued, many models may reproduce similar human 

behavior but do not predict the same BOLD curves. 

The ACT-R architecture features many free parameters 

which may be altered in order to fit the model to 

experimental data, even if this may seem contrary to the 

intention of a cognitive architecture (Taatgen & Anderson, 

2008).  Also, many different modeling paradigms exist 

which may be more or less appropriate to the task.  

Thus, three options arise for the continuation of our 

research. First, we could redesign our experiment in order to 

separate functionalities, which is the approach currently 

done by other research groups. Second, we could refine our 

models by using a modified internal representation such as 

sub-goal chunks. Third, we could define other ROIs and 

look for correlations there. 

So far, the second and third choices are being pursued by 

us. The second choice would also include the calibration of 

the modified model to the individual participant’s behavior 

by adjusting ACT-R’s parameters. This should have positive 

effect on BOLD prediction and signal correlations.  

Especially the third choice of defining alternative ROIs is 

of great importance. As can be seen in Table 1, Anderson’s 

brain mapping hypothesis covers only a very small portion 

of the brain. However, a review of imaging research 

attributes the functions of ACT-R’s modules to a much 

wider range of areas (Kaspera, 2010). Also, many of these 

regions seem to interact when performing a certain function, 

a phenomenon which the one-to-one mapping presented by 

Anderson cannot account for. 
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Abstract 
The change signal task is a two alternative forced choice task 
with the addition of a change signal presented on 1/3 of the 
trials at some delay relative to the initial stimulus. The change 
signal indicates to participants that they should inhibit their 
initial choice and respond with the other alternative. It 
provides an opportunity to examine the cognitive mechanisms 
involved in statistical learning and response inhibition. Within 
the task, change signal delays are associated with stimulus 
color, and are adjusted independently with a step function to 
produce high and low error conditions. Observed data show a 
significant difference in reaction times between these two 
conditions. In this paper we propose a model for the change 
signal task that leverages existing declarative memory 
mechanisms in ACT-R as a surrogate for the implicit 
contextual learning observed in human trials. We compare the 
mechanisms in this model briefly to an existing neural 
account, and use the model to predict the consequences of 
cue-conditional reversal. 

Keywords: response inhibition; statistical learning; 
declarative memory; ACT-R. 

Introduction 
Executive control of behavior is a defining component of 
high-level cognition. One aspect of executive control, 
response inhibition, has been explored extensively using the 
stop signal paradigm. The classic task from Logan and 
Cowan (1984) visually presented subjects with one of four 
letters, which the subjects then classified into groups by 
pressing one of two buttons. On 25% of the trials an audible 
tone signaled that they should inhibit their response. The 
probability of responding was related to the timing of the 
stop signal (with a greater chance of inhibition with shorter 
delays) and so the authors proposed a “horse race” model 
for resolving executive conflict. 

Brown and Braver (2005) extended the stop signal 
paradigm to assess error-likelihood effects. In their change 
signal task, a two alternative forced choice task is presented. 
On one third of the trials, however, a second stimulus is 
presented at some delay following the original stimulus. The 

second stimulus – the change signal – indicates to subjects 
that they should inhibit their response to the original 
stimulus and respond with the other alternative instead. To 
ensure a particular error rate in the task, the delay between 
the initial stimulus and the change signal is manipulated. 

In Brown and Braver (2005), two colors were used for the 
stimuli, each of which was associated with a different target 
error rate. They collected fMRI data from participants 
across the four stimulus conditions (i.e., Change versus No 
Change trials crossed with High versus Low error 
probability) to evaluate two alternative models of anterior 
cingulate cortex (ACC) function. The successful model, 
known as the error-likelihood model, correctly predicted a 
learned response in the ACC that was sensitive to the 
stimulus color (error rate condition), for both the “go” and 
“change” trials. 

The model presented in Brown and Braver (2005) was 
focused on understanding the role of the ACC in learning to 
recognize situations in which the risks of errors are high.  
Previous work suggested that the ACC detected actual 
errors (Dehaene et al., 1994) as well as conditions of 
response conflict (Botvinick et al., 2001).  The error 
likelihood model further suggested that the ACC activity 
warns of an impending error as a basis for implementing 
proactive control. 

There are other interesting aspects to the empirical data 
that are not addressed directly by Brown and Braver (2005). 
For instance, the model does not address the sequential 
behavior of participants in terms of their reaction times. In 
addition, the model does not explicitly account for 
differences in reaction times for the two different error 
conditions. These effects in the empirical data provide 
further evidence regarding the cognitive mechanisms 
involved in human performance on this task that will be 
explored in the current research. 

To better understand the mechanisms influencing human 
performance on the change signal task, we have created a 
complementary model that focuses on the detailed behavior 
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of participants. For instance, the data illustrate that the 
conditional learning predicted by the error-likelihood model 
(i.e., differences in ACC activation for High versus Low 
error conditions) has an impact on reactions times that 
unfolds over the course of many trials. We used the ACT-R 
(Anderson, 2007) computational cognitive architecture to 
model these results from Brown and Braver (2005) study. 
After we describe the model and results in detail, we discuss 
the distinct and complementary insights afforded by the 
modeling approach used here versus Brown and Braver 
(2005). 

The Task 
We reimplemented the original Brown and Braver change 
signal task in Lisp to accommodate integration with ACT-R. 
The only known differences include color choices, symbols 
presented, and response keys. Although these items were 
altered for implementation convenience, they have no 
bearing on model behavior or performance. The remaining 
description will focus on the task as presented to human 
subjects. Additional details regarding the task and 
instructions can be found in the supplementary materials 
from Brown and Braver (2005). 

A schematic of the change signal task is shown in Figure 
1. After a .5s blank inter-trial delay, subjects were presented 
with a cue stimulus in one of two colors. Unbeknownst to 
the subjects, the cue color represented either a high error 
rate condition or a low error rate condition. After one 
second, the cue was replaced with a similarly colored go 
signal—an arrow pointing either right or left. The subjects 
were instructed to respond to the go signal by pressing the 
corresponding right or left arrow key on the keyboard.  

On one third of the trials, a larger arrow pointing in the 
opposite direction of the go signal appeared after a change 
stimulus delay (CSD). (Again, the coloring was consistent 
with the error rate condition.) In this case, subjects were 
instructed to inhibit their initial response to the go signal, 
and instead respond to the “change signal.” A response 
ended the trial, which progressed directly to a blank screen 
and the inter-trial delay. No feedback was presented. If the 
subject failed to respond within one second after the go 
signal appeared, the trial timed out.  

The high and low error rate conditions were bound to 
unique CSDs, which were adjusted independently using a 
step function to maintain a consistent error rate defined for 
each condition. In both error rate conditions, CSDs were 
constrained to a range of 20 to 800ms and incorrect 
responses reduced the CSD by 50ms. In the low error rate 
condition, correct responses led to a 2ms increase in the 
CSD, while in the high error rate condition the CSD 
increased by 50ms when a correct response was made. 
These adjustments were made to motivate a 4% error rate, 
and a 50% error rate, respectively. Responses made prior to 
the presentation of the change stimulus were considered 
errors. 

The original experiment used five blocks with 
approximately 107 trials each, although the trial count 

varied slightly across subjects. Our task fixed this number to 
107, and the direction of the go signals and error rate 
conditions was randomized and counterbalanced within 
each block as best as possible. Stimulus colors were 
consistent with the error rate condition in all blocks except 
the last. For the final block, the relationship between stimuli 
colors and error rate conditions was reversed. 
 

 
Figure 1: Task schematic. A cue signal is presented in one 

of two colors, followed by a go signal 1 second later. There 
is a 33% chance that a subsequent change signal will be 

presented, the timing of which is determined by a change 
stimulus delay bound to the signal color. 

 

Human Performance 
Figure 2 shows aggregate reaction times across trials 
collapsed across subjects and conditions. The solid line 
represents the central tendency as predicted by a simple 
linear regression of a logarithmic model, although the 
regression is intentionally discontinuous at the start of the 
reversal block, indicated by the grey area. The subjects 
performed more slowly across trials until they reach an 
asymptote. The regression model coefficient affecting the 
rise and asymptote of the curve is significantly greater than 
zero for the normal trials (p < .001), and not significant for 
the reversal block. This suggests that there are not enough 
reversal block trials to reveal an effect, if there is one. 

Time on task effects may account for some of the 
performance decline (e.g., Gunzelmann, G., Moore, L. R., 
Gluck, K. A., Van Dongen, H. P. A., & Dinges, D. F., 
2010), but we believe that the more influential factor is that 
subjects were strategically hedging their responses to 
improve their odds of successfully responding to change 
signals. (Of course, such a strategy is futile in this 
experiment because the CSDs were adjusted to encourage a 
consistent error rate.) Evidence for strategic hedging 
becomes apparent when we examine reaction times for each 
condition, also shown in Figure 2. The dashed line shows 
the central tendency for the high error rate condition, and 
the dotted line shows the central tendency for the low error 
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rate condition. Again, the regression is intentionally 
discontinuous at the start of the reversal block. 

Not surprisingly, the statistics for the two error rate 
conditions match those of the collapsed data, with highly 
significant coefficients for the normal blocks (p < .001) and 
insignificant coefficients for the reversal block. The 
confidence intervals for the normal block coefficients, 
however, are more interesting because they do not overlap. 
(17.8 < Ahigh < 27.7, and 3.0 < Alow < 11.2) The significant 
difference between these coefficients suggests a relationship 
between stimulus color and reaction time. In other words, 
over the duration of the experiment, subjects learn to delay 
their response more for the high error rate condition than for 
the low error rate condition. A simple time on task effect 
would not produce a disparate hedge times across error rate 
conditions.  

 

 
Figure 2: Reaction times collapsed across conditions are 

shown in the grey scatterplot, with the central tendency 
shown as a solid black line. Central tendencies for the high 
and low error conditions are shown as dashed and dotted 

lines, respectively. The central tendencies, generated 
through regressions, are discontinuous at the start of the 

reversal block, shown in grey. 
 

The Model 
The ACT-R 6 (Anderson, 2007) cognitive architecture 
provides the computational framework for our model. It 
integrates perceptual, cognitive, and motor processing 
mechanisms from the psychological literature. At its core, it 
is a symbolic production system with a semantic network 
memory and simulated subsymbolic effects. Specifically, 
our model leverages the procedural and declarative 
capabilities, the intentional module, and a timing capability 
derived from a temporal module (Taatgen, Van Rijn, & 
Anderson, 2007).  

The empirical data from Brown and Braver (2005) 
demonstrate that subjects implicitly learned the association 
of stimulus color to error rate condition. In this paper, we 
show that this learning measurably influenced subject 
performance—their response times were strategically 

mediated by stimulus color. Out of several possible 
approaches to model this in ACT-R, we chose to use the 
declarative module to emulate the statistical learning 
attributed to the ACC.  

From the perspective of the ACT-R theory, the 
declarative module is not intended to represent the 
functional properties of the ACC (see Anderson, 2007), but 
it does provide the appropriate Bayesian dynamics to 
represent the learning we hypothesize may be involved. 
Thus, we treat the declarative module as a surrogate for the 
ACC functionality that is not represented by existing 
mechanisms in ACT-R. This absent functionality would 
appear to appropriately reside within ACT-R’s intentional 
module, which is associated, in part, with ACC function 
(Anderson, 2007). 

The model employs a simple hedging strategy to 
accomplish the task. Upon attending to a cue, it attempts to 
retrieve a similar trial from declarative memory based on the 
cue color. When the subsequent go signal is attended, the 
model does not respond immediately. Instead, it waits 
according to a remembered “hedge time” from the trial that 
was retrieved from declarative memory. If no similar trial 
exists (i.e., nothing was retrieved), a default initial hedge 
time is used, which is a free parameter discussed below. If a 
change signal is seen prior to the expiration of the hedge 
time, a response is made accordingly. If no change signal is 
seen and the hedge time expires, the model responds to the 
go signal. 

Even when the model responds to the go signal, the key 
press does not occur immediately. Instead, the ACT-R 
motor module initiates a 3-phase motor movement that can 
take well over 100 milliseconds before the actual key press 
is registered by the task (Byrne & Anderson, 2001). During 
this time, the model can detect a change signal, although it 
is too late to cancel the requested motor action. The model 
learns from its failure by associating the CSD with the color 
for that trial in its goal buffer of the intentional module.  
This timing information is based upon estimates from the 
temporal module (Taatgen et al., 2007).  

At the start of the next trial, the contents of the goal 
buffer, which includes the association between the stimulus 
color and hedge time, is stored in declarative memory to 
serve as an exemplar for future trials. Because detected 
errors typically associated a longer hedge time than what 
was originally retrieved, they have the effect of increasing 
future hedge times (Rabbitt, 1966). As currently written, the 
model has no specific mechanism to reduce hedge times. 

Without a mechanism to reduce hedge times, it might 
seem that model response times would always increase and 
never asymptote.  Indeed, sharp increases in hedge times do 
occur in early trials.  However, because each stimulus color 
/ hedge time pairing is stored as an independent chunk (i.e. 
there is no merging) the likelihood of retrieving a particular 
hedge time increases the more often it is used, in part due to 
the influence of stochasticity in declarative memory.  After 
a large number of trials, the declarative memory becomes so 
saturated with hedge times associated with each stimulus 
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color, that the model’s hedging essentially reaches a steady 
state. 

Three parameters were involved with fitting the model to 
observed data. The first is the initial hedge time, which we 
believe was established either through practice trials or as a 
side effect of instructions that informed subjects of delayed 
change signals. This has the simple effect of moving the y-
intercept in Figure 3. 

The second free parameter was activation noise, which 
reflects the effect of subsymbolic processes in the 
declarative memory system. Noise influences the likelihood 
that recent and correct declarative information will be 
retrieved. In terms of the curve in Figure 2, noise affects the 
overall shape—higher noise flattens it out. In ACT-R, 
activation noise is set with the ans parameter, for which we 
settled on a value of .53. This produces a standard deviation 
of .96 in the distribution of noise that is sampled to add 
stochasticity to the activation of declarative memories. 

Lastly, the ACT-R declarative memory system allows for 
errors of commition through a mechanism called partial 
matching. We used this mechanism so that the model would 
be indifferent to stimulus colors in early trials and develop a 
differentiation in later trials. The mechanism requires us to 
specify a degree of similarity between stimulus colors, 
which we set to 50%. We did not use this as a free 
parameter in the fitting processes because the other 
parameters provided the necessary degrees of freedom. 

Results 
Using the parameter values described above, we 

aggregated the results from 100 model runs to obtain 
reliable measures of central tendency. A comparison of 
reaction times between model and human data are shown in 
Figure 3. Because a large amount of stochasticity still 
remains even after aggregation, the model results are 
represented using linear regressions of a logarithmic model 
in the same way the human data is shown. (The standard 
deviation is considered as a separate measure of fitness 
below.) 

 
Figure 3: ACT-R model results are shown as dashed lines 

on top of the human data shown as black lines. 

The RMSD values calculated from the model and human 
reaction time data are shown in Table 1. The overall mean 
RMSD was 58.5ms, which seems reasonable given that 
some of the deviation is a result of remaining stochasticity 
in the model and human data.  

 
Table 1: RMSD values between model and human data. 

 
Condition / Block RMSD (ms) 
High Error / Normal 51.6 
High Error / Reverse 48.8 
Low Error / Normal 74.3 
Low Error /Reverse 59.1 

 
The high stochasticity suggests that the standard deviation 

of the reaction time is another important measure of fitness 
(non-responses were removed for this analysis). Figure 4 
overlays model performance on top of a box plot of the 
subject data. The model’s standard deviation was in the 
middle of the 1st quartile for the subject data. This could be 
improved by increasing noise in other areas of ACT-R, but 
we opted against doing so in the interest of parsimony. 

 

  
Figure 4: ACT-R model standard deviation, error 

proportion, and non-responses overlaid on subject data. The 
hollow diamonds indicate ACT-R values. 

 
The proportion of incorrect responses made was also a 

consideration. For purposes of this analysis, an incorrect 
response occurs when the subject presses the wrong arrow 
key, regardless of condition. Since a response is actually 
made, this does not included non-responses, which are 
analyzed separately below. Also shown in Figure 4, the 
results were within the range of humans, although on the 
high side. 

The remaining measure of fitness is the proportion of 
non-responses. A non-response occurs when the model fails 
to respond to a go signal within 1 second. The temporal 
module in ACT-R adds some stochasticity to the timing so 
this can occur even if the intended hedge time is within the 
trial period. Again, the non-responses were well within the 
human range (see Figure 4), but on the low side of the 
second quartile.  As was the case with standard deviation, 
this could be improved if we allowed the model another 
degree of freedom.  

Finally, fMRI studies, including the Brown and Braver 
(2005) work, often use a blood oxygenation level-dependent 
(BOLD) contrast mechanism. With this technique, regions 
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of the brain with higher blood oxygenation appear more 
intensely on images, which indicates greater neural activity.  
ACT-R uses buffer activity to make BOLD predictions 
(Anderson, Bothell, Byrne, Douglass, Lebiere, & Qin, 
2004), as shown in Figure 5. In this figure, ACT-R makes 
BOLD predictions for the ACC region based on activity in 
the goal buffer of the intentional module.  To produce this 
graph, the inter-trial delay was extended to 10 seconds to 
isolate responses.  Data was aggregated from 12 normal 
blocks of 107 trials. 
 

 
Figure 5: ACT-R BOLD predictions for the ACC region 

in each of the four conditions. 
 

 

Discussion 
As modelers, we often confront (and perhaps carry our 

own) biases related to specific modeling approaches, 
whether it be production level architectures like ACT-R, 
connectionist approaches like the error likelihood model, 
diffusion models, dynamic systems, or others (Anderson & 
Lebiere, 2003). This is unfortunate, because as this research 
demonstrates, each methodology maintains distinct 
advantages as well as disadvantages that may be overcome 
using a variety of techniques. Specifically, the error 
likelihood model makes detailed predictions about 
neurological processes in the ACC beyond the current scope 
of ACT-R. However, ACT-R brings to the table a 
generalized account of end-to-end perceptual-cognitive 
activity, which can reproduce observed behavior.  

If we accept that both models contain elements of truth, 
there must be some functional overlap despite the differing 
levels of abstraction. Recent work on the theory of ACT-R 
has focused on mapping functionality to specific brain 
regions (e.g., Anderson, Bothell, Byrne, Douglass, Lebiere, 
& Qin, 2004). Specifically, the ACC is attributed to the 
ACT-R intentional module, which includes the goal buffer 
(Anderson, 2007). The goal buffer typically maintains the 
internal and relevant external information required to make 
decisions. This is intended to include the conflict resolution 

typically attributed to the ACC, but it is a functionally 
broader interpretation. 

In our change signal model, the goal buffer contains the 
stimulus color and hedge time, among other state 
information. The current implementation of ACT-R 
provides no functional computation in the intentional 
module, so the statistical learning demonstrated by the error 
likelihood model involves knowledge maintained in the 
declarative module, which acts as a surrogate. Our position 
that the declarative memory acts as a surrogate is largely 
based on that fact that many subjects were unable to 
explicitly distinguish the difference between stimulus colors 
in terms of their pairing with error likelihood even after the 
experiment.  

This is not a firm position, and we are planning a follow-
up study to guide our modeling direction. A more detailed 
participant debriefing will help determine the degree of 
declarative learning and influence on behavior.  The results 
may suggest that the declarative component is more than 
just a surrogate—perhaps the ACC activity is 
epiphenomenal to declarative function. On the other hand, it 
may be confirmed that there is little relation between 
declarative knowledge and subject behavior with respect to 
high and low error conditions. In this case, the model may 
evolve towards a bottom-up learning approach, perhaps 
though augmenting the intentional module in ACT-R or 
focusing on a procedural learning approach.  

In the mean time, the declarative module provides a 
reasonable proxy for ACC function because it employs a 
similar statistical learning process. Because the information 
managed in declarative memory relates stimulus color and 
hedge times, greater activity occurs when change signal 
errors are detected. This is reflected in the goal buffer, 
which results in higher predicted BOLD responses in ACT-
R. Furthermore, because errors are detected 3x more often 
in the high error rate change condition, its mean BOLD 
response will rise above all other conditions. This is 
supported in Figure 5. 

The ACC BOLD responses recorded in the Brown and 
Braver (2005) study aligns with some, but not all, of the 
ACT-R predictions.  Specifically, the high error change 
condition shows the highest activation, followed by low 
error change and high error go conditions which are 
essentially tied.   

The low error rate go condition is a significant 
divergence, as the BOLD response show that the activation 
is clearly lower than the other conditions in that region. 
Unfortunately this was one of the key findings that 
distinguished the error likelihood model from the alternative 
“conflict” model. The current ACT-R model does not 
produce a similar prediction because extra goal 
manipulation only occurs when errors are detected in 
change conditions. One could argue that this is a response to 
the statistical learning that was delegated to the declarative 
memory system in our model. In this regard, the ACT-R 
model stands in contrast with the Brown and Braver (2005) 
model, which predicted greater fMRI activity in ACC for 
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high vs. low error likelihood trials, even when restricted to 
correct trials with no change signal. Nevertheless, if the 
hedge time in the declarative memory were to increase the 
simulated fMRI activity, then our model might be able to 
simulate an error likelihood effect in ACC activity.  

Finally, with an ACT-R model of the change signal task 
performing reasonably well, we have an opportunity to 
make a prediction. The reversal block in the observed 
human data had surprisingly little effect, and the ACT-R 
model produced similar results. By extending the number of 
reversal blocks, we can predict how many trials will be 
required to see an effect, and what that effect might be.  

The predicted results of 24 reversal blocks are shown in 
Figure 6. As mentioned previously, the model does not 
currently have a mechanism to reduce hedge times. Both 
conditions achieve a steady state at their asymptotes through 
a combination of accumulated statistical evidence and 
retrieval noise. Even when failures to respond to change 
signals are detected and increased hedge times remembered, 
noise in the declarative retrieval process makes it unlikely 
that the latest trial information will be retrieved over the 
large number of older, lower trial hedge times available. 

Without this statistical influence, the low error rate 
condition would never achieve an asymptote below the high 
error condition without a mechanism to hedge downward. 
This also provides an explanation for the predictions in 
Figure 6, which continue on the same trajectory as the 
normal block. In contrast, the error likelihood model of 
Brown and Braver (2005) would predict that over time, the 
ACC will learn the reversed error likelihood pairings, 
leading to a reversal of error likelihood effects on reaction 
time. Although our current data is insufficient to make 
concrete statements about which prediction is correct, our 
follow-up study will extend the number of reversal blocks 
with hopes to allow such a test.  Once again, this will help 
inform future model development. 

 

 
 
Figure 6: ACT-R model prediction of color reversal over 

24 blocks, shown in the grey region.  
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Abstract

Iterated decision making can be studied in laboratory using sit-
uations, like the Iowa Gambling Task (IGT), in which partici-
pants face repeatedly the same decision problem getting feed-
back after each choice. In the paper we focus on a recurring
finding in experiments carried out with the IGT, the frequency
of the contingent event effect—i.e., the fact that people consis-
tently prefer options associated with rare losses, independently
of their attractiveness, expected value and loss magnitude—
that has not yet received a satisfactory explanation. An ex-
periment reveals that the effect relies on simply experiencing
rewards and punishments, not being influenced by the net out-
come (loss or win) to which they are associated, and a compu-
tational model, implemented in the ACT-R cognitive architec-
ture, corroborates the idea that punishments and losses on one
hand, and rewards and wins on the other, play the same func-
tional role in determining the participants’ behavior in IGT.
Keywords: Iterated decision making; Reinforcement learning;
Iowa Gambling Task; ACT-R; Feedback.

Introduction
Iterated decision making relies on the regulation of behav-
ior according to its consequences. This process is character-
ized by three steps (Ahn, Busemeyer, Wagenmakers, & Stout,
2008): (1) the choice of a possible option and the execution
of the associated action, (2) the encoding of the action conse-
quences, (3) the integration of the consequences in a format
that allows options comparison. Iterated decision making can
be simulated in laboratory using the so-called multi-armed
bandit tasks (Sutton & Barto, 1998) in which participants
face repeatedly the same decision problem and get a numeri-
cal reward after each choice. Behavior in multi-armed bandit
tasks is usually modeled by Reinforcement Learning models
in which agents, requested to maximize their expected total
reward over a given number of trials, learn about the struc-
ture of the environment by taking into account the reward as-
sociated with each choice. In the paper we will adopt Rein-
forcement Learning to explain the results obtained in a par-
ticular multi-armed bandit task, the Iowa Gambling Task—
henceforth, IGT (Bechara, Damasio, Damasio, & Anderson,
1994). Our models will be based on the ACT-R cognitive ar-
chitecture (Anderson, 2007) which provides the resources for
the steps (1) and (3) of the decision making process described
above, and we try to figure out how step (2) is carried out.

The IGT has been proposed as a simulation of real life de-
cision making in the way it factors reward, punishment and
outcome uncertainty (Bechara et al., 1994). The IGT in-
volves four decks of cards. Participants repeatedly choose
a card at a time from one of the decks. Each time a card is
turned, it allows participants to gain a given amount of money,

but sometimes the card forces them to give up some money,
too; therefore, while all cards contain a reward, only some
cards contain a punishment. Two card decks (let’s call them
A and B) feature high wins per card ($100) but they yield
also higher losses so that, by choosing them, participants lose
more money than they win. These decks are referred to as
“bad decks”. The remaining decks (C and D) give rise to
small gains ($50) but even smaller losses, so that it is prof-
itable to choose cards from them. These decks are referred to
as “good decks”. Generally participants, after being initially
attracted by the dangerous bad decks featuring high wins and
higher losses, gradually shift their preferences toward the
good ones, a result which has been replicated by most IGT
studies (Dunn, Dalgleish, & Lawrence, 2006). So, accord-
ing to the standard interpretation, participants’ behavior can
be explained by a conflict between two deck features: their
attractiveness, i. e., the amount of money each cards allows
immediately to win—which drives the participants choices in
the first trials—and the long term expected value, i. e., the net
amount of money gained or lost— which drives them in the
subsequent trials.

In recent years a growing number of researchers have been
suggesting that this interpretation of the IGT is unsatisfac-
tory (see Dunn et al. (2006) for a critical review of the lit-
erature). In the present paper we will focus on a recurring
finding in the experiments carried out with the IGT which has
not yet received a satisfactory explanation. This finding has
been termed the “frequency of the contingent event effect”
by Fum, Napoli, and Stocco (2008) and the “prominent deck
B phenomenon” by Chiu et al. (2008) and refers to the fact
that people consistently prefer the decks associated with rare
losses—to the point that the bad-but-rare-loss deck B which
gives raise to a small number of losses is consistently pre-
ferred to the good-but-frequent-loss deck C—independently
of their attractiveness, expected value and loss magnitude.
Even if the theoretical interpretations of the phenomenon put
forward by the two research groups are similar, they differ in
some important details.

Frequency of the contingent event

Traditionally, the performance in the IGT has been recorded
by subtracting the number of bad deck selections from the
good ones (the so-called Good−Bad index). In the original
version of the IGT (see Table 1), for every block of ten cards,
decks A and C originate five money losses while decks B and
D give rise to only one.
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Table 1: Deck matrices of the original Iowa Gambling Task

Card A B C D
# Rew Pun Rew Pun Rew Pun Rew Pun
1 +100 0 +100 0 +50 0 +50 0
2 +100 0 +100 0 +50 0 +50 0
3 +100 -150 +100 0 +50 -25 +50 0
4 +100 0 +100 0 +50 0 +50 0
5 +100 -300 +100 0 +50 -75 +50 0
6 +100 0 +100 0 +50 0 +50 0
7 +100 -200 +100 0 +50 -25 +50 0
8 +100 0 +100 0 +50 0 +50 0
9 +100 -250 +100 -1250 +50 -75 +50 -250
10 +100 -350 +100 0 +50 -50 +50 0
EV Bad Bad Good Good

Rew: Reward. Pun: Punishment. EV: Expected Value. Pun-
ishments which do not result in a net loss are evidenced in
gray.

Because A and B are the bad decks and C and D are the
good ones, any possible effect of the number of losses is con-
founded with that of the deck quality, as expressed by their
expected value. In recent years researchers have started to
present the analytical data for each deck and evidence has
been growing about the “frequency effect”, i.e. the functional
role that the frequency of money losses could play in addic-
tion (or in opposition) to the effects of decks’ attractiveness
and expected value.

To understand which deck features exert the most impor-
tant effect on IGT, Fum et al. (2008) manipulated the decks
pay-off matrices in three different experimental conditions.
In all the conditions the decks attractiveness and the loss fre-
quency were kept the same as in the original IGT, while their
expected values were manipulated. The first condition repli-
cated the setting of the original IGT. In the second condi-
tion the expected value of the decks was zeroed, so that the
amount of money participants were expected to win in the
long run for each deck was identical to that they were ex-
pected to lose. In the third condition the two decks with fre-
quent punishments (A and C) were good while the decks with
less frequent punishments (B and D) were the bad ones; in
this case loss frequency and expected value were put in oppo-
sition for each deck.

Two findings were particularly significant: (1) the num-
ber of selections from each deck was almost the same in all
the conditions, and (2) participants showed a strong prefer-
ence for the low frequency loss decks, even in the condi-
tion in which these decks were bad. In the same study, the
IGT task was carried out in a scenario in which participants
always lost money when they turned a card while the con-
tingent event was represented by a win, a variant originally
developed by Bechara, Tranel, and Damasio (2000). Simi-
lar results were obtained with the same pattern of choices in
all the conditions and a strong preference for the decks orig-
inating a higher number of wins. The fact that participants

chose the same number of cards from all decks despite the
change in their expected value means that this feature plays a
small or no functional role in determining their choices. The
fact that participants preferred the decks with a small num-
ber of losses (or those with a high number of wins) means
that the frequency effect is both independent from and much
stronger than the effect of the other two features. This effect
was termed “the contingent event effect”.

An important empirical finding remains, however, unex-
plained by the contingent event effect and it is constituted by
the fact that, when this effect is confounded with that of the
expected value, a preference for the economically advanta-
geous decks (a “goodness” effect) is normally found which
indicates that the frequency of the contingent event cannot
cover the whole story in the IGT. Stocco, Fum, and Napoli
(2009) hold the idea that participants’ behavior in this task
is guided by a dual process. The first one is a low-level
emotion-based mechanism which is sensitive to punishment
(or reward) frequency, while the second one, high-level and
based on the analysis of the monetary outcomes, is sensitive
to the decks’ expected value. Even if the former is normally
the most important factor in guiding participants’ choices, the
latter may sometimes enter into play being responsible for the
goodness effect.

A different explanation for the goodness effect which de-
valuates the deck’s expected value has been put forward by
Chiu et al. (2008). In order to understand their proposal it
is necessary, however, to introduce some terminological dis-
tinctions.

From now on, we will discriminate between a punishment
and a loss, on one hand, and between a reward and a gain, on
the other. A punishment is an event that happens every time
participants turn a card that makes them give away money.
So, for example (see Table 1), in card #3 of deck C, after
having earned $50 you are forced to give $25 back, and this
is a punishment. A loss is a particular kind of punishment in
which the amount of money lost is higher than that won; so, in
card #3 of deck A, you win $100 but you are forced to refund
$150, and this constitues a loss. All losses are therefore pun-
ishments, but not vice versa. In the same vein, in the variant
IGT in which every card turn makes you lose some money, a
reward is a contingent event in which you earn some money
while a gain is a reward in which the amount of money gained
is higher than that lost.

Chiu et al. (2008) argue that the process driving partici-
pants’ behavior in the IGT is sensitive to loss (in the sense
we have just defined) frequency. Some cards in deck C (evi-
denced in gray in Table 1) present a punishment which is not a
loss, as for example the card (+$50, -$25), whose outcome is
a net gain of $25. Every block of 10 cards, deck C contains on
average 6.25 gains, 2.5 standoffs and 1.25 losses, deck D con-
tains 9 gains and 1 loss, deck A contains 5 gains and 5 losses,
and deck B contains 9 gains and 1 loss. Therefore, taken
together, the good decks (C and D) present a total of 15.25
gains, 2.5 standoffs and 2.25 losses, whereas the bad decks
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(A and B) present 14 gains and 6 losses. According to Chiu
et al. (2008), the lower number of losses in the good decks
explains the participants’ preference for them. These authors
also propose their own version of the IGT, the Soochow Gam-
bling Task (henceforth, SGT), in which every punishment is
always a loss, thus eliminating the “ambiguous” Deck C. In
SGT the bad decks have a high number of wins, while the
good decks have a high number of losses. Results show that
participants choose more cards from the former than from the
latter type of decks, and this corroborates the idea that their
behavior is more sensitive to losses than to expected value.

The proposals of the two research groups differ in two re-
spects: the first one is that Fum et al. (2008) assume that par-
ticipants avoid all kind of punishments, while according to
Chiu et al. (2008) they avoid only punishments which result
in a net loss. The second, which is strictly tied to the first, is
that according to Stocco et al. (2009), the goodness effect is
due to an understanding of the decks’ expected value, while
according to Chiu et al. (2008) the goodness effect is due to
the lower number of losses in the deck C. In this paper we
present an experiment which tries to distinguish between the
two proposals by addressing the (possible) different effects of
punishments and losses.

The Experiment
A first idea for discriminating between the above mentioned
positions is to compare the choices made from two different
kind of decks that, while sharing the same expected value,
provide the same number of punishments but a different num-
ber of losses. So, the first deck should give rise to a given
number of losses (which are all punishments) while the sec-
ond should originate the same number of punishments of
which, however, only some are losses. According to Chiu et
al. (2008), participants should prefer the latter kind of deck
while, according to Fum et al. (2008), participants should
choose the same number of cards from the two decks.

A second way of discriminating between the hypotheses
would take into account the specific format of the information
provided during the experiment, i.e., the feedback received
after each choice. In the original IGT, participants received
a “double feedback” stating separately the amount of money
provided by the default and the contingent event (which could
be possibly null). In a “single feedback” task (such as the
SGT) each card turn informs only about the net amount of
money lost or gained. According to Chiu et al. (2008), par-
ticipants should exhibit the same pattern of choices both in
a Single and in a Double feedback task, while, according to
Fum et al. (2008), participants should modify their behavior
whenever the manipulation changes the number of punish-
ments in one or more decks.

In the experiment we contrasted the participants’ behavior
in a variant of the IGT featuring both a Double feedback and
a Single feedback condition. In the Double condition all the
decks (A, B, C and D) provided the same punishment fre-
quency (5 every 10 cards), but for two of the decks (A and C)

all the punishments were losses (giving thus 5 losses every 5
punishments) while the remaining decks (B and D) provided
only 1 loss every 5 punishments (see Table 2).

Table 2: Deck matrices of the Double Feedback - Standard
Frame condition.

Card A B C D
# Rew Pun Rew Pun Rew Pun Rew Pun
1 +90 0 +90 0 +90 0 +90 0
2 +110 -300 +110 -25 +110 -125 +110 -25
3 +120 -250 +120 -1050 +120 -175 +120 -550
4 +90 0 +90 0 +90 0 +90 0
5 +100 -250 +100 -50 +100 -150 +100 -50
6 +110 0 +110 0 +110 0 +110 0
7 +120 -150 +120 -50 +120 -150 +120 -50
8 +100 0 +100 0 +100 0 +100 0
9 +80 0 +80 0 +80 0 +80 0
10 +80 -300 +80 -75 +80 -150 +80 -75
EV Bad Bad Good Good

Rew: Reward. Pun: Punishment. EV: Expected Value. Pun-
ishments which do not result in a loss are evidenced in gray.

In the Single condition we used the same pay-off matrices
of the Double condition but we presented participants only
the net amount of money won or lost. This resulted in a dif-
ferent effect for the punishment cards which were losses and
those which were not. In fact, a card such as (+$100, -$75)
in the Double condition would become a (+$25) card in the
Single one, thus resulting in a non-loss card. On the other
hand, a card such as (+$100, -$300) would become a (-$200)
card in the Single condition, giving thus rise to a net loss. As
a result, decks B and D, which presented 1 loss every 5 pun-
ishments in the Double condition, had 1 loss every 10 cards
in the Single condition, while the decks C and D, which had
5 losses every 5 punishments in the Double condition, pre-
sented 5 losses every 10 cards in the Single condition (see
Table 3).

To control for the other features, all decks had the same
attractiveness, so participants gained on average $100 every
time they turned a card. The expected value was balanced
instead: there was one good deck and one bad deck among
the ones with high loss frequency, and one good deck and
one bad deck among the ones with low loss frequency.

We ran both feedback conditions in two different frames:
a Standard condition, which we just described and in which
each card turn originated as default event a win and the con-
tingent event was represented by punishments as in the orig-
inal IGT scenario presented in Bechara et al. (1994), and a
Reversed condition, in which participants always got a pun-
ishment when they turned a card and the contingent event was
represented by rewards, as in Bechara et al. (2000). In the Re-
versed condition all the decks had the same reward frequency
but differed in the number of gains; the effect of attractive-
ness and expected value was controlled in the same way as in
the Standard condition.
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Table 3: Deck matrices of the Single Feedback - Standard
Frame condition.

Card A B C D
# Payoff Payoff Payoff Payoff
1 +90 +90 +90 +90
2 -190 +85 -15 +85
3 -130 -930 -55 -430
4 +90 +90 +90 +90
5 -150 +50 -50 +50
6 +110 +110 +110 +110
7 -30 +70 -30 +70
8 +100 +100 +100 +100
9 +80 +80 +80 +80

10 -220 +5 -70 +5
EV Bad Bad Good Good

Please note that the “Payoff” column results from the sum of
“Reward” and “Punishment” columns of Table 2.

Method

Participants. Eighty-eight participants (40 males) were re-
cruited from students enrolled at the University of Trieste,
in Italy. They were aged between 19 and 28 years (M= 19.9,
SD= 3.7). The participants were randomly assigned to the ex-
perimental conditions. We excluded from the analyses those
participants who, in some condition, turned a number of cards
from a deck that differed by 3 SDs, or more, from the aver-
age number of choices made for that deck. Eight participants
satisfied this criterion and were discarded.

Experimental Design. The experiment followed a 2x2 be-
tween subjects design with Feedback (Single vs. Double) and
Frame (Standard vs. Reversed) as main factors.

Materials. Deck features are summarized in Table 2 and Ta-
ble 3. Note that in all the conditions A and B were the bad
decks while C and D were the good ones, and that B and D
were those decks in which a possible frequency effect should
show up since they provided low-frequency losses in the Stan-
dard condition and high-frequency gains in the Reversed con-
dition.

Procedure. Experimental sessions were held individually.
Participants played a computer-based implementation of the
IGT. Decks were visually presented in the lower part of a
15 in LCD screen, and participants used a mouse to point
and select the deck they had chosen. Immediately after each
card selection, the amount of money obtained through the de-
fault event (and possibly through the contingent one) was dis-
played in the upper half of the screen. The running total of
money was coarsely indicated by a colored bar in the upper-
most part of the screen that was updated after each selection.
In each experimental condition participants had to perform
100 card selections.

Results and Discussion
Table 4 reports the average number of choices made from
each deck in the different experimental conditions.

Table 4: Means (and Standard Deviations) of deck choices in
the four experimental conditions.

Deck
Condition A B C D

Double-Reversed 21.06 22.94 26.71 29.29
(7.99) (5.03) (9.3) (9.48)

Double-Standard 22.45 23.65 23.35 28.55
(8.18) (9.33) (9.68) (12.56)

Single-Reversed 19.59 25.86 24.18 30.36
(5.82) (8.08) (10.03) 10.57)

Single-Standard 17.62 28.95 19.57 33.86
(6.4) (12.24) (6.87) (13.24)

We analyzed the participant’s performance on two syn-
thetic indices: P, which measures the tendency to choose
according to the expected value and is calculated by
(C+D)−(A+B), and Q, which measures the tendency to
choose according to the frequency of the contingent event.
Q is calculated by (B+D)−(A+C) and it measures the prefer-
ence for decks with low loss frequency in the Standard con-
dition and decks with high gain frequency in the Reversed
condition (see: Stocco et al. (2009)). We monitored the par-
ticipants’ behavior throughout the experiment by analyzing
the two indices in successive blocks of 20 choices each. We
ran a mixed design ANOVA both on P and Q, using Feedback
(Single vs. Double) and Frame (Standard vs. Reversed) as
between factors, and Blocks (from 1-20 to 81-100) as within
factors.

As for P, the ANOVA didn’t reveal any significant differ-
ence for the two factors nor for the blocks. The interaction
between Blocks and Feedback resulted marginally significant
(F(4,304)=2.39, p=0.51) and was caused by the low number
of selections from good decks in the first block made by par-
ticipants in the Single condition in comparison to those in the
Double one. Since there was no main effect of any factor, we
collapsed the value of P at the end of the experiment across
all conditions. A t-test on this value revealed that participants
chose more cards from the good decks than from the bad ones
(M=8.8, t(79)=3.44, p<.001).

As for Q, the effect of Feedback (F(1,76)=8.15, p<.01), of
Blocks (F(4,304)=4.72, p<.01) and the Blocks x Frame inter-
action (F(4,304)=3.6, p<.01) resulted statistically significant,
while the Blocks x Feedback interaction was only marginally
significant (F(4,304)=2.1, p =.081). We also performed two t-
tests on the value of Q at the end of the experiment separately
for the Single and Double Feedback conditions collapsing the
Standard and Reversed Frame. The results were significant
for the Single condition (M=18.89, t(42)=5.32, p<.0001) but
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not for the Double condition (M=4.43, t(36)=1.19, p=.24).
The analyses show thus that there was a frequency effect

only in the Single condition but not in the Double one. As
explained in the previous section, according to Chiu et al.
(2008), participants were expected to be influenced by the
frequency of the contingent event in both cases, while accord-
ing to Fum et al. (2008) the effect should only be present in
the Single feedback. The results support our hypothesis that
participants try to avoid all kind of punishments and not just
the ones which result in a net loss (and are sensible to any re-
ward and not only to wins). Because the matrices of the decks
in the Single feedback condition were obtained directly from
those used in the Double one, this result cannot be attributed
to possible different values employed in the two conditions.
On the other hand, because the SGT did not directly contrast
Single vs. Double feedback, the results obtained by Chiu et
al. (2008) could depend critically on the specific values used
in their matrices. This experiment also suggests that partic-
ipants, being sensible to the difference between Single and
Double feedback, take separately into account the value of
both the default and contingent event and do not rely only on
the net value of each trial.

The analyses, by highlighting a goodness effect in all the
conditions, show that participants are somehow sensible to
the expected value of the decks, too. However, if they had re-
ally understood which decks were the good ones, they would
have consistently chosen them. This did not happen because
in no condition the (good) deck C was chosen more frequently
than the (bad) deck B, a result that is compatible with the
“prominent deck B phenomenon” normally found in tradi-
tional IGT.

The difference between the results of our experiment and
those obtained with the SGT by Chiu et al. (2008) demon-
strate that participants’ behavior cannot be easily ascribed to
the effect of a single feature. Participants could behave differ-
ently when dealing with decks which have similar qualitative
features but that vary in their numerical values. Therefore,
an understanding of their performance would require the use
of cognitive models capable of making any feature effect an
emergent property of their parameters providing thus an ex-
planation for the influence of the qualitative features.

Modeling the results
In discussing the models of the IGT used by previous re-
searchers, Ahn et al. (2008) identified three general assump-
tions: “First, an individual’s evaluation of the positive and
negative payoffs can be represented by a unidimensional util-
ity function. Second, expectations about payoffs for each
deck are learned on the basis of the experienced utilities on
each trial. Third, these expectancies determine the choice
probabilities for selecting each deck on each trial” (p. 1393).
As a consequence, any model for this task, and similar it-
erated decision making problems, will employ at least three
different functions: (1) an evaluation function to assess the
payoff associated with each choice, (2) a learning function to

upgrade the expectancies concerning the expected payoff of
each option, (3) a selection function to choose on each trial a
particular option on the basis of its expected payoff.

By adopting an architectural approach to modeling, the
problem of identifying the functions necessary to replicate
human performance in the task of interest is facilitated be-
cause some of these are considered as resources provided di-
rectly by the architecture. In particular, ACT-R (Anderson,
2007) makes available, by default, both a learning and a se-
lection function. The former is given by the linear equation
proposed by Bush and Mosteller (1955):

Ui(n) = Ui(n−1)+α[Ri(n)−Ui(n−1)] (1)

where:
Ui is the utility associated with option i
n is the current time step, with n− 1 indicating the previous
one
Ri is the reward associated with option i,
and α is a parameter regulating the learning rate.

The second equation is given by:

Pi =
eU

j /s

∑i eU
j /s

(2)

and determines the probability P that a given option i will
be selected among the j possible options. This probability
is a function of the value U (the utility, in ACT-R parlance)
of the particular option compared to the sum of all the pos-
sible option values, while s is a noise parameter, analogous
to the temperature of Boltzmann machines, that introduces
some kind of nondeterminism in the selection process.

By having two of the three main modeling problems solved
by the architecture, we concentrated on the evaluation func-
tion used to assess the outcome of each card choice. Tradi-
tionally (Ahn et al., 2008; Yechiam & Busemeyer, 2005) two
different kind of functions have been employed.

The first one, called the expectancy function by Ahn et al.
(2008), computes a weighted average of the rewards and pun-
ishment associated with the chosen option in each trial. This
function can be expressed as following:

v(t) = (1−W ) · rew(t)γ−W · pun(t)γ (3)

with rew(t) and pun(t) indicating the value of the reward and
punishment at time t, respectively, while γ is a parameter that
determines the curvature of the evaluation function, and W
denotes the differential weight participants place on losses
over gains.

An alternative evaluation rule is provided by the so called
prospect function (Ahn et al., 2008) expressed by:

v(t) =
{

net(t)γ : if net(t)≥ 0
−λ|net(t)|γ : if net(t) < 0 (4)

with net(t) indicating the net outcome, i.e. the difference be-
tween the default and contingent event, and λ representing a
loss aversion parameter.
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The two functions are similar according to several features:
they both assume a nonlinear evaluation of the monetary out-
come and both weight losses differently from gains. The most
important difference between them is constituted by how they
take into account the default and contingent event. The ex-
pectancy function assess them separately before combining
them into a scalar value; the prospect function, on the other
hand, assumes that decision makers process directly the net
outcome. The two functions can thus be considered as imple-
menting the different assumptions held by Fum et al. (2008)
and Chiu et al. (2008), respectively, and we used them to im-
plement two different computational models through which
we tried to replicate the empirical results. We ran a series of
500-run simulation trials with a large range of parameters and
the results we obtained were quite straightforward.

Both functions are able to capture the frequency of the con-
tingent event effect as revealed in the Single feedback condi-
tion but the prospect function, taking into account only gains
and losses, is not sensitive to the effect of rewards and pun-
ishments, which also play a critical role in determining the
participants’ behavior in IGT, and therefore gives raise in the
Double feedback condition to an effect that is absent in the ex-
perimental data. Table 5 reports the best performing models
employing the expectancy (with parameters W=0.05 and γ =
0.15) and the prospect functions (with parameters λ = 0.1 and
γ = 0.1) respectively. While these models have grossly sim-
ilar synthetic measures of fit (for instance, RMSE= 2.35 for
the expectancy and RMSE= 3.23 for prospect; chi-squared=
3.56 (p = .99) for the expectancy and chi-squared= 6.87 (p =
.96) for the prospect) the prospect model fails to replicate the
participants’ performance by providing predictions that fall
out of the 95% confidence intervals in four data points.

Table 5: Means of deck choices by the two models. The
predictions which fall out of the confidence intervals are evi-
denced in grey.

Deck
Condition Model A B C D

DR Expectancy Function 25.01 24.63 24.79 25.58
Prospect function 20.86 28.4 21.00 29.74

DS Expectancy Function 24.55 25.03 24.93 25.5
Prospect function 21.23 29.21 20.31 28.76

SR Expectancy Function 20.35 28.1 20.79 30.77
Prospect function 20.82 28.49 20.99 29.7

SS Expectancy Function 20.22 29.59 19.84 30.36
Prospect function 20.31 29.43 20.71 29.56

DR: Double-Reversed. DS: Double-Standard. SR: Single-
Reversed. SS: Single-Standard.

Conclusions
In the paper we proposed an explanation for the frequency
of the contingent event phenomenon which lies beneath the
fact that people are attracted by options that are associated

with the most frequent positive, and the less frequent nega-
tive, outcomes. A fundamental problem, deriving from the
fact that the IGT is grounded on a conflict between the value
of the default event (which codes the immediate attractive-
ness of an option) and the contingent one (which represents
the options’ long term expected value) is to establish whether
this phenomenon is caused by any positive or negative out-
come independently of its magnitude or, on the contrary, it is
triggered by the net result deriving from the two events. The
findings of our experiment corroborate the former hypothesis
and the simulation results indicate that only a model sensible
to rewards and punishments, and capable of analyzing them
separately, can replicate the empirical data.
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Abstract

How do children cope with the general regularities that govern
language while keeping track of the exceptions to them? This
question has been the subject of debate for many years and it is
still an open question. In particular, learning the English past
tense has been studied in depth given that it is a simple prob-
lem that combines a rulelike process with many irregularities.
In this paper we try to extend these studies to a quite more
complex problem: the Spanish verb inflectional system. This
paper presents an ACT-R model that shows the well-known
U-shaped learning and mimics in many aspects the process
of learning exhibited by children. Thus, our approach shows
how a highly inflected morphology system can be acquired in
terms of dual-mechanism theories and sheds light on the posi-
ble structures involved in general language acquisition.

Keywords: Cognitive Modelling; Cognitive Linguistics; Lan-
guage Acquisition; Spanish Morphology; ACT-R

Introduction
Language acquisition has been one of the central topics in
Cognitive Science. However, it is still an open question how
children manage to discover the general patterns present in
language while maintaining knowledge of the exceptions to
them. Verb inflection has been studied not only because it is
an inherently interesting task but also because is an isolable
subsystem in which grammatical mechanisms can be studied
in detail, without complex interactions with the rest of lan-
guage. Verb inflection is independent of syntax, semantics
or phonology given that no aspect of these three other sub-
systems works differently with regular and irregular verbs.
Furthermore, the particular phenomenon of U-shaped learn-
ing that presents the irregular inflection acquisition proccess
lead us to the interesting question of what are the causes for
that U-shaped learning and, going beyond, how we humans
deal with the general regularities that govern language while
keeping track of the exceptions to them. There are two main
accounts to these questions. On the one hand, the so-called
dual-mechanism theories posit that knowledge is somehow
dissociated. Irregular forms are stored in memory as entries
in the mental lexicon while regular forms are computed by
rules. On the other hand, single-mechanism theories argue
that a single representational system, usually an associative
memory, is enough to explain verb inflection. Both theories
present some problems and thus, the controversial debate is
far from settled.

English past tense inflection has been the focus of atten-
tion of many studies in the last years. However, not much
work has been done to widen these studies to other languages
with a much richer inflectional system. Spanish is one of

these highly inflected languages. Spanish verbs can have
about forty possible different suffixes (Alcoba, 1999) depend-
ing on mood, time, aspect, number or person. Moreover, this
great amount of possible endings is not the only difficulty
the Spanish inflectional system presents. Also its regularity
is very striking compared to simpler verb systems (like that
of English). In Spanish verbs, inflectional affixes are typi-
cally combined with stems and both parts of the final inflected
word can be irregular. These particular features in combina-
tion with the pattern of errors presented by children suggest
that the cognitive processes involved in Spanish verb inflec-
tion are more complicated than the English ones. This fact
turns the modeling of Spanish verb inflections into a quite
more challenging task.

In this paper we present a cognitive model of Spanish verb
morphology acquisition based on dual-mechanism theories
and implemented under the largely used cognitive architec-
ture ACT-R (Anderson, 2007).

Single vs. Dual mechanism theories
Two competing classes of theories try to explain how in-
flected word forms are mentally represented, processed and
acquired. The dual-mechanism theories (Pinker & Prince,
1988; Marcus et al., 1992; Ullman, 2001) argue that knowl-
edge is somehow dissociated. Regular forms are built by a
rule that appends an affix to the stem. Irregular forms are as-
sociatively listed in memory as entries in the mental lexicon.
Within this representational framework, the three stages of U-
shaped learning of irregular inflections are easily explained.
In the first stage, when the regular rules are not yet avail-
able, the lexical entries of irregular forms that have been fre-
quently heard can be retrieved. On a second stage, the regu-
lar rules are acquired and overregularization errors appear in
cases in which the lexical entry for an irregular verb is not
available (note that the memory retrieval process is noisy and
depends on the frequency of the lexical item that is looked
for). Finally, on the third stage, the overregularization errors
slowly disappear as more correct examples of irregular verbs
are learned. Many empirical studies have been performed
that support dual-mechanism theories in many inflectional
processes and some languages (Marcus et al., 1992; Clah-
sen, Rotweiler, Woest, & Marcus, 1992; Clahsen, Aveledo, &
Roca, 2002). However, the dual-mechanism theories are still
not widely accepted.

Alternative accounts are the single-mechanism theories
(Rumelhart & McClelland, 1986), also called association-
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ism. These approaches propose that both regular and irregu-
lar forms are computed by the same representational system,
an associative memory usually modeled by a neural network.
Following these theories, U-shaped learning is due to changes
in vocabulary. The overregularizations occur because chil-
dren have heard the regular pattern with many different verbs.
So, before the first overregularization occurs, the children
have to be familiar with many regular verbs. However, there
is little evidence for these assumptions in empirical experi-
ments with children. Another problem of single-mechanism
models is that many of them need external feedback to ad-
just their weights. But actually, negative evidence (corrective
feedback) plays little to no role in the process of recovery
(Brown & Hanlon, 1970; Marcus, 1993), so this assumption
does not seem to be adequate.

How do Spanish children inflect?
From middle 80’s the acquisition of verb morphology by
Spanish children has been largely investigated by many au-
thors (Hernández-Pina, 1984; Radford & Ploennig-Pacheco,
1995; Serrat & Aparici, 1999). However, a systematic and de-
tailed study of the development of overregularization, similar
to the one carried out by (Marcus et al., 1992) for the English
past tense, was not carried out until 2002 by (Clahsen et al.,
2002). In this study the authors try to shed light on the ques-
tion of whether or not the dual-mechanism model extends to
Spanish child language. The study consisted of 64 samples of
spontaneous speech from 15 children covering the age period
of 1;07 to 4;07 (see (Clahsen et al., 2002) for a detailed break-
down of the data). There are longitudinal data from 4 children
in the relevant age range and cross-sectional samples from 11
children.

Table 1 (extracted from (Clahsen et al., 2002)) shows the
types of errors present in the children’s speech and their fre-
quency distribution.

Table 1: Distribution of error types in the study of (Clahsen
et al., 2002)

A. Stem Errors B. Suffixation Erros

I. Overregularizations 116 I. Overregularizations (132)

a. 1st conj. Overapplications 8

b. Conj.-internal regularizations 124

II. Irregularizations 1 II. Irregularizations 0

III. Other errors 3 III. Other errors 1

Totals 120 Totals 133

The first error type is overregularization. In such cases, an
irregular stem or suffix is substituted by a regular one. As pre-
dicted by dual-mechanism theories, overregularizations are
the main kind of errors that children present. Suffix overreg-
ularization errors are divided into two subtypes: overappli-
cations of 1st conjugation suffixes to verbs pertaining to the
other conjugations (for example, the second conjugation verb
tra-er1 (to bring) is sometimes conjugated in past astraj-é*

1Stemand suffix are shown separated in Spanish verb forms.

instead oftraj-e, due to the 1st conjugation suffix-é is overap-
plied). The other suffix overregularization error is produced
by substituting an irregular suffix by the regular suffix corre-
sponding to its conjugation.

Also as predicted by dual-mechanism theories, irregular-
ization errors are almost inexistent. Irregularization errors in
the stem occur always with verbs that present irregular forms
in the verbal paradigms for this same tense. No verb with a
completely regular paradigm was irregularized. For example
a child saidcay-́ı* (I fell) instead ofca-́ı. This is atributed to
an overapplication of the third person stem (the third person
inflection is:cay-́o) to the first person.

Making a deeper analysis of the errors, it is also important
to note that the stem formation and inflectional processes are
dissociated in Spanish children language. There exist mixed
errors in which children combine correct irregular stems with
incorrect inflectional endings (for example, to conjugate the
third person singular of the immediate past of the verbven-ir
(to come), some children sayvin-ió* (he came) instead ofvin-
o) which is accepted to support that different processes come
into play to form the two different parts of the final inflected
word. This dissociation supposes a great difference with the
English inflectional system. This fact significantly increases
the complexity of the task and consequently, the complexity
of the model compared to other similar models of the English
past tense (Taatgen & Anderson, 2002).

U-shaped learning
The study of (Clahsen et al., 2002) clearly extends to Spanish
the results obtained by (Marcus et al., 1992) for English. The
development of irregular verb acquisition is not guided by a
linear learning function but by a U-shaped learning function
in which three stages can be clearly distinguished.

In a first stage, the child is able to inflect very little verbs
but the inflected irregular verbs are correct. In a second stage,
the children have acquired some kind of knowledge about the
regular rule and start to overapply it to irregular verbs. In
the third stage, the overregularization errors diminish until
mastery is achieved. The learning of regular verbs is quite
simpler. Children start inflecting correctly a very low number
of regular verbs and their performance steadily grows until
they master the task.

The model
In this paper we propose a dual-mechanism model imple-
mented in the ACT-R cognitive architecture. The core com-
ponents that are used for the model, including the declara-
tive and procedural memory systems, are parts of the ACT-R
architecture, which has been largely validated through exten-
sive separate experiments not only related to language. More-
over, the main processes used, like instance-based learning
and the use of analogy, are part of the ACT-R modeling tradi-
tion. The two basic strategies of memory retrieval and anal-
ogy are neither specific to the task of producing a past tense
nor even specific to language but general domain cognitive
strategies:
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• Memory retrieval: This strategy simply consists in retriev-
ing a fact from declarative memory.

• Analogy: This strategy forms the required knowledge us-
ing a similar retrieved fact as a template. As stated by
(Salvucci & Anderson, 1998), analogy is probably one of
the dominant human strategies for problem solving and
discovery.

It is important to note that the strategies we suppose that
children have at the moment they start learning a language
are very basic strategies common to many cognitive tasks.
Note that, at the beginning, the proposed model has nothing
similar to a regular rule to inflect regular verbs. The pro-
posed model will learn them later on as a specialization of
the analogy strategy. These initial strategies are similar to the
ones proposed by (MacWhinney, 1978; Taatgen & Anderson,
2002), who claimed that the basis of the learning of the regu-
lar rules is analogy.

Detailed description

The two main components of the model are described as
declarative-memory chunks and production rules. The de-
clarative-memory chunks represent verb forms as follows.

VERB-FORM
ISA
INFIN
CONJ
INFIN-STEM
MTA
NP
STEM
SUFFIX

VERB-TENSE
CANTAR
AR
CANT
IND-PAST-PERF
S3
CANT
Ó

The chunk is of type VERB-TENSE. Its infinitive iscant-
ar (to sing) and the infinitive stem and conjugation arecant-
and -ar respectively. Moreover, given the characteristics of
the Spanish verb inflectional system, it is necessary to store
the mood, time and aspect of the verb form (in the slot MTA,
the value IND-PAST-PERF stands for indicative mood, past
tense, perfective aspect) and the number and person of the
represented verb form (in the slot NP, the value 3S stands for
third person, singular). The verb form corresponding to the
information represented on the precedent slots is represented
by the STEM and SUFFIX slots. Note that when the goal is
to obtain a verb form, these two slots start with a NIL value
and the task of the model is to fill them.

Procedural memory stores the strategies that guide the in-
flection process. As stated before, two basic strategies are the
core of the model. However, given the dissociation between
stem formation and inflectional processes that Spanish verb
inflection presents, these strategies are also dissociated in dif-
ferent rules that try to form the stem or to find the correct
suffix. The main rules of the model are:

• Rule 1 (verb form retrieval): When the model tries to find
the verb form of a given verb with given MTA and NP slots,
this rule simply tries to find a chunk in declarative memory
that shares the INFIN, MTA and NP slots with the given
one.

• Rule 2 (stem retrieval): This rule tries to find the stem of
the goal verb form. To do that, it looks for a chunk in the
declarative memory with the same INFIN and MTA slots.

• Rule 3 (stem analogy): When the model tries to find the
verb form of a given verb, this rule just copies the INFIN-
STEM of the goal verb form on the STEM slot only if the
INFIN-STEM and the STEM slots of an arbitrary retrieved
(i.e. the verb with a highest activation) verb are the same.

• Rule 4 (suffix analogy): This rule tries to find out the cor-
rect suffix of the goal verb form. To do that, it looks for
a chunk in the declarative memory with the same CONJ,
MTA and NP slots and, if the slots INFIN-STEM and
STEM of the retrieved form are the same, it copies the
value of the SUFFIX slot to the SUFFIX slot of the goal
verb form.

These four rules cover the two basic strategies of the model
and the two processes that Spanish speaking people are sup-
posed to use when trying to inflect a verb. Figure 1 shows the
processes that our model uses to inflect a verb. Dashed lines
means that these processes are not available when the model
starts working but they are learnt during the running.

Learning in ACT-R consists in the production of new rules.
New rules are created by collapsing two rules that are applied
in succession into a single rule. The basic idea is to combine
the tests in the two conditions into a single set of tests that
will recognize when the pair of productions can be applied.
Also the actions of both rules are combined into a single ac-
tion that will have the effect of both. The resulting rule is
therefore a specialization of the two parent rules. The spe-
cialization, which is of particular interest, occurs when Rule
3 (stem analogy) fires first and Rule 4 (suffix analogy) fires
secondly. In this case, the corresponding suffix is substituted
into the rule, producing one of the regular rules. For example:

IF

THEN

the goal is to inflect a verb with
CONJ = ’AR’
MTA = ’IND-PAST-PERF’
NP = ’S3’
set the SUFFIX slot to ’́O’
copy the INFIN-STEM slot to the STEM slot

Note that one of these rules has to be learned for each com-
bination of the values of the slots CONJ, MTA and NP, given
that each regular suffix is different. Also it is important to
note that the initial utility of the learned rules is very low.
This means that newly created rules are not used just after be-
ing learned. It is necessary to reinforce the utility of this rule.
This reinforcement occurs every time the rule is recompiled
because its two parents fire consecutively. This way, the most
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Figure 1: Processes used by the model. Dashed lines show processes that have to be learnt.

useful rules (the ones that are recompiled many times) are fi-
nally used by the model and those rules created just by chance
are practically forgotten by the model. Moreover, ACT-R pro-
vides a way by which useful rules are reinforced: utility learn-
ing. This process reinforces the rules that have been used to
reach to a specific inflection. When the model cannot inflect
a verb, it propagates a lower reward than the one it propagates
if the verb is inflected. This seems to be natural given that,
when the model could not inflect a verb, it could not “say”
what he wanted to “say”. However, the reward received when
a verb is inflected incorrectly is exactly the same as the one
that is received when a verb is inflected correctly given that
the model cannot know whether his production is correct or
not. Note that one of the most important criticism to many
connectionist models is that they need some kind of external
feedback while, as stated before, it is widely accepted that
children do not receive feedback when talking to their par-
ents. Thus, the unique feedback our model receives comes
from itself.

How does the model inflect?

Data and Procedure

The data we used as the input for the model consists of the
verbs contained in the Spanish Verb Inventory2 (SVI, (Rivera,
Bates, Orozco-Figueroa, & Wicha, 2009)) which is made of
50 of the earliest acquired common Spanish verbs, with con-
jugations across person, number and 4 verb tenses (imperfect,
immediate past, future, and present indicative), for a total of
920 unique verb forms. Future tense forms were discarded
given its low frequency of use on child language and also im-
perfect forms were discarded given that they do not present
almost any irregularity. So the final input for the model con-
sists of the 220 immediate past forms and the 250 present
tense forms of the Spanish Verb Inventory. Each of these
forms has its associated frequency of use on children lan-

2Accesible athttp://crl.ucsd.edu/experiments/svi/

guage.
In order to perform the different experiments we followed

the design given by (Taatgen & Anderson, 2002). Every 200
simulated seconds two words are presented for perception
and one word is selected for generation. These words are
selected based on the frequency distribution given in the SVI.
Also following the design of (Taatgen & Anderson, 2002),
in each simulated month, approximately 1300 past tenses are
produced. This number is chosen somewhat arbitrarily, but
the model is not critically dependent on the exact rate of pro-
duction.

Results

As stated before, the great majority of errors done by children
are overregularization errors while only a few errors were due
to irregularization of regular forms. According to (Clahsen et
al., 2002), more of the 90% (94.7% in the stem and 92.5% in
the suffixes) of the errors done by children are overregulariza-
tion errors. Our model also presents a similar unbalanced dis-
tribution of errors between irregular and regular forms. The
93.3% of errors were overregularizationerrors. Moreover, the
irregularization errors are mainly of the same kind of the ones
done by children. As stated before, no verb with a completely
regular paradigm was irregularized.

Figures 2(a) and 2(b) show the learning curves of the model
and of Marı́a, one of the children from the study of (Clahsen
et al., 2002) (It is important to note that the other children on
that study have similar learning curves). Figure 2 shows the
overregularization rate and the regular mark rate as they are
usually plotted. Overregularization equals the number of cor-
rect responses on irregular verb forms divided by the sum of
correct irregulars and irregulars inflected regularly. The reg-
ular mark rate shows the number of correctly inflected regu-
lars divided by the total number of regulars produced. The
development of the model clearly shows the U-shaped learn-
ing curve typical of children’s learning of irregular verbs. As
such, the results are quite similar to the ones of Marı́a. Our
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model obtains a global 3.9% of overregularization, which is
in line with children’s performance. Spanish children studied
by (Clahsen et al., 2002) present an average overregulariza-
tion rate of 3.4% in the longitudinal samples and a 13.2% in
the cross-sectional experiments. As pointed by (Clahsen et
al., 2002) this difference could be due to the type of samples
and the semi-structured style of the records.

Not only overregularization errors of our model are similar
to the ones done by children. The percentage of irregulariza-
tion errors done by our model was 0.5% while in children,
overregularizations amount to 0.4% and in both cases no verb
with a completely regular paradigm was irregularized.
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Figure 2: Overregularization and regular mark rate presented
by the model (a), and by Marı́a (b)

In order to better understand why U-shaped learning is
achieved, we should go through the model’s functioning in
some more detail using some examples of irregular and reg-
ular vebs: a very frequent irregular verb form such aspued-e
(he can) with a frequency in the SVI of 19269, a very frequent
regular verb form such asdeb-e(he should) with a frequency
of 6955, a low frequency irregular verb form such asjueg-
an (they play) with a frequency of 201 and a low frequency
regular form such assalt-a (he jumps) with a frequency of
252.

At the beginning the model has no regular or irregular ex-
amples, so it fails every time it tries to inflect a verb. Grad-
ually, high-frequency irregular verbs increment its activation
on the declarative memory. If the model tries to inflect one of
these high-frequency verbs, the retrieval strategy will find the
correct form on declarative memory. On that first stage anal-
ogy usually fails given that it needs a regular form to work
as a template. Regular forms are not as frequent as irregu-
lar forms (see thatdeb-ehas a frequency of almost a third
of the frequency ofpued-e) and their activation is lower and
so, analogy is not available on a first stage. Thus, verb forms
such asdeb-eor salt-a cannot be inflected. Moreover, there
are no overregularization errors given that the source of over-
regularizations is also analogy. These facts explain the first
stage of the U-shaped learning.

After some examples have been learned the number of reg-
ular verbs with enough activation in memory steadily grows
up. Analogy is now a viable strategy, as there are examples
that can be retrieved as templates. These uses of analogy lead
to eventually learn the regular rules. However, most of the
regular rules are not yet used given that its initial utility is
not sufficiently high. At this stage, if the model has to inflect
the formjueg-an, it is very probable that the retrieval strategy
fails given its low frequency. If analogy finds suitable regular
forms in declarative memory (suppose, for example, that the
regular formcant-an(they sing) has enough activation) the
model will produce the overregularizationjug-an*. Thus, at
this stage overregularizations start to appear. However, they
are still not very frequent because the regular forms that are
used by analogy are not very frequent in memory and the reg-
ular rules do not have enough utility to be fired.

As analogy continues working, the utility of the regular
rules increases to a point in which they start to be used. At this
point, the rate of overregularizations, which start to appear on
the previous stage, reaches a maximum. In the previous stage,
verb forms such asjueg-anare rarely overregularized because
analogy needs to retrieve a regular form from memory (and
usually an irregular form is retrieved given that they are more
frequent). However, regular rules do not need to retrieve a
regular form. Thus overregularizations are much more fre-
quent at this stage in which regular rules have a higher utility.
For the same reason, the rate of correctly inflected regular
forms highly increases. On previous stages, low frequency
regular forms such assalt-a, could not be inflected because
the retrieval strategy failed and it was difficult to find a regu-
lar form to do the analogy with the stem and another regular
form to do the analogy with the suffix. As regular rules do
not need any memory retrieval, the model just has to fire the
corresponding regular rule to correctly inflect the formsalt-a.
From this point on, analogy strategy will be used very rarely,
as it has to compete with the regular rules that become now
the backup strategy given that they are more efficient.

On the last stage, irregular forms are stored in declarative
memory with a sufficient and stable activation. This way,
every time the model has to inflect an irregular form such
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as pued-e, the retrieval strategy works blocking the regular
rule. Moreover, high-frequency regular forms such asdeb-e
have a high activation at declarative memory and so, when
the model has to inflect one of these forms, retrieval will be
successful again. Regular rules will be used with medium
and low-frequency regulars such assalt-a. Medium and low-
frequency regulars have a lower activation and so, retrieval
usually fails and they have to be inflected by the regular rules.
At this point the utility of the regular rules is also high and
stable, so analogy is hardly used anymore. When this stage is
reached, one may judge that the model has mastered the task.

Conclusions and future work

In this paper we have presented a cognitive model of Spanish
verb morphology acquisition based on dual-mechanism the-
ories. The model we present is based on two basic strategies
that neither are specific to the task of producing a past tense
nor even specific to language. In fact they are general do-
main cognitive strategies such as memory retrieval and anal-
ogy. The core components that are used for the model, among
which are the declarative and procedural memory systems,
are parts of the ACT-R architecture, or part of the ACT-R
modeling tradition, like instance-based learning and the use
of analogy. Starting from these general strategies, the model
learns the regular rules of the Spanish inflectional system
while it takes into account the exceptions that represent ir-
regular verbs. The results show that our model accomplishes
to fit properly the U-shaped learning curve and some other
typical aspects of the process of learning exhibited by Span-
ish children. Thus, our approach shows how a highly in-
flected morphology system can be acquired in terms of dual-
mechanism theories and sheds light on the possible structures
involved in general language acquisition.

Future work includes extending the declarative and pro-
cedural representations to take into account phonetic features
that allow modeling the phonetic analogy processes that seem
to be present in some cases. Moreover, the model could be
extended to other tenses and to a wider range of ages in or-
der to accomplish a general view of the complete process of
Spanish morphology acquisition. Other trends of future work
could be related to language impairments. This model could
be used to model some of these impairments by modifying
some of the parameters of the model. This way we can give
some arguments in favor of the different hypothesis about the
causes of these impairments just as these models can be used
to propose some kind of therapies or methods to improve the
acquisition of verb morphology and general language skills.
Finally, it would be very useful to extend the existing empir-
ical studies with children to have more data from which we
can extract more general conclusions.
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Abstract 

In this paper, we describe a high-level behavior representation 
language (Herbal) and report new work regarding Herbal’s 
ACT-R compiler.  This work suggests that Herbal reduces 
model development time by a factor of 10 when compared to 
working directly in Soar, ACT-R, or Jess. We then introduce 
a large ACT-R model (541 rules) that we generated in 
approximately 8 hours. We fit the model to learning data.  
The comparison indicates that humans performing 
spreadsheet tasks appeared to start with some expertise.  The 
comparison also suggests that ACT-R, when processing tasks 
consisting of hundreds of unique memory elements over times 
spans of twenty to forty minutes, may have problems 
accurately representing the learning rates of humans.  In 
addition, our study indicates that the spacing between learning 
sessions has significant effects that may impact the modeling 
of memory decay in ACT-R.       
 

Introduction 
In this paper, we discuss the rapid development of user 
models capable of dynamically representing behavioral 
constraints.  Pew and Mavor (eds., 2007) advise using such 
user models as a shared representation meant to identify, 
predict, and when possible, mitigate risks. These 
representations are of various kinds (qualitative, 
quantitative, analytical, computational), and can describe 
interactions operating within or across multiple levels of 
analysis. These models in their various forms have proven 
useful in predicting and preventing significant losses 
whether human (e.g., Byrne & Kirlik, 2005; Pew & Mavor, 
2007) or monetary (e.g., Gray, John, & Atwood, 1993) or 
both (e.g., Booher & Minniger, 2003).  

There is a rich literature in user models. Classic user 
studies beginning with Card, Moran, and Newell’s (1983) 
book have often represented psychological/behavioral 
constraints using the GOMS model; analyzing user behavior 
in terms of goals, operators available for accomplishing 
those goals, routinized sequences of behavior or methods, 
and rules for the selection of methods for instances where 
multiple methods apply. Grey et al. (1993) extended and 
validated the GOMS model through an empirical study of 
telephone operators working for the New England 
Telephone Company, introducing CPM-GOMS. The 
success of later-implemented versions of the GOMS model 

(John & Kieras, 1996; Kieras, Wood, Abotel, & Hornof, 
1995), TAC-AIR Soar (Jones et al., 1999), and of embodied 
cognitive architectures generally (Byrne, 2001; Byrne & 
Gray, 2003; e.g., Ritter & Young, 2001; St. Amant, Horton, 
& Ritter, 2007) has intensified interest in agent-based user 
models for testing interfaces and for working in simulations 
as opponents and colleagues.   

On the other hand, these efforts have been stymied in part 
by the significant integration costs and the detailed level of 
specification required by existing cognitive architectures to 
create models. While one of cognitive modeling’s great 
strengths is its demand for computational entailment, the 
low-level abstractions required by mature cognitive 
architectures such as Soar and ACT-R have frequently 
proven expensive to create, resulting in a fewer models 
being created. Furthermore, these models have often proven 
difficult to maintain, extend, or merge (Pew & Mavor, 1998; 
2007; Ritter et al., 2003).   

Recognizing these issues, developers in recent years have 
released both re-implemented versions of Soar and ACT-R 
in Java that may be easier to integrate into systems, as well 
as creating high-level cognitive modeling languages that 
seek to provide a common framework and formal language 
for a variety of essentially similar cognitive modeling tasks 
(a review is available, Ritter et al., 2006). In the next 
section, we will briefly review these efforts before 
introducing Herbal (High-Level Behavior Representation 
Language). We will then discuss recent work on Herbal’s 
ACT-R compiler and a large learning model we have 
generated and tested before concluding.   

Related Work 
Cognitive architectures realized as programming languages, 
as noted above, have operated at low-levels of abstraction, 
and consequently have made developing, implementing, and 
comparing cognitive models difficult. Two general 
approaches have emerged to address this problem, the 
reimplementation of existing languages and the 
development of high-level cognitive languages for these 
architectures. We will describe both briefly before 
discussing Herbal. 
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Re-implementing cognitive modeling languages 
Reimplementation of existing cognitive languages into 
newer object-oriented languages offers several advantages:  
(a) smoother integration into systems created in those 
widely used languages, such as Java, supported by extensive 
libraries and tools; (b) a perceived and sometimes greater 
degree of implementation modularity, and thus the ability to 
more easily investigate changes and extensions to existing 
cognitive architectures; and (c) the opportunity to make 
comparative analyses, and thus discern the effect that 
previous implementation choices as opposed to theoretical 
commitments have had on the language in question.  
jACT-R (Harrison, 2002) and jSoar (Ray, 2009) have both 
contributed interesting comparative analyses, offer an array 
of GUI based debugging and organizational tools, and can 
increasingly support ongoing work in simulations and 
agent-based tools.   

jACT-R and jSoar both rely heavily upon the syntax of 
their parent languages to represent the rules and knowledge, 
limiting their accessibility to some extent. Though Python 
ACT-R (Stewart & West, 2005) eliminates this syntax issue, 
all three languages are at various stages of completeness, 
and none to our knowledge has undergone extensive 
validation through a computational alignment or docking 
study (Axtell et al., 1996) or similar means (e.g., Burton, 
1998; Louie, Carley, Haghshenass, Kunz, & Levitt, 2003). 
In addition, re-implemented cognitive modeling languages 
are neither able to support the comparative analysis of 
models across cognitive architectures, nor the fine-tuning of 
architectures at a constant high-level of abstraction. Thus, 
high-level cognitive modeling languages are attractive. 

High-level cognitive modeling languages and 
approaches 
High-level cognitive languages use abstractions to 
generalize common structures and processes found in 
existing cognitive architectures. These persistent 
commonalities are evident when one considers defining a 
high-level knowledge representation, building a structured 
task analysis, or implementing a decision cycle 
characterized by the perceive-decide-act mechanism 
(Newell, Yost, Laird, Rosenbloom, & Altmann, 1991). 
Cognitive architectures’ shared dependence upon least 
commitment (or the making of control decisions at every 
decision point) and associative encoding (or the associative 
retrieval of potential courses of action and a conflict 
resolution process for choosing between solution paths) 
entail a set of core commonalities from which to abstract.  
The commonalities include: a declarative memory structure 
and retrieval method, goals, procedural memory frequently 
used for the achievement of those goals, mechanisms for 
responding to external events, and a iterative decision 
process (Jones, Crossman, Lebiere, & Best, 2006). 

Where these approaches differ is in their representation 
structures. We will briefly summarize two existing 
candidate approaches for modeling more complex cognitive 
models: Jones et al.’s (2006) High Level Symbolic 

Representation Language (HLSR), and Herbal, a High-
Level Behavior Representation Language (Cohen, Ritter, & 
Haynes, in press; Haynes, Cohen, & Ritter, 2009).   

HLSR uses three primitives (relations, transforms, and 
activation tables) to derive micro-theories for representing 
cognitive architectures (and by extension, cognitive 
theories). Herbal characterizes common cognitive modeling 
tasks such as task analyses and problem solving using an 
ontology based upon the Problem Space Computational 
Model (PSCM, Newell et al., 1991). Each of these 
approaches is promising; each potentially allows for 
comparative analysis across architectures; and each, if fully 
developed, could promote model reuse across a diverse 
community of users. 

Herbal’s user focus, however, is unique in this area.  
HLSR supports both Soar and ACT-R, but is not yet 
available outside of its developers, and has, to our 
knowledge, not undergone either a docking or a usability 
study. Herbal, in contrast, is open source; supports three 
cognitive architectures across a set of common cognitive 
modeling tasks (Soar, ACT-R, and Jess); has undergone two 
usability studies (Cohen 2008; Cohen, Ritter, & Haynes 
2009); has been used to create several models; and is 
currently undergoing a docking study. Next, we will 
describe Herbal and work related to Herbal more fully, 
focusing on Herbal’s implications for HCI and the more 
rapid creation of user models.   

Herbal 
Herbal is based on the PSCM (Newell et al., 1991).  
Herbal’s ontological representation defines behavior as the 
movement of operators modifying states, as well as 
movement through problem spaces. Within this framework, 
behavior is divided into bands of activity operating across 
three time scales: the elaboration cycle (10 ms), the decision 
cycle (100 ms), and activity occurring within a problem 
space (1 s). The elaboration cycle describes the process by 
which an agent modifies its state representation through the 
associative retrieval of information. The decision cycle in 
turn consists of repeated cycles of elaboration that persist 
until quiescence, or until no further productions can be fired. 
The levels of elaborations are, for the most part, hidden in 
and by Herbal.   

The agent makes decisions based upon its state 
interpretation and preferences, choosing either a unique 
operator (actions capable of transforming the state) or 
generating an impasse if an operator cannot be selected due 
to insufficient knowledge. Agents resolve impasses by 
generating sub-states that enable the agent to retrieve the 
information necessary to specify the next operator. Problem 
spaces are thus representations describing a sequence of 
decisions (or a search in the event of limited knowledge) 
that can be further defined in terms of goals, states, and 
operators.  

Herbal’s ontology characterizes behavior in terms of 
classes that represent concepts such as states, operators, 
elaborations, impasses, conditions, actions, and working 
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memory. These classes furthermore entail basic 
relationships for instance—states can contain impasses, 
working memory, operators, elaborations, and other states 
while operators and elaborations can contain zero or more 
conditions and actions. Programming in Herbal thus 
involves instantiating objects using these ontological 
classes. Herbal also supplies additional attributes that enable 
future developers to discern the intent motivating creation of 
a given object, supporting models that in essence explain 
themselves (Haynes, Cohen, & Ritter, 2009).    

The Herbal/ACT-R compiler 
We have created an initial version of an ACT-R compiler in 
Herbal. Although several easy-to-use frameworks exist to 
develop ACT-R models: CogTool (John, Prevas, Salvucci, 
& Koedinger, 2004), ACT-Simple (Salvucci & Lee, 2003), 
and G2A (St. Amant, Freed, & Ritter, 2005), these tools 
cannot represent models of greater complexity than KLM-
GOMS or GOMS models. 

To support modeling in ACT-R, we added a declarative 
memory component to the Herbal environment because 
ACT-R uses declarative memories. With this component, 
we were able to also add hierarchical and sequential tasks to 
an ACT-R model—the relations among tasks are shown in a 
tree form in the user interface. Herbal then makes memories 
and production rules based on these relationships. 
Furthermore, to explore the flexibility of the high-level 
compiler, we added an ACT-R parameter pane. Through 
this pane, users can generate either a novice ACT-R model 
or eleven kinds of expert ACT-R models with varying 
degrees of expertise ranging from 0% to 100%.  

The Herbal/ACT-R compiler takes the PSCM 
representation in Herbal and creates an ACT-R model from 
it. The compiler also uses these parameters to determine 
how to compile the model: as a novice, an expert, or 
somewhere in between. When implementing a task, we 
represented the level of expertise, or degree of 
proceduralization, as corresponding to the percentage of 
declarative memory retrievals necessary to complete the 
task. We then distinguished novice from expert models by 
this percentage. Novice models, in this framework, have no 
information regarding the next task step in procedural 
memory, and thus must retrieve each step from memory, 
whereas the expert models have the next task step 
incorporated as part of the operation. Novice models thus 
provide the maximum anticipated completion time while 
normative expert models (described below) provide the 
hypothetical minimum time. 

Distinguishing novice from expert, we further divided 
expert models into two types: (a) normative experts, models 
where all the declarative memory elements for the task have 
been compiled into procedural knowledge, and 
(b) practicing experts, models that exhibit varying degrees 
of proceduralization. Models exhibiting 100% expertise 
(normative experts) provide a baseline, and do not use 
memory elements in declarative memory to perform the task 
because we assume that and the model has these elements 

fully proceduralized. Models ranging between 0% and 90% 
expertise (practicing experts) have a proceduralized task 
structure, but the number of declarative memory retrievals 
to walk the task structure varies. For example, if a model 
should be represented as having 10 declarative memories 
(DMs), the 0% expertise model would have 10 DMs while 
the 10% expertise model would have 9 DMs and 1 rule, and 
so on. Practicing expert models thus provide us a basis for 
making useful comparisons with the human data by 
providing incremental predictions of performance based 
upon expertise, and perhaps enable us to isolate the 
participants’ actual average level of expertise at the onset of 
the trial.  

A test of the Herbal/ACT-R compiler 
To explore the Herbal ACT-R compiler, we implemented an 
ACT-R model using Herbal and compared the performance 
times with practice provided by the model with those of 
human participants performing the same series of tasks. 

The Dismal spreadsheet task 
We next provide a brief description of the participant data 
before discussing the model and its implications. For the 
purposes of examining variance in retention rates over time, 
Kim (2008) devised a sequential spreadsheet task consisting 
of 14 subtasks that participants learned using one of two 
different modalities (keyboard or vertical mouse). In 
addition, Kim examined what if any influence training 
intervals have on retention rates by comparing the 
performance of participants undergoing training at 6, 12, 
and 18-day retention intervals. These results are discussed in 
a forthcoming publication.   

For this comparative analysis, we used a subset of Kim’s 
data, modeling the decline in task completion times for all 
14 subtasks over a four training sessions. Over the training 
iteration’s time course (about 30-45 min. per session), Kim 
found that the average task completion time for participants 
(N = 30) using a vertical mouse to perform the spreadsheet 
task ranged from 1,366 s (SE = 60.76 s) on day 1 to 655 s 
(SE = 22.81 s) by day 4. 

The change in performance over the four-day trial is as 
anticipated, a relationship between performance and practice 
(

€ 

y =1339.7x−0.5, 

€ 

R2 = 0.99) that follows the power law of 
learning. Examining the curve’s progression, one also sees 
the final value is similar to the anticipated KLM-GOMS 
(Card, Moran, & Newell, 1983) value of 797.14 s for expert 
performance. 

Modeling the Dismal spreadsheet task 
Paik and Kim, working collaboratively, implemented the 
spreadsheet task model in ACT-R in four hours using 
Herbal. The resulting novice model consists of 9 rules and 
542 declarative memory elements; the fully expert model 
consists of 541 ACT-R rules and no declarative memory 
elements; and the intermediate, practicing expert models 
interpolate between these two models. For example, the 

189



 

 

 

50% expert model has 271 declarative memory elements 
and 541 ACT-R rules, and the 0% expert model has 542 
declarative memory elements and 541 ACT-R rules.  

The rate of development using Herbal was about 0.9 
minutes per rule (240 minutes x 2 programmers/541 rules) 
in the expert model.  This is approximately 20 times faster 
than writing in Soar (assuming that an ACT-R rule is 
approximately the size of two Soar rules to propose an 
operator and then to implement it), and also about 5 times 
faster than rates reported by Yost (1992) using TAQL 
(again, assuming that the ACT-R rules are larger).  
Unfortunately, we know of no comparative usability studies 
for ACT-R, but we suspect that Herbal also accelerates the 
rate of developing ACT-R models.   

Results 
Running the 12 models in ACT-R 6, we confirmed that the 
novice, expert, and intermediate models perform the task. 
We compared the performance rates over time provided by 
the model with those of human participants performing the 
same task. (In addition to the ACT-R model’s times, we 
added interaction times for mouse moves and key presses). 
All the models also learn, with the novice models learning 
the most and the expert model the least. The predicted times 
are comparable both to the GOMS and KLM models, and to 
the data collected by Kim (2008).   

Because the data was taken over multiple trials, the 
comparison becomes more interesting because we can use 
the model to predict the participants’ levels of expertise at 
the onset of the first trial. By comparing the learning curves 
of the model with that of the 40 participants who performed 
the Dismal spreadsheet task (as depicted in Figure 1), we 
found that human completion times for the first trial 
corresponded with an expertise level of 20%, 60% at trial 2, 
80% at trial 3, and a gradual increase up to full expert by the 
fourth trial. We thus see that the human performance data 
represents a faster learning curve than that displayed by any 
of the ACT-R models.   

The difference between the two curves indicates that the 
model’s learning rate remains too slow, as opposed to the 
participants’ expertise being either too high or too low to be 
matched. Though the learning displayed by the model is 
already surprisingly fast and robust, these results suggest 
not only that the model will have to learn faster but also that 
it may have to include a new learning mechanism. For 
example, the learning rate exhibited by the human data 
between the first and second trials shows a sharp decline, 
meaning that the participants acquired more knowledge in 
the first trial than the model, and that this learned 
knowledge was already sufficiently activated to use for 
performing the task. The current Herbal/ACT-R models, in 
contrast, predict a more gradual learning curve. While the 
existing model includes declarative strengthening and 
procedural learning, another type of learning or stronger 
parameters on the existing learning mechanisms may be 
necessary. 

 

Figure 1: The human data shown with respect to the model’s 
learning curves. 

 
The results in Figure 1 suggest further, deeper problems 

as well. ACT-R does not appear to easily support modeling 
declarative memory decay, and the participants’ learning 
sessions were separated by at least a day. If, for example, 
we attempted to model massed training (concentrated 
training blocks), the difference between the model’s 
performance and that of the participants is likely to be have 
been even greater because no memory decay would have 
occurred, and if we modeled the effect of days between 
learning trials, the model would learn more slowly, 
matching the data less well.   

Nevertheless, this model is unique in that we are able to 
begin to conduct these comparative analyses, and perhaps 
may eventually be better able to ascertain the participants’ 
actual initial level of expertise for sequential tasks. Future 
work includes individual data fits, exploring these deep 
problems of decay, and devising ways to achieve faster 
learning.   

Discussion and conclusions:  Implications for 
future user models 

To conclude, we would like to discuss four implications for 
modeling learning. First, the novice model and the expert 
models use different approaches to organize the task 
knowledge that then results in different task completion 
times. Novice models use a tree structure to organize 
declarative memories (each declarative knowledge element 
has a parent, a next-sibling, and a first-child); to walk this 
structure, the model uses a depth-first search approach. All 
the expert models, however, use a sequential representation 
of the declarative memory structure, in other words each of 
the declarative memory elements has its next step, so the 
models can walk through the entire structure by following 
the next step. This is the difference between the top 2 lines, 
novice and 0% expert models, in Figure 1.  

Second, our model’s representation of expertise differs 
from ACT-R.  We represented expertise as a function of 
model’s number of declarative memory elements. For 
example, the 0% expertise model, our novice, has 542 
declarative memory elements while our normative expert 
model (100% expertise) has no declarative memory 
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elements. Consequently (at least as presently compiled), the 
number of retrieved declarative memory elements gradually 
decreases as expertise increases. The normative expert 
model, thus, does not retrieve its declarative memory 
elements to perform the task.  ACT-R, on the other hand, 
represents experts with production compilation (the process 
of generating a new rule by combining two or more rules). 
So, the number of fired rules gradually decreased, but those 
rules still need to retrieve declarative memory to perform a 
task.         

Third, we have presented a high-level cognitive modeling 
language that allows for the rapid development of complex 
user models. As we noted in the introduction, one reason 
why agent-based user models have not been more widely 
adopted is because of the relative difficulty associated with 
developing them. Cognitive architectures such as ACT-R 
and Soar use a low-level knowledge representation language 
that makes developing user models appear intractable to 
non-experts. Herbal, in contrast, is based on the Eclipse that 
is well-known development tool and provides graphical user 
interface, so it enables users to make three different kinds of 
cognitive models, such as Soar, Jess, and ACT-R, more 
easily. In addition, Herbal provides models that explain 
themselves by providing answers to questions that users 
frequently ask (Haynes, Cohen, & Ritter, 2009).   

Nevertheless, we acknowledge that Herbal is far from 
mature, and that we will most likely have to refine our 
ontology further to fully support ACT-R. We also have to 
extend the Herbal/Soar compiler to use the task hierarchy 
pane; and we have yet to compare Soar and Jess models 
developed in Herbal to human data.   

Fourth, the models we have developed with Herbal 
suggest new model types and new uses for models. A model 
(Herbal/Soar/Diag) includes a large number of strategies 
(M. B. Friedrich, 2008; M. B. Friedrich & Ritter, 2009). 
Another model (Herbal/ACT-R/Dismal) is perhaps the 
largest ACT-R model (as measured by rule count) created 
thus far. It is large partially because it performs a non-
repetitive task. Many previous models have performed a 
repetitive task taking minutes to do (e.g., processing 100 
planes). Doing a long non-repetitive task, however, requires 
creating a large knowledge set that has many components 
that are only used once.  

While Herbal remains in some ways a modest step, it 
opens up new modeling approaches where a broad range of 
relatively shallow knowledge is needed, but within a 
cognitive architecture, and where learning is important.   
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Abstract
Cognitive modeling aims more and more to explain, predict
and integrate behavioral data with brain activations found in
fMRI studies. In this article we analyze transitive inferences
(e.g. A is left of B and B is left of C then A is left of C)
during the spatial reasoning processes. Behavioral findings
suggest that reasoners tend to construct a mental model from
the premises, which they in turn use to inspect to draw infer-
ences. A reanalysis of our own previous fMRI-study investi-
gating such examples provided us with brain activations pat-
tern. A cognitive model using the (restricted) Bold-function in
ACT-R 6.0 can partially predict and explain the results. The
findings, limits and potentials of the current representation of
the Bold-function in ACT-R are briefly discussed.
Keywords: Deductive reasoning; fMRI; ACT-R

Introduction
Assume you receive the following information:

The door is to the left of the garage.
The car is to the right of the garage.

Given this set of premises it is easy to draw an inference
like ”the car must be to the right of the door”. But how do
we reason about such so-called three-term problems? Which
role plays working memory in such tasks? There are compet-
ing and different theories in cognitive science to explain the
actual human reasoning process.

The Theory of Mental Logic introduced by (Rips, 1994)
argues syntactically. This theory claims that humans apply
transitivity rules to a given set of premises without construct-
ing spatial representations, e.g. ”If A is left of B and B is
left of C then A is left of C”. Standing in the tradition of
AI-Approaches, there are, however, a number of problems
involved, e.g. with regard to memory burden or the number
of rules necessary to solve tasks (Ragni, 2008).

In contrast, the Theory of Mental Models (MMT) argues
that humans construct mental models which are an inter-
nal representation of objects and relations in spatial working
memory, matching the state of affairs given in the premises.
The semantic theory of mental models is based on the mathe-
matical definition of deduction, i.e. a propositional statement
C is a consequence of a set of premises P, if in each model
A of the premises P, the conclusion C is true. The mental
model theory (MMT) assumes that the human reasoning pro-
cess consists of three distinct phases: (1) the model genera-
tion phase, in which a first model is constructed out of the
premises, (2) the inspection phase, in which the model is in-
spected to check if a putative conclusion is consistent with the
current model. And (3) the validation phase, in which alter-
native models are generated from the premises that refute this

putative conclusion (Johnson-Laird, 2001). A mental model
is constructed incrementally from its premises (Ragni, Fang-
meier, Webber, & Knauff, 2007) following the principle of
economicity (Manktelow, 1999). Such a model construction
process saves working memory capacities because new in-
formation is immediately processed and integrated into the
model (Johnson-Laird & Byrne, 1991; Rauh, Knauff, Kuß,
Schlieder, & Strube, 2005).

Both theories can explain a number of results but MMT is
more widely accepted as the explaining theory in relational
reasoning (e.g., Rauh et al., 2005; Jahn, Knauff, & Johnson-
Laird, 2007; Goodwin & Johnson-Laird, 2005).

A cognitive modeling of this theory has several advantages:
(i) this theory is more formally presented, (ii) it is fully spec-
ified in terms of necessary operations to process such prob-
lems as described above, and with the new Bold-functions in
ACT-R 6.0 (iii) it allows for a prediction and model of the
underlying brain activations. Especially, the last aspect has
become more and more important in recent years. Founda-
tional work has been done by Anderson, Qin, Stenger, and
Carter who conducted and analyzed simple algebra tasks and
developed a first model integrating fMRI-findings in ACT-
R (Anderson, Qin, et al., 2004). More precise, based on
ACT-R 6.0 they developed an information-processing model
to predict the blood oxygenation level-dependent (BOLD)
response of functional MRI in symbol manipulation tasks.
Base-level activation learning in the ACT-R theory can pre-
dict the change of the BOLD response in practice in a left
prefrontal region reflecting retrieval of information. In con-
trast, practice has relatively little effect on the form of BOLD
response in the parietal region reflecting imagined transfor-
mations to the equation or the motor region reflecting manual
programming.

In this article, we present a cognitive model for three-term
series problems of spatial arrangements integrating a previous
fMRI study. It is structured as follows: In the next section,
we briefly introduce the experimental design, settings, and
the fMRI-findings. Then, we proceed outlining our ACT-R
model. Finally we compare the model results with the empir-
ical results.

fMRI During Visual Relational Reasoning
We briefly report a study from our group (Fangmeier, Knauff,
Ruff, & Sloutsky, 2006) in which different neural networks
for three phases of the MMT during spatial relational reason-
ing were supported.
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Participants. Twelve right-handed male students took part
in the study. All were instructed and trained outside the scan-
ner in order to minimize the learning process while scanning
and to increase their accuracy.

Materials. The presented material in the original study
consists of two conditions, 32 reasoning and 32 maintenance
verification tasks for each subject. Since we just want to
model the reasoning process in ACT-R we report only the
reasoning task in detail. One reasoning task consists of two
premises with three letters (V, X, Z in random order) in a spa-
tial horizontal configuration as well as an offered conclusion.
Each premise and the conclusion consists of two letters with
a spatial relation. The spatial relation between the two let-
ters of each premise or conclusion was coded by placing it
right or left from the center of the screen. A sentential ver-
sion of the given example in Fig. 1 would be: ”X is to the
left of V (premise 1) and ”Z is to the right of V” (premise 2).
For these premises, it follows ”X is to the left of Z” (men-
tal model which was constructed). Participants were asked to
decide if an offered conclusion was correct. One of two alter-
native conclusions were offered: a valid one (as in Fig. 1) ”X
is to the left of Z” or an invalid one ”Z is to the left of X”.

Figure 1: Sequential presentation and timing of the premises
and the conclusion (cp. section Materials).

Procedure and Data Acquisition. The participants were
trained outside the scanner with 12 similar problems and had
to reach at least 75% accuracy for participation. The trials
were presented in an event-related design with four separate
runs. Each run consist of eight reasoning and eight mainte-
nance tasks in a random order. As noted before we report
in this article only the procedure and results of the reasoning
tasks.

The timeline of the complete task was as follows: Each
task was introduced with the letter ”S” in the center of the
screen (”Schliessen” in German) for reasoning followed by a
pause for 1 sec. Each premise and conclusion began with
the presentation of the first letter for 1.5 sec, followed by

the second letter for 1.5 sec and a pause for 1 sec. There-
fore each of the premises, and the conclusion lasted for about
4 sec. Overall the whole trial lasted for about 14 sec. In
half of each premise or conclusion the first letter appeared on
the left position, followed by the letter on the right position.
In the other half of the tasks the first letter appeared on the
right position. The term order variation prevented the par-
ticipants from anticipating the next letter and from drawing
the conclusion during the second premise. Further the vari-
ation of the term order is well established in the reasoning
literature (Knauff, Rauh, Schlieder, & Strube, 1998). Dur-
ing presenting of the conclusion the accuracy was recorded
via a two-button box. Scanning was performed on a 1.5 T
Siemens Vision scanner. Functional images were collected
with a gradient-recalled echo-planar imaging (EPI) sequence,
allowing the sampling of 30 parallel slices covering the whole
brain [TR repetition time): 4000 msec; TA (acquisition time):
3126 msec]. The exact scanning information can be seen in
Fangmeier and colleagues (2006).

Design. Functional and anatomical images were reoriented
so that the anterior commissure corresponded to the origin
of the three-dimensional standard coordinate system used in
the software SPM99 (1999). The four runs for each subject
were separately realigned and corrected for motion, and un-
derwent slice timing correction. Each subject’s anatomical
image was coregistered with a 40-slice EPI and the functional
images of each run. The parameters for spatial normalization
were determined from the anatomical images of each sub-
ject, and were applied to the corresponding functional im-
ages. Images were finally smoothed with an 8-mm full-width
half-maximum Gaussian kernel.

fMRI Statistical Analyses. The hemodynamic response to
the premises and conclusions was modeled with event-related
delta functions, which were convolved with the canonical
hemodynamic response function and its temporal derivative
employed in SPM99. Low-frequency confounds were ex-
cluded from the model with a high-pass filter (192 sec cut-
off), and an autoregression AR(1) model excluded the vari-
ance explained by the previous scan. The six realignment
parameters for each run were included as covariates to avoid
motion artifacts. First-level contrast images for every sub-
ject and contrast were then used for a random effects analy-
sis to draw inferences on brain activation during the exper-
imental problems. Only correctly answered problems were
included in the analysis. All reported clusters within the con-
ditions and the conjunction analysis are significant at the clus-
ter level p .05, corrected for multiple comparisons (threshold t
= 3.0).The contrasts were calculated as follows: premise pro-
cessing phase (Premise 2 minus Premise 1), integration phase
(Premise 2 minus Conclusion), validation phase (Conclusion
minus Premise 2).

Further the beta values from the essential significant clus-
ters were extracted. For each of the three different phases
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(premise 1, premise 2, conclusion) a cluster with ±12 mm
around the peak voxel was extracted from the beta images of
the SPM statistic. The beta value for each phase represents
the difference between brain activation during this phase and
the overall mean derived from the whole brain, which is the
actual value of the corresponding phase. The value is not a
percent signal change but a difference to overall mean with
an arbitrary unit. If the beta value is positive (or negative)
the activation is higher (or lower, resp.) than the average ac-
tivation as illustrated in the bar charts of the human data in
Fig. 6.

Results. Our findings support the main assumptions of the
MMT with respect to distinct phases.

During the initial premise processing phase1 (see Fig. 2
A, B) for both presented premises occipito-temporal struc-
tures are activated with the following main Brodmann ar-
eas (BA 18, 19, and 37). These areas are active during
tasks which are involved in visual working memory and im-
agery (Kosslyn, Ganis, & Thompson, 2001; Postle, Stern,
Rosen, & Corkin, 2000) and with the ventral ”what”-stream
(Ungerleider, Courtney, & Haxby, 1998).

The following integration phase (see Fig. 2 B) shows an
additional area in the anterior prefrontal cortex which covers
the BA 32 and 10. Tasks in which multiple relations have
to be hold simultaneously activated area 10 (Christoff et al.,
2001; Prabhakaran, Rypma, & Gabrieli, 2001; Waltz et al.,
1999) and a review of functions of the anterior prefrontal cor-
tex assume that this area is responsible for the combination
and coordination of multiple cognitive operations (Ramnani
& Owen, 2004). Especially support for the premise integra-
tion comes from Kroger and colleagues (2002).

In the validation phase (Fig. 2 C) a putative conclusion
has to be verified. The activation switched from the visual
working memory (BAs 18, 19, and 37) to the posterior pari-
etal cortex (BAs 7 and 40). This areas are frequently acti-
vated during spatial processing (Burgess, Maguire, Spiers,
& O’Keefe, 2001) and the integration of sensory informa-
tion from all modalities into an egocentric spatial represen-
tation (Xing & Andersen, 2000; Andersen, Snyder, Bradley,
& Xing, 1997).

Cognitive Model
ACT-R is a cognitive architecture that consists of a num-
ber of modules each associated with certain cortical regions
(Anderson, Bothell, et al., 2004; Anderson, Qin, et al., 2004;
Anderson et al., 2008). When, for example, an ACT-R model
that has been built is pressing some key on a keyboard, the
manual module will be active and this predicts BOLD activ-
ity in the corresponding motor region in the brain. ACT-R’s
central executive—its procedural backbone—is a production
system represented by the procedural module that is associ-
ated with the caudate region. Each time a production fires

1We denote the phases slightly different.

Figure 2: Brain activation during reasoning. Activated re-
gions are contrasts for the three phases calculated with SPM:
premise processing (P1), integration (P2), and validation
phase (C). The activations were significant at the cluster
level calculated with SPM99 ( p ≤ .05, corrected, threshold
t = 3.0).

ACT-R predicts the BOLD rate in the caudate region is going
up with a certain time lag as is known from real fMRI studies.

The procedural module controls ACT-R’s strictly serial be-
havior; only one production in a time may fire. The modules,
however, may operate in parallel and communicate over their
buffers, each capable of holding one chunk of information.
Hence, a production can require information from more than
one module’s buffer. Once a module is active, however, it
only can become active again in a subsequent request, when
it is free again.

The ACT-R model operates on three different kinds of
chunks: (1) premise and conclusion chunks, (2) grid chunks,
and (3) mental model chunks.

Premise and conclusion chunks are structurally equivalent
and the corresponding chunk type defines two slots for the
left and right term. Each time a term is presented the ACT-R
model tries to integrate the term into the premise chunk or
conclusion chunk respectively. After completion of P1 the
corresponding chunk is integrated into the center of the sec-
ond kind of chunk, a grid with four vacant positions (cp. Fig-
ure 3, P1). Once the mental model of P1 is complete it is
cleared from the imaginal buffer by placing a new chunk of
the type grid representing the position of the current model
and adjacent free positions around it into the imaginal buffer.
The first term of P2 is presented and if it has not been seen
yet, the current grid is cleared from the the imaginal buffer. A
new premise chunk with only one term is placed in the imag-
inal buffer instead.

This, however, is the first source of an possible error. Each
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Figure 3: The ACT-R model processing the premises (P1, P2)
and conclusion: the columns represent the different buffers
each holding the respective chunks. While P1 is presented on
the screen, both terms are successively placed into the slots
of a two-model chunk that is generated in the imaginal buffer.
In a subsequent step the information of this two-model chunk
is integrated into a grid-chunk (indicated by 4 cells). After
an analog processing of P2 the corresponding two-model is
merged with the grid chunk. Then the conclusion chunk is
built up. Finally, each occupied cell of the grid chunk is iter-
atively compared with the conclusion chunk.

time a grid chunk is released to declarative memory and an
identical one is detected both get merged to one and its ac-
tivation is boosted. Hence, the more often two chunks have
been merged in the past, the more dominant the result gets
and interferes with the grid chunk that has most recently been
created. Hence, recency is not necessarily a guarantee for
successful retrieval.

The next term is presented and integrated into the premise
chunk in the imaginal buffer. The grid chunk is retrieved
from declarative memory and is now placed into the retrieval
buffer. Now both chunks can be tested on the right hand side
of a production and finally the open position in the grid can
be filled according to the position in the premise chunk (cp.
Figure 3, P2).

In a next step the imaginal buffer holding the current grid
chunk, however, has to be cleared again in order to build
the conclusion chunk. At the moment the first term of C is
presented the model clears the grid chunk from the imaginal
buffer in order to make it free for the creation of the conclu-
sion chunk. The creation of the conclusion chunk is analo-
gous to the creation of the premise chunks as described above.

Each cell of the built model of C is iteratively compared
with the grid chunk in the retrieval buffer (cp. Figure 3, C).
Here, however, a second source of a possible error can oc-
cur. In case of the release of a chunk to declarative memory
and the retrieval from it in a subsequent step, the same prob-

lem occurs as described above. If the time between clearing
a chunk from the imaginal buffer and being retrieved again is
at a minimum, it can be retrieved again in order to be com-
pared with the conclusion chunk. Otherwise the most general
chunk that has repeatedly been merged in the past and that
consequently is most dominant in terms of it strengthened ac-
tivation may get retrieved erroneously. This chunk may cause
an error at the comparison stage, because the cues in its slots
may not match those from the conclusion model.

Empirical Evaluation and General Discussion
In the sense of Anderson and colleagues the presented model
is not an attempt to cover all aspects of deductive reasoning
and mental model theory but to add to a methodology that
has recently attracted the attention of researchers: the eval-
uation of cognitive models with fMRI data and vice versa
(Anderson et al., 2008, 1325). Nevertheless, the accuracy of
the human and the model data fits quite well (human = 93%,
model = 94%).

Table 1 shows the brain regions that are supposed to be
linked to the buffers of ACT-R modules and Figure 6 illus-
trates the predicted BOLD responses of the model.

Table 1: Brain regions and corresponding Brodmann areas as-
sociated with ACT-R modules (Anderson et al., 2008, 1327).

Region Brodmann Module
Motor1 2, 4 Manual
ACC 24, 32 Goal
PPC 7, 39, 40 Imaginal
LIPFC 45, 46 Declarative
Caudate Procedural
Fusiform 37 Visual

BOLD responses have been computed of a model run that
simulates 32 trials of deductive reasoning tasks. Figure 4
shows the overall mean values for each phase P1, P2, and
C. Figure 5 shows the continuous course of the overall mean
BOLD response predictions for selected ACT-R modules.
In all three phases there is almost no change in the rates for
the manual module. The reason is that there is a lag of up to
four seconds until the corresponding BOLD activity reaches
its maximum. This, however, happens in the 12 seconds time
window after an answer key has been pressed and conse-
quently cannot be seen in the presented time frame. When
the next trial starts the BOLD activity has decayed to its nor-
mal rate. This is analogous to the human data and therefore
there is also no prominent BOLD activity for the three phases.

The declarative module, too, shows only low activity,
slightly increasing towards the end. The reason is that model
heavily relies on involving the imaginal module. Only when
there are two chunks that have to be tested in a production
concurrently there is the need to temporarily clear one chunk
from the imaginal buffer because each buffer can only hold
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Figure 5: The course of the overall mean BOLD response
predictions for selected ACT-R modules.

one chunk at a time. The model chunk gets retrieved immedi-
ately from declarative memory again via the retrieval buffer.
There is, however, in most cases only one retrieval towards
the end of P2 so that the predicted BOLD response is not
comparable to that of the imaginal buffer. Only when the first
term of the second premise presented on the screen has not
been seen before a second retrieval is required. In addition,
the maximum rate will, similar to that of the motor module,
be in the lag of 12 seconds between two trials.

In the following, we concentrate the empirical evaluation
of the correspondence between model and fMRI data on those
three brain regions that have both been investigated in the
study of Fangmeier et al. (2006) and that are also linked to
the buffers of ACT-R modules. Figure 6 directly compares
human data with model data. The scales for the human data,
however, should be compared with caution, because typically
in fMRI research the ∆-adjusted BOLD function with respect
to mean activation is reported. For the present work this
implied a transformation of the ∆-adjusted BOLD to abso-
lute values in order to get comparable charts with the ACT-R
BOLD response predictions. All predicted values of ACT-R
were within an interval of [0.0-1.0], whereas in fMRI the beta

means are not restricted to a fixed interval (i.e. values can also
be negative or beyond 1.0). However, comparing the results
at a qualitative level shows a similar pattern as is illustrated
in Figure 6. An interesting difference between the predicted

1 Calculated from the ∆-adjusted BOLD (Fangmeier et al., 2006).

Figure 6: The overall mean BOLD responses for three brain
regions (top) and the corresponding predictions of three ACT-
R modules (bottom) for the first premise (P1), the second
premise (P2), and the conclusion (C): the occipito-temporal
cortex (OTC) overlaps with Brodmann area (BA) 37 and is
linked to the visual module; the anterior prefrontal cortex
(APFC) overlaps with the anterior cingulate cortex, BA 32),
that is linked with the goal module; the posterior parietal cor-
tex (PPC) overlaps with BA 7, 40 and is linked to the imaginal
module. Each phase (P1, P2, C) lasts 4 seconds resulting in a
total presentation duration of 12 seconds (cf. Fig. 1 and 5).

BOLD function and the experimental results is within P2: the
difference between the BOLD linked to the visual module
and the corresponding brain region of occipito-temporal cor-
tex (OTC). This remains still an open question.

Taken together, ACT-R 6.0 offers a powerful possibility to
predict behavior and associated brain activations. This allows
to model the different levels from neurological evidence to
symbolic modeling. Integrating neurological findings have a
main advantage for cognitive modeling: The goodness-to-fit
can be extended far beyond the behavioral data, especially
for the domain of complex cognition (Anderson et al., 2008,
1324). Differences in the setting can be traced back to differ-
ent modules (which have different activation patterns). Cer-
tainly, a main problem is to compare results of the fMRI stud-
ies with predictions of the BOLD-function since additional
work is necessary to identify the different scaling and in-
tensity of the activations. So in some sense, the predicted
BOLD function gives a good intuition, especially for qualita-
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tive comparison. Once a refinement of the modules in ACT-R
is taken into account the fields of fMRI and cognitive model-
ing converge stronger.

Future work will integrate and compare the findings on the
memory tasks to the deductive reasoning tasks.

Acknowledgements
This research was supported by the DFG (German National
Research Foundation) in the Transregional Collaborative Re-
search Center, SFB/TR 8 within project R8-[CSPACE] and
the strategic project ActivationSpace. The authors are grate-
ful to Matthias Frorath for assistance in the implementation
of the ACT-R model.

References
Andersen, R. A., Snyder, L. H., Bradley, D. C., & Xing, J.

(1997). Multimodal representation of space in the posterior
parietal cortex and its use in planning movements. Annual
Review of Neuroscience, 20, 303–30.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y. (2004). An integrated theory of
the mind. Psychological Review, 111(4), 1036-1060.

Anderson, J. R., Carter, C. S., Fincham, J. M., Qin, Y., Rav-
izza, S. M., & Rosenberg-Lee, M. (2008). Using fMRI
to test models of complex cognition. Cognitive Science,
32(8), 1323-1348.

Anderson, J. R., Qin, Y., Stenger, A., & Carter, C. S. (2004).
The relationship of three cortical regions to an information-
processing model. Journal of Cognitive Neuroscience,
16(4), 637-653.

Burgess, N., Maguire, E. A., Spiers, H. J., & O’Keefe, J.
(2001). A temporoparietal and prefrontal network for re-
trieving the spatial context of lifelike events. Neuroimage,
14(2), 439–53.

Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger,
J. K., Holyoak, K. J., et al. (2001). Rostrolateral prefrontal
cortex involvement in relational integration during reason-
ing. Neuroimage, 14(5), 1136–49.

Fangmeier, T., Knauff, M., Ruff, C. C., & Sloutsky, V. (2006).
fMRI evidence for a three-stage model of deductive reason-
ing. Journal of Cognitive Neuroscience, 18(3), 320-334.

Goodwin, G. P., & Johnson-Laird, P. N. (2005). Reasoning
about relations. Psychological Review, 112(2), 468-493.

Jahn, G., Knauff, M., & Johnson-Laird, P. N. (2007). Pre-
ferred mental models in reasoning about spatial relations.
Memory & Cognition, 35(8), 2075–87.

Johnson-Laird, P. N. (2001). Mental models and deduction.
Trends in Cognitive Sciences, 5(10), 434-442.

Johnson-Laird, P. N., & Byrne, R. M. J. (1991). Deduction.
Hillsdale, NJ: Erlbaum.

Knauff, M., Rauh, R., Schlieder, C., & Strube, G. (1998).
Continuity effect and figural bias in spatial relational infer-
ence. In Proceedings of the twentieth annual conference of
the cognitive science society (p. 573-578). Mahwah, NJ:
Erlbaum.

Kosslyn, S. M., Ganis, G., & Thompson, W. L. (2001). Neu-
ral foundations of imagery. Nature Reviews Neuroscience,
2(9), 635–42.

Kroger, J. K., Sabb, F. W., Fales, C. L., Bookheimer, S. Y.,
Cohen, M. S., & Holyoak, K. J. (2002). Recruitment of an-
terior dorsolateral prefrontal cortex in human reasoning: a
parametric study of relational complexity. Cerebral Cortex,
12(5), 477–85.

Manktelow, K. I. (1999). Reasoning and thinking. Hove,
UK: Psychology Press.

Postle, B. R., Stern, C. E., Rosen, B. R., & Corkin, S. (2000).
An fMRI investigation of cortical contributions to spatial
and nonspatial visual working memory. Neuroimage, 11(5
Pt 1), 409–23.

Prabhakaran, V., Rypma, B., & Gabrieli, J. D. (2001). Neural
substrates of mathematical reasoning: a functional mag-
netic resonance imaging study of neocortical activation
during performance of the necessary arithmetic operations
test. Neuropsychology, 15(1), 115–27.

Ragni, M. (2008). Human logic in spatial reasoning. In
B. C. Love, K. McRae, & V. M. Sloutsky (Eds.), Proceed-
ings of the 30th annual conference of the cognitive science
society (pp. 933–939). Austin, TX: Cognitive Science So-
ciety.

Ragni, M., Fangmeier, T., Webber, L., & Knauff, M. (2007).
Preferred mental models: How and why they are so impor-
tant in human reasoning with spatial relations. In C. Freksa,
M. Knauff, B. Krieg-Brückner, B. Nebel, & T. Barkowsky
(Eds.), Spatial cognition v: Reasoning, action, interaction
(pp. 175–190). Berlin: Springer.

Ramnani, N., & Owen, A. M. (2004). Anterior prefrontal cor-
tex: insights into function from anatomy and neuroimag-
ing. Nature Reviews Neuroscience, 5(3), 184–94.

Rauh, R., Knauff, C. H. M., Kuß, T., Schlieder, C., & Strube,
G. (2005). Preferred and alternative mental models in spa-
tial reasoning. Spatial Cognition and Computation, 5, 239-
269.

Rips, L. J. (1994). The psychology of proof: Deductive
reasoning in human thinking. Cambridge, MA: The MIT
Press.

SPM. (1999). London, UK: Wellcome Department of Cogni-
tive Neurology. (computer software)

Ungerleider, L. G., Courtney, S. M., & Haxby, J. V. (1998). A
neural system for human visual working memory. Proceed-
ings of the National Academy of Sciences, U.S.A, 95(3),
883–90.

Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B.,
Mishkin, F. S., de Menezes Santos, M., et al. (1999). A
System for Relational Reasoning in Human Prefrontal Cor-
tex. Psychological Science, 10(2), 119–25.

Xing, J., & Andersen, R. A. (2000). Models of the posterior
parietal cortex which perform multimodal integration and
represent space in several coordinate frames. Journal of
Cognitive Neuroscience, 12(4), 601–14.

198



Accountable Modeling in ACT-UP,
a Scalable, Rapid-Prototyping ACT-R Implementation.

David Reitter (reitter@cmu.edu) and Christian Lebiere (cl@cmu.edu)
Department of Psychology, Carnegie Mellon University,

5000 Forbes Ave, Pittsburgh, PA 15213 USA

Abstract

ACT-UP is a toolbox implementation of the ACT-R cognitive
architecture, aimed at allowing rapid prototyping of complex
models. With ACT-UP, we propose Accountable Modeling,
where the only model components that are specified are those
supported by empirical evidence and part of the model’s theo-
retical claims. ACT-UP is a library providing a programmatic
interface to the classical ACT-R functionality. Implemented
in a functional programming paradigm, models are reusable in
other contexts. The toolbox is demonstrated using five imple-
mented and evaluated cognitive models.
Keywords: Complex Models, Cognitive Architectures,ACT-R

Introduction
Cognitive models have explained a great deal of behavioral
and neurophysiological data. On the road to understanding
the mind, cognitive architectures have specified a core set
of representations and mechanisms common to a variety of
models in order to separate general functional components
and their abilities from domain-specific instantiations, such
as knowledge and strategies. However, the tasks that classi-
cal cognitive models have taken on are mainly those that can
be defined in a controlled environment. Process models of
laboratory behavior are often overly specific and needlessly
complex, while alternative models would yield similar fits.
The model eco-system has diversified rather than converged,
with specific rule sets developed for each given task and very
seldom reused or generalized for other tasks. This leads to
overfitting and lack of robustness. To robustly explain and
predict behavior in complex real-life situations, model com-
plexity has to increase further. Inevitably, humans execute
much more complex tasks as well, drawing from a variety of
knowledge and skills and contextualizing their observations
and thoughts in light of both long-term experience and re-
cently acquired knowledge.

The greater complexity of tasks may have a welcome effect
on cognitive architectures. Current general architectures such
as ACT-R (Anderson, 2007) or SOAR (Laird & Rosenbloom,
1987) are not as restrictive as human memory is. ACT-R, has,
during versions 2 through 4, become more and more restric-
tive: large, very complex rules made way for smaller, gran-
ular ones that could describe less functionality each. Still,
even its latest incarnation can implement a model that pre-
dicts excellent human performance at the most intricate N-
back task, failing to explain the dismal human performance
scalability at this task. This difficult task (Kirchner, 1958)
requires subjects to keep a first-in-first-out queue of N items
in memory. Sufficient architectural contraints may mean that
modelers can no longer design functional models of existing
tasks, let alone the more complex ones we have argued for.
One solution to the dilemma is to constrain models by re-use

of micro-strategies. It is hoped that the resulting convergence
will eventually let us better reflect the architecture of the mind
(Newell, 1973).

As task complexity increases, a careful analysis of the
components of the model is necessary. Every rule, every data
structure, and every knowledge access process can be seen
as a claim that needs to be proved empirically. For anything
but the simplest cognitive models, many of the procedures
and data structures they define are often not evaluated: the
specifics of many of the components of the model may be ir-
relevant to the story a model has to tell. The solution to this
problem is under-specification. In what we call the Account-
able Modeling paradigm, we suggest to apply Occam’s razor
and specify only what is meant to be directly or indirectly
evaluated.

As a consequence, we arrive at models that can be more
complex yet faster and easier to prototype, while still using
the same core representations and mechanisms of the archi-
tecture. Until all portions of the model are fully specified,
such models may fall short of Newellian complete process
models. Yet, they honestly separate claim from conjecture
and provide the same level of comparison to human data.

Accountable Modeling
Recent work has been undertaken to investigate the use of
ACT-R to study the interaction of two, eight, or even thou-
sands of cognitive agents. Scalability in this domain would
make cognitive models applicable to new domains such as
network science, for which a precise computational represen-
tation of human cognitive processes has been desirable but as
to now unavailable. The modeling methodology in this paper
follows accountable modeling within the ACT-R theory.The
“Adaptive Control of Thought–Rational” framework (ACT-
R, Anderson, 2007) defines a component-based architecture,
in which specialized modules work largely in parallel to con-
tribute to thought processes. In recent computational imple-
mentations, it requires end-to-end models, describing thought
processes through a set of production rules controlling the in-
teraction of cognitive (e.g., long-term memory) and percep-
tual components. We distinguish the ACT-R theory from its
canonical implementation (ACT-R 6, Bothell, 2005). In the
following, we assume familiarity with the basics of ACT-R.

Working within the ACT-R theory, we designed a new tool-
box instantiation of the theory called ACT-UP. ACT-UP re-
flects ACT-R, but lets the modeler specify algorithms much
like a programmer would. Functionality is compartmental-
ized in reusable functions (taking arguments and returning a
value) and data is stored and retrieved as in ACT-R in chunks
in declarative memory. ACT-UP is intended as a library for
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modelers comfortable with basic programming paradigms.
Most of the cognitive functions that ACT-R makes avail-

able correspond to the buffer-based interface of the architec-
tural modules in ACT-R: a learn-chunk function to commit a
chunk to memory or boost its activation; a retrieve function
to request a chunk from declarative memory, taking hard con-
straints, cues (to spread activation), and soft constraints (for
partial matching). (In ACT-R, buffers represent interfaces
between cognitive modules. Chunks are bundles of feature-
value pairs, which can be stored temporarily in buffers, or,
more long-term, in declarative memory.) But ACT-UP also
makes more fine-grained cognitive functions available. Such
micro-functions allow models to go beyond what is available
to ACT-R models.

We intend to address several goals with ACT-UP. Account-
ability suggests to underspecify model components that are
neither motivated by data or theory nor subject to empiri-
cal evaluation. Rapid prototyping allows modelers to quickly
build and modify most parts of the model, even computation-
ally complex ones, while focusing on learning and other cog-
nitive effects predicted by ACT-R’s theoretical assumptions.
Crucially, it produces models that are reconfigurable so that
systematic parameter search can be used to explore the space
of possible models. Reusability results from clear input and
output data structures, turning models into functions that can
be re-used in other contexts: the convergence of models and
cognitive frameworks is a long-term goal. Scalability allows
models to run longer, apply to more complex tasks, and sim-
ulate agents in the context of larger multi-agent systems.

To describe the notion of accountability, let us consider
some design decisions that a modeler has to make: where
to abstract away from subtasks and surrounding tasks, and
where to concentrate on the cognitive properties that ulti-
mately explain variance in the data. Both ACT-R 6 as well as
the ACT-UP toolbox allow for free computation outside the
theory1. Even the more theoretically motivated buffers and
chunks are storage means that are not limited in size. ACT-
UP retains information in local variables, thereby acknowl-
edging the lack of constraints.

Procedures are at the core of ACT-R. They initiate per-
ceptual acquisition, declarative memory retrievals and motor
actions and act as an information broker between all com-
ponents of the architecture. They are implemented as pro-
duction rules, defining a precondition that refers to the state
of buffer contents, and a consequential action affecting the
buffers and their associated modules. While all rules are el-
igible to match at all times in a model, only one of them is
selected to fire.

Such a production rule system is capable of implement-
ing complex algorithms, especially with the addition of state
information in buffers. Thus, the question of whether a so-
lution to the experimental task can be formulated as a set of
production rules is less relevant than the question of whether
the model’s crucial decision-making can be cast as a pattern-
matching task, or whether reinforcement learning of recogni-

1“eval” statements in ACT-R 6, for instance, allow the modeler
to design model components in Lisp.

tion patterns and associated actions (as in ACT-R’s learning
of production rule utility) can explain the observed data. In-
deed, in typical models does the deciding learning effect oc-
cur only in very specific decision-making moments. The large
majority of the model’s production rules are in place to deter-
ministically execute the task. These collections of produc-
tion rules are difficult to develop, inspect, change, maintain
and re-use. Therefore, ACT-UP’s rules may be underspeci-
fied and implemented as a program. This will also often be
the case whenever productions implement deterministic and
static processes. Other productions may still be faithfully de-
scribed: those that reflect the crucial pattern-matching tasks
and reactions to recognized patterns, or the routinization of
initially declaratively memorized processes. This is where the
toolbox approach allows modelers to underspecify the model
by reformulating productions in a more direct, computation-
ally treatable manner. Underspecification may also occur for
many methodological reasons. Data may be lacking to sup-
port an evaluation of the claims, if they were specified, or the
lack of suitable data, or the task complexity, e.g., understand-
ing of complex natural language instructions where it does
not reflect the goals of the modeling work.

ACT-UP provides high-level interfaces to core simulation
components of human cognition (e.g., retrieval of a declara-
tive chunk from a pattern specification). It also gives mod-
elers fine-grained control over such processes, by filtering
chunks from declarative memory or choosing the most ac-
tive chunks from a set. Thus, the functional toolbox approach
integrates well with cognitive mechanisms that do not yet
have a well-specified interface to the remaining buffer- and
productions-based ACT-R architecture.

Wherever constraints are relaxed, cognitive plausibility
comes into question. Traditionally, models have relied on
their within-theory specification to provide constraints pro-
moting cognitive plausibility (usually using ACT-R 6). As
argued in the introduction, such constraints are not exhaus-
tive. In order to constrain the computational resources avail-
able to the model, ACT-UP asks the modeler to focus on
the crucial portion of their model, while using the compu-
tational power of a programming language for other parts.
For those parts, parameters may be fitted that describe their
(human) execution time and reliability. Since production sys-
tems are Turing-equivalent, we know that a production sys-
tem can be defined to accomplish what an ACT-UP model
does. Thus, ACT-UP models do not represent an implausible
gain in power.

ACT-UP architecture
ACT-UP aims to implement a substantial subset of the ACT-
R theory. The striking differences between ACT-UP and im-
plementations such as ACT-R 6 or Stewart & West’s (2007)
Python variant do not lie in the theory: they pertain to the in-
terface that is offered to the modeler. ACT-UP’s interface is
synchronous and does not yet implement parallelism (which
is often not needed). ACT-UP is a toolbox providing ACT-R
functionality in a piecemeal fashion as well as commands at
a higher abstraction level, which would integrate well with
Salvucci & Lee’s (2003) motor, speech and perceptual mod-
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ule commands. The ACT-UP library is a stand-alone system,
and independent of ACT-R 6. It provides a set of Lisp func-
tions and macros; modelers interact with it on the basis of
source code that follows Common Lisp syntax (see below for
examples). ACT-UP models predict the two major behavioral
outcome types: choice and timing.

Declarative memory system
ACT-UP’s declarative memory (DM) embodies all the core
elements of DM in ACT-R. Memory is accessed in the form
of chunks, which are sets of feature-value pairs. Chunks are
learned (or reinforced) with an explicit command; there is no
automatic learning (buffer clearing in ACTR 6). Retrieval
occurs with a (normally) synchronous command, in which
the model specifies hard constraints (a set of feature value
pairs), soft constraints (subject to partial matching), and a set
of chunks as cues that spread activation. Thus, modelers gain
better control over the context of the retrieval. In ACT-R,
buffer contents that can spread erroneous activation have to
be tightly controlled (or parameterized) in order to prevent
unwanted misretrievals. In ACT-UP, assumptions about con-
text elements for each retrieval are explicitly specified. Thus,
ACT-UP currently forgoes some ACT-R constraints:

• strict harvesting (automatic buffer clearing and learning as
chunks): chunks are learned explicitly

• all-encompassing spreading activation (all buffers may
spread activation): cues are specified during retrieval in
ACT-UP

• unselective partial matching (the full retrieval request is
matched partially): ACT-UP retrieval distinguishes hard
and soft constraints

To see a typical chunk creation, retrieval and learning cycle,
suppose the model knows initially, via declarative memory, a
fact such as the lawyer is in the dungeon:
(learn-chunk (add to DM)

(make-fact :name ’l-d-fact (new chunk)
:person ’lawyer
:location ’dungeon))

We can, at model run-time, retrieve and reinforce this chunk:
(let ((fact (retrieve-chunk (retrieve)

’(:location dungeon)))) (constraints)
(if fact (learn-chunk fact))) (reinforce)

Key memory processes such as base-level learning and de-
cay, cue-based memory retrieval, partial matching and their
parametrization are equivalent to ACT-R 6. Also available
are associative learning as in ACT-R 5 (Anderson, 1993) and
Blending (Wallach & Lebiere, 2003). ACT-UP models may
define a chunk type hierarchy, and they may derive data struc-
tures from chunk types in an object-oriented fashion.

Procedural skills
ACT-R defines procedural rules as fine-grained instructions
of the form If the buffers contain certain values, then change
their values according to another template. ACT-UP is sit-
uated at a higher level of abstraction. Modelers may spec-
ify complex rules that define sequences of actions and pre-
conditions, similar to a Lisp function. Production rules are

not usually evaluated in parallel, unless the modeler relies on
utility learning to model effects through reinforcement learn-
ing. ACT-R’s utility learning boosts the likelihood of success-
ful productions being chosen in cases of ambiguity (multiple
productions match). ACT-UP allows models to define rules
and explicitly group them in competition sets. ACT-UP can
chose a rule from a competition set. Rewards are explicitly
back-propagated as in ACT-R 6 in order to let a model learn
which rules lead to desirable outcomes. Thus, the production
rule conflict sets used in ACT-R are made explicit in ACT-
UP rather than being represented implicitly through overlap
in production conditions. Routinization effects, where re-
trievals from declarative memory are side-stepped through
specialized, acquired rules, can also be modeled in ACT-
UP (the analogous ACT-R mechanism is production compi-
lation). ACT-UP’s rules consume simulation time (50ms by
default), even though the precise predictions that fall out of
an ACT-R model are lost, where the same cycle time is as-
sumed, but where production rules are tightly constrained. In
line with Accountable Modeling, we propose to fit the exe-
cution duration (within plausible bounds) to the data as free
parameters.

(1) Validity: The Siegler Model
An ACT-UP model implementing the core of an ACT-R
model should result in exactly the same performance results.
To test such consistency of ACT-UP and ACT-R 6, we trans-
lated several ACT-R 6 models to ACT-UP. Here, we show
the Siegler model from the ACT-R 6 tutorial. The model ex-
plains data by Siegler & Shrager (1984), who found patterns
in arithmetic problem-solving in 4-year-olds. In making mis-
takes when answering addition problems, the children often
closely under- or overshot the correct result (2+ 3 = 6), and
their erroneous answers were more frequent and strayed fur-
ther from the target for problems involving larger numbers.
The ACT-R 6 model (following Siegler and Shrager’s model)
explains these data using a combination of partial matching
and base-level activations in memory retrieval of arithmetic
facts. Similarity between numbers is proportional to their
absolute difference, so that close answers may be retrieved
(2+3 = 5). Base-level activations for more frequent addition
facts with lower results are higher, leading to more erroneous
retrievals and more often for facts involving larger numbers.

The ACT-R 6 model implements a number of determinis-
tic steps: aural presentation, encoding of the numbers, and
decoding of the result. The ACT-UP model underspecifies
these, as they do not contribute to the variance in the data.
The key processing step of the model, the retrieval of arith-
metic facts from memory, is accomplished by the following
high-level function:
(defrule test-fact (arg1 arg2)

(let ((fact
(retrieve-chunk (retrieve)

’(:chunk-type plus-fact) (hard constraints)
nil (no retrieval cues)
(list :addend1 arg1 (soft

:addend2 arg2)))) constraints)
(if fact (plus-fact-sum fact)))) (extract sum)

Model initialization sets base-levels and similarities (in 24
lines of Lisp code), using function calls largely compatible
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Figure 1: The Siegler and Shrager (1984) data, showing the
three distributions of subject’s answers to the arithmetic prob-
lems 1+1, 1+2 and 3+3, and the simulation results of the
model implemented in ACT-R 6 and ACT-UP.

with ACT-R 6. Four architectural parameters are set equally
in both variants (retrieval threshold, transient noise, base-
level learning (off), and mismatch penalty coefficient).

Both model variants achieved the same correlation (0.966
in ACT-R 6 vs. 0.968 in ACT-UP) and mean deviation (0.053
vs. 0.052) with the data (1000 runs). Figure 1 shows the dis-
tribution of the subjects’ answers to three of the six prob-
lems and demonstrates that the predictions of ACT-UP match
closely those of ACT-R 6.

(2) Scalability: A Model of Language Evolution
A multi-agent model was implemented to reflect the emer-
gence of a domain language common to a group of agents
after repeated, goal-oriented interactions (Reitter & Lebiere,
2009). In the Pictionary games of the empirical study pro-
viding data for this modeling exercise, each participant had to
convey given meanings via drawings (without words) to an-
other participant. In this model, a language was defined as a
set of concept-representation pairs, where a concept was one
of 20 target concepts (e.g., hospital), and the representation
consisted of three drawings of concrete objects (e.g., build-
ing, ambulance, syringe). For novel concepts, the model drew
from an ontology (graph with weighted associations) linking
concepts to related drawings; relatedness was inferred from
co-occurrence information in a large text corpus. Known
concept-representation pairs were stored in declarative mem-
ory. Prototyping the model in ACT-R 6 proved difficult for
several reasons. The model was complex, and possible exe-
cution paths through the approximately 40 production rules
were not evident. Further, the model needed many iterations
to show convergence. Parallelization between eight agents
and repeated model execution (without reset) was difficult
to achieve for technical reasons. We estimate the expended
time to be around two person-months. The prototype’s re-
sults never approached an acceptable fit with the data on a
qualitative or quantitate level.

A functional prototype of the model using an initial version
of ACT-UP was developed in less than two weeks with the

benefit of a task well understood. We focused on plausibil-
ity within the ACT-R theory: No data structures were held in
memory beyond what could be stored in a buffer; the domain
language used declarative memory as intended. Production
rules were abstracted using loops, conditionals and ACT-UP
commands, owing to the fact that skill acquisition was not
part of the model. The model was split up into several func-
tions which could be individually inspected and tested (e.g.,
“draw”, “recognize”). ACT-UP functions were used to in-
spect the activation of target chunks at retrieval times (base-
level, spreading activation) and export those to be visualized
along a time-line. With this model, we were able to establish
good qualitative empirical correspondence with data from ex-
periments that compared a small community of eight partic-
ipants interacting in changing pairs, to a set of participants
interacting in four one-on-one dyads.

Recently, the model scaled well to multi-agent simulations
with 1000 agents and 84 million game interactions (two state-
ful agents, one concept per game) in about 36 CPU hours.
Further work is planned to evaluate scalability to memory-
intensive long-term tasks.

(3) Efficiency: A Sentence Production Model
The third case study involves a model that was implemented
in both ACT-R 6 and in ACT-UP. It involves a model of
sentence production (Reitter, 2008), focusing on the syntac-
tic process, and explaining syntactic priming data that show
that subjects are more likely to choose one syntactic variant
over another if that variant was presented as a prime (“The
girl gave the dog a bone” vs. “The girl gave a bone to the
dog.”). The model begins with a simple semantic representa-
tion (Verb: <give>, Agent: <girl>, Theme: <bone>, Goal:
<dog>). Beginning with the verb, it chooses words and their
syntactic forms describing how those words can combine (the
verb has two forms, yielding the two variants above). Base-
level activation of the appropriate syntactic chunks held in
DM and spreading activation from the meaning as described
above determine which form of sentence is produced. Base-
level learning and associative learning (in ACT-UP only) lead
to a range of priming effects.

The ACT-R 6 model consists of 30 productions, 7 chunk
types, and a variable number of chunks that are created for
each word and for several syntactic forms. The ACT-R 6 pro-
duction rules resulted in 720 lines of code. Base-level activa-
tions and associations between words and syntactic forms are
initialized programmatically from a corpus of spoken, tran-
scribed and syntactically parsed English. The model was
evaluated according to its qualitative and quantitative predic-
tions of syntactic priming effects using a small number of
sample sentences. As in the empirical data, syntactic priming
depends on the frequency of syntactic constructions and the
distance between target sentence and prime.

Studies also show that syntactic priming is much increased
when lexical material in the sentence is repeated between
prime and target. The model postulated that this was due
to learning of associations between lexical or semantic and
syntactic chunks–a suggestion that was tested empirically in
terms of its theoretical predictions, but associative learning
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was not available to the ACT-R 6 model. Consequently, the
sentence production model and various initialization and sim-
ulation functions were formulated in ACT-UP over the course
of about 3 eight-hour workdays. The core function encoding
procedural knowledge (sequences of retrievals, conditionals,
a loop) has 82 lines of code.2 The resulting model explained
the data including the lexical repetition effect.

In head-to-head comparison, the ACT-R 6 model runs at
a speed of 14 sentences per second. The ACT-UP variant
produces 380 sentences per second, despite being more spe-
cific than necessary to explain the data.3 This purely technical
speed-up translates to a substantial advantage for the modeler:
not only is the debugging and experimentation cycle consid-
erably faster, but larger models of more realistic tasks can
be run in larger multi-agent simulations, thereby significantly
extending the applicability of cognitive models.

(4): Extensibility and Rapid Prototyping: the
Dynamic Stocks&Flows Model

The fourth model is another case of rapid prototyping. It illus-
trates how we could quickly implement a well-documented
approach to graded decision-making. Instance-based learn-
ing (IBL, Gonzalez et al., 2003) stores episodes encoding
past decisions and their observed performance in declara-
tive memory. Retrieval then blends those episodes together,
weighing their recency and frequency in line with ACT-R’s
base-level learning and partial matching.

In an entry (Reitter, 2010) to the Dynamic Stocks&Flows
modeling challenge4, IBL was used in two ways. The task in
this challenge had subjects extrapolate the change in a given
quantity from previous observations. Change rates could be
steady (the quantity following a linear function) or harder to
predict, including non-linear changes or discontinuous and
noisy sequences. IBL modeled the participant’s estimates of
the change rate and the future value of the quantity. Care-
ful analysis of empirical data showed an interesting pattern:
variability often suddenly decreased after about 20 iterations
of the task; depending on subject and change function, vari-
ability could be grouped into very low and higher pools: sub-
jects were highly precise, or not precise at all. This led to
the second use of IBL: a metacognitive layer, which allowed
the model to monitor its performance at the task and choose
from one of several strategies. Some of these strategies led to
precise estimates of the quantity through mental arithmetic,
and other strategies used IBL, as described above, to make an
educated guess.

The model used declarative memory for its core trans-
action: declarative chunks store the quantity estimates and
the performance monitoring episodes. Blending of stored
episodes is implemented (and available) at the ACT-UP level.

2The relatively faithful translation means that we do not fully
follow Accountable Modeling: the model is overly specific.

3Both models keep a similar-size declarative memory, require
similar retrievals; ACT-UP adds associative learning. Both mod-
els were run in the same LISP environment, without debug output.
ACT-R 6 tracing and logging were off, decision tree building on.
Optimized learning for ACT-UP and ACT-R 6 at 3 chunks.

4 www.hss.cmu.edu/departments/sds/ddmlab/modeldsf/

One free parameter in the model specified the duration of cal-
culations and the wait time between iterations (an underspec-
ified model component); we fitted the parameter from avail-
able subject data. The results were plausible given the exper-
imental design. Other parameters were held at their ACT-R
defaults; blending parameters were optimized. The model
won the challenge by best predicting transfer performance
to a set of unknown conditions, indicating that accountable
modeling has the potential of increasing generalization of
models by focusing on the key processes underlying perfor-
mance. The same model was later run in an extensive param-
eter exploration exercise, in which selected architectural and
model parameters were systematically varied, with millions
of model runs on a computing cluster (Gluck et al., 2010).
The exploration included a manipulation that switched indi-
vidual strategies on and off.

The DSF model exemplifies Accountable Modeling
through the decision to not describe the visual and motor in-
teraction with the experiment. While a portion of the data
might have been explained by the subject’s use of the graph-
ical user interface, neither timing, eye-tracking or mouse
movement data were available for validation. Thus, the model
underspecifies motor and sensor components.

(5) Reusability: Lemonade Game Agent

The final test case illustrates the re-use of model components.
We used a cognitive model in ACT-UP to explore the perfor-
mance of metacognition in a multi-agent game competition5.
The DSF challenge model (Reitter et al., 2010) provided the
metacognitive layer choosing one of multiple strategies. The
model plays a location game (Lemonade Stand), where the
optimal choice of strategy depends on the strategies played
by the two opponents. We designed a metacognitive model
that chooses from a wide range of elementary prediction and
action strategies based on their track record. The metacogni-
tive model always outperforms all single-strategy models we
implemented in a round-robin tournament. The metacogni-
tive layer only had to be minimally adapted: the core func-
tions for learning and blending retrieval were identical; only
the task-specific objective functions were redefined. ACT-UP
suggests useful compartmentalization: its functions take a set
of arguments and return a value; they are intended to be side-
effect free apart, of course, from changes to the state of the
model. As a consequence, they are reusable in new contexts.

The Lemonade Game agent is not a classical cogni-
tive model, explaining existing empirical data. Instead, its
metacognitive layer generates predictions. Not all individ-
ual strategies are formulated fully within the theory; thus, we
demonstrate a way to combine cognitive and purely algorith-
mic models. Difficulties arose when the model was readied
for submission to a competition, which required Java: in such
cases, we got the best use of ACT-UP as a prototyping tool,
but had to re-implement the model once validated.

5tech.groups.yahoo.com/group/lemonadegame/
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Discussion

Most importantly, we want to propose a modeling paradigm
that institutionalizes what is often already the case whenever
cognitive models depend on the combination of just a few,
specific properties of the architecture. A series of case stud-
ies provided the basis for our introduction to ACT-UP. We
demonstrated the use of ACT-UP in high-fidelity models with
up to 1000 parallel agents; we showed cases of rapid proto-
typing and of the re-use of model components. Quantitative
predictions of ACT-UP parallel those of ACT-R.

The models are intended to integrate within one architec-
ture. The emergence of more complex, perhaps unexpected
behavior then follows from the reuse and combination of
models that describe behavior in much more complex, per-
haps even realistic environments. ACT-UP models are in-
tended to be underspecified where data cannot account for
the specific claims encoded by the model. Such a modeling
paradigm appears not only sensible (as it is evidence-based):
it also supports scaling up modeling efforts and extending
them to new applications. Architectural flexibility is gained
through liberal combination of components, not unlike what
was proposed by Cassimatis (2002).

Are such models still models of cognitive processes, or are
they merely computer programs? First, the execution direc-
tives (Lisp clauses) specify the model at a higher level than
do production rules: both can be seen as computer programs.
Importantly, production rules can implement any algorithm,
and could, thus, be derived from the ACT-UP model. Thus,
ACT-UP models are not theoretically more powerful. Sec-
ond, temporary storage of variables and even complex data
structures enables the modeler to write implausible ACT-UP
models, just like large buffers provide a way to exceed what
is cognitively believable. Plausibility is not guaranteed unless
modeler discretion is entirely removed, which has not been
accomplished under any implementation of the theory. Third,
ACT-UP’s and ACT-R’s longer-term storage model (chiefly
declarative memory) is an example of strong constraints on
what a modeler can do in these formalisms, as opposed to a
non-cognitively motivated program.

Conclusion

We see the current state of ACT-UP as an experimental step
to scale up cognitive modeling and extend its areas of ap-
plicability. Much work remains to be done. Perceptual and
motor components are not yet completed, and parallelism as
in ACT-R as well as in its multitasking variant Salvucci et
al. (2009) is desirable. The combination of pattern recog-
nition algorithms with ACT-UP may provide for a plausible
implementation of the IF part of production rules, possibly
to automatically bootstrap and optimize models from sample
runs. Larger-scale, long-term simulations will show the lim-
its of the architecture. Still, the wide variety of test cases
presented demonstrates scalability w.r.t. modeling effort and
computations, and has taken a step towards the integration of
high-fidelity cognitive models in complex cognitive systems.
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Abstract 

A prototypical cognitive architecture defines a memory 
architecture embodying forms of both procedural and 
declarative memory, plus their interaction.  Reengineering 
such a dual architecture on a common foundation of graphical 
models enables a better understanding of both the substantial 
commonalities between procedural and declarative memory 
and the subtle differences that endow each with its own 
special character.  It also opens the way towards blended 
capabilities that go beyond existing architectural memories. 
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The distinction between procedural and declarative 
knowledge plays a central role in many cognitive 
architectures.  ACT-R has long embodied distinct rule-based 
procedural and fact-based declarative long-term memories 
(Anderson, 1993).  Early work with Soar instead leveraged a 
single rule-based long-term memory to support both 
procedural and declarative knowledge, with rules directly 
encoding procedures while also providing access paths to 
facts stored in their actions (Rosenbloom, Newell & Laird, 
1991).  Yet, Soar 9 has now followed ACT-R’s lead, and in 
fact gone beyond it with distinct declarative memories for 
semantic and episodic knowledge (Laird, 2008). CLARION 
embodies the distinction in two different manners (Sun, 
2006). It has a procedural Action Control System for 
controlling action and a declarative Non-Action Control 
System for general knowledge, but it also has a crosscutting 
distinction between explicit and implicit knowledge that 
applies to both of these modules and the whole architecture. 

As part of an effort to investigate whether the potential of 
graphical models (Koller & Friedman, 2009) to unify signal, 
probability and symbol processing will enable development 
of simpler yet broader architectures than are seen today 
(Rosenbloom, 2009a), a new memory architecture with both 
procedural and declarative memories – but as yet without 
learning – has been implemented via a common graphical 
substrate.  Guided by the functionality embodied in ACT-
R’s and Soar 9’s long-term memories, the hopes for this 
implementation were to (1) achieve a straightforward 
mapping of these disparate memories onto the substrate, 
resulting in (2) a simpler and more uniform memory 
architecture, (3) embodying a blended functionality that can 
(4) exceed existing memory capabilities.  The goal was not 
to model specific results from human memory research, but 
to understand the implications of graphical implementation 
and unification on such memory architectures. 

Results to date have yielded a new blended memory 
architecture that is of interest for both the commonality 
among these memories that it leverages and the subtle 
differences among them that it exposes.  The differences get 
at some of the most fundamental distinctions between 
procedural and declarative knowledge while continuing to 
drive research on their further unification.  The next three 
sections describe the implemented memory architecture 
along with the commonalities it leverages; the differences 
this architecture reveals between procedural and declarative 
memory, as well as, as a bonus, those among different 
flavors of declarative memory; and what has been yielded so 
far in terms of blended functionality and new capability.  
The final section summarizes and looks to the future. 

Memory Architecture 
ACT-R and Soar 9 each embodies a procedural memory for 
rules plus a declarative (semantic) memory for facts.  Soar 9 
also goes a step further, implementing a second distinct 
declarative (episodic) memory for past history. Although 
ACT-R does not implement a separate episodic memory, 
there is work on how its existing mechanisms can yield 
comparable behavior (Sims & Gray, 2004).  The focus here 
is on uniformly implementing all three of these long-term 
memory functionalities – one procedural and two 
declarative – via a common graphical substrate. 

The memory architecture is built on top of a graph layer 
based on factor graphs and the summary product algorithm 
(Kschischang, Frey & Loeliger, 2001).  Factor graphs are 
varieties of graphical models, like Bayesian networks, but 
enabling efficient computation with arbitrary multivariate 
functions by decomposing them into products of simpler 
subfunctions when suitable forms of independence exist; 
e.g., F(a,b,c) might decompose to F1(a,b)F2(b,c).  The 
reduced computation then maps to a bipartite graph in which 
there are variable nodes for variables and factor nodes for 
subfunctions (Figure 1). A variable node is linked to a factor 
node when the former’s variable is used by the latter’s 
function.  The summary product algorithm passes messages 
along these links until quiescence is reached, with each 
message providing information about the possible values of 
the variable on the link.  Each node computes its output 
messages by combining its incoming messages, plus its 
function if it is a factor node.  The result is an inherently 
local computational model that can compute global results 

Figure 1: Factor graph for F(a,b,c)=F1(a,b)F2(b,c). 
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across the cycles of message passing leading to quiescence, 
and that leverages independence for efficiency.  It bears a 
relationship to neural networks, but combines additional 
breadth in some areas with more constraint in others. 

The summary product algorithm is most often used to 
compute variable marginals, integrating information from 
across the graph to determine which values are legal, and 
what weights or probabilities are associated with them. 
When computing marginals, the algorithm typically uses 
sum for summarization, yielding the sum-product variant.  
When it is preferable to compute the maximum a posteriori 
(MAP) estimation – that is, the single most likely 
combination of values over all of the variables – max is used 
instead, yielding max-product.  The graph layer here 
defaults to marginals (and sum), but can also compute MAP 
estimations and employ max when appropriate. 

This graph layer is a reimplementation of the one 
developed in (Rosenbloom, 2009a) for rule match, with 
improvements in functionality, generality, and efficiency.  
The biggest change generalizes the representation for factor 
functions and messages from N dimensional Boolean arrays 
to N dimensional continuous functions (approximated as 
piecewise linear functions over rectilinear regions, as in 
Figure 2).  Instead of just supporting symbol processing, 
this representation has the potential to support: continuous 
information for perception, imagery, and motor control; 
discrete distributions for uncertain information; and symbols 
for general reasoning. Starting from the continuous base, 
discrete distributions require discretizing variable domains; 
for example, breaking up the real line into unit segments, 
one per integer.  Symbols then arise when the ranges of 
discrete variables are restricted to 0/1.  A symbol table has 
also been added to map between unit segments and arbitrary 
symbols, but it is only for ease of programming and has no 
effect on the workings of the summary product algorithm. 

 
y\x [0,10> [10,25> [25,50> 

[0,5> 0 .2y 0 

[5,15> .5x 1 .1+.2x+.4y 

 
Figure 2: Example (2D) piecewise linear function. 

 
To implement the memory architecture, a memory layer 

was built on top of the graph layer that reifies a distinction 
between long-term and working memory, as in both ACT-R 
and Soar 9.  Long-term memory structures compile into 
subgraphs that both store and access the knowledge.   
Working memory compiles into functions in peripheral 
factor nodes that remain fixed within a single cycle of 
memory access – i.e., within a single settling of the graph – 
but can be altered between cycles. 

Long-term memory structures are specified at the memory 
layer as conditionals, generalized rules combining patterns 

and a function. Each pattern has a predicate plus one or 
more arguments specifiable as constants or variables; e.g., 
Object(s,O1) is a pattern with predicate Object plus 
the variable s (for states) and the constant O1 (an object) as 
arguments.  A pattern compiles into a linear graph structure 
that has a working-memory node at one end, a variable node 
at the other (for legal values of the pattern’s variables), and 
factors that test pattern constants in between.  This fragment 
corresponds to part of an alpha network in the Rete match 
algorithm, with the variable node acting as an alpha memory 
(Forgy, 1982).  The big difference though is that in Rete 
messages always flow from working memory to the alpha 
memory.  Here, messages can flow in either or both 
directions.  As in Rete, the flow is away from working 
memory for conditions (Figure 3), but the flow is towards 
working memory for actions.  Condacts – a neologism for 
conditions and actions – are patterns for which the flow is 
bidirectional. A single conditional can have any 
combination of conditions, actions and condacts. 

Patterns are combined into conditionals by a network of 
factor nodes that test equality of variable binding across 
patterns, plus variable nodes that represent combinations of 
variables across patterns.  This portion of the factor graph 
corresponds to Rete’s beta network, in which partial 
instantiations are joined to yield full rule matches.  
However, here the beta network connects conditions, 
actions, and condacts though bidirectional message flow. 

Functions, when included, are defined over condact 
variables, and lead to new factor nodes that link with these 
variables. Functions can represent probability distributions 
over the cross products of the domains of condact variables, 
as is typical in many graphical models, but they also can 
represent other numeric and Boolean functions. 

The conditional in Figure 4 uses a condition, a condact, 
and a function to define a prior distribution over the concept 
associated with object O1 in the current state.  Object O1 
can be a walker, a table, a dog or a person, each with its own 
prior probability.  The variable in square brackets (α1) is a 
pattern variable.  When multiple patterns, possibly across 
multiple conditionals, share a pattern variable, they compile 
to the same variable node within the graph.  This enables 
chaining and local bidirectional communication among 

Figure 4: Concept prior over object O1. 

CONDITIONAL ConditionPrior 
   Condition: Object(s,O1) 
   Condact: Concept(O1,c) [α1] 
Walker Table Dog Human 

.1 .3 .5 .1 
 

Figure 3: Alpha network for condition Object(s,O1).   
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conditionals within a single cycle of memory access, for, 
among other things, correct probabilistic reasoning.  The 
factor graph for this conditional can be seen in Figure 5. 
Messages spread out from all nodes in this graph, following 
the directionality of the arrows.  The primary constraint on 
this computation stems from local factor node functions, but 
as messages propagate, these constraints propagate as well. 

If a conditional just has conditions and actions, it is a rule, 
and can form the basis for a traditional procedural long-term 
memory.  Figure 6 shows a conditional defining a simple 
rule that performs a transitive computation.  As with the 
earlier graph 
layer, match 
time per rule 
here has a 
worst-case 
bound that is 
exponential in 
the treewidth of 
the rule rather than the number of conditions.  

If a conditional only has condacts, we have symmetric 
flow among all of its patterns, and the basis for a declarative 
memory.  Figure 7 shows a conditional (including part of 
the function) for a distribution over the weight of object O1 
given its concept.  The Concept condact compiles to the 
same graph node created for it in conditional 
ConditionPrior (Figure 4).  The function partitions the 
weight (in pounds) into a finite number of classes and 
assigns a linear function to each rectangular region defined 
by the cross product of the weight class and the concept.   

A rule-based procedural memory consists of condition-
action conditionals, such as the one in Figure 6. Given just 
this rule, the graph contains 7 factor nodes and 9 variable 
nodes.  Match requires 47 messages to complete irrespective 
of the number of matching elements, since each message 
includes information about all matches.  However, more 
matches may mean more calculation per message, yielding 5 
ms elapsed time for one match and 16 ms for two. 

A semantic memory implemented along the lines of 
Anderson’s (1990) analysis of categorization and feature 
prediction includes conditionals for prior probabilities of 
concepts – such as the one in Figure 4 (although possibly 
without the condition) – and conditional probabilities of 
object attributes given concepts, as in Figure 7.  By linking 
these conditionals through the concept’s pattern variable, an 
object’s cued features can yield a posterior distribution over 
its concept – based on conditional probabilities of cued 

features plus the prior probability of the concept – and this 
posterior concept distribution can then combine with the 
conditional probabilities of uncued features to generate 
probabilistic predictions of their values, all within a single 
memory cycle.  In the particular example used, in addition 
to the continuous weight feature, there is one discrete 
numeric feature (legs) plus three symbolic features (color, 
alive, mobile).  The graph comprises 47 factor nodes and 47 
variable nodes.  Given the cue that the color is silver, 
quiescence is reached after 634 messages, requiring 100 ms.  
It predicts that the concept is walker because almost all 
walkers are silver while only a small fraction of dogs and 
tables are.  It also predicts that the cued object is mobile, not 
alive, has four legs and weighs 10 pounds. 

In Soar 9, episodic memory retrieves the most recent 
episode that best matches the cue, effectively acting as a 
temporal instance-based semantic memory.  This can be 
implemented much like semantic memory, but with 
alterations for recency and for retrieving the single best 
episode given a cue rather than predicting the most likely 
features given the cue.  For recency, a discrete temporal 
variable replaces the concept variable, with a prior 
distribution that tails off exponentially into the past (Figure 
8).  To retrieve the single best episode, each feature 
conditional specifies the conditional probability of its values 
over the past history, and shares the Time condact with the 
temporal prior (Figure 9).  The implemented example uses 
the same features as the semantic memory, but stores an 
object instance at each time step.  The graph has 46 factor 
nodes and 46 variable nodes.  Given the cue that the concept 
is human, it takes 433 messages, over 35 ms, to select the 
more recent of the two humans seen (at time step 3). 

The straightforward implementation of these three 
varieties of long-term memory via the memory layer goes a 
long way towards realizing the first hope stated up front.  In 

Figure 5: Factor graph for conditional in Figure 4, with a condition (Object), a condact (Concept), and a function. 

Figure 6: Transitive rule. 

CONDITIONAL Transitive 
   Condition: Next(a,b) 
              Next(b,c) 
   Action: Next(a,c) 

CONDITIONAL ConceptWeight 
   Condact: Concept(O1,c)[α1] 
            Weight(O1,w)[α2] 

w\c Walker Table … 
[1,10> .01w .001w … 
[10,20> .2-.01w “ … 
[20,50> 0 .025-

.00025w 
… 

[50,100> “ “ … 
 

Figure 7: Conditional probability of weight given concept.  
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comparison to the earlier implementation of just a rule-
based procedural memory, there is additional complexity 
here in extending rules to conditionals, and in moving from 
symbolic to continuous values, but then very little more is 
needed to implement these particular variants of procedural, 
semantic and episodic memories.  With respect to the 
second hope’s appeal to simplicity and uniformity, there is 
indeed much in common across the implementations of 
these three memories: they all build on the distinction 
between working memory and long-term memory; long-
term memory is uniformly represented as conditionals that 
compile into factor graphs, while working memory is 
encoded as evidence in peripheral factor nodes; and memory 
access is cued by working memory through the application 
of the summary product algorithm to the resulting graph. 

One difference of note between this implementation and 
Soar 9 arises from Soar’s ability to perform multiple cycles 
of procedural (rule) access within a single decision cycle, 
but only one cycle of declarative (semantic or episodic) 
access.  The memory architecture here is instead limited to 
just one cycle of memory access per decision cycle for both 
declarative and procedural knowledge.  In (Rosenbloom, 
2009b), early experiments with graphical models led to the 
hypothesis that global computation in Soar should only 
happen over a full decision cycle rather than once per rule 
cycle, and that Soar was thus inconsistent in allowing global 
access to working memory each rule cycle.  The current 
implementation abides by this constraint; however, using 
pattern variables still allows chaining of rules within a 
decision cycle, but now based on local communication 
between actions of earlier rules and conditions of later ones. 

Differences 
The most obvious difference between the implementations 
of procedural and declarative memory is the use of 
conditions and actions in procedural memory versus 

condacts in declarative memory.  At the graph level this 
reduces simply to the directionality of information flow in 
the alpha networks, but it does yield a qualitative difference 
at the memory level.  With unidirectional information flow, 
rules predefine what are to be the cues for retrieval 
(conditions) and what is to be retrieved (actions).  This is 
particularly effective for procedures as it enables directional 
if-then programming.  In contrast, with bidirectional 
information flow, both varieties of declarative memory 
dynamically determine at access time what aspects of an 
object are cues and therefore what aspects are to be 
retrieved (i.e., those aspects not cued).  This significantly 
enhances the flexibility of access, but eliminates the 
directionality that is exploited in procedural programming. 

A more subtle difference is whether a closed world or 
open world assumption occurs with respect to working 
memory.  Rule-based systems use the former, assuming that 
anything not in working memory is false.  The use of 
negated conditions depends on this assumption, as does the 
ability to keep working memory small and focused.  On the 
other hand, declarative memories – and most logical and 
probabilistic models – use an open world assumption, that 
the truth of anything not explicitly in evidence is unknown.  
This enables values that are unknown prior to memory 
access to be retrieved/predicted by condacts during such 
access.  With a closed-world assumption, this becomes 
impossible because any values not explicitly true prior to 
access would be set to false, leading to a conflict with any 
attempt to make a positive predication during access.  Rules 
avoid this problem because their retrievals/predictions occur 
non-monotonically at the end of the access cycle, by actions 
that don’t examine working memory during the cycle.   

This difference is realized in the graph layer by declaring 
individual predicates to be closed or open world when they 
are defined; an idea adopted, along with the use of 
predicates, from earlier experiments with Markov logic 
(Domingos & Lowd, 2009) as a general implementation 
level for architectures (Rosenbloom, 2009b).  Closed-world 
predicates are primarily used in conditions and actions and 
open-world predicates in condacts. 

A third difference concerns whether memory access 
retrieves all cued results or only the best result.  In Soar 9’s 
rule-based procedural memory, all combinations of bindings 
of condition variables to working memory constants yield 
rule instantiations that fire in parallel.  In contrast, cuing of 
either semantic or episodic memory should return only the 
best result.  At the graph layer, this difference is interpreted 
in terms of distinct types of variable domains.  When only 
the best result is desired, the variable’s domain is declared 
unique, and messages about it are normalized to sum to 1.  
This yields a distribution over the variable’s domain 
elements for the probabilities that they are to be retrieved.  
When all results are to be returned, the variable domain is 
declared to be multiple, and its messages are not normalized.  
In such cases, each domain element acts roughly as its own 
Boolean variable, with a value of 1 if it is to be retrieved 
and 0 otherwise; thus encoding all bindings of the variable 

CONDITIONAL TimePrior 
 Condact: Time(t) [α3] 
 

0 1 2 3 4 
0 .032 .087 .237 .644 

 
Figure 8: Exponentially decaying, discrete, temporal prior. 

CONDITIONAL TimeConcept 
 Condact: Time(t) [α3] 
     Concept(O1,c) 
 
t\c Walker Table Dog Human 
1 1 0 0 0 
2 0 0 0 1 
3 0 0 0 1 
4 0 0 1 0 
 

Figure 9: Conditional probability of concept given time. 
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in each message. The summary product implementation 
then uses max to summarize over multiple variables, even 
when marginalizing, bounding the result above by 1. 

These three differences – (1) the directionality of 
information flow in alpha networks, (2) a closed-world 
versus open-world assumption, and (3) unique versus 
multiple variables – jointly distinguish procedural from 
declarative memories in this implementation.  Of these, the 
first appears to be the most fundamental, to the point where 
it justifies an explicit hypothesis that such a difference will 
always be found in comparing procedural and declarative 
memories.  The other two are less clear.  It may be possible, 
for example, to build an effective procedural memory based 
on an open-world assumption.  If so, the second difference 
would not then be essential.  Likewise, if an effective 
procedural memory can be based on returning only the best 
result – more like how rules work in ACT-R than in Soar 9 
– the third difference may not be essential. 

In addition to the differences just identified between 
procedural and declarative memory, three differences of 
note also showed up between the two implemented flavors 
of declarative memory: semantic and episodic.  First, 
semantic memory searches for the most likely value for each 
attribute of an object individually – by marginalizing via 
sum-product – while episodic memory instead computes 
MAP estimation via max-product to retrieve the most 
appropriate single episode (where all of an episode’s 
attributes jointly contribute to determining its 
appropriateness).  Second, the probabilities of features in 
semantic memory are conditional on the concept while in 
episodic memory they are conditional on the time.  Third, 
semantic memory is based on a general probabilistic 
representation of the values of attributes (see Figure 7), 
while episodic memory is based on the history of specific 
instances actually experienced (see Figure 9). 

As with the differences between procedural and 
declarative memory, the first difference here appears to be 
fundamental, at least given this form of semantic memory.  
The other two differences appear less fundamental.  It is 
possible, for example, to implement an instance-based 
semantic memory where the concept is just another feature.  
Sum-product can then dynamically compute more general 
feature distributions by summarizing over these instances. 
Interestingly, when max-product is used instead, the 
individual object that best matches the cues is retrieved, 
yielding something more like the semantic memory 
implemented in Soar 9.  One intriguing implication is that 
the causative difference between generalization and 
analogy/CBR/nearest-neighbor may reduce to whether sum-
product or max-product is used over an instance-based 
memory.  The former generalizes over all instances, while 
the latter retrieves the single best instance. 

Blended Functionality and New Capabilities 
Beyond the three memories implemented above, the 
flexibility of the conditional representation enables blending 
of functionality across these memories (hope three) plus 

new capabilities beyond them (hope four).  Blending arises 
from the flexibility with which conditions, actions, condacts 
and functions can combine within individual conditionals, 
plus the flexibility with which multiple conditionals can 
interact within long-term memory. 

Conditionals by themselves enable combining procedural 
and declarative functionality within individual memory 
units.  Semantic memory provides a good example.  In 
addition to condacts and a function, each conditional can 
also include a condition that matches multiple objects in 
working memory.  The prior is then represented by a 
conditional similar to the one in Figure 4, but with the 
constant O1 replaced by a variable.  The individual feature 
conditionals then resemble Figure 7, but with the condition 
added and the variable substituted (Figure 10).  Like Soar 9, 
there is still a limit of one cycle of semantic memory 
retrieval per cycle of memory access – if quiescence of 
message passing in summary product is mapped onto 
quiescence of rule firing in Soar 9 – but unlike Soar 9, 
features of many objects can be predicted in parallel within 
this single cycle of memory access. 

Other forms of within-conditional blends are also 
possible, such as combining conditions, actions and 
functions to yield weighted rules.  Beyond this, to blend 
functionality across conditionals requires communication 
across conditionals that nominally belong to different 
memories, either via pattern variables within a single cycle 
of memory access or through working memory across 
cycles.  The rule in Figure 11, for example, uses pattern 
variables to access the results of Figure 7’s semantic 
retrieval, and generates a new ConceptWeight predicate.  
This also exploits within-conditional blending, but here in 
service of across-memory interaction. 

Further work will be required to fully understand the 
range of capabilities this memory architecture might yield, 
and what the implications might then be for cognitive 
modeling.  But at least one major new memory capability –
for constraints – has already become apparent.  Constraints 
are structures that specify restrictions on values assigned to 
variables (Dechter, 2003).  Given a set of variables with 

CONDITIONAL ConceptWeightRule 
   Condition: Object(s,o)[α4] 
   Condact: Concept(o,c)[α5] 
            Weight(o,w)[α6] 
   Action: ConceptWeight(c,w) 

Figure 11: Accessing semantic memory results in a rule. 

CONDITIONAL ConceptWeightGeneral 
   Condition: Object(s,o)[α4] 
   Condact: Concept(o,c)[α5] 
            Weight(o,w)[α6] 

Figure 10: Conditional distribution for semantic memory 
with condition to match objects (shown without function). 
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well-defined domains, and a set of constraints over these 
variables, constraint satisfaction determines which 
combinations of domain values are consistent with the 
constraints.  Constraints are like rules in yielding all 
combinations of variable bindings, but like declarative 
memory in their flexibility of access, and thus in their use of 
condacts and an open world assumption.  Figure 12 shows a 
constraint for the two-color problem, implemented via 
condacts and a Boolean function. The pattern variables for 
the two regions are shared with other constraints over those 
regions to enable appropriate propagation over the whole 
network during message passing. Although not a common 
form of long-term memory in cognitive architectures, except 
in neural systems based on “soft” constraints (Ackley, 
Sejnowski & Hinton, 1985), constraints do play a significant 
role in a variety of AI systems and languages. 

Summary 
Basing a memory architecture on the uniform breadth of 
graphical models has enabled straightforward construction 
of four distinct memories: a rule-based procedural memory, 
semantic and episodic declarative memories, and a 
constraint memory that is functionally a hybrid between the 
two.  These implementations reveal significant commonality 
among these memories, but also subtle differences.  Of the 
differences, unidirectional versus bidirectional message 
passing appears to be most fundamental when comparing 
procedural and declarative memories, while marginalization 
versus MAP estimation appears to be most fundamental 
when comparing semantic and episodic memory. 

Implementing memories in this manner also enables 
blending capabilities across memories and creating new 
unanticipated kinds of memories, such as a constraint 
memory.  This general approach holds the promise of 
extending beyond memory architecture to full cognitive 
architectures with mechanisms for decisions, learning, and 
perceptuomotor behavior.  The hopes for this larger effort 
would be to derive a better understanding of: the diverse 
mechanisms involved, including their commonalities and 
differences; how they can and should work together; and 
how to go beyond the kinds of combinations currently seen 
to simpler yet more comprehensive cognitive architectures. 
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CONDITIONAL TwoColorConstraint12 
   Condact: Color(R1,c1)[α7] 
            Color(R2,c2)[α8] 

c1\c2 Red Blue 
Red 0 1 
Blue 1 0 
 
    

Figure 12: Two-color constraint between regions R1 & R2.  
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Abstract 

A fan effect experiment where participants perform recall and 

recognition tasks on a study set of sentences with three 

content words was conducted.  The aggregate results confirm 

a fan effect (Anderson, 1974).  A model of the recall and 

recognition tasks was created using Dynamically Structured 

Holographic memory (DSHM).  A comparison to the human 

data is presented.  A discussion of the current resonance based 

mechanisms in DSHM for generating recognition accuracy 

and reaction time data is presented.  This is contrasted with a 

previously employed retrieval based mechanism. 

 

Keywords: cognitive modeling; the fan effect; holographic 

reduced representation. 

Introduction 

The purpose of this paper is to report the results of a fan 

effect style experiment and to demonstrate that these results 

can be captured by Dynamically Structured Holographic 

memory (DSHM).  The experiment conducted was similar 

to the classic fan effect paradigm (Anderson, 1974).   

In Anderson‟s original experiment, participants studied a 

set of sentences that contained two content words: a person 

and a place (e.g., “the hippie is in the park”).  Each content 

word appeared in one, two, or three different sentences.  The 

number of sentences in which a word appears is the fan of 

that word.  Each sentence is assigned a fan, which is the 

sum of the fans of the content words in the sentence.  For 

example, if „hippie‟ appeared in three sentences while „park‟ 

appeared in one sentence, „hippie‟ would have a fan of 

three, „park‟ would have a fan of one, and the sentence „the 

hippie is in the park‟ would have a fan of four.  The results 

of a recognition task performed on the sentences (and an 

equal number of foils) demonstrated that the time required 

to affirm or reject a sentence as a member of the study set 

was correlated with the fan of the sentence. 

The present work extends prior research on the fan effect, 

and models thereof.  We explore the generality of the fan 

effect by examining memory performance for sentences 

with three content terms rather than just two (e.g., 

Anderson, 1974).  Additionally, our sentences had a wider 

range of fans than have typically been studied (or modeled).   

The Three Term Fan Experiment 

Method 

Twenty seven participants (12 males and 15 females: mean 

age 20.0 years, SD = 2.2) were recruited from introductory 

psychology courses a Carleton University to take part in the 

experiment.  Participants received course credit for their 

time.  Participants took part in the experiment one at a time.  

The experiment was divided into three main phases: A study 

phase, a recall phase and a recognition phase.   

In the study phase each participant was assigned one of 

three unique sets of study sentences and was instructed to 

memorize the sentences in the list.  Once the participant 

indicated that he or she was prepared to proceed, the recall 

portion of the experiment began. 

The study set consisted of sixteen sentences of the form, 

“The color thing is in the place”.  The color term was one of 

ten colors; the thing was one of ten house-hold items; and 

the place was one of ten locations in/around a typical home.  

Very typical item/locations combinations, such as 

„comb‟/„bathroom‟, were omitted when generating the study 

set sentences.  Eight terms from each category appeared in 

one study sentence each, while two terms from each 

category appeared in four sentences each.  No two terms 

appeared together in more than one sentence.  For example, 

if “The orange comb is in the garage” was a member of the 

study set, no other sentence in the study set described an 

orange comb, a different colored comb in the garage, or any 

other orange object in the garage.  However, these 

combinations could occur in foil sentences.  

The fan of a sentence is the sum of the fans of the terms 

in the sentence.  Thus, the four possible sentence fans were: 

211



3, 6 9, and 12.  The fan effect predicts that judgments for 

sentences with higher fans should take longer (i.e., have 

higher reaction times) than for sentences with lower fans.  

Additionally, the truth of sentences with a higher fan should 

be recognized with less accuracy than sentences with a 

lower fan.   

Recall Task Method 

Each participant engaged in three iterations of the recall 

task.  Each iteration began with the participant trading the 

study sentences list with the experimenter for a new list of 

sentences identical to the study set, but with one term from 

each sentence replaced with a blank, and the order of the 

sentences randomized.  The participant‟s task was to 

correctly fill-in each of the blanks with the missing word.  

The participant was given as much time as he or she needed 

to do so.  The experimenter then recorded the number of 

correct responses and for each error, provided the correct 

missing word to the participant.  The participant was then 

given the opportunity to review the study set again.  The 

three iterations were balanced such that each term from each 

sentence in the study set was replaced with a blank exactly 

once.  After the third iteration the recognition phase began. 

Recognition Task Method 

The recognition task was conducted on a computer using the 

Experiment Builder software package from SR Research.  

Sentences were presented one at a time, centered on a 17” 

CRT monitor (in black font on a white background). 

Participants judged whether each presented sentence was a 

member of the study set, or not. To respond, participants hit 

either the z-key or the /-key, respectively. Accuracy and 

reaction time were recorded for each trial. After each trial, 

the screen blanked for 1 second, and then the word 

“READY” appeared for 1 second to prepare the participant 

for the next trial. 

The participant was presented with 96 test sentences, 

which consisted of three exposures to each of the study set 

sentences, and 48 foil sentences which were not from the 

study set.  Participants were told that they should consider 

sentences from the study set to be true, while all others 

should be considered false.  Each false sentence was 

generated by replacing one of the three terms from a true 

sentence with another term from the same category (e.g., 

color, thing, or place) and with the same fan.  For example, 

for a true sentence like “The blue hat is in the garage”, one 

false counterpart might be “The green hat is in the garage”.  

Each true sentence was used to generate three different false 

sentences.  Thus, for each exposure of a true sentence there 

was a corresponding false test sentence with the identical 

fan. 

Results 

The data from one participant was excluded from the 

analysis below.  This participant‟s recognition reaction time 

was significantly longer than all the other participants by a 

large margin (P < .001).  The results below reflect the data 

collected from the remaining 26 participants. 

Human Recall Performance 

Performance in the recall task improved, on average, with 

each of three iterations.  Table 1 presents the mean number 

of correct responses (out of 16), the standard deviation, and 

the accuracy measured as a percentage for each of the three 

iterations of the recall phase. 

 

Table 1: Recall accuracy 

  Iteration 

  1 2 3 

Correct (/16) 10.9 13.4 14.6 

SD 3.7 3.1 1.8 

Percentage 68.1 83.8 91.4 

 

This result is important because an intended purpose of the 

recall task was to confirm that the participants had 

memorized the study set before entering the recognition 

phase.  By the end of the third iteration the participants were 

correctly completing the sentences 91.4 percent of the time. 

Human Recognition Performance 

Overall, participants‟ accuracy and reaction time results 

were consistent with the fan effect.  For both true and false 

sentences, accuracy was negatively correlated with sentence 

fan.  Also, accuracy was poorer for false sentences than for 

true sentences for all sentence fans (ps < .05). 

Table 2: Recognition accuracy (%) 

  Accuracy 

Sentence 

fan True False 

3 97.5 95.5 

6 95.1 91.7 

9 92.1 86.3 

12 82.7 77.6 

 

Reaction time increased with sentence fan (p < .001) for 

both true and false sentences, and true sentences were 

judged more quickly than false ones (p = .001).   

 

Table 3: Recognition reaction time (ms/char) 

  True False   

Sentence 

fan 

Reaction 

time SD 

Reaction 

time SD 

3 59.0 18.5 64.1 19.9 

6 63.6 20.0 69.3 22.6 

9 74.2 21.8 86.2 31.1 

12 91.3 31.5 102.5 43.6 
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Table 3 shows the reaction times (ms/char) for both true 

correct (i.e., the test sentence was true and was judged 

correctly) and false correct sentences of each fan.  

 

 

Figure 1: Recognition reaction time by sentence fan 

(ms/char) with confidence intervals 

Figure 1 shows the mean reaction times, measured in 

ms/character, for both true correct and false correct 

sentences, for each sentence fan with confidence intervals. 

There was no interaction of truth and fan (p = .199).  Table 

4 presents the pairwise comparisons across fan using the 

Bonferonni adjustment. 

Table 4: Pairwise comparisons for correct reaction times 

Sentence fans P (one-tail) 

3 versus 6 0.129 

6 versus 9 < 0.001 

9 versus 12 < 0.001 

 

In Summary 

The results of the experiment confirm the fan effect as a 

robust phenomenon that generalizes from sentences with 

two content terms (Anderson, 1974) to sentences with three 

content terms (present research).  Future work will examine 

whether statistically significant differences can be found in 

the relative contributions of the terms to the fan effect (e.g., 

does the color term contribute differently than the thing or 

place terms). 

DSHM 

The memory modeling system used to model the described 

experiment was Dynamically Structured Holographic 

Memory (DSHM) (Rutledge-Taylor & West, 2008).  DSHM 

is based on the BEAGLE model of the lexicon (Jones & 

Mewhort, 2007).  The details of the DSHM architecture and 

the similarities between BEAGLE and DSHM can be found 

elsewhere (Rutledge-Taylor & West, 2007).   

For an account of the use of DSHM to model the classic 

fan effect, and a comparison to ACT-R (Anderson & 

Lebiere, 1998), see Rutledge-Taylor and West (2008).  For 

those unfamiliar with DSHM, a brief introduction follows. 

DSHM makes use of holographic reduced representations 

(HRR) to encode knowledge in memory.  See Plate (1995) 

for a discussion of the sort of HRRs used by DSHM (and 

BEAGLE).  A DSHM system is composed of a collection of 

items that are represented internally as two vectors of 

numbers: i) the environmental vector is static and uniquely 

identifies the item in the system; ii) the memory vector is 

dynamic and encodes all of the associations an item 

develops with other items.  The lengths of these vectors are 

fixed for an instance of DSHM, but can be initially set to 

any positive integer which is a power of 2. 

DSHM takes collections of items as input (called complex 

items; collections of items are items themselves).  The 

structure of a complex item can be expressed using left and 

right brackets. For example the sentence “The red hat is in 

the garage” can be expressed [red:hat:garage].  The system 

can also allow items to have a hierarchical structure.  Here, 

the context tags used to classify an item as background 

knowledge (false) versus experimental knowledge (true) 

applies to the sentence as a whole, and so is up a level in the 

hierarchy, expressed: [true [red:hat:garage]].  Items can bear 

ordered (delimited by colons) or unordered (delimited by 

spaces) relationships with one another.   

Information is extracted from DSHM by presenting it 

with incomplete complex items. For example, a query for 

the color of an item might be expressed [true 

[?x:hat:garage].  Any missing items are called query items 

and in DSHSM syntax are always preceded with a question 

mark, (e.g., “?x”).  A query item is like a variable that 

DSHM is tasked with resolving.  DSHM makes use of 

information stored in the memory vectors of the provided 

items to generate a rank ordered list of candidate items for 

replacing the query item.  Each candidate completion is 

accompanied by a numerical value ranging from 0.0 to 1.0 

that indicates the strength of the completion.  This strength 

is referred to as the confidence (i.e., how confident DSHM 

is in the completion being correct, or appropriate).  It can 

also be thought of a context relative activation value, to use 

an ACT-R term. 

A DSHM model is constructed by making choices about 

how information is represented in complex items, what 

vector size should be used, what training regime is used, and 

what sorts of queries are presented to the system. 

 The Model 

Twenty-seven simulated participants were run (to 

correspond to the 27 human participants).  It was found that 

a range of vector lengths allowed the simulated participants 

to produce reasonable recognition accuracy and reaction 

time results.  However, fitting the recall data was more of a 

challenge.  Uniformly using a vector length of 64 produced 

significantly poorer performance than the average for the 

human participants, while a vector length of 128 produced 

significantly better results.  No value in between is possible 

(vector length must be powers of 2).  In order to produce 

good average scores, nine of the simulated participants were 

given memory systems that made use of vector lengths of 

64, while the other 18 used vector lengths of 128. 
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Study Phase 

Prior to learning the study set, each simulated participant 

read 1026 background knowledge sentences, each encoded 

as a flat ordered list of three content terms associated with a 

tag „false‟; “[false [color:thing:place]]”.  The false sentences 

included either one or two of the content terms appearing in 

the study set.  The remaining one or two terms were 

nonsense terms that did not occur in the study set sentences.  

The background knowledge was needed in order to give the 

simulated participants some basis for making errors.  

Without background knowledge there is nothing for DSHM 

to confuse the study set sentences with; DSHM does not 

make use of explicitly added noise.   

The simulated participants read each sentence in the study 

set once or twice (to account for the differences in how well 

the human participants prepared themselves for the first 

task) prior to beginning the recall phase.  Sentences from the 

study set were associated with a context tag representing 

„true‟; “[true [color:thing:place]]”. 

Recall Performance of the Model 

Like the human participants, the simulated participants 

produced responses to fill-in the blank questions in the 

recall phase. For example, “The _____ hat is in the garage” 

was submitted to the DSHM participant as “[true 

[?x:hat:garage]]”.  The system outputs a list of candidate 

responses, in rank order. The one with the highest rank was 

considered to be the simulated participant‟s response.  If the 

system‟s response item matched the correct missing term, 

the trial was scored as correct. 

After each iteration the DSHM participant read each of 

the study set sentences once for every three incorrect 

responses on the previous iteration.  The majority of human 

participants took the opportunity to review the study set, 

even after scoring perfectly on the previous iteration.  Thus, 

the DSHM participants re-read the study set a minimum of 

once between trials. 

Table 5: Model recall accuracy 

  Iteration 

  1 2 3 

Correct 11.1 14.1 14.1 

SD 3.2 2.1 1.9 

Percentage 69.4 88.2 88.2 

 

Table 5 presents the recall accuracy for the simulated 

participants.  Although, the accuracy plateaus after the 2
nd

 

iteration, there is an overall good match for accuracy and 

standard deviation, as demonstrated in figure 2 (only the 

standard deviations for the human data are shown). 

Recognition Performance of the Model 

The simulated participants were each tested on the same 96 

test sentences as the human participants.  In order to 

produce a truth judgment the simulated participant was 

presented with a query of the form “[?x 

[color:thing:place]]”.  If the system produced „true‟ as its 

highest ranked completion candidate, the simulated 

participant was considered to have judged the sentence to be 

true, otherwise, the simulated participant was considered to 

have judged the sentence to be false. 

 

 

Figure 2: Recall accuracy (out of 16) 

To determine the reaction time for the response, the 

model evaluated the degree to which the test sentence as a 

whole (without a context tag) (“[color:thing:place]”), 

resonated within the system.  The sentence‟s resonance is 

produced by a built-in DSHM method, which essentially 

determines how closely associated the terms in the sentence 

are to one another.  Here, the resonance value is interpreted 

as indicating how familiar the sentence seems to the 

simulated participant.  Thus, if the sentence is judged to be 

true, a high resonance should make this decision easier.  If it 

is lower, it should make the decision harder.  The opposite 

is the case for judgments of false.  It should be difficult to 

reject a sentence that seems familiar, and vice-versa.   

The formula used for translating resonance to reaction 

time was RT = 32 / R, where R is the value provided by the 

memory system of the simulated participant, and RT is 

reaction time measured in ms per character.  For true 

sentences R is the resonance value for the sentence.  For 

false sentences, R is the resonance value for the sentence 

subtracted from an upper limit on resonance values.  This 

upper limit was estimated to be the maximum resonance 

value calculated for any of the true sentences (0.64).  Table 

6 presents the reaction time data for the model.   

 

Table 6: Model reaction time (ms/char) 

  Reaction Time 

Sentence 

fan True False 

3 61.1 67.4 

6 69.0 69.5 

9 79.6 77.1 

12 87.8 94.5 

 

Figure 3 presents a comparison of the human and model 
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data for correct trials.  The solid lines correspond to the 

human data; the dashed lines correspond to the model data; 

the light lines correspond to the true data; and the dark lines 

correspond to the false data. 

 

 

Figure 3: Recognition reaction time 

In terms of judgment accuracy, the model outperformed 

the human participants. The simulated participants had a 

judgment accuracy of 100% for true sentences and 98.5% 

for false sentences. It is possible that this discrepancy may 

be due to the relatively small body of „interfering‟ 

background knowledge in the simulated participants relative 

to real human participants.   

In Summary 

In general the model results provide a good match to the 

human data, in that 1) the false sentences take longer, on 

average, to affirm or deny than do true sentences (77.1 

ms/char versus 74.4 ms/char); 2) a fan effect is observed for 

both true sentences and false sentences; 3) the model 

provided a good fit to recall performance as well as 

recognition performance; and 4) the formula used to convert 

raw model output to reaction time values is simple and 

provides a good fit to the recognition times using a single 

scaling parameter. 

On-Going Work: Effect Of How Fan Is 

Distributed? 

Part of the motivation for this experiment and model 

construction was to investigate whether each content word 

in a sentence contributes equally to the difficulty in 

recognizing a sentence as true (i.e., a member of study set).  

It was hypothesized that the color term may make a smaller 

contribution to the fan effect than the thing or the place.  

This is because the color terms are adjectives and more 

ubiquitous than the things or places, which are nouns.  

However, whether the thing or the place should carry more 

weight was not predicted given conflicting intuitions about 

why one or the other should be more influential.  For 

example, the thing term might be the most influential 

because an object‟s type (e.g., hat) is a more intrinsic 

property than its location (or color).  Alternately, place 

might be more influential: Grammatically, the color and 

thing share a common noun phrase, while the place does not 

share its prepositional phrase with any other content word. 

The human data were not clear cut with regard to the 

influence how fan was distributed among content terms.  By 

fan distribution, we are referring to the possible pattern of 

the fans of the words making up sentences with a particular 

fan.  There are three different ways to make fan 6 sentences 

(color term fan = 1, thing = 1, place = 4; 1,4,1; 4,1,1), and 

three ways fan 9 sentences (1,4,4; 4,1,4; 4,4,1), while there 

is only one way to make fan 3 sentences (1,1,1) and one 

way to make fan 12 sentences (4,4,4).   

No significant effects of fan distribution were found 

among fan 6 sentences.  But, among sentences with a fan of 

9, an ANOVA with revealed that fan distribution did have 

an impact on RT (p =.002).  Specifically, RT was faster 

when either the thing or place was unique (i.e., fan 1) and 

slower when the color was unique.  Put another way, when 

trying to judge whether a sentence is true (e.g., “The red hat 

is in the garage”), knowledge of other objects with the same 

color (red ball) adds less difficulty than knowledge of other 

items of the same type (hat) or other items in the same place 

(garage).  Further, RTs tended to be faster when the thing 

type was unique rather than the location, though this trend 

did not reach significance.   

Note: a simple variation in the representation of sentences 

in DSHM would be able to account for this effect because 

DSHM is capable of representing facts that have 

hierarchical structure.  In fact, DSHM already leverages this 

capability in the current model.  In the representation “[true 

[color:thing:place]]”, the three term sentence as a whole 

aggregate is the hierarchical sibling of the context tag 

(„true‟). In order to represent sentences where the thing term 

is dominant, the color and place need only be embedded in a 

list of peripheral properties as in the following 

representation: “[true [thing:[color:place]]”. 

Exploratory simulations confirm that using this type of 

representation predicts differences in reaction times among 

fan 9 sentences, where the thing fan dominates the fans of 

the other two terms.  Similarly, for sentences with an overall 

fan of six and a thing fan of four are significantly slower 

than fan 6 sentences with a color fan of four, or a place fan 

of four.  Additional human testing is required to gather more 

information about the effects of fan distribution.  But it is 

noteworthy that such hierarchical effects could be naturally 

afforded by structural aspects of a DSHM architecture.  This 

line of research is on-going.  

Appendix 

Relationship To the Two Term Model 

Rutledge-Taylor and West (2008) presented a model of the 

fan effect, as described in Anderson (1974).  This model 

provided a good match to the human data, but used a 

different mechanism for calculating recognition accuracy 

and reaction time values, than the one presented here.  This 

mechanism, which we will refer to as the „retrieval‟ 
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mechanism operates as described below.   

Whether DSHM recognizes a sentence, or not, according 

to the retrieval mechanism is based on how strongly the 

words in the sentence are associated with one another.  

Specifically, if at least one of the words in the sentence 

(referred to as a target word) can be recovered using the 

other words in the sentence as cues, the sentence as a whole 

is recognized (as true), otherwise, it is not. 

If the sentence is recognized, the reaction time is based on 

strengths (e.g., confidence values) of the recovered target 

words, which are high on average, resulting in low reaction 

times.  If the sentence is not recognized, the reaction time is 

based on strengths of the words that were retrieved (but did 

not match the target words).  On average the strengths of 

these retrieved words are lower, resulting in higher reaction 

times.  Additionally, the fans of the words in the sentences 

affect the strengths of the retrieved words and it these 

strengths that are the basis for the fan effect in the DSHM 

model. 

Using The Retrieval Mechanism In The Three 

Term Model 

The retrieval mechanism for generating recognition and 

accuracy results for the DSHM model was initially tested on 

the current stimuli and without using background 

knowledge sentences, which are not necessary for this 

mechanism.  The retrieval mechanism produced a 100% 

accuracy rate for identifying true sentences, but only a 36% 

accuracy rate for rejecting false sentences. 

The retrieval mechanism produced a very good fit to the 

human true correct reaction times, including the 

characteristic exponential curve observed in the human data 

(for both trues and falses).  However, the model results for 

false correct (i.e., correct rejections) reaction times were 

drastically different from that of the human data.  See figure 

4. 

 

 

Figure 4: Reaction times (ms/char) using the retrieval 

mechanism 

The explanation for the model‟s false correct data has to do 

with the number of true near neighbors the false sentences 

have.  Here, „near neighbors‟ are defined as two sentences 

that differ only by a single word.  The number of near true 

neighbors a false sentence has is correlated with its fan.  

This is the result of the counter-balancing of true and false 

sentences.  The existence of near neighbors makes little 

difference in the recognition results for false fan 3, 6 and 9 

sentences.  However, for fan 12 sentences there are true near 

neighbors that are retrieved (for each target word) with very 

high strengths.  This results in low reaction times for false 

sentences with a fan of 12.  For example, when presented 

with the false sentence “the black mug is in the garage”, the 

true sentence “the grey much is in the garage” is retrieved 

with a high confidence value, when internally testing to see 

if “[?x:mug:garage]” retrieves „black‟ as a candidate 

completion of the query term „?x‟. 

Due to the failure of the retrieval mechanism to provide a 

satisfactory account of the reaction times for correct 

rejections, the new mechanism described above was 

developed.  It is the authors‟ belief that the retrieval 

mechanism ought to work for most DSHM models under 

most circumstances.  However, in cases such as the one 

presented here, the new mechanism can be applied in order 

to generate recognition reaction times for correct rejections 

that are resistant to the effects of true near neighbors.  
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Abstract
This paper presents a computational cognitive model of the
construction process of complex, i.e., multi-part, visual men-
tal images. The model is integrated into the cognitive archi-
tecture Casimir. The construction process is realized by the
interplay of a spatial working memory structure and a passive
quasi-pictorial visual representation. Both structures are suc-
cessively build up on demand from long-term memory. The
correct placement of new parts is guided by the inspection of
the visual representation. The model has two main advantages:
1) it is an explicitly cognitive computational model that imple-
ments the two-fold structure of a spatial and a visual working
memory representation and 2) it introduces an attention win-
dow structure in such a way that allows for direct predictions
of eye movements during mental imagery processes. We dis-
cuss predictions and explanations offered by model.
Keywords: Cognitive Modeling; Visual Mental Imagery; Vi-
sual and Spatial Representations; Analogical Representations

Introduction
The experience of visual mental imagery is a well-known and
widely studied phenomenon. For example, many people re-
port to actively use mental imagery for common visuo-spatial
tasks, such as planning a route. Additionally, imagery plays
an important role in a number of diverse domains such as
diagrammatic problem solving and creativity (e.g., Hegarty,
2004). Furthermore, the general efficiency and usefulness of
a visual or quasi-pictorial representation compared to a purely
symbolical, i.e., non-analogical, representation for several
reasoning domains has been shown and argued for exten-
sively from an artificial intelligence point of view (e.g., Chan-
drasekaran, Kurup, Banerjee, Josephson, & Winkler, 2004).

Almost all computational accounts of visual mental im-
agery that have emerged since Kosslyn’s computational cog-
nitive model (Kosslyn, 1980) thirty years ago were not de-
signed as cognitively plausible accounts of human imagery
processes, but adopted single findings, e.g., most prominently
the existence and distinction of two, one spatial and one vi-
sual, representations involved in mental imagery (see for ex-
ample Glasgow & Papadias, 1992). There has been work to
extend well-established cognitive architectures, e.g., ACT-R
and Soar, with the functionality of visual mental imagery
and even though these accounts provided valuable insights,
for example regarding the structural integration of imagery
into an architecture, they remained on a conceptual level
(Gunzelmann & Lyon, 2007) or were explicitly not designed
as cognitively plausible models (Lathrop, 2008).

As Kosslyn’s computational model (Kosslyn, 1980) is the
most relevant and also closest in its approach to our model, it
is worthwhile to make the major differences clear. First off,
it is to note, that Kosslyn (1994) himself significantly altered
his theory of mental imagery in the light of new empirical
and neuroscientifc data. His new and very extensive concep-
tual model has, however, never been implemented. In contrast

to his implemented model, we employ two working memory
structures: the visual one roughly corresponds to Kosslyn’s
visual buffer, the other spatial one has no counterpart in his
model. Another important difference is the existence of an
attention window in our model, which implements the selec-
tive attention on the content of a mental images as well as the
multi-scale property of the visual representation.

The aim of the presented model is to offer a plausible
explanation of how complex visual mental images are con-
structed from long-term memory. The computational imple-
mentation allows the identification of open empirical issues
as well as new predictions regarding the involved processes in
mental imagery. By employing two working memory struc-
tures of different abstraction, we offer a straightforward ac-
count for the findings that suggest two distinct kinds of im-
agery (Levine, Warach, & Farah, 1985; Farah & Hammond,
1988) and also shed new light on the question of many im-
agery phenomena such as mental image reinterpretation. The
implemented attention window of the model allows us to di-
rectly link attention shifts in the visual representation to eye
movements made by subjects in imagery experiments and
thus offers a new method of evaluation for models and the-
ories of imagery.

The model is designed within the framework of Casimir
(Barkowsky, 2007), a cognitive architecture for spatial
knowledge processing with analogical representations.

In the following sections, we will describe the design of
the model’s representation structures and processes and how
those are derived from general assumptions of human cogni-
tion as well as from empirical data on several related imagery
phenomena.

The Model of Image Construction
To begin, we define the domain the model is applied to. When
referring to mental images, we always mean consciously ex-
perienced visual mental images. The model is constrained to
mental images that are generated from information that is re-
trieved from long-term memory with the absence of any other
visual input, e.g., visual perception. The mental images we
deal with are labeled “complex” in the sense that the visual-
ized concepts consist of several parts. For example, the con-
cept house consists of a main block, a roof, a door and a win-
dow; further, the parts themselves may have subparts, e.g.,
chimney is a part of the concept roof. The mental images are
constructed so that they are “seen” from an egocentric per-
spective similar to an actual visual percept.

Figure 1 shows the basic components and interactions of
the model. We have modeled the spatial and visual repre-
sentations as well as the processes involved in the construc-
tion of a mental image. The long-term memory component
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is an existing part of the cognitive architecture Casimir (see
Schultheis, Barkowsky, & Bertel, 2006, for details).

Figure 1: Representations and Processes of the Model. The
visual representation serves as an extension of the spatial rep-
resentation. Shapes are projected into the visual representa-
tion according to the spatial layout stored in the spatial repre-
sentation.

Basic Design Constraints

In this section we will briefly elaborate the theoretical back-
ground upon which the general design decisions of the model
are based. For this purpose, we describe the basic assump-
tions that the model makes about visual mental imagery and
working memory in general.

Parsimony. The model is generally designed to keep the
processes and corresponding representation structures as par-
simonious as possible. The model’s workflow is designed
so that it works strictly on demand. This means, that each
transfer and transformation of information between long-term
memory, the spatial representation and the visual representa-
tion is only triggered when demanded by the current task.
Accordingly, concepts can be visualized at different levels of
granularity and enriched with more details when necessary.

Analogical representation structures. The model is based
on the main assumptions of what is often labeled the quasi-
pictorial theory of mental imagery, see (Kosslyn, 1994) for its
most popular representative. That is, the structure or struc-
tures, which the experience of visual mental images relies on,
at least partly represent/preserve the spatial properties of an
actual image/the actual visual percept in an analogical for-
mat. Given the existing empirical support, there is wide-
spread agreement on this hypothesis (e.g., Finke, 1989). As
the visual representation in the model actually depicts shape
it is apparently analogical, but also the spatial representation
has an analogical format as it preserves the part-of relation of
complex entities in its structure.

Distinction between visual and spatial knowledge process-
ing. Within the model visual and non-visual information is
distinguished on different but interdependent levels: 1) the
model employs two working memory structures, 2) visual
and non-visual information is retrieved separately by separate

subprocesses from long-term memory.
Building upon the findings that the two cortical visual path-

ways first identified by Ungerleider and Mishkin (1982) can
also be distinguished in human visuo-spatial working mem-
ory (Courtney, Ungerleider, Keil, & Haxby, 1996), it has
been argued that two representations involved in imagery
can be functionally and neurologically dissociated (Levine et
al., 1985). This conclusion is based on studies with brain-
damaged patients, who were able to perform normally on
some imagery task but were impaired on other imagery tasks.
These two groups of imagery tasks corresponded to what is
usually considered to be visual imagery tasks and spatial im-
agery tasks respectively (Farah & Hammond, 1988).

As evident in figure 1 we assume two information path-
ways which together give rise to complex images in the vi-
sual representation. On the one hand, processes associated
with the ventral pathway are responsible for the processing
of shape information, i.e., the recognition of shape and the
retrieval and projection of shape information from long-term
memory into the visual representation during imagery. On
the other hand, the spatial representation is associated with
the dorsal pathway which processes the spatial layout of an
entity or scene.

Besides fulfilling all other structural requirements for mod-
els of mental imagery as identified by Bertel, Barkowsky, En-
gel, and Freksa (2006), our model specifically fits into their
category of hybrid models, as two representations of differ-
ent qualitative structure are combined. They proposed that
a computational cognitive model of mental imagery needs to
have a hybrid structure in order to plausibly capture the “hy-
brid, exhibiting both visual and propositional traits” (Bertel
et al., 2006) nature of mental images.

Evidence for a dedicated non-visual working memory
structure involved in visual perception, has led to approaches
(e.g., Nestor & Kokinov, 2004), which, similar our model,
employ a visual and a non-visual working memory structure
in this respective domain.

Components and their Interaction
Following, we will describe the structure of both the spatial
and the visual representation in more detail as well as the in-
teraction between them.

The visual representation is implemented as a graphics
window, in which geometric shapes are drawn. The circu-
lar attention window determines which parts of the represen-
tation are currently attended to and can be processed. The
attention window is defined by its position and by its resolu-
tion. The higher the resolution, the smaller the extent of the
attention window and thus only a smaller part of the visual
representation is accessible for inspection. Furthermore, the
resolution also determines what contents of the visual repre-
sentation are “visible”, i.e., can be processed, depending on
the size of the visualized shape. For example, small parts or
details such as texture are only accessible if the resolution is
high, whereas bigger parts are also visible at a low resolu-
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tion. The attention window implements two concepts: 1) the
selective processing of visual information and 2) the scale-
resolution trade-off in the inspection of mental images, which
goes along with the multi-scale property of the topographi-
cally organized areas of the visual cortex (Kosslyn, 1994).

The spatial representation contains the minimal neces-
sary spatial layout information of a concept. For the concept
house the minimal layout consists of a location1, orientation
and size of the basic shape of house as it is visualized or to be
visualized in the visual representation. Note that these param-
eters can be set by the task, e.g., “Imagine a small house, that
is tilted 90 degrees clockwise”, but lacking any of those de-
mands, the parameters will be set by associations from long-
term memory. The spatial representation does not include the
shape or any further information about the shape other than
the rough size it is (to be) visualized in. The minimal layout
further includes the direct and most strongly associated parts
of the concept house as identifiers, their spatial relations to
the basic part, e.g., “on the left top of”, as well as their rela-
tive size compared to the basic part of house.

The relative size of a part is important to determine if and
when it is visualized in case an elaborate image of the current
concept is demanded, i.e., the bigger the part is relative to
the basic shape2 of a concept, the earlier it will be visualized.
That is, if a detailed image of house is requested, roof will
be visualized first, followed by door and window. We assume
that this size-depended sequence might change if one partic-
ular part has a very strong association with the super concept,
but as a default the relative size is assumed to determine the
sequence. This is a consequence of the nature of the attention
window and we further elaborate on this aspect below.

If a new part, e.g., the door of the house, should be visu-
alized, the concept door is retrieved from long-term memory
and extends the spatial representation. This means that it now
includes information about door; orientation, size and loca-
tion are in this case determined by the super concept house,
e.g., if we imagine a small 90 degrees tilted house, all its parts
and subparts will by default also have these properties. Parts
of door are now also consciously available. The retrieval of
new information is context-dependent as it is affected by the
current content of the spatial and visual representation, that
is, in particular the super concept, e.g., the model would pro-
duce a different mental image of a window by itself than of a
window as part of a house.

Interaction between components. There is a hierarchical
structure between the long-term memory, the spatial repre-
sentation and the visual representation, that is, information is
retrieved and transformed from long-term memory first into
the spatial representation and parts of these informations are
transferred on demand into the visual representation, where
the resulting shape is visualized. As evident in figure 1, there

1Location within the visual representation.
2Following a similar principle the basic shape or main part of a

concept figures to be the bigger than any of its parts.

is a direct connection between encoded shapes in long-term
memory and the visual representation, but this projection pro-
cess is triggered only if parts of the spatial representation
need to be visually accessed. The represented information
on these three levels differs quantitatively as well as qualita-
tively: 1) there is information available in the spatial repre-
sentation which is not visualized, i.e., not represented, in the
visual representation; similarly the information in the spa-
tial representation is only a fraction of what is available in
long-term memory; 2) furthermore, only the visual represen-
tation explicitly contains visual information, such as shape or
texture, which by themselves lack semantics (which are con-
tained in the spatial representation). Additionally, this hier-
archical structure implies that certain tasks, which do not de-
pend on visual information can be solved solely on the level
of the spatial representation and do not have to use the visual
representation.

The Image Construction Process
In order to describe the construction process of a multi-part
visual mental image in the model, we will go through the
individual steps taken to build an image.

• The model is given the command to imagine the concept
house.

• The spatial representation (SR) queries the long-term
memory (LTM) for the minimal spatial representation of
house. As no further context is specified, a default location
L, orientation O and size S are used for the query.

• The attention window (AW) is shifted to location L and its
resolution adjusted to fit the size S.

• The visual representation (VR) retrieves the basic shape of
house with the given size S and orientation O from LTM
and it is visualized at the center of the AW.

• The SR is queried for direct parts of house that are of the
same relative size as house and finds roof. It will automat-
ically be visualized given the current resolution of the AW.

• The shape of house in the VR is inspected to find the coor-
dinates where to place roof according to the given qualita-
tive spatial relation between roof and house from the SR.

• The AW to the determined location.

• The SR retrieves further spatial information about roof ;
this information includes parts of roof and will allow for
a later visualization of parts of roof.

• The shape of roof is retrieved from LTM with size S and
orientation O, which are both inherited from the parental
concept house. The shape is projected into the center of
the AW.

• The SR does not find any other direct parts of house with
a relative size that would allow visualization given the cur-
rent resolution. Thus the model stops.

The above process sequence builds the minimal image of
the concept house. Further parts such as door or window are
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not added, even though their existence, relative size and spa-
tial relation are “known”, i.e., are consciously available in the
SR. The model always builds minimal images unless the task
demands further details to be added.

Lets look at an excerpt of the construction process for a
detailed image of house. We assume the state of the model to
be the last described state of the previous process sequence,
i.e., the basic shape of house and roof are visualized.

• When a detailed image is requested all directly related parts
to house are visualized in the order of their relative size.
The SR finds door as a part of house.

• The basic shape of house in the VR is inspected and the ap-
propriate docking coordinates for door are calculated and
the AW is shifted to this position.

• As the relative size of door is smaller than that of house
the resolution of the AW is adjusted, i.e., higher resolution,
lesser extent.

• The SR retrieves spatial information about door.

• The shape of door is retrieved and projected at the position
of the AW in the VR.

• This process goes on similarly for all direct parts of house.

Explanations and Predictions
The model makes some novel assumptions which offer new
and concrete explanations of common imagery phenomena
and also lead to precise predictions about human behavior
during mental imagery. We will briefly look at how the model
is able to account for those common phenomena of mental
imagery. We have not yet started to fit concrete empirical
data, but the structure of the overall model and it’s individ-
ual representations and processes strongly suggests that the
model will at least reproduce the qualitative trends of the fol-
lowing phenomena. In the following, we will not cite single
studies for each phenomenon, but we rather refer the reader
to Kosslyn, Thompson, and Ganis (2006) for an overview of
the mentioned studies.

Image generation. Empirical studies suggest, that the con-
struction time of a mental image of a scene or object directly
depends on the number of parts and the level of detail. The
model offers a trivial and straightforward explanation, as it
generates mental images piece by piece. What is more inter-
esting and novel is the proposed sequence in which parts are
added and we further discuss this point below.

Image scanning. Several different studies suggest that the
time taken to mentally scan from one point of a mental image
to another is proportional to the imagined distance between
these points. The attention window of our model is shifted
gradually over the visual representation to the respective por-
tion of the visual representation that needs to be processed.
Therefore again, the model provides a straightforward ac-
count of this phenomenon.

Figure 2: Example of Zooming. Resolution of the attention
window is low and therefore only big (size==3) and medium
(size==2) sized parts are visualized. Left side: the main shape
of the concept house is imagined in medium size (size==2).
The shape of roof is also visualized as it is of the same rel-
ative size (size of house plus the relative size of roof, i.e.,
2−0 = 2). Door and window have a small size (size of house
plus relative size of door, i.e., size==(2−1= 1) and are there-
fore not visible given the current resolution.
Right side: The size of house was set to big (size==3)
and therefore the size of door and window is now medium
(size==2). Thus, they are now visualized.

Zooming. Zooming in or out of a mental image is realized
by altering the size parameter of a concept or a part of the
concept in the spatial representation. This parameter is used
to determine the extent of the respective shape when it is pro-
jected onto the visual representation. Furthermore, if the size
parameter is altered for a concept in the spatial representation
and it is therefore re-visualized with a now bigger or smaller
shape, this has automatic consequences for the visualization
of the parts of this concept. The spatial representation stores
a concept’s parts with their relative size compared to the ba-
sic shape of the concept. This relative size again determines
whether and when a part is also visualized in the visual repre-
sentation given the current level of resolution of the attention
window (see figure 2 for a visual example). The empirical
findings regarding zooming in mental images express that it
will take subjects more time to find a part of an imagined
object if it is initially imagined at a small size than when it
is imagined at a bigger size. These findings can potentially
be explained in two ways by the model: 1) subjects employ
a zooming process as described above or 2) the resolution
of the attention window is increased which will also make
some smaller parts of the image “visible”.3 Both accounts
would results in increased processing time and thus qualita-
tively match the empirical results.

Image organization and reinterpretation. There is evi-
dence that mental images have an underlying organization. It
has for example been found, that the way presented stimuli
are described, e.g., the star of david as either two overlapping
triangles or as an hexagon with six small triangles, affects the

3For very small parts increasing the resolution will not work and
zooming will be necessary.
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way subjects later recreate this image mentally. That is, on
the one hand, image generation takes longer when the image
consists of more parts and on the other hand recognition of
patterns that are congruent with the organization of the image
is faster than for other valid patterns. A related phenomenon
is the difficulty of mental image reinterpretation. That is,
it is very difficult for subjects to reinterpret an ambiguous
picture as a mental image, if that picture was preciously
learned realizing only one of its meanings. Whereas, it
is much easier to find the second meaning during normal
visual perception of the same ambiguous picture. Both of
these types of findings point towards the same direction of
mental images being more than just a mental depiction of
visual information but including semantics and depending
on a more abstract structure and organization underlying
the depictive structure. The two-fold structure of our model
provides just that. As the spatial layout held in the spatial
representation is used to build up the mental image in the
visual representation, it is apparent that this consciously
available organization affects how the content of the visual
representation is inspected as well as interpreted. In order to
successfully reinterpret an ambiguous image during mental
imagery, the content of the spatial representation would
have to be discarded, because even though the content of
the visual representation might the be so that it depicts
both meanings, the individual parts would need to be linked
to different concepts. Furthermore, the retrieval of shape
information from long-term memory is context-dependend
regarding the currently held concept in the spatial represen-
tation. This means that a retrieved shape and its properties
are affected by the concept it is linked to in the spatial
representation; especially by background knowledge about a
concept. For example, the mouth of the rabbit in the famous
duck-rabbit image (see figure 3) might not be recalled
when subjects are imagining a duck, because this visual
feature is irrelevant for the shape of the back of a duck’s head.

Figure 3: Ambiguous Duck-Rabbit Image

Predictions of the Model There are three main predictions
we can draw from the model: 1) internal attention shifts are
functional for the construction of complex mental images and
are reflected by eye movements, 2) the sequence in which
parts are added to a complex mental image is affected by the
relative size of the parts, and 3) the visual representation is
used only when demanded by the task.

1) Whenever a new part of an image is visualized in the

model, the attention window is adjusted in its location and
its resolution. That is, it is shifted to the location the new
part will be visualized at. There are several studies (e.g., Jo-
hansson, Holsanova, & Holmqvist, 2005) that have shown a
close correlation between eye movements and the currently
processed contents of a visual image. The model implies
that eye movements are linked to the shifts of the attention
window during mental imagery. Furthermore, these attention
shifts are functional to the process of mental image construc-
tion.

2) The construction process proposed by the model differs
from previous assumptions about the sequence in which parts
are added to form a mental image. A common default as-
sumption seems to be that the sequence of parts is determined
by the strength of association of the part with the main con-
cept. Furthermore, this is often combined with the idea of
choosing that part next, which yields the highest identifica-
tion value for the concept. This idea stems from an analogy to
top-down-hypothesis testing in object recogntion (see Koss-
lyn, 1994). In contrast, our model predicts a very different se-
quence for image construction, which is a direct consequence
of the implementation of the attention window. The attention
window has different scales of resolution, which determine
whether a part is visualized and also whether a visualized part
is accessible. That is, with the initial low resolution only big
parts can be visualized and processed, whereas with a high
resolution also smaller parts, i.e., details, are “visible”. The
model will according to its principle of parsimony not change
its resolution, i.e., go into more detail, unless it is necessary.
This means, that direct parts of the concept are visualized
first when this is possible without a change of resolution, i.e.,
the ones that are closest in relative size to the concept’s main
shape.

3) Lastly, the hierarchical structure of the model allows for
an on demand usage of the visual representation. That is,
if visual information, like the exact shape, is not necessary
to fulfill a task, the processing will remain on the level of
the spatial representation. This concept fits nicely with the
work of Sima, Lindner, Schultheis, and Barkowsky (2010),
who found that the same spatial reasoning task is solved by
either using mental imagery or by using a more abstract rep-
resentation, e.g., mental models, depending on whether the
instruction demands imagery or not.

Conclusion and further work
We have presented a computational cognitive model of hu-
man complex mental image construction and elaborated on
the underlying assumptions as well as the predictions derived
from the model. The model is able to offer plausible accounts
for common mental imagery phenomena and findings about
the dual nature of imagery. The model implements an atten-
tion window to select regions of the visual representation for
processing. The defined role of this structure can be used to
predict eye movements during mental imagery tasks and as
a novel way of evaluating theories and models of mental im-
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agery.
Important aspects whose effects on the model’s behavior

needs to be investigated include working memory restrictions
and similarly decay processes for both employed working
memory structures. Furthermore, we are preparing appropri-
ate eye tracking experiments to test the model’s predictions
about the construction sequence of multi-part images.
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Abstract

Symbolic, rule-based systems seem essential for modeling
high-level cognition. Subsymbolic dynamical systems, in con-
trast, seem essential for modeling low-level perception and ac-
tion, and can be mapped more easily onto the brain. Here we
review existing work showing that critical features of sym-
bolic production systems can be implemented in a subsym-
bolic, dynamical systems substrate, and that optimal tuning of
connections between that substrate’s analog circuit elements
accounts for fundamental laws of behavior in psychology. We
then show that emergent properties of these elements are re-
flected in behavioral and electrophysiological data, lending
support to a theory about the physical substructure of produc-
tions. The theory states that: 1) productions are defined by
connection strengths between circuit elements; 2) conflict res-
olution among competing productions is equivalent to optimal
hypothesis testing; 3) sequential process timing is parallel and
distributed; 4) memory allocation and representational binding
are controlled by competing relaxation oscillators.
Keywords: Production system; neural network; diffusion
model; random walk; reinforcement learning.

A subatomic structure for productions
Production systems underlie the most successful theories of
high-level cognition, exemplified by such capabilities as plan-
ning, problem-solving, reasoning and language. Productions
— if-then rules that test the contents of a working memory
and trigger actions or changes to working memory as a re-
sult — have accordingly been characterized as the ‘atomic
components of thought’ (Anderson & Lebiere, 1998). The
implication is that the complex chemistry of mental life arises
from, and can more easily be understood in terms of, the inter-
actions of these simple atoms. To make the most of this anal-
ogy, however, requires a biologically plausible theory about
the subatomic structure that defines these interactions. Here
we propose a subatomic theory in which productions arise
from the behavior of ‘elementary particles’ — leaky integra-
tors, or classic neural network units — whose interactions
with each other are defined by connection strengths and struc-
tured network topologies.

Any computational theory of cognition faces several chal-
lenges: How well does it conform to known laws of behavior
and classic patterns of brain activity? How well does data
conform to new predictions entailed by it? And how much
functionality does it give you (e.g., is it computationally com-
plete)? Here we progressively build up a design for a neural
network structure that emulates the most important features

of production systems. We start with a critical core for indi-
vidual productions, and then add on control mechanisms that
adapt the core’s behavior in order to maximize a reward func-
tion. We will attempt to show how each addition accounts for
known laws, entails new (in some cases, successfully tested)
predictions, and moves the resulting architecture toward full,
production-system functionality. The result falls short of en-
abling the automatic translation of arbitrary production sys-
tem programs into equivalent neural networks, but it suggests
that such translations will be possible for a constrained set of
such programs (and that the constraints thus identified may
be of theoretical importance).

For the core, we review a specific, structured neural cir-
cuit with heuristically reward-maximizing connections that
has previously been proposed as an implementation of pro-
ductions (Polk, Simen, Lewis, & Freedman, 2002; Simen &
Polk, in press). After outlining the remaining mechanisms
underlying key features of a neural production system archi-
tecture, we review separately published results showing the
conformance of its behavioral predictions to the matching law
of operant conditioning, to the logistic/softmax choice func-
tion used in reinforcement learning, and to recent, tested the-
ories of optimal perceptual decision making. We also review
new evidence supporting its predictions regarding the later-
alized readiness potential (LRP) that is observed in human
electroencephalography (EEG).

To the core production implementation, we add a simple
timing mechanism (allowing controlled sequential process-
ing), and we outline a proof that it conforms to the law of
scalar invariance in interval timing (Gibbon, 1977). We show
that this mechanism predicts behavior observed in the differ-
ential reinforcement of low rates of responding (DRL) task.

We conclude the addition of mechanisms by outlining a po-
tential solution to two major challenges facing a connectionist
production system architecture: one is the need for a flexible
memory management system; the other is the variable bind-
ing problem. This problem afflicts any system in which the
semantics of a representation depend only on what is con-
nected to what, so that the components of different represen-
tations must be shared. Our proposed solution involves re-
laxation oscillators with tunable frequencies and duty cycles.
These enable the recruitment of memory resources through
fast Hebbian learning by tagging and reserving allocated net-
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work units. The result is the sort of oscillatory activity that is
invariably observed in invasive electrode recording and scalp
EEG.

The elementary particles
The basic building block we will use is a stochastic neu-
ral network unit. We begin its description by considering
it as a deterministic system. At each moment, it computes
a weighted sum of its current inputs, then computes an ex-
ponentially decaying average of recent weighted sums, and
finally amplifies the result by a gain function that is approxi-
mately linear (but which saturates at very low and very high
input levels). This quantity is broadcast to other units, over
connections whose strengths determine their relative contri-
bution in those units’ weighted sum computations. Formally,
the output of the ith unit is Vi, the leaky integral of summed
input is xi, and the dynamics are defined as follows:
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Figure 1: a, b: A neural network unit’s rate of activation
change (dV/dt) as a function of input I and output V for
units with fixed I and balanced (a) or strong (b) excitatory,
recurrent connections. Equilibrium curves are solid; veloc-
ities dV/dt are indicated by arrows and shading (light > 0,
dark < 0). c: ‘Catastrophe manifold’ formed by the equilib-
rium curves of Eq. 3 as the self-excitatory, recurrent weight
strength wii ranges from 0 to 2. Three network symbols are
also illustrated. Sigmoid: weak self-excitation, leaky integra-
tion (wii < 1 for a unit with λ = 4). Rounded step-function:
balanced self-excitation, perfect integration (wii = 1). S sym-
bol: strong self-excitation, hysteresis and bistable switching
(or ‘latch’) behavior (wii > 1). d: A latch based on hystere-
sis. States above the dashed curve converge to the upper solid
curve; states below converge to the lower solid curve. This
latch can store a 1 (upper gray region) or a 0 (lower gray re-
gion) as long as input is held between A and B. Bit-flipping
during constant I is least likely when I = (A+B)/2.

Ii =
n

∑
j=1

wi j ·Vj, (1)

τ · dxi

dt
= −xi + Ii, (2)

and Vi(t) = f (xi(t)) = [1+ exp(−λ · (xi−β))]−1. (3)

Parameters λ and β determine the steepness and position of
the sigmoidal activation function f , and τ determines the de-
cay rate of exponential averaging (large τ gives slow decay).

In addition to deterministic dynamics, we assume that
noise enters the system from units that have direct sensory
inputs, and also from the connections between units them-
selves. To model these assumptions, we use stochastic dif-
ferential equations, in which we represent white noise with
a useful abuse of notation as η ≡ dW/dt (multiplication by
dt then gives the standard notation dW in our equations; cf.
Gardiner, 2004). This quantity represents the time-derivative
of a Brownian motion, or Wiener process, W (t).1 The stan-
dard deviation of η is 1, but can be changed to any value c by
multiplying by c. Here, we multiply η by the square root of
the weighted input, an assumption which is consistent with an
even more microscopic level of neural modeling: we assume
that spiking neurons are Poisson processes, and that leaky in-
tegrators model their population-level behavior. The variance
of sums of these independent processes is the sum of their
variances. Thus, if we consider increases in a given weight
wi j to be equivalent to the addition of independent Poisson
processes (because of the addition of noisy synaptic connec-
tions), we get a noise standard deviation equal to the square
root of net input. Formally, then, the full, stochastic unit de-
scription is as follows:

τ · dxi

dt
= −xi +

n

∑
j=1

(
Ii + ci j

√
Ii ·η

)
⇒ τ ·dxi =

(
−xi +

n

∑
j=1

Ii

)
dt + ci j

n

∑
j=1

√
Ii dWi j

⇒ τ ·dVi ≈ (−xi + f (Ii)) dt + ci j

n

∑
j=1

√
Ii dWi j (4)

(See Simen and Polk (in press) for justification of the last
approximation, which moves the noise term outside the non-
linear function f .)

This system can be numerically simulated on a computer
(and perhaps be more easily understood) as a discrete-time
difference equation (Gardiner, 2004):

τ ·Vi(t +∆t)≈Vi(t)+(−xi + f (Ii)) ∆t +ci j
√

∆t
n

∑
j=1

√
Ii. (5)

It is now critical for our purposes to consider the effects of
recurrent excitation of a unit by itself (wii > 0). The strength

1W in fact is non-differentiable, but it is the limit of a sequence
of slightly smoother, differentiable noise processes, so it can be used
without danger.
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of this self-excitation determines which of three, qualitatively
distinct types of behavior a unit exhibits (Simen & Polk, in
press). For wii < 1, the system acts like a leaky integrator;
as wii grows, the leak is reduced. When the self-excitation
exactly balances the leak (wii = 1), the unit acts like a per-
fect integrator (until it saturates). For wii > 1, the system is
unstable and is forced upward against the upper ceiling on its
activation (1), or downward toward its lower floor (0); thus it
acts like a binary switch. Furthermore, such a unit displays
hysteresis, so that it can both trigger abrupt changes and also
store a bit. Fig. 1 shows the dynamics of such a unit.

In general, leaky integration (weak self-excitation) is use-
ful because it low-pass filters its input, thereby removing
much of the high frequency noise contributed by connections
and by the environment. Perfect integration (balanced self-
excitation) is needed for optimal hypothesis testing (Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006). Bistability
(strong self-excitation) is needed for triggering subsequent
steps of sequential processes and for maintaining the current
state of working memory. The behavioral and electrophysi-
ological data we consider bears on the predictions made by
these bistable units and the integrators that feed into them.

Neural productions, timers and oscillators
Fig. 2 shows the basic building blocks of the proposed ar-
chitecture; in the remainder of the paper, we explain how
each block functions, and assess how well each accords with
known laws and new empirical data. The left column shows
the 3 unit types (a,b,c). Simen and Polk (in press) detail how
a complete set of logic operations (AND, OR, NOT) can be
built from the bistable units in c by parameterizing their in-
put strengths. Panel d shows a simple if-then rule structure:
the leaky integrator filters noise from its inputs, and if the
sum exceeds a critical level, the bistable unit switches from
(approximately) 0 to (approximately) 1. This is analogous to
the process of ‘matching’ the contents of working memory
(which can be made to depend on arbitrarily many symbolic
preconditions using a cascade of logic gates). The degree of
match may be an analog quantity, and whether this is suffi-
cient to cause a bit flip in the output unit determines whether
the production will ‘fire’. Furthermore, the weights on inputs
to the if-stage may also encode preferences between produc-
tions that have an equal degree of supporting evidence.

If more than one production matches, however, there may
be conflict between them. At least at the motor output stage
(e.g., SOAR’s ‘operators’), such conflict must be resolved.
Here we consider conflict resolution as a process of com-
petition between matching productions (Fig. 2 e), with the
outcome biased toward selection of the production with the
strongest amount of preference-weighted evidence. Since
noise is everywhere, this reduces to a well-defined hypothesis
testing problem, for which simple, near-optimal algorithms
exist. These algorithms — sequential probability ratio tests
(SPRTs) — can be parameterized to maximize expected util-
ity in the case of two-alternative choices (Bogacz et al., 2006),

A: Leaky integrator D: Typical production F: Timer Circuit

G: Relaxation 
Oscillator

Start switch Ramp Trigger

B: Perfect integrator

C: Bistable switch

IF THEN

E: Conflict-resolving production

IF THEN

Figure 2: Basic building blocks. Arrowheads indicate exci-
tation, circleheads inhibition. a, b, c: Elementary particles;
arrows: excitatory inputs. d: Production topology. e: Con-
flict resolution via lateral inhibition (circles: inhibition); in-
hibition between switches is optional. f: Interval timer. g:
Relaxation oscillator added to production output unit.

and can approximately maximize utility for a greater number
of competing alternatives (McMillen & Holmes, 2006). For
a difficult decision, the process of deciding via lateral inhi-
bition (a form of attractor dynamics) can be parameterized
to implement an SPRT. This requires only that the lateral in-
hibitory strengths between input units equal -1. An example
of these dynamics is shown in Fig. 3. Thus, the firing of a
single production is equivalent to a statistical hypothesis test.
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Figure 3: Hypothesis testing via lateral inhibition. The 2D
system in the bottom layer reduces to a single dimension,
along which a random walk to threshold occurs (implemented
by attractor dynamics in the top layer).

A critical question facing the proposed architecture, how-
ever, is whether the timing of these firings can be coordi-
nated and sequentialized without reference to a central sys-
tem clock. Our problem is the same as that facing digital
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circuit designers, who have long relied on a central clock and
synchronous updating to preclude critical race conditions and
other signal timing hazards. Our solution is to use these pro-
duction implementations to form processing bottlenecks, and
to use handshake completion signals between computing ele-
ments for asynchronous, distributed timing control (Simen &
Polk, in press). The most difficult question is whether we can
implement productions of the form: If A, Then B and Not A.
Naively wiring up a system to implement such a production
can cause critical race conditions or metastability.

Our solution derives from the hysteresis properties of our
bistable units. Fig. 4 shows that a sequence of such units can
be wired up so that an input unit stays active long enough to
trigger an output unit, which in turn inhibits the input. If the
input unit did not resist this inhibition, it could fail to latch
the output before shutting off. Elsewhere we have detailed
the specific conditions that ensure proper sequential latch-
ing. To ensure that timing issues can be handled, we use the
timer circuit in Fig. 2 f to implement an analogue of the de-
lay gates used in digital logic. This mechanism activates a
‘start’ switch unit on the left, then integrates that signal in
a ‘ramp’ unit, weighted by the start-to-ramp weight, until it
triggers the ‘trigger’ unit to flip from 0 to 1. The delay du-
ration is equal to this threshold value divided by the start-
to-ramp weight. These dynamics are very similar to those
implementing hypothesis-testing in Fig. 3, but now the only
evidence is the passing of time.
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Figure 4: A production that negates its own if-condition. Bot-
tom layer: input signal (red). Middle layer: IN unit activation.
Top layer: OUT unit activation.

With these building blocks in hand, we can build arbi-
trarily complex circuits that implement logic gates and finite
state machines, and thus special-purpose production systems.
However, we still face the same critical problems facing all
connectionist systems: if the semantics of a representation
depend on what is connected to what, then how do separate
representations share subcomponents? Or if their subcompo-
nents conflict, then how are the proper subcomponents bound
with the proper parent representation? Temporal synchrony
has been widely considered to be a potential solution. The

architectural assumptions are made that whatever is simulta-
neously active refers to the same entity, and distinct entities
share different oscillation phases. We implement these as-
sumptions using the same machinery that underlies produc-
tions which cancel their own if-conditions.

Fig. 2 g shows that for each production trigger, we can
assign an inhibitor. If a production fires, its output unit ac-
tivates and triggers its own cancellation after a controllable
delay (depending on connection strengths). However, the fir-
ing of a production can trigger a stored, hidden variable in a
third bistable unit, which forces reactivation of the production
after the inhibitor falls silent. This process repeats, trigger-
ing oscillations. When productions compete with each other,
they push their active periods out of phase with each other, as
shown in Fig. 5. When they do not, excitation causes them
to entrain to the same phase. Thus conflicting representations
locally decide which gets to broadcast information globally.
If we allow for a plasticity signal that globally increases the
learning rate of Hebbian connection plasticity between units,
and if we activate this signal only at critical times, then we
can burn in connections (possibly temporary connections) be-
tween units simply by activating them.
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Figure 5: Relaxation oscillations among competing represen-
tations, allowing sharing of a single broadcast channel. Each
solid color corresponds to one representation’s bistable out-
put unit; dashed curves correspond to the output’s inhibitor.

More work will be needed to determine the scope of this
approach to dynamic symbol and rule creation, to the imple-
mentation of a data type system such as exists in ACT-R, and
to the binding problem more generally. With enough addi-
tional assumptions about the structure of the basic building
blocks, it would be possible to translate between any given
symbolic architecture and an architecture built from the com-
ponents we have outlined. This must be the case in a trivial
sense because our components are equivalent to circuits of
resistors, capacitors and transistors. To stand as a psycholog-
ically plausible mapping, however, any subsymbolic theory
will have to account for empirical data. We now focus on the
kind of data for which our subsymbolic approach has some-
thing definite to say, leaving a more detailed investigation of
the dynamics of connection-strength change for future work.
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Laws of behavior
Two laws of behavior bear directly on the plausibility of the
architectural building blocks. The first, known as the ‘match-
ing law’, states the following: that the ratio of rates of two
(or more) different types of behavior that an animal engages
in equals the ratio of the rewards earned for those behaviors.
We showed in Simen and Cohen (2009) that the network in
Fig. 3 reproduces this behavior. That network involves con-
flict between two productions that are supported by exactly
the same amount of perceptual evidence. The exponentially
weighted reward history of each response is encoded in the
weight between the input unit and output unit of a produc-
tion. This effectively changes the random walk thresholds
for each response, while the walk itself is unbiased toward
any response. The average result, in the case of two alterna-
tives, is a state of exact matching of the behavior and reward
ratios. When, instead, the reward history is encoded in con-
nections from sensory inputs to the laterally inhibiting units,
and input-output unit weights are held fixed, the model im-
plements a softmax or logistic choice function defined on the
difference between the reward histories. Evidence abounds
for one or the other choice function in the instrumental con-
ditioning literature since the time of Skinner. Thus the ba-
sic implementation of preferences for certain responses over
others in the architecture meets a well-known psychological
constraint on learning from reinforcement.

The other law regards timed behavior. A variety of differ-
ent timing experiments show that the standard deviation of
response times in such tasks is equal to a constant times the
mean. The distribution of such responses is usually approxi-
mately Gaussian. The timing model in Fig. 2 f, accounts for
this law. When a unit balances its self-excitation against its
leak, it acts as an integrator. The model uses a simple error-
correction rule to set the connection strength w from the start
switch unit so as to ramp up to a level sufficient to trigger a
switch from 0 to 1 in the output trigger. The integrator acts
as a drift-diffusion process, since it integrates a constant drift
term, w, corrupted by noise of amplitude c

√
w:

dV = w ·dt + c ·
√

w ·dW. (6)

The trigger unit at the end of the chain defines a threshold on
this diffusion process; call it z. Such a process produces a
Wald, or inverse Gaussian, distribution of first-passage times
(Luce, 1986). The mean RT of this process is z/w, and the
standard deviation σ is c

√
z/w. Given that the ramping inte-

grator unit cannot rise above a certain activation because of its
saturation nonlinearity, then if we wish to minimize RT vari-
ability, we have the choice of minimizing z or maximizing w.
The square root in the numerator indicates that increasing w
will effect a larger reduction in variability than an equal in-
crease in z. This implies that for all intervals, we should set
z to a constant value that is as large as possible, without re-
quiring the integrator to enter its highly nonlinear activation
range. This in turn implies that σ = γz/w, with γ = c/

√
z.

That is, RT standard deviation is in constant proportion to the

mean. Furthermore, as long as c is not too great — with a
psychologically plausible value of 0.1 to 0.2, for example –
the Wald distribution has very little skewness, and looks al-
most normal (and a slight positive skewness is often observed
in timing data anyway). Thus the model reproduces scalar
invariance, and meets a second strong, empirical constraint.

Other behavioral and EEG predictions
We now examine two new predictions that regard the specific
mechanism used to implement thresholds. In most decision
making models (e.g., Bogacz et al., 2006), such thresholds
are simply assumed to exist as a step function or Heaviside
function, with a sharp discontinuity at the threshold. The
bistable trigger mechanism described in Fig. 1 makes no such
assumption, but nevertheless acts approximately as an all-or-
none, digital device. Its hysteresis properties are critical for
sequential processing, as we have shown, but does it make
any testable predictions?

One is that if an input to a trigger unit with strong self-
excitation is just below the point needed to trigger a transition
from low to high activation, there will nevertheless be occa-
sional triggerings due only to noise. This phenomenon —
known as the escape from a double-well potential (Gardiner,
2004) — produces escape-time distributions defined in terms
of exponential functions of the well depth (in our case, the
remaining distance to the threshold).
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Gaussian) response time distributions (rat, a, b, model, c).

In fact, a nearly exponential component of response times
shows up in rat data collected in the differential reinforce-
ment of low rates of responding (DRL) task. In this task,
an animal must wait some minimum amount of time before
making a response. Any response after this time is rewarded;
any response that occurs prior to this waiting time relative to
their last response resets the clock. Animals learn to wait in
this task until shortly after the deadline, but they also emit
a proportion of very fast responses that are apparently not
controlled by a timer. Our model of this task involves us-
ing the timer circuit in Fig. 2f to implement the nearly Gaus-
sian component of such RT distributions, but it also allows
for direct connections between the start-switch and response
trigger. This produces a proportion of fast responses that are
nearly exponentially distributed. We reason that such a con-
nection exists because of the way these tasks are acquired
by animals: first, a contingency between some input stimu-
lus and the response mechanism must be learned; second, a
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learned delay between responses is shaped through training.

−600 −400 −200 0 200
−0.5

0

0.5

1

1.5

am
pl

itu
de

 (μ
V)

Empirical LRP Model LRP

−600 −400 −200 0 200
−0.5

0

0.5

1

1.5

Time (msec)Time (msec)

Figure 7: a: Average, response-locked LRP data (micro-
volts) from 8 human participants performing left vs. right
dot-motion discrimination, with stimulus odds equal to 60:40
(blue), 75:25 (green), 90:10 (red). Behavioral responses oc-
cur at time 0. Data is baseline-corrected to align peaks. b:
Model LRP (left threshold unit activation subtracted from
right in Fig. 3, followed by a bilateral shutoff signal), with
constant bias toward the right. The order of LRP differences
between conditions is captured, but (as shown by the y-axis
limits) capturing the smaller magnitude of the empirical peak
requires additional assumptions.

The second prediction the bistable trigger mechanism
makes regards the lateralized readiness potential (LRP) ob-
served in any task with a motor response that occurs on one
side of the body. Prior to the movement, a voltage builds
up over the part of motor cortex that is contralateral to the
movement. A voltage also builds up on the same side as
the movement, but not to the same degree. Then, just be-
fore the response is made, the LRP returns to baseline, be-
cause the voltage on both sides of the head over motor cortex
becomes large and equal. We hypothesize that motor cortex
houses response triggers, and we examined what would hap-
pen to a circuit in which a prior probabilities favored, say,
a left button press rather than right button press. Although
our bistable switches are nearly binary, they do involve slow,
graded changes in activation level prior to the point at which
they transition to a high activation. Because of this, and be-
cause this happens to a greater extent for the response trig-
ger that is about to activate than for a trigger for the other,
competing response, a difference in trigger activations devel-
ops, as shown in Fig. 7 a. We interpret this difference as a
readiness potential. As a result, a consistent bias toward one
response over the other should show up as an LRP both be-
fore and after the response. Such biases are expected in two-
alternative perceptual decision making tasks with rewards for
correct responses in which one stimulus is more frequently
presented than the other (Bogacz et al., 2006). Simen et al.
(2009) showed that human behavior in such tasks is consistent
with the predicted bias toward the more frequent stimulus.

New LRP data from the same task shows the predicted
physiological signature of such a constant bias: for a con-
dition in which a right button-press response is always more
likely to be correct than a left button-press, a persistent LRP
should occur, with magnitude increasing as the prior proba-
bility increases for a given response. Data from 8 participants

confirms this stimulus bias prediction (Fig. 7).

Conclusion
Here we have shown strong behavioral and electrophysiolog-
ical evidence for key components of a neurally implemented
production system architecture. These include bistable re-
sponse units, and competitive response selection and hypoth-
esis testing that are equivalent to random walk attractor dy-
namics. Thus the assumptions we made in order to achieve
basic production system functionality seem to be justified.
Much work remains to determine just how much produc-
tion system functionality can truly be emulated by such sys-
tems. However, it is clear from working examples that simple
cognitive models of problem solving can be so implemented
(Polk et al., 2002; Simen & Polk, in press), and we have
outlined a mechanistic implementation of the temporal syn-
chrony solution to the binding problem and the problem of
dynamic linking among representations — problems which
bedevil neural network architectures, but which are handled
easily in standard production systems. We hope that future
work on this topic will illustrate what constraints need to be
imposed on production system programs in order for them to
be ‘compiled’ into an equivalent neural network.
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Abstract

Creating artificial intelligent agents that are high-fidelity sim-
ulations of natural agents will require that behavioral scientists
be able to write code themselves, not merely act as consul-
tants with the ensuing knowledge acquisition bottleneck. We
are designing a system that will make it possible to create rich
agents using concepts familiar to behavioral scientists, such
as personality models from psychology. However, translating
personality models into the concrete behavior of an agent us-
ing currently available programming constructs would require
a level of code complexity that would make the system inac-
cessible to behavioral scientists. What we need is a way to
derive the concrete actions of an agent directly from psycho-
logical personality models. This paper describes a reinforce-
ment learning approach to solving this problem in which we
represent trait-theoretic personality models as reinforcement
learning agents. We validate our approach by creating a vir-
tual reconstruction of a psychology experiment using human
subjects and showing that our virtual agents exhibit similar be-
havior patterns.
Keywords: Agents; Reinforcement Learning; Personality

Introduction
There is tremendous interest in creating synthetic agents that
behave as closely as possible to natural (human) agents. Rich,
interactive intelligent agents will advance the state of the art
in training simulations, interactive games and narratives, and
social science simulations. However, the programming sys-
tems for creating such rich synthetic agents are too complex,
or rather too steeped in computational concepts, to be used
directly by the behavioral scientists who are most knowledge-
able in modeling natural agents. Engaging behavioral scien-
tists more directly in the authoring of synthetic agents would
go a long way towards improving the fidelity of synthetic
agents.

Our goal is to create a programming language that a behav-
ioral scientist can use to write agent programs using concepts
familiar to behavioral scientists. This task is complicated by
the fact that the most popular and best understood personal-
ity models from behavioral science do not lend themselves to
direct translation into computer programs. Requiring a be-
havioral scientist to specify behaviors in the detail required in
even the most cutting edge purpose-built programming lan-
guage would plunge the would-be behavioral scientist agent
programmer right into a morass of complex computational

concepts that lie outside the expertise of most dedicated be-
havioral experts. To solve this problem we need a way to get
from personality models to behaviors, to derive specific agent
actions in an environment from a personality model without
having to program the derivation in great detail.

In this paper, we describe a way to model motivational fac-
tors from trait-oriented personality theory by reinforcement
learning components. We describe a virtual agent simulation
that reconstructs a human subject experiment from psychol-
ogy, namely some of Atkinson’s original work in achieve-
ment motivation and test anxiety, and show that our simula-
tion exhibits the same general behavior patterns as the human
subjects in Atkinson’s experiments. First, we briefly discuss
relevant personality research and provide some background.

Personality
Personality is a branch of psychology that studies and char-
acterizes the underlying commonalities and differences in hu-
man behavior. Within psychology, there are two broad cate-
gories of personality theories: processing theories, and dispo-
sitional, or trait theories. Social-cognitive and information-
processing theories identify processes of encodings, ex-
pectancies, and goals in an attempt to characterize the mech-
anisms by which people process their perceptions, store con-
ceptualizations, and how those processes drive their interac-
tions with others (Dweck & Leggett, 1988; Cervone & Per-
vin, 2009; Cervone & Shoda, 1999). A strength of processing
theories, especially from a computational perspective, is that
they provide a detailed account of the cognitive processes that
give rise to personality and drive behavior. This strength is
also a drawback – processing theories tend to be detailed and
often low-level (though not as low-level as cognitive architec-
tures, which we will discuss below), and this makes them less
intuitive and less suited to describing personality in broad,
easily understood terms.

Trait theories (Cervone & Pervin, 2009), the most well-
known example of which is the Five-Factor model (McCrae
& Paul T. Costa, 2008), attempt to identify stable traits (some-
times called “trait adjectives”) that can be measured on nu-
merical scales and remain invariant across situations in de-
termining behavior. A strength of the trait approach is that
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they are well-suited to describing individuals in broad, intu-
itive terms. Two drawbacks of the approach are that there is
not yet widespread agreement on a set of truly universal traits
(or how many there are), and it is not clear how trait models
drive behavior. A promising line of research by Elliot and
Thrash (Elliot & Thrash, 2002) is working towards solving
these problems by integrating motivation into personality in
a general way. The work of Elliot and Thrash particularly
supports the approach we present here, as they show that ap-
proach and avoidance motivation underpins all currently pop-
ular trait theories.

While debate continues about the merits and drawbacks of
the different approaches to personality, the psychology com-
munity is also attempting to unify personality and motiva-
tion theory (Mischel & Shoda, 2008). While the work we
present here is focused on bridging the gap between the de-
scriptive power of trait-oriented models and the behavior that
arise from them, we consider this work to be complementary
to work in encoding information processing theories. In the
future, rich computational agents may be built by combining
approaches.

Reinforcement Learning
One can think of reinforcement learning (RL) as a machine
learning approach to planning, that is, a way of finding a se-
quence of actions that achieves a goal. In RL, problems of
decision-making by agents interacting with uncertain envi-
ronments are usually modeled as Markov decision processes
(MDPs). In the MDP framework, at each time step the agent
senses the state of the environment and executes an action
from the set of actions available to it in that state. The agent’s
action (and perhaps other uncontrolled external events) cause
a stochastic change in the state of the environment. The agent
receives a (possibly zero) scalar reward from the environ-
ment. The agent’s goal is to find a policy; that is, to choose
actions so as to maximize the expected sum of rewards over
some time horizon. An optimal policy is a mapping from
states to actions that maximizes the long-term expected re-
ward. In short, a policy defines which action an agent should
take in a given state to maximize its chances of reaching a
goal.

Reinforcement learning is a large and active area of re-
search, but the preceding is all the reader needs to understand
the work presented here. More detail can be found in (Sutton
& Barto, 1998; Kaelbling, Littman, & Moore, 1996).

Modeling Personality with Reinforcement Learning
The essential idea behind modeling personality traits with re-
inforcement learning is that each motivational factor can be
represented by a reinforcement learning component. In psy-
chology, the inherent desirability or attractiveness of a behav-
ior or situation is referred to as valence. For a person high in
success approach motivation, behaviors or situations that pro-
vide an “opportunity to excel” will have high valence, while
other behaviors will have lower valence. The notion of va-
lence translates fairly directly into the concept of reward in

reinforcement learning. Just as people with certain motiva-
tional factors will be attracted to high-valence behaviors, a
reinforcement learner is attracted to high-reward behaviors.
This is the basis for modeling motivational factors with rein-
forcement learning components. By encoding the valence of
certain behaviors as a reward structure, reinforcement learn-
ers can learn the behavioral patterns that are associated with
particular motivational factors. This is a powerful idea, be-
cause it allows an agent author to write agent code using mo-
tivational factors while minimizing the need to encode the
complex mechanisms by which such factors lead to concrete
behavior.

A critical aspect of trait theory is that traits can have inter-
active effects. It is clear that a person who is high in achieve-
ment motivation will “go for it” when given the opportunity
and that a person who is high in avoidance motivation will
be more reserved. But what happens when a person is high
in both motivations? Such interactive effects cannot be ig-
nored in a credible treatment of personality, but it is hard
to predict the behavioral patterns that will arise from given
combinations of motivational factors. One can imagine the
code complexity that might result from trying to model such
interactive effects with production rules or other traditional
programming constructs. As we demonstrate later, our rein-
forcement learning approach handles such interactive effects
automatically.

It is important to note that we are not creating a new the-
ory of personality. We are creating a computational means
of translating existing theories of personality from psychol-
ogy (not computer science) into actions executed by synthetic
agents. We are also not committing to a particular theory
from psychology, but rather supporting the general category
of trait theories of personality which, until now, have not been
directly realizable in computer agents.

In the remainder of this paper we discuss some related
work in agent modeling, present our virtual reconstruction of
a human subject experiment using our reinforcement learning
approach, and discuss the promising results and their impli-
cations for future work.

Related Work
There is a great deal of work in modeling all sorts of phe-
nomena in synthetic agents. Cognitive architectures provide
computational models of many low-level cognitive processes,
such as memory, perception, and conceptualization (Jones,
2005; Langley, Laird, & Rogers, 2008). Cognitive architec-
tures support scientific research in cognitive psychology by
providing runnable models of cognitive processes, support
research in human-computer interaction with detailed user
models (John, 1998), and can serve as the “brains” of agents
in a variety of contexts. The most notable and actively de-
veloped cognitive architectures are Soar (Laird, 2008) and
ACT-R (Anderson, Bothell, & Byrne, 2004). Recently, some
effort has gone into integrating reinforcement learning into
Soar (Nason & Laird, 2008). While RL is used to improve
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the reasoning system in Soar, we are using RL to support new
paradigms of computer programming for agent systems. In
general, our work differs from and complements work in cog-
nitive architectures in that we are drawing on psychological
theory that is expressed at a much higher level of abstrac-
tion. Cognitive psychology and AI have often built on each
other. Indeed, cognitive psychology is the basis of cognitive
architectures in AI. Our work is an attempt to bring in main-
stream personality psychology as a basis for building intel-
ligent agents, which we hope will complement the detailed
models of cognitive architectures in creating rich synthetic
agents.

There is a large and rich body of work in believable
agents. Mateas and Stern built on the work of the Oz project
(Loyall & Bates, 1991) in creating a programming language
and reactive–planning architecture for rich believable agents.
They implemented their theory in the computer game Facade,
a one-act interactive drama in which the player interacts with
computer simulated characters that provide rich social inter-
activity (Mateas & Stern, 2004). Gratch, Marsella and col-
leagues have a large body of work in creating rich simulations
of humans for training simulations that incorporate models
of appraisal theory and emotion (Gratch & Marsella, 2005;
Swartout et al., 2006). A distinctive feature of the work of
both Mateas, et. al., and Gratch, et. al., is that they are deal-
ing with the entire range of AI problems in creating believ-
able agents that sense, act, understand and communicate in
natural language, think, and exhibit human-like personalities.
Our work differs from other work in personality modeling in
that we are not attempting to simulate personality, but using
definitions of personality to drive the behavior of synthetic
agents. We want to derive behavior that is consistent with a
given personality model, but not necessarily to ensure that the
agent gives the appearance of having that personality.

Experiments
To test our claim that personality can be modeled by rein-
forcement learning components, we created a population of
simple two-component multiple-goal reinforcement learning
agents and ran them in a world that replicated experiments
carried out with humans by psychologist John Atkinson. First
we describe Atkinson’s original research, and then discuss
our virtual reconstruction of his experiments.

Atkinson’s Ring Toss Experiment

John Atkinson was among the first researchers to study the
existence and role of approach and avoidance motivation in
human behavior. Prior to Atkinson’s work, it was believed
that test anxiety was equivalent to low achievement motiva-
tion. However, Atkinson showed that test anxiety is actually
a separate avoidance motivation, a “fear of failure” dimen-
sion that works against and interacts with achievement mo-
tivation (Atkinson & Litwin, 1960). To test his hypothesis,
he administered standard tests of achievement motivation and
test anxiety to a group of undergraduate psychology students

and devised a series of experiments which examined the ef-
fort put forth in achieving success in tasks such as taking a
final exam. It is important to note that he did not measure the
outcomes of the task, but rather the effort put forth in doing
well in them. Thus, his experiments examined the relation-
ship between motivation and behavior, not necessarily com-
petence. One of his experiments, a ring toss game, produced
results that clearly show the interplay of approach and avoid-
ance motivation and is particularly well-suited to computer
simulation.

In Atkinson’s ring toss experiment, subjects played a ring
toss game in which players attempted to toss a ring from a
specified distance onto a peg. Subjects made 10 tosses from
any distance they wished, from 1 through 15 feet, and the dis-
tance at which each subject made each toss was recorded. For
analysis, subjects were divided into four groups according to
their measures of achievement motivation and test anxiety so
that the relationship between these motivations and their be-
havior could be analyzed. For each of the two measures –
achievement motivation and test anxiety – subjects were clas-
sified as either high or low, with the dividing line between
high and low set at the median scores in each measure. (For
example, a H-L subject is high in achievement motivation and
low in test anxiety). Subjects were divided into four groups –
H-L, H-H, L-L, and L-H – and the percentage of shots taken
at each distance by each group was recorded. We discuss his
results and our simulation below.

Computational Models of Atkinson’s Subjects
We reconstructed Atkinson’s ring toss experiment in a com-
puter simulation. We created 49 virtual agents that corre-
sponded to each of the 49 human subjects in Atkinson’s ex-
periments, with the same distribution of high and low mea-
sures of achievement motivation and test anxiety. Simplified
code for a representative student subject is presented in Fig-
ure 1. Since we did not have access to Atkinson’s source data,
we modeled high motivation measures as having a mean of
1.5 and low motivation with a mean of 0.5, both with stan-
dard Normal distributions (mean = 0, variance = 1) scaled by
1
2 , so virtual test subjects did not all have the same measures.

1 object Student((Achievement , 1.5 + X ˜ N(0, 1) / 2),
2 (TestAnxiety , .5 + X ˜ N(0, 1) / 2))
3 }

Figure 1: An agent representing a success-oriented student in
Atkinson’s ring toss experiment, containing two RL components
representing high achievement motivation and low test anxiety. The
code snippets presented here are simplified versions of the Scala
code we used to run our experiments.

As discussed earlier, each of the motivational dimensions
of the virtual subjects was implemented with reinforcement
learning components that learned to satisfy the preference for
perceived valence of behaviors (modeled as reward). For ex-
ample, in the achievement motivation component (see Figure
2), the greater the distance from the peg, the greater the re-
ward because it represents greater achievement. Similarly, in
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the test anxiety component (see Figure 3), greater reward is
given to closer distances, because they minimize, or “avoid”
the chance of failure from a long-distance toss.

1 object Achievement extends AbstractRlComponent {
2
3 world = RingTossWorld
4
5 rewards = (1_foot_line -> 1,
6 2_foot_line -> 2,
7 // ...
8 15_foot_line -> 15)
9

10 actions = (play_1_foot_line ,
11 play_2_foot_line ,
12 // ...
13 play_15_foot_line)
14 }

Figure 2: A reinforcement learning component representing
achievement motivation.

1
2 object TestAnxiety extends AbstractRlComponent {
3
4 world = RingTossWorld
5
6 rewards = (1_foot_line -> 15,
7 2_foot_line -> 4,
8 // ...
9 15_foot_line -> 1)

10
11 actions = (play_1_foot_line ,
12 play_2_foot_line ,
13 // ...
14 play_15_foot_line)
15 }

Figure 3: A reinforcement learning component representing Test
Anxiety (‘avoidance motive, a.k.a. “fear of failure”). Note that the
rewards are inverted from the achievement motivation component,
that is, the valence of avoiding achievement is higher.

Internally, each personality component is implemented
with the standard Q-learning algorithm (Sutton & Barto,
1998). The ring toss world consists of 16 states – a start state
and one state for each of the 15 distances, and 15 actions
available in each state that represent playing (making a toss)
from a particular distance. For readers interested in such de-
tails, each reinforcement learning component used a step-size
parameter of α = 0.1, a discount factor of γ = 0.9 (though dis-
counting wasn’t important given that the 15 states represent-
ing playing lines were terminal states, since each play was a
training episode), and employed an ε-greedy action selection
strategy with ε = 0.2. (Readers familiar with reinforcement
learning will also notice that this game is roughly equivalent
to a 15-armed bandit problem.) We emphasize that the details
of the reinforcement learning algorithms are not essential to
modeling motivational factors, and those details are hidden
inside the implementation of the components. Indeed a major
goal of our work is to simplify the task of writing synthetic
agents by taking care of such details automatically.

Recall that reinforcement learning algorithms learn an ac-
tion value for each action available in a given state. An action
value for a state represents the expected total reward that can
be achieved from a state by executing that action and transi-
tioning to a successor state. For each of the components –

Achievement and TestAnxiety – the action values represent
the learned utility of the actions in serving the motivational
tendencies the components represent. The Student agents
take into account the preferences of the components – rep-
resented by action values – by summing their action values
weighted by their component weights to get a composite ac-
tion value for each action in a given state. If we denote each
component’s action value by Q(s,a) and the weights by W ,
then the composite, or overall, action value is:

Qstudent(s,a) =WAchievementQAchievement(s,a)+ (1)
WTestAnxietyQTestAnxiety(s,a) (2)

For the virtual experiments, each component – Achieve-
ment and TestAnxiety – was run to convergence and then the
student agents simulated 10 plays of the ring toss game, just
as in Atkinson’s experiment. We discuss the results of the
experiment below.

Model Validation
A model is a set of explicit assumptions about how some sys-
tem of interest works (Law, 2007). In psychology the sys-
tem of interest is (usually) a human or group of humans. Our
virtual reconstruction of Atkinson’s experiments constitutes a
computational representation of Atkinson’s two-factor model
of personality. Thus, our agents are simulation models of
Atkinson’s subjects (the students in his ring toss experiment).
While the work presented here is only a proof of concept, we
do hope to achieve a high level of validity as we refine our
approach, so it will be useful to validate our models using
techniques from simulation science (Law, 2007).

As we described earlier, Atkinson divided his subjects into
four groups according to their measures (high or low) on
achievement motivation and test anxiety. For each of these
four groups – H-L, H-H, L-L, L-H – he recorded the percent-
age of shots that each group took from each of the 15 dis-
tances. We ran 10 replications of our simulation and recorded
the mean percentages for each group and distance. For each
percentage mean we calculated a 95% confidence interval.
We consider a model to be valid if the confidence intervals
calculated on the simulation percentage means contain the
percentages obtained by Atkinson in his experiments with hu-
man subjects.

The validation results are presented in Table 1. Atkinson
analyzed his experimental data by aggregating the shots taken
by subjects into three “buckets” representing low, medium,
and high difficulty. In Atkinson’s analyses the dividing lines
between the three buckets were set in four different ways with
each yielding similar results. For brevity we present the di-
vision obtained by using both geographical distance and dis-
tribution of shots about the median shot of 9.8 ft, in other
words, the dividing line one would choose by inspecting the
histogram for distinct regions. This strategy resulted in the
three buckets listed in the left column of Table 1. Each cell of
the four subject groups – H-L, H-H, L-L, L-H - contains the
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Table 1: Validation Results. For each subject group the percentage of shots taken by Atkinson’s human subjects and by our
simulation from each of three ranges is presented along with a 95% confidence interval for the mean percentage of shots in 10
simulated replications of Atkinson’s experiment.

Achievement: High High Low Low
Test Anxiety: Low High Low High

Atkinson Atkinson Atkinson Atkinson
Simulation Simulation Simulation Simulation

Range Conf. Int. Conf. Int. Conf. Int. Conf. Int.
1-7 11 26 18 32

7.7 14.0 5.6 8.5
( 4.0, 11.4) ( 5.6, 22.4) ( 1.4, 9.7) ( 4.4, 12.5)

8-12 82 60 58 48
75.4 69.0 74.4 80.0

(65.1, 85.7) (61.1, 76.9) (62.0, 86.9) (74.1, 85.9)
13-15 7 14 24 20

16.9 17.0 20.0 11.5
( 8.8, 25.0) ( 9.4, 24.6) ( 8.3, 31.7) ( 6.9, 16.2)

percentage of shots taken by Atkinson’s subjects, the mean
percentage obtained by running 10 replications of our simula-
tion of Atkinson’s experiment, and a 95% confidence interval
for the mean percentage. While our model did not achieve
formal validation, the general patterns of behavior are quite
similar to Atkinson’s human subject experiment and we con-
sider these results to be a good proof of concept. We discuss
some reasons behind these results and strategies for improve-
ment below.

Discussion

We made several assumptions in our models that affected the
validation results. First, because we did not have access to
Atkinson’s original data, only summary presentations, we did
not know the exact distribution of motivational factors among
his subjects, or even the scales used in his measures. We as-
sumed normally distributed measures and tried several differ-
ent scales before settling on the values used in the simula-
tions reported here. Second, it is not clear how the valence of
behaviors should be translated into reward structures for RL
agents. We chose a simple linear reward structure in hopes
that the system would be robust to naive encodings. To make
our approach widely useful we will need to address the man-
ner in which reward structures are determined. Third, we cal-
culated aggregate action values by a simple weighted sum of
component action values. We are currently investigating opti-
mal arbitration of multiple RL components and hope to report
results within the next six months.

We chose the Atkinson ring toss experiment on the advice
of psychologists who recommended it as a well-known exam-
ple of trait-oriented behavior theory, and because of its sim-
plicity. However, our goal is to create large agent systems,
so future work will need to address scalability – to greater

numbers of trait factors and more complex worlds – and gen-
eralizability, or transferability, to other domains.

The algorithms we used also employed no optimization.
Reinforcement learning suffers from the curse of dimension-
ality, and many techniques are being actively pursued to cope
with the size of state spaces for realistic-size domains. Prof-
itably employing reinforcement learning in agent program-
ming systems will mean integrating scaling techniques such
as function approximation (e.g., of action-value functions or
state spaces) and decomposition techniques.

Finally, notice that the example code presented in this pa-
per contains no logic for implementing behavior. The agents
and the components are defined declaratively by specifying a
state space, an action set, and a reward structure. The run-
time system derives the concrete behavior of the agents au-
tomatically from these specifications. This technique, some-
times called partial programming (Simpkins, Bhat, & Isbell,
2008), is a key concept that increases the usability of agent
programming by allowing programmers to specify what an
agent is to do without getting mired in how the agent should
do it.

Conclusions and Future Work
Reinforcement learning provides a promising approach to
modeling personality traits and motivational factors in syn-
thetic agents. In particular, it provides us with a means to
create agent programming systems that are accessible to be-
havioral scientists and harness their knowledge directly while
minimizing the need for complex programming. Much work
remains to make this vision a reality, and our work is pro-
gressing on three paths. First, the integration of reinforcement
learning into agent programming systems needs to be studied
further so that we know when it is useful and how much detail
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can be hidden from the agent programmer. Second, the exam-
ples presented here were written together so that the reward
signals of each agent were directly comparable. If we want
to enable large-scale agent programming, we must be able to
arbitrate the reward signals of separately-authored reinforce-
ment learning components (Bhat, Isbell, & Mateas, 2006).
We are currently working on such an arbitration algorithm
and hope to have results in the very near future. Finally, once
the implications of integrating reinforcement learning com-
ponents into agent models are sufficiently well understood
and separately authored components can be combined in a
modular fashion using an appropriate arbitration algorithm,
we believe the best way to realize these benefits is in a lan-
guage that incorporates these features in a coherent design.
We are currently working on such a language, initially im-
plemented as an internal domain-specific language (DSL) in
Scala.
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Abstract

A   fundamental   process   for   cognition   is   action   selection: 
choosing a particular action out of the many possible actions 
available.  This process is widely believed to involve the basal 
ganglia, and we present here a model of action selection that 
uses   spiking   neurons   and   is   in   accordance   with   the 
connectivity and neuron types found in this area.   Since the 
parameters of the model are set by neurological data, we can 
produce   timing   predictions   for   different   action   selection 
situations without requiring parameter tweaking.  Our results 
show that, while an action can be selected in 14 milliseconds 
(or longer for actions with similar utilities), it requires 34­44 
milliseconds to go from one simple action to the next.   For 
complex actions (whose effect involves routing information 
between cortical areas), 59­73 milliseconds are needed.  This 
suggests   a   change   to   the   standard   cognitive   modelling 
approach of requiring 50 milliseconds for all types of actions.

Keywords:  action selection; basal ganglia; spiking neurons; 
Neural Engineering Framework; cognitive cycle time

Action Selection
The   basal   ganglia   are   generally   believed   by   both 
neuroscientists   (e.g.  Redgrave  et  al.,  1999)  and  cognitive 
scientists (e.g. Anderson et al., 2004) to be responsible for 
action selection.   Action selection consists of choosing one 
action to perform out of the many actions in an organism's 
repertoire.    Selection is done on the basis of some sort of 
context­dependent   utility   signal   for   each   possible   action. 
Actions that are inappropriate for the current context may 
have low utility, and a task of the basal ganglia is to select 
the action that currently has the highest utility value.

Since such a mechanism forms the core of many cognitive 
models, including all of those based on production systems 
(where  a single production much be chosen  to  fire),   it   is 
useful   to  develop  a  computational  model  of   this  process. 
Here, we develop a detailed spiking neuron model that takes 
into account a broad range of neurological details about the 
basal   ganglia.     Other   spiking   models   of   action   selection 
exist,   but   tend   to   be   organized   unlike   the   basal   ganglia 
(Belavkin   &   Huyck,   2009)   and   unconstrained   by   neural 
properties (Shouno et al., 2009; see Humphries et al., 2006 
for an exception and alternate approach).

By   directly   connecting   our   model   to   neuroscientific 
results, we constrain our parameter values.  Every parameter 
in   the  model   reflects  neurological  data   from  the   relevant 
brain areas, resulting in a model that has no free parameters 
(that affect the results shown here).   Furthermore, having a 
biologically realistic model allows us to make predictions 
about a wide range of measures,   including spike patterns, 
timing, variability,   lesion effects,  neural  degeneration,   the 

influence of various drugs, and so on.   Importantly, all of 
these predictions can come from the same model, with no 
additional parameters.

Neural Structure
The basal ganglia are a group of subcortical structures that 
are ideally suited for an action selection operation, as they 
receive input from extremely broad areas of cortex and the 
limbic system, and send output back to these areas via the 
thalamus.     The   basic   components   are   the   striatum,   the 
subthalamic   nucleous   (STN),   the   globus   pallidus   internal 
(GPi), the globus pallidus external (GPe), and the substantia 
nigra pars reticulata (SNr).

The classic way of thinking about the organization of the 
basal ganglia is shown in Figure 1A.   It consist of a direct 
pathway, where excitatory inputs from cortex to the D1 cells 
in the striatum inhibit corresponding areas in GPi and SNr, 
which   then   in   turn   inhibit   areas   in   the   thalamus,   and  an 
indirect pathway from the D2 cells in the striatum to GPe, 
STN, and then GPi/SNr (Albin et al.,  1989).       However, 
more   recent   evidence   shows   other   major   connections, 
including   a   hyperdirect   excitatory   pathway   straight   from 
cortex   to  STN (Nambu et  al.,  2002),  and other   feedback 
connections, as shown in Figure 1B.

Figure 1: Two schematic diagrams of the basal ganglia.  A 
shows the standard direct/indirect pathway.  B includes the 

other major connections that have been discovered.
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There   is  also  a  great  deal  of   topological   structure   in   the 
inhibitory   connections   in   basal   ganglia.     Neurons   in   the 
striatum project   to  a   relatively   localized  area   in   the  GPi, 
GPe, and SNr, while the excitatory connections from STN 
are   very   broad   (Mink,   1996).     This   is   an   important 
constraint for the model we discuss below.

Simple Action Selection Models
Two   simple   approaches   to   neurally   modelling   action 
selection are shown in Figure 2.  The inputs give the utilities 
of three possible actions (0.3, 0.8, and 0.5), and the model's 
task is to chose one of them.  Importantly, since the output 
from   the   basal   ganglia   is   inhibitory,   selecting   an   action 
consists of having that particular inhibitory output be zero. 
In other words, it will no longer inhibit the neurons to which 
it   is   connected,   allowing   the   action   to   occur.     Thus,   in 
Figure 2, the selected action is the middle one, whose output 
value is zero in both cases.

The   model   in   Figure   2A   is   the   most   straight­forward. 
Each input neuron inhibits its corresponding output neuron 
and excites all others.  For the first action, this results in an 
output of  ­0.5*0.3+0.5*0.8+0.5*0.5=0.5.    The action with 
the largest   input will  have the smallest  output,  and if   the 
weights are in suitable ranges, only one output neuron will 
be   turned   off.     One   problem   with   this   approach   is 
determining suitable weights, although this can be helped by 
introducing recurrent  connections,  as   in our earlier  model 
(Stewart & Eliasmith, 2009).  However, a more fundamental 
problem is that real neurons are typically either excitatory or 
inhibitory, and seldom both, as they are in this model.

An   alternate   approach   is   shown   in   Figure   2B.     Here, 
instead of each neuron being both excitatory and inhibitory, 
a separate inhibitory interneuron is introduced.   These are 
found throughout the brain, and can be used here to divide 
up   the   excitatory   and   inhibitory   parts   of   the   task.     This 
approach   is   commonly   used   in   neural   models   of   action 
selection (e.g. Hazy et al., 2007; Stocco et al., 2010).

Figure 2: Two simple models of action selection.  Inputs are 
the utilities of three possible actions, and an output of zero 
indicates the selection of a particular action.  Each neuron 

(circle) outputs the sum of its weighted inputs.

A Realistic Rate Neuron Model
Gurney,  Prescott,  and Redgrave   (2001) have  developed  a 
computational model of the basal ganglia that is well­suited 
to   reimplementation using more  realistic  spiking neurons. 
While   their  model  uses   rate  neurons,   they have  carefully 
followed   the   known   biological   constraints   on   the 
connectivity and types of neurons in the basal ganglia.

One   of   the   main   differences   between   their   model   and 
other computational models (e.g. Hazy et al., 2007; Stocco 
et  al.,  in press)  is  that  it  does not make use of inhibitory 
interneurons in the striatum to perform action selection (as 
in Figure 2B).    This  is   important   for   two reasons.    First, 
while the striatum does include inhibitory interneurons, the 
actual   behaviour   and   biological   characteristics   of   these 
neurons is unclear, making them difficult to model.  Second, 
there seems to be little evidence of the sort of broad, diffuse 
connectivity required by figure 2B (Gurney,  et al.,  2001). 
Tepper and Bolam (2004) identify three different types of 
striatal interneurons, and demonstrate their ability to affect 
spike timing in the rest of the striatum.  These interneurons 
are  highly   influenced  by  dopamine   (Bracci   et   al.,   2002), 
acetylcholine   (Koos   &   Tepper,   2002),   and   seratonin 
(Blomeley & Bracci, 2009), indicating that their role may be 
more   to  do  with   learning  and  other   large­scale  cognitive 
processes than with action selection.

Instead, Gurney, Prescott, and Redgrave (2001) present a 
model where the inhibitory output from the striatum and the 
excitatory   output   from   the   subthalamic   nucleous   (STN) 
combine to produce the desired output.   That is, instead of 
treating   the   striatum   as   the   primary   input   to   the   basal 
ganglia, neurological evidence shows that the STN receives 
excitatory   connections  directly   from  the  cortex,  and   then 
produces diffuse excitation in the output nuclei.   Figure 3 
shows how this leads to an action selection mechanism that 
separates the inhibitory and excitatory connections.

Figure 3: Action selection via the striatum D1 cells and the 
subthalamic nucleous (STN).  Connections from the STN 

are all excitatory and set at a weight of 0.5.  The input with 
the highest utility (0.8) causes the corresponding output in 
the globus pallidus internal (GPi) or substantia nigra (SNr) 

to drop to zero, stopping the inhibition of that action.
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While the model shown in Figure 3 is sufficient for action 
selection in some circumstances, it turns out not to be fully 
general.  In particular, it has difficulty adjusting to situations 
where there are many actions with large utilities or where all 
actions have low utilities.  For this reason, a control system 
is needed to modulate the behaviour of these neural groups. 
Gurney et al. (2001) argue that the globus pallidus external 
(GPe) is ideally suited for this, as its only outputs are back 
to the other areas of the basal ganglia, and it receives similar 
inputs from the striatum and the STN as does the globus 
pallidus  internal   (GPi).     In  their  model,   the GPe forms a 
circuit identical to that in Figure 3, but its outputs project 
back   to   the  STN and  the GPi.    This   regulates   the action 
selection system, allowing it to function across a full range 
of utility values.  The final network is shown in Figure 4.

Figure 4: The model of action selection in the basal ganglia 
presented by Gurney, Prescott, and Redgrave (2001).  The 

striatum D1 cells and the subthalamic nucleous (STN) are as 
in Figure 3, while the striatum D2 cells and globus pallidus 

external form a modulatory control structure.

Converting Rates to Spikes
The model discussed so far is capable of performing action 
selection and reproducing a variety of single­cell recording 
results from electrostimulation and lesion studies (Gurney et 
al., 2001).   However, it does so with rate neurons; that is, 
the neurons do not spike and instead continually output a 
numerical value based on their recent input.   This makes it 
difficult to make precise numerical timing predictions or to 
make use of more accurate neural models.  Furthermore, the 
model has no redundancy, since exactly one neuron is used 
per area of the basal ganglia to represent each action.   The 
model shown in Figure 4 uses a total of 15 neurons (dark 
circles)   to represent  3 possible actions,  and if  any one of 
those neurons is removed the model will fail.

To make timing predictions and to constrain our model 
with a broader range of neurological details, we needed to 
adapt the rate model of the basal ganglia into one that uses 
spiking neurons.    For  the results  shown here,  we use  the 
standard   leaky   integrate­and­fire   (LIF)   model   of   spiking 
neuron behaviour, although our initial results with a more 
detailed implementation of the medium spiny neurons in the 
striatum (Gruber et al., 2002) are similar.

For LIF neurons, current is constantly leaking out of the 
neuron as per the membrane resistance  R.   If enough input 
current is gathered to cause the voltage to be above a certain 
threshold, then the neuron will fire.  After firing, the voltage 
is  set   to 0 for a  fixed refractory  period (~2 milliseconds) 
before  starting to  gather  current  again.    Given a constant 
current input J and membrane resistance R, the voltage level 
of the LIF neuron changes over time as given in Equation 1 
and shown in Figure 1.    The  timing of   this  behaviour   is 
controlled   by  τRC,   the   membrane   time   constant   of   the 
neuron.

V t =J R 1−e−t /RC (1)

Figure 5: LIF neuron with constant input current.

For a constant input, we can measure the average firing rate 
of a given LIF neuron, and this will be dependent solely on 
the neurophysicological details of the resistance R and the 
membrane   time constant,  which   tend   to  be  fixed   for  any 
particular   type   of   neuron.     However,   for   real  in   vivo 
neurons,   their   output   will   also   vary   based   on   any 
background   current   flowing   into   the   neurons,   and   their 
activity   can   be   scaled   by   the   strength   of   the   incoming 
synaptic   connection.     Thus,   even   among   neurons   of   the 
same type, their responses will vary, as shown in Figure 6A. 
The behaviour of a neuron as its input varies is known as its 
tuning curve, and the ones shown in Figure 6A are typical 
for neurons throughout the brain.

In   Figure   6B,   we   show   the   tuning   curve   for   the   rate 
neurons used by Gurney et al. (2001).   This does not look 
like   the   realistic   tuning  curves  of  Figure  6A.    However, 
Figure 6C shows that we can implement the effects of such 
a tuning curve by adding together the realistic tuning curves 
of 6A.  This allows a group of realistic neurons to provide a 
similar effect to that assumed by the model.

When adding the outputs of the spiking neurons, we scale 
each one by a factor di, producing a weighted sum.  We can 
compute the optimal  di values using Equation 2, where the 
integration  is  over  all  possible inputs  x,  ai  is   the average 
firing   rate  of  neuron  i  given   input  x,  aj  is   the   same   for 
neuron  j, and  f(x)  is the desired output (Figure 6B).   This 
calculation  determines   the   least­squared­error   solution   for 
mapping   the  neural   tuning  curves  onto   the   function  f(x). 
The   method   extends   to   complex   functions   and   multiple 
dimensions, making it the basis of the Neural Engineering 
Framework (Eliasmith & Anderson, 2003).

d=−1  ij=∫ai a j dx  j=∫ a j f x dx (2)
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While there clearly  must be a developmental  or  learning­
based  mechanism  to  determine   these  weights,  we do  not 
consider   this   here,   just   as   we   do   not   consider   the 
developmental   process   for   the   creation   of   these   separate 
brain   areas   in   the   first   place.     Instead,   we   assume   that 
whatever such mechanisms exist converge to weights near 
the values determined by Equation 2.

Figure 6: Combining realistic tuning curves to produce a 
desired function.  A shows the average firing rate of three 

different neurons as the amount of input to the neurons 
increases.  B shows the neural output function used by the 

rate neuron model.  C shows how B can be approximated by 
taking a weighted sum of tuning curves in A.

Given these weighting values di, we can construct a spiking 
version of the model shown in Figure 4.  Each single neuron 
in   the  original  model   is   replaced  by  a   set  of  20   spiking 
neurons (increasing this value does not change our results). 
These all have the same time constant (τRC=20ms; common 
throughout the brain), but have varying background currents 
and scaling factors  to produce the range of  tuning curves 
seen in Figure 6A.   Each connection in the original model 
from rate neuron A to rate neuron B is replaced by a set of 
connections from all of the spiking neurons replacing A to 
all of the spiking neurons replacing B.  The actual synaptic 
connection weight from the ith neuron in A to the jth neuron 
in B is wαjdi, where α is the neuron's scaling factor and w is 
the original rate model's connection weight.

Finally,   the   timing   effects   of   a   neuron   firing   must   be 
considered.    This  is  vital   for  producing realistic   temporal 
predictions   from   a   model   of   spiking   neurons.    When   a 

neuron fires, it sends current into all of the neurons to which 
it is connected.   This current  h(t)  can be characterized by 
Equation 3, where τs captures the effects of neurotransmitter 
re­uptake and dispersal.   As shown in Figure 7, a small  τs 

provides  a   fast,   short­lasting effect   (~10ms),  while  others 
last for hundreds of milliseconds.

ht =t e−t / s (3)

Figure 7: Post­synaptic currents for common synapses.

Importantly,   different   neurotransmitters   are   used   by   the 
different types of connections in the basal ganglia.   All of 
the   inhibitory   connections   involve   GABA  (τs=6.1ms   to 
10.5ms;  Gupta et  al.,  2000),  while   the excitatory  ones  of 
concern for this model involve fast AMPA­type glutamate 
receptors  (τs=2ms; Spruston et al., 1995).   This means that 
the excitation and inhibition in  the model  act  at  different 
times scales, a factor not taken into account in the original 
model.    As  we   show below,   the   time  constants  of   these 
neurotransmitters   have   a   strong   impact   on   the   temporal 
behaviour of our model.

Results
Figure 8 demonstrates that the model is capable of correctly 
performing   action   selection.     Initially,   action   B   has   the 
highest utility, and the output shows that B is the only action 
that is not inhibited by the GPi/SNr outputs.  In the middle, 
C is selected and has the highest activation, followed by A.

Figure 8: Spikes produced (bottom) for three possible 
actions (A, B, and C) as their utility changes (top).

f x ={ 0 if xe
m  x−e if x≥e

n1

n3

n2

f x ≈d1n1 d2 n2d3n3
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Response Latency
One of the key advantages of using a realistic neural model 
is   that   timing   predictions   emerge   from   the   neural 
parameters.   We start by determining how long it takes the 
model to select an action when there is a sudden change in 
the input.  Figure 9 shows the output for an action when its 
utility is suddenly increased at t=0.  This matches empirical 
findings that   in the rat  basal  ganglia,  output neurons stop 
spiking  14   to  17  milliseconds   after  a   similar   input  pulse 
(Ryan & Clark, 1991).

Figure 9: Spiking produced (bottom) for a sudden change 
in utility (top).  Firing for action A stops 15.1ms after its 

utility is increased.

We can also examine how long it takes the model to decide 
between two actions as we adjust the difference between the 
top two utility values.  Figure 10 indicates how the latency 
changes   from   very   similar   utility   values   (38ms   mean 
latency, standard deviation 8.8ms) to highly differing utility 
values (14ms mean latency, standard deviation 1.5ms).   As 
far as we are aware, this is a novel prediction.

Figure 10: Mean and standard deviation of basal ganglia 
response latency as for varying differences between utilities. 

Error bars are 95% confidence intervals over 200 runs.

Cognitive Cycle Timing
In a full cognitive system, the output of the basal ganglia 
would be used to affect the firing of other areas of the brain 
(via the thalamus).  This, in turn, will affect the input to the 
basal   ganglia,   perhaps   causing   a   different   action   to   be 
selected.  This is the basis of our ongoing development of a 
full   production   system   using   spiking   neurons   (Stewart, 
Choo, and Eliasmith, 2010).   To investigate how long this 
whole cycle requires, we need to include the thalamus and a 
simple cortical area in our model.

For the cortex, we create a group of 5000 spiking neurons 
representing the current state.   These are connected to the 
inputs to the basal ganglia so that the utility input for each 
action will be the similarity (measured as the dot product) 
between the current state and the ideal state for that action. 
This is done using Equation 2, where  f(x)  is this similarity 
measure.  For the thalamus, we create neurons representing 
the actions of switching to each possible state.    They are 
connected to the cortex similarly, such that the firing of one 
group  of  neurons   in   the   thalamus  will   cause   the   cortical 
neurons to fire in a pattern representing that state.

To implement the chaining of actions one after the other, 
we connect the output of the basal ganglia to the thalamic 
neurons such that if the basal ganglia selects action A, this 
will stop the inhibition of the thalamic neurons representing 
state B,  thus causing the cortex to go to state  B, and the 
basal ganglia to select action B.  The actions are chained so 
that A leads to B, B leads to C, C leads to D, and so on. 
This can be thought of as a set of production rules of the 
form “If A then B; If B then C; If C then D; etc.”    The 
newly added connections are excitatory, using AMPA­type 
receptors (τs=2ms).  All other parameters remain the same.

With this model, we can measure the time taken to change 
from one action to the next.  This provides a measure of the 
minimum amount of time needed to go from one step to the 
next in a sequence of cognitive actions.  In cognitive models 
that use production systems, extensive behavioural data has 
been gathered indicating that this value should be around 50 
milliseconds (Anderson et al., 1995).

Figure 11 shows the mean and standard deviation of the 
cycle times produce by our model.  The shaded area shows 
the   timing   produced   when   the   correct   realistic   time 
constants   for   the   inhibitory   GABA   neurotransmitter   are 
used.  Importantly, there are no parameters in our model that 
we can vary to affect this performance.  In should be noted 
that   our   model   predicts   cycle   times   between   34   and   44 
milliseconds, which is somewhat shorter than the standard 
50   milliseconds   value.     However,   this   result   is   only   for 
simple actions: more complex actions are considered next.

Figure 11: Cognitive cycle times produced by our model 
as the time constant τs of the inhibitory neurotransmitter 

GABA varies.  The shaded area indicates parameter settings 
consistent with neurophysiology (Gupta et al., 2000). 
Cognitive models generally use a cycle time of 50ms.

To   be   cognitively   useful,   an   action   selection   mechanism 
needs to be able to trigger more complex actions than those 
considered  so  far.     In  particular,  production  system rules 
generally allow actions that can send a value stored in one 
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brain   area   to   another.     To   model   this   we   can   create 
connections   between   cortical   areas   such   that   driving   a 
cortical area to a particular value causes a second cortical 
area to send its value to a third cortical area.   This can be 
implemented   using   Equation   2   (see   Stewart,   Choo,   and 
Eliasmith, 2010 for more details).  The timing of these types 
of actions are shown in Figure 12.   While simple actions 
require less than 50 milliseconds, complex actions require 
more than 50 milliseconds.

Figure 12: Cognitive cycle times produced for complex 
actions by our model as the time constant of the inhibitory 

neurotransmitter GABA varies. 

Conclusions
We presented  a spiking neuron model  of  action selection 
that matches the anatomy of the basal ganglia and does not 
assume the presence of diffuse inhibitory interneurons in the 
striatum.   By constraining the neurons' behaviour to match 
that of real neurons in the basal ganglia, we produce timing 
predictions   from   our   model   without   parameter   fitting. 
Figure 9 shows that these predictions match well for single­
cell recordings in rats, and Figure 11 shows a close match 
for   a   wide   range   of   cognitive   psychology   results.     Our 
model thus provides a neural explanation of the commonly 
used 50 millisecond cognitive cycle time (e.g. Anderson et 
al., 1995).  It also produces novel predictions of increases to 
this   cycle   time   for   situations  where   two possible   actions 
have similar utilities (Figure 10) and for actions involving 
information transfer between brain areas (Figure 12).
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Abstract

Recurrent connections combined with the appropriate dynam-
ics enable oscillatory neural networks to produce rhythmic
activity patterns. Such oscillatory activity can represent mul-
tiple stored patterns simultaneously, rather than the single
pattern of a fixed-point network. However, retrieving these
stored patterns in the same order as they were seen has proven
challenging. In this paper we modify a recently developed
simple oscillatory memory capable of storing temporal se-
quences so that it will now retrieve remembered items in the
same order presented. This was achieved through the use of
a temporally asymmetric weight matrix. The network is still
capable of matching the recall performance of human subjects,
reproducing the recency effect they exhibit in working memory
tasks and displaying similar position-specific recall rates. We
conclude that augmenting simple oscillatory neural network
models with temporally asymmetric synaptic connections sub-
stantially improves their ability to match human short term
memory properties.
Keywords: neural network models; autoassociative memory;
short-term working memory; Hebbian learning; serial order

Introduction
There has been increasing interest in recent years in the devel-
opment of oscillatory neural network models for a variety of
tasks. In contrast to fixed-point attractor networks, which are
typically limited to activating a single pattern in memory at
a time, oscillating networks have dynamics characterized by
recurrent connections leading to persistent rhythmic activity.
This allows multiple patterns to be held in the same short-
term memory concurrently as the model’s state persistently
switches between them.

A large variety of oscillating neural models exist. For
example, some are based on underlying theta/gamma activity
in the hippocampus or neocortex (Hasselmo, Bodelon, &
Wyble, 2002; Ingber, 1995; Lisman & Idiart, 1995), while
others use individual spiking neurons (Raffone & Wolters,
2001). Other more abstract approaches have also been
used, for example Wilson-Cowan oscillators (Chakravarthy
& Ghosh, 1996; Wang, 1995).

Here we concentrate on modeling short-term working
memory, which is active over periods of time on the order of
several seconds. A key characteristic of working memory is
that it has a very limited capacity, unlike long-term memory
(Baddeley, 2000). Recent studies suggest that this capacity
is capped at around four items (Cowan, 2001; Cowan et al.,
2005). More specifically we concern ourselves with modeling
working memory for sequential tasks, or those for which the
serial order of stimuli is important.

There is ongoing debate within cognitive psychology about
the proper model of serial memory. Leading theories include
the chaining model, ordinal theory, and positional theory
(Henson, 1999). Recently focus has moved to connection-
ist neural network-based models (Brown, Preece, & Hulme,
2000; Burgess & Hitch, 1999). Here we present an approach
that is reminiscent of the chaining model but avoids some of
its drawbacks (see Discussion).

An elegant and parsimonious approach to oscillating work-
ing memory models is based on simple modification of Heb-
bian associative memories with fixed-point attractors to make
them oscillatory. For example, Horn, D., Usher, M. (1991)
developed a simple oscillatory memory by adding “dynamic
thresholds” into Hopfield networks. With this approach, the
thresholds used to determine the next activity state of a node
are continuously changing such that it becomes increasingly
difficult for a node to remain in the same state, and eventually
it switches its activity state to the complementary value.
When such a network is presented with multiple input stimuli
it is found to oscillate between activity states representing
these stored memory patterns.

We recently extended the Horn and Usher model to include
a weight decay term so that the order of input pattern pre-
sentations could affect the network’s recall (Winder, Reggia,
Weems, & Bunting, 2009). This allows the network to accu-
rately model the recency effect observed in human working
memory on running memory span tasks. Stimuli which were
presented later in the input sequence were more likely to be
successfully stored and recalled by the network when using
weight decay.

While the previous version of our model was able to match
the position-specific recall rates of human subjects, the order
in which the stimuli were recalled by the model was arbitrary.
In this paper, we extend our oscillatory weight decay network
to enable it to recall inputs in the order presented. The ap-
proach is to introduce a second set of temporally asymmetric
weights into the model. By doing so we hypothesized that
the network would be induced to oscillate between stored
memory states in the desired order.

More specifically, we introduce into our simple oscillatory
networks for the first time the use of temporally asymmetric
Hebbian learning. Adaptation occurs in a fashion inspired by
experimental evidence that synaptic efficacy in biological cor-
tex and other brain structures is “temporally asymmetric” (Bi
& Poo, 2001; Markram, Lubke, Frotscher, & Sakmann, 1997;

241



Figure 1: Stimuli to the model consist of 35 binary-valued
inputs, conceived of as letters (such as the ‘P’ shown here)
for ease of visualization and interpretation.

Zhang, Tao, Holt, Harris, & Poo, 1998). That is, synapses are
strengthened (LTP) if presynaptic activity precedes excitatory
post-synaptic potentials by 20-50ms, and weakened (LTD) if
the time course is reversed. Our model, when extended in this
fashion, not only captures the recency effect of the original
model but also now largely retains the sequential order in
which the stimuli were presented.

Methods
Model Description
Our model uses a fully connected network of N linear thresh-
old units. Each node takes a binary value ai ∈ {−1,1}. The
stimuli used are in effect arbitrary sets of N bits, though we
consider them as being individual letters from A to Z for
ease of interpretation. Figure 1 shows an input to a 35 node
network interpreted as the letter ‘P.’

The operation of the model occurs in two phases: first
a temporal sequence of input stimuli are presented and the
weight matrices learned according to Eqs. 1 and 2 below,
and then the model is allowed to oscillate between states
according to Eqs. 3 and 4 for a predetermined total number
of iterations. One iteration, or time step, corresponds to
asynchronously updating every node once.

There are two sets of connection weights, W and V . Both
are N×N matrices composed of real values, and are initial-
ized to zero before learning. The first of these, W , is the
same symmetric weight matrix used in previous version of
this model (Winder et al., 2009). The entries of W are updated
as each stimulus is presented according to:

wt
i j = (1− kd)wt−1

i j +
1
N

at
ia

t
j(1−δi j) (1)

where kd is a decay rate (0 ≤ kd < 1), and δi j is Kronecker’s
delta, which ensures that weights on self-connections are
fixed at zero. This is, at it’s core, the same Hebbian weight
change rule used in many previous neural network models.
The difference is the addition of the decay term that reduces
the influence of older stimuli in favor of more recent ones.

The new element of this model is the incorporation of a
second weight matrix, V . The purpose of V is to allow the
model to recall stimuli in the same order they were presented.
In order to accomplish this, V is trained with a temporally
asymmetric learning rule

vt
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at
ia
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inspired by the learning method used in some past neural net-
works for processing temporal sequences (Schulz & Reggia,
2004). This is similar to the Hebbian learning with decay
given in Eq. 1, but it associates the activity of node i during
the presentation of stimulus at time t with the activity of all
other nodes j during the presentation of the previous stimulus
at time t − 1 in the sequence. This introduces a sense of
temporal ordering to the weight matrix, potentially making
it possible to recall the stimuli in order rather than randomly
as was previously done. Note that the decay term is still
present, although the Kronecker’s delta factor is no longer
used as it is desirable for a node’s activity to be influenced by
its activation state in the previous time steps.

After learning and before recall the network is initially set
in a random activity state. It is not necessary to prime the
network with a partial or noisy version of any of the input
patterns. The calculation of inputs to each node is modified
from the prior model to account for both sets of weights. The
input to node i at time step t is given as

ht
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j
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β1wi jat

j +β2vi jat−1
j

)
−θ

t
i (3)

where the constant coefficients β1 and β2 are used to weight
the relative contributions of W and V (0≤ β1,β2 ≤ 1). As in
the previous version of the model, θi is a dynamic threshold
used to insure that the network oscillates between states rather
than coming to rest at a fixed attractor. Its calculation has
been simplified from previously, however, with it now being
updated according to the following two rules. Every time
step, θi decays according to θ

t+1
i = (1− kθ)θt

i . In any time
step in which the state of node i has remained unchanged
from the previous time step a factor of kwat

i is also added
to θ

t+1
i . This moves θi in the direction of the activity state

of node i, making it more difficult for node i to remain in the
same state. Both kθ and kw are constants chosen in advance,
with 0 < kθ < kw < 1. We use kθ = 0.09 and kw = 0.175
in the following computational experiments, though similar
values gave qualitatively similar results. Equation 3 has been
simplified from the prior model by dropping the Ki biasing
term derived from Horn, D., Usher, M. (1991). This was
previously used to account for the potentially uneven distribu-
tion of active and inactive nodes across potential stimuli and
current network state. Computational experiments revealed
that it added computational complexity to the model without
significant impact on performance.

After the input to each node is calculated, the node’s state
is updated according to the following rule

at
i =


+1 ht

i > 0
at−1

i ht
i = 0

−1 ht
i < 0

(4)

This is also a simplification of our earlier model, which
used a stochastic updating process. We have found that the
deterministic rule given above performs roughly the same
with our data set and reduces computational cost.
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Measuring Recall

We assess the network’s recall by calculating the Hamming
distance dλ between its activity state ~a and ~aλ, where ~aλ is a
perfect representation of one of the 26 stimuli λ:

dλ =
1
2

N

∑
i=1

∣∣∣aλ
i −ai

∣∣∣ (5)

The greater the distance dλ between ~a and ~aλ, the lower the
similarity sλ = 0.85dλ will be. A value of sλ = 1.0 indicates a
perfect match between ~a and ~aλ. We call any such time step
a “recall peak” for λ. An exponential function was used to
define sλ in order to emphasize the difference between some
pairs of inputs with small Hamming distance between them.
The choice of 0.85 in the definition of sλ is essentially arbi-
trary, chosen because it produced visually reasonable results.
Values such as 0.7 or 0.9 work just as well.

In order to compare versions of the model as to whether
they successfully recalled the stimuli in the same order as they
were presented, we track the transitions from one recall peak
to the next and use this to generate a single scalar value. We
count the proportion of these peak-to-peak transitions which
occur between one stimulus and the stimulus which was
presented to the network immediately following. A transition
from the fourth-back to the third-back stimulus would be
counted as a correct transition, while one from the third to the
fourth, or fourth to second, would not. A higher proportion of
such correct transitions is indicative of the recall being more
well ordered in the sense that the model is cycling through
the stimuli it recalls in the same order as they were initially
presented. Transitions following the one-back stimulus (i.e.
the final stimulus) are ignored because there is no “next”
stimulus to correctly transition to.

The recall phase of the model lasts for hundreds of time
steps, each one potentially generating the recall of a stimu-
lus. This lengthy series of activity must be distilled into a
single ordering of the inputs, in which each unique stimulus
appeared no more than once. This is accomplished by con-
solidating any consecutive time steps in which in the network
peaks for the same stimuli. (Neither human subjects nor
the model were ever presented with duplicates of the same
stimulus, so there was no cause for the model to report seeing
the same stimulus repeated.) So, for instance, if a stimuli
sequence of “A B C D E” were to result in the network
oscillating between the states “B C C C D D E” then the
recalled sequence would be taken to be “B C D E,” and
the second through fifth stimuli would be considered to have
been remembered correctly. The requirement to remember
the stimuli in the appropriate position is the same as what
human subjects are faced with when doing running memory
span tasks. Previous versions of the model were not subjected
to this requirement; any recall peak for a stimulus was enough
for it to be considered correctly stored.

Human Behavioral Data

We used behavioral data that we collected previously (Winder
et al., 2009) on a running memory span task for compar-
ison with the model’s performance, roughly following the
designs of Pollack, Johnson, and Knaff (1959) and Bunting,
Cowan, and Saults (2006). Our human experimental data was
obtained from 38 adult subjects who were shown a rapidly
presented, two per second sequence of 12 to 20 randomly
ordered stimuli under computer control, and were asked to
remember the most recent six items in the order of their
presentation. Subjects indicated the stimuli that they recalled
by clicking on a subsequent graphical display of all possible
stimuli. Recall was measured by assessing accuracy of recall
as a function of stimulus position. A stimulus was counted as
accurately recalled only if: 1. it was presented in the retention
window (e.g., the last six items, depending on instructions),
2. it was correctly recalled by the participant; and 3. it was
recalled in the same position as it was presented (counting
backwards from the final, most recent stimulus). Any item
presented prior to the retention window that was recalled
was considered a false positive, as was any item that was
not presented at all but which was recalled. Any item from
the retention window that was not recalled was considered a
miss. Any item that was presented in the retention window,
but which was recalled in the incorrect position was also
counted as wrong (e.g., if the last six items presented were
“1 2 3 4 5 6” and the subject recalled “4 3 2 6 5 1”, then only
“5” was counted as correct). A total of twelve trials were
conducted for the task with each subject requiring roughly 20
minutes per trial; no time restrictions were placed on subject
responses. All 38 subjects completed the task.

Results

In the previous version of this model (Winder et al., 2009),
the network was given an advantage in that it did not have
to recall stimuli in the correct temporal sequence for them
to be counted as correctly stored. Any network activity pat-
tern during testing with sufficient similarity to an input was
considered successfully stored, no matter when that activity
pattern occurred. Here we increase the difficulty of the task
by requiring the network to also recall stimuli in the correct
sequence.

Figure 2 shows an example of the effect that introducing
asymmetric weights has on sequential recall. A plot of peaks
in similarity for each of the stimuli presented is shown. In
Figure 2a without temporally asymmetric weights the order-
ing of the peaks is largely random, with the network moving
between the four stored memory states without regard to
their original presentation order. In contrast, Figure 2b with
asymmetric weights shows that recalled memory patterns are
much more ordered in their progression, with activity tending
to proceed from earlier to later input patterns. This ordered
retrieval of stored memories is much closer to the human
behavioral task described above than was our earlier model.
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(a)

(b)

Figure 2: Plot over time of when the values of s reached their peaks for the eight stimuli during an example run of the model.
Black marks indicate when s reached the maximum possible value of 1.0 and thus were counted as present, while gray marks
indicate when s exceeded 0.8 but did not reach 1.0. The lines between activity peaks indicate transitions that occurred in the
same order as the stimuli were presented. The first 150 time steps of the recall phase are shown here. Figure 2(a) is without
asymmetric weights (β1 = 1.0, β2 = 0.0), and Figure 2(b) is with asymmetric weights (β1 = 0.5, β2 = 1.0). In the former, one
can see that the oscillatory states alternate between the four recalled memory patterns for the 4th, 6th, 7th and 8th stimuli (F, J,
D and E). Note that these peaks largely occur in an arbitrary order. In the latter case, the network state alternates between the
five most recent stimuli, i.e. it has a propensity to recall input stimuli in the same sequence as that in which they were presented.

Table 1: Number of stimuli recalled.

β2
0.0 0.25 0.5 0.75 1.0

β1

0.00 – 1.13 1.38 1.46 1.54
0.25 1.18 1.84 2.01 2.22 2.12
0.50 1.44 1.91 1.89 2.04 2.26
0.75 1.72 1.88 1.95 2.02 2.08
1.00 1.76 1.90 1.93 1.93 1.85

Table 1 shows the number of stimuli successfully stored
and recalled by the network for various values of β1 and β2
when the network is presented with a sequence of six inputs.
In constructing Table 1, five hundred random sequences were
used for each simulation, and the network was allowed to
oscillate for 250 time steps, with kd = .15. The cell corre-
sponding to β1 = 1.0, β2 = 0.0 is equivalent to running the
network without any influence from the asymmetric weights.
The best results were achieved with β1 = 0.5, β2 = 1.0, which
gave a capacity of 2.26 items and with β1 = 0.25, β2 = 0.75,
which gave 2.22 items. For comparison, human subjects had
a memory capacity of 2.73 items and our previous model had
a capacity of 2.69 (Winder et al., 2009). Note, however, that
in the latter case the model’s recall was not required to be in
the same temporal order as the stimulus.
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Figure 3: Recall rates for each position with and without tem-
porally asymmetric weights. Five hundred random stimuli
sequences were run using a decay rate of kd = 0.2. Networks
with asymmetric weights enabled used β1 = 0.5, β2 = 1.0.

In addition to increasing the total memory capacity relative
to baseline (β2 = 0), asymmetric weights also increase correct
position-specific recall of the network. Figure 3 shows the
recall rate at each stimulus position for networks both with
and without asymmetric weights. Asymmetrically weighted
networks were significantly more likely to retain the three
most recent inputs.

Figure 4 shows that the network is capable of modeling
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Figure 4: Comparison of the position-specific fraction of
recalled simuli by the model and human subjects for both 6-
back and 12-back tasks.

human recency behavior on running span tasks when using
asymmetric weighting by properly tuning the decay parame-
ter, β1 and β2. The model provides close matches for human
performance on both 6-back and 12-back running span tasks.
(For the former kd = 0.05, β1 = 0.5 and β2 = 1.0 and for
the latter kd = 0.075, β1 = 0.63 and β2 = 0.37) Fitting data
derived from human subjects is a simple matter of tuning
these three coefficients, which was accomplished here with a
simple iteratively-refined grid search, minimizing the RMSE.

In addition to having higher total and position-specific
capacity, asynchronous weighted networks also retained the
ordering of the input sequence more effectively. Table 2
gives the proportion of peaks in similarity s that occur in the
correct order, using the same parameters as Table 1. That is,
those that progress from the fifth-back to the fourth-back, for
example. A high proportion of such transitions is achieved
when the synchronous weights are ignored completely (i.e.,
when β1 = 0), but note that the number of stimuli recalled
by such networks is significantly lower (Table 1). The fewer
items stored at all, the easier it becomes to get them into
the correct sequence. Limiting the results to those networks
which stored more than two of the six stimuli on average,
we again find that β1 = 0.5, β2 = 1.0 gives the best result
with 85% of the peaks in s transitioning correctly, compared
to between 50 and 56% for the fully temporally symmetric
networks, regardless of β1.

Discussion
This paper extends our earlier simple oscillatory memory
model to bias it to produce ordered recall of input sequences.
This extension maintains the intrinsic oscillatory nature of
the previous model through the use of changing threshold
values, and accounts for the ordering of input sequences
with weights that include both associated (simultaneous) and
temporally asymmetric components. The same results as
the previous model, such as the re-creation of our human

Table 2: Portion of peak-to-peak transitions in correct order.

β2
0.0 0.25 0.5 0.75 1.0

β1

0.00 – .81 .86 .93 .87
0.25 .56 .71 .71 .83 .78
0.50 .50 .70 .68 .79 .85
0.75 .56 .65 .68 .75 .78
1.00 .53 .61 .67 .74 .71

subjects’ recency effect, were maintained. The combination
of weight decay and temporally asymmetric weight matrices
allowed the model to do a much better job of recalling stimuli
in the order they were originally seen while simultaneously
boosting the number of stimuli successfully stored.

In addition, it was possible to match the model’s perfor-
mance to that from human subjects in two separate tasks (6-
back and 12-back), specifically the existence of a prominent
recency effect, by tuning only the decay rate and the balance
between temporally symmetric and asymmetric inluences.
While our earlier model achieved success in matching the
behavioral data, that model and human subjects were not
being judged on the same scale, as the model did not have
to recall stimuli in order while the human subjects did.

This model adds to the growing range of current models
of short-term memory. It explains some of the richness of
human memory behavior, for instance the recency effect in
sequential recall tasks, but does so while remaining parsimo-
nious in its design. There is no need in our model to explicitly
specify lateral inhibition in order to provoke competition be-
tween stored patterns, such as in Haarman and Usher (2001).
In contrast, competition is allowed to arise from the process
of Hebbian learning and dynamic thresholds. Further, we do
not use different structures for different phases of the memory
process. There is no complex architecture of learning and
recall units, or active gating structures to explicitly guide the
recall process (Frank, Loughry, & O’Reilly, 2001; O’Reilly
& Frank, 2006). Rather, a single substrate of identical nodes
is all that is needed. The two weight matrices used in
the model are also trained with nearly identical rules, and
are treated identically during recall. There is also no need
in our model to introduce extra layers or nodes to provide
temporality of network activity, or to introduce recurrent
connections or back-propagation between layers (Botvinick
& Plaut, 2006). Multiple patterns, along with their order
of appearance, can be stored on the same neural substrate
simultaneously.

For the limited range of data considered here, our model
did not need to maintain a unified record of the entire se-
quence of stimuli. Correlations between temporal events can
be reconstructed by the network during recall in order to
preserve the entire sequence, despite the network only being
aware of the immediately preceding stimulus during training.
The model’s temporal “awareness,” such as it is, only exists
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in a thin temporal slice. Similarly, during the recall phase,
each change of a node’s activity is only dependent on the
immediately preceding state of the network. Of course, with
more complex data additional processing mechanisms would
be needed.

While our model can be viewed as a variety of “chaining,”
it is important to recognize that it does not suffer from one
of the principle weaknesses of chaining as a technique for
storing sequences. Because of the inherently stochastic na-
ture of the network’s activity in the face of rapidly adjusting
weight thresholds, there is little harm in being “knocked out”
of sequence as the model is able to pick up the trail again.
In fact, the initial state of the network is already out of the
desired sequence: it is initialized to a random pattern, and
not a noisy or partial version of the first pattern in the se-
quence like with many auto-associative networks. From this
initially random state it is able to progress through the stimuli
sequence, usually in the correct order, and only occasionally
going astray but even then tending back towards the proper
ordering. Note that other difficult conditions for chaining,
such as duplicate stimuli and repetitions, were not present in
the tasks that human subjects performed, and so were left out
of our model’s training as well.

An obvious direction for future research in this area is the
introduction of additional sets of asymmetric weights. Just
as we have one set of weights which refer back one time
step into the past, it is possible to have a set of weights
which refers to earlier activity, perhaps increasing effective
sequencing of recall. Such an enhancement may help to deal
with some of the difficulties of sequence learning mentioned
above, such as repetitions, that were not addressed here. The
previous version of the model also only needed a single pa-
rameter, kd to be adjusted in order to match human behavioral
data. By introducing β1 and β2 we have complicated this
slightly. This could be ameliorated by using a single parame-
ter to control the balance between symmetric and temporally
asymmetric weights.
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Abstract 

Although widely criticized, R2 and RMSE are still the most 
popular measures to report the quality of fit between model 
and data. Here we present a different way to assess the quality 
of fit by comparing the fixed effect estimates of mixed-effects 
models of both the data and the model. We demonstrate the 
usefulness of this approach on the basis of a time estimation 
experiment for which two models were constructed. The 
model that at first seems to have a superior fit turns out to be 
based on an invalid characterization of the data when 
scrutinized more carefully, whereas the alternative model 
provides an accurate characterization. 

Keywords: model fitting; time perception; declarative 
memory; mixed-effect models 

Introduction 
One of the unsolved problems in cognitive modeling is how 
to judge whether a model produces a good fit of the 
experimental data. Most published papers in which a model 
is presented try to convince the reader that a fit is good by 
showing graphs that represent the empirical data along with 
the model fit. The fit is assumed to be convincing if both 
graphs are similar. In addition to eyeballing the graphs, 
statistical measures are often provided to quantify the fit. 
The most popular measure is R2, which expresses the 
correlation between model and data, and some sort of 
distance measure, like RMSE.  

Figure 1 shows an example of two fits between model and 
data (ignore the "Criterion" curve for now, we will discuss 
that later). Which of these two models offers a better fit? 
Neither fit seems to be perfect, but both appear to be 
reasonable. The following table shows the measures of fit: 

 
Table 1: Measures of fit for the two models in Figure 1 
 

 model A model B 
R2 upper graph 0.97 0.91 
R2 lower graph 0.81 0.82 
RMSE upper graph 178 229 
RMSE lower graph 35 46 

 
  

 

 
(a) model A 

 
(b) model B 

Figure 1: Two fits between model and data 
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However, as Schunn and Wallach (2005) pointed out, there 
is no hard criterion for how high R2 should be to consider a 
fit as “good”. For RMSE the situation is even less clear, 
because the measure depends on the measure of the 
dependent variable. It should just be as low as possible, but 
there is no standard for what is low enough because the 
values are dependent on the experiment. Lacking any formal 
criteria, it is often assumed that the model with higher 
values for R2 and lower values for RMSD should be 
preferred. On the basis of these criteria, Model A should be 
preferred over Model B, as it outscores it on three of the 
four measures, and tying it at the fourth. What we will 
show, though, is that model A is wrong, and model B is 
reasonably accurate. 

Several researchers have criticized the enterprise of fitting 
models to data. Roberts and Pashler (2000), for example, 
have pointed out that an ill-constrained model can fit almost 
any data set. Pitt, Kim, Navarro and Myung (2006) have 
provided a method to assess the data-fitting capacity of 
models by examining the partitioning of the space produced 
by varying all model parameters. If this procedure yields a 
space with relatively few partitions it means the model 
makes strong predictions, but if there is a partition for 
almost any possible outcome, the model is worthless. 

Exploration of the parameter space is not always a 
feasible option, because complex models can take 
substantial time to run for a single set of parameters, let 
alone for many combinations. A possible solution to this is 
to have no free parameters at all, or leave all free parameters 
at an architectural default, producing so-called "zero-
parameter" fits. This is again not always possible, because 
sometimes parameters have no default value (like some of 
the parameters in ACT-R's declarative memory), in which 
case "zero-parameter fits" devolve into "fits with reasonable 
parameter values". Another issue hidden by the discussion 
about numerical parameters is the fact that there is 
considerable freedom in the structural parts of the model 
(either network topology in neural network models, of 
symbolic components in a symbolic model). Need another 
50 ms to improve the fit? Add a production rule. Need 
another 200 ms? Add an extra perceptual action. The only 
way to prevent modelers from wiggling unreported free 
parameters into their models is to require them to make 
predictions first and collect data later. The model-data 
comparison may not always be pretty, but is at least honest 
(see Taatgen, van Rijn & Anderson, 2007, and Taatgen, 
Huss, Dickison & Anderson, 2008, for examples).  

Apart from the discussion about how a model fit is 
achieved and how potential alternative fits can be explored, 
there is the question what kind of measure is a good 
assessment of a fit. To show that R2 and RMSD 
comparisons can deceive, we will first explain our 
experiment and the goals of the experiment. We will then 
analyze the data using linear mixed-effect models, and use 
the same method on the two models. This analysis will 
provide a better way of comparing models to data, and, 

although it does not provide absolute criteria, shows 
convincingly that Model B should be preferred. 

Experiment: Memory in Time Perception 
To goal of the experiment was to study the role of memory 
in time perception. In many specialized theories of time 
perception it is assumed that people are able to represent 
and store intervals of time in the order of 1 to 60 seconds in 
memory, without offering any clear theory on the nature of 
this process. In ACT-R, time perception is modeled using a 
time estimation module that interacts with the rest of 
cognition in the same way as other ACT-R modules 
(Taatgen et al., 2007). The advantage is that ACT-R already 
has a module for memory, more specifically declarative 
memory, which can be used to explain memory effects in 
time perception. We encountered such memory effects in an 
experiment in which we explored how people estimate 
partially overlapping time intervals (van Rijn & Taatgen, 
2008). In this experiment, subjects had to learn intervals of 
2 and 3 seconds, but we noted that the representations of 
these intervals started to contaminate each other to the 
extent that some subjects merged both intervals together 
into a single representation of 2.5 seconds. To study this 
effect more carefully, we designed a new experiment, of 
which we will describe one of the conditions here. 

Method 
In the experiment, subjects learned two intervals, a short one 
of 2 seconds, and a long one of 3.1 seconds, which they had 
to reproduce repeatedly, always alternating between the 
short and the long. Subjects were presented with two circles 
of the screen, which were gray when they were not active. 
The circle on the right of the screen was associated with the 
2 second interval, while the circle on the left was associated 
with the 3.1 second interval. During training, one of the 
circles would change color for a specific duration, and 
would then turn back to gray. Training consisted of 10 trials, 
5 of each duration. 
After training, grey circles would again change color to 
indicate the start of an interval, but now subjects had to 
press a key to indicate the end of the interval. Subjects 
received feedback on the accuracy of their produced 
intervals (we will refer to them as estimates from here on): 
"too short" if they responded earlier than 87.5% of the 
interval, "too long" if they responded later than 112.5% of 
the interval, or "correct" otherwise. After training, subjects 
received 15 warm-up trials of each duration, followed by the 
experiment proper. 

The main manipulation in the experiment is that the 
criterion for the long interval shifts. For the first 25 
estimates of the long interval, the criterion is 3.1 seconds. 
However, the criterion is then linearly increased to 3.6 
seconds over 15 estimates. This means that at some point 
subjects are told they were too short where they were 
previously correct. After the shift to 3.6 seconds, the 
criterion stays at 3.6 seconds, then is decreased back to 3.1 
seconds of 15 estimates, stays there for another 25 
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estimates, then decreases further to 2.6 seconds over 15 
trials, stays at 2.6 seconds for 25 trials, increases back to 3.1 
seconds over 15 trials and stays there for the remaining 25 
estimates. Meanwhile, the criterion for the short interval 
(remember that short intervals and long intervals are alter-
nated) remains constant at 2 seconds. The "criterion" line in 
Figure 1 indicates all these shifts. 16 subjects, all students of 
the University of Groningen, participated in the experiment.  

Results 
The solid line in Figure 1 shows the mean estimates subjects 
made for the two intervals. The lines have been smoothed 
by a Lowess filter (Cleveland, 1981). The results suggest 
that the two intervals indeed influence each other, given that 
the changes in criterion for the long interval also impact the 
estimate of the short interval.  

There are (at least) four possible factors that can explain 
changes in the short interval. One is that the representations 
of the intervals affect each other directly, i.e., an increase in 
the internal representation of the longer interval carries over 
in the internal representation of the short interval. A second 
explanation is that feedback on the long interval also affects 
subsequent estimations of the short interval. For example, if 
we have just produced a long interval, and received the 
feedback that it was too short, we might unintentionally 
increase the duration of the short interval that has to be 
produced next. In addition to the impact of the other 
interval, previous estimations of the short interval and 
feedback on those might also impact the next estimate. In 
order to assess the impact of all these factors, we used 
mixed-effect models to analyze the data (Baayen, Davidson, 
& Bates, 2006).  

What we did was start out with the most simple regression 
model to fit the data, and then started adding factors. Each 
factor adds degrees of freedom to the model, so with each 
added factor we checked whether improvement in the model 
was significant with respect to the added degrees of 
freedom.We started out with the following model, in which 
the produced short interval is just a constant plus an 
intercept for each subject: 

 
shortn,s = β0 + rs + εn,s 

 
So the estimate of short interval n for subject s is equal to 
constant β0 plus a random effect for each subject s plus 
noise. We first start adding the estimates of the previous 
short intervals. It turns out that including both the previous 
short interval, and the one before that produce a significant 
improvement of the model: 

 
shortn,s = β0 + β1shortn-1,s + β2shortn-2,s +  rs + εn,s 

 
Feedback on the previous short estimate also has a 
significant impact, but not feedback on earlier short 
estimates: 

 

shortn,s = β0 + β1shortn-1,s + β2shortn-2,s + β3short-fb-Sn-1,s rs 
+ β3short-fb-Ln-1,s + rs + εn,s 

 
The feedback has two components, because it can be "too 
short" (short-fb-S) or "too long" (long-fb-L). short-fb-S is 
equal to 1 if the feedback on the previous trial was "too 
short", and 0 otherwise. The same is true for long-fb-L and 
the "too long" feedback. We then added factors associated 
with the long interval. The estimate of the previous long 
interval did indeed have a significant impact, but earlier 
long intervals did not. Finally, we added in the feedback on 
the earlier long intervals. Here the feedback on the last long 
interval also led to a significant contribution. Table 2 lists 
the components and regression values of the final model. 

 
Table 2. Fixed effects in the regression model for the 

short interval 
 

Fixed Effect Value of β t value 
Intercept 657 ms 4.6 
shortn-1 0.385 8.3 
shortn-2 0.085 3.3 
short-fb-Sn-1  110 ms 3.1 
short-fb-Ln-1 -208 ms -6.5 
longn-1 0.16 5.1 
long-fb-Sn-1  92.6 ms 3.2 
long-fb-Ln-1  -163 ms -4.2 

 
From this analysis we can conclude that all potential 

factors contribute to the estimate of the short interval. We 
can now do the same analysis on the long interval, and 
determine what its duration depends on. Table 3 shows the 
final model that came out of that analysis. The general 
pattern is the same as for the short interval: previous 
estimates of the long interval and previous feedback on that 
interval affect the current estimate, even longer back than 
for the short interval. This is probably due to the fact that 
the long interval changes. But also the estimate of the 
previous short interval and the feedback on that interval 
impact the next long estimate. 

Model 
The two models of which the results are shown in Figure 1 
are in fact instantiations of the same model with different 
parameter settings. The basis for the model is two modules 
from the ACT-R theory (Anderson, 2007), but implemented 
in statistical package R (http://www.r-project.org/). More 
specifically, we used the time estimation modules (Taatgen, 
et al., 2007), and the declarative memory module augmented 
with the blending mechanism (Lebiere, Gonzalez, & Martin, 
2007).  

Time Estimation 
The temporal module of ACT-R measures time in units that 
start at 100ms, but become gradually longer, creating a 
nonlinear representation of time. For the purposes of the  
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Table 3. Fixed effects in the regression model for the long 
interval 

 
Fixed Effect Value of β t value 
Intercept 695 ms 3.8 
longn-1 0.34 8.5 
longn-2 0.16 4.0 
longn-3 0.12 4.6 
longn-4 0.05 1.9 
long-fb-Sn-1  159 ms 4.8 
long-fb-Ln-1  -118 ms -2.5 
long-fb-Sn-2  82.9 ms 2.5 
long-fb-Ln-2  3.8 ms 0.1 
shortn-1 0.15 2.9 
short-fb-Sn-1  85 ms 2.1 
short-fb-Ln-1 -107 ms -6.5 
 
present model, the nonlinearity is not very important. The 
temporal module can be given a start signal, which resets 
the clock, after which an accumulator starts collecting 
pulses. The short interval of 2 seconds corresponds to 
approximately 17 pulses, and the long interval of 3.1 
seconds to approximately 26 pulses. Noise is added to each 
pulse, which means that estimates are always approximate. 
For the purposes of the model, the important aspect of the 
time estimation module is that it can estimate a particular 
time interval by translating it into number of pulses, and that 
it can reproduce a time interval by waiting until a particular 
number of pulses has been accumulated. The noise produces 
variability in the estimates that correspond to variability in 
human time estimation. 

Declarative Memory 
The assumption of the model is that when a particular time 
interval has to be produced, the number of pulses 
representing that interval is retrieved from memory. There is 
no single representation of a particular interval in memory, 
but rather a collection of past experiences. Each past 
experience is represented by a memory chunk, which 
contains the type of interval (long or short), and a number of 
pulses. When an interval is retrieved from memory, each 
chunk receives an activation value on the basis of its age 
(how old is the experience), and whether it matches the 
current request: 

 

€ 

A(t) = log(t − tcreation )
−d +mismatchpenalty  

 
In this equation, tcreation is the time the chunk is created, so 
the activation of a chunk decreases with time. The 
mismatchpenalty of a chunk is 0 if the request matches the 
chunk (e.g., we are retrieving a short interval and the chunk 
represents the short interval), but a negative value in the 
case of a mismatch (e.g., we try to retrieve a short interval 
but the chunk represents a long interval).  

In standard ACT-R, activation determines the probability 
of retrieval of a chunk. This means that more recent 

experiences that match the request have the highest 
probability to be retrieved. The following equation estimates 
these probabilities (where t is a noise parameter, and the 
summation is over all candidate chunks): 

 

€ 

Pi =
e
Ai

t

e
A j

t

j
∑

 

With the blending mechanism (Lebiere et al., 2007), 
however, a weighed average of all candidate chunks is 
retrieved. If we try to retrieve the duration of the short 
interval, the results will be a blend of all intervals in 
memory, with the more recent intervals having a higher 
impact, and the intervals that match the request (short) 
having a higher impact than the mismatching long intervals. 
The resulting value can simply be calculated by multiplying 
the number of pulses in a chunk (Vi) by the probability of 
retrieval: 

 

€ 

Result value = Pj
j
∑ V j  

In order to determine how many pulses to wait for an 
interval, the model not only retrieves the representation of 
the interval, but also feedback received for that interval. For 
this we use exactly the same mechanism as for the retrieval 
of the interval. Whenever feedback is received, the model 
stores this in memory. If the feedback was "correct" it stores 
the value of 0, if it was "too long" it stores a negative value, 
and when it is "too short" it stores a positive value (this 
value is referred to as the feedbackshift, which is a free 
parameter in the model). Retrieval is done in the same way 
as the retrieval of the interval itself. This means that the 
feedback of previous trial for the same duration has the 
highest impact, but that earlier feedback and feedback for 
the other duration can also weigh in. 

To summarize: if the model has to produce a certain 
interval, it determines the number of pulses by retrieving a 
blend of memory representations for that interval. It then 
retrieves previous feedback for that interval, which is also a 
blend of earlier feedback. It adds the two together, and waits 
for that many pulses to produce the interval. 

 
Table 4. Free parameters in model A and B 

 
Parameter Model 

A 
Model 

B 
Noise parameter t 0.25 0.2 
Mismatch penalty between short and 
long for interval retrieval 

-1.3 

Mismatch penalty between short and 
long for feedback retrieval 

-0.8 

 
both 
-0.92 

Feedbackshift: how many pulses to add 
or subtract on the basis of feedback 

8 1.8 
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The free parameters for model A and B were set to the 
values in Table 4. All other parameters were set to their 
ACT-R or time estimation module defaults (d=0.5, t0=100 
ms, a=1.02, b = 0.015). The parameters in model A were 
determined using the procedure that many modelers follow: 
starting with some initial set of parameters try varying them 
in order to optimize the fit in terms of R2 and RMSE. This is 
typically a satisficing procedure (unless the whole parameter 
space is explored): model fitting ends as soon as variation of 
parameters leads to little improvement, and the current fit is 
decent enough. For model B we used a different method that 
we will outline later. 

So Which is the Better Model? 
When we create a cognitive model, it is not our goal to fit a 
particular data graph, although this may be part of the 
process, but to explain the phenomena that we are interested 
in. The statistical analysis has revealed that both the 
representations of the two intervals and the feedback for the 
intervals play a role in producing the next interval. It does 
not tell us what cognitive mechanisms can produce this. The 
cognitive model does supply a possible answer: a single 
memory mechanism that has been validated in many other 
studies can incorporate all factors that play a role in 
producing the estimate. But is this really true? The graphs in 
Figure 1 show a good fit, and the R2's and RMSE also look 
decent, so what else is there to say? 

We can test the impact of the factors that turned up 
significantly in the data more directly by performing the 
same analysis on the model outcomes. Statistical 
significance is not very relevant here, because we can run 
the model as often as we like. But the model should produce 
β values that are comparable to the β's found in the data 
analysis. We therefore ran each model 100 times, and 
collected the model data in the same format as the human 
data. This allowed us to fit the same linear regression 
models. Table 5 shows the results for two models next to the 
data.  

On the basis of this analysis a whole new picture emerges: 
Model A does not fit the data at all, while Model B provides 
a very decent fit. The table also reveals the problem of 
Model A: its representation of the interval is much too 
stable, as is shown by the estimates for the intercept. In 
Model A, the intercepts are approximately equal to the 
actual duration of the interval, and there is hardly any 
impact of previously produced intervals, either long or short 
(as evidenced by the low longn-x and shortn-x effects). 
Moreover, Model A's responses to feedback are much 
stronger than in the data. For example, if Model A receives 
the "too short" feedback on the short interval, it will respond 
to this by increasing its next production of that interval by 
487 ms, while subjects only increase it by 110 ms. It 
probably needs such strong values to produce the shifts in 
estimates of the long interval. 

 
 
 

Table 5. Comparison between model and data for the two 
models 

 
Short interval    
Fixed Effect β  data β  Model A β  Model B 
Intercept 657 ms 2157 ms 789 ms 
shortn-1 0.385 0.08 0.356 
shortn-2 0.085 -0.03 0.048 
short-fb-Sn-1  110 ms 487 ms 170 ms 
short-fb-Ln-1 -208 ms -521 ms -153 ms 
longn-1 0.16 -0.06 0.15 
long-fb-Sn-1  92.6 ms 432 ms 125 ms 
long-fb-Ln-1  -163 ms -534 ms -211 ms 
Long interval    
Fixed Effect β  data β  model A β  model B 
Intercept 695 ms 3162 ms 493 ms 
longn-1 0.34 0.011 0.22 
longn-2 0.16 0.012 0.25 
longn-3 0.12 0.003 0.12 
longn-4 0.05 0.001 0.09 
long-fb-Sn-1  159 ms 626 ms 198 ms 
long-fb-Ln-1  -118 ms -744 ms -251 ms 
long-fb-Sn-2  82.9 ms 60 ms 90 ms 
long-fb-Ln-2  3.8 ms -142 ms -57 ms 
shortn-1 0.15 -0.07 0.18 
short-fb-Sn-1  85 ms 326 ms 20 ms 
short-fb-Ln-1 -107 ms -492 ms -35 ms 

 
To summarize, Model A might produce a good global 

model fit, but for the wrong reasons. Model B on the other 
hand has factor values that are quite similar to those in the 
data. This means that the same factors that play a significant 
role in subjects' performance also play approximately the 
same role in the model's performance. This also means that 
it is reasonably likely that the model will generalize to other 
situations in which time intervals have to be stored in 
memory (see Note at the end). 

In fact, the parameter settings for model B were derived 
by using the factors in the statistical model as an 
optimization criterion instead of the R2 and RMSE values. 
Starting with model A, it was clear the feedbackshift had to 
be adjusted to reduce the factors associated with feedback. 
After that, some smaller adjustments led to model B.  

 

Conclusions 
Although there are several proposals to improve the 
assessment of model fit (e.g., Pitt et al., 2006; Weaver, 
2008), not all of them are applicable to all types of models, 
and some of them require intensive additional calculations. 
The method we showed here is relatively straightforward in 
comparison, because the same method that is used to 
analyze the data (which has to be done anyway) can also be 
used to analyze the model's fit. Although this comparison 
does not produce a nice and simple single value for the 
quality of the fit, such a value might be an illusionary 
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concept anyway. It is never possible to prove that a model 
has "a 95% probability of being correct". For this it is 
necessary to know the complete space of possible 
models/theories, something that is decidedly undecidable.  

The nice thing about this analysis is that we can see 
whether the model produces the effects that we are 
interested in, and that it produces them in approximately the 
same order of magnitude. It was even helpful in data fitting 
itself, because it shows what particular factor is throwing 
the fit out of balance.  

In conclusion, analyzing model fits with mixed-effect 
models is a promising tool in the modeler's toolbox.  

Note 
The experiment that we have discussed here had two 
additional conditions, one in which both intervals remained 
constant for the duration of the experiment, and one in 
which they long interval became shorter first and longer 
later. The model we presented here has not run for those 
conditions yet. We will do so before the conference and 
present the results there, and we will keep our fingers 
crossed that the fit will be good. 
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Abstract 

We explore the match of a computational information 
foraging model to participant data on multi-page web search 
tasks and find its correlation on several important metrics to 
be too low to be used with confidence in the evaluation of 
user interface designs.  We examine the points of mismatch to 
inspire changes to the model in how it calculates information 
scent scores and how it assesses the utility of backing up from 
a lower-level page to a higher-level page. The outcome is a 
new model that qualitatively matches participant behavior 
better than the original model, has utility equations more 
appealing to “common sense” than the original equations, and 
significantly improves the correlation between model and 
participant data on our metrics. 

Keywords: ACT-R; CogTool-Explorer; Computational Model; 
Human-Computer Interaction; Information Foraging 

Introduction 
Predicting human performance to aid in the design of 
interactive systems is an important practical use of 
computational cognitive modeling. Models like SNIF-ACT 
2.0 (Fu & Pirolli, 2007) and AutoCWW (Blackmon, 
Kitajima, & Polson, 2005) focus on predicting user 
exploration of websites. These models use the common 
concepts of label-following and information scent 
(infoscent). That is, they posit that the user’s choice is partly 
determined by the semantic similarity between the user’s 
goal and the options presented in the user-interface (UI). 
Budiu and Pirolli (2007) and Teo and John (2008) began to 
consider the 2-D spatial layout of the UI when predicting 
exploration behavior. Budiu and Pirolli (2007) reported a 
correlation between data and model of R2 = 0.56 for the 
number of clicks to success and R2 = 0.59 for search times 
in a Degree-Of-Interest (DOI) tree. Teo and John (2008) did 
not report correlations, but their model successfully 
predicted the effect of target position in 22 search tasks in a 
two-column format. This paper furthers this work by 
considering a multi-page layout of links in a website where 
previous information is hidden as exploration progresses. 

We first describe our metrics and why they are important. 
We then present the tasks and the operation of a baseline 
model. After presenting the quantitative performance of the 
baseline model, we delve into some details of the model’s 
performance to find inspiration as to how to improve the 
model. Finally, we present the best model found to date and 
discuss directions for future work. 

Our Metrics 
Ultimately, a UI designer would want a model to predict the 
range of human behavior that would be observed in the real 
world when using the interactive system, on metrics such as 
number of errors and where they occur, performance time, 
learning time and what was learned, effects of fatigue, 
environmental factors, or emotion on performance, and even 
levels of satisfaction or joy when using the system. No 
computational model is up to that task at this writing, and 
more modest metrics are used in current work. 

For SNIF-ACT 2.0, Fu and Pirolli (2007) reported the 
correlation between model and participants on number of 
clicks on each link (R2 = 0.69 and 0.91 for two different 
websites), the correlation for number of go-back actions for 
all tasks (R2 = 0.73 and 0.80), and a table of percent of 
model runs that succeeded on each task juxtaposed with the 
percent of participants who succeeded on each task (R2 = 
0.98 and 0.94, calculated from Fu and Pirolli, 2007, Figure 
13). The first two metrics were for models run under the 
model-tracing paradigm, that is, at each step the model was 
allowed to choose its action but was re-set to the 
participant’s action if it did not choose what the participant 
chose; the last metric was for free-running models. For their 
free-running model, DOI-ACT, Budiu and Pirolli (2007) did 
not report percent success because their experiment 
participants completed all tasks (and the model could run to 
success on all but 2 of the 16 tasks), but instead reported the 
correlation between the model and participants for number 
of clicks to accomplish each task (R2 = 0.56) and total time 
for each task (R2 = 0.59). 

We will report similar metrics that are both indicative of 
model goodness-of-fit and important to UI designers. 
1. Correlation between model and participants on the 

percent of trials succeeding on each task (R2%Success). 
Percent success is common in user testing to inform UI 
designers about how successful their users will be with 
their design, so a high correlation between model and data 
will allow modeling to provide similar information. 

2. Correlation between model and participants on the 
number of clicks on links to accomplish each task 
(R2ClicksToSuccess). We eliminated unsuccessful trials 
because some participants would click two or three links 
and then do nothing until time ran out whereas others 
continued to click (as did the model). Also, AutoCWW 
(Blackmon, et al., 2005) uses this metric. 

3. Correlation between model and participants on the 
percent of trials succeeding without error on each trial 
(R2%ErrorFreeSuccess). This measure indicates the 
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model’s power to predict which tasks need no 
improvement and therefore no further design effort.  

The Tasks 
To test and improve our model, we chose a multi-page 
layout used in AutoCWW experiments (Toldy, 2009, 
Experiment 1), shown in Figure 1; Dr. Marilyn Blackmon 
generously provided the participant log files from 36 
exploration tasks performed on this layout. The participants 
were given a search goal (at the top of each page) and had 
130 seconds to complete each task. There were 44 to 46 
valid participant trials recorded for each task. 

CogTool-Explorer: Mechanisms & Parameters 
We start our exploration with CogTool-Explorer (CT-E), 
developed in the ACT-R cognitive architecture (Anderson, 
et al., 2004) to account for the effects of 2-column layout on 
link choice in web search tasks (Teo and John, 2008). CT-E 
added ACT-R’s simulated “eyes” and “hands” to SNIF-
ACT 2.0 and interacts with a spatially accurate ACT-R 
“device model” generated by CogTool (John, Prevas, 
Salvucci, & Koedinger, 2004), including the position, 
dimension and text label of every link on a webpage. 

Given a text description of a goal and a device model with 
at least one visible link, CT-E moves its visual attention to a 
link, visually encodes the text label of the link and evaluates 
its infoscent relative to the goal. Three ACT-R productions 

then compete, (1) clicking on the best link so far, (2) reading 
another link on this page, or (3) going back to the previous 
page. If CT-E decides to click on the best link it has seen so 
far, it looks back at that link, moves a virtual mouse pointer 
over it, and clicks, bringing the next webpage into the 
model’s visual field. If it decides to go back, the previous 
page is brought into the model’s visual field. If it decides to 
read another link, it moves its visual attention to the next 
closest link and continues. Of course, this simple 
see/decide/act cycle is controlled by mechanisms and 
parameters that can be manipulated to produce the best 
predictive model possible. 

In more detail, CT-E uses ACT-R’s “eye” as described in 
Anderson, et al. (2004) with Salvucci’s EMMA model of 
visual preparation, execution and encoding (Salvucci, 2001), 
a long-standing implementation within CogTool. A visual 
search strategy adapted from the Minimal Model of Visual 
Search (Halverson & Hornof, 2007) guides where to move 
the eye. The strategy starts in the upper-left corner and 
proceeds to look at the link closest to the model’s current 
point of visual attention, moderated by its noise function. 
This strategy will not look at a link more than once on each 
visit to the web page.  Other noise parameters and strategies 
are possible (e.g., see Budiu and Pirolli, 2007), but as the 
strategy and noise setting from Halverson and Hornof 
(2007) produced good results in the two-column tasks in 
Teo and John (2008), the models in this paper will not vary 
any aspects of visual processing. Likewise, CT-E uses ACT-

 
Figure 1: Multi-Page Layout from Toldy (2009). Participants start on the top-level page (leftmost) and on selecting a link, 
transition to 2nd-level pages. Participants may go back to the top-level page, or may select a link to go to a 3rd-level page. 
3rd-level pages explicitly inform participants if they are on the correct path or not.  
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R’s standard “hand,” used in many CogTool models, and 
will retain that mechanism through this paper’s exploration. 

CT-E’s estimation of information scent has used latent 
semantic analysis (LSA; Landauer, McNamara, Dennis, and 
Kintsch, 2007) to calculate the semantic relatedness of the 
search goal to links on the screen. We will continue using 
LSA throughout this paper, although other estimation 
procedures are possible (e.g., Fu and Pirolli (2007) and 
Budiu and Pirolli (2007) used pointwise mutual 
information). A noise function moderated the infoscent 
values to reflect the variability a person might display when 
assessing relatedness (baseline noise = ACT-R default = 1), 
and a scaling factor of 50 (set by Teo and John, 2008) 
transforms the infoscent values provided by LSA to the 
range of values expected by SNIF-ACT 2.0.  

CT-E uses the same equations as SNIF-ACT 2.0 to decide 
which action to take based on what has been seen and 
evaluated so far, equations which also achieved good results 
in Teo and John (2008). These equations include two 
parameters, k, a “readiness to satisfice” factor, and the 
GoBackCost. Both of these were set to 5 in Fu and Pirolli 
(2007), but Teo and John’s tasks required a k value of 600 to 
fit the data well, which we will continue to use here. The 
baseline GoBackCost parameter is set to Fu and Pirolli’s 
value of 5. 

Finally, when SNIF-ACT 2.0 went back to a page already 
seen, the link associated with the page backed-up from was 
marked as having been selected, and SNIF-ACT 2.0 would 
not select it again (not reported in Fu and Pirolli, 2007, but 
extracted from the SNIF-ACT 2.0 code). Presumably, since 
Fu and Pirolli’s data come from naturalistic tasks, the link 
color changed when a link had been selected and thus this 
“perfect memory” was “in the world”. This mechanism is 
also in CT-E’s baseline model. 

Performance of the Baseline CT-E Model 
We ran the baseline CT-E model until the model runs 
converged. That is, we ran a set of 44-46 runs of each of the 
36 tasks (equal to the number of valid participant trials on 
each task, for a total of 1649 runs in each set) and calculated 
the %Success for each task. We then ran an additional set, 
combined it with the previous set to form a new combined 
set and compared its values of %Success per task to the 
previous set’s values. If all values were within 1% of each 
other, we considered the model converged and stopped. If 
any of the tasks had a %Success value greater than 1% from 
its counterpart in the previous set, we ran an additional set, 
combined it with the previous combined set to form a new 
combined set and compared its values of %Success per task 
to the previous combined set’s values. The baseline model 
converged after 12 sets (~20,000 runs), with the following 
calculated values for our metrics and their 95% confidence 
intervals: 

R2%Success = 0.28 (0.21, 0.35)  
R2ClicksToSuccess = 0.36 (0.29, 0.43) 
R2%ErrorFreeSuccess = 0.44 (0.37, 0.51) 

These values are disappointing for UI design because 
design practice requires far higher confidence in a model’s 
predictions to be a useful alternative to user testing. These 
values are also substantially lower than the comparable 
values reported by other SNIF-ACT derivatives, SNIF-ACT 
2.0’s R2%Success was 0.98 and 0.94 for the two websites 
modeled (Fu & Pirolli, 2007) and DOI-ACT’s 
R2ClicksToSuccess was 0.56 (Budiu & Pirolli, 2007). 

Since the baseline CT-E model used the same utility 
equations and most of the same parameters as SNIF-ACT 
2.0, it is necessary to understand why the R2%Success 
results are so different. Our first hypothesis is that different 
data collection processes are to blame. Fu and Pirolli’s 
(2007) data were from participants doing eight tasks on each 
of two websites, at their leisure, on their own computers. 
Their participants could abandon the task at will whereas the 
Toldy’s tasks were collected in the lab and participants had 
130s to complete each task (Toldy, 2009). Allowing the 
participants to abandon tasks probably eliminated the most 
difficult tasks with their higher variability. Not compelled to 
continue until success, not a single participant in Fu and 
Pirolli’s data succeeded on 4 of their 16 tasks, in contrast to 
the range seen in Toldy’s tasks (average %Success=71%, 
min=13%, max=100%). Since SNIF-ACT 2.0 also failed on 
these tasks, these four points provided a strong anchor at the 
origin for their R2%Success value. Another major difference 
that might have led to better performance is that SNIF-ACT 
2.0 used infoscent scores calculated with reference to only 
the website in the task (E. Chi, personal communication, 
June 18, 2010), whereas our infoscent scores were 
calculated with reference to the college-level TASA corpus 
(from Touchstone Applied Science Associates, Inc.). A 
corpus comprised of the task website might have produced 
infoscent scores with less noise (from word sense 
ambiguity, etc.) that the more general college-level corpus. 
Finally, simply switching tasks can illuminate deficiencies 
in any model, which will be the focus of the rest of this 
paper.  

Inspirations for What to Change in the Model 
Two glaring deficiencies in the behavior of the baseline 
model, relative to that of participants, inspired changes in 
the model.  The first is that participants revisit links that 
they clicked before (13% of their actions) and the model 
never does. This means that the mechanism in SNIF-ACT 
2.0 that perfectly remembers which links have been clicked 
on and never re-selects them must be changed to allow the 
possibility of matching the behavior in these data. We 
cannot tell from the data whether a revisit is a deliberate 
decision to click on the link a second time or that the 
participant forgot that link had been clicked (the links in this 
experiment did not change color when clicked); we chose to 
model the latter with the following mechanism in our 
baseline model. Each link is represented as a visual object 
that has a “status” attribute whose value is set to “chosen” 
when the link is clicked on by the model and then stored in 
declarative memory. ACT-R’s decay mechanism governs 
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whether the fact that the link had been chosen will be 
retrieved when it is next seen and evaluated by this model. 
We set ACT-R’s base level learning activation parameter, 
:bll, to 0.5 as recommended in the ACT-R tutorial (section 
4.3), the retrieval activation threshold to -0.5 as shown in 
section 4.2, and both the permanent noise, :pas, and the 
instantaneous noise, :ans, to nil (section 4.5). 

The second deficiency in the baseline model is that 22% 
of the participants’ actions involve going back from a page 
and only 7% of the models’ actions do. This behavior is 
comparable to Fu and Pirolli’s 5% go-back actions, which, 
we believe matched their data because they allowed their 
participants to abandon tasks instead of going to 
completion. This calls into question the SNIF-ACT 2.0 
mechanisms that govern go-back behavior, that is, both the 
GoBack utility equation and the GoBackCost parameter. We 
will lower the GoBackCost from 5 to 1 to get the 
exploration started and examine the GoBack utility equation 
with a more detailed examination of the model behavior. 

After making the two fundamental changes motivated by 
global behavior of the baseline model (call this model 
baseline++), we guided our investigation by examining 
tasks where participants were least likely to be exploring in 
a random fashion, i.e., on tasks where participants were 
most successful. We sorted the 36 tasks by highest 
%ErrorFreeSuccess and then focused on the top four tasks. 

The third task in this list, to search for information about 
pigeons (correct top-level link = “Life Sciences”, correct 
2nd-level link = “Birds”) had infoscent scores that were all 
very low and not widely distributed for the top-level 
headings. Budiu and Pirolli (2007) discuss this problem as 
well; misleading and/or non-discriminating infoscent scores 
will plague any model and we did not consider this task 
further for inspiration about what to change. However, the 
other three tasks inspired three ways to change the 
baseline++ model.  

Refinement of Infoscent Values for Top-level links 
The topmost task was to search for information about ferns 
and its correct top-level link was “Life Sciences”. The 46 
participants only selected other top-level links 8% of the 
time and but went back from those 2nd-level pages to select 
“Life Science” and then “Plants” (in all but 2 cases) to 
complete the task. In contrast, the baseline++ model 
selected other top-level links about 70% of the time before 
selecting “Life Sciences”, and on some model runs it never 
selected “Life Sciences” and failed the task. 

One possible explanation for the model behavior was that 
it did not look at “Life Science” before deciding to select a 
link on the top-level page. When we examined the details of 
the model runs, this was not the case, as the model runs did 
see “Life Science” before selecting a link in over 95% of 
first-visits to the top-level page. A second possible 
explanation was that the model looked at too many links and 
saw other higher infoscent links before selecting a link on 
the top-level page. This also was not the case because, in all 
model runs up to the point where it finished looking at “Life 

Science”, if we forced the model to choose the best link so 
far, it would have selected “Life Science” in over 60% of 
the runs. A third possible explanation lies in the infoscent 
values used by the model. 

Given a particular goal, the baseline models followed 
AutoCWW (Blackmon, et al., 2005) by using LSA to 
compute an infoscent value for each link, based on the 
cosine value between two vectors, one representing the 
words in the goal description and the other the words in the 
link text. To approximate how a reader elaborates and 
comprehends the link text in relation to his or her 
background knowledge, AutoCWW adds all the terms from 
the LSA corpus that have a minimum cosine of 0.5 with the 
raw text and a minimum word frequency of 50 to the raw 
link text before using LSA. Kitajima, Blackmon and Polson 
(2005) explained that “elaborated link labels generally 
produce more accurate estimates of semantic similarity 
(LSA cosine values).” Our baseline model used the same 
method, thus, for the link “Life Science”, the words 
“science sciences biology scientific geology physics life 
biologist physicists” were added and then submitted to LSA 
to compute the infoscent value. 

AutoCWW uses a further elaboration method motivated 
by UI layouts with links grouped into regions labeled with a 
heading. Kitajima et al. (2005) explained that “readers scan 
headings and subheadings to grasp the top-level 
organization or general structure of the text”. To represent a 
region, AutoCWW first elaborates the heading text as 
described in the previous paragraph, and then adds all the 
text and their elaborations from links in the same region. 
The baseline model did not use this elaboration method for 
top-level links because their subordinate links appeared on 
2nd-level pages, different from Kitajima et al.’s assumption. 
However, participants did practice trials on the same multi-
page layout as the actual trials, and perform all 36 test trials 
on the same layout. Therefore, we would expect that this 
experience would influence how participants assessed 
infoscent of the top-level link. This reasoning motivated our 
first refinement to the baseline++ model to better represent 
these participants: for the infoscent of a top-level link, we 
elaborate the top-level link and then add the text from all 
links in the corresponding 2nd-level page. While this 
refinement is similar to AutoCWW’s procedure, the 
justifications are different. This refinement is also in line 
with Budiu and Pirolli’s (2007) use of category-based scent, 
but approximates their human-generated categories with an 
automated process. 

Refinement of Mean Infoscent of Previous Page 
The second task on our list was to search for information 
about the Niagara River. The baseline++ model selected the 
correct link “Geography” on the top-level page, but went 
back from the 2nd-level “Geography” page over 60% of the 
time, while participants never did. To investigate, we looked 
at how the model decided to go back. Recall that like SNIF-
ACT 2.0, after looking at and assessing the infoscent of a 
link, the baseline CT-E models choose between reading 
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another link, selecting the best link seen so far, or going 
back to the previous page using utility functions. The utility 
functions of reading another link and selecting the best link 
so far have both strong theoretical support (Fu & Pirolli, 
2007) and empirical support from several studies that did 
not use or emphasize go-back behavior (Fu & Pirolli, 2007 
and Teo & John, 2008). However, the utility function for 
going back has less support and was therefore a focus of our 
attention. From SNIF-ACT 2.0, the baseline CT-E models 
used the following GoBack utility equation. 
 

 UtilityGoBack = MIS(links assessed on previous page) 
 – MIS(links assessed on current page) 
 – GoBackCost 
 where MIS is Mean Information Scent [Eq. 1] 

 
The infoscent values for the nine top-level links are 

sensible: the correct link, “Geography”, has the highest LSA 
value by an order of magnitude. After selecting the top-level 
link with the highest infoscent and visiting the 
corresponding 2nd-level page, Eq. 1 includes “Geography’s” 
high scent in its first operand, which attracted the model 
back to the top-level page. This behavior violates common 
sense; since the model had just selected the best top-level 
link to visit its 2nd-level page, it should not be pulled back to 
the previous page by the infoscent of the selected link. This 
reasoning inspired another refinement to the baseline++ 
model, changing Eq. 1 to Eq. 2: 

 
UtilityGoBack = MIS(links assessed on previous page 

            excluding the selected link) 
 – MIS(links assessed on current page) 
 – GoBackCost 
 where MIS is Mean Information Scent [Eq. 2] 

Refinement of Mean Infoscent of Current Page 
The last task on our list of four was to find information 
about the Hubble Space Telescope. While both participants 
and model in this task selected the correct link “Physical 
Science & Technology” on the top-level page, the model 
went back from the corresponding 2nd-level page 50% of the 
time, but participants never did. Inspection of the model 
runs in the Hubble task revealed a different problem from 
that in the Niagara River task, however. After selecting the 
link with the highest infoscent and visiting the 
corresponding 2nd-level page, if the first link the model saw 
on that page had very low infoscent, the GoBack utility 
would be high because the value of the second operand 
would be low. This behavior also violates common sense; 
since the model had just selected the best link on the top-
level page because it looked promising, the model should 
carry that confidence into the next page and should not 
immediately go back just because the first link it saw on the 
2nd-level page did not relate to the task goal. This reasoning 
inspired our last refinement to the baseline++ model, 
changing Eq. 2 to Eq. 3: 

 

UtilityGoBack = MIS(links assessed on previous page 
            excluding the selected link) 

 – MIS(links assessed on current page) 
             including the selected link) 
 – GoBackCost 
 where MIS is Mean Information Scent [Eq. 3] 

 
This change has a nice symmetry with the previous 

change, carrying along the “confidence” inspired by the 
high infoscent top-level link. If the selected link’s infoscent 
score is very high compared to the other top-level links, 
those other top-level links alone will not exert much pull to 
go back. If the selected link’s infoscent score is high relative 
to the first few links it sees on the 2nd-level page the model 
will not go back until it “loses confidence” by seeing several 
low infoscent links, thereby diluting the effect of the high 
infoscent link that led the model to this page. 

We ran one set of many preliminary models to get a feel 
for the contributions of these changes. The combination of 
all changes described here seemed to be the best model. 

Performance of the Best Model So Far 
With all the changes described above combined, we ran the 
model to convergence (10 sets, a total of 16490 runs), and 
attained the following calculated values for our metrics and 

Table 1. Summary of Results. Gray shading indicates 
mechanism and parameters that did not change.  

Mechanism, Parameter, 
or Metric	
  

Baseline 
Model	
  

Best Model So 
Far	
  

Visual processes	
  

ACT-R + 
Salvucci, 2001 + 
Halverson & 
Hornoff, 2007 2	
  

No change	
  

Manual processes	
   ACT-R 2	
   No change	
  
Information Scent Process	
  

Heading-level input	
   link labels	
   link labels + 
lower link labels	
  

Link-level input	
   link labels	
   No change	
  
Decision Process	
  
Click best link utility eq	
   SNIF-ACT2.01	
   No change	
  
k (readiness to satisfice)	
   6002	
   No change	
  
Read next link utility eq	
   SNIF-ACT2.01	
   No change	
  

GoBack utility equation	
   SNIF-ACT2.0: 
Eq. 11	
  

Improved here 
Eq. 3	
  

GoBackCost	
   51	
   1..	
  

Memory of selected links	
   Perfect1	
  

Imperfect 
:bll = 0.5 
:rt = -0.5	
  
:ans = nil 
:pas = nil	
  

Metrics	
  

R2%Success	
   0.28 
(0.21, 0.35)	
  

0.72 
(0.66, 0.76)	
  

R2ClicksToSuccess	
   0.36 
(0.29, 0.43)	
  

0.66 
(0.60, 0.71)	
  

R2%ErrorFreeSuccess	
   0.44 
(0.37, 0.51)	
  

0.82 
(0.79, 0.85)	
  

1 from Fu & Pirolli, 2007 
2 from Teo & John, 2008 
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their 95% confidence intervals (Table 1): 
R2%Success = 0.72 (0.66, 0.76) 
R2ClicksToSuccess = 0.66 (0.60, 0.71) 
R2%ErrorFreeSuccess = 0.82 (0.79, 0.85) 

Discussion and Future Work 
The improved model presented above made large and 
significant improvements on all our metrics over the 
baseline model coming into this investigation. R2%Success 
more than doubled and the other two metrics increased by 
more than 50%. Although there is room for improvement, 
these values are in the range where UI designers could use 
them to identify the tasks at the extremes. That is, this 
analysis identifies which tasks are sufficiently supported by 
the interface that effort can be diverted to other areas and 
which tasks are in most need of attention. 

Future work will take at least two paths. First we must 
systematically explore the benefits of the model 
mechanisms and parameters described in this paper. We 
have presented only the conjunction of these elements, with 
a single set of parameters, but we will examine the 
mechanisms’ individual and pairwise effects on model 
performance and explore the parameter space before moving 
on to other UI layouts and tasks. 

Second, we should reconsider the metrics and how to use 
them. Although we believe the metrics presented here are 
both meaningful for goodness of fit and useful for UI 
design, other metrics should be considered. For example, Fu 
and Pirolli (2007) reported the correlation between the 
number of go-back actions by the model and participants; 
how might this help inform model improvements or design? 
As a second example, consider root mean square error 
(RMS error), a standard metric for quantifying the 
difference between the values estimated by a model and 
what is observed in empirical trials. UI designers often need 
to know absolute quantities when making decisions about 
design and development effort and cost trade-offs. Thus, a 
low RMS error would be as valuable as a high correlation 
(the RMS error did reduce for each metric with our 
improved model, but are not yet <20% which is desirable 
for UI design practice). In addition, we need to understand 
how to combine or trade-off metrics against one another, as 
it is unlikely that model exploration will produce the most 
desirable levels of all metrics at once. 

In the meantime, AutoCWW has shown it could be used 
to improve the design of website links with only 54% of the 
variance explained for ClicksToSuccess (Blackmon, et al., 
2005) and this improved version of CogTool-Explorer 
exceeds that level. If these results can be shown to extend 
beyond simple web search tasks, to other layouts, types of 
interfaces, and tasks, CogTool-Explorer will be well on its 
way to being a useful tool for design. 
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Abstract 
This paper presents the first computational cognitive model of 
second-order social reasoning. The model uses a decision tree 
strategy to reason about the opponent’s behavior. We 
hypothesize that a decision tree strategy requires (1) 
declarative memory, and (2) working memory. Declarative 
memory is required to retrieve successive reasoning steps, 
while working memory is required to temporarily store these 
reasoning steps while the next step is retrieved from memory. 
The model fit on data from a social reasoning game supports 
the validity of the model. This initial result leads to an explicit 
prediction for an experiment in which the reasoning game is 
combined with another task that requires the same cognitive 
resources as hypothesized by the model. This work is a first 
step towards understanding higher-order social reasoning 
from a cognitive modeling perspective. 

Keywords: reasoning; theory of mind; cognitive models; 
ACT-R 

Introduction 

What is social reasoning? 
The ability to successfully interact with others requires 
knowledge on how your actions are going be interpreted by 
others. Additionally, successful interaction requires the 
ability to reason about the actions that other people might 
take to respond to, or even to anticipate, your own actions. 
(Verbrugge, 2009). A term that is often used in connection 
with this ability is theory of mind (Premack & Woodruff, 
1978). In this paper we will present a computational 
cognitive model of second-order theory of mind, calling  the 
process second-order social reasoning. 

Contrary to the case of first-order mental state attributions 
such as "she plans to move her queen", second-order social 
reasoning requires the ability to attribute mental states about 
mental states to others, as in "she believes that I intend to 
sacrifice my horse" (Perner & Wimmer, 1985). In higher-
order social reasoning, this ability is recursively applied for 
successful behavior. The cognitive model presented in this 
paper will be the first that explicitly addresses higher-order 
social reasoning. We will present a theory on how people 
reason in second-order social reasoning games, as well as 
explicit predictions on how behavior changes if the task is 
made more complex. 

Second-order social reasoning has often been studied by 
use of simple strategic games in which success is only 
warranted if the players successfully anticipate each other’s 
moves. A very simple example of such a game is tic-tac-toe 
(also known as noughts-and-crosses), in which each player 
has all information available on the playing board, and 
players have to take into account what the optimal move is 
for the opponent (that is, games of perfect information, 

Osborne & Rubinstein, 1994). A more complex example is 
Cluedo (Van Ditmarsch, 2002) in which not all information 
is known to each player, and players also have to reason 
about what information they will provide to their opponents 
by making a move, in addition to reasoning about optimal 
moves, for example, “I don't want Alice to know that I know 
that she has the ace of hearts”. In this paper, we will focus 
on a simpler game called Marble Drop in which all 
information about the current game state is known. Marble 
Drop is equivalent to the well-known centipede game 
(Rosenthal, 1981) and will be discussed in detail in later 
sections. 

What are important questions in social reasoning? 
Two issues stand out in studying social reasoning. The first 
relates to human performance on games such as Marble 
Drop. Up to this point we have described behavior as 
“optimal” or “rational”, but it turns out that humans perform 
significantly suboptimally on these games as the complexity 
increases (Flobbe, Verbrugge, Hendriks, & Krämer, 2008; 
Hedden & Zhang, 2002). Flobbe et al. for example found 
that participants in a centipede game only correctly perform 
75.5% of second-order games, whereas they are near-perfect 
on the first-order games (97%).  

The second issue relates to the role of memory in 
reasoning tasks. Taking the perspective of others about your 
own mental states and then incorporating that knowledge in 
your own reasoning must require some form of working 
memory. In this paper, we will present the first 
computational model that explicitly addresses both issues. 

After a brief overview of other models of social 
reasoning, we will introduce our model. Then we will 
present the model fit on relevant data and we will discuss 
how this model can contribute new insights in the 
understanding of social reasoning. 

Formal models of social cognition 
Social reasoning has been formally studied from a number 
of perspectives. These perspectives differ in the amount of 
cognitive validity that is considered. One perspective is to 
study social cognition as an interactive game (Camerer, 
2003). This game-theoretic perspective assumes that people 
are rational agents, optimizing their gain by applying 
strategic reasoning. However, many experiments have 
shown that people are not completely rational in this sense. 
For example, McKelvey and Palfrey (1992) have shown that 
in a traditional centipede game participants do not behave 
rationally. In this version of the game, the payoffs are 
distributed in such a way that the optimal strategy is to 
always end the game at the first move (i.e., Nash 
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equilibrium, Nash, 1951). However, in McKelvey and 
Palfrey’s experiment participants continued the game for 
some rounds before ending it. One interpretation of this 
result is that the game-theoretic perspective fails to take into 
account the reasoning abilities of participants. That is, due 
to cognitive constraints such as working memory capacity, 
participants may be unable to perform optimal strategic 
reasoning, even if in principle they are willing to do so.  

A different perspective, that focuses on cognitive validity 
in developing formal models, is that of a cognitive 
architecture (Anderson, 2007; Newell, 1990). Cognitive 
models developed within this framework aim to explain 
certain aspects of cognition by assuming only general 
cognitive principles. However, the current cognitive models 
that describe social interactions do not take second-order 
reasoning into account. For example, cognitive models of 
simple games exist in which it is important to know the 
opponent’s behavior (e.g., Lebiere & West, 1999; West, 
Lebiere, & Bothell, 2006). These cognitive models 
demonstrate that declarative memory is important in playing 
strategically. In the current work however, we are less 
interested in how people adapt their strategy to an opposing 
strategy, but rather we are studying the cognitive limitations 
of explicit second-order reasoning. Related to this, Hendriks 
and colleagues (e.g., Hendriks, Van Rijn, & Valkenier, 
2007; Van Rij, Van Rijn, & Hendriks, in press) have studied 
the development of first-order theory-of-mind in language 
using computational cognitive modeling. 

An ACT-R model of social reasoning 
To provide a full model of second-order social reasoning, 
we implemented our model in the cognitive architecture 
ACT-R (Anderson, 2007). ACT-R aspires to explain all of 
cognition using one theoretical framework. To achieve this, 
the heart of ACT-R consists of a procedural memory 
system, which contains condition-action pairs known as 
production rules. Besides the procedural module, ACT-R 
has designated modules for specific types of information. 
For example, the visual module processes visual 
information, whereas the declarative memory module 
processes declarative or factual information. Each module 
has a buffer that may contain one unit of information (a 
chunk). If the current contents of all buffers in the system 
matches the conditions of a particular production rule, that 
rule fires and its actions are executed. Each action may refer 
to an operation in one of the modules. 

This general layout of the cognitive system enables the 
development of models in which different kinds of 
information can be processed at the same time, while each 
module can only process one unit of information at a time. 
Based on this feature, ACT-R predicts specific interference 
effects if different aspects of a task require the same 
cognitive resource at the same time (e.g., Borst, Taatgen, & 
Van Rijn, 2010; Van Maanen & Van Rijn, 2010; Van 
Maanen, Van Rijn, & Borst, 2009). In the discussion section 
of the current paper we will use this feature of the 

architecture to make explicit predictions for a particular 
social reasoning task. 

Two modules of ACT-R deserve extra attention in the 
light of our model of second-order social reasoning: the 
declarative memory module and the problem state module. 
The declarative memory module retrieves information from 
long-term memory, called chunks. Each chunk in memory is 
represented by an activation value that represents the 
likelihood that that item can be retrieved. If the activation 
value drops below a certain minimal value (the retrieval 
threshold), the related information is no longer accessible. 
In that case, the system will report a retrieval failure after a 
constant time factor. If the activation value is above the 
retrieval threshold, the information is accessible. However, 
the time needed to retrieve it from memory depends on how 
active the item actually is. The more active, the faster the 
retrieval will be. Connected to the declarative memory 
module is a retrieval buffer, which may contain one 
(retrieved) item at a time. If another item is retrieved, it is 
stored in the retrieval buffer, with the previous item being 
pushed back to long-term memory. 

The problem state module (sometimes referred to as the 
imaginal module) contains a buffer in which information 
can be temporarily stored. Typically, this information 
contains a subsolution to the problem at hand. In the case of 
a social reasoning task, this may be the outcome of a 
reasoning step that will be relevant in subsequent reasoning. 
Storing information in the problem state buffer is associated 
with a time cost (typically 200ms). The model that we 
present in this paper relies on the combination of the 
declarative module and the problem state buffer. That is, the 
model retrieves relevant information from memory and 
moves that information to the problem state buffer if new 
information is retrieved from memory that needs to be 
stored in the retrieval buffer. 

Marble Drop game 
To study the reasoning processes that are involved in social 
reasoning, we developed a cognitive model of a reasoning 
game in which in order to play optimally the players have to 
anticipate each other’s moves. The particular game that was 
analyzed and modeled is a variant of the centipede game 
called Marble Drop (Meijering, Van Maanen, Van Rijn, & 
Verbrugge, 2010).  

Marble Drop is a marble run game containing trapdoors 
(Figure 1). Players take turns in deciding whether to open 
one trapdoor or the other. In each turn, opening one trapdoor 
leads to the end of the game, whereas opening the other 
trapdoor means that the game continues to the next bin on 
the right and the opponent may choose which trapdoor to 
open. If a player decides to end the game, both players 
receive the credits that are associated with that stage of the 
game. If a player decides to continue the game, the players 
traverse to a new stage with which new credits are 
associated. Because all credits are known in advance, both 
players can reason about their opponent’s possible moves 
further on in the game. The players can do this by applying 
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backward induction (Van der Hoek & Verbrugge, 2002; 
Verbrugge & Mol, 2008). For example, a player can reason 
that his opponent wants the highest payoff in bins C and D. 
As a result the player knows the maximal payoff that he can 
get from bins C and D, and can then compare that 
information to his own payoff in bin B. If it is possible in a 
particular game for a player to behave optimally by directly 
predicting its opponent’s actions, we refer to this game as 
being first-order. In a second-order game it is necessary to 
predict the opponent’s predictions of ones own actions in 
order to behave optimally. In principle, Marble Drop games 
could be developed for third-order or even higher-order 
games. 

The Model 
The model follows a backward induction strategy to predict 
the opponent’s moves further on in the game. Hedden and 
Zhang (2002) provide a decision tree analysis of this 
process for their matrix version of the game.1 The model has 
knowledge on how to solve Marble Drop games for all 
possible distributions of payoffs over the bins of the marble 
run game. That is, the model stores chunks containing 
information on which payoffs to compare at each step. In 
addition, chunks representing the magnitudes of the payoff 
shades are stored in declarative memory, as well as chunks 
representing the location of the payoffs on the screen. 

                                                             
1 an analysis that shows the logical equivalence of these games 

can be found at http://www.ai.rug.nl/~leendert/Equivalence.pdf 

Finally, chunks representing ordinal information are stored 
in declarative memory. This means that the model contains 
knowledge on the relative magnitudes of each combination 
of payoff values. 

A model run starts with the initial comparison of two 
payoff values (Figure 2). For second-order games, that 
initial comparison is always a comparison between the 
player’s own payoffs in Bins C and D. First, it retrieves 
from declarative memory where the first payoff is located 
on the screen (Bin D in Figure 1). If it retrieves that 
knowledge, the model attends Bin D and tries to retrieve the 
magnitude of the observed payoff. At the same time, the 
model stores the current comparison in the problem state 
buffer, to free the retrieval buffer for the upcoming payoff 
information. 

Because in the experiment the payoffs are represented by 
shaded marbles, the model has to retrieve the value 
corresponding to the observed shade. Next, the model 
retrieves the location information for the other payoff value 
that is part of the current comparison. Again to free the 
retrieval buffer, the payoff value of the first payoff is stored 
in the problem state buffer. The payoff is attended and the 
corresponding value is retrieved from memory. Finally, the 
two values are compared by trying to retrieve a chunk with 
ordinal information from memory. Based on the outcome of 
this retrieval the model now retrieves a new payoff 
comparison. For example (Figure 1), if the value in bin D 
was smaller than the value in bin B, the model attends the 
payoff in bin B, and compares that with the payoff in bin A. 
If the value in bin D was larger than the value in bin B, then 
the model attends the opponent’s payoff in bin D, and 
compares that with the opponent’s payoff in bin C. The 
model continues to compare payoffs following the decision 
tree (Hedden & Zhang, 2002) until it reaches the bottom of 
the tree. There, it decides its action based on the final 
comparison. 

Model fit The model was tested against data from a Marble 
Drop task (Meijering et al., 2010). In the experiment the 
participants were asked to solve zero-order, first-order, and 
second-order Marble Drop problems. In all these conditions, 
participants were instructed to indicate the optimal first 

 
Figure 1. The interface of a second-order Marble Drop 

game. Color shades of the marbles in the experiment are 
represented by numbers. 

 
Figure 2. Flow chart of the model activity in ACT-R modules. The width of each box denotes the duration of each 

stage. Arrows indicate possible next actions. 
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move as quickly as possible. That is, even in second-order 
games participants had to make only one choice. However, 
because the opponent always played rationally (and the 
participants were informed of this), there was always only 
one optimal choice. 

 Figure 3 presents the model fit on both response times 
and accuracy of the first moves. The fit on the response 
times is very good (R2 = 1.0; RMSE = 0.42 s). The fit on the 
accuracy data is slightly less (RMSE = 0.067, R2 = 0.2), but 
this may be attributed to lack of data, making the estimated 
means less reliable.2 

As the order of the Marble Drop reasoning problems 
increases, the model requires more time to respond. This is 
because more comparisons have to be made, and therefore 
more information has to be retrieved from declarative 
memory and stored in the problem state buffer. These steps 
take time, increasing the response time for higher-order 
reasoning problems. Because of the similar behavioral 
patterns between model and data, this study supports the 
view that participants in this task follow the same reasoning 
steps as the model does. That is, participants in a social 
reasoning game follow a decision tree to make the correct 
decision.  

Discussion & Predictions 

First model of second-order social reasoning 
The ACT-R model of second-order social reasoning 
described in this paper is the first cognitive model to 
account for second-order social reasoning. Other cognitive 
models in the field of social reasoning have either not 
explicitly addressed orders of reasoning (e.g., Lebiere & 
West, 1999; West et al., 2006), or have focused on first-
order reasoning only (e.g., Hendriks et al., 2007; Van Rij et 
al., in press). 

Because the model is based on Hedden and Zhang’s 
(2002) decision tree analysis of behavior in 2x2 matrix 
games, the model provides support for their theory of 

                                                             
2 As the data presented here are actually the practice block of the 

experiment performed by Meijering et al. (2010), the number of 
observations per participant was 4 for zero-order games, and 8 for 
first and second-order games. 

second-order social reasoning. The model can be considered 
as a cognitively plausible implementation of that analysis. 

Model predictions 
Our model can be used to provide explicit predictions 
regarding the use of memory in second-order social 
cognition (Verbrugge, 2009). In particular, the model relies 
on various declarative memory retrieval steps, in 
combination with storage of information in a problem state 
buffer. An explicit prediction would be that second-order 
theory of mind reasoning would be affected by performing 
another task at the same time that would require the same 
resources (Borst et al., 2010). To our knowledge, such an 
experiment has not been done yet. Therefore, in the 
remainder of this paper we would like to propose such an 
experiment, combined with explicit, quantitative predictions 
provided by the model. By providing the predictions of our 
model before actually doing the experiment, we counter the 
criticism that insufficiently constrained cognitive models 
can be made to fit any dataset (Roberts & Pashler, 2000). 

A task that would require the same resources as 
hypothesized for social reasoning is a tone counting task. 
Participants are presented with tones of two different pitches 
and are requested to count the number of tones for each 
pitch. This task would tap into the same cognitive resources 
as hypothesized for the Marble Drop reasoning task, as 
maintaining two counters at the same time can be 
considered a heavy working memory load. A control 
condition in this task would be one in which participants 
would not need to maintain a counter, but rather just say 
“high” or “low” every time they heard a tone of a particular 
(higher or lower) pitch. Because the control task does not 
require maintaining a counter (a problem state), concurrent 
execution of this task and the social reasoning task does not 
pose a conflict, and the different stages of the tasks could be 
interleaved without much loss of time (Anderson, Taatgen, 
& Byrne, 2005). 

A dual-task model of social reasoning A simple model of 
this task would involve maintaining the current counter in a 
problem state buffer. In addition, the model would – upon 
hearing a tone – check whether the pitch of the tone is the 
same as the pitch of the previous tone. Specifically, the 
model compares the pitch of the tone with the pitch 

 
Figure 3. Model fit to data from Meijering et al. (2010). Left: Response time, Right: Accuracy. 
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associated with the counter in the problem state buffer. If 
this is the case, the model then retrieves the subsequent 
number of the stored counter from memory. If this is not the 
case, the model retrieves the other counter from memory, 
and based on that retrieves the subsequent number. 

Such a model would require both the problem state buffer 
and the retrieval buffer, resulting in interference with 
performance on the Marble Drop game. For the control task, 
both the retrieval and the problem state resources are not 
required. The model of the control task consists of a simple 
stimulus response mechanism: When a tone of a particular 
pitch is heard, the model responds with a vocal response 
(either “high” or “low”). 

We adapted our model to also perform the tone counting 
task. The model was extended with a control mechanism 
that maintained which task was currently given preference 
(Salvucci & Taatgen, 2008). The model performs the 
Marble Drop task until a tone is presented. At that point a 
switch is made to the counting task. If necessary, the model 
tries to retrieve the current count and restore the problem 
state of the counting task. Then, it retrieves the subsequent 
number from declarative memory followed by a vocal 
response saying the number. After that, the model tries to 
restore the problem state of the Marble Drop task by 
retrieving a comparison from memory. 

Model predictions We ran the second-order reasoning 
model in three conditions for a sufficient number of trials to 
obtain a stable estimate of the predicted response. In the 
first condition (Single) the model only performed the 
Marble Drop task. In the Control condition, the model 
performed the Marble Drop task in combination with the 
simple response task. The tones were presented with 
stimulus onset asynchronies (SOAs) of 2s, 5s, 8s, 11s, 14s, 
17s, 20s, and 23s. Only those tones were presented that 
preceded the model response on the reasoning task. In the 
Interference condition, the model performed the Marble 
Drop task in combination with the tone counting task. The 
tones were presented similarly as in the Control condition. 

Figure 4 presents the predicted reaction time and accuracy 
of the dual-task model as a function of the number of tones 
presented. The left-most data point in each graph (where the 
number of tones is zero) represents the behavior of the 
model under single-task conditions. This is the same as the 
model fit presented in Figure 3. For the Control condition 

the model predicts an increase in the response time, and no 
change in accuracy. This is because the single response task 
used as secondary task in the Control condition does not 
share any resources with the Marble Drop task. Thus, 
responding to the tones only adds time to the Marble Drop 
response, but does not change the difficulty of the task. In 
contrast, the tone counting task that the model performs in 
the Interference condition adds considerable time to the 
response. In addition, the accuracy of the model decreases 
as well. Moreover, the mean response time in the 
Interference condition increases dramatically to 27s (Figure 
5), whereas the mean response time in the control condition 
is 8.3s, which is only slightly above the mean response time 
of the single response task (7.7s). Our interpretation of these 
results is that the tone counting task and the Marble Drop 
task share a cognitive resource. In particular, both tasks 
require a problem state buffer for maintaining intermediate 
results. Swapping these problem states takes extra time and 
is prone to errors, explaining the increased reaction times 
and the decreased accuracy. 

Conclusion 
This paper presents the first computational cognitive model 
of second-order social reasoning. The model uses a decision 
tree strategy to reason about the opponent’s behavior in a 
social reasoning game. We hypothesize that a decision tree 
strategy requires (1) declarative memory, and (2) working 
memory. Declarative memory is required to retrieve 
successive reasoning steps, while working memory is 
required to temporarily store these reasoning steps while the 

 
Figure 5. Predicted mean response time for the dual-task 

model. Left: Response time, Right: Accuracy. 
 

 
Figure 4. Model predictions for the dual-task social reasoning task. Left: Response time, Right: Accuracy. 
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next step is retrieved from memory. We implemented 
working memory as a problem state buffer using the ACT-R 
cognitive architecture (Borst et al., 2010). The model fit on 
data from a social reasoning game called Marble Drop 
(Meijering et al., 2010) supports the validity of the model. 
This initial result leads to an explicit prediction for an 
experiment in which the reasoning game is combined with 
another task that requires the same cognitive resources as 
hypothesized by the model. In particular, if the other task 
also requires the problem state resource, the interference of 
that task is substantial. On the other hand, a secondary task 
that is equivalent but does not require the problem state 
resource exhibits minimal interference. This work is a first 
step towards understanding higher-order social reasoning 
from a cognitive modeling perspective. 
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Abstract 

When feedback follows a sequence of decisions, how do 
people assign credit to intermediate actions within the 
sequence? To explore this temporal credit assignment 
problem, we recorded event-related potentials (ERPs) as 
participants performed a sequential decision task. Our ERP 
analyses focused on feedback-related negativity (FRN), a 
component thought to reflect neural reward prediction error. 
The experiment showed that FRN followed negative feedback 
and negative intermediate states. This outcome suggests that 
participants evaluated intermediate states in terms of expected 
future reward, and that these evaluations guided acquisition of 
earlier actions within sequences. We compared these results 
to the predictions of three reinforcement learning models that 
address temporal credit assignment: Actor-critic, Q-Learning, 
and SARSA. 

Keywords: Actor-critic; ERP; Q-Learning; SARSA; 
Temporal credit assignment; Temporal difference learning. 

Introduction 
To behave adaptively, humans and animals must learn to 
predict the outcomes of their actions. Reinforcement 
learning (RL) provides a mechanism for acquiring this 
knowledge through trial-and-error interactions with an 
environment (Sutton & Barto, 1998). According to many 
RL models, the difference between expected and actual 
outcomes, or “reward prediction error”, provides a learning 
signal. By revising estimates based on prediction error, 
humans and animals learn to anticipate outcomes, and 
consequently, to select actions that maximize reward and 
minimize punishment. 

RL methods have influenced contemporary 
neuroscientific theories. For example, one popular RL 
method, temporal difference (TD) learning, has been used to 
characterize the phasic response of midbrain dopamine 
neurons to rewarding and punishing events (Schultz, Dayan, 
& Montague, 1997). Several studies have confirmed that the 
response of these neurons depends on reward magnitude and 
reward likelihood (Tobler, Fiorillo, & Schultz, 2005). 
Rather than responding directly to experienced outcomes, 
however, these neurons respond to the difference between 
expected and actual rewards. Thus, midbrain dopamine 
neurons convey information about TD prediction error. 

Recent ERP research with humans has revealed a 
frontocentral negative component that appears 200-300 ms 
after the display of error feedback (Gehring & Willoughby, 
2002; Miltner, Braun, & Coles, 1997). Three features of this 
feedback-related negativity (FRN) indicate that it too 

reflects neural reward prediction error. First, FRN is larger 
after unexpected than expected outcomes (Holroyd et al., 
2009). Second, FRN correlates with behavioral adjustment 
(Cohen & Ranganath, 2007). Third, neuroimaging 
experiments, source localization studies, and single cell 
recordings suggest that FRN originates from the anterior 
cingulate cortex (ACC), a region implicated in goal-direct 
behavioral selection (Holroyd et al., 2009). These ideas have 
been synthesized in the reinforcement learning theory of the 
error-related negativity (RL-ERN), which proposes that 
midbrain dopamine neurons transmit a prediction error 
signal to the ACC, and that this signal strengthens or 
weakens the actions that precipitated outcomes (Holroyd & 
Coles, 2002). 

Although the RL-ERN theory has stimulated a great deal 
of research (for review, see Nieuwenhuis et al., 2004), 
feedback immediately follows actions in most studies of 
FRN. Similarly, although RL methods have stimulated a 
great deal of psychological research (for review, see Fu & 
Anderson, 2006), most studies of RL in humans also 
involve relatively simple tasks. These scenarios contrast 
with complex control problems we face in daily life. One 
such problem is temporal credit assignment. When feedback 
follows a sequence of decisions, how should credit be 
assigned to intermediate actions within the sequence? 

Here, we consider three TD learning methods that address 
the temporal credit assignment problem: Actor-critic, Q-
Learning, and SARSA. These methods evaluate actions in 
terms of immediate and future reward. For example, an 
action may bring an individual into direct contact with 
reward. Alternatively, an action may bring an individual 
into a state associated with a high probability of future 
reward. How should future reward be calculated? In the 
actor-critic model, future reward is treated as the value of 
potential options, weighted according to the probability of 
selecting each (Sutton & Barto, 1998). In Q-Learning, 
future reward is treated as the value of the best potential 
option (Watkins & Dayan, 1992). Finally, in SARSA, future 
reward is treated as the value of the future option that is 
actually selected (Rummery & Niranjan, 1994). 

In the current experiment, we recorded ERPs as 
participants performed a sequential decision task. The initial 
decision in each sequence brought participants to an 
intermediate state associated with a high or a low 
probability of receiving positive feedback, and the final 
decision was followed by positive or negative feedback. 
Based on the idea that FRN reflects neural prediction error 
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(Holroyd & Coles, 2002), we tested two main hypotheses. 
First, FRN should be greater for unexpected than for 
expected outcomes. This follows from the fact that RL 
models anticipate probable outcomes. Consequently, model 
prediction error is greater for unexpected than for expected 
outcomes. Second, if credit assignment occurs “on the fly”, 
as predicted by the TD model, negative feedback and 
negative intermediate states will evoke FRN. Alternate 
methods exist for performing temporal credit assignment 
(e.g. model-based RL, eligibility traces). If credit is only 
assigned at the end of the decision episode, as predicted by 
these alternate models, only negative feedback will evoke 
FRN. In addition to testing these two hypotheses, we 
compared predictions of three TD models, actor-critic, Q-
Learning, and SARSA, to the behavioral and neural results 
of the experiment. 

Experiment 
Task 
A pair of letters appeared at the start of each trial. A cue 
appeared after participants selected a letter. A second pair of 
letters followed the cue. Feedback appeared after 
participants selected a second letter. Participants completed 
2 experiment blocks of 400 trials. 13 graduate and 
undergraduate students participated in the experiment. 

Within each block, one pair of letters appeared at the start 
of all trials (Figure 1). When participants chose the correct 
letter in the first pair (“J” in this example), a positive and a 
negative cue appeared equally often. When they chose the 
incorrect letter in the first pair (“R”), a negative cue always 
appeared. A second pair of letters followed the cue. The 
correct letter in the second pair depended on the cue 
identity. The correct letter for the positive cue (“V” in this 
example) was rewarded with 80% probability, and the 
correct letter for the negative cue (“T”) was rewarded with 
20% probability. Incorrect letters were never rewarded. 
Consequently, optimal selections yielded positive feedback 
for 80% of trials involving the positive cue (0.8 Cue) and 
for 20% of trials involving the negative cue (0.2 Cue). The 
symbols “#” and “*” denoted positive and negative 
feedback. 

 
Recording 
The EEG was recorded from 32 Ag–AgCl sintered 
electrodes (10–20 system), and recordings were 
algebraically re-referenced offline to the average of the right 
and left mastoids. The vertical EOG was recorded as the 
potential between electrodes placed above and below the 
left eye, and the horizontal EOG was recorded as the 
potential between electrodes placed at the external canthi. 
The EEG and EOG signals were amplified by a Neuroscan 
bioamplification system with a bandpass of 0.1-70 Hz and 
digitized at 250 Hz. Eye blinks were corrected using ICA. 
800 ms epochs were extracted from the continuous 
recording and these epochs were baseline corrected relative 
to the 200 ms prestimulus interval. 

 

 
 
Figure 1. Experiment states, transition probabilities, and 

outcome likelihoods. 
 

Feedback-locked ERPs were analyzed for trials where 
participants selected the correct letter for the cue, and FRN 
was calculated as the difference between ERP waveforms 
after losses and wins. FRN amplitude is often confounded 
by changes in P300 amplitude, a component that is also 
sensitive to event likelihoods. Consequently, we compared 
losses and wins that were equally likely by creating an 
“expected outcome” difference wave (0.2 Cue losses – 0.8 
Cue wins), and an “unexpected outcome” difference wave 
(0.8 Cue losses – 0.2 Cue wins). FRN was measured as 
mean voltage of the difference waves from 200-300 ms after 
feedback onset, relative to the 200 ms prestimulus baseline. 
Cue-locked ERPs were analyzed for trials where 
participants selected the correct starting letter (after which 
the probability of receiving the 0.2 or the 0.8 Cue was 
equal). Cue FRN was measured as mean voltage of the cue 
difference wave (0.2 Cue – 0.8 Cue) from 200-300 ms after 
cue onset. 

Models 
Actor-critic (Sutton & Barto, 1998) 
The actor-critic (AC) model computed a state-action value 
function, Q(s,a), and a state value function, V(s). The state-
action value function, which corresponded to the actor, 
enabled action selection. The state-value function, which 
corresponded to the critic, enabled evaluation of action 
consequences. Actions affected the transition from state st to 
st+1, and actions affected the presentation of reward, rt+1. 
Following the selection of an action, at, the critic issued an 
evaluation in the form of prediction error, δ, 
 
δ = rt +1 + γ • V st +1( )[ ]− V st( ). (1) 

 

266



The AC model maximized the combined immediate, rt+1, 
and future reward, V(st+1), and future reward was discounted 
by γ (γ < 1.0). The value of the previous state, V(st), was 
updated according to 
 
V st( )← V st( )+α •δ , (2) 

 
where α controlled the learning rate (0.0 < α < 1.0). The 
value of the previous state-action pair, Q(st,at), was updated 
according to 
 

( ) ( ) δα •+← tttt asQasQ ,, . (3) 

 
Q-Learning (Watkins & Dayan, 1992) 
The AC and Q-Learning models differed in two ways. First, 
the Q-Learning model used an action-state value function, 
Q(s,a), to select actions and to evaluate outcomes. Second, 
the Q-Learning model treated future reward as the value of 
the optimal selection policy in state t + 1, 
 

( )[ ] ( )tttat asQasQr ,,max 11 −•+= ++ γδ . (4) 

 
As in the AC model, future reward was discounted by γ, and 
the state-action value function was updated according to 
Equation 3. 
 
SARSA (Rummery & Niranjan, 1994) 
Like the Q-Learning model, the SARSA model only 
required an action-state value function, Q(s,a). Unlike the 
Q-Learning model, however, the SARSA model treated 
future reward as the value of the actual state-action pair 
selected in state t + 1, 
 
δ = rt +1 + γ • Q st +1,at +1( )[ ]− Q st ,at( ). (5) 

 
As with the AC and Q-Learning models, future reward was 
discounted by γ, and the state-action value function was 
updated according to Equation 3. 

To summarize, all models used δ to learn the values of the 
state-action pairs that comprised the experiment task (Figure 
1), and all models sought to select actions that maximized 
immediate and future reward. Although the initial selection 
in each trial was not followed by immediate reward (i.e. rt+1 
= 0), the initial selection was followed by future reward 
associated with a subsequent state (AC model), or a 
subsequent state-action pair (Q-Learning and SARSA 
models). As such, prediction error for the initial selection 
was calculated as the difference between discounted future 
reward and the value of the first state (AC model), or the 
value of the first state-action pair (Q-Learning and SARSA 
models). Prediction error for the final selection was 
calculated as the difference between immediate reward and 
the value of the second state (AC model), or the value of the 
second state-action pair (Q-Learning and SARSA models). 

Positive feedback had a value of 1.0 and negative feedback 
had a value of 0.01. 

Model predictions were based on 500 simulations. All 
state and state-action pairs began with values of 0.5 and 
values were updated according to prediction error. In each 
trial, logistically distributed noise was added to state-action 
values, and the state-action pair with the greatest value was 
selected. Two model parameters, learning rate (α = .05) and 
the temporal discounting factor (γ = 0.8), were fixed 
according to values reported in Fu & Anderson (2006). 
Interestingly, when α and λ were treated as free parameters, 
mean squared error (MSE) for each model was minimized at 
values of α and γ within ±0.02 of their fixed values. 
Selection noise (t, defined as the standard deviation of the 
logistically distributed noise added to state-action pairs) 
remained as a free parameter. We compared model 
selections to participant performance. Additionally, we 
computed the difference in δ for expected feedback (0.2 Cue 
losses – 0.8 Cue wins), unexpected feedback (0.8 Cue losses 
– 0.2 Cue wins), and cues (0.2 Cue – 0.8 Cue) to derive 
model FRN. We then fit model FRN to observed FRN using 
a slope term (m) and a zero intercept. 

Results 
Behavioral Results 
Selection accuracy varied by choice, F(2,24) = 10.33, p < 
.001, and selection accuracy increased by block half, 
F(1,12) = 102.54, p < .0001 (Figure 2). Selection times for 
correct responses did not vary by choice, F(2,24) = 2.47, p > 
.1, or block half, F(1,12) = 2.55, p > .1. 
 
ERP Results 
We first analyzed feedback-locked ERPs. Waveforms 
showed a pronounced negativity from 200-300 ms after loss 
feedback (Figure 3). This FRN (loss – win) appeared to be 
greater for unexpected than for expected outcomes. A 3 
(site: Fz, Cz, Pz) by 2 (outcome likelihood: expected, 
unexpected) ANOVA on FRN amplitude revealed effects of 
site, F(2,24) = 10.91, p = .005, and outcome likelihood, 
F(1,12) = 13.26, p = .003. FRN was greater for unexpected 
than for expected outcomes at site Fz, t(12) = 3.69, p = .003. 
We also considered FRN over the first and the second 
halves of blocks (Figure 5). A 2 (outcome likelihood) by 2 
(block half) ANOVA at Fz showed an effect of outcome 
likelihood, F(1,12) = 11.68, p = .005, but not block half, 
F(1,12) = 0.10, p > .1. Although the interaction was not 
significant, F(1,12) = 3.13, p > .1, experience caused FRN 
to increase for unexpected outcomes and to decrease for 
expected outcomes2. 

We then analyzed cue-locked ERPs. A 3 (site) by 2 (cue) 
ANOVA revealed a nonsignificant effect of site, F(2,24) = 

                                                           
1 Because the model used a soft-max decision policy, choice 

proportions depended only on the absolute differences between Q-
values. Consequently, changes to the noise parameter, t, can 
accommodate a wide range of positive and negative reward values. 

2 In a subsequent experiment with a larger sample size, this 
interaction reached significance. 
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0.24, p > .1, a marginal effect of cue, F(1,12) = 3.05, p = .1, 
and a nonsignificant interaction, F(2,24) = 1.78, p > .1. 
ERPs were relatively more negative for 0.2 than for 0.8 
Cues at site Fz, but the effect failed to reach significance, 
t(12) = 1.77, p = .1. When we considered the first and the 
second halves of blocks separately, however, a different 
picture emerged (Figure 4). A 2 (cue) by 2 (block half) 
ANOVA at Fz revealed a significant interaction between 
cue and block half, F(1,12) = 6.56, p = .025. In the first half 
of blocks, ERPs did not vary by cue, t(12) = .46, p > .1, but 
in the second half of blocks, ERPs were relatively more 
negative for 0.2 than for 0.8 Cues, t(12) = 2.76, p = .017. 
The discovery of cue FRN indicates that participants 
evaluated intermediate outcomes in terms of future reward, 
as predicted by the temporal difference models. 
 

 
 
Figure 2. Selection accuracy for start pair, 0.8 Cues, and 0.2 
Cues by block half and for participants (bars), AC (squares), 

Q-Learning (circles), and SARSA (triangles). 
 
Model Performance 
For each model, we estimated the value of noise, t, that best 
accounted for selection accuracy over the first and second 
halves of experiment blocks. For the Q-Learning and 
SARSA models, MSE was minimized at t = 0.1 (Q-
Learning: MSE = 0.002, r2 = 0.90; SARSA: MSE = 0.002, 
r2 = 0.90). For the AC model, MSE was minimized at t = 
0.2 (MSE = 0.004, r2 = 0.71). As seen in Figure 2, all 
models displayed effects of choice and block half like those 
seen for participants. Additionally, the Q-Learning and 
SARSA models, which were structurally most similar, 
yielded nearly identical predictions to one another (r2 = 
0.99). Finally, the AC model outperformed participants and 
the other two models over the second half of blocks. 

Next, we examined whether FRN related to model δ. To 
do so, we computed model FRN as the difference in δ for 
expected feedback, unexpected feedback, and cues. For each 
model, we estimated the value of the slope parameter, m, 
that best accounted for FRN over the first and second halves 
of experiment blocks. For the Q-Learning and SARSA 
models, MSE was minimized at m = 2.6 (Q-Learning: MSE 
= 0.295, r2 = 0.85; SARSA: MSE = 0.294, r2 = 0.85). For 

the AC model, MSE was also minimized at m = 2.6 (MSE = 
0.262, r2 = 0.86). As seen in Figure 5, all models predicted 
that cue FRN would increase with experience, and that FRN 
for unexpected outcomes would increase with experience 
while FRN for expected outcomes would decrease with 
experience. These trends were observed. 

 

 
 
Figure 3. ERPs evoked by unexpected and expected losses 
and wins at site Fz (left panels). Scalp voltage topography 
for loss – win comparison from 200-300 ms (right panels). 
 

 
 
Figure 4. ERPs evoked by 0.2 and 0.8 Cues for the first and 

the second halves of blocks at site Fz (left panels). Scalp 
voltage topography for 0.2 Cue – 0.8 Cue comparison from 

200-300 ms (right panels). 
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Figure 5. FRN for unexpected outcomes, expected 
outcomes, and cues by block half and for participants (bars), 
AC (squares), Q-Learning (circles), and SARSA (triangles). 

 
The behavioral results favored the Q-Learning and 

SARSA models. The AC model outperformed participants 
and the other two models over the second half of blocks. 
Performance differences between models related to the 
nuanced meaning of state-action pairs, Q(s,a), for each. In 
the Q-Learning and SARSA models, Q-values approximate 
values of state-action pairs. In the AC model, Q-values 
approximate selection preferences that maximize the state-
value function, V(s). Because a deterministic selection 
policy maximized the state-value function, V(s), in our task, 
Q-values in the AC model became increasingly polarized 
until near-deterministic selections emerged. The same effect 
could be achieved in the Q-Learning and SARSA models by 
annealing the noise parameter. 

To further distinguish between the Q-Learning and 
SARSA models, we re-analyzed cue-locked waveforms 
based on cue identity (0.2 Cue, 0.8 Cue) and the response 
that followed the cue. If prediction error depended on the 
value of future actions, as predicted by SARSA, we 
expected that cue-locked waveforms would be more 
negative before participants chose the incorrect response 
than before they chose the correct response. From 200-300 
ms after cue presentation, average area under the 0.2 Cue 
waveform was less than area under the 0.8 Cue waveform at 
site Fz, F(1,12) = 8.40, p = .013 (Figure 6). Waveforms did 
not depend on the accuracy of the forthcoming response, 
however, F(1,12) = 1.71, p > .1. 

We computed model δ for the same combination of 
factors3. Q-Learning and AC predictions were consistent 
with observations (Q-Learning: MSE = 0.237, r2 = .0.77; 
AC: MSE = 0.225, r2 = .0.76) in that they predicted an 
effect of cue but not response accuracy. In contrast, the 
SARSA model predicted a more negative signal before 
incorrect than correct responses (MSE = 0.419, r2 = .0.32), 
owing to how the algorithm computed future reward (Eq. 5). 

                                                           
3 This analysis was based on the area under individual 

waveforms rather then FRN. Consequently, we computed new 
slope and intercept terms to compare model δ to observations. 

 
 

Figure 6. Cue-locked voltages preceding correct and 
incorrect responses by cue and for participants (bars), AC 
(squares), Q-Learning (circles), and SARSA (triangles). 

General Discussion 
Although the RL-ERN theory has stimulated a great deal of 
research, feedback immediately follows actions in most 
studies of FRN. Similarly, although RL methods have 
stimulated a great deal of psychological research, most 
studies of RL in humans involve simple environments. In 
the current experiment, we examined learning in a more 
complex problem space. We asked how people assign credit 
to intermediate actions when making sequences of 
decisions. 

The experiment yielded two clear results. First, FRN was 
greater for unexpected than for expected outcomes. 
Although some studies have reported a relationship between 
FRN and prediction error (Holroyd et al., 2009), others have 
not (Hajcak et al., 2005). This discrepancy has led to the 
proposal that FRN relates most strongly to prediction error 
when outcomes are contingent on behavior (Holroyd et al., 
2009). In our experiments, feedback was contingent on 
behavior, and consistent with the proposal of Holroyd et al. 
(2009), we did observe a relationship between prediction 
error and FRN. Second, FRN also followed negative 
intermediate outcomes even though these outcomes did not 
directly signal reward. This result shows that people 
evaluated intermediate outcomes in terms of expected future 
reward. Although many theories propose that such 
evaluations underlie temporal credit assignment (Fu & 
Anderson, 2006; Holroyd & Coles, 2002; Schultz, Dayan, & 
Montague, 1997; Sutton & Barto, 1998), these results 
provide one of the clearest demonstrations of TD learning to 
our knowledge. 

We also examined three TD methods: Actor-critic, Q-
Learning, and SARSA. A recent neuroimaging study 
provided support for the AC model by showing that activity 
in the dorsal and ventral striatum of the basal ganglia 
corresponded to the behavior of the actor and the critic in 
the AC model (O’Doherty et al., 2004). Alternatively, 
single-cell recordings from midbrain dopamine neurons in 
monkeys have supported SARSA (Morris et al., 2006), and 
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recordings from dopamine neurons in rats have supported 
Q-Learning (Roesch, Calu, & Schoenbaum, 2007). An 
integrative account of these findings is hindered by the 
between species comparison. Consequently, it is unclear, as 
of yet, which form of TD control is most applicable to 
humans. The behavioral and neural results of the current 
experiment were consistent with Q-Learning. This 
considerations not withstanding, the current data do not 
definitively distinguish between TD variants. The more 
valuable contribution of this work is the demonstration that 
intermediate states inherit value, a feature central to each 
TD model. Future studies should aim to elucidate the 
precise TD algorithms that underlie neurological 
computations. 

Our simulations demonstrated that the core Q-Learning 
model could account for the behavioral and neural data. 
Additionally, our computational instantiation clarified two 
nuanced features of the experiment results. First, FRN 
decreased for expected outcomes and increased for 
unexpected outcomes. Model FRN changed in the same 
manner. Because utility estimates began at 0.5, δ was 
initially -0.5 (0.0 – 0.5) for all losses, and δ was initially 0.5 
(1.0 – 0.5) for all wins. As the model learned, the utility of 
the correct response for the 0.2 Cue approached 0.2 and the 
utility of the correct response for the 0.8 Cue approached 
0.8. Consequently, δ magnitude decreased for expected wins 
and losses, and δ magnitude increased for unexpected wins 
and losses, giving rise to the observed changes in FRN.  

Second, cue FRN increased with experience. The Q-
Learning model (and in fact all TD models) also showed an 
experience-dependent increase in cue FRN. The models 
only distinguished between positive and negative cues after 
the values of the states and actions that followed those cues 
(e.g. future reward) became polarized. As this result 
demonstrates, the TD models learn the utility of actions that 
are near to rewards before learning the utility of actions that 
are far from rewards. Humans and animals also exhibit this 
learning gradient (Fu & Anderson, 2006). 

Do the results of this experiment indicate that TD 
methods alone are sufficient for coping with temporal credit 
assignment? We think not. Although participants faced a 
discrete Markov decision process (MDP) in our experiment, 
people must sometimes identify current states and recall 
past transitions. Violations of the Markov property may be 
problematic for TD methods. Additionally, although TD 
learning reduces the delay between action selection and 
credit assignment, TD learning does not typically eliminate 
delays in continuous time domain tasks. An important 
question for future research is how people integrate TD 
learning with other RL methods, like eligibility traces and 
model-based RL, to behave proficiently in complex 
environments. 
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Abstract 

Categorization of objects is an important cognitive capability 
for human and higher animals. Phenomena related to 
category learning have been investigated both in human 
subjects and in animal behavior studies. However, it is less 
well understood in the computational processes that are 
responsible for the emergence of functionally meaningful 
categorizations from specific learning contexts. Here we 
present a unique computational model integrating object 
categorization and reinforcement learning (RL) in the Soar 
cognitive architecture. Our model simultaneously captures 
how object categorization affects behavior adaptation, and 
how behavioral adaptation influences object categorization 
over time in a specific functional context. Results from 
synthetic data demonstrate that our model successfully 
improves the speed of RL via categorization. The qualitative 
predictions from our model are consistent with existing 
theories of category learning. 

Keywords: cognitive architecture; category learning; 
reinforcement learning; behavioral adaptation 

Introduction 
Category learning has been actively studied in higher 
animals including human (Ashby & Maddox 2005) and 
primates (Smith 2010). Categorization enables an individual 
to response to a novel stimulus, which resembles some other 
stimuli with known responses. 
 In this paper, we model several related phenomena in 
human category learning. The most important one is related 
to the notion of basic-level category as described by Rosch 
(1978). Consider the following two examples of abstraction 
hierarchies: furniture-chair-rocker and vehicle-car-sedan. 
The middle categories, chair and car, are basic categories, 
because they dominate both their subordinate and 
superordinate categories in terms of how fast they can be 
retrieved when a person is asked to describe the object 
without being put in a specific context. The original theory 
about basic-level categories was mainly concerned with this 
‘uniformity’ aspect of category recognition across different 
individuals. On the other hand, there are also variations. 
First, non-basic level categories are frequently chosen in 
specific task contexts. Second, basic-levels are dependent on 
long term learning experience and can be significantly 
different across individuals in specific domains. All of these 
are characteristics of category learning. However, there has 
been a lack of computational models that coherently explain 
the combination of basic-level effects, context effects, and 
long-term learning effects in a specific functional setting, 
where a cognitive agent has to interact with the world to 
achieve some goals. 

 We present a unique computational model of category 
learning that integrates a hierarchical perceptual category 
learning component and a reinforcement learning 
component in the Soar cognitive architecture (Laird 2008). 
In our model, the underlying computation mechanism 
improves the agent’s behavioral adaptation through category 
learning and at the same time results in the emergence of 
functionally meaningful categorizations as a result of 
feedback from reinforcement learning. We term our model a 
functional category learning model. 
 Our functional category learning model relies on 
perceptual category learning, and has the following features. 
First, functional categorization requires additional 
functional properties as input that are non-perceptual. For 
example, a venomous snake is in a different functional 
category from a harmless snake, but they may look very 
similar and fall under the same perceptual category of 
snakes. Second, functional categories are by definition 
specific to a particular functional context. For example, 
categorizations of animals as sources of food versus as pets 
are very different. Third, functional categories are directly 
related to decision making and are adaptive relative to the 
agent’s experience. For example, a domain expert develops 
more detailed categorizations than novices do. Our 
hypothesis is that basic-level categories are rooted in 
people’s experience, and depending on how objects are 
used, the categories can be significantly different across 
cultures, even individuals within the same culture. 
 Our functional category learning model involves two 
components. One is a perceptual category learning system, 
which can automatically learn hierarchical category 
structures based on innate perceptual features. The other is a 
reinforcement learning system, which uses the perceptual 
categories as the representational basis and incrementally 
forms functionally meaningful categories based on their 
utility values. 

Hierarchical Categorization 
There is a long history of hierarchical models of category 
learning. Quillian (1968) proposed the semantic network 
model, which can represent categorical relationships among 
objects in a hierarchical structure. However, the semantic 
network model does not include a learning mechanism to 
build the structure. COBWEB (Fisher 1987) is an algorithm 
that can incrementally learn a hierarchical organization of 
categories. A previous version of the ICARUS cognitive 
architecture used a COBWEB-based system, called 
LABYRINTH for its declarative learning and memory 
(Langley et al. 1991). Ambros-Ingerson et al. (1990) 
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described a neurologically inspired hierarchical clustering 
algorithm, which operates in a way very different from 
COBWEB and Granger (2005) has demonstrated the 
plausibility of using such hierarchical clustering algorithm 
as a principled computational instruction for human 
cognition. 

Reinforcement Learning 
Hierarchical category learning provides the necessary 
representational basis, however the representation itself is 
insufficient for functional category learning because it has 
no direct connection to how the learned knowledge can be 
used. Another learning process is required to connect the 
category representations with the agent’s intrinsic functional 
meanings. We consider reinforcement learning (RL, Sutton 
& Barto 1998) as a candidate mechanism to establish such 
connections via incremental trial-and-error learning with 
feedback. 
 RL has been successfully applied in adaptively learning 
optimal control policies in the field of machine learning. 
The general model of RL has also been considered as a 
mechanism for human skill learning (Fu & Anderson 2006). 
Cognitive architectures such as Soar (Laird 2008) and ACT-
R (Anderson et al. 2004) both have a reinforcement learning 
mechanism. However, there has not been a computational 
model integrating category learning and RL in these 
cognitive architectures. 

Demonstration Task 
We briefly describe our demonstration task before 
describing the implementation of our model, so that we can 
illustrate how the model works using a concrete example. 
 The demonstration task models a hunting scenario where 
the agent is presented with pairs of prey and hunting tools. 
There are diverse types of prey and tools, and different tools 
have different effectiveness on different prey. For example, 
a slingshot is good for small birds, but it will not work for 
larger prey. We assume that the agent does not have prior 
knowledge to predict the outcomes based on perceptual 
features of the objects. The agent must incrementally 
acquire such connections based on its experience through 
RL. During interaction with the world, the agent receives a 
positive reward if hunting is successful and a negative 
reward if it is unsuccessful. In order to learn faster, the agent 
needs to generalize its predictions based on perceptual 
similarity. For example, if the agent has learned that a bow 
is good for hunting rabbits, then it is likely to work against a 
woodchuck as well. Meanwhile, to improve generality, the 
agent must adapt its learning to the right level of abstraction 
through the course of using RL. 

Model Implementation 

Overview 
Our model is implemented by combining a hierarchical 
category learning (HCL) system with Soar-RL (Nason & 
Laird 2005), which has been shown to successfully model 
animal behavioral data (Wang & Laird 2007). Our model 
uses the HCL component to perform perceptual learning. 

The output of the HCL system is the input to the RL system. 
We have experimented with both COBWEB and a 
biologically inspired hierarchical clustering algorithm 
(Ambros-Ingerson et al. 1990). In general, any incremental 
hierarchical clustering system will be compatible with our 
model. 

Learning Algorithm 
In a functional category learning model, the functional 
utilities of objects are associated with specific actions, and 
can be naturally represented as value functions in the RL 
system. Soar-RL encodes the value function as a set of 
production rules, with an expressive syntax equivalent to 
first-order logic. The left-hand side of a rule tests state and 
action features, while the right-hand side generates the 
expected value for the matching state action pair. The 
expected value of an action is the sum of the values of all 
rules matching the current state and that action. The Soar-
RL model is a special instance of the sparse-coarse coding 
approach to value function approximation (Sutton 1996). 
 In our functional category learning model, instead of 
using raw perceptual features of the objects in the state 
representation, the RL system uses the symbolic category 
representations from the HCL system. The entire structure 
of our model can be viewed as a two-layer network as 
shown in Figure 1. The bottom layer represents the HCL 
system. In this paper, we assume such hierarchical structure 
has been learned by the agent through regular perceptual 
category learning before the hunting task. And we 
investigate the emerging properties of doing reinforcement 
learning with such hierarchical categorization. The dark 
colored nodes in the hierarchies represent symbolic 
categories matching with the input objects. These symbolic 
categories are used in the state representation and are 
matched by rules in the RL system. Rules are represented as 
cells in the coarse-coding layer. A rule testing general 
category symbols will be coarser than a rule testing more 
specific category symbols. Dark colored cells represent 
rules that match the current state. The numbers on each grid 
indicates the hierarchy levels for component hierarchies, 

 
Figure 1: Overall structure of the system viewed as a 
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which will be explained later. The grids form an emerging 
lattice structure, with the transitive relationship coarser-
than, represented by the arrows. 
 We formally describe the general algorithm below. To 
learn the target value function of a state action pair, the 
system first maps the input objects into a vector of 
functional roles R, which represents the argument types of 
the target function. The vector O represents the input objects 
binding with R: 
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 �� � � �
�� 
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 In the example, the function is to predict the utility of 
hunting some prey with some tool, and for a particular 
instance, the inputs are two objects: rabbit and bow. 
According to our notation, input to the system will look like 
R=(prey, tool), O=(rabbit, bow). After matching objects 
with functional roles, the HCL system incrementally builds 
a set of hierarchies H correspondingly: 
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Let height(hi) denote in the height of the hierarchy hi, and ki 
denote a cluster/category/node within the hierarchy. Let 
level(ki) denote the level of cluster ki in hierarchy hi, with 
the root level being 0. Cells, grids and their relations, shown 
in Figure 1, are defined as following: 
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More intuitively, each cell represents a rule in our RL 
system. A set of cells are composed into a grid that 
partitions the state space at a specific level of resolution. 
There is an emerging lattice structure among the grids with 
the transitive relation coarser-than (0). For a given object 
oi, the activation of a cluster ki is denoted as a(ki): 
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The mapping from oi to ki is achieved via category 

recognition in the HCL system, and only a single path of 
clusters are activated for a particular input as shown in 
Figure 1. Details of the COBWEB algorithm can be found 
in Fisher (1987). a(ki)=1 means object oi in the current state, 
bound to the corresponding functional role ri, is an instance 
of the category represented by the cluster ki. The activation 
of a cell, a(CK), is defined as: 
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a(CK)=1 only when all the objects match with the rule, 
which will fire to participate in predicting and learning the 
target value. The weight, w(CK), from the cell to the output 
unit is represented as a numeric value associated with the 
rule in the RL system. The learning algorithm updates the 
weights according to the delta rule for the identity activation 

function used in our RL system, where y is the predicted 
value and o is the target output value (current reward + 
discounted future rewards). The learning rate α for a 
specific rule CK is chosen to decay over time t, where t is 
represented by the times the rule has been trained: 
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 The connection between the coarse-coding layer and the 
output unit is always sparse, since, for any input, only one 
cell from each grid in the lattice has non-zero activation. 
This is due to the competitive learning nature of the 
hierarchical clustering layer – only one cluster is activated at 
each level. 

Simulation and Results 
We use a hunting task as described earlier with synthetic 
data to evaluate our model. The data used in the task is 
shown in Figure 2. The hierarchies represent natural 
perceptual categories based on unsupervised learning with 
perceptual features, which are outputs from the HCL system 
as shown in Figure 1. We assume the agent has innate 
feature detectors that result in such perceptual categorization 
purely based on observing the objects without any hunting 
experience with the objects.  
 The functional interaction structure in this domain is 
represented in the two-dimensional table in Figure 2. A dark 
cell means the corresponding tool is good for hunting the 
prey and the agent will receive a reward of +1 if it chooses 
the action ‘hunt’. The white cell means the corresponding 
tool is bad for hunting the prey and the agent will receive a 
reward of -1 if it chooses the action ‘hunt’. The agent can 
alternatively choose the default action ‘avoid’, which will 
always give a 0 reward. We expect that the hierarchical 
categorizations will help the agent generalize its experience 
from a specific instance to similar combinations of objects. 
For example, the experience of hunting a rabbit with a 
longbow can be successfully generalized to hunting all four-
legged animals with bow expect for one situation (longbow 
is not strong enough for hunting deer), so that both the 
category of Four-leg and Bow are useful abstractions. On 
the other hand, since there are variations within the group, 

 
Figure 2: Input Data – Perceptual Category Hierarchies 

and Interaction Outcome Table 
 

Tool

Longbow

Crossbow

Slingshot

Blowgun

Spear

Trident

Bow

Projectile

Pole Arm

Prey

Large
Small

Bird
Fish

Four-legSuccess: +1

Failure: -1

Pole Arm

Fish

273



we expect both concepts will be dominated by their 
subordinate categories in certain situations. In addition to 
trying to be close to reality, we designed the data so that it is 
complex, while at the same time, it has structure that tests 
specific aspects of the system, and it is simple enough to 
interpret the results.  
 To emphasize that the initial categorizations are based on 
innate perceptual features as opposed to taxonomic features, 
we use the labels such as Four-leg, Large, and Small, 
instead of Mammal, Ungulate, and Rodent to indicate they 
are perceptual categories. Birds have feathers, sharp beaks, 
and can fly. Fish all have similar shape, scales and swim in 
the water. A hierarchical clustering algorithm such as 
COBWB can automatically discover such statistical 
correlations among high dimensional perceptual features 
and incrementally build up a hierarchical structure as shown 
in Figure 2. Since we focus on the interaction between 
hierarchical categorization with RL, we did not include a 
detailed perceptual learning step in our simulation. 
 The effectiveness of tools with regard to prey may appear 
obvious to the reader. We make the assumption that the 
agent has no relevant prior knowledge to derive the 
effectiveness of a tool based on perceptual features. It has to 
incrementally learn the effectiveness of a tool for a prey 
through experience and build up the connections from 
perceptual similarities to functional outcomes piece by piece 
via the RL mechanism.  
 Figure 3 shows the details in the layer of coarse-coding 
rules for a specific input: hunting a deer with a crossbow. 
The black dots spatially represent the specific input in 
different grids. The gray areas represent the generalization 
effects when the more general rules fire. In this case, the 
agent receives a reward of +1 and each of the 16 rules 
participates in prediction and updating. Since a general rule 
(a larger cell) receives more training samples than a more 
specific rule (a smaller cell), it converges to the target value 
faster. On the other hand, the smaller cell will tend to 
compensate for the value in the context of the larger cell. 
The region with the dotted border in 7 of the grids on the 
lower and right borders means there are no more specific 
rules generated for those regions because it has already 
reached the leaf level of the categorization hierarchies. 

Result 1: Category Learning to RL 
 Figure 4 compares the learning performance of 
hierarchical categorization with a baseline that uses the leaf 
level nodes without generalization. In the training data, 
there are two instances under each of the leaf nodes shown 
in Figure 2. For example, there are two instances of Goat 
that look different but have the same functional properties. 
Therefore, the size of the input space is: 16 (prey) times 12 
(tools) equals 192. We evaluate the performance 
improvement during the course of learning. The agent is 
trained with random samples from the input space with 
replacement. The learning rate is set at 0.1. For a given 
amount of training episodes, we evaluate the rates of correct 
decisions it makes if it follows the policy derived from the 
current value function. The result shows that the model 
successfully integrates hierarchical categorization to speed 
RL. 

Result 2: RL to Category Learning 
 Next, we analyze how functionally meaningful 
categorizations emerge from the process of RL. For a given 
input, there are multiple rules firing simultaneously, each 
coming from a different grid as shown in Figure 3. We 
define the dominant rule as the rule with the highest 
absolute value, or equivalently the winning cell with largest 
magnitude in its weight: 
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Correspondingly, we define the dominant categories as the 
categories associated with the dominant rule. In the hunting 
task for a specific input, there will be a dominant category 
for prey and a dominant category for tool. For example, the 
rule testing Fish and Pole Arm (the lower-right dark square 
consisting of 4 cells) dominates all the more specific rules 
that involve subtypes of Fish or subtypes of Pole Arms 
because it receives more training samples. It also dominates 
more general rules because there are inconsistent updates 
for those rules that cancel out each other. Consequently, the 
categories for Fish and Pole Arm are the dominant 
categories in these particular situations. The general 
principle is that a rule simultaneously maximizing both 
generality and consistency will dominate other rules. 
Intuitively, the associated dominant categories are more 

 
Figure 3: Details of Coarse-coding Grids for the Input 
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functionally salient than their superordinate and subordinate 
categories, since they are the sources contributing to most of 
the decisions made by the voting mechanism. We use the 
overall domination rates across all possible inputs to 
measure the functional saliency of a category in a more 
context-free manner, which indicate how likely a category 
will become a basic-level category when there is no context 
effect. 
  The left side of Figure 5 shows the dynamics of 
domination rates up to 1,000 training episodes for all the 
categories of prey and tools. The trend is that the more 
general categories initially have higher domination rates 
because they cover more inputs and are trained with higher 
frequencies. As more experience is gained, consistent 
categories under a less consistent parent category have 
increasing domination rates (such as the two subtypes of 
birds), while less consistent superordinate categories 
become less dominant (such as the general category Prey, 
Four-legged animal, and Bird). On the other hand, a 
perceptual category that does not have any functional 
differences from other members under the same 
superordinate category does not arise as a functionally 
salient category (such as Rabbit, Woodchuck and the two 
subtypes of Fish). The middle of Figure 5 shows the 
domination rates after 1,000 training episodes. Since the 
ordering of inputs causes variations in the value of rules, we 
measure the mean domination rates across 300 independent 
learning trials, and the estimated standard errors for the 
means (not shown in the figure) are all less than 0.01. For 
example, the category for Small Four-legged animal 
dominates its superordinate and subordinate categories 
(including Prey, Four-legged animal, Rabbit and 
Woodchuck) in about 68% of all possible inputs. The 
category of Rabbit rarely dominates because its 
superordinate category completely captures the decision 
boundaries.  
 The right side of Figure 5 shows the context-free basic-
level categories in boxes, which are the dominating 

categories along a path. The top figure shows the situation at 
1,000 training episodes (for an experienced hunter) and the 
bottom figure at 10,000 episodes (for an expert hunter). The 
additional training experiences can “pull down” the basic-
level towards more specific categories (indicated by the 
arrows). This effect arises naturally in our model and 
corresponds to the fact that a human domain expert 
possesses more specific basic-level vocabularies than a less 
experienced person. 

Discussion 
The general definition of category learning is the process 
that groups similar stimuli together so that similar responses 
can be made. Traditional cognitive theories of category 
learning include two competing views: the prototype view 
(Rosch 1973) and the exemplar view (Medin & Schaffer 
1978). The prototype view is based on the principle of 
cognitive economy (Rosch 1978) and is supported by the 
existence of linguistic representations of abstract categories. 
However, there has been a shift of favor from the prototype 
towards the exemplar view because exemplar models 
provide superior empirical results in a variety of 
experimental settings (Nosofsky & Zaki 2002). A practical 
concern about the prototype view is that a prototype may 
fail to retain sufficient discriminative information. More 
recent models reconcile the two extreme forms and rely on 
representations at multiple abstraction levels (Vanpaemel & 
Storm 2008, Love et al. 2004). 
 Our model is consistent with both the prototype and 
exemplar views. In addition, it explicitly models the 
learning process and can deal with the more challenging 
situations where the input states involve multiple objects 
(such as the interaction between prey and tools). In terms of 
decision making, our model is more like exemplar based 
models, where the agent acquires information about specific 
inputs, and then makes generalizations to novel inputs based 
on perceptual similarity. In terms of category abstraction, 
our model agrees with prototype models. In particular, it 

 
Figure 5: Dynamics of Domination Rates up-to 1,000 Episodes (on the left),  

Domination Rates at 1,000 Episodes (in the middle),  
Push-down of Basic-level Categories (boxed) with more Training Episodes – 1,000 vs. 10,000 (on the right) 
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predicts a similar trend as in the phenomenon of basic-level 
category (Rosch 1978) where the most prominent categories 
(basic-level categories) reside in the middle of a 
categorization hierarchy.  
 Furthermore, our model predicts that category domination 
is context specific. For example, in the hunting context used 
as our demonstration task, Pole Arm is the dominant 
category if the sub-context is hunting Fish (all subtypes of 
Pole Arms are good for fishing). In a different context, 
however, Spear and Trident will dominate if the sub-context 
is hunting Deer. Our model explicitly supports the 
hypothesis that the “context-free” basic level categories, as 
described by Rosch, are the overall effects acquired across 
multiple functional contexts. Since the everyday activities 
related to common objects are largely the same across 
individuals, the context-free basic-level categories appear to 
be consistent as manifested in natural language.  
 Our model does not involve a dedicated process of 
selecting functional meaningful categories. Selection is 
achieved as an emerging by-product of the RL process. As a 
consequence, our model cannot explain certain types of 
category learning that rely on deliberate reasoning or higher 
degrees of abstractions, where the agent generalizes across 
instances that are perceptually distinctive but functionally 
similar. Such deliberate categorization is better described by 
rule based category learning model (Rouder & Ratcliff, 
2006), or analogical reasoning processes such as in the 
structure-mapping engine (SME, Falkenhainer et al. 1989). 

Conclusion 
In this paper, we have presented the first computational 
model that integrates hierarchical category learning and RL 
in a general cognitive architecture, which can be used to 
coherently model basic-level effects, context effects and 
long-term learning effects in category learning. The unique 
feature of this model is that it simultaneously captures how 
categorization affects behavior adaptation, and how 
behavior adaptation influences categorization in a functional 
context. The general trends predicted by our model are 
consistent with existing category learning theories. 
Although the Soar-RL model has been successfully applied 
to match animal behavior data (Wang & Laird 2007), 
further empirical experiments are required to confirm its 
validity in our category learning model.  
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Abstract 
We present data demonstrating that interference plays a role 
in the fan effect. We also show that this cannot be accounted 
for using ACT-R. An ACT-R model is fit to the data and we 
discuss options for altering the model to account for the data.  

Keywords: interference; fan; spreading activation; ACT-R; 
memory; cognitive model. 

Introduction 
The fan effect refers to the fact that cues that are associated 
with more facts result in slower recall than cues that are 
associated with less facts. For example, in the study that 
established the fan effect, Anderson (1974) asked subjects to 
memorize facts about where various different characters had 
been seen.  Subjects were then shown a cue with a character 
and a place and asked if it was true (i.e., if they occurred 
together in the set of facts subjects had memorized). 
Overall, the more places a character had been, the slower 
subjects were to confirm that it was either true or false. 
Also, subjects were slower to say false than they were to say 
true. 

In the ACT-R architecture (Anderson & Lebiere 1998) 
the cue is held in a buffer as a chunk and each slot value of 
the cue spreads activation to chunks in declarative memory 
that have the same slot values. For example, if the cue 
chunk is person:hippy location:park, then hippy will spread 
activation to all chunks that have hippy as a slot value and 
park will spread activation to all chunks that have park as a 
slot value (note, the slot names do not play a role). The 
number of lines of activation leaving from a slot value in the 
cue is the fan of that slot value, and the fan of the cue is the 
sum of the fans of its slot values. 

In ACT-R, the amount of activation spread from a cue to 
a chunk is theorized to be proportional to the number of past 
associations between slot values of the cue and the chunk. In 
the ACT-R architecture, the way of calculating this is based 

on an assumption that exposure to different facts has been 
counterbalanced, as in a psychology experiment (Anderson 
& Reder, 1999).  If it is assumed that everything has been 
counterbalanced and the number of exposures per chunk is 
equal then the activation can just be divided evenly among 
the chunks. So, the higher the fan the lower the amount of 
activation delivered to each individual chunk (see Anderson 
& Reder, 1999, for how to use ACT-R when exposures have 
not been counterbalanced). Anderson and Reder (1999) 
modeled the fan effect in ACT-R by assuming that people 
retrieve the most active chunk and respond true (i.e., they 
have seen it before) if the retrieved chunk matches the cue, 
and false (i.e., they haven’t seen it before) if it does not.  

One consequence of this model is that only the spreading 
activation received by the chunk that is chosen affects the 
reaction time (RT). In other words, there is no interference 
from the activation of other chunks. However, as fan goes 
up so do the number of other chunks that receive activation. 
As part of a fan experiment we tested the effect of these 
“other” chunks to see if interference plays a role in the fan 
effect and how that might alter the ACT-R fan model. 

Experimental Design 
In our experiment we created false cues by taking a true fact 
and replacing one element with a false element. For 
example, if subjects had studied the fact that the red hat is 
in the kitchen, we could create a false cue by replacing hat 
with pen. Under these conditions the ACT-R model predicts 
that the fan of the false element of the cue will have no 
effect on retrieval time, unless the original fact is not 
retrieved. However, we performed simulations with the 
ACT-R fan model and found that in our experimental 
design, the chunk representing the original version of the 
fact always received the most activation, and therefore was 
always chosen (as far as we can see this is also true for other 
fan experiment designs, but it is possible to create more 
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extreme differences in fan where this would not be true). 
Related to this, the fan of the false element should also have 
no effect on the error rates. Although the ACT-R fan model 
does not explicitly model errors, errors would be due to 
noise and the retrieval threshold. This could conceivably 
interact with fan for the chunk that is being retrieved but the 
fan of the false element does not affect this chunk.  

Method 

Subjects 
Twenty eight participants (11 males and 16 females: mean 
age 19.9 years, SD = 2.2) were recruited from introductory 
psychology courses a Carleton University to take part in the 
experiment. Participants received course credit as 
compensation for their time. 

Procedure  
The experiment was divided into three main phases: A study 
phase, a recall phase and a recognition phase. In the study 
phase each participant was assigned one of three unique sets 
of study sentences and was instructed to memorize the 
sentences in the list.  Once the participant indicated that they 
were prepared to proceed, the recall portion of the 
experiment began. 

The study set consisted of sixteen sentences of the form, 
“The color thing is in the place”.  The color term was one of 
ten colors; the thing was one of ten house-hold items; and 
the place was one of ten locations in/around a typical home.  
Very typical item/locations combinations, such as 
‘comb’/‘bathroom’, were not used in generating the study 
set sentences. Each term could have a fan of either 1 or 4. 
Thus, the four possible sentence fans were: 3, 6 9, and 12.   

In the recall phase each participant was tested three times.  
Each test began with the participant trading the study set 
with the experimenter for a new list of sentences identical to 
the study set, but with one term from each sentence replaced 
with a blank, and the order of the sentences randomized.  
The participant’s task was to correctly fill-in each of the 
blanks with the missing word.  The participant was given as 
much time as he or she needed.  Once finished, the 
experimenter recorded the number of correct responses and 
for each error, provided the correct missing word to the 
participant.  The participant was then given the opportunity 
to review the study set before being tested again.  The three 
tests were balanced such that each term from each sentence 
in the study set was replaced with a blank exactly once.  
After the third iteration the recognition phase began. 

The recognition phase of the experiment was conducted 
on a computer using Experiment Builder (by SR Research).  
The participant’s task was to correctly judge whether 
sentences presented in the middle of a 17” CRT display 
were members of the study set, or not.  Accuracy and 
reaction time data were recorded for each trial. 

Each participant was presented with 96 test sentences, 
which consisted of three exposures to each of the study set 
sentences, and 48 sentences that were not from the study set.  

The participants were told that they should consider 
sentences from the study set to be true, while all others 
should be considered false.  Each false sentence was 
generated by swapping one of the three terms from a true 
sentence with another term from the same category (e.g., 
color, thing, or place) and with the same fan.  Each true 
sentence was used to generate three different false 
sentences.  Thus, for each exposure to a true sentence there 
was a false sentence with the identical fan. Once the test 
sentence appeared the participant would indicate if the 
sentence was in the study set by hitting the ‘z’ key, or if it 
was not by hitting the ‘/’ key.  

Results 
The data from one of the participants was excluded from the 
results presented below.  This was due to the fact that this 
participant’s performance was significantly poorer than all 
other participants by a large margin (P < 0.001).  The results 
below reflect the data collected from the remaining 27 
participants. By the end of the third iteration of the recall 
phase the participants were correctly completing the 
sentences 91.4 percent of the time. The results of the 
recognition phase replicated the fan effect. These results are 
reported in Rutledge-Taylor, Pyke, West, & Lang (2010). 
However, in this paper we will focus on the results related 
to the predictions described above and fitting an ACT-R 
model to the data. 

The hallmark of a good scientific theory is that it makes 
precise, falsifiable predictions. Many theories in Psychology 
fail to meet this criterion. However, because ACT-R is 
precisely specified, models built in ACT-R are more readily 
falsifiable. To test the predictions of the ACT-R fan model 
(Anderson & Reder, 1999) concerning the fan of the false 
items we ran an ANOVA testing for the effect of the fan of 
the false items on RT and error rate. RT was significantly 
higher when the fan of the false item was equal to 4 than 
when it was equal to 1 (P<0.001). The error rate was also 
significantly higher when the fan of the false item was equal 
to 4 than when it was equal to 1 (P<0.001). We also ran a 
correlation between the fan of the false items and RT, with 
the fans of the true items partialled out. We found a 
significant correlation of r=0.156 (P<0.001, one tailed). 
Similarly, we ran a correlation between the fan of the false 
items and % errors, with the fans of the true items partialled 
out. Here we also found a significant correlation of r=0.193 
(P<0.001, one tailed). The size of these correlations was 
roughly similar to the same correlations done with the fan of 
the true items.  

Contrary to the predictions of the ACT-R fan model, we 
found that the fan of the false items significantly affected 
RT such that a larger fan led to slower responses (see Figure 
1). Consistent with this and also contrary to the predictions 
of the model, we found that the fan of the false element 
significantly affected the error rate such that a larger fan led 
to more errors (see Figure 2). These results indicate that 
interference from the false item plays a role in the fan effect. 
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Figure 1: Reaction time in msec/character for responding 
false to a false cue as a function of the fan of the false item 

in the cue. 
 
 

 
 
Figure 2: Percent errors for responding false to a false cue as 

a function of the fan of the false item in the cue. 
. 

 

Model Evaluation 
Although falsification of a model is sometimes viewed as a 
bad thing, falsification actually shows that a model was well 
specified. Falsification also creates an opportunity to move 
toward a better model. To this end we fit the ACT-R fan 
model to our data. Anderson and Reder (1999) used the 
following function to calculate RT: 

 
RT=I+Fe-Ai 

 
Where F is a scaling constant for time, I is a constant 
representing how long it takes subjects to make their 
response after they know it, e is the base for natural 
logarithms and A is the activation of the chunk (which 
includes spreading activation). Activation was calculated as: 

 
A=B+S 
 

Where B is base level activation and S is spreading 
activation. We fitted the Anderson and Reder (1999) ACT-R 
fan model to our data using identical parameter values, 

except that we had to increase S slightly from 1.45 to 2 to 
avoid getting negative activation values. As in Anderson 
and Reder (1999), B was set to zero because it trades off 
with S.  
   We eventually figured out that the slight difference in S 
was because we used the current method of calculating fan 
size in ACT-R 6, which is to add 1 to the fan of each item in 
the cue to represent the match between that item and a 
chunk in memory representing that item. For example, 1 
would be added to the fan of cup because it is assumed that 
we all have a chunk in declarative memory representing 
cup. In contrast, Anderson and Reder (1999) calculated the 
results without adding 1 to fans of the items in the cue. 
Whether or not to do this is an interesting issue. However, 
we recalculated our results without adding 1 and found it 
made very little difference to our results or conclusions. 

 

 
 
Figure 3: The original Anderson & Reder (1999) ACT-R 

fan model fit to our data. 
 
 

Figure 3 shows the fit of the original ACT-R fan model to 
our data. The fact that the model predicts an overall lower 
RT is not significant as it can be accounted for by assuming 
our subjects took longer to press the true/false keys, which 
can be modeled by increasing the I parameter. However, the 
shape of the functions and the relationship between the 
functions is clearly different. The human data shows a clear 
upward curve that the model does not and the model RTs 
converge as fan increases wile the human data diverges.  

Figure 4 shows the original fan effect data from Anderson 
and Reder (1999) re-plotted. Note that it shows the same 
divergence and upward curve. In fact, the original ACT-R 
model for this data (faithfully recreated and shown in Figure 
5) also shows a slight upward curve for the true cues, but 
not for the false cues. Also, as with our data, the false 
function diverges from the true function as fan goes up. 
However, it is important to keep in mind the scale of the 
graphs and realize that these effects are much smaller in the 
Anderson and Reder (1999) data and may not even be real, 
although, the consistency of this result across conditions and 
studies indicates that we should take it seriously. 
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Figure 4. Re-plotted data from Anderson and Reder (1999) 

 

An Alternative Model 
Next we addressed the issue of the parameter values. 
Specifically, we wanted to know if the ACT-R model could 
be made to fit the data. The only way that we could find to 
fit the data was to use the latency exponent parameter (f) 
that is available in ACT-R 6. This parameter, which has 
rarely been used, changes the RT function to: 

 
RT=I+Fe-(f*A) 
 
By setting f=3 and increasing F from 613 to 2000 we 

obtained a good fit to the data (see Figure 6 - note, that the I 
parameter could be increased to overlap the functions but it 
is easier to see this way). Increasing f lowers overall RT, so 
increasing F can be viewed as a way of compensating for 
this. The other effect of raising f was to increase the 
acceleration of the rate at which lowering activation raised 
RT. We will refer to this as the ACT-R(f) model (see Figure 
6). However, please note that this model violates the ACT-R 
modeling convention of using establish parameter values 
unless you have a justification (Anderson & Lebiere, 1998). 
 

 

 
 

Figure 5. A re-creation of the ACT-R fan model from 
Anderson and Reder (1999) 

 
 

 

 
 

Figure 6: The ACT-R(f) model fit to our data (note, that 
the I parameter could be increased to overlap the functions 

but it is easier to see this way). 
 

Rationalizing the alternative model 
There are three ways we can interpret the ACT-R(f) fan 
model. We know that it cannot account for our finding that 
the fan of the false item in the cue affects RT and % error 
any better than the normal ACT-R fan model. However, it is 
possible to interpret the manipulation of f as representing the 
aggregate effect of interference. In this case, f would be 
related to the total effect of interference in the task. If we 
assume that our use of more cue items and higher fans 
produced greater overall levels of interference, then the fact 
that our results show a more pronounced nonlinear effect 
than the Anderson and Reder (1999) results could be 
modeled by increasing f to represent higher levels of 
interference. In this sense, ACT-R could be adjusted to 
account for the presence of interference but could not be 
said to include a (process) model of interference. More 
studies would be required to see if f actually does function 
this way. 

A less charitable approach to understanding the ACT-R(f) 
model would be to point out that adding f to a model that 
already has a lot of parameters creates a system capable of 
fitting a lot of different functions. We had no principled 
reason to adjust f and found that it worked as part of a 
parameter tweaking process that involved all of the 
available parameters. So possibly the fit of this model is 
merely fortuitous. 

A third, more constructive way of viewing it is to see the 
manipulation of f as a proxy for an additional mechanism or 
process - in this case, interference. Although ACT-R does 
not include an interference mechanism, modifications have 
been introduced to do this. For example, the spacing effect 
modification of Pavlik and Anderson (2005) assumes that 
interference plays a role in order to account for the spacing 
effect in memory. Similarly, the semantic interference 
modification proposed by Van Maanen & Van Rijn (2007) 
assumes a form of interference to account for the Stroop 
effect. Likewise, our findings indicate the need for an 
explicit model of interference in ACT-R. A simple way of 
doing this that is consistent with our manipulation of f is to 
introduce a penalty that reduces activation based on the total 

280



fan of the information in the cue – the higher the overall fan, 
the greater the penalty for all chunks receiving spreading 
activation. We could create such a function but it would not 
be meaningful at this point since it would be custom made 
to fit our data. Essentially, this would have the same effect 
as raising f, but the effect would be tied to the overall fan 
and therefore would account for our finding that the fan of 
the false item in the cue affects RT and % error.  

 

 
 

Figure 7. The ACT-R(f) model applied to the data from 
Anderson and Reder (1999). 

 

Model Re-Evaluation 
To gain further insight into the ACT-R(f) model we applied 
those parameter settings to our recreation of the Anderson 
and Reder (1999) fan model. The results are illustrated in 
Figure 7. The true results actually produce a reasonable fit 
to the data but the false results clearly do not fit. This could 
be because the fit of the ACT-R(f) model to our data was 
merely fortuitous, or it could be because higher f values are 
only appropriate when interference is higher, as suggested 
above. 
 

 
 

Figure 8. The Anderson and Reder (1999) ACT-R fan 
model fit to our data for correctly identifying true cues only. 

 
 

 

Based on our experimental findings showing that the 
ACT-R fan model for correctly identifying false cues cannot 
be correct, we also tried fitting Anderson and Reder's (1999) 
fan model to our data for the true results only (see Figure 8). 
Without having to fit the false data we were able to get a 
good fit by adjusting only F and I (F=1000; I=1100; S=1.45; 
similar to Anderson and Reder we did not add 1 when 
calculating the fan). This is much less problematic because 
it avoids adjusting f, which is almost never altered in ACT-
R modeling. Also, it is important to remember that there is 
variability associated with the human data so it is likely that 
a single intermediate value of F could be used to obtain a 
reasonable fit to our data and Anderson and Reder's (1999) 
data. 

Conclusions 
 Our results show that the ACT-R fan model for correctly 
identifying false cues cannot be completely correct. Also, 
although fitting ACT-R to our data was possible, it was also 
problematic because it required unprecedented alterations to 
the parameter values as well as assumptions about the 
meaning of those alterations that remain untested. However, 
when we did not try to fit the ACT-R fan model for 
correctly identifying false cues, the ACT-R fan model for 
correctly identifying true cues fit our data well, without any 
problematic parameter alterations. Based on this, it appears 
most likely that the problem lies with the assumptions and 
processes behind the ACT-R fan model for correctly 
identifying false cues.  
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Abstract 
We present a database that provides an interface for the ACT-
R modeling community to interact with each other 
(http://www-abc.mpib-berlin.mpg.de/actrdb/). The database 
includes estimated values of ACT-R parameters from a wide 
range of ACT-R modeling studies, selected from the studies 
available on the ACT-R website. It serves as a tool to query 
studies and estimated values for ACT-R parameters, 
providing the exact range of values for each of the available 
free numerical parameters. In short, the database supports an 
alternative community-based approach to manage the 
challenges associated with parameter estimation for complex 
cognitive architectures like ACT-R. 

Keywords: ACT-R; modeling; parameter. 

Managing Parameters for ACT-R Models 
Unified theories of cognition allow us to approach 
mechanisms of human cognition in a holistic, cumulative 
manner (Simon & Newell, 1973). Among the existing 
unified theories of cognition, ACT-R is one of the most 
widely used architectures, producing the largest body of 
sustained research and application. In order to study a wide 
range of cognitive mechanisms, ACT-R includes a variety 
of modifiable parameters. While these parameters enable 
flexibility they also result in fundamental challenges. 

 
Wexler (1978) criticized the early framework of the ACT 

research program (Anderson, 1976), stating that “There is 
no explanatory power in ACT because there are no 
restrictions on human abilities”. He also posited that “the 
general problem with ACT is (its flexibility), it is simply so 
weak that there is no way to find evidence for or against it”. 
About twenty years later, Pashler and Roberts (2000, 2002) 
again brought these concerns to the fore, arguing that the 
practice of using good fits as major evidence for complex 
theories is “rotten to core”. Indeed, goodness-of-fit metrics 
remain a very common means of model validation. These 
concerns not only hold when criticizing ACT-R and some 
other unified models, but also address a wide-spread misuse 
of goodness-of-fits as key evidence in psychology. Sound 
scientific theory requires that models not only fit but also 
predict data (Gigerenzer, 1998; Gigerenzer & Brighton, 
2009). How can modelers of the ACT-R architecture deal 

with these concerns about parameter estimation and model 
fitting? 

 
There have been some attempts to understand the relation 

among ACT-R parameters that result from parameter fitting. 
For example, Anderson, Bothell, Lebiere, and Matessa 
(1998) suggested that there is a systematic linear 
relationship between the estimated values of activation 
thresholds and the logarithm of estimated latency factors. 
Their data also implied that estimated values of these 
parameters are exceedingly regular. To date, however, there 
has been no meta-analytic assessment to evaluate whether 
there is any sustained regularity of these estimated 
parameters for ACT-R models across other published 
studies. 

 
Computational cognitive models are often evaluated by 

their fit and generalizability. These properties of a model are 
related to two aspects of model complexity: (1) number of 
parameters and (2) the functional forms of computation. In 
part, such evaluations seek to evaluate the extent to which 
noise is unnecessarily captured (Pitt, Myung, & Zhang, 
2002; Oaksford, 2002). Using cross-validation, Taatgen, van 
Rijn, and Anderson (2007) estimated parameters of a base-
model once and then made use of these estimated values 
throughout subsequent models. This study exemplifies a 
strict practice that allows minimal parameter estimation; 
however, like many ACT-R studies, the work of Taatgen et 
al. still relied on superior goodness-of-fits as the major 
support for their proposed models. 

 
The latest ACT-R architecture version 6.0 has 62 free 

parameters with numerical values, together with the 
flexibility of mapping these parameters to tailor-made 
handlers and tens of other non-numerical parameters. 
Different instantiations of specific ACT-R models do not 
typically require setting and optimizing all these numerical 
parameters, as default values are provided. However, our 
analyses of a large and representative sample of ACT-R 
studies indicates that on average each ACT-R model 
modifies nearly six free numerical parameters for better 
model fitting. Moreover, many of these studies added task-
specific parameters. 
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Parameter Estimations by “Wisdom of the crowd” 
To provide another path to parameter estimation-free 
modeling, we developed a database to collect estimated and 
modified ACT-R parameters from the ACT-R modeling 
community. With this database, we hope to facilitate 
comparisons of ACT-R parameters by drawing on the 
wisdom of the crowd. Accordingly, we catalog previous 
studies that have provided estimates together with 
corresponding parameters. The database makes it relatively 
easy to determine whether a particular newly estimated 
value falls within a reasonable range according to previous 
related studies. Moreover, this database also serves to 
provide some meta-analytical data on the variety and ranges 
of selected parameters across a large representative set of 
studies. 

 
Taatgen, et al. (2007) have argued that the ideal goal for 

an ACT-R modeler is to fix all parameters: A modeler 
should not estimate any parameter during modeling. One 
key goal of this current project is to collect and compile data 
from a representative range of published ACT-R models 
(with exact values for estimated parameters) in a sustainable 
database to assist ongoing modeling projects. The online 
database provides several potentially useful functions 
including updated information about the means and the 
medians of the existing free numerical parameters. 
Moreover, the database has been designed to be scalable so 
as to be readily extended to other models and tasks. In what 
follows, we describe the database and briefly review some 
functions and findings. We close with a discussion of 
potential applications and implications. 

Method 
We started with the studies and models that made use of the 
ACT-R architecture listed on the ACT-R website (http://act-
r.psy.cmu.edu/). From this online repository of ACT-R 
studies, we selected all studies that have made both their 
ACT-R models and manuscripts available; a total of 44 
studies were included at the time of data collection. From 
these models, we collected the information about the 
version of ACT-R architecture that was used as well as the 
particular ACT-R parameters that were modified. We also 
collected information about the deprecated parameters from 
previous versions of ACT-R and other task-specific 
parameters that these models made use of. 

Overview of functions of the database 
The database can be accessed through an Internet-interface 
at the URL: 

 
http://www-abc.mpib-berlin.mpg.de/actrdb/ 
 
The Internet-interface was tested and works with most of 

the popular website browsers, such as Firefox 3+, Safari 4, 
Internet Explorer 8+, and Opera. Along with the information 

about ACT-R parameters, our database serves at least four 
main functions: 

1. Monitoring how frequently parameters are modified.  
2. Obtaining parameter means, medians and 

distributions. 
3. Searching the keyword descriptions of ACT-R 

studies in the database. 
4. Collecting fields of study and other information 

related to ACT-R parameter estimations. 
Below we describe the basic functions of the database. 
 

Frequency graph In the middle of the frontpage, there is a 
frequency graph listing all the numerical parameters that 
have been modified by at least one study in the database. 
Layout of the frequency graph is arranged so that the 
modified parameters are listed in descending order of 
frequency from the bottom to the top (Figure 2). 

 
Figure 1: Frequency of modifications of ACT-R parameters. 
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Frontpage function buttons At the top of the frontpage of 
the database there are functional buttons labeled “Query 
parameters”, “list studies”, and “Enter your ACT-R study”. 
These buttons provide access to the major ways to interact 
with the database (See Figure 2). A ‘Home’ button returns 
the user to the portal frontpage. 

 

 
Figure 2: Major functional buttons at the top of frontpage. 

 
Performing keyword search in the database At the 
bottom of the frontpage there is a search box where users 
can perform keyword searches or exact title searches (See 
Figure 3). 

 
Figure 3: Keyword search or title search in the database. 

 
Query parameters By pressing the query button a user can 
query any ACT-R parameter for any particular version of 
ACT-R in the database, using a drop-down menu (See 
Figure 4). 

 

 
Figure 4: A drop-down menu to query ACT-R parameters. 

 
After a parameter is chosen, the studies in the database 

that modified the particular parameter are displayed together 

with the mean and the median. The database also provides a 
graph describing the distribution of its modification among 
studies listed as well as the default values and the 
equation(s), if any (See Figure 5). 

 
Figure 5: Information about the ACT-R parameter :DAT. 

 
Results of listing or searching the database By pressing 
the ‘List’ button, or by performing a search on the 
frontpage, a user will reach a list of studies (See Figure 6). 

 

 
Figure 6: A list of ACT-R studies displayed after pressing 
the ‘List’ button or performing a search. 

 
By further clicking on the title of a study specific 

information about parameter modifications of that study will 
be displayed (See Figure 7). 

 

 
Figure 7: Information about parameter modifications. 

 
Submit your model By pressing the ‘Submit’ button a user 
will reach the interface for entering information about 
parameter modifications of an ACT-R study (See Figure 8). 
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The interface is designed so as to guide the user through 
reporting their study in a step-by-step manner. By allowing 
ACT-R modelers to interact through our online database 
(providing their own estimated parametric values, modified 
values, and comments on their entries and models) we 
provide a more sustainable ‘living’ archive that benefits 
from the ‘wisdom of crowds’. Readers are welcome to try 
out the database and provide feedback. 

 

 
Figure 8: An interface to enter information about an ACT-R 
modeling study. 

Results and Discussion 

A brief report of some notable ACT-R parameters 
At the time of publication, 44 studies were included in the 
database Together with a total of 261 instances of parameter 
modifications or estimations.  On average each study 
modified 5.93 parameters. Among the ACT-R parameters 
that were modified in these studies, the three most 
frequently modified were :RT, :ANS, and :LF. The two 
ACT-R parameters :BOLD-EXP and :RT have the widest 
ranges of modified values among all parameters (See Table 
1). 

 
Table 1: The Most Frequently Modified ACT-R 

Parameters and Parameters with The Widest Range of 
Values 
ACT-R 
Parameter 

Default 
value 

Description Frequency 
modified 

:ANS Nil Activation noise of 
chunks 

30 

:LF 1 Latency factor of 
chunks retrieval 

23 

:RT 0 Retrieval threshold 
of chunks 

37 

:BOLD-
EXP 

6 Exponential 
parameter for 
computing the 
BOLD response. 

15 

Note: For detailed descriptions of all the ACT-R 
parameters, we refer the interested reader to the ACT-R 
website (http://act-r.psy.cmu.edu/), Anderson (2007), and 
Anderson & Lebiere (1998). 

Applications 
Anderson et al. (1998) demonstrated that there are 
systematic variations between τ (:RT) and F (:LF) across 
studies. Unfortunately, not all the parameters in ACT-R 
have received this level of attention. As ACT-R continues to 
develop, it will acquire even more parameters. To help 
manage obstacles and challenges associated with such 
growth, our online database may provide a useful and 
convenient way for the ACT-R community to interact with 
each other and monitor these parameters.  In the long run, 
by flagging frequently monitored parameters the database 
may point to weaknesses in the theory. In the short run, the 
database provides an overview of the parameter space.  

 
To illustrate, when a modeler wants to study a 

phenomenon that requires estimation of an ACT-R 
parameter, this database serves as a portal to get an 
overview of the parameter in question with just a few 
mouse-clicks. With a keyword search about the 
phenomenon one can get a list of related modeling studies. 
When directly querying the parameter, the database 
provides studies that have modified the parameter from its 
default value, alongside with the means, medians, and 
default value (if any) on a distribution graph. This provides 
the modeler with a transparent window onto what was 
previously opaque information about what parameter values 
other ACT-R modelers were using. 

 
Beyond fixing exact parameters, we also expect that the 

database can simplify much of the procedure used to 
estimate ranges of ACT-R parameters. The database can 
provide information about ways and approaches for 
capturing individual differences (e.g. age, abilities), 
environmental differences, and task differences (e.g. 
vigilance). For example, the default action time (:DAT), 
which is set at 0.05 second, dictates the basic firing speed of 
a procedure in an ACT-R model. While it is standard to use 
to default values when possible, there are indications that 
age (Mata, Schooler, & Rieskamp, 2007) and environmental 
factors (Gunzelmann, Gross, Gluck, & Dinges, 2009) may 
alter this basic firing speed. Another example is the retrieval 
threshold parameter (:RT), which is normally set to zero but 
can be expressed instead as a logistic function with a range 
of possible values, reflecting forgetting (Schooler & 
Hertwig, 2005). In these instances, using the interactive 
database to gather information provides a way to better 
monitor and estimate the most reasonable (or common) 
parameters of variation for human speed of processing. 

Implications for parameter estimations in ACT-R 
We setup the database in response to some important 
concerns stemming from the general problems of parameter 
estimation associated with a framework as complex as 
ACT-R. By setting up this database, we appeal to the 
‘wisdom of the crowd’ among ACT-R modelers. In ongoing 
work we are testing the median parameter hypothesis: The 
parameterization of ACT-R based on the median estimated 
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ACT-R parameter values across all studies will fare better in 
predicting performance when compared to the 
parameterization that was used for each particular study. We 
could also imagine searching for a set of parameters that 
gives the best fit to all the studies in the database. It is our 
hope that these efforts may bring ACT-R modelers closer to 
true “zero-parameter fits”. 
 

Setting parameter values a priori to plausible values 
constrains overly flexible models by restricting the range of 
a model’s predictions. This should lead to more accurate 
and perhaps more useful predictions of human performance 
patterns. A possible further development is to estimate a 
recommended range of values for every ACT-R parameter 
that correspond to human cognitive limitations. Finding 
such a correspondence would be in line with practices used 
in the human factor community, where limits of human 
performance are essential inputs for system design. 

Conclusions 
The major aim of this database is to provide a collaborative 
interface for ACT-R modelers to document and monitor 
values of ACT-R parameters in an efficient and sustainable 
way. By making use of the “wisdom of the crowd”, ACT-R 
modelers can minimize model flexibility and increase the 
generalizability of their models. This can also be seen as a 
natural experiment concerning how best to estimate 
parameters in a social manner. By using a database of 
parameters that encourages generalizability and penalizes 
flexibility the ACT-R community might move closer to 
answering Newell’s beautiful call for a truly unified theory 
of cognition. 
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Introduction 
Multitasking often has to be investigated with experiments 
using complex tasks. An example is our research on the 
‘bottleneck’ role of the problem state resource (Borst, 
Taatgen, & Van Rijn, 2010). The problem state resource is 
the part of working memory that is used to store 
intermediate results. Previously, we have shown that its 
capacity is limited to one element. Because we were 
interested in finding the neural correlates of the problem 
state resource, and fMRI data of complex tasks are difficult 
to analyze with classical analysis methods, we developed a 
novel, computational-model-based fMRI analysis method. 
We show that this method can be used to analyze complex 
tasks by locating the brain area responsible for maintaining 
problem states: the inferior parietal lobule. 

Methods 
Our participants were asked to perform a ‘triple-task’ in the 
fMRI scanner: They solved multi-column subtraction 
problems, entered text, and performed a listening 
comprehension task concurrently. Both the subtraction task 
and the text entry task had two versions: an easy version 
without problem state usage and a hard version with 
problem state usage. Due to the problem state bottleneck, 
problem states had to be replaced constantly in the hard 
subtraction – hard text entry condition (Borst et al., 2010). 
This should lead to considerably more activity in brain areas 
associated to the problem state in the hard – hard condition 
than in the other conditions. That is, we predicted an over-
additive interaction effect. 

This type of complex task is difficult to analyze with 
classical fMRI analysis methods that assume ‘pure 
insertion’. In such a complex task cognitive resources are 
used at different time points in each trial, while pure 
insertion methods assume that a resource is active in one 
condition but not in the other conditions. As an alternative 
analysis method, we fit a computational model developed 
using ACT-R (Anderson, 2007) and Threaded Cognition 
(Salvucci & Taatgen, 2008) to the behavioral data, and 
subsequently regressed the model’s problem state activity 
against the fMRI data to find regions that are sensitive to 
problem state activity. This gives a much finer-grained 
stimulus function than classical methods, as we use model 
behavior within a single trial. Figure 1a and 1b give a 

concrete example of what this means over the course of four 
trials in our experiment. Figure 1a shows the single stimulus 
function of the problem state resource that was used for the 
new model-based analysis and Figure 1b shows the four 
stimulus functions that are needed for the classical fMRI 
analysis of an interaction effect. 

Results & Discussion 
The results of the analyses are displayed in Figure 1c 
(model-based method) and 1d (classical method). First, the 
results show that the model-based analysis method 
outperformed the classical method: it enabled us to find the 
neural correlates of the problem state resource, while the 
classical method did not yield any significant results. 
Secondly, the results show that the problem state resource is 
located in the posterior parietal cortex, with the peak 
activity in the inferior parietal lobule. 

These findings illustrate the applicability of a new 
analysis method for fMRI, which not only allows for using 
complex tasks in the fMRI scanner, but also for locating 
multiple cognitive resources in one experiment. For 
example, while we have shown the results for the problem 
state resource, the same methodology can be used for the 
visual resource, yielding an area in the occipital cortex. 
Furthermore, this model-based fMRI analysis method can 
be applied to every data set when there is a model available 
that is more detailed than the global trial structure of the 
experiment, showing which constructs of a model are linked 
to which brain areas. 
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Figure 1. Comparison of the model-based analysis method and the classical method. Panel (a) shows the demand 
function of the problem state resource in the model in blue, and its convolution with a hemodynamic response 
function in red. Panel (b) shows the four stimulus functions that are necessary to analyze an interaction using the 
classical method. Easy-Easy etc. above the diagrams indicate the experimental condition. Panel (c) shows the results 
of the model-based method (contrast is displayed above the results), and (d) the results of the classical method. 
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Abstract 

Many more applications and simulations are developed in the 
Java programming language than in the Lisp programming 
language. This can be attributed to a number of reasons, in-
cluding platform independence, object-oriented programming, 
etc. Due to the fact that the ACT-R software was programmed 
in Lisp, incompatibility issues between it and Java arose. 
These issues necessitated the establishment of a tool capable 
of preventing a Lisp reimplementation of existing Java appli-
cations. Consequently, “Hello Java!” was developed to link 
cognitive models written in ACT-R with Java applications, 
namely simulations. In order to achieve this, a package must 
be added to the Java simulation so that it can observe and per-
form actions on the frame, as well as communicate with the 
ACT-R software. The line of communication between Java 
and Lisp is established through a TCP/IP connection. As a re-
sult, the simulation and cognitive models can be run on dif-
ferent computers. Since the release of ACT-R 6, the methods 
for perception and action have been externalized. These ex-
ternalized methods can be utilized as devices for the ACT-R 
software, making it possible to, consequently, use a Java 
simulation as a device for ACT-R.  

Keywords: ACT-R; device; Java; simulation; network 

Introduction 
ACT-R (Anderson & Lebiere, 1998) is a computational the-
ory of human cognition with two separate, but interacting, 
knowledge stores developed in Lisp. Both declarative 
knowledge and procedural knowledge are unified into a 
production system where procedural rules act on declarative 
chunks. The ACT-R system includes the capability to create 
simulated environments, such as screen interfaces. Produc-
tion rules have the ability to interact with this environment 
by perceiving objects and making motor movements 
through perceptual and motor buffers. 

The externalization of all necessary methods involved in 
the perception of objects and the facilitation of motor move-
ments makes it possible to extend the environment to a 
world outside of ACT-R, without requiring a modification 
of its architecture. An interaction with the production rules 
can be enabled with any device which meets the specifica-
tions of these externalized methods. Due to the fact that 
Lisp supports communication via the TCP/IP network pro-
tocol, it becomes possible for ACT-R to interact with any 
environment also possessing the capability to communicate 
via TCP/IP. 

I was able to take advantage of this trait and developed 
“Hello Java!” as an open source tool for linking cognitive 
models written in ACT-R to applications and simulations 

written in Java. This tool and additional examples, including 
the source code, are available on the following website: 
http://www.zmms.tu-berlin.de/kogmod/tools/hello-java.html 

Design 
To link a cognitive model written in ACT-R to a frame-
based Java simulation two elements that coordinate the in-
teraction between the model and the simulation are required. 
The first of these elements is a Java package that must be 
added to the simulation. The second element is a device for 
the ACT-R software that bridges the incompatibility be-
tween Java and Lisp with the TCP/IP network protocol. I 
will now proceed to describe the communication and syn-
chronization of the elements in detail: 
Communication  
The line of communication between Java and Lisp is estab-
lished through a TCP/IP connection, which is a protocol 
commonly used to connect computers to the internet. All 
information sent with this protocol can be transmitted as a 
string representation. This string representation carries data 
pertaining to perception and action that is exchanged be-
tween the cognitive model and the simulation. In order to be 
able to communicate via TCP/IP, each side must encode and 
decode information using a common vocabulary and unified 
grammar. ACT-R receives data pertaining to perception and 
sends back data pertaining to the execution of motor move-
ments. Java, meanwhile, receives data instructing it to per-
form the cognitive model’s desired action and provides a 
visual representation of all objects visible in the frame. 

By using a network structure it is possible to run a cogni-
tive model and a simulation on different computers. This 
increases computing power for each, cognitive model and 
simulation.  
Synchronization 
In order to keep the cognitive model and the simulation syn-
chronized, the simulation must adjust its cycle speed to that 
of the cognitive model. The opportunity to do this applies to 
all clock-controlled simulations. A clock-controlled simula-
tion updates all elements visible on the screen after one cy-
cle. The length of a cycle depends on the time resolution of 
the simulation. The shorter the cycle, the smoother a simula-
tion appears to be. 

ACT-R is responsible for adjusting the cycle speed of the 
simulation. It accomplishes this by synchronizing the execu-
tion of the simulation’s cycles with the computed time in-
terval of the cognitive model. ACT-R’s scheduler is used to 
trigger the cycles in a calculated time interval.  
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As an example, let us assume that the cycle length of a 
clock-controlled simulation is one second. The scheduler 
will also be adjusted to one second and it assumes control of 
the cycles of the simulation. Due to the fact that the time 
interval of the scheduler is synchronized with the computed 
time interval of the cognitive model, the same time will 
elapse for the simulation and the cognitive model. 

Extending the Java simulation 
Java has established itself as a widely used, universal, 

platform-independent programming language. In order for 
ACT-R to be able to access a Java simulation, the simula-
tion itself must be extended by a package. In general, a Java 
package contains classes, methods and functions that extend 
an application. This package coordinates the functions of 
observing all objects from the simulation, performing ac-
tions on the simulation, and exchanging information with 
ACT-R. In order to run the package, one must first add it to 
the simulation and initialize it. The package consists of three 
sub-packages. Their descriptions and roles are listed below: 
Robot 

This sub-package triggers actions like clicking a mouse 
button, moving the mouse, stroking a key, moving the atten-
tion pointer and speaking, if the cognitive model decides to 
perform one of these actions. 
GUI 

GUI contains the information of all objects visible in the 
frame. By recursively accessing objects in the frame, data 
pertaining to the following objects becomes accessible: la-
bels, text fields, buttons, radio buttons and toggle buttons. In 
principle, every Java object can be accessed. Therefore, 
information pertaining to the kind, value, colour, size and 
relative position of an object must be encoded to a string 
representation. This information is necessary for the visual 
icon of ACT-R. An object can be one of the following 
types: text, line or oval. Because ACT-R interprets an oval 
as a button, every type of button is assigned as oval.  
Net 

This sub-package provides all methods responsible for 
encoding and decoding information and handles the network 
connection with ACT-R. A socket process is started that 
waits for a connection from ACT-R on a predefined port. If 
the socket process receives information, it proceeds to parse 
it, thereby enabling it to perform actions based on methods 
obtained from the robot sub-package. Furthermore, it can 
send back visual information from the GUI package. 

ACT-R device 
As described above, ACT-R 6 provides externalized, acces-
sible methods responsible for the perception of objects and 
the execution of motor movements. These methods can be 
implemented and utilized as a device, resulting in an inter-
action between this particular device and the production 
rules. In order to be able to link ACT-R to a Java simula-
tion, it was necessary to implement the following methods: 

 device-move-cursor-to: ACT-R sends an action to the 
Java simulation to move the mouse pointer to a given 
position. 

 device-handle-click: ACT-R sends an action to the Java 
simulation to perform a mouse click. 

 device-handle-keypress: ACT-R sends an action to the 
Java simulation to perform a keystroke.  

 device-speak-string: ACT-R sends an action to the Java 
simulation to speak a string. 

 get-mouse-coordinates: ACT-R sends a request to the 
Java simulation to gather data pertaining to the position 
of the mouse. 

 build-vis-locs-for: This method updates the visual icon 
of ACT-R’s vision module with all visible objects of 
the device. It will be invoked after the proc-display 
command is called. 

 device-update: This method is called after ACT-R 
computes one cycle. At this point it is optional to up-
date the visual icon of ACT-R’s vision module or to 
perform other tasks. 

Updating the visual icon of the vision module 
To update the visual icon, it is necessary to call an update-
method. This method regulates the gathering of visual in-
formation, but is not one of ACT-R’s device-methods. The 
update-method sends a request to the Java application in-
structing it to collect data pertaining to all visible objects 
present in the simulation. Once this visual data is transmit-
ted to ACT-R, it is then written into the visual icon of ACT-
R via the “build-vis-locs-for” method. The visual icon pro-
vides information about the kind, value, colour, size and 
relative position of visible objects in the environment. This 
method responsible for updating the visual icon can be trig-
gered in two different ways: 
 By utilizing a scheduler corresponding to a regular time 

interval, resulting in reduced network traffic for longer 
time intervals. A scheduled update is especially practi-
cal on clock-controlled simulations in which the simu-
lation updates the screen after a certain interval. 

 By allowing every instance in which ACT-R calls the 
“device-update” method to serve as a trigger. Although 
this method ensures that the visual icon is always up-to-
date when being accessed by ACT-R, it incurs higher 
network traffic costs.  

Discussion 
“Hello Java!” was developed as a tool to directly interface 
ACT-R with an external system. Its defining trait is its ease 
of use resulting from the fact that no modification of the 
simulation is required, that no restrictions are imposed upon 
the model and that it is possible to synchronize the simula-
tion with the model. 
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Abstract: Our work explores the use of Answer Set 
Programming (ASP) to formalize and reason about 
psychological knowledge. To demonstrate the viability of ASP 
for this task, in this paper we discuss an ASP-based 
formalization of the mechanisms of Short Term Memory. 

Introduction 

Our work explores the use of Answer Set Programming 

(ASP) (Gelfond & Lifschitz, 1991; Marek & Truszczynski, 

1999) to formalize and reason about psychological 

knowledge. Whereas some psychological models have a 

clear quantitative nature, which allows modeling e.g. with 

neural networks or Bayesian networks, other models have a 

more logical or qualitative nature and are not suitable for 

formalization with these techniques. ASP is a knowledge 

representation formalism allowing for concise and simple 

representations of defaults, uncertainty, common-sense and 

evolving domains, and has been demonstrated to be a useful 

paradigm for the formalization of knowledge of various 

kinds (e.g., Baral & Gelfond, 2005; Son & Sakama, 2009). 

For this reason, we believe that ASP can be used 

successfully for the formalization of psychological 

knowledge that is of qualitative nature. ASP is also directly 

executable, in the sense that the consequences of collections 

of ASP statements can be directly computed using computer 

programs. Hence, ASP-based formalizations of 

psychological knowledge can be viewed as computational 

models of the underlying psychological theories.  

Answer Set Programming 

In ASP, terms and atoms are formed according to the 

standard rules of first-order logic. A literal is either an atom 

a or its strong (also called classical or epistemic) negation 

:a. In its simplest form, a rule is a statement: 

 hÃ l1; l2; : : : ; lm;not lm+1; : : : ;not ln 

where h  and li’s are literals and not is the so-called default 

negation. The intuitive meaning of the rule is that a reasoner 

who believes fl1; : : : ; lmg and has no reason to believe 

flm+1; : : : ; lng, must believe h . The availability of two 

types of negation is one important feature of ASP, allowing 

for great flexibility in knowledge representation. In 

particular, the way default negation is treated in ASP allows 

to easily encode defaults (such as “an action is allowed 

unless it is explicitly stated that it is not”) and also to 

represent uncertainty and alternative, different views of the 

world (e.g. “either symbol a or symbol b, but not both, will 

be forgotten, but we do not know which one). The precise 

definition of the meaning of sets of ASP rules (called an 

ASP program) is given by the answer set semantics 

(Gelfond & Lifschitz, 1991), which characterizes a suitable 

notion of logical consequence. We omit further details due 

to space constraints; rather, in the rest of the paper we rely 

on the informal meaning of rules given above. From a 

practical perspective, the logical consequences of sets of 

ASP rules can be computed automatically, and rather 

efficiently, using computer programs called ASP solvers. 

These solvers can of course be also interfaced to pre-

processors, post-processors and user interfaces, to build 

sophisticated end-to-end systems (e.g., Balduccini, Gelfond 

& Nogueira, 2006). 

ASP-Based Formalization of STM 

To demonstrate that ASP is suitable for and successful at 

formalizing psychological knowledge, we have developed 

an ASP-based formalization of the mechanisms of operation 

of Short-Term Memory (STM), as described by Atkinson & 

Shiffrin (1971). This theory was selected because it reflects 

the type of psychological knowledge that we aim at 

formalizing: it is mostly of qualitative nature and is 

expressed in the literature at a rather high level of 

abstraction. Moreover, its formalization is challenging 

because it involves modeling of a sophisticated dynamic 

domain, involving non-determinism, fixed-capacity storage, 

and decay over time. In order to show that the use of ASP is 

not limited to a single theory, we have formalized not only 

the traditional theory of STM (Atkinson & Shiffrin, 1971), 

but also an alternative STM model (e.g., Card, Moran & 

Newell, 1983) in which decay is influenced not only by 

elapsed time but also by other variables such as the number 

of chunks a user is trying to remember and retrieval 

interference with similar chunks activated in working 

memory. It is worth stressing that the accounts of STM 

(Atkinson & Shiffrin, 1971; Card, Moran & Newell, 1983) 

that have been formalized by means of ASP are relatively 

well-established models from the existing literature. Our 

purpose in this study is not to modify the models but to 

show that they can indeed be formalized using ASP.  

Using a common methodology in ASP-based knowledge 

representation, the formalization process starts by 
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condensing the description of STM in a number of precisely 

formulated statements in natural language. For example, the 

set of statements for the traditional theory of STM contains 

16 items, including the following: (1) STM is a collection of 

symbols; (2) the size of STM is limited to ! elements 

(Cowan, 2000); (3) each symbol has an expiration time; (4) 

symbols can be added to STM; (5) if a new symbol is added 

to STM when ! elements are already in it, the symbol that 

is closest to expiring is removed from STM (i.e. forgotten). 

Then, the logical representation of the formalization is 

created by choosing suitable relations and functions, and 

using them to encode the natural language statements and 

the underlying knowledge. Because we are interested in 

describing how the contents of STM change over time, we 

use two special relations, holds(f; i), saying that property f  

holds at step i  in the evolution of the contents of STM, and 

occurs(a; i), saying that action a occurs at step i. For 

instance, statement (4) is encoded by a rule: 

holds(in stm(S); I +1)Ã occurs(store(S); I) 

whose informal reading is: if the action of storing some 

symbol S  (by convention an uppercase initial denotes a 

variable) occurs at some step I , then S   will be in STM at 

the next step I + 1. The rule is based on the stipulation that 

store(S) represents the action of adding a symbol to STM, 

and that in stm(S) encodes the fact that S  is in STM. 

Statement (5) is formalized by the following rule, as well 

as the definition (omitted to save space) of the auxiliary 

relations used in it: 

:holds(in stm(S0); I+1)Ã S 6= S0; occurs(store(S); I);

stm max size(MX);

curr stm size(MX; I)

not some symbol expiring(I);

oldest in stm(S0; I)

The informal reading of the rule is: when S is stored in 

STM, if the current size of STM equals its maximum size 

(represented by relations  and 

, respectively) and no symbol is due 

to expire (written as ), then 

the symbol which is closest to expiring is removed from 

STM (encoded by means of the classical negation of 

holds(in stm(S0); I + 1), saying that S0 will not be in 

STM at the next step). 

Using terminology from the literature on ASP, the set of 

all rules formalizing STM is called action description, and 

denoted by ¦STM .  To use the action description in order to 

predict the behavior of STM in a particular situation, one 

writes additional rules, say ¦sit, describing the situation, 

and then uses an ASP solver to compute the logical 

consequences of the ASP program consisting of ¦STM  and 

¦sit. For example, given the encoding of a memory-span 

test in which the subject is required to remember the 

sequence 1-7-3-2-6-5 and the maximum size of STM is of 4 

items, the output of the ASP solver for ¦STM [¦sit 

contains statements such as holds(in stm(digit 1);1) and 

:holds(in stm(digit 1);5), showing that digit 1 was 

correctly stored initially, but forgotten at step 5 (because 

digit 6 was stored when STM was already at its full 

capacity). 

In our study we also demonstrate the computational 

aspects of our modeling technique by creating an 

application of our formalization to the task of predicting a 

user’s performance in the interaction with a graphical user 

interface. We developed an ASP-based representation of a 

scenario in which a user is told a sequence of tasks and is 

expected to execute it relying only on memory of the 

sequence. The prediction of the corresponding ASP program 

is in line with what the STM model (Atkinson & Shiffrin, 

1971) predicts, correctly determining (1) if the user will or 

will not be able to remember and execute the sequence, and, 

in case the user forgets part of the sequence, (2) which 

pieces of information are (likely to be) forgotten and when. 

Execution of the ASP program is also rather fast, with most 

predictions computed in less than a second.  

Conclusions 

The ASP-based formalization appears promising in terms 

of producing accurate predictions of performance from 

mostly qualitative models of behavior. It also allows 

analysis and comparison of different psychological theories, 

as well as prediction of the outcome of experiments, thus 

making it possible to design better experiments and 

diminishing the need for prototyping and user testing. This 

success opens the door to the use of ASP for the 

formalization of other psychological knowledge and models, 

as well as for its practical use in HCI-oriented applications.  
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Abstract 
We outline a way to use Goguen’s (2006) account of concep-
tual blending in the cognitive architecture ACT-R. Despite re-
cent advances in linguistics and general accounts of concep-
tual blending (for example, Fauconnier and Turner 2002, 
2008) it has received scant attention in cognitive modelling, 
which is partly due to the fact that there are hardly any 
computational accounts of this phenomenon, Goguen’s being 
one of them. 

Keywords: conceptual blending; metaphor; analogy; linguist-
ics; conceptualisation; scientific creativity; ACT-R; Theory of 
Institutions. 

Analogy, metaphor, conceptual blending 
A major factor for the power and flexibility of the human 
cognitive system is its ability to create new concepts, in par-
ticular by combining existing ones. It is both central in cre-
ating new scientific ideas as well as for ‘everyday’ thinking. 
We are particularly interested in the role of this mental ma-
chinery in the creation of new mathematical concepts 
(Guhe, Smaill and Pease 2009). Most current accounts of 
scientific creativity emphasise the role of analogy (Gentner 
& Markman, 1997) or metaphor  (Lakoff & Núñez, 2000). 
Here, we outline the more general process of conceptual 
blending, its role in creating new concepts, and how it can 
be integrated into the cognitive architecture ACT-R 
(Anderson, 2007). 

Analogy and metaphor, which we take to be essentially 
the same, are cognitive processes that (1) establish map-
pings between parts of a cognitive system’s knowledge rep-
resentations (usually called domains) and that (2) can trans-
fer knowledge between domains for which a mapping was 
established. For example, in the extensively studied meta-
phor TIME IS SPACE, the expression Christmas is two days 
away recasts an event (Christmas) as a location with respect 
to the speaker’s current location in time by specifying a 
temporal interval (two days) as a distance.  

According to Fauconnier and Turner (2002) metaphors 
and analogies are only special cases of conceptual blending. 
A metaphor is simply a ‘cross space mapping’ (Goguen, 
2006, p. 8). The TIME IS SPACE metaphor, for example, not 
only provides the basic mapping, but allows reconceptuali-
sations as well as the integration of knowledge from other 
domains. A common reconceptualisation of the TIME IS 
SPACE conceptual blend is, for example, a change in per-
spective, where time is conceptualised as passing a static 
observer, e.g. in the expression Time passes slowly 
(Fauconnier and Turner 2008). It is important to note that a 

metaphorical or analogical mapping alone cannot account 
for this additional mental flexibility. 

Goguen’s approach 
Fauconnier and Turner’s account of concept blending is not 
directly suited for computational cognitive modelling, be-
cause it remains purely descriptive. Goguen (2006) outlines 
a computational account of conceptual blending – based on 
Fauconnier and Turner – using the theory of Institutions, a 
theory similar to Information Flow, which we used earlier 
(Guhe, Smaill, & Pease, 2009).  

We cannot go into much detail here, so we will restrict 
ourselves to one of Goguen’s (2006) motivating examples 
of a conceptual blend between the concepts HOUSE and 
BOAT, resulting in the conceptual blends HOUSEBOAT and 
BOATHOUSE, cf. Figure 1 for a depiction of the HOUSEBOAT 
blend. A base domain (shown at the bottom) provides the 
‘glue’ needed for mapping two domains (in the middle, left 
and right) and creating a conceptual blend (at the top). The 
most important mapping here is the one of live-in and ride, 
which provides the reconceptualisation of a BOAT as an 
OBJECT in which a person can not only RIDE but also LIVE. 

Goguen restricts the many possible conceptual blends by 
specifying sortal frames, which must match in order for a 
mapping between domains to succeed. Sortal restrictions are 
 

 
 

Figure 1: HOUSEBOAT conceptual blend 
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specified in a signature, for example for the HOUSEBOAT 
case Goguen defines the following sortal frames: 

Transfer to ACT-R 
The translation of Goguen’s proposal to ACT-R (Anderson, 
2007) is rather straightforward. In our prototypical imple-
mentation, facts are represented as chunks and the matching 
and transfer operations are realised with production rules. 
The one major problem is that ACT-R does not have a sortal 
mechanism comparable to Goguen’s. Although ACT-R uses 
sorts (in the form of chunk types), it does not automatically 
check for super-/subsort relations like in Goguen’s concep-
tion. This means, for example, that WATER is not automati-
cally understood to match frames specifying MEDIUM. Thus, 
the mapping of on(house, land) to on(boat, water) fails, be-
cause these facts cannot be linked via the base domain (by 
using on(object, medium)). We outline two basic solutions 
below. Which one provides a better model of the cognitive 
mechanisms will have to be established experimentally. 

Solution 1 – Explicit sortal checks 
The first solution is to explicitly perform sortal checks with 
a set of production rules. For such a model we coded infor-
mation about subsorts as chunks of type 
(chunk-type is-subsort sort1 sort2) 

The production rules performing the sortal checks keep 
the information about the two facts that are being compared 
in the imaginal buffer while the information about the sortal 
hierarchy is retrieved from the declarative memory. 

A variant for faster processing is to include sortal infor-
mation with the facts, e.g. for predicates: 
(chunk-type predicate name result-sort  
            par1 sort1 par2 sort2) 

The major disadvantage of this solution is that the repre-
sentations contain much redundancy and do not provide the 
usual generalisations, e.g. that WATER is a subsort of ME-
DIUM. 

Solution 2 – Amending the declarative module 
An alternative solution is to change ACT-R on the architec-
tural level, i.e. to amend the declarative module. A rather 
mild extension is to provide the declarative module with 
sortal information (e.g. a lattice of sorts) and let it consider 
not only chunks that directly match the sort of the chunk 
(i.e., that match in the isa slot) but also chunks that have a 
supersort of the chunk being requested. 

A more severe alteration is to check all slot values that a 
chunk specifies and match not only the values themselves 
but check for values higher up in the sortal hierarchy. For 

example, if a request to the declarative module specifies a 
chunk with a slot–value pair like 
retrieval> 

isa predicate  
name on  
par1 house … 

the par1 slot would also match for chunks like: 
retrieval> 
isa predicate  
name on  
par1 object … 

Solution 2 predicts much faster processing than solution 1, 
because all checks are performed within one memory re-
trieval. Thus, it neither requires firing multiple productions 
nor multiple retrievals from declarative memory. 

Conclusion 
Conceptual blending is a central, powerful and productive 
aspect of human cognition, allowing, for example, to con-
ceptualise time in terms of space. However, cognitive mod-
elling has not yet seriously addressed this issue. We outlined 
in broad terms a way to transfer Goguen’s notion of concep-
tual blending into the cognitive architecture ACT-R as a 
first step to include conceptual blending in cognitive models 
of scientific creativity, in particular mathematical thinking. 
Whether a modification of ACT-R’s declarative module will 
provide better cognitive adequacy will have to be decided 
on the basis of empirical data. 

Acknowledgements 
The research reported here was carried out in the Wheel-
barrow project, funded by the EPSRC grant EP/F035594/1. 

Bibliography 
Anderson, J. R. (2007). How can the human mind occur in 

the physical universe? New York: Oxford Univ. Press. 
Fauconnier, G., & Turner, M. (2008). Rethinking metaphor. 

In Cambridge Handbook of Metaphor and Thought (pp. 
53–66). New York: Cambridge Univeristy Press. 

Fauconnier, G., & Turner, M. (2002). The way we think: 
Conceptual blending and the mind's hidden complexities. 
New York: Basic Books. 

Gentner, D., & Markman, A. (1997). Structure Mapping in 
Analogy and Similarity. Am. Psychologist, 52 (1), 45–56. 

Goguen, J. (2006). Mathematical Models of Cognitive 
Space and Time. In D. Andler, Y. Ogawa, M. Okada, & 
S. Watanabe, Reasoning and Cognition.  

Guhe, M., Smaill, A., & Pease, A. (2009). Using Informa-
tion Flow for Modelling Mathematical Metaphors. In 
Proc. of the 9th ICCM.  

Lakoff, G., & Núñez, R. E. (2000). Where Mathematics 
Comes From. New York: Basic Books. 

resident: → Person  passenger : → Person  
house : → Object  boat : → Object 
land, water: → Medium  land, water: →Medium 
livein : Person Object → Bool  ride : Person Object → Bool 
on: Object Medium → Bool on: Object Medium → Bool 
livein(resident, house)  ride(passenger, boat) 
on(house, land) on(boat, water) 
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Introduction 

To account for perceptual and action-related stages of 

information processing, most prominent cognitive 

architectures have extended their coverage from primarily 

cognitive processes to perceptual processing and response 

execution (e.g. EPIC (Kieras & Meyer, 1997); ACT-R/PM 

(Byrne & Anderson, 1998)). However, despite these 

extensions they are typically still too limited to explain 
some well-known phenomena from the perception-action 

domain in cognitive psychology such as stimulus-response 

compatibility effects (e.g., Simon Effect (Simon & Rudell, 

1967), and action preparation influences on perception (e.g., 

Müsseler & Hommel, 1997). These phenomena suggest that 

perception and action are more intimately related than these 

architectures allow for. We are currently developing HiTEC 

(Haazebroek, Raffone & Hommel, submitted), a novel 

cognitive architecture that stresses both the interaction and 

integration between perception and action.  

Here we describe the overall structure and general 
principles of HiTEC and we demonstrate how a variety of 

psychological phenomena in the perception-action domain 

can be replicated using computer simulations of the model. 

HiTEC 

As shown in Figure 1, HiTEC consists of three levels: the 

sensorimotor level, the common coding level and the task 

level. At the sensorimotor level, stimuli are encoded by 

activating sensory codes. Motor actions are executed by 

activating motor codes. Sensory codes and motor codes are 
both connected to feature codes at the common coding level. 

These feature codes represent a-modal perceptual features 

(e.g., location, intensity et cetera). Crucially, both stimulus 

features (e.g., location of a tone) and response features (e.g., 

location of a key press) are encoded using these common 

codes, thereby allowing for two-way interaction between 

stimuli and responses (Hommel et al., 2001).  

Feature codes are connected to task codes at the task 

level. These connections reflect the task instruction allowing 

the model to respond according to specified stimulus-

response (S-R) mappings. By dynamically setting up these 
connections, different S-R mappings can be implemented, 

allowing the model to simulate a variety of tasks, while 

keeping all other codes and connections unchanged. 

Within the levels, codes are arranged in maps. Sensory 

codes are contained in sensory maps, corresponding to 

sensory dimensions (e.g., color), feature codes are contained 

in feature maps reflecting more cognitive feature 

dimensions (e.g., global location). At the task level there is 

one map containing task codes representing the different 

response alternatives within the current task. There is also 

one motor map containing motor codes representing a 

limited number of specific movements. 
In the HiTEC architecture, stimulus processing and 

response selection are one and the same process: stimuli 

activate certain sensory codes, activation flows through the 

model and at all levels interaction takes place, letting the 

model converge to a condition with only one motor code 

having an activation value above a set threshold. This 

results in the selection of that motor action and execution of 

the corresponding response. 

In addition to this propagation of activation there are 

integration processes at work that temporarily bind feature 

codes into event files (Hommel, 2004). These event files - 
illustrated by the gray feature codes in Figure 1 - modulate 

the overall dynamics of the model, by selectively enhancing 

feature codes belonging to one event file and at the same 

time making them less available to other processes.  

 

Task Level

Sensory System

Haptic

Feature Level

Motor System

Haptic Dimension

S7 S8

Auditory

Auditory Dimension

S5 S6

Visual

Visual Dimension

S3 S4

Visual Dimension

S1 S2

Motor Codes

M1 M2

Feature Dimension

F1 F2

Feature Dimension

F3 F4

Feature Dimension

F5 F6

T1 T2

Figure 1: General structure of HiTEC architecture.  

Circles denote codes, lines denote connections, rectangles 
are maps, and gray feature codes belong to the same event 

file. 

 

The above mentioned principles that govern the dynamics 

in HiTEC are strongly based on both theoretical and 

empirical work in cognitive psychology. By integrating 

them into a cognitive architecture that can be used to 

simulate a variety of well-known phenomena we aim at 

obtaining a richer understanding of the intricate interplay 
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between perception and action than theory alone can 

provide.  

Other cognitive architectures such as EPIC and ACT-

R/PM do address perceptual and motor related aspects of 

human performance. However, these architectures differ on 

several crucial aspects. Where HiTEC treats perceptual 
processing as part of the overall ‘translation process’ and 

therefor allows perception to be modulated by task 

preparation and even action planning, EPIC and ACT-R/PM 

treat this perceptual stage as ‘additional waiting time’ before 

the cognitive core system (using production rules) can start 

to work. In similar vein HiTEC treats action planning as part 

of the overall ‘translation process’, susceptible to influences 

from perception and task set.  

Thus, where other architectures focus on the cognitive 

middle ‘stage’ between perception and action, HiTEC puts 

perception and action – and their interplay – at the center 

treating cognition mainly as a modulatory influence. By 
assuming common codes for both perception and action 

interactions can occur that are impossible when segregating 

perceptual, cognitive and motor stages as is common in 

other architectures. These interactions allow the replication 

of empirical phenomena related to stimulus-response 

crosstalk (both enhancement and impairment). 

HiTEC is not yet as mature as other cognitive 

architectures and cannot be readily used to model the 

diversity of tasks that other architectures have been shown 

to successfully replicate. Yet, by taking perception-action as 

primary perspective we provide a line of research that 
complements existing approaches in cognitive architectures.  
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Introduction 
Developing a computational cognitive model is an iterative 
process. Due to this, any model validation/testing technique 
cannot be static, and must be agile enough to evolve 
alongside the model’s development. Over the past few 
decades, a software validation paradigm called exploratory 
testing has emerged within the software engineering 
community. Exploratory testing is not static, favors a high 
level of interactivity between the tester and the program, 
and advocates that programmers should “build time and 
enthusiasm for parallel research, test development, and test 
execution” (Kaner, 2004). As cognitive modelers, trying to 
develop a model that performs within a certain range of 
objective performance metrics while maintaining a level of 
cognitive plausibility, exploratory testing is not new to us. 
In fact, testing frameworks are already available to the 
cognitive modeling community. In ACT-R, for example, 
there is the visual-location crosshair for the vision module, 
the buffer activity trace, and the fMRI BOLD visualization.  

However, many of these exploratory testing formalisms 
are specific to the cognitive architecture that the modeler is 
using, and there are a fair amount of exploratory tests that 
are architecturally agnostic. For example, exploring the 
architectural/strategy/parameter space of a cognitive model, 
computing objective performance measures, and capturing 
the central tendency of stochastic models are all common 
modeling issues. In order to enable modelers to easily 
explore these sorts of generic performance metrics, I have 
developed LETF, a lisp-based exploratory testing 
framework for computational cognitive modelers. 

LETF 
LETF is a lightweight configurable lisp program that layers 
on top of a cognitive model. After LETF is configured and 
launched, it spawns the cognitive model as a separate 
process, sending inputs to the model as command line 
arguments, and grabbing outputs from the model by 
capturing the standard output stream. Model inputs are 
specified in a work file, where each row in the file is a 
particular parameter combination, and columns correspond 
to the values for a parameter in the model. A flexible 
configuration file allows for extended processing of model 
outputs, and configurable display format by means of a 
modular print method. The flexibility of the configuration 
file is an important consideration, because once the model is 

set up to interface with LETF, modifying and adding model 
tests does not require altering the model’s code. Instead, you 
express the tests by modifying the configuration file. 

In order to express a large range of different model tests 
in the configuration file, we are not providing a large 
number of specific APIs to support each test. Instead, we 
have removed the API layer altogether, and grounded the 
syntax of the configuration file to the underlying language 
of the generic testing framework. That is, the syntax of the 
configuration file is lisp. And it is this critical feature that 
makes adding and changing model tests in LETF so 
expressive and agile. 

The best way to make this point is with a simple example. 
Suppose we have a model written in lisp (e.g., an ACT-R 
model), with independent variables (IVs) ‘noise’, ‘speed’, 
dependent variables (DVs) ‘rt1’, ‘rt2’, ‘rt3’, and we want to 
compute the correlation between the observed and model 
data. The configuration file to express this model test (i.e., 
compute the correlation) could look like Figure 1. 

 

 
 

Figure 1: Example configuration file. 
 

The model code that would communicate with LETF for 
this example could look like Figure 2. 
 

 
 

Figure 2: Example model. 
 
Note that LETF offers a more direct interface when the 
model is in lisp (shown in Figure 2). In this case, LETF can 
communicate with the model by calling the entry function 
‘run-model’ instead of spawning a separate process. 

IV= noise 
IV= speed 
file2load= extras.lisp 
modelRTs= (list [rt1] [rt2] [rt3]) 
observedRTs= (getObservedRTs) 
correlRTs= (correl [modelRTs] [observedRTs]) 
DV= correlRTs 

 

(defun run-model (&key (noise) (speed)) 
…run the model using the values for IVs ‘noise’ and 
‘speed’ that were passed to ‘run-model’ 
(format t “rt1=1.1~%”) 
(format t “rt2=2.2~%”) 
(format t “rt3=3.3~%”)) 
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Many cognitive models are stochastic, and so it is 
common to run them multiple times to reveal the central 
tendency.  This can be accomplished with the simple 
addition to the configuration file 

 
collapseQuota= 100    (1)  

 
And, if we wanted to use a collapsing function other than 
the default ‘mean’, we could specify our own directly in the 
configuration file (note the lisp syntax) 
 

collapseFn= (lambda (a) (+ (mean a) 1000))  (2) 
 

LETF calculates the value of a variable X on a ‘DV=X’ 
line by expanding the string expression that variable X 
represents, and then invoking the lisp reader to interpret that 
expression and return a value. Using the example in Figure 
1, the ‘DV=correlRTs’ line tells the program to find the 
expanded string expression for the variable ‘correlRTs’. 
LETF finds the ‘correlRTs=’ line in the configuration file, 
and sets the value of ‘correlRTs’ to  
 

(correl [modelRTs] [observedRTs])    (3) 
 

Then, all variable names within brackets ‘[]’ are recursively 
expanded to their values, and the program evaluates the 
expression by invoking the lisp reader 
 

(eval (read-from-string      
“(correl  (list 1.1 2.2 3.3) (getObservedRTs))”)  (4) 

 
Note that once the brackets are recursively expanded, the 

API between the configuration file and LETF is lisp, 
matching the underlying language of the generic testing 
framework. Going back to Figure 1, the modeler is writing a 
lisp expression around the variables sent by the model (rt1-
3) in order to calculate a DV of interest (‘correlRTs’). The 
function ‘getObservedRTs’ (which returns a list of observed 
response times for trials 1 through 3) would be defined in 
the lisp file ‘extras.lisp’, which is loaded (by specifying the 
‘file2load=extras.lisp’ line) and therefore visible to LETF 
when it evaluates the string expression in [4]. The ‘correl’ 
function has already been defined in LETF, which computes 
the correlation between two lists, so the expression in [4] 
will bind the correlation of RTs between the model and 
observed data to the variable ‘correlRTs’. Having this on-
the-fly configurability available directly in the configuration 
file – both syntactically and semantically anchored in the 
experimental testing framework’s own language – can be a 
very powerful paradigm.  

 

Discussion 
LETF supports the exploratory testing that a modeler might 
perform during the early stages of model development. For 
example, with modest computational resources (e.g., a 
laptop workstation) and a few lines of code, a modeler can 

build an exploratory test framework for their cognitive 
model. Iterative changes in the model might drive evolution 
of the exploratory tests, while results of the tests might drive 
iterative changes in the model. Test results can be displayed 
in whatever format the modeler thinks is informative (e.g., 
printing to the terminal, communicating via a socket to a 
data visualization program, writing to a text file) and can 
evolve over time as well. In fact, this sort of exploratory 
testing technique is currently being used to test incremental 
changes to LETF’s own code. 

LETF also supports large-scale exploration of cognitive 
models by taking care of data aggregation and restructuring 
(e.g., calculating DVs, collapsing to determine central 
tendency) before outputting the results in a configurable 
format that can be coupled with specific parameter search 
algorithms and High Performance Computing (HPC) 
systems. For example, it was recently coupled with Moore’s 
regression tree search algorithm ‘Cell’ (2010) to run a 
computational cognitive model of the Change Signal Task 
(Moore, Gunzelmann, & Brown, 2010) on the Maui High 
Performance Computing Center, Mana. In just a few 
minutes, LETF was configured to interface the model and 
the search algorithm (Cell) for an exploratory analysis that 
used over 6000 processor hours (running in less than 12 
hours wall clock time) on Mana. 

We recognize that there are a fair amount of exploratory 
tests that apply generally across architectures, and have 
provided a generic exploratory testing framework to easily 
specify those tests. Further, LETF has no API layer between 
the configuration file and the language that the framework 
was built in (i.e., lisp), allowing for an unbound number of 
tests that can be expressed. It is light enough to run a model 
on a standalone desktop computer through a small range of 
hand-coded configurations, and generic enough to couple 
with large scale exploratory tests on HPC clusters. Very 
much in the spirit of exploratory testing, LETF helps 
accelerate the pace that cognitive modelers can develop, 
test, and improve their computational models1. 
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Introduction 
Referring expressions are used to describe a person, object 
or event. Different referring expressions can be used to 
describe the same person or object. For example, to describe 
a specific person, one could use a full noun phrase (NP) 
such as the pirate, or a pronoun, such as he. However, in 
certain discourse contexts using a pronoun would lead to an 
incorrect interpretation for the listener. Adult speakers use a 
full NP instead of a pronoun in these cases, suggesting that 
adult speakers take into account the listener’s perspective. In 
contrast, children up to the age of 6 prefer to use a pronoun 
in these cases. In this study, we investigate how children 
acquire adult-like performance on their use of referring 
subjects by modeling experimental data using the cognitive 
architecture ACT-R (Anderson, 2007). The cognitive model 
allows us to investigate the complex interaction between 
formal linguistic constraints and cognitive factors. In 
addition, the model generates detailed and testable 
predictions with respect to linguistic performance.  

Experimental data 
To test children’s performance on the production and 
comprehension of pronouns in subject position, Wubs, 
Hendriks, Hoeks & Koster (2009) asked 31 4- to 7-year-old 
children and 23 adults controls to perform a production task, 
a comprehension task and a working memory task.   

In their production task participants were asked to tell 
stories on the basis of series of six pictures (cf. Karmiloff-
Smith, 1981). These stories were about two characters of the 
same gender. At the end of the story, the participants had to 
refer to the character that was introduced earlier in the story, 
but was not the current topic1 of the story. Wubs et al. 
(2009) looked at the type of referring subject used to re-
introduce this referent: a pronoun (he) or a full NP (the 
pirate). Selecting a pronoun would result in potential 
ambiguity for the listener, as pronouns are interpreted as 
reference to the current topic (a.o., Grosz, Weinstein, & 

Joshi, 1995). Adults mainly used full NPs (97%). However, 
children showed a preference for using pronouns (63%) 
over full NPs (34%) (see Figure 1). That is, children often 
produced pronouns that are unrecoverable for a listener. 
These results support the hypothesis that adults take into 
account the listener’s perspective. In contrast, children seem 
to only take into account their own perspective as a speaker. 
They preferably use the most economical form, a pronoun. 
 

 
 

Figure 1: The type of referring subject used to re-introduce 
a character. The performance of the participants of Wubs et 
al. (2009)’s experiment is compared with the performance 

of our ACT-R model. 
 

In the comprehension task of Wubs et al (2009), the same 
participants were asked to name the referent of an 
ambiguous subject pronoun at the end of pre-recorded 
stories with or without a topic shift. In contrast to adults, 
children showed no significant difference in their answers 
between the two types of stories. This suggests that they did 
not use discourse structure to resolve ambiguous pronouns. 
Notably, children’s higher working memory scores were 
positively correlated with performance on the production 
and comprehension tasks.  

Cognitive model 
We have implemented a cognitive model within the 
cognitive architecture ACT-R (Anderson, 2007) to explain 
children’s difficulties with the production and 
comprehension of referring subjects. In this model, 
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children’s non-adult performance is caused by (i) lack of 
processing efficiency and (ii) limitations in working 
memory capacity (WM). Although we will only explain the 
acquisition of adult-like production of referring expressions, 
the same model can also explain the acquisition of adult-like 
comprehension by using the same mechanisms. 

Processing efficiency 
Adult speakers take into account the listener’s perspective 

as a speaker to check whether the referring expression they 
intend to use can be interpreted correctly by the listener. As 
a result of this process, adult speakers will use a full NP to 
refer to a character that is not the current topic, because they 
know that a listener will interpret a pronoun as reference to 
the current topic. This process requires sufficient processing 
efficiency (as shown in a previous model of object 
pronouns, Van Rij, Van Rijn, & Hendriks, 2010). Initially, 
the model's processing is not efficient enough to carry out 
this process within a limited amount of time. Simulations 
show that the process gradually becomes more efficient as a 
result of frequent application of the same rules (i.e., 
production compilation mechanism of ACT-R, Taatgen & 
Anderson, 2002), ultimately resulting in adult-like 
performance. 

Working memory capacity 
In addition, the model needs to determine the current 
discourse topic for using the grammar correctly, because the 
model will also produce pronouns that are unrecoverable for 
the listener when it incorrectly determines that the character 
to be referred to is the current topic. The model implements 
the hypothesis that children have difficulties to incorporate 
previous discourse structures in their interpretation and use 
of referring expressions. For adults the subject of the 
previous utterance is often the most salient discourse 
referent (a.o, Grosz et al., 1995). However, children do not 
seem to use information about grammatical roles in 
determining the current topic as a result of their limited WM 
capacity. For children the saliency of discourse referents is 
only determined by their frequency and recency of 
mentioning in the discourse. This follows from our 
implementation of differences in WM as differences in 
source activation, i.e., the activation used to maintain task-
relevant information (cf. Daily, Lovett, & Reder, 2001). 
Only when WM increases, will children be able to use 
grammatical information of the previous utterance to 
determine the current discourse topic.  

To summarize, not only sufficient processing efficiency is 
necessary for adult-like production and comprehension of 
referring expressions in subject position (cf. Van Rij et al., 
2010), but also sufficient WM capacity. 

Future directions 
Our cognitive model allows us to generate very precise and 
testable predictions with respect to linguistic performance, 
which can be tested with experiments. We are investigating 
two of the predictions of the model. The model predicts i) 

that in a situation of increased WM load, adults will show 
difficulties in determining the current topic, because WM 
capacity affects the ability to incorporate discourse structure 
in determining the current topic, and ii) that manipulating 
the frequency and recency of mentioning of characters in the 
discourse will affect low WM children’s performance on the 
comprehension task more than manipulating the 
grammatical roles. 

In addition, we are planning to re-implement the 
sentence-processing component, because the sentence-
processing component of the model is highly simplified. 
With the re-implemented model that not only processes 
structural information (cf. Lewis & Vasishth, 2005), but 
also semantic and discourse information, we can investigate 
how discourse information, syntactic and semantic 
information interact in resolving ambiguous pronouns 
during on-line sentence comprehension.  

Footnotes 
1 The discourse topic is the most salient referent in the 
current linguistic context, the discourse. 
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Abstract 

The contextual memory for goals (CMFG) model is presented 
as a theory of the role of context in cognitive control. CMFG 
has three components: (1) contextual chunking, (2) perceptual 
priming, and (3) goal setting. CMFG proposes that the 
contents of the cognitive buffers (perceptual, motor, 
intentional, etc.) become bound in declarative memory based 
on their co-occurrence during each cognitive cycle. The re-
occurrence of buffer contents that have previously co-
occurred spreads activation to associated chunks of memory. 
Goals are conceived of as declarative structures representing 
desired perceptual states that compete for control of 
cognition, are activated by perceptual priming, and are 
selected on the basis of activation.  CMFG represents an 
integration of principles from Memory for Goals (MFG) 
model of cognitive control, Adaptive Control of Thought 
Rational (ACT-R), a unified theory of cognition, Perceptual 
Symbol Systems (PSS), and the Theory of Event Coding 
(TEC). CMFG will be examined in a series of experiments, 
implemented in the ACT-R cognitive architecture, and used to 
model experimental results.  

Keywords: cognitive control; contextual memory; cognitive 
modeling; cognitive architecture; goals; feature integration. 

Introduction 
Goals are a central concept in cognitive control, 
representing the intentions of the cognitive system. Theories 
of the cognitive control of attention seek to explain how 
human behavior balances the need to be both (a) reactive; 
changing goals due to critical changes in the environment, 
and (b) proactive; maintaining goals over extended time 
periods, ignoring changes in the environment. Cognitive 
science needs good theories about the role of context, 
attention, and intention in the control of cognition.    

Memory for Goals (MFG; Altmann & Trafton, 2002) is a 
theory of cognitive control that explains goal memory in 
terms of general declarative memory constructs, such as 
activation and associative priming, rather than using a 
special goal memory or control structure, such as a goal 
stack. Goals in memory compete for control of cognition.   
The goal with the highest instantaneous activation value 
becomes the active goal.  MFG consists of three 
components: (1) the interference level, (2) the strengthening 
constraint, and (3) the priming constraint. Although MFG 
emphasizes the role of cues in cognitive control, it does not 
yet specify how cues become associated with goals. MFG 
has been implemented in cognitive models using the ACT-R 
cognitive architecture.  

ACT-R is a cognitive theory and a production-rule based 
computational cognitive architecture that is used to model 
psychological processes (Anderson & Lebiere, 1998; 
Anderson et al, 2004). ACT-R lacks automatic, general-
purpose mechanisms for associative memory, episodic 
memory, or contextual memory. Associations between 
modalities require specifically programmed declarative and 
procedural knowledge.  

Goals in ACT-R are abstract symbols that can represent 
intentions at various levels of behavioral and temporal 
analysis. Goals are set by production rules and maintained 
in the goal buffer without cost. ACT-R needs a less 
ambiguous representation of intention so that goals can be 
created, suspended, and achieved by cognitive models, 
rather than by cognitive modelers.  

Perceptual Symbol Systems theory (PSS) proposes  that 
all mental representation, including abstract concepts and 
plans for action are inherently modal (Barsalou, 1999).  

The Theory of Event Coding (TEC) proposes that 
perceptual and action symbols are bound into event files in 
memory based on their co-occurrence (Hommel, 2009; 
Hommel, Musseler, Aschersleben, & Prinz, 2001). TEC 
proposes that perception and action are representationally 
and functionally equivalent.  

In this dissertation, I propose a computational mechanism 
for the role of contextual associative memory in cognitive 
control. This model integrates principles from MFG, TEC, 
and PSS into the ACT-R architecture.  

Theoretical Framework 
The Contextual Memory for Goals (CMFG) theory proposes 
that the attended features of perception are bound into 
contextual chunks based on there co-occurrence, prime the 
activation of actions and goals, with the highest activation 
goal driving cognition. CMFG consists of 3 components: (1) 
contextual chunking, (2) perceptual priming, and (3) goal 
setting.  

Contextual chunking is a form of associative memory. It 
is the binding of features of the current context into a 
representation in declarative memory. The current context is 
conceived as being the contents of the cognitive buffers 
from ACT-R, and the contextual representations are similar 
to the event files proposed by TEC. The contextual chunk is 
limited in its representation of the context based on  
attention.  

Perceptual priming is a form of spreading activation. The 
re-occurrence of a percept, that has been associated with a 
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goal in a contextual chunk, increases the activation of that 
goal. MFG, TEC and ACT-R, all propose priming by 
context.  

Goal setting concerns both the focus and the form of 
intentions.  The assignment of the active goal is based on 
instantaneous activation. The representation of intentions is 
based on the principle of common coding of perception and 
action. Goals are to-be-produced perceptual states.  

Computational Implementation 
CMFG will be computationally implemented in the ACT-R 
cognitive architecture in two forms: (1) using the standard 
architecture, and (2) using a modified architecture.  

Standard ACT-R implementation 
CMFG will be implemented in the ACT-R architecture 
using new and modified modules and buffers, relying on 
productions rules and Lisp functions calls to achieve 
CMFG’s three theoretical principles.  

Modified ACT-R implementation 
CMFG will be implemented in the ACT-R architecture 
using new and modified modules and buffers to achieve 
CMFG’s three theoretical principles (Figure 1). 
 

 
 

Figure 1: Proposed architectural changes to ACT-R.   
 

Contextual chunking occurs within the architecture after 
the execution of a production rule. The new context module 
instantiates a contextual chunk with slots for each buffer in 
ACT-R, sets the value to be the value of the current chunk 
in each buffer, and harvests the chunk into declarative 
memory.  

Perceptual priming occurs within the architecture through 
ACT-R’s standard spreading activation mechanism. The 
breadth and depth of the pool of declarative chunks involved 
in spreading activation is massively increased by CMFG.  

Goal setting occurs within the architecture through 
change to the operation of the goal module. The active goal 
is updated, through retrieval, on every production cycle, 
making the highest activation goal chunk the new goal 
buffer chunk. Goals are not be abstract concepts, but 
concrete imaginal buffer chunks.  

Experiments 
CMFG will be examined in four experiments, using two 
experimental paradigms. The first paradigm, Argus Army is 

an eye-tracked, computer-based environment. Experimental 
participants will learn associations between icons for 
military units and goals for action. The strength of these 
associations will be manipulated in a training phase and its 
effects will be examined during a testing phase in which 
participants will select the order of goals to pursue. The 
purpose of these experiments will be to demonstrate that 
CMFG can explain the process of learning cross-modal 
associations and that the activation of goals can predict 
priorities in goal-directed behavior.  

The second paradigm, Coffee Challenge is a table-
top, mobile-eye-tracked task. Experimental participants 
interact with abstract or real-world objects to perform a 
sequence of coffee-making actions.  

Simulations 
The two computational implementations of CMFG will be 
used in three simulations. Simulation 1 will use data from 
Hommel (2007), experiment 2, to demonstrate the ability of 
CMFG to account for response compatibility effects in a 
binary free-response task. Simulation 2 will model data 
from the Argus Army experiments. Simulation 3 will model 
data from the Coffee Challenge experiment. The ACT-R 
model, using CMFG, will connect to the Tekkotsu robotics 
framework (Touretzky et al, 2007) to control a custom-built 
robot consisting of 2 Crustcrawler AX-12 robotic arms, and 
a pan-and-tilt-capable webcam. 

Conclusions 
The Contextual Memory for Goals (CMG) theory 

includes 3 components: (1) contextual chunking, (2) 
perceptual priming, and (3) goal setting. The theory will 
implemented in the ACT-R computational cognitive 
architecture, supported by experimentation and computer 
simulation. CMFG represents a new embodied, reactive, 
distributed, automatic approach to cognitive control.  
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Introduction 
We humans, as prime exemplars of long-lived, learning 
agents, are frequently bombarded with dense and varying 
torrents of information, including data that is 
autobiographical (Laird & Derbinsky, 2009; Tulving, 1983), 
lexical (Miller, 1995), conceptual (Kolodner, 1983), and 
commonsensical (Lenat, 1995). Despite this deluge of 
experience, humans do not drown; we push forward, 
drawing on our knowledge and reasoning abilities to 
flourish in challenging and novel situations and tasks. The 
human cognitive architecture efficiently manages large 
stores of experience and supports precise retrievals, bringing 
to bear pertinent knowledge to effectively act in dynamic 
environments (Laird & Wray, 2010).  

A review of prior psychological and computational work 
(Derbinsky & Laird, 2010) suggests that this robust 
behavior is due in part to our multiple, dissociated memory 
systems, citing significant functional and computational 
tradeoffs when utilizing a single memory mechanism for 
different types of learning tasks. While research into 
cognitive architectures for artificial learning agents typically 
reflects this dissociation strategy (Langley et al., 2009), 
significant work must still be done to understand the 
specific functionalities these memory systems must support 
to achieve human-level intelligence, as well as how to 
efficiently implement these mechanisms over long lifetimes. 

In my thesis work, I seek to improve our functional and 
computational understanding of two long-term, symbolic 
memory systems, episodic and semantic, within the context 
of a general cognitive architecture. Semantic memory stores 
general facts that the agent knows, independent of the 
context in which they were originally learned, which can be 
applied to improve understanding and task performance in 
numerous, potentially unrelated situations. In contrast, 
episodic memory stores autobiographical, contextualized 
agent experience that allows an agent to remember its own 
past, such as recalling what occurred in similar situations 
and using that knowledge to decide how to act presently. I 
will first summarize my work with these memory systems to 
date, and then continue to my plans for future research. 

Prior Work 
My initial work has been to understand the computational 
challenges involved in extending the Soar cognitive 
architecture (Laird, 2008) with basic, task-independent 

episodic and semantic functionality that scales with large 
bodies of knowledge. 

Episodic Memory 
In Soar, episodic memory automatically stores and 
temporally indexes snapshots of the agent’s current 
situation, which is represented as a directed, connected 
graph. To access episodic knowledge, the agent creates a 
symbolic cue, which represents contextualized features of 
interest in the episode to be retrieved. The retrieval 
mechanism then searches the episodic store for the best 
matching episode, biased by recency, and reconstructs the 
result in full for agent deliberation (Nuxoll & Laird, 2007). 

We have found that in general, maintaining bounded 
episodic processing as the agent contends with multiple, 
complex tasks over long lifetimes presents a significant 
computational challenge (Laird & Derbinsky, 2009). 
However, we have developed data structures and algorithms 
that perform within reasonable limits in practice (Derbinsky 
& Laird, 2009). For instance, we have demonstrated sub-
100msec. retrievals for a variety of cues on commodity 
hardware within a competitive tile-based game after 1 
million episodes, each containing over 2500 features. 

Semantic Memory 
In Soar, semantic memory is a repository for long-term 
declarative knowledge. Sharing many similarities to the 
declarative memory module in ACT-R (Anderson et al., 
2004), the semantic store can be conceived as a collection of 
chunks, each with features and relations to other chunks. 

We have formulated and analyzed the computational 
challenges involved with supporting efficient access to large 
stores of declarative knowledge (Derbinsky et al., 2010). 
We demonstrated performance optimizations that support 
efficient retrievals over millions of declarative chunks. For 
instance, we presented sub-millisecond retrievals for many 
classes of cues on the entirety of the WordNet lexicon, 
consisting of more than 820K chunks.  

Research Plan 
My existing work has focused on efficiently supporting 
basic episodic and semantic functionality. I intend for future 
work to emphasize enhanced storage, retrieval, and 
functionality, while maintaining efficient performance. 

Enhancing Storage 
Episodic. Currently, Soar’s episodic memory captures all 
details of the agent’s current situation. One interesting 
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modification to this policy is to not encode in episodic 
memory the features and relations of semantic concepts, but 
instead allow the agent to reconstruct these details on-
demand from the current contents of semantic memory. 
While this proposal shares some surface-level similarities 
with cognitive theories of human episodic reconstruction 
(Hassabis & Maguire, 2007), it will also reduce the amount 
of knowledge episodic memory must manage, thus 
improving storage and retrieval performance. It remains to 
be seen whether these performance gains outweigh the 
potential for inconsistencies and confusion that arises when 
integrating the contents of two long-term memory stores. 

Semantic. Currently Soar, unlike ACT-R, has no automatic 
mechanism for storing new, and updating existing, 
declarative knowledge. I am interested in exploring 
architectural policies for storing agent experience. I am also 
interested in how episodic meta-data, such as the temporal 
stability of concepts and features, may be used to boost 
retrieval quality. 

Enhancing Retrievals 
In preliminary exploration, I have found that parallelism and 
heuristic search may be key to maintaining efficient 
retrievals, given large amounts of episodic and semantic 
knowledge. I plan to investigate these paths further in 
context of the extensions below. 

Episodic. Soar scores episodic retrievals primarily on match 
cardinality, with recency used as a tie-breaking bias. I am 
interested in the degree to which feature activation, as well 
as overall episode appraisal, can improve match quality. 

Semantic. The current declarative matcher in Soar 
implements a basic activation bias function. I am interested 
in efficiently incorporating some of the more extensive 
activation components in ACT-R, such as retrieval history 
and current context. 

New Functionality 
When comprehensive long-term memory systems are 
embedded within a general cognitive architecture, I am 
interested in the interfaces to agent experience, other than 
cue-based retrievals, that may be functionally beneficial to 
agent reasoning. For instance, as episodic memory encodes 
the current situation, it can aggregate the degree to which 
features are novel, an appraisal which may be useful for 
reasoning about actions (Mariner & Laird, 2008). 

Evaluation 
One major challenge of my proposed work is that there do 
not exist accepted benchmarks or metrics for comparing 
task-independent memory systems in context of a general 
cognitive architecture; thus proper evaluation is a research 
goal in and of itself. I foresee two categories of evaluation.  

First, across a spectrum of problems, I intend to seek 
empirically optimal tradeoffs between computational 

resources (space and time) and task performance as I 
explore the mechanism changes described above.  

Second, I intend to explore general cognitive capabilities, 
many of which we associate with human intelligence, 
supported by the availability and interaction of the semantic 
and episodic long-term memory systems within a single 
cognitive architecture. For instance, when choosing actions, 
an agent can “play forward” prior episodes with similar 
features and intentions, providing an agent a general and 
task-independent source of action evaluation knowledge. 
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Introduction 

The rise of complex computational models is due to the 
desire for white-box models with higher resolution of 

explanation and representation. Usually, the reason for 

complexity within models is because we are trying to 

explain real world phenomena that include humans. 

Descriptive qualitative and quantitative models of human 

behavior have mainly been the goal of social sciences 

(psychology, economy, sociology etc.) as well as fields such 

as cognitive science. Most of the time, studies are primarily 

interested in behavior within a specific context or situation 

in that domain. Therefore, generated theories are restricted 

to apply within the domains that they are designed for, 

constrained by further assumptions. Hence, often a single 
theory is not sufficient to properly represent human 

behavior in an evolving or dynamic socio-economic systems 

model. This makes a systems approach that contains 

adaptive feedback mechanisms to this problem necessary.  

A possible framework that highlights this kind of 

mechanism is double-loop learning (Argyris and Schon, 

1978) (Figure 1). The first loop of learning is based on an 

existing mental model (Johnson-Laird, 1983). A mental 

model is an implicit internal image of how the current 

system works (Senge, 1990). In other words, mental models 

can be interpreted as the theory that results in a strategy or 
decision making mechanism such as a heuristic. Most of the 

behavioral theories and heuristics can be interpreted as 

possible mental models that we utilize under certain 

conditions. The single loop learning only considers the 

existing mental model and modifies it based on information 

fed back, i.e. consequences of our actions. In this loop, the 

way we view the world does not change and we just make 

fine tuning adjustments on the existing mental model. The 

second loop of learning is where we consider whether our 

current mental model is still satisfactory to explain the 

world dynamics or not. Within a system, certain behavior 

around us might lead to a paradigm shift in our explanation 
or we might explain certain situations with one mental 

model and other situations with other sets of mental models. 

Hence, our reasoning mechanism adapts to the changes in 

the world. Although humans are capable of doing double-

loop learning, none of these learning loops is done perfectly. 

Therefore, a descriptive human behavior model based on a 

double-loop learning framework would have to reflect 

human faults in application. A prescriptive approach would 

point to our faults in the learning processes and in our 

mental models. Hence, an ideal agent would utilize correct 

mental models, rules, and/or heuristics at the right time with 

correct settings in a complex system. In this study, I plan to 

provide a general framework for descriptive and prescriptive 

(ideal) models of double-loop learning.  

System

Decision
Making

Mechanism

Mental

Model

Information
Feedback

(Consequences)

 
Figure 1: Double Loop Learning 

Methodology 

While it is possible to discuss optimal decision making and 

convergence in tractable analytical models, these 

discussions do not often apply to real world complex 

computational agent-based models. Complex computational 

models are not analyzable via conventional analysis 

methods hence the concept of optimality is void within this 

domain. In complex systems, we often define metrics of 
performance that indicate how well we are doing and we 

can discuss ideal approaches based on these metrics. These 

metrics can be common to everyone or can be our subjective 

goals. In a double-loop learning process, the first loop of 

learning refers to tuning of the existing decision-making 

process, i.e. updating model parameters based on these 

metrics. Learning in the sense of artificial intelligence or 

evolutionary algorithms would provide ideal ways to do 

single loop learning. Heuristics, local algorithms and other 

theories would provide descriptive ways of doing this 

update procedure. A general framework for second-loop 
learning requires a methodology for model comparison. An 

ideal approach would answer the question: “Which 

decision-making process is the best in this case?” A 

descriptive approach relates to literature on model 

comparison, validation and verification. Literature on these 

processes tries to answer questions such as “Which model is 
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the one that explains human behavior the best in this 

situation?” or “Does my model provide a valid explanation 

and representation of human behavior?” The metrics will 

help to come up with a general framework that governs how 

to update mental models, when to replace them and what 

models to replace them with. The first loop considers 
performance metrics based on the system where as the 

second loop can consider a more general system 

independent set of metrics. 

The final part of the research deals with coming up with a 

set of descriptive or normative and ‘optimal’ decision 

making models (heuristics, rules, theories etc.) that work 

under certain conditions. The set of models will depend on 

the system and will not consist of algorithms that work for a 

general problem and include no reasoning (such as search 

algorithms).  

Current and Future Research 

There are two paths of research that can be pursued in 

parallel. The first deals with developing a methodology for 

metrics of comparison amongst models within the same 

framework. The author has ongoing research on this topic 

that attempts to evaluate validity and performance of 

alternative models within a complex system (Eksin et al., 

2010). The second path deals with computational 

representations of descriptive and ideal double-loop learning 

mechanisms. The descriptive part relates to knowledge 
based search and reasoning literature. The ideal part will 

relate to artificial intelligence (stochastic games, learning) 

and control theory (adaptive control, fuzzy logic, stochastic 

optimization algorithms) literature. Fields such as artificial 

intelligence and control theory provide a set of adaptive and 

feedback-based algorithms that can still work in practice for 

complex systems. The author’s current work in this track 

includes incorporating a Q-learning agent to a complex 

system (Eksin, 2010). Although the study was approached 

from the perspective of policy design for an agent, one can 

utilize similar kinds of learning algorithms to establish ideal 

forms of first and second loops of learning. In this study, the 
agent is essentially a Q-learning agent which by definition 

does a first loop of learning until convergence. However, the 

Q-learning mechanism misses a second loop where either 

the update mechanism or the state summary that is used for 

decision-making is modified. Future work would also 

concentrate on a literature review on existing approaches to 

reasoning to utilize a descriptive double loop learning agent. 

Application 

After coming up with a general framework for double loop 

learning, they will be applied to two socio-cognitive agent 

based models: 1) A country with factional-conflicts and 

existing insurgency (Silverman et al., 2007), and 2) A 

village model that includes tribal and ethnic differences. The 

first task would be to develop a list of descriptive and 

prescriptive theories, heuristics and rules that is relevant to 

the model.  There will be two sets of experiments on each 

model. On the first set of experiments, the model will only 

have a single agent that has double-loop learning. The 

double-loop learning agent decision making mechanism will 

be descriptive in one case and prescriptive in the second 

case. These cases will be compared to the benchmark cases 

where none of the agents are double-loop learners. The 

second set of experiments will have all the agents as double-
loop learners. Similarly, in one case all the agents will have 

descriptive models of a decision making mechanism and in 

the second case all agents will utilize prescriptive models. In 

this set of experiments, I will be looking at the changes in 

the emerging behavior within the system compared to 

benchmark cases.  

Conclusion 

In this paper, I present an overview of a research thread that 

will produce a descriptive computational model framework, 
or double-loop learning, that will require use of multiple 

alternative descriptive theories as mental models. 

Additionally, the framework can be a prescriptive model 

that utilizes correct mental models at the right time. I 

propose to make use of multiple literatures to develop both 

descriptive and prescriptive models of double-loop learning.  
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Introduction 

Reinforcement learning (RL) provides a general approach to 

support intelligent agents that learn to act in their 

environments (Sutton & Barto, 1998). The foundational 

reinforcement learning algorithms of Q-Learning and 

SARSA, however, are purely reactive and thus not generally 

applicable to problems in which knowledge must be 

maintained in memory. 

My research focuses on investigating how memory can 

extend the range of possible behaviors that RL can achieve, 

and in particular how RL agents can learn to use 

biologically-inspired memory models. In this context, using 

memory has two senses: first, making use of the knowledge 

that is retrieved from memory in order to better perform the 

task at hand, thus making use of the declarative knowledge 

from memory; second, selecting actions (such as encoding, 

storage and retrieval) over memory as appropriate for the 

task, thus using memory through procedural knowledge. 

One view of this research is that it is an attempt to discern 

which procedural knowledge over memory must be 

architectural and which may be adaptive. 

Some prior work has begun to investigate this direction. 

We demonstrated that it is possible to learn to use a human-

inspired episodic memory model in certain specific cases, 

but that in others an agent cannot learn the optimal control 

strategy (Gorski & Laird, 2009). Other researchers have also 

found that RL agents endowed with episodic and working 

memory models can learn to achieve some tasks, but not 

others (e.g. Zilli & Hasselmo, 2007).  

My primary research question is: how and when can RL 

be used to learn to use memory? To address this in my 

thesis, I will perform a comprehensive empirical exploration 

of learning to use memory in order to better understand the 

dynamics that arise when an RL agent is endowed with an 

internal memory model. I will identify characteristics of 

tasks that can be explored independently across sets of 

parameterized problems. My initial exploration will begin 

with three memory models: a simple bit memory model, a 

gated working memory model (inspired by human working 

memory), and an associative memory model (inspired by 

human episodic memory). I precede a more detailed 

discussion of my research plans with an overview of my 

research to date. 

Progress to Date 

My research initially focused on learning to use Soar’s 

episodic memory model (Derbinsky & Laird, 2009; Laird, 

2008). Nuxoll (2007) had previously identified a set of 

cognitive capabilities that could be supported by episodic 

memory, and demonstrated agents that performed a subset 

of these capabilities. However, these agents required 

significant background knowledge and performed no 

learning. We studied whether it was necessary to provide 

the knowledge to utilize these cognitive capabilities, or 

whether RL could learn to use episodic memory in specific 

ways, and eventually performed specific cognitive 

capabilities solely as an emergent response to environmental 

and architectural constraints and pressures. 

We succeeded in demonstrating agents that learned to 

perform two specific cognitive capabilities: virtual sensing, 

in which an agent uses episodic memory to recall a portion 

of the environment state that it cannot directly perceive; and 

remembering past actions, in which an agent uses 

knowledge of past actions to guide current behavior (Gorski 

& Laird, 2009). 

In the course of this work, we found three interesting 

results. First, trivial-seeming changes to the environment 

had dramatic effects on how well agents were able to learn 

to use memory. Similarly, it can be very difficult to 

construct a task that is “just right” such that it elicits the 

desired cognitive capability and in which an agent uses 

memory in desired way. 

Second, it is significantly easier to learn to perform virtual 

sensing than to use the knowledge that results from 

remembering past actions. When learning to perform virtual 

sensing, the agent was retrieving knowledge from memory 

that was a reliable indicator of the state of the environment, 

regardless of the duration of the agent’s existence. However, 

knowledge of past actions was useful only after the agent 

had converged to a relatively stable behavior in the 

environment, as the knowledge that was retrieved was more 

sensitive to interference effects of taking a related action at 

an inopportune time. 

Third, in certain settings agents converged to nearly 

optimal behaviors, but used episodic memory essentially as 

a single bit of memory (similar to the bit memory of 

Littman, 1994). Even though the learned behavior was 

suboptimal, it was a sufficiently stable equilibrium such that 

the agent was not able to find the globally optimal behavior 

through additional exploration. 

The third result motivated us to explore using a bit 

memory model in the same domain (Gorski & Laird, 

forthcoming). In this work, we determined that while bit 

memory was sufficiently capable of being used to represent 

the optimal policy when the agent was provided with some 

initial background knowledge, the agent could not learn to 

use bit memory effectively. We additionally identified 
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important ways in which bit memory differed from the 

episodic memory model. 

Agents learning to use memory were sensitive to small 

changes in the task specification; furthermore, the behaviors 

of agents using different memory models were very 

different in the same domain. These results motivated a 

more comprehensive exploration of the space of tasks and 

memory models. 

Research Plan 

In order to understand the dynamics of learning to use 

memory, I propose a methodical and comprehensive 

empirical exploration of the space of possible tasks and 

memory models. As the space of possible tasks and memory 

models is infinite, it will be necessary to focus my empirical 

study on a particular set of tasks and memory models, which 

will be used to draw conclusions that can apply to tasks and 

memory more generally. 

The tasks that I will explore have been selected on the 

basis of understanding how varying specific aspects (or 

characteristics) of a task affect the ability to learn to use 

memory in it. We have identified a very simple task, 

inspired by T-Maze tasks from the experimental psychology 

literature, that can be parameterized across independent 

dimensions. When these dimensions correspond to 

characteristics that are relevant to how memory must be 

used in a task, then observing the behavior that emerges in 

those tasks will inform how learning to use memory scales 

and what patterns of behavior take place in the course of the 

learning process. 

The task characteristics that we are primarily interested in 

are those that directly relate to how knowledge must be 

retained while performing a task (we refer to this knowledge 

that must be maintained over time as salient knowledge). 

These characteristics include: 

• The temporal delay between when salient knowledge 

is acquired and a task action that depends on it 

• The quantity of salient knowledge that must be 

maintained simultaneously in a task 

• The number of actions in a task that depend on 

salient knowledge. 

I have identified a preliminary set of tasks that are 

parameterized along these relevant characteristics. 

Exploring the space of memory models will require a 

different approach. While it is possible to design tasks that 

isolate individual characteristics and explore them over a 

parameterized task set, a given memory model cannot exist 

without architecturally committing to a number of 

simultaneous points in the various dimensions that define a 

memory model. Therefore, we will explore the space of 

memory models using a top-down approach. 

We will explore bit memory, gated working memory, and 

an associative long-term memory in the context of the set of 

tasks discussed above. In a first pass, we will perform a 

comprehensive sweep exploring artificial agents that learn 

to use each memory model across all tasks (the cross 

product of memory models and tasks). After analyzing the 

results of this study, we will then modify the three memory 

models in an attempt to explore functional differences that 

they exhibit when an agent learns to use them, so as to be 

able to determine which characteristics of memory are 

directly responsible for supporting the necessary learning 

behavior, or not supporting it. 

Throughout my investigation, my focus will be on the 

dynamics that arise between memory and task. I intend to be 

agnostic regarding specific RL algorithms as much as 

possible, and consistently apply the same algorithm (e.g. 

SARSA, Sutton & Barto, 1998) in all of my experiments. 

My evaluation will focus on two issues: how agent 

performance scales with characteristics of task, and which 

characteristics of memory are most directly tied to which 

task characteristics.  

Although my research is grounded in the field of artificial 

intelligence, I aim to draw conclusions from my work that 

inform cognitive scientists as to the nature of how 

procedural knowledge that uses memory (both controls it 

and makes use of the knowledge from it) can be learned. 

While most memory models assume some architectural 

basis for certain internal actions over memory, such as 

encoding and storage to long-term declarative memory, the 

procedural knowledge that governs memory retrievals and 

how that retrieved memory impacts task performance is 

adaptive. By better understanding in which tasks it is 

computationally feasible to learn to use specific memory 

models, we might better understand the constraints on 

human memory (and learning). In the field of artificial 

intelligence, learning to use memory is one approach to 

answering challenging problems of overcoming tasks with 

incomplete information while maintaining responsive 

learning and decision making. 
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Introduction 

How do people interleave their attention when performing 

multiple tasks, such as dialing a phone number while 

driving, or checking e-mail while writing a paper? To 

investigate these issues a variety of modeling frameworks 

have been used, for example EPIC (Meyer & Kieras, 1997), 

SOAR (Lallement & John, 1998), ACT-R Threaded 

Cognition (Salvucci & Taatgen, 2008) and Cognitively 

Bounded Rational Analysis models (Howes, Lewis, & Vera, 

2009). The majority of these frameworks focus on 

understanding how multiple tasks interfere with each other, 

for example as a result of having limited resources (e.g., two 

eyes, two hands) to dedicate to each task.  

Within the cognitive modeling community, relatively less 

attention is given to understanding how more top-down 

aspects, such as instructions and priorities, interact with 

these architectural aspects. However, some exploration has 

been done elsewhere. For example, it has been demonstrated 

that people adapt their performance to instructions to spend 

more time on a task (e.g., Gopher, 1993), or to changes in 

payment associated with performance (e.g.,Wang, Proctor, 

& Pick, 2007). In situations like these, the adaptation 

process can be understood as making trade-offs between 

performance on each of the tasks (e.g., Navon & Gopher, 

1979; Norman & Bobrow, 1975). 

In my doctoral dissertation work I try to understand this 

flexible adaptation of dual-task performance, where people 

interleave attention in different ways despite being exposed 

to the same stimuli. As a modeling approach, I use 

Cognitively Bounded Rational Analysis Models (Howes, et 

al., 2009). However, I also have an interest in informing and 

using other architectural frameworks. 

CBRA Models of Multitasking 

So far, my work has focused on developing explanations 

of human multitasking behavior for two dual-task settings: 

(1) manually dialing a phone number while driving a 

simulated car, and (2) typing digits while tracking a cursor. 

In both domains, the central questions are: when is attention 

for one task interleaved to pay attention to the other task, 

how is this moderated by the set priorities, and why is 

attention interleaved in this specific way? 

Our first dual-task setting, manually dialing a phone 

number while driving a simulated car, has been well studied 

before. One way of understanding interleaving in this 

situation is that people make use of “natural break points”: a 

prevalent task structure in which some points are more 

natural to interleave performance than others (Salvucci, 

2005). However, whether this structure is used depends on 

the priority that the driver sets (Brumby, Salvucci, & 

Howes, 2009; Janssen & Brumby, in press; Janssen, 

Brumby, & Garnett, 2010). If the priority is to dial the 

number as fast as possible, more digits are dialed 

consecutively before turning attention back to driving, often 

omitting natural break points. When the priority is to drive 

as safe as possible, participants interleave dialing for driving 

at the natural breakpoints, and at more positions if these 

points are not sufficient (Janssen & Brumby, in press). 

Using a cognitively bounded rational analysis model we 

demonstrated the trade-offs that drivers make in these 

situations (Janssen & Brumby, in press).  

While the above work illustrates the trade-offs that are 

made between tasks, it does not illustrate why a specific way 

of performing the task is chosen (Howes, et al., 2009). In 

the driving studies we found that a different number of 

digits is dialed in sequence before interleaving dialing for 

driving depending on the set priority. But why were not 

more (or less) digits typed? 

Howes et al. (2009) argue that in order to understand what 

it is the cognitive system is adapting to it is important to 

specify an explicit objective function that determines the 

quality of a given task interleaving strategy (Howes, et al., 

2009). Based on this assessment, the strategy with the 

highest payoff can be determined and compared with human 

performance. We applied this methodology in a new task 

paradigm in which participants have to track a cursor with a 

joystick while typing in a series of digits as fast as possible 

(Janssen, Brumby, Dowell, & Chater, 2010a). Critically, 

participants can only control one task at a time (i.e., they 

can either type a series of digits, or track the cursor) and 

have to determine how many digits they type in one 

sequence and how much time they spend on tracking. 

Experimental results show that participants adapt their 

strategy to the difficulty of the task, making trade-offs in 

task performance. A succeeding modeling effort 

demonstrated why participants adapted their strategy: the 

adopted strategies maximized their pay-off. In this sense, 

the explanation given by our model went beyond traditional 

demonstrations of performance trade-offs. 

Conclusions and Future Work 

The preceding work has demonstrated that multitasking 

participants adapt their performance not only to stimuli 

characteristics, but also to more internal characteristics such 

as priorities and instructions. Our modeling work 

demonstrated why certain trade-offs are made: participants 

trade-off performance on one task versus performance on 

the other task. In addition, our more recent work was able to 

demonstrate that participants not only adapt performance to 

instructions, but that they also try to adapt in an optimal 
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way, to maximize pay-off (Janssen, Brumby, Dowell, & 

Chater, 2010a). 

In the remainder of my PhD I want to take this work 

further in a couple of novel angles. First of all, I want to 

explore models of individual differences in performance. 

Cognitively Bounded Rational Analysis models describe 

spaces of performance (instead of just one strategy for 

performance, as is often the case in production rule 

systems). Given that there often is a variety of ways in 

which tasks can be performed, it seems unlikely that 

participants only act in one way. By fitting cognitive models 

to individual characteristics (e.g., typing speed), I want to 

explore whether rational strategies for multitasking can be 

explained at an individual level (cf. ,Howes, et al., 2009). 

Another angle of future research is to investigate how 

optimal performance is learned. My current work has 

mainly focused on explaining why performance is adapted 

(to maximize pay-off, or to suit an instruction). However, it 

does not explain how performance is adapted given 

experience. Using Cognitively Bounded Rational Analysis 

models I want to demonstrate that if participants have to 

learn to interleave two tasks, they change their strategies 

over time by (systematically) moving performance towards 

the optimum strategy. In addition, I want to look at other 

modeling frameworks to see how these models would 

explain performance. In particular the theory of Threaded 

Cognition is appealing, as it is one of the most integrated 

and unifying theories of multitasking (being able to explain 

performance across a range of multitask settings with 

different time scales, Salvucci, Taatgen, & Borst, 2009). 

Moreover, as this theory is integrated within a cognitive 

architecture, it is relatively easy to combine theories of 

multitasking with theories of for example skill learning. For 

some initial ideas on this see (Janssen, Brumby, Dowell, & 

Chater, 2010b). At the doctoral consortium I hope to further 

discuss these and other ideas. 
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Introduction
Psychological research has demonstrated that subjects shown
animations consisting of nothing more than simple geomet-
ric shapes perceive the shapes as being alive, having goals
and intentions, and even engaging in social activities such
as chasing and evading one another (Blythe, Todd, & Miller,
1999; Heider & Simmel, 1944). While the subjects could
not directly perceive affective state, motor commands, or the
beliefs and intentions of the actors in the animations, they
still used intentional language to describe the moving shapes.
For example, subjects in the Heider and Simmel (1944) study
consistently labeled the larger triangle, shown in Figure 1, as
a bully who harassed the smaller triangle and circle.

Figure 1: Single frame from an animations similar to the orig-
inal Heider and Simmel animation.

When subjects ascribe intentions to geometric primitives
like those shown in Heider and Simmel’s research (see Fig-
ure 1), which information guides the process? Blythe et al.
(1999) showed that the motion of the actors in animations
is sufficient to classify the activities that occur in the anima-
tions. The system generated to perform classification even
outperformed human subjects on the same task.

Blythe’s system mapped patterns of motion onto class la-
bels for intentional states, which isn’t quite the same as know-
ing anything about intentional states. One of Heider and Sim-
mel’s subjects described the larger triangle in Figure 1 as
“blinded by rage and frustration.” Blythe’s system couldn’t
come up with such a description. An agent that classifies
episodes by patterns of motion knows about patterns of mo-
tion, not about rage and frustration, even if these words are
provided as episode labels. So how might an agent infer af-
fective states?

In both the Heider and Simmel animations and the anima-
tions developed by Blythe et al., subjects can only observe a
subset of the features that are available, i.e. positions, veloc-
ities, sizes, colors, etc. The subjects cannot directly perceive
the affective state, motor commands, and the beliefs and in-
tentions of the actors in the animations. Yet they infer af-
fective states and describe them with intentional language.
We think humans infer affective states given non-affective ob-
servables such as positions and velocities by calling on their
own affective experiences. Observables cue, or cause to be re-
trieved from memory, schemas that include learned affective
components, which are inferred or “filled in” as interpreta-
tions of patterns of motion or other non-affective observables.

In this dissertation, we present representations and algo-
rithms that enable an artificial agent to correctly recognize
other agents’ activities by observing their behavior. In addi-
tion, we demonstrate that if the artificial agent learns about
the activities through participation, where it has access to its
own internal affective state, motor commands, etc., it can then
infer the unobservable affective state of other agents.

Activity Recognition
We begin with definitions: An episode is a collection of in-
tervals. Each interval is a tuple containing a proposition and
the times at which the proposition becomes true and false. A
proposition can become true (and false) multiple times within
an episode; each of these instances is represented as a sepa-
rate interval. Each episode is given a class label and is a single
example of an activity. In the activity recognition task we are
given a collection of episodes for training, and then tested on
episodes that were not part of the training set.

We assume that different examples of one activity share
patterns of intervals. More colloquially, the intervals in sim-
ilar episodes tell the same story with minor variations. Thus,
one may classify episodes by their constituent patterns of in-
tervals. This is not the only way to do it: A cleaning agent
might classify a cleaning episode by the objects it interacts
with, such as pots and pans, rather than what was done with
the pots and pans. But our focus here is classifying episodes
by patterns of activities, represented by intervals.

Episodes and intervals have different durations, start times,
end times, and constituent propositions, so our representation
of episodes must be able to accommodate and generalize over
these variations. For example, the activity “capture” involves
one agent chasing another agent until the second agent is cor-
nered or held in a single place. The participants might be
a prisoner and a guard or some other pair of agents, and the
amount of time spent chasing can vary from minutes to hours,
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but all episodes share the same common pattern: One actor
chasing another until the other agent is cornered or caught.

Relationships between intervals can be described by Allen
relations (Allen, 1983). Allen recognized that, after eliminat-
ing symmetries, there are only seven possible relationships
between two intervals. Allen relations are qualitative in the
sense that they represent the temporal order of events, specif-
ically, the beginnings and endings of intervals, but not the
durations of intervals.

Our episode representation, which we call a qualitative se-
quence, is a sequence of Allen relations between intervals in
the episode. We construct the sequence by combining the
Allen relations between all of the pairs of intervals in the
order in which the Allen relation completes. An illustrative
episode and the resulting qualitative sequence is shown in Ta-
ble 1. The letters A, B and C denote propositions, and an
assertion such as (C 1 3) means that proposition C was true
in the interval [1,3].

Intervals Sequence
(C meets A)

(C 1 3) (C before B)
(A 3 6) (A overlaps B)
(B 4 9) (C before C)
(C 6 10) (A meets C)

(B overlaps C)

Table 1: An episode comprising four intervals and the corre-
sponding qualitative sequence.

Episodes are first converted into qualitative sequences of
Allen relations and learning is done with these sequences. Let
S = {S1,S2, . . . ,Sk} be a set of qualitative sequences with the
same activity label. We define the signature of the activity
label, Sc, as an ordered sequence of weighted Allen relations.
(The only difference between a signature and a qualitative
sequence is these weights.) We select a sequence at random
from S to serve as the initial signature, Sc, and initialize all
of its weights to 1. After this, Sc is updated by combining it
with the other sequences in S , processed one at a time.

Two problems are solved during the processing of the se-
quences in S . First, the sequences are not identical, so Sc
must be constructed to represent the most frequent relations
in the sequences. The weights in Sc are used for this pur-
pose. Second, because a relation can appear more than once
in a sequence Si, there can be more than one way to align Si
with Sc. These problems are related because the frequencies
of relations in Sc depend on how sequences are successively
aligned with it.

Updating the signature Sc with a sequence Si occurs in two
phases. In the first phase, Si is optimally aligned with Sc
using the Needleman-Wunsch global sequence alignment al-
gorithm (Needleman & Wunsch, 1970). The alignment al-
gorithm penalizes candidate alignments for relations in Sc
that are not matched by relations in Si, and rewards matches.

These penalties and rewards are functions of the weights
stored with the signature. In the second phase, the weights in
the signature Sc are updated. If a relation in Si is aligned with
one from Sc, then the weight of this relation is incremented
by one. Otherwise the weight of the relation is initialized to
one and it is inserted into Sc at the location selected by the
alignment algorithm.

The signatures function as classifiers as follows. Recall
that S = {S1, . . . ,Sk} is a set of qualitative sequences with
the same activity label; for example, all the sequences in S
might be examples of jump over. Now suppose we have N
sets of qualitative sequences, Σ = {S 1,S2, . . . ,SN} each of
which has a different activity label, and its own signature.
A novel, unlabeled sequence matches each signature to some
degree, determined by aligning it with each signature, as de-
scribed earlier. The novel sequence is given the activity label
that corresponds to the signature it matches best.

Inferring Hidden State
Episodes have observable and unobservable propositions de-
pending on which agent is doing the observing. For exam-
ple, when agent1 is chasing agent2, agent1 observes all of
the propositions pertaining to its motor commands, emotional
state, and intentional state, but when agent1 observes agent3
chasing agent2, agent1 cannot perceive the motor commands,
emotional state, and intentional states of agent2 nor agent3.

By hidden relations we mean relations that include one
or more propositions that are not directly observable in the
behavior of other agents, and so must be inferred. Our ap-
proach to inferring hidden relations is to have agents learn
signatures of their own behaviors, in which these relations
are not hidden. Then, when an agent observes another’s be-
havior, it matches the observable relations to signatures of its
own behavior, and uses these to infer unobservable relations
in other’s behavior.

In general, sequences can contain many hidden relations.
The most frequent are the most likely when observing other
agents. Therefore, our agent selects the most frequently oc-
curring hidden relations to be the inferred hidden state.

References
Allen, J. F. (1983). Maintaining knowledge about temporal

intervals. Communications of the ACM, 26(11), 832–843.
Blythe, P. W., Todd, P. M., & Miller, G. F. (1999). How

motion reveals intention: Categorizing social interactions.
In Simple heuristics that make us smart. Oxford University
Press, USA.

Heider, F., & Simmel, M. (1944). An experimental study of
apparent behavior. The American Journal of Psychology,
57(2), 243.

Needleman, S. B., & Wunsch, C. D. (1970, March). A gen-
eral method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of Molecular
Biology, 48(3), 443-453.

312



A probabilistic model of phonetic cue restructuring
James P. Kirby (jkirby@uchicago.edu)

University of Chicago, Department of Linguistics,
1010 E. 59th St., Chicago, IL 60622 USA

Keywords: Phonetic change; speech perception; agent-based
modeling; categorization; mixture models

Introduction
Research demonstrating that both infants and adults track
statistical distributions of acoustic-phonetic cues and use
this information when making phonetic category judgements
(Maye, Werker, & Gerken, 2002; Clayards, Tanenhaus, Aslin,
& Jacobs, 2008) has led to interest in computational mod-
els of phonetic category acquisition, which can shed light on
the requirements and limitations of statistical learning. The
results of a number of studies (Vallabha, McClelland, Pons,
Werker, & Amano, 2007; Toscano & McMurray, 2008) have
yielded encouraging results, indicating that Gaussian mixture
(GMs) may be an appropriate means of representing phonetic
category structure. However, these structures are not static;
they can and do change over a speaker’s lifetime, albeit in
ways which are not yet fully understood. This work builds
on previous research by embedding the GM approach in an
agent-based framework to explore the ways in which phonetic
category structure changes over time.

Sound change as phonetic cue restructuring
Speech sound categories (consonants and vowels) are not
monolithic entities, but are instead signaled by a multitude
of acoustic dimensions, called cues. Lisker (1978) cites 16
acoustic dimensions relevant for the perceptual distinction
between voiced (e.g., [b]) and voiceless (e.g., [p]) obstru-
ents in word-medial position in English, including duration
of the preceding vowel, fundamental frequency ( f0) contour,
and timing of voice onset (VOT). While many cues are truly
independent, others, such as VOT and f0 contour, are re-
dundant: vowels following voiced obstruents have lower f0
than vowels following voiceless obstruents; in addition, some
cues contribute more information to the identity of a contrast
than others. Accurate categorization of an utterance involves
weighting these of these cues, a task which finds a natural
analog in density estimation (Ashby & Alfonso-Reese, 1995)
and closely related ‘ideal observer’ models of speech percep-
tion as optimal Bayesian inference (Clayards, 2008; Feldman,
Griffiths, & Morgan, 2009).

The distribution of cues to a speech sound category are
not static, however, and may shift and change over time.
An oft-cited example is the idea that lexical tone – the use
of pitch to distinguish between words, familiar from lan-
guages such as Mandarin Chinese or Thai – finds its ori-
gins in consonantally-induced pitch perturbations (Hombert,
Ohala, & Ewan, 1979). On this account, the physiologically-
based, consonantally-induced differences in vowel f0 first be-

come part of a perceptual cue distinguishing two types of
consonants. If f0 comes under speaker control, it may then
be used to actively to enhance the perception of this con-
trast. More generally, when the primary cue to a contrast
becomes uninformative, the contrast may still be maintained
through increased attention to a secondary cue, a process
termed phonologization (Hyman, 1976).

Table 1: Phonologization of f0 in Seoul Korean.

manner 1960s 2000s gloss

fortis

!!"#$!%&'()*
+!,,#$!%-.(/*
0 !,#$!%1(233*

[ppul] [púl] ‘horn’

lenis !!"#$!%&'()*
+!,,#$!%-.(/*
0 !,#$!%1(233*

[pul] [phùl] ‘fire’

aspirated

!!"#$!%&'()*
+!,,#$!%-.(/*
0 !,#$!%1(233*[phul] [phúl] ‘grass’

Empirical support for such an account may be found in the
phonologization of f0 currently taking place in Seoul Korean
(Kang & Guion, 2008). In this language, a three-way contrast
between fortis, lenis, and aspirated word-initial voiceless ob-
struents once distinguished chiefly by differences in VOT is
now distinguished chiefly by differences in f0. As shown in
Table 1, fortis and aspirated stops are both produced with high
f0, but distinguished along the VOT dimension, whereas lenis
stops are distinguished from aspirated by low f0.

As it happens, VOT and f0 are not the only cues relevant for
the perception of word-initial obstruents in Seoul Korean: a
number of studies (reviewed in Kang and Guion (2008)) have
shown that other acoustic characteristics, such as length of the
following vowel and spectral tilt at vowel onset, are also im-
portant cues to obstruent category. If phonetic categories are
signaled by a multiplicity of cues, however, it is not immedi-
ately obvious why should f0, and not some other cue, should
have been phonologized, nor why this change took place in
Korean, but not in other languages which displays a similar
redundancy between VOT and f0, such as English.

In this work, I propose that this type of phonetic cate-
gory restructuring is the result of an adaptive strategy of cue
enhancement designed to ensure robust communication in
noise. Speakers enhance phonetic cue dimensions probabilis-
tically, in proportion to their contribution to the successful
perception and categorization of a phonetic contrast, based on
the informativeness of a cue and the precision with which the
contrast may be recovered. This predicts that phonetic cue
restructuring will result from the loss of contrast precision
due to noise or external bias, with the degree of enhancement
proportional to the loss of precision.
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Modeling phonetic cue restructuring
A series of agent-based simulations were conducted to better
understand the effects of probabilistic enhancement on cue
weights. Five cue dimensions known to be relevant for the
perception of Korean stops (VOT, vowel length, closure dura-
tion, spectral tilt, and f0) were represented as a set D of three
5-dimensional GMs, corresponding to the three word-initial
obstruent categories. Both the initial and target parameters
of each GM were estimated from data in the apparent time
study of Kang and Guion (2008), represented as an exemplar
list Ek = {ek

1, . . . ,e
k
n}, ek

i a 5-dimensional column vector of
cue values plus a category label k and a decay weight τ.

Agent-based simulations
The simulations reported here consist of simple ‘telephone’
conversations in which two agents alternate between produc-
ing and categorizing utterances. At each iteration, the speaker
agent selects a phonetic category target k, computes maxi-
mum likelihood estimates of the parameters µd|k,σd|k for all
d ∈ D based on Ek, and samples from each conditional den-
sity xd ∼ N (d|k;µd ,σd) to generate an utterance vector x.
The agent then enhances cue dimension d of x with some
probability, proportional to both (i) the cue’s weight (based
on normalized d′) and (ii) the current contrast precision, de-
fined as the error rate of a naive Bayes classifier. Finally, x
may be further modified by a transmission bias term λ, used
to implement systematic biases such as articulatory drift.

The utterance x is then presented to the listener agent for
classification. The listener agent assigns a category label k
with probability P(k|x1, . . . ,xD), where the posterior proba-
bility of each category k is calculated as

P(k|x1, . . . ,xD) =
p(x1|k)p(x2|k), . . . , p(xD|k)p(k)

∑
K
i=1 p(x1|ki)p(x2|ki), . . . , p(xD|ki)p(ki)

.

(1)
After classification, the agent adds x to the top of the ap-

propriate exemplar list Ek, re-computes decay weights, and
deletes exemplars with sufficiently low τ (to simulate memory
decay). In the next iteration, when the listener agent becomes
the speaker, the contribution of this newly categorized exem-
plar will be reflected in production when the agent computes
new maximum likelihood parameter estimates.

Results
Simulations of up to 50,000 iterations were conducted with
and without enhancement and for various settings of the bias
term λ. Neither the proposed probabilistic enhancement strat-
egy nor systematic bias alone were sufficient to induce a shift
in cue weights that resembled the empirical target distribu-
tions, but simultaneous application of both gave a close ap-
proximation of the attested distributions and cue weights, as
measured by the Kullback-Leibler divergence between the
simulated results and the empirical targets. A second series
of simulations in which the weights of secondary cues to the
contrast were equalized at initialization, systematic bias in the

production of VOT (the primary cue) led to either partial or
total category merger or stability of the existing cue structure,
depending on exact nature of the transmission bias.

Conclusions
Sound change resulting from a cognitive restructuring of pho-
netic cue weights may be modeled as an adaptive strategy of
probabilistic enhancement interacting with systematic biases
in speech production. Computational simulations show that
such a restructuring may come about without appealing to ei-
ther (a) inherent perceptual bias for or against any particular
cues or (b) a system-wide pressure or preference for contrast
maintenance. Given just the initial state and characterization
of transmission bias, this model allows us to make (proba-
bilistic) predictions about directionality in sound change. On-
going extensions of this work include experimental testing of
the model predictions using human subjects.

References
Ashby, F. G., & Alfonso-Reese, L. A. (1995). Categorization

as probability density estimation. Journal of Mathematical
Psychology, 39, 216–233.

Clayards, M. (2008). The ideal listener: making optimal use
of acoustic-phonetic cues for word recognition. Unpub-
lished doctoral dissertation, University of Rochester.

Clayards, M., Tanenhaus, M. K., Aslin, R., & Jacobs, R. A.
(2008). Perception of speech reflects optimal use of proba-
bilistic speech cues. Cognition, 108, 804–809.

Feldman, N. H., Griffiths, T. L., & Morgan, J. L. (2009). The
influence of categories on perception: Explaining the per-
ceptual magnet effect as optimal statistical inference. Psy-
chological Review, 116, 752–782.

Hombert, J.-M., Ohala, J. J., & Ewan, W. G. (1979). Pho-
netic explanations for the development of tones. Language,
55(1), 37-58.

Hyman, L. (1976). Phonologization. In A. Juilland (Ed.), Lin-
guistic studies presented to Joseph H. Greenberg. Saratoga:
Anma Libri.

Kang, K.-H., & Guion, S. G. (2008). Clear speech produc-
tion of Korean stops: Changing phonetic targets and en-
hancement strategies. Journal of the Acoustical Society of
America, 124(6), 3909–3917.

Lisker, L. (1978). Rapid vs. rabid: a catalogue of acoustic
features that may cue the distinction. Haskins Laboratories
Status Report on Speech Research SR-54, 128–32.

Maye, J., Werker, J. F., & Gerken, L. (2002). Infant sensi-
tivity to distributional information can affect phonetic dis-
crimination. Cognition, 82(3), B101–B111.

Toscano, J., & McMurray, B. (2008). Using the distributional
statistics of speech sounds for weighting and integrating
acoustic cues. In Proceedings of the Cognitive Science So-
ciety. Mahwah, NJ: Erlbaum.

Vallabha, G. K., McClelland, J. L., Pons, F., Werker, J. F., &
Amano, S. (2007). Unsupervised learning of vowel cate-
gories from infant-directed speech. Proceedings of the Na-
tional Academy of Sciences, 104(33), 13273–13278.

314



Canonical Behavior Patterns
Walter C. Mankowski (walt@cs.drexel.edu)

Department of Computer Science, Drexel University, 3141 Chestnut Street
Philadelphia, PA 19104 USA

Keywords: Protocol analysis; sequential data analysis

Introduction
In the development of cognitive models, data are often col-
lected in the form of behavioral protocols — sequences of
actions performed by the user during the execution of a task.
Behavioral protocols have been employed to study a wide va-
riety of actions, including mouse clicks and keystrokes (e.g.,
Card, Newell, & Moran, 1983), eye movements (e.g., Byrne
et al., 1999), and driving (e.g., Salvucci, 2006). While proto-
cols are a rich source of data, they have one significant limita-
tion — often so much data are recorded that it is impractical
to analyze by hand. Researchers have sometimes tried to get
around this issue by performing some form of aggregation on
their data. While this can help in seeing overall behavior, it
masks potentially interesting patterns in individual users and
subsets of users. Alternatively, researchers have sometimes
laboriously studied individual protocols by hand to identify
interesting behaviors. While some work has been done on
automated protocol analysis, such techniques typically focus
on matching observed behaviors to the predictions of some
type of user process model.

The goal of my dissertation is to develop a new, automated
method of protocol analysis to find canonical behaviors — a
small subset of behavioral protocols that is most representa-
tive of the full data set, providing a reasonable high-level view
of the data with as few elements as possible. The method I
am proposing takes advantage of recent algorithmic develop-
ments in computational vision, and the method has already
been successfully employed in diverse fields such as image
analysis and software engineering. By adapting this algo-
rithm to the analysis of behavioral protocols, I hope to pro-
vide a new tool for cognitive modelers working with large
protocol data sets that are infeasible to study using current
methods. My method can also be used as an important com-
plement to existing protocol analysis techniques, allowing re-
searchers to build their models based on a few highly repre-
sentative samples.

Finding Canonical Behaviors
My technique for computing canonical behaviors derives
from work in the area of computational vision, where tech-
niques have been developed to identify canonical members
of a class of visual patterns (Denton et al., 2008). The goal
is to reduce a large set of patterns (in this context, behavioral
protocols) to a smaller (often much smaller) subset of patterns
that is most representative of the entire data set. Specifically,
I define a canonical set of behaviors as a subset of protocols
such that behaviors within the canonical set are minimally

similar to each other, and behaviors in the canonical set are
maximally similar to behaviors not in the set. The problem
of finding such a set of patterns is known to be intractable
(Garey & Johnson, 1979), and thus an approximation algo-
rithm is utilized. Please refer to Denton et al. (2008) for a full
description of the algorithm.

The key aspects of the method I propose are the specifi-
cation of a similarity measure between behaviors and the de-
termination of canonical behaviors given this similarity mea-
sure. The similarity measure is dependent upon the nature
of the particular protocol. For web browsing, it might be the
edit distance between two sequences of URLs (i.e., the num-
ber of insertions, deletions, or substitutions needed to trans-
form one sequence to the other). For eye-tracking data, an
appropriate measure might compare the x,y coordinates of
the fixations, the number of fixated items, or the exact se-
quence of items fixated upon. Similarly, the determination of
canonical behaviors is also dependent upon the context. For
example, canonical behaviors for going to the next page in a
word processor might include “press the page down key on
the keyboard” and “click the scroll bar”.

The principal benefits of my canonical set technique are (1)
it is an unsupervised algorithm: no training data set is needed;
and (2) no a priori knowledge of the number of sets is needed:
both the sets themselves and the most representative elements
of the sets arise naturally from the algorithm.

Preliminary Work
To test the application of the canonical set algorithm to hu-
man behavior protocols, I have done initial experiments in
two problem domains. In the domain of web browsing, I have
identified canonical web browsing patterns. I have also found
canonical lane changes in a driving experiment. I briefly sum-
marize each of these experiments below.

Web Browsing
As an initial experiment to validate this automated method
of finding canonical sets, my colleagues and I collected data
from users performing typical web browsing tasks. Each sub-
ject was asked to answer 32 questions that could be found
on a college web site. The questions covered a range of re-
alistic topics such as finding information about professors,
athletic programs, and academic departments. (Please see
Mankowski et al. (2009) for a full description of this experi-
ment.)

Figure 1 shows the various behaviors for a single ques-
tion (“What is the phone number of 〈department〉 professor
〈name〉”) for (a) an expert human coder with significant ex-
perience in analyzing behaviors and cognitive modeling, and
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(a) Human Expert Coder (b) Canonical Set Algorithm
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Figure 1: Sample analysis graphs.

(b) the canonical behavior algorithm. In both graphs, each
node represents a web page (labeled with a unique integer)
and each edge represents a clicked link from one page to an-
other taken by one of our subjects. The expert coder found
6 sets of behaviors, labeled A-F: A and B are different ways
of finding the professor’s home page via their department’s
website; C and D are different ways of accessing a directory
search page (node 14); and E and F are slight variations on
C and D. The canonical set algorithm found 4 canonical be-
haviors in the same graph; these are shown as bold in graph b,
and the other behaviors are labeled in terms of their most sim-
ilar canonical behavior. The behaviors it found correspond
exactly with sets A-D found by the expert coder. Instead of
identifying E and F as separate behaviors, the algorithm de-
cided to group these behaviors with their nearest canonical
behavior (D).

Grouping behavior patterns is clearly a subjective process,
since expert coders could each have their own notions about
whether two behaviors are similar enough to be grouped to-
gether. For example, our second coder put behaviors A and
B into the same group. To model this, the algorithm can be
tuned to be more tolerant of differences in a grouping, or to al-
low more significant variations to become canonical elements
themselves.

Driving
I have also applied the canonical set algorithm to the domain
of driving, specifically the problem of identifying canoni-
cal lane changes (Mankowski, Shokoufandeh, & Salvucci, in
press). Our data came from a previous experiment examining
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Figure 2: Lane changes for a representative subject.

driving behavior (Salvucci, 2006), where subjects navigated
a simulated straight, flat highway and were required to pass a
number of automated vehicles. For each lane change we con-
structed a histogram of the car’s position and lateral velocity,
and computed the similarity between each histogram.

Figure 2 shows the lane changes our algorithm found for
a typical subject. Results were similar for the other subjects
with these settings. The canonical lane changes are shown in
bold, and the other lane changes are drawn in the same color
as their most similar canonical lane change.
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Overview
The purpose of this doctoral research is to apply a systems
approach to defining and understanding memes. A meme is
a piece of social information which transmits and replicates
within a society (Heylighen, 1998). Memetics allow insight
into the evolution of ideas and behavior, a fundamental ques-
tion pertinent to all fields of social science. Three mecha-
nisms guide the evolution of memes: reproduction, variation,
and selection (Dennett, 1995). These mechanisms have to
be understood in terms of empirical research on individual,
social, and environmental factors that influence transmission
and change of ideas. However, the body of relevant empir-
ical study and theory is vast. This raises the basic research
question: What synthesis of theories usefully explains meme
behavior? The thesis of this research addresses this question
using a three step process:

1. Synthesis of Theories - A conceptual model is synthesized
which connects social science research to the mechanisms
guiding meme transmission and evolution.

2. Computational Model - A cognitive agent simulation
model is coded which operationalizes insights and theory
captured by the conceptual model.

3. Testing the Model - Experiments conducted using the
model examine the validity, flexibility, and types of insight
the computational model provides.

Hypotheses
This process is being used to test three hypotheses. The first
hypothesis is that the theoretical relationships used to build
the computational model will be statistically significant in the
data collected from simulation runs. This hypothesis is in-
tended to show internal validity. For example, the halo effect
states a positive correlation of the likeability of a source with
their persuasiveness. For this to hold true, a meme should
be more likely to be repeated when received from a likable
source. Relationships will be reported from the collected data
by running logistic regression and statistical tests are being
used to test significance.

The second hypothesis is that this model will provide a
effective framework for representing and analyzing individ-
ual and situational characteristics that influence meme fitness.

This hypothesis will be tested by applying classification tech-
niques to detecting agents that receptive or resistant to differ-
ent memes. The differences between classes will be examined
statistically. These classifications will be compared against a
human analysis of the scenario, as part of basic Turing test.

The third hypothesis is that memes can improve its corre-
spondence with empirically collected behavioral data. This
test involves building a scenario based on empirical data by
tuning the scenario based upon personality factors and be-
havioral frequencies. The behavior of most interest is the first
time an agent takes an action that express a meme. The or-
der that agents first express memes can then be statistically
compared against the real world observed ordering. The in-
dependent variable in this hypothesis is the set of agents who
are initially aware of the meme. For this hypothesis to hold
true, the trials with meme transmission must match the real-
world ordering better than the trials where no social learning
occurs (due to agents starting with full information). This
tests if the propagation pattern improves the match of behav-
ior to the ground truth.

Figure 1: Conceptual Model for Meme Transmission

Experimental Design
As part of the thesis proposal, Shannon Information The-
ory and Bandura Social Learning Theory were synthesized
to form an end-to-end model for retransmission of memes
(Bandura, 1986; Shannon, 1948). Information theory con-
siders the effects of noise and environmental influences on
a physical transmission. Social learning theory considers the
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processes that affect an agent’s likelihood of repeating a trans-
mission to which it is physically exposed. Social learning has
a concept of observational learning that consists of 4 steps:
attention, retention, motivation, and production. The synthe-
sis of information theory and social learning theory provides
a conceptual framework for connecting empirical findings to-
gether into a single process. Findings from perception, social
psychology, learning, marketing, and other fields have been
connected within this conceptual framework as noted in Fig-
ure 1. The thesis proposal for this project provides a signifi-
cant mapping of theories into this framework, along with their
implications for the mechanisms of meme evolution.

Figure 2: PMFServ Implementation of Meme Transmission

Based upon this synthesis of literature into a unified
model, a simulation consisting of cognitive agents has been
built using the PMFServ socio-cognitive agent architecture
(Silverman, 2004). Figure 2 shows the key elements of the
conceptual model that implemented as cognitive components
for PMFServ agents. These agents are simulated within a
shared environment, with meme transmission occurring when
agents learn about affordances from each other’s behavior.
This implementation will concentrates on the cognitive fac-
tors that affect memes. The agents used within this model
consider not only the intrinsic information of a meme, but
also the appeal of the source, and the influence of the environ-
ment. Computational models for social influence, attention,
and learning have been implemented according to empirically
based findings and theory. The halo effect (Kelley, 1955), se-
lective attention (Simons & Chabris, 1999), and conformity
(Asch, 1963) are examples of over a dozen constituent theo-
ries used to build cognitive components.

The computational model is being used to simulate two
scenarios: a reproduction of the Stanford Prison Experiment
and an archetypal Iraqi village of Hamariyah based on US
Marine Corps human terrain data. The Stanford Prison exper-
iment is an infamous landmark field study in which seemingly
normal participants were assigned roles as guards or prison-
ers in a simulated prison (Haney, Banks, & Zimbardo, 1973).
The Stanford Prison experiment scenario has been calibrated
and tested using de-identified Comrey Personality inventories
and hourly coded behavioral logs. The potential memes in the
Stanford Prison Experiment are the practice of throwing pris-

oners in ”the hole” and the spread of prisoner resistance. All
three hypotheses will be examined using the Stanford Prison
Experiment simulation.

The Iraqi village scenario is being used to examine a pair
of competing memes, one for informing to the US group and
one for helping to plant an IED. Since there is no ground-truth
data, only the first two hypotheses can be examined. How-
ever, the Iraqi village will be better suited to classification
due to its larger number of agents and actions.

Contribution
The main goal of this research topic is to present a useful
conceptual model for the transmission of memes, accompa-
nied by a working and useful implementation. The theoretical
contribution of the work has been to synthesize established
models to help explain meme dynamics. It has also identi-
fied gaps in social science literature where the interaction of
different theories is not well understood. The cognitive archi-
tecture implementation provides insight into the conceptual
model’s value for operationalizing and analyzing memes. The
end result should help advance the capabilities of simulated
societies to analyze real societies.
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Introduction 
Due to the importance of training, many scientists have 
studied effective training schedules, and they have 
compared distributed practice schedules to massed practice 
schedules. Most of the results consistently show that a 
distributed practice schedule outperforms a massed practice 
schedule in a retention test, because of the spacing effect in 
human memory.  

This result may lead new scientists who want to 
investigate knowledge and skills acquisition to explore just 
these two schedules and compare them in retention tests 
without examining other options. However, I think that we 
need to consider and approach another way for knowledge 
and skills acquisition. According to Anderson’s (1982, 
1993) ACT-R theory, skill acquisition is the process of 
transition from declarative memory to procedural memory, 
and in the fully procedural stage, human beings do not need 
to retrieve their declarative memory to implement a task, 
even if they forgot the knowledge in declarative memory, 
they can perform the whole task without any errors. Based 
on his findings and theory, the most important factor in 
learning is how to transform learned knowledge to the 
procedural stage of the learning framework, and the research 
for learning should not compare two relatively extreme 
schedules, but make an appropriate schedule that could 
transfer learners to the procedural stage for each piece of 
knowledge. In this paper, I will present a candidate 
approach to make an appropriate schedule for getting better 
performance in knowledge and skill retention, and as a 
doctoral consortium paper, I hope I have useful advices for 
theoretical approach of the ACT-R cognitive architecture in 
this topic. 

Theory  
Spacing effects exists in human memory. This explains the 
reason that a distributed practice schedule has better 
performance than a massed practice schedule in retention 
tests. However, I mentioned in previous section, research for 
training should be focused on how to transfer a learned skill 
to the procedural stage. 

Unfortunately, we do not have any measurement whether 
learners are in the procedural stage or not. One of the 
candidate measurements could be differences between the 
performances of the last training session and the retention 
session, however, it is difficult to fix the amount of 
differences that could represent the procedural stage. So, I 

think that we should consider how to increase performance 
in retention, and it may the only way to approach for 
explaining the status of procedural stage.  

Pavlik (2005) studied practice and forgetting effects on 
vocabulary. In this research, he found that the spacing 
effects could be increased through distributed practice with 
massed practice; in other words, a mixed schedule could 
produce better performance than distributed schedule in 
vocabulary memory task. 

I also think some kinds of tasks, such as procedural or 
perceptual-motor tasks, may show even better performance 
through an initial or distributed massed practice schedule. 
For example, we can learn how to ski perhaps better not in a 
distributed way (1 hour per day over 5 days), but in massed 
way (5 hours in a row in one day).  

From the above results, I argue that a hybrid practice 
schedule that is a mixed schedule including distributed and 
massed practice, could increase the spacing effect, and 
generate better performance than a purely distributed or 
massed practice schedules on the retention test.       

Methodology 
To explore the better schedule on retention test, four kinds 
of experiment environment were developed. These tasks are 
presented in Table 1.  

 
Table 1: Four tasks with respect to knowledge type. 

Knowledge Type Task 
Declarative Memory Japanese Vocabulary 
Procedural Memory Tower of Hanoi 

Procedural to Declarative Permutation Problem 
Perceptual-Motor BalanceMe® Game 

 
 The Japanese Vocabulary test that is similar to the task of 
Pavlik and Anderson (2003, 2005), is a web-based test, and 
participants will be tested with 15 Japanese vocabulary 
words. The accuracy (the number of correct answers) and 
RT (the completion time per correct answer) will be 
measured. 

There are two kinds of tasks in procedural memory type. 
One is the Tower of Hanoi puzzle, and the other is solving 
permutation problem. A Tower of Hanoi game that will be 
modified from its original style has 3 rods with 6 disks. 
Participants will be asked to move 6 disks from the leftmost 
rod to the rightmost rod. The number of movements and the 
duration time will be measured.  

For the permutation problem test, I will use the task of 
Rohrer and Taylor (2006). Participants will be taught to 
solve the number of unique ordering (or permutations) of a 
letter sequence with at least one repeated letter, such as 
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aabbbb, aabbbcc, etc.;, 12 problems will be presented. The 
accuracy (the number of correct answers) and RT (the 
completion time per correct answer) will be measured. 

The BalanceMe® game, an Iphone® Application, will be 
used for the perceptual-motor task. This is very similar to an 
inverted pendulum. Participants will be asked to keep 
balancing the stick in the screen by tilting the device. The 
time duration of balancing will be measured. 

Participants will be divided into 3 groups, massed group, 
distributed group, and hybrid practice group, and they will 
be asked to perform 8 sessions for training and 1 session to 
test retention. Each session consists of 4 tasks, and the order 
of tasks will be decided randomly.  

Expected Results 
As I mentioned in the Theory section of this paper, I assume 
that the participants of hybrid practice may show the best 
performance in all four tasks of retention test. The reason is 
that I believe the hybrid practice including the distributed 
practice and massed practice could increase spacing effect 
in human memory. I expect that the distributed practice 
schedule may outperform massed practice schedule in 
declarative memory task and the procedural to declarative 
task, because learners mainly depend on their declarative 
memory in these kinds of tasks. However, massed practice 
schedule may outperform distributed practice schedule in 
procedural memory task and perceptual-motor task, because 
massed practice may be needed in these kinds of tasks. 
These expected results are presented in Table 2. Figure 1 
and figure 2 present expected learning curves of each of 
these practice schedules. 

 
Table 2: The expected results for each task. 

Schedules Task 
Japanese Vocabulary H > D > M Permutation Problem 

Tower of Hanoi H > M > D BalanceMe® Game 
Note: H means Hybrid, D means Distributed, and M means 

Massed Practice. 
 

   
Figure 1: Expected results for declarative memory task and 

procedural to declarative task. 
 

 
Figure 2: Expected results for procedural memory task and 

perceptual-motor task. 

Conclusions 
In this paper, I present a hybrid practice schedule that 
includes distributed and massed practice, and I assume that 
this is one of the candidate practice schedule for transferring 
learners to the procedural stage of learning framework. To 
explore this, I created four kinds of tasks that represent 
different knowledge types, declarative, procedural, and 
perceptual-motor.  

At least 30 participants, 10 for each schedule, will be 
recruited by 31 July 2010, and I will explore the candidate 
hybrid schedule based on the ACT-R theory.  By 
comparing human data and the theory of ACT-R, I may 
verify or extend the theory. Finally, this experiment will 
show the learning curves with the same subject in different 
types of tasks. 
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Research Interests 
The main interest of my research is the development of 
model-based methods for simulation and automated 
usability prediction of multimodal interfaces. In particular I 
want to investigate how modality choice of users can be 
predicted and simulated by a computational model that 
estimates the quality of multimodal interfaces. Therefore I 
am also interested in exploring rules and cognitive processes 
that impact users’ modality selection in multimodal human-
computer interaction. 

Previous Multimodal HCI Related Work 
During my master thesis at Deutsche Telekom Laboratories 
(T-Labs) I worked on the integration of a speech recognition 
module in so-called Attentive Displays. The Attentive 
Displays are an interactive wall-mounted information 
system for employee and room search in a smart office 
environment. Originally the system was controlled with a 
touch screen only. To enhance the input facility I embedded 
a speech interface. Thereby the system input was altered 
from unimodal to multimodal.  

Several studies have shown multimodal interfaces to be 
more robust, efficient and flexible than unimodal systems 
(e.g. Oviatt, 2003). As a part of my master thesis a user 
study with 36 participants and six tasks was conducted to 
investigate the effect of multimodality on user behaviour 
and the perceived quality of the system. In contrast to the 
assumption that the multimodal system is judged best, the 
evaluation revealed the perceived quality of both the touch 
screen and the multimodal version of the system were rated 
equally. The distinct malfunction of the speech recognition 
module in the multimodal setup could be a reason for this 
result. While accomplishing the tasks with the multimodal 
system it could also be observed that users switched from 
speech to touch input, after experiencing repeated speech 
recognition errors. Otherwise speech was the preferred input 
modality for tasks that were solvable with less interaction 
steps via speech (Metze et al., 2009).  

Current Research Work 
Currently I am working towards my PhD, where I am 
developing user models for the simulation of interaction 
between users and multimodal dialogue systems. Thereby 
the modality choice of users has to be simulated in each 
interaction step. A literature research within HCI related 
topics exploring user behavior and our previous work show 
that miscellaneous factors like e.g. expertise (Kamm et al., 
2008; Seebode, 2009), task and efficiency (Naumann, 2008) 

and task success (Wechsung et al., submitted) influence 
modality selection. According to these findings the 
Attentive Display user study indicates that efficiency of 
interaction and system errors affect user behavior (Metze et 
al., 2009). Usage of shortcuts via speech and modality 
switch after repeated malfunction of the speech recognition 
module was observed in the study. Users appear to prefer 
more efficient interaction strategies. 

In the following two subsections I give a closer 
description of two of my current research projects. 

Project 1: Modeling Efficiency-Guided Multimodal 
Strategy Selection 
In order to build a model for selected Attentive Display 
tasks, human data about modality usage, recorded during the 
experiment, serves as a target value. Currently the employee 
search task including a shortcut via speech input is modeled 
with the cognitive architecture ACT-R (Anderson & 
Lebiere, 1998). To search the employee “Patrick” by means 
of touch screen or speech input the following interaction 
steps have to be fulfilled: 
 

[pre 1] Search button “SEARCH” [post 2] 
[pre 2] Press button “SEARCH” [post 3] 
[pre 2] Speak “SEARCH PATRICK” [post 11] 
[pre 3] Search button “P” [post 4] 
[pre 4] Press button “P” [post 5] 
[pre 5] Search button “A” [post 6] 
[pre 6] Press button “A” [post 7] 
[pre 7] Search “T” [post 8] 
[pre 8] Press button “T” [post 9] 
[pre 9] Search button “PATRICK” [post 10] 
[pre 10] Press the button “PATRICK” [post 11] 
[pre 11] Search goal cue [post end] 

 
This simple task analysis is implemented in the ACT-R 
model as instructions in declarative memory. The model 
also provides a couple of production rules for retrieving the 
instructions, searching in the interface, pressing buttons and 
speaking commands. The structure of the model is similar to 
the model presented by Taatgen et al. (2006) where 
declarative instruction chunks are associated through pre- 
and postconditions. This makes it easy to reuse instructions 
which are used for speech and touch interaction (e.g. 
production [pre 1] and [pre 11]). Additionally this 
representation features a practical flexibility which can be 
used for simulating multimodal interaction with ACT-R. If 
two chunks with the same precondition are added to 
declarative memory, different interaction strategies can be 
retrieved and different postconditions can be set. Thereby it 
has to be taken into account that chunks where the 
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precondition occurs twice are chosen randomly. Hence the 
model does not reproduce human behavior.  One possibility 
of solving this problem is to use the ACT-R inherent 
mechanisms production compilation (Taatgen & Lee, 2003) 
and utility learning. The production compilation mechanism 
combines two production rules into one new rule and 
substitutes retrievals from declarative memory directly into 
the new rule. Thus specialized productions for speech and 
touch interaction are created. Utility learning rewards all 
rules which are involved in reaching the goal. The total 
reward is a stated value and spreads over the involved rules. 
Consequently the reward per rule is lower if more rules 
were involved. By means of these mechanisms it should be 
possible to let ACT-R learn the utilities of new production 
rules during an initial training. After the training the strategy 
involving less production rules should have a higher utility.  
Hence the more efficient modality should be used with a 
higher probability. 

The aim of this research project is to investigate if ACT-R 
could be applied directly as a decision mechanism for 
modality selection in a development environment (the 
MeMo Workbench), which is based on prior work of the T-
Labs (Möller et al., 2006). Furthermore rules for modality 
selection will be derived. 

Project 2: Efficiency-Dependent Thresholds for 
Modality-Changing 
This research project aims to develop a multimodal 
prototype for purposes of investigating thresholds for 
modality changing. Users of multimodal systems often have 
the possibility to choose a specific input modality to 
perform an interaction step during the processing of a task. 
Diverse factors influencing modality choice including 
efficiency-related factors like time to solve the task, 
interaction steps and cognitive load have to be considered. 
The objective is to examine whether users change their input 
modality from touch to speech interaction or vice versa, if 
the modalities offer different efficiencies. Therefore I 
propose a task which systematically allows varying the 
number of interaction steps to solve a goal. Additionally 
cognitive load should be kept as constant as possible. The 
task will be integrated in an application on a mobile device.  

The findings of this project should be translated into rules 
which will be used by the MeMo Workbench. 

Future Work 
In addition to the aforementioned projects further research is 
required on factors like cognitive load, dual task, 
experience, system errors and individual user attributes. A 
detailed factor model describing the effects and relations of 
the factors to each other should be deployed. Furthermore 
the developed models should be validated by transferring to 
other tasks.  

My findings about modality selection will be integrated 
into the MeMo Workbench which so far only facilitates the 
evaluation of unimodal system models. After the extension 
MeMo will be validated again. Therefore systems and tasks 

which have been explored in prior experiments will be 
modeled with MeMo. The empirical data gathered during 
the experiments will serve as target values.  
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Introduction 
The role of visual search in everyday tasks is paramount. 
Whether we are searching for an item in the grocery store, 
trying to find our car in a busy parking garage, or looking 
for an important piece of information on a web page, the 
visual search mechanism is crucial. We are also quite 
efficient at performing all of these tasks. The main focus of 
the current proposal will be to further our understanding and 
modeling of what makes the process so efficient. The key 
emphasis here is on the process of visual search – the actual 
strategies that people utilize as they search for things and 
the degree to which memory plays a role in aiding in this 
process. 

Visual search as a paradigm has been studied 
meticulously for the better part of the last 50 years. The 
paradigm consists of the detection of a target among a 
varying number of distractors with the dependent measure 
being whether the search is serial or parallel (Duncan & 
Humphreys, 1989; Treisman & Gelade, 1980; Wolfe, 1994). 

The role of memory within visual search has also been 
greatly debated. In some instances, researchers have inferred 
from response time data that memory is not utilized during 
search because there was not a difference in response time 
between static and dynamic search conditions (Horowitz & 
Wolfe, 2003; Korner & Gilchrist, 2007; Melcher & Kowler, 
2001; Peterson, Beck, & Wong, 2008; Peterson, Kramer, 
Wang, Irwin, & McCarley, 2001). In other instances, it has 
been shown that visual search is guided by memory for 
previously viewed items (Korner & Gilchrist, 2007; 
Peterson et al., 2008; Peterson et al., 2001). In particular, 
eye movement provides a more detailed picture of the 
underlying search process (Geyer, von Muhlenen, & Muller, 
2007). Geyer et. al. used the same search paradigm as 
Horowitz and Wolfe but analyzed the eye movement 
behavior in addition to the response time data and found that 
participants rarely re-fixate items suggesting a role for 
memory in visual search. Furthermore, path memory has 
also been shown to exist suggesting that more of the 
distractor space is represented (Dickinson & Zelinsky, 
2007).  

In all of these studies, however, it was specifically visual 
search that was being manipulated and measured. As such, 
these tasks have been relatively simple – presenting items 
on the screen for varying lengths of time and measuring 
how long it took for participants to find the target. In the 
current work, the visual search process will be analyzed and 
modeled embedded within the context of a larger task. In 

particular, I am interested in how the search process is 
modulated when people are forced to wait for information to 
appear (during a timed lockout) and by having searched for 
other items on the same display. In the course of attempting 
to model performance on this task (using ACT-R), it was 
found that the model had problems with the basic visual 
search process. It is therefore the goals of the current work 
to explore the visual search strategies employed by 
participants and implement them in the model, which will 
consequently aid in modeling the rest of the task. 

The Task 
A simple radar task was used to determine how people 
allocate attention when forced to wait for information to 
appear. As compared to traditional visual search tasks where 
each trial consists of a single target among varying numbers 
of distractors, this task had distractors that on another visual 
pass through the display could be targets. Therefore memory 
for previous distractors would be beneficial and may guide 
subsequent searches. 
 
Procedure 
Participants were eye-tracked while they completed 60 trials 
of the task. A radar screen (Figure 1) was displayed on the 
left and was comprised of a static display of 20 2-digit 
numbers arranged randomly on the display. On the right 
side of the screen was the table of alternatives (TOA).  

 

 
Figure 1: Task display, seen both by human participants and 

the model. 
 

During the trial, the task of the participant was to 
determine which of the six targets from the TOA had the 
highest threat value. Threat values ranged from 0(lowest) to 
9(highest). In order to discover the threat value of a 
particular alternative (target), the participant had to find and 
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click on the target in the radar display. Once a target was 
clicked (selected), there was a lockout delay of 1, 2, 4 or 8s 
depending on the participant's condition. The threat value 
would then appear next to the selected item. Consequently, 
the participant had to repeat this process with the rest of the 
items from the TOA until the highest threat-valued target 
was discovered.  

Preliminary Analyses & Model 
Preliminary analyses of the data were done with respect to 
the first several fixations on each trial to determine the 
search strategies used to find the first target clicked. A 
typical sequence of first fixations involved participants 
looking at 1-2 TOA items and then moving their gaze to the 
radar. Participants were able to find the first item they 
selected in an average of 6 fixations, with no differences 
between the four conditions. Participants also tended to re-
fixate items on the radar display in ~15.37% of fixations 
prior to selecting the first target. 

In order to inform the model’s search initiation, I also 
looked at where participants tended to begin their search. 
There were several possibilities: a) closest to TOA, b) 
closest to center of the radar, c) closest to one of the corners 
of the radar, d) to the item that had the most other items 
around it (most ‘clustered’), e) to the item that had the least 
other items around it (singleton). The results are beyond the 
scope of this paper, but they will be used to inform the 
model. 

The ACT-R cognitive architecture will be used to model 
this task because of its ability to ground the model in the 
same environment that human participants saw (Anderson et 
al., 2004). The goal of the proposed work will be to use 
human data to inform the model’s visual search process as 
in its current state it is considerably more inefficient than 
human participants in finding the targets in the radar. ACT-
R currently uses the finst mechanism for ensuring that items 
previously fixated are not re-fixated within a given amount 
of time. However, although people find the item they are 
searching for efficiently (within 6 fixations), they also tend 
to revisit items they have viewed before suggesting that 
relying on the finst mechanism is insufficient to model 
behavior.  

Future Work 
Instead of relying on the finst mechanism, the proposed 
work will determine the degree to which the visual 
segmentation of the display allows for the efficient search 
process. Others have shown that fixations and saccades 
progress in a course-to-fine strategy whereby fixation 
durations increase while saccade amplitudes decrease as 
search continues (Over, Hooge, Vlaskamp, & Erkelens, 
2007). The current work will explore whether people 
systematically search the displays such that they look within 
visual ‘clusters’ of items, thereby minimizing the number of 
areas they need to search to find the targets.  

Currently, a k-means clustering algorithm has been used 
to quantitatively assess which items appear to cluster 

together on each screen. However, k-means has the 
limitation that it is difficult to know what value of k is 
appropriate for each screen layout. Therefore, a new study is 
being run which presents the same screen layouts the 
original participants saw to naïve participants who are asked 
to make these judgments.  

The modeling work will take into account the findings 
from this new study and will incorporate the visual search 
strategies employed both at the beginning of each trial, 
during subsequent searches, and during lockouts.  
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Abstract 

Cognitive control may be defined as the mechanisms or 
processes invoked in order to engage in goal directed 
behaviour under system constraints. This symposium explores 
a range of recent computational approaches to understanding 
problems of cognitive control. It comprises five presentations 
which each discuss a different aspect of cognitive control and 
a discussion session. 

Keywords: Cognitive control; executive function; rational 
adaptation; task switching; monitoring; multitasking. 

Introduction 
In cognitive science there is a substantial research tradition 
of studying control problems such as how the cognitive 
system ensures the selection of a desired action in 
circumstances where an automated, learned, action might 
otherwise be selected. Control problems are often 
understood as arising from the necessity to serialise the 
multi-threaded processing contributions of a parallel neural 
architecture, but some work (e.g. Rieskamp, 2008) has tried 
to extend the application of control metaphors, derived from 
control theory and reinforcement learning, to a broader 
range of phenomena, including those associated with higher 
level decision making tasks. In the most general terms we 
might define the control problem as the problem of what to 
do next. A view that, perhaps, encourages an integrative 
approach to cognition that eschews prior commitments to 
particular forms of processing mechanisms. Control is about 
engaging in goal directed behaviour under system 
constraints. 

Questions concerning cognitive control include, for 
example: how people switch among the short-term goals 
that govern everyday behaviour (Altmann & Gray, 2008); 
how people allocate perceptual, motor and cognitive 
resources in the control of interactive behaviour (Gray et al., 
2006); how people adjust architectural parameters in the 
light of feedback (Botvinick et al, 2001); how people inhibit 
prepotent but inappropriate or unintended behaviours 
(Norman & Shallice, 1986); how the cognitive system 
resolves the problem of producing multiple responses when 
processing or physical constraints prevent them from being 
produced in parallel (Howes et al., 2009); how the cognitive 
system may manage strategies in demanding memory tasks 
(Juvina & Taatgen, 2007); and how the cognitive system 
learns to prefer specific strategies in judgement and decision 
making tasks (Rieskamp, 2008). It is also critical to real 
world applied problems such as driving (Salvucci, 2006; 
Janssen and Brumby, in press; Gunzelmann et al., 2009). 

The control problem is difficult for a number of reasons: 
1. The temporal credit assignment problem. Control is 
adaptive, so the problem of control encompasses the 
problem of how to make use of feedback. However, 
multiple actions can contribute to feedback and feedback 
may be delayed. This raises the problem of which actions 
should be assigned credit/blame when feedback is received. 
(cf. Lovett and Anderson’s (1996) utility learning within 
ACT-R). 
2. The uncertainty problem. Frequently information that we 
do have (e.g., feedback) is uncertain. We may know that 
information is uncertain, but how should information about 
uncertainty be processed? 
3. The scaling problem. When many choices are available 
considering them all is computationally expensive. Scaling 
problems are found in, for example, both reinforcement 
learning and Bayesian approaches to modelling control and 
inference (Botvinick, Niv & Barto, 2009). 
4. The bounds problem.  The brain is a physically 
instantiated neural processing mechanism that imposes 
limits on what information can be encoded and effectively 
deployed. Cognitive control involves making efficient use 
of the neural mechanism subject to these limits (Howes, 
Lewis & Vera, 2009). 
5. The concurrency problem. In many situations behaviour 
is under the control of multiple goals which we work 
towards concurrently, as in the example of driving while 
navigating or holding a phone conversation (Salvucci & 
Taatgen, 2008). 

The symposium will explore a range of recent 
computational approaches to understanding the control 
problem through five diverse presentations and a discussion 
session. 

Botvinick’s recent work emphasises the hierarchical 
structure of control knowledge: the divisibility of ongoing 
behavior into discrete tasks, which are comprised of subtask 
sequences, which in turn are built of simple actions. 
Botvinick, Niv and Barto (2009) reexamines behavioral 
hierarchy and its neural substrates from the point of view of 
recent developments in computational reinforcement 
learning. Specifically, a set of approaches known 
collectively as hierarchical reinforcement learning is 
considered. A close look at the components of hierarchical 
reinforcement learning suggests how  they might map onto 
neural structures, in particular regions within the 
dorsolateral and orbital prefrontal cortex. A particularly 
important question that hierarchical reinforcement learning 
brings to the fore is that of how learning identifies new 
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action routines that are likely to provide useful building 
blocks in solving a wide range of future problems.  

Cooper will discuss the potential roles of so-called 
forward and inverse models in cognitive control. Forward 
models are representations of a future state of a system 
given its current state and a plan or course of action, while 
inverse models “invert the causal flow” and allow one to 
predict, given a desired state and a course of action will 
should result in that state. Both forward and inverse models 
have been argued to play important roles in motor control 
(e.g., Wolpert & Ghahramani, 2000). Cooper will argue that 
such models, possibly learned through associative and 
reinforcement learning mechanisms, may equally play a 
significant role in cognitive control, allowing the cognitive 
system to predict appropriate processing parameters and 
thereby configure itself prior to task performance.  

Both Howes and Lewis will explore computational and 
empirical approaches to understanding people as bounded 
optimal control systems (Howes, Lewis & Vera, 2009). 
They contend that through learning people solve the 
constrained optimisation problem presented by their 
architecture. Howes will present evidence concerning 
bounded optimal control of working memory strategies. The 
work demonstrates that people do not only adapt strategies 
to changes in the cost structure of the task environment but 
rather they adapt optimally. Lewis will present a boundedly 
optimal control perspective on interference resolution. He 
will report a computational model of how people adapt 
strategically to interference in memory. 

Taatgen’s task will aim to initiate a discussion about 
asking the right questions; clearly a precusor to the search 
for answers.The standard way to think about cognitive 
control in multitasking is that control is needed to schedule 
the use of resources between tasks (e.g., Kieras, 2007). A 
different view, prompted by the threaded cognition theory of 
multitasking (Salvucci & Taatgen, 2008), is that not all 
cognitive processing can be understood in terms of tasks. As 
soon as we consider something as a task, some measure of 
cognitive control is needed to make sure all the steps in the 
task are carried out to achieve the goal. Miyake's (Miyake et 
al, 2000) three categories of cognitive control (inhibition, 
working memory and task switching) are all needed to 
protect a task from interference, but they are not the whole 
story. Cognitive modeling can help complete the picture.  
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Introduction 
More and more people are interested in developing "day in 
the life" models and simulations of people's behavior at the 
second and longer timeframe, the interaction between 
groups of people and systems, as well as the movement and 
interaction within the environment. Cognitive modeling 
tools (e.g. SOAR, ACT-R) focus on detailed modeling of 
individual cognitive tasks at the sub-second level. In 
contrast, activity modeling focuses on higher-abstraction 
behaviors that enable modeling of people's daily activities 
and enable a focus on how informal, circumstantial, and 
located behaviors of a group of individuals occur and where 
communication and synchronization happen, such that the 
task contributions of people and machines flow together to 
accomplish goals. This is referred to as "work practice 
modeling."  

Brahms includes an activity-oriented Belief-Desire-
Intention (BDI) language, a compiler and virtual machine 
for executing Brahms models, as well as an Eclipse plug-in 
and a post-execution viewer of agent execution, 
communication and interaction. Brahms enables the creation 
of multi-agent models that include aspects of reasoning 
found in cognitive models, task execution, plus the impact 
of interaction and geography, such as agent movement and 
physical changes in the environment. Brahms is currently 
used to automate the work of a flight controller in NASA’s 
International Space Station’s Mission Control Center (ISS 
MCC). This system, called OCAMS, has been in production 
in the ISS MCC, 24x7, since July of 2008, and is based on a 
Brahms model of the work practices of the flight controllers. 
OCAMS is a distributed Multi-Agent System (Sierhuis et 
al., 2009b). 

Motivation for Brahms 
Brahms was developed as a multiagent modeling and 
simulation language to visualize the social systems of work 
for business redesign projects. The Brahms language was 
originally conceived of as a language for modeling 
contextual behavior of groups of people, called work 
practice. 

Work Practice: The collective performance of 
contextually situated activities of a group of people who 
coordinate, cooperate and collaborate while performing 
these activities synchronously or asynchronously, making 
use of knowledge previously gained through experiences 
in performing similar activities. 

This created two very important ideas for the language: 

First, to model a group of people it is very natural to model 
them as software agents. Second, modeling situated 
behavior of a group imposes a constraint on the level of 
detail that is useful in modeling the dependent and 
independent behavior of the individuals. The right level is a 
representational level that falls between functional process 
models and individual cognitive models (Clancey et al., 
1998). If we are interested in modeling a day-in-the-life of 
say ten or more people, modeling the individual behavior at 
the level of cognitive task models will be very time 
consuming, because these models are generally at the 
millisecond decision-making level. To overcome this kind 
of detail, the Brahms language uses a more abstract level of 
behavioral modeling that is derived from Activity Theory 
(Leont'ev, 1978; Vygotsky, 1978) and Situated Action 
(Suchman, 1987). An individual's behavior is represented in 
terms of activities that take an amount of discrete time and 
can be decomposed into more detailed subactivities if 
necessary. 

Brahms demonstrates how a multiagent belief-desire-
intention (BDI) language, symbolic cognitive modeling, 
traditional business process modeling, activity- and situated 
cognition theories are brought together in a coherent 
approach for analysis and design of organizations and 
human-centered systems.  

The Brahms Language 
The Brahms language is a pure AOL (Sierhuis et al., 
2009a). It is not a set of Java libraries enabling agent-based 
programming in the Java language. Instead, Brahms is a 
full-fledged multiagent language allowing the modeler to 
easily and naturally represent multiple agents. Although 
Brahms was originally developed for modeling people's 
behavior, the Brahms language is a domain independent 
language. This means that the modeler decides what a 
Brahms model represents. Agents can represent whatever 
autonomous entity the modeler wants to represent, such as a 
person, an animal, or an autonomous or intelligent system. 
Brahms includes the following language features: 
• Mental attributes: attributes, relations, beliefs and 

facts. 
• Deliberation and Intention: concluding new beliefs, 

and use of production rules for reasoning. 
• Adaptation: changing beliefs, execution activity 

behavior and reasoning based on context. 
• Social Abilities: groups and group inheritance, 

communication, and modeling the environment 
(objects, geography and location). 
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• Reactive and Cognitive-based behavior: modeling 
activity behavior, versus pure cognitive behavior, 
detectables, workframe-activity subsumption. 

• Agent Communication: communication activities, and 
communicative acts. 

Brahms is an agent-oriented BDI-like language. It allows 
easy creation of groups of agents that execute parallel 
activities based on local beliefs. Below is a simple 
taxonomy of the language concepts: 

 
GROUPS are composed of 
AGENTS having 
BELIEFS and doing 
ACTIVITIES executed by 
WORKFRAMES defined by 
PRECONDITIONS, matching agents beliefs 
PRIMITIVE ACTIVITIES 
COMPOSITE ACTIVITIES, decomposing the activity 
DETECTABLES, including INTERUPTS, IMPASSES 
CONSEQUENCES, creating new beliefs and/or facts 

DELIBERATION implemented with 
THOUGHTFRAMES defined by 
PRECONDITIONS, matching agents beliefs 
CONSEQUENCES, creating new beliefs 

Cognitive Modeling in Brahms 
Brahms borrows some of the theoretical underpinnings of 
the ACT-R theory about human knowledge. Just as in ACT-
R, Brahms assumes there are two types of knowledge—
declarative and procedural.  

Declarative knowledge in Brahms is represented as 
“beliefs” of individual agents. A belief of an agent in 
Brahms plays a similar role in processing the procedural 
knowledge of the agent as chunks do in ACT-R, i.e. they are 
matched to preconditions of rules. However, beliefs are 
semantically and syntactically simpler than chunks. A belief 
is a first-order predicate statement. 

Brahms represents the procedural knowledge of an 
individual agent as rule-like constructs called workframes 
and thoughtframes. The condition-part—called pre-
conditions—are matched against the belief-set of the 
Brahms agent. When all the preconditions of a workframe 
or thoughtframe match, the rule is put onto the agent's work 
stack. Each of these rule-types is processed independently 
by the virtual machine. Hence the reason for separate stacks.  

Thoughtframes are similar to production rules in ACT-R, 
in that their action-part consists only of changes to, or 
additions of beliefs in the agent's declarative memory, i.e. its 
belief-set. Thoughframes are executed in a forward-chaining 
mode. Workframes are the main type of rule in Brahms. 
Activities are executed in the action-part of a workframe 
(the workframe's body). The time it takes to fire a 
workframe depends on the total time it takes to execute all 
of the activities in its body. The workframe rule-type in 
Brahms corresponds to the goal-directed production rules in 
ACT-R, with the addition that in a workframe we can 

include the changes in the external world, and not only the 
internal declarative changes in the memory of the agents.  

We show a similar figure (Figure 1) for a Brahms agent as 
the figure in Anderson’s book about ACT-R (Anderson and 
Lebiere, 1998) 
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The half-day tutorial introduces participants to the CLAR-
ION cognitive architecture and presents a detailed descrip-
tion, as well as simulation examples, advanced topics, and 
demonstrations. It will combine conceptual (psychological), 
theoretical, and implementation aspects of the architecture. 
Participants should have some prior exposure to cognitive 
architectures and artificial neural networks. Preferably, par-
ticipants should also have some experience with program-
ming languages (in particular Java). However, prior under-
standing of these areas can be limited, as both basic and 
advanced topics related to cognitive modeling using CLAR-
ION will be covered. 

Tutorial Outline 
A General Overview of CLARION (15 min.) 

In this section, an introduction to cognitive architectures 
in general, and CLARION in particular, will be presented. 
CLARION will be compared to various other architectures 
and a brief discussion of some past and current applications 
of CLARION will be presented along with cognitive justifi-
cations and implications. 

CLARION is a unified, comprehensive theory of the mind 
based on two basic theoretical assumptions: representational 
differences and learning differences of two different types 
of knowledge --- implicit vs. explicit (Sun, Merrill, & Peter-
son, 2001; Sun, Slusarz, & Terry, 2005), among other essen-
tial assumptions/hypotheses (Sun, 2003).  

The first assumption, the representational difference be-
tween these two types of knowledge, relates to accessibility. 
In each subsystem of CLARION, the top level contains eas-
ily accessible explicit knowledge whereas the bottom level 
contains less accessible implicit knowledge.  

The second assumption of CLARION concerns the differ-
ent learning processes in the top and bottom levels of each 
subsystem (Sun et al., 2001, 2005). In the bottom level, im-
plicit associations are learned through gradual trial-and-
error learning. In contrast, learning of explicit knowledge is 
one-shot and captures its abrupt availability. The emphasis 
on bottom-up learning (i.e., the transformation of implicit 
knowledge into explicit knowledge) is, in part, what distin-
guishes CLARION from other cognitive architectures (al-
though top-down learning is also a capability of CLAR-
ION). 

In addition to the aforementioned theoretical assumptions, 
CLARION is a cognitive architecture composed of four 
main subsystems: the Action-Centered Subsystem, the Non-
Action-Centered Subsystem, the Motivational Subsystem, 
and the Meta-Cognitive Subsystem.  

The Action-Centered Subsystem (60 min.) 
In this section, the Action-Centered Subsystem (ACS) 

will be defined in detail. The structure and design of the 
various aspects of the ACS, along with the learning mecha-
nisms and the properties of the model, will be presented. 
Finally, a series of simulation examples related to the opera-
tions within the ACS will be presented. 

The Action-Centered Subsystem is used mainly for action 
decision-making. In the ACS, the top level generally con-
tains simple “State  Action” rules, while the bottom level 
uses multi-layer perceptrons to associate states and actions. 
Reinforcement learning algorithms (usually with back-
propagation) are used in the bottom level while rule learning 
in the top level is mostly “one-shot” and can be performed 
bottom-up (via “explicitation”) or independently (e.g., 
through linguistic acquisition). 

The ACS has been used to model anything from naviga-
tion in minefields (Sun et al., 2001) to Towers of Hanoi, etc. 
In addition, because CLARION focuses on the dichotomy 
between explicit and implicit knowledge, benchmark psy-
chological tasks used to demonstrate implicit learning have 
also been successfully modeled and explained (Sun et al., 
2005).  

The Non-Action-Centered Subsystem (45 min.) 
 Similar to the section on the ACS, this section will detail 

the Non-Action-Centered Subsystem (NACS). The structure 
and design of the various aspects of the NACS, along with 
the learning mechanisms and the theorems describing the 
properties of the model, will be presented. In addition, as 
with the section on the ACS, a series of simulation exam-
ples demonstrating the operations within the NACS will be 
presented. 

The Non-Action-Centered Subsystem is used to store de-
clarative (“semantic” and episodic) knowledge and is re-
sponsible for reasoning in CLARION. In the NACS, the top 
level contains simple associations while the bottom level 
involves a nonlinear neural network. Associative learning 
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algorithms (e.g., backpropagation or contrastive Hebbian) 
are generally used in the bottom level whereas associations 
in the top level are mostly learned “one-shot” (similar to the 
ACS). 

The NACS has mostly been used to simulate memory and 
reasoning. In particular, CLARION was able to capture the 
effect of mixed rule-based and similarity-based reasoning 
(e.g., when judging the likelihood of simple deductive 
forms). In addition, other reasoning phenomena (e.g., inheri-
tance-based reasoning, reasoning from incomplete informa-
tion, etc) have also been explained using CLARION (e.g., 
Sun & Zhang, 2006).  

The Motivational and Meta-Cognitive Subsystems (30 min.) 
In the fourth section, the structure and design of the moti-

vational (MS) and meta-cognitive (MCS) subsystems will 
be explored in detail. In addition, several past and current 
simulation examples related to the operations within the MS 
and the MCS will be presented.  

The Motivational Subsystem contains both low-level 
(physiological) and high-level (social) primary drives that 
take into account both environmental and internal factors in 
determining drive strengths. These drive strengths are re-
ported to the Meta-Cognitive Subsystem, which regulates 
not only goal structures but also other cognitive processes as 
well (e.g., monitoring, parameter setting, etc). For more 
details on motivation and meta-cognition see Sun (2003, 
2007, 2009). 

Simulations using these subsystems, for example, have 
shown how anxiety-inducing drives can affect the parame-
ters within the ACS in terms of explicit vs. implicit response 
weighting and overall performance (Wilson et al., 2009). 
Other simulations have addressed the combination of drives 
in the MS toward the setting of goals by the MCS.  On this 
basis, models of human personality have been developed. 

Introduction to the CLARION Library (30 minutes) 
The CLARION implementation (in Java) has recently un-

dergone a number of improvements and enhancements al-
lowing for the simulating of a wide variety of tasks, as well 
as interfacing with a variety of virtual environments. In the 
last section of the tutorial, an overview of the CLARION 
Library will be presented. Participants will be given copies 
of the newest release of the library and will be shown how it 
can be used to run new and existing simulations. 

Relevance for Cognitive Science 
The CLARION cognitive architecture is well established 

and has been the subject of more than 100 scientific papers 
and several books. CLARION is particularly relevant to 
cognitive scientists because of its strong psychological plau-
sibility and the breadth of its application to cognitive model-
ing and simulation. In CLARION, each structure corre-
sponds to a psychological process/capacity. CLARION-
based models have been used to explain data as diverse as 
implicit learning, cognitive skill acquisition, inductive and 
deductive reasoning, meta-cognition, motivation, personal-
ity, and social simulations (Sun, 2006). 

Presentation Details & History  
Descriptions and demonstrations during the presentation 

will be provided using PowerPoint and the Eclipse Java 
development environment. 

Participants in the tutorial are encouraged to ask questions 
throughout the presentation to clarify any ideas described. 
The presenters are versed in both the conceptual and imple-
mentation details of the CLARION cognitive architecture. 

An older variation of the proposed tutorial had been pre-
sented at the 30th Annual Meeting of the Cognitive Science 
Society in Washington D.C. as well as the 2009 Interna-
tional Joint Conference on Neural Networks in Atlanta, GA. 
In addition, this tutorial has been given as a lecture series on 
several occasions for various courses in Cognitive Science 
at Rensselaer Polytechnic Institute. 

Sample Materials 
• A complete technical specification of CLARION: 

http://www.cogsci.rpi.edu/~rsun/sun.tutorial.pdf 
• A list of CLARION-related publications:  

http://www.cogsci.rpi.edu/~rsun/clarion-pub.html 
• Current versions of the CLARION Library, slides, etc.: 

http://www.cogsci.rpi.edu/~rsun/clarion.html 
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