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Introduction

The International Conference on Cognitive Modeling (ICCM) is the premier conference for
research on computational models and computation-based theories of human behavior. ICCM is a
forum for presenting, discussing, and evaluating the complete spectrum of cognitive modeling
approaches, including connectionism, symbolic modeling, dynamical systems, Bayesian modeling, and
cognitive architectures. ICCM includes basic and applied research, across a wide variety of domains,
ranging from low-level perception and attention to higher-level problem-solving and leaming. The
|Oth ICCM was held at Drexel University in Philadelphia, PA, on August 5-8, 2010.

All papers and abstracts in the ICCM 2010 proceedings may be cited as follows:

Doe, J, & Doe, J. (2010). This is the title of the paper. In D. D. Salvucci & G. Gunzelmann (Eds.),
Proceedings of the | Oth International Conference on Cognitive Modeling (pp. 1-6). Philadelphia, PA:
Drexel University.
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The following awards honor the best paper and poster contributions in select categories as chosen
by a committee of distinguished researchers. Congratulations to our winners and honorees!

Siegel-Wolf Award for Best Applied Paper
Sponsored by Aptima, Inc.

This award, given for the best applied research paper, is named in recognition of Art Siegel and Jay
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HOW TO INVESTIGATE THE LIVING COGNITION:
AN APPLICATION TO DYNAMIC SIMULATION OF MENTAL ACTIVITIES WHILE DRIVING

Thierry Bellet (thierry.bellet@inrets.fr), Pierre Mayenobe (pierre.mayenobe@inrets.fr),
Jean-Charles Bornard (jean-charles.bornard@inrets.fr)
INRETS (LESCOT) - French National Institute on Transport and Safety Research,
25 Avenue Frangois Mitterrand, 69675 Bron cedex, France

Abstract

This paper is dedicated to the “living cognition” issues, which
concern the ability of a cognitive model to simulate humans’
mental activities when dynamically interacting with the
external environment. After having introduced the theoretical
foundations of this approach, an integrative COgnitive
Simulation MOdel of the DRIVEr is presented (i.e.
COSMODRIVE). The central process that supports the /iving
cognition in this model is the deployment of a cognitive
schema, corresponding to the driver’s mental representation
of the driving situation as instantiated in the Working
Memory. This dynamic visual-spatial mental model, defined
as the driver’s situational awareness, is used by the driver for
perceptive exploration of the road scene, decision-making,
anticipation and action planning, in order to interact with the
road environment. This dynamic process of regulation is
based on both implicit and explicit mental simulations and is
illustrated through an example in the last section of the paper.

Keywords: Cognitive simulation, car driving, visual-spatial
mental representation, dynamic cognition, implicit and
explicit situation awareness.

1. Theoretical foundation of the living cognition

Although a familiar task of everyday life, car driving is
however a complex activity that involves every levels of
human cognition. Indeed, driving a car requires (i) to select
relevant information from the environment, (ii)) to
understand the current situation and to anticipate its
progression in the more or less long term, (iii) to take
decisions in order to dynamically interact - via the vehicle -
with the road environment and the other road users, (iv) and
to manage owns resources (physical, perceptive and
cognitive) in order to satisfy the time constraints of the task,
inherent to the dynamic nature of the driving situation. The
selective dimension of information collection is especially
important as drivers cannot take in and process all the
information available in the road environment. As we shall
argue in this paper, this information is not selected
haphazardly. It depends on the aims the drivers pursue, their
short-term intentions (i.e. tactical goals, such as turn left ata
crossroads) and long-term objectives (i.e. strategic goals,
such as reaching their final destination within a given time),
the knowledge they possess and the attentional resources
allocated to the driving task. Information selection is the
result of a complex process whose keystone is the driver’s
mental representation of the driving situation. Indeed, from
their interaction with the road environment, drivers build
mental models of the events and objects that surround them.
These mental representations are dynamically formulated in
working memory through a matching process between (i)

pre-existing operative knowledge (Ochanine, 1977) and (ii)
perceived information extracted in the external environment.
They are formulated by and for the action, and they provide
interiorized models of the task (Leplat, 2005). When
driving, these representations provide 3-Dimensional (i.e.
visual-spatial) models of the environment, liable to be
mentally manipulated by the driver, in order to support
anticipation through cognitive simulations, and thus
providing expectations on future situational states. Drivers
continually update these mental models as and when they
carry out their activity. This dynamic process, based on both
implicit and explicit mental simulations (Bellet et al., 2009),
is the central focus of the “/iving cognition” (Bellet, 2010)
as investigated in this paper. At a theoretical level, the living
cognition is jointly based on three scientific traditions: (i)
the cybernetics and the human information processing
theories, (ii) the Russian theory of activity, and (iii) the
ecological approach of human perception.

COgnitive Simulation
MOdel of the DRIVEr

(COSMODRIVE)

PERCEPTION
MODULE

COGNITION MODULE: A
Situation Awareness & Decision-Making '~ ere
(TACTICAL LEVEL) £ \Qangd

p '
& (\ erceptioy-?ognitlo

ACTION MODULE Loops of Control :

(OPERATIONAL
LEVEL) |_- Automatic control mode (implicit) l

\—/‘ - Attentional control mode (explicit) ‘

Figure 1: the car driving activity as a dual regulation loop

According to Wiener’s cybernetics theory (1948), human
can be defined as a self-adaptive system who interacts with
the external environment through a feedback regulation
mechanism. Humans’ mental activities are then described as
a black box owning information processing mechanisms,
able to generate outputs from perceptual inputs, in order to
adapt itself to the situation. As and when this cycle repeats
itself recursively, the human cognitive system perceptually
assesses the effects of its action on the environment, and
then determines which new action is needed to achieve the
expected state of the surroundings. This iterative process
start again until this state-goal is obtained. Although
cybernetics has finally introduced an epistemological break
with the behaviorist approach in Psychology, the initial
model proposed by Wiener was fully compatible with the
Skinner’s “S-R” approach, until the Pandora's black box
was opened. However, with the development of the human



information processing theory, the internal mechanisms
implemented into the black box, like mental representations
elaboration, reasoning, or decision-making, became the new
central topics of the cognitive sciences. Nevertheless,
according to the experimental method used in laboratory for
investigating cognition in well-controlled conditions, the
Cybernetics "loop logic" has been progressively lost for two
main reasons. First, the experimental paradigm applied in
cognitive sciences requires to artificially break down human
cognition into several functions to be individually
investigated. Moreover, and maybe more critical from the
living cognition point of view, in-lab investigation of human
cognition are based on repetitive measures collected for
similar artificial tasks, in similar conditions. Therefore, the
story must re-start after each new stimulus, as if it was a
totally “new story”, in order to allow the scientists to
rigorously control the experiment. After each S-R sequence,
the task is thus completed, without any expected feedback
effect. Therefore, by using the experimental method,
cognitive sciences ended up losing the notion of “cycle”,
however so important in the cybernetics feedback process
supporting the dynamic of the living cognition, in favor of a
sequential string of processes, from perception to action.

Like Cybernetics, the Russian Theory of Activity considers
human operators through their dynamic interactions with the
external environment. But in this approach, Activity is the
starting point and the core topic of the scientific study of
human cognition, because it is argued that activity directly
structures the operator’s cognitive functions. The
fundamental postulate of the Theory of Activity is well
summarized by Smirnov (1966): human becomes aware of
the surrounding world, by acting on it, and by transforming
it. From this point of view, human is not a passive cognitive
system whose undergoes the stimulus given by the external
environment. S/he is an active observer, with inner
intentions, able to voluntary act on the world and to modify
the situation by their activity, in accordance with their own
needs. Indeed, behind activity there is always a need, which
directs and regulates concrete activity of the subject in the
objective environment (Leontiev, 1977; p. 88). Such a
consideration, so essential in our everyday life as
psychological subjects with needs, intents and will, has been
nevertheless progressively forgotten by the modern
cognitive sciences, when based on the experimental
paradigm. Through laboratory experiments, inner needs and
spontaneous motives disappear, as well as the dynamic “life
cycle” of the natural living cognition.

The same criticism against the destructive effect of
experimental method when applied to cognition has been
formulated by Neisser (1976), through his ecological
approach of human perception. Neisser's work was initially
based on the direct perception theory of Gibson (1979), who
postulates that some affordances, corresponding to
properties of the objects, are directly perceived by the
organism. By contrast with the Gibson ‘“un-cognitive”
theory of perception, Neisser admits the existence of mental
functions, even if he criticizes the sequential vision of the

cognition dominated the human information processing
theory. In a synthetic way, Neisser considers perception as a
skilled and iterative process. Like the Russian theorists of
the activity, he argues that human are not passive receivers
of perceptual inputs, but that they are active in the world, in
accordance with their own motives, their abilities, and their
expectations. His approach describes perception as a
dynamic cycle focused on the relationships between pre-
existing knowledge and the human information-gathering
activity. According with this perceptive cycle, the perceiver
actively explores the surroundings, and then constructs a
dynamic understanding of the current environment. The
mental structure that supports such processes of perception
is described as an active schema of the environment, which
is continually modified by the new perceptual information,
and which also contains anticipatory expectations. This
mental schema includes a cognitive map of the world, and
therefore directs perceptual explorations of the environment,
or prepares the mind for perception of anticipated events. It
can be consequently considered as a kind of control
structure of the perceptive processes.

2. An integrative model of the car driver

In this section, we would like to present a comprehensive
model of the human driver, so-called COSMODRIVE (for
COgnitive Simulation MOdel of the DRIVEr, Bellet et al.,
1999, 2010), that combines in an integrative way the
different theoretical approaches presented above. Several
driver models have been developed during the last decades,
even if the most of them are focused human's performance
more than on cognitive simulation (for a discussion on this
issue, see Bellet et al., 2007). One of the most advanced one
is surely the driver model developed by Salvucci (2006),
that is based on the ACT-R cognitive architecture
(Anderson and al., 2004). Like COSMODRIVE, this model
provides an integrative approach of the driver’s cognition,
by considering 3 components of (i) control, (ii) monitoring,
(iii) and decision making. Cognitive abilities at the
monitoring level are conceptually close to our approach of
mental representation simulation, even if they are different
from the computational point of view (ACT-R chuncks in
declarative memory versus visual-spatial [3D] and dynamic
mental models in COSMODRIVE). Nevertheless, the aim
of this paper is not to theoretically discuss on driver models,
but only to provide an illustrative example of the living
cognition, applied to a very familiar task. The figure 2
provides a synthetic overview of the cognitive architecture
of COSMODRIVE. The heart of the model are the drivers’
mental representations of the driving environment,
corresponding to the driver’s Situation Awareness according
to Endsley (1995) definition of this concept: the perception
of the elements in the environment within a volume of time
and space, the comprehension of their meaning, and the
projection of their status in the near future. These mental
models are built in working memory. At the tactical level
(Michon, 1985), they provide an ego-centered and a goal-
oriented understanding of the traffic situation, including



anticipations of the future changes of the current driving
situation, liable to be mentally investigated by the driver at
an explicit level. At the operational level, which generally
corresponds to the driver’s implicit awareness of the
situation, driving activity is implemented through operative
know-how for vehicle lateral and longitudinal controls
(Bellet et al., 2009). This dichotomy between implicit and
explicit cognition is well established in scientific literature,
for example, with the distinction proposed by Schneider and
Schiffrin (1977) between controlled processes, which
require cognitive resources and which can only be
performed sequentially, and automatic processes, which can
be performed in parallel without any attentional effort. In
the same way, Rasmussen (1986) distinguishes different
levels of activity control according to whether the behaviors
implemented rely on (i) integrated sensorial-motor reflexes
(Skill-based behaviors), (ii) decision rules for managing
familiar situations (Rule-based behaviors), or (iii) generic
knowledge activated in new situations for which the driver
doesn’t have any experience (Knowledge-based behaviors).

& Cognitive Resources Allocation Cycle >

Reasoning

PERCEPTION

LONG TERM
MEMORY

NG

Operative Knowledge
Activation & Learning

Figure 2: Cognitive architecture of COSMODRIVE

Four dynamic cycles regulate the internal functioning of
the model. The perceptive cycle supports the human
perception functions, allowing the driver to actively explore
the road environment, according to their current needs and
objectives (top down perceptive exploration process) and to
integrate new information into their mental models (bottom
up cognitive integration process). The memory cycle plays a
central role for pre-existing knowledge activation (based on
categorization and matching processes permitting to fit
knowledge with the reality, Bellet et al., 2007) as well as in
terms of new knowledge acquisition. The cognitive cycle
corresponds to a set of cognitive agents (like mental
representation elaboration, understanding, anticipation,
decision-making, or action planning) which collectively
handled the internal mental representations, in order to take
appropriate decision and then, to act into the current
environment. Lastly, the cognitive resources allocation
cycle is in charge to dynamically regulate and control the
life cycle of the driver’s cognitive system, in accordance
with the attentional resources that are currently available.

The central structure supporting to the living cognition in
this cognitive architecture is the working memory. From this
point of view, this architecture is directly inspired by the

ACT-R theory (Anderson et al., 2006). However, the
working memory of COSMODRIVE merges both
procedural and declarative memories, and comes more
from the operational memory concept of Zintchenko than
from the Baddeley’s working memory model (1986). For
Zinchenko (1966), the operational memory is a structure
whose main function is to serve the real needs of the
activity. Thus, it is a transitory rather than permanent
memory. However, it should be distinguished from a short-
term buffer limited in storage capacities, in so far as the
information it contains remains available for as long as the
task is performing (for several hours in some cases).

Through COMSODRIVE approach, car driving is
modeling as a dynamic process of interaction between the
driver and the environment through a dual iterative
regulation loop, supporting the living cognition. In
accordance with the Cybernetics theory, human activity is
defined here as an continuous loop of regulation between (i)
inputs, coming from the road environment, and (ii) outputs,
corresponding to the driver’s behaviors implemented into
the real world via the car, which generate (iii) feedbacks, in
the form of a new inputs, requiring new adaptation from the
driver. From this general point of view, the first iteration of
the Perception-Decision-Action regulation loop corresponds
to the moment when the driver starts up the engine, and the
last iteration comes when the driver reaches the final trip
destination, and stops the car. In accordance with the
Human information processing theory, human is not
described here as a closed black box, but as a set of
perceptive, cognitive and behavioral functions allowing the
driver to dynamically regulate their interactions with the
surrounding environment. In terms of cognitive activities,
mental representation of the driving situation plays a key-
role in the cognitive system functioning. This mental model,
based on perceptive information extracted into the road
environment, corresponds to the driver’s awareness of the
driving situation, and therefore determines directly all their
decision-making concerning the relevant adaptive behaviors
to be carried out in the current driving context. In
accordance with the Russian theory of activity, this mental
representation is based on operative knowledge practically
learnt “in situation”. Moreover, the driving task is
performed by using an artifact (i.e. the vehicle), and the
driving situation is directly transformed by the human
operator's activity (e.g. car position on the road depending
of the driver's action on the vehicle controls), as well as the
situation modifies the driver's cognitive states (in terms of
mental representation updating, for example, or new
operative knowledge learning). Lastly, in accordance with
the ecological theory of Neisser (1976), driver’s perception
in figure 2 is based on a dynamic perceptive cycle when (i)
an active schema directs gathering-information activity (i.e.
top down processes) and (ii) focus driver’s attention on
information currently available in the environment. Then
(iii), this active schema provides a mental model that is
continuously updated by dynamic integrating the new pieces
of information collected into the road scene.



3. Computational and dynamic simulation of
the driver’s mental activities while driving

By considering this theoretical background, the
COSMODRIVE model is composed of three main
functional modules (i.e. the Perception, the Cognition, and
the Action modules) in order to drive a virtual Car into a
virtual Environment through two synchronized “Perception-
Cognition-Action” regulation loops (Bellet et al., 2010): an
attentional control mode (mainly focused on Rasmussen’s
rule-based behaviors, and simulated through Driving
Schemas, and an automatic control loop (corresponding to
the skill-based behaviors simulated through the Envelope
Zones concept and the Pure-Pursuit Point method).

3.1 Modeling the explicit cognition: the Driving Schemas

Based on both the Piaget’s concept of operative scheme
and the Minsky (1975) frames theory, driving schema is a
computational formalism defined in order to implement
operative driving knowledge a the tactical level of
COSMODRIVE (Bellet et al., 1999). They correspond to
prototypical empirical situations, actions and events, learnt
by the driver from practical experience.
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From a formal point of view (Figure 3), a Driving Schema
is composed of (i) a functional model of road Infrastructure,
(i1) a Tactical Goal (e.g. turn left), (iii) a sequence of States
and (iv) a set of Zones. Two types of Zone are distinguished:
Driving Zones (Zj), corresponding to the driving path of the
vehicle as it progresses through the crossroads, and the
Perceptive Exploration Zones (exj), in which the driver
seeks information (e.g. potential events liable to occur).
Each driving zone is linked to Actions to be implemented
(e.g. braking or accelerating, in view to reach a given state
at the end of the zone), the Conditions of performing these
actions, and the perceptive exploration zones that permit
checking these conditions (e.g. color of traffic lights,
presence of other road users). A State is defined by a vehicle
position and speed. The different sequences of the driving
zones make up the Driving Paths that progress from the
initial to the final state (achievement of the tactical goal).

Once activated in working memory and instantiated with
the road scene, the active driving schema becomes the
tactical mental representation of the driver, which will be
continually updated as and when s/he progresses into the
current environment. Tactical representation corresponds to
the driver’s explicit awareness of the driving situation and
provides a mental model of the road functionally structured,
according to the tactical goal pursued by the driver in this
particular context (e.g. turn on the left).

3.2 Modeling the implicit cognition: the Envelope-Zones
and Pure Pursuit Point regulation strategies

At the operational level (corresponding to the automatic
control loop presented in fig. 1), COSMODRIVE regulation
strategy is based on two implicit regulation mechanisms: the
envelope zones and the pure pursuit point. From a
theoretical point of view (Bellet et al., 2007), the concept of
envelope zones recalls two classical theories in psychology:
the notion of body image proposed by Schilder (1950), and
the theory of proxemics defined by Hall (1966), relating to
the distance keeping in social interactions with other
humans. Regarding car-driving activity, envelope zones also
refer to the notion of safety margins. At this last level,
COSMODRIVE model approach (Fig4) 1is more
particularly based on Kontaratos’ work (1974), and
distinguishes a safety zone, a threat zone, and a danger zone
in which no other road user should enter (if this occurs, the
driver automatically activates an emergency reaction).

Figure 4: COSMODRIVE “Envelope-Zones” model

The envelope zones correspond to the portion of the path
of driving schema to be occupied by the vehicle in the near
future. Moreover, as an “hidden dimension” of the social
cognition, as suggested by Hall’s theory (1966), these
proxemics zones are also mentally projected to other road
users, and are then used to dynamically interact with them,
as well as to anticipate and manage collision risks. This
“virtual skin” is permanently active while driving, as an
implicit awareness of our expected allocated space for
moving. As with the Schilder’s body schema, it belongs to a
highly integrated cognitive level (i.e. implicit regulation
loop), but at the same time favors the emergence of critical
events in the driver’s explicit awareness. Therefore, the
envelope zones play a central role in the regulation of social
as well as physical interactions with other road users under
normal driving conditions (e.g. inter-vehicle distance
keeping), and in the risk assessment of path conflicts and
their management if a critical situation occurs (commitment
of emergency reactions).

The second hidden dimension of the implicit cognition
implemented at the operational level of COSMODRIVE is



the Pure Pursuit Point method. This method was initially
introduced for modeling in a simplified way the lateral and
the longitudinal controls of an automatic car along a
trajectory (Amidi, 1990), and has been adapted by
Sukthankar (1997), and then Mayenobe (2004), for driver’s
situational awareness modeling. Mathematically, the pure-
pursuit point is defined as the intersection of the desired
vehicle path and a circle of radius centered at the vehicle’s
rear axle midpoint (assuming front wheel steer). Intuitively,
this point describes the steering curvature that would bring
the vehicle to the desired lateral offset after traveling a
distance of approximately 1. Thus the position of the pure-
pursuit point maps directly onto a recommended steering
curvature: k = -2x/1, where £ is the curvature (reciprocal of
steering radius), x is the relative lateral offset to the pure-
pursuit point in vehicle coordinates, and / is a parameter
known as the look-ahead distance. According to this
definition, the operational control of the car by
COSMODRIVE can be seen as process of permanently
keeping the Pursuit Point in the driving path, to a given
speed assigned with each segment of the current tactical
schema, as instantiated in working memory.

4. The emerging living cognition

By using the functional architecture and the cognitive
agents of COSMODRIVE described in figure 2, (ii) the
driving schemas as operative knowledge activated and then
dynamically updated in the form of a functional mental
representation matched with the road scene, and (iii) the
operational skills corresponding to the pure-pursuit point
and the envelopes zones regulation process, it becomes thus
possible to dynamically simulate of the driver’s “living
cognition”. The central process that supports the living
cognition is the deployment of the active driving schema, as
instantiated in Working Memory through the current mental
representation. This deployment consists in moving the car
along a driving path (cf. fig. 3), by successively traveling
through the different driving zones of the schema, from the
initial state (i.e. Z1) until reaching the tactical goal (i.e. Z4).
This deployment process may occurs at two levels: (i) at the
representational level (explicit and implicit mental
simulations of the future activity to be carried out), when the
drivers anticipate and project themselves mentally in the
future, (ii) and through the activity itself, during the
effective implementation of the schema while driving the
car. This twofold deployment is not performed by a specific
process in COSMODRIVE. It is an emergent collective
product, resulting from the combined effect of several
cognitive processes (like anticipation or decision-making),
and merged with the computations based on the envelope
zones and the pursuit point regulation laws. As a result, the
deployment process generates a particular instance of the
active schema execution, composed of a temporal sequence
of mental representations, causally interlinked, and
corresponding to the driving situation as it is progressively
understood and anticipated, then experienced, and lastly
acted by the driver, along the driving path progression.

The figure 5 provides an example of COSMODRIVE
simulation results, permitting to visualize the mental
representation evolution of a novice driver (who has the
intention to turn on the left), while approaching of an urban
crossroads with traffic lights. In a first time (i.e. first left
view, corresponding to the driver’s mental representation at
a distance of 30 meters of the traffic lights), the driver’s
situation awareness is centered on the near traffic and on the
traffic lights color, that directly determine the short-term
activity to be implemented. Then, as s/he progresses
towards the crossroads, the driver’s attention is gradually
focused on the ahead area, and the traffic flow occurring in
the intersection center is progressively integrated into the
driver’s mental representation (i.e. second left view, at a
distance of 10 meters of the traffic lights).

e

Figure 5: virtual simulation of a driver’s mental models

The advantage of the driving schema formalism as
defined in COSMODRIVE is to combine declarative and
procedural knowledge in the wunified computational
structure. When associated with the operational regulation
processes linked with the envelope zones and the pursuit
point strategies, it is then possible to use such driving
schemas as a structure of control for both monitoring the
operative activity, as well as for supervising the mental
derivation of the “schema deployment”, as this process is
implemented by the human cognitive system in order to
anticipate future situational status, or to mentally explore the
potential effects of an action before applied it. In accordance
with the activity theories, these cognitive structures
guarantee a continuum between the different levels of
awareness (implicit versus explicit) and the activity control
(tactical versus operational), thereby taking full account of
the embedding of operative know-how (i.e. the level of
implementation) in the explicit and decisional regulation
loop of the activity.

5. Conclusion: “in silico veritas”

By considering the challenge of the living cognition study,
it is needed to apprehend the dynamic functioning of the
human cognitive system in interaction with the environment
where s/he is currently immersed. Thus, computational
models able to virtually simulate the human mental activities
on computer are required. One of the key issues of the living
cognition is mental representations simulation, that are



dynamically elaborated and continually updated in the
working memory of the human operator before (i.e. action
planning) and during the activity, when practically carried
out. Indeed, mental representations and operative activity
are intimately connected. In the same way as the human
activity fuels itself directly with mental representations, the
operator’s mental representations are also fuelled “by” the
activity, and “for” the activity, according to a double
deployment process: cognitive and representational, on the
one hand, and sensorial-motor and executive, on the other.

The key mental structure supporting both drivers’ mental
representations and their activity are driving schemas. From
a metaphorical standpoint, such schemas can be compared
to a strand of DNA. They “genetically” contain all the
potential behavioral alternatives that allow the driver to act
within a generic class of situations. Nonetheless, only a tiny
part of these “genotypic potentialities” will finally express
themselves in the current situation — with respect to the
constraints and specific characteristics of reality — during
the cognitive (i.e. mental deployment), and then executive
implementation of this schema (i.e. effective activity carried
out to drive the car). And it is only through this dynamic
process of deployment of operative mental representations,
involving a collective effort of several cognitive processes,
that certain of intrinsic properties of the living cognition will
emerge. From this point of view, the scientific investigation
of the living cognition cannot forego the use of computer
simulation of the human mental activities, without taking
the risk of being largely incomplete.
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Abstract

Computational experiments have been used extensively to
study language emergence by simulating the evolution of lan-
guage over generations of interacting agents. Much of this
work has focused on understanding the mechanisms of how
language might have evolved. We propose a complementary
approach helpful in understanding why specific properties of
language might have emerged as an adaptive response to joint
pressures from the environment and constraints on an agent’s
cognitive architecture. The approach suggests that linguistic
systems can be described as boundedly optimal policies in
multi-agent dynamic control problems defined by specific en-
vironments, agent computational structures, and task-oriented
(vs. communication oriented) rewards. We illustrate the ap-
proach with a set of computational experiments.

Keywords: language emergence, bounded optimality, cogni-
tive architecture, reinforcement learning, adaptive control

Introduction

The goal of this paper is to begin exploring a new approach
to understanding the emergence of language. The primary
scientific aim is understanding how pressures from the envi-
ronment and constraints on the agent’s cognitive architecture
jointly lead to the emergence of specific properties of lin-
guistic communication as optimal policies for obtaining well-
defined long-term task- or environment-related reward.

Taking this perspective allows us to abstract away from the
question of how language evolved and systematically explore
constraints explaining why language appeared in the form that
it has. We hypothesize that specific language-like proper-
ties (for instance, compositionality and systematic reliance
on surface cues such as order) can in part be explained as
bounded optimal solutions to control problems faced by com-
putationally limited agents in environments exerting specific
pressures. We propose investigating language through such
environments in which we can formulate control problems for
two or more bounded agents. If the optimal policies for these
agents exhibit certain linguistic properties, then we can be-
gin to define a mapping from the original pressures and agent
constraints to the properties exhibited.

Finding solutions to these control problems computation-
ally can be accomplished through various means such as rein-
forcement learning, game-theoretic analysis, or evolutionary

I'The first two authors contributed equally to this paper.

algorithms. Thus, the approach allows us to step away from
assumptions about specific mechanisms of learning or evolu-
tion, and focus on the joint relationship of agent structure and
environment to derived linguistic systems. A feature of this
approach that distinguishes it from related efforts is the focus
on deriving control for internal cognitive processes and ex-
ternal actions generally rather than communication systems
specifically, with communication processes emerging only if
they are part of the optimal policy.

This paper proceeds as follows: first, we review related
work on language emergence and discuss ways in which our
approach complements this work. Next, we move to an ex-
ample (the “Treasure Box Domain”) designed to illustrate the
approach by exploring constraints leading to the emergence
of structured utterances — here the systematic use of serial
order and allocation of lexical items to aspects of the environ-
ment. Finally, we show how this domain, and the approach
in general, can be extended to investigate more sophisticated
phenomena and propose future directions of inquiry.

Related Work

Research into the origins of language has a rich and contro-
versial history. Chomsky addressed it in his early work on
generative grammar, prompting a longstanding debate on the
extent to which language is a biological adaptation arrived
at via natural selection (Chomsky, 1968; Pinker & Bloom,
1990; for a more recent treatment, see Hauser, Chomsky, &
Fitch, 2002; Pinker & Jackendoff, 2005; Fitch, Hauser, &
Chomsky, 2005; Jackendoff & Pinker, 2005). Chomsky’s
(Chomksy, 2010) own recent approach to the question at-
tempts to minimize—in fact, nearly eliminate—the role of
language-specific biological adaptation. A more recent line
of research by Nowak and colleagues (Nowak, Krakauer, &
Dress, 1999; Nowak & Krakauer, 1999; Nowak, Plotkin, &
Jansen, 2000; Nowak, Komarova, & Niyogi, 2002), estab-
lishes a mathematical framework used to explore the evolu-
tion of language from the standpoint of computational learn-
ing theory and evolutionary game theory. This work also pro-
vides evidence for coding constraints that may have resulted
in increased fitness for agents capable of multi-symbol utter-
ances.



Several recent computational experiments explore the no-
tion that cultural adaptation and domain-general cognition
may be sufficient for the emergence of language (Beckner
et al., 2009, also see Christiansen & Chater, 2008; Steels,
1998; De Beule, 2008; Gong, Minett, Ke, Holland, & Wang,
2005). This work shows a number of features emerging from
repeated interactions of pairs of computational agents in a
population playing a language game. In a way, this work im-
plicitly frames language emergence as a function of environ-
ment, agent, and learning mechanism. Our work attempts to
remove the last of these and more explicitly address what as-
pects of environment and agent architecture are important—
potentially leading to a more deeply explanatory account.

The questions we are interested in are in part orthogonal to
these debates: we are not making claims about either domain-
specificity or the mechanisms of learning or evolution, but
rather the interplay of cognitive constraints and environmen-
tal pressures that lead to the emergence of particular language
features as adaptive. By leaving the mechanism of adaptation
unspecified, our approach is relevant to researchers working
in both biological and cultural frameworks.

Our work also departs from the approaches above in that
it does not create a pressure for language by explicitly re-
warding cooperation or communication of a particular type.
This approach considers communication not as an end-goal
but rather as the means to obtain some primary reward such
as sustenance, shelter or reproduction. This may give us a
principled way to examine and sharpen what it is about lan-
guage which directly contributes to effective behavior.

Environmental Pressures & Agent Constraints

Natural environments comprise extremely complicated sets
of pressures acting on agents. A key part of the work in this
approach is identifying tractable sets of specific pressures that
are independently motivated by the study of the environments
of early hominids or humans and that might plausibly be im-
portant in the emergence of language. It is not our intent in
this initial exploration to undertake this identification system-
atically, but we propose here a few plausible candidates as
starting points that suffice to illustrate the approach.

Many environments naturally limit agent’s ability to ob-
serve and act. For example human beings can only manipu-
late small pieces of the natural world. Furthermore, knowl-
edge and ability to act is not usually distributed uniformly
among agents, making information sharing between agents
potentially useful. The nature of tasks that must be performed
by agents may limit how immediately information can be
utilized, requiring memory and independent action. A re-
lated pressure is limitation on the lexicon size available to
the agents for communication. This could require generaliza-
tion and furthermore may be a natural consequence of coding
constraints on noisy information transmission (see Nowak et
al., 1999, for a complete discussion). Another important pres-
sure might be temporal: environment dynamics might require
speed or brevity in communication.
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Figure 1: Treasure box domain.

Identifying structural constraints on agents is a second ma-
jor requirement for this approach. These constraints may be
independent of learning mechanisms and describe computa-
tional and physical capabilities of an agent. Our interests
initially are in cognitive and perceptual constraints, such as
limited attention and short-term memory. In the experiments
below we adopt highly idealized versions of such constraints,
but we always define computationally complete agents that
can condition their control of internal and external processes
on an internal state that combines memory and perception.

One concern about this approach is the prospect that pres-
sures in the real world and human cognitive capabilities are
so complex that our proposed analysis is impossible. How-
ever, this is an empirical question. It could very well be that
careful investigation will yield simple features or ones that
can be idealized while retaining their important aspects. It
could very well be that careful investigation will yield sim-
ple features or ones which could be idealized while keeping
their important aspects. It may also be possible to separate
and explain specific language properties on a large scale.

Example: Treasure Box Domain

To demonstrate this approach to understanding language
emergence we designed a set of experiments in which par-
ticular kinds of communication may emerge as optimal (or
approximately optimal) behavior in a simple domain popu-
lated by two computationally limited agents. We describe
next the structure of this domain and then discuss why it is
of potential interest for our purposes—why we expect inter-
esting linguistic systems to emerge.

Environment and agent structure

Figure 1 shows the Treasure Box domain. There are two
agents, SPEAKER and LISTENER, who share the goal of
opening a locked treasure box. These agents are in an en-
vironment containing two rooms: a first room, communica-
tion room, in which LISTENER can hear symbols uttered by
SPEAKER and a second room, box room, in which there are
B different boxes and K keys. At any one time, only one par-
ticular box contains treasure and can only be opened by one
particular key. To solve this problem, LISTENER must go into
box room and choose the correct box and key. However, L1S-
TENER knows neither which box contains treasure nor which
key opens it. The second agent, SPEAKER, knows the cor-
rect box and key, but cannot leave the communication room
and therefore cannot open the box itself. Instead, SPEAKER



can communicate with LISTENER by uttering symbols from
a lexicon of size S which LISTENER observes while in com-
munication room.

When SPEAKER utters a symbol it is placed into LIS-
TENER’s immediate perception: a buffer holding a single
symbol (working memory). In addition to the working mem-
ory store, LISTENER has a second memory location to hold a
single symbol (long-term memory), the value of which can-
not be observed without retrieving it. LISTENER can move a
symbol from the working memory store into long-term mem-
ory and vice-versa (memory encoding and retrieval), but can
only observe the symbol in working memory. The agent does,
however, know whether long-term memory contains informa-
tion. SPEAKER remembers the last symbol uttered in an ob-
servable working memory.

Speaker. This agent observes: (1) The box containing
treasure; (2) the key which opens that box; and (3) last symbol
it uttered. It can act by either (1) waiting or; (2) uttering a
single symbol out of a limited set of size S.

Listener. This agent observes: (1) the room it is in; (2)
whether it holds a key; (3) whether it holds a box; (4) whether
its long-term memory contains information; and (5) the con-
tents of its working memory. It can act by (1) moving to the
box room; (2) encoding a symbol from working memory into
long-term memory; (3) retrieving a symbol from long-term
memory into working memory (4) picking up a specific key;
or (5) picking up a specific box.

Dynamics. The domain is structured as an episodic task
where each episode ends when LISTENER picks up both a
box and a key (at which point the key is automatically used
to open the box). If the key is correct and the box and the
box contains treasure then both agents will receive a positive
reward (of +1); otherwise no reward is received and a new
episode begins. At the beginning of an episode the box con-
taining treasure and the key that opens it are chosen randomly,
LISTENER is returned to communication room holding nei-
ther key nor box, and both agents’ memories are cleared.

Learning algorithm. Although the specifics of the learn-
ing mechanism are not the focus, we needed a method for dis-
covering good agent behavior. Both agents use the e-greedy
Sarsa(A) algorithm (Sutton & Barto, 1998). This algorithm
learns by estimating state-action values Q(s,a) that represent
the best expected discounted sum of rewards over an episode
that can be gained by following action a from state s and then
the best policy thereafter (we initialize the Q values to 0). At
each step actions are chosen greedily based on the current Q
function except with a probability of € when a random action
is chosen instead (yielding exploration). We use a low explo-
ration rate of € = 0.01 across our experiments. After action a,
in state s, at time ¢, the algorithm updates the Q value for all
state-action pairs (s,a) according to their eligibility e, (s,a) as
follows earlier actions by

Or11(s,a) < Q(s,a) +0de (s, a), Vse S,Vac A

where before the update ¢, (s;,a;) is set to 1.0 and the eligibil-
ity for every other state-action is decreased by a multiplicative

factor of 7, A (we used A = 0.8 for all of our experiments); the
more recently a state-action pair is visited the higher its eli-
gibility and the more credit or blame it gets for the temporal
difference error &; = r;+1 + Y0 (sr+1,a1+1) — Os (s¢,a,) which
is the the current estimated value of the resulting (s;+1,4a,11)
plus the reward r, immediately gained minus the predicted
value of the pair (s;,a,). The discount factor ¥ describes how
much less future reward is valued compared to immediate re-
ward; we used Y = 0.8 for all our experiments. The step-size
parameter ¢ controls how fast the algorithm incorporates new
experience, we use o0 = 0.03 in all of our experiments.

Why this domain is of potential linguistic interest

Without any communication the best LISTENER can do is to
open an arbitrary box with an arbitrary key. Given KB possi-
ble box-key combinations the probability of success at each
episode is ﬁ. To improve beyond this, a communicative pol-
icy is required wherein SPEAKER informs LISTENER of the
correct box and/or key in some way.

Different environmental pressures and agent constraints
make different behaviors optimal. For example, we can ex-
plore how varying the size of the available lexicon alters be-
havior. If there are enough symbols (S > KB), then a sin-
gle symbol suffices to describe each box-key combination.
If there are at least K + B but fewer than KB symbols, then
two symbols are required but each box and each key could be
given a unique symbol removing the need for symbol order.
Finally, with § = max(K, B) the meaning of symbols will have
to be shared between boxes and keys, so order may be impor-
tant. In all cases these interpretation of the symbols must be
learned by both agents.

We can explore the effects of changing other constraints
as well, such as agents’ memory or environment structure.
For example, if LISTENER can store two symbols in working
memory, then consistent symbol order may not matter. If the
environment is no longer divided into two rooms (so commu-
nication and box opening can occur simultaneously) symbol
order might still matter, but the LISTENER may not need to
encode anything into long-term memory, instead acting based
on the contents of its working memory at every step—in ef-
fect becoming a situated instruction-taker.

Linguistic Properties of Emergent Policies

We conducted three sets of experiments (eight individual ex-
periments) to demonstrate how environmental pressures and
agent constraints jointly effect communication properties; the
experiment structure and results are summarized in Table 1.
In all experiments the number of boxes and keys is equal
K = B = 4. The first set is the domain originally described
with two separate rooms where LISTENER has a working
memory of one symbol and a long-term memory of one sym-
bol. The second set modifies the agent constraints by giving
the LISTENER two symbols in working memory (no long-
term memory). The third set changes the environmental pres-
sures by removing the room separator.



Table 1: Summary of three sets of experiments and policies learned. See text for detailed description.

ENVIRONMENT AGENT MEMORY  LEXICON SIZE (S) PROPERTIES OF EMERGENT LINGUISTIC SYSTEM
Association and systematic order, where in addition
3 single symbols uttered in isolation denote specific box-
key combinations. Can only achieve 75% success.
one symbol 4 Association and systematic symbol order. SPEAKER
working memory first describes the box, then the key (see Figure 2b).
Two Rooms + one symbol Highly context-dependent and idiosyncratic symbol
long-term 8 meanings. For example key 2 is represented by sym-
memory bol 4 if uttered before box, but symbol 5 after.
16 Each symbol denotes a box-key combination. For ex-
ample symbol 5 means key I and box 1.
Similar to case with 3 symbols above.
two symbol 3
T working memory
Wo rooms (no long-term Complex lexical forms. Describes entire box-key com-
memory) 4 bination with two symbols which can be observed si-
multaneously by LISTENER effectively creating a 2-
symbol length word (see Figure 3b).
Symbols act as direct orders to LISTENER, but other-
3 . Lo
one symbol wise policy is similar to the cases of 3 symbols above.
working memory Association and symbol order, but no storing or re-
One room + one symbol - .
trieving from long-term memory is necessary because
long-term 4

memory

LISTENER can act immediately upon hearing a symbol
(see Figure 4b).

Experiment set 1: Exploring constraints on the lexicon.
We explore four different lexicon sizes: S =16, 5 =8, S =4,
and S = 3. Figure 2 shows 30 independent learning trajecto-
ries for each value of S. The high variance is due to the nature
of the learning algorithm which may not converge for both
agents every trial (or may get stuck on a less-than-optimal
policy)—but what we are interested in are the best policies
learned (because the mechanism used can be improved sig-
nificantly beyond our initial implementation of Sarsa(A) with
fixed parameters across all experiments).

The first four rows of Table 1 summarize the results. Here
we will discuss the resulting policies in more detail. For 16
available symbols, as expected, a different symbol is associ-
ated with each box-key combination and the agents arrive at
perfect performance. With eight symbols, again the best per-
forming policies use two-symbol utterances for each box-key
combination, but not always in the same order (i.e. for some
combinations keys are uttered first and in other boxes are ut-
tered first). For the case of four symbols, the best performing
policies communicate box and key in a particular order, with
each symbol able to refer to either box or key (see Figure 2b).
Of particular interest is that the the agents settle on a consis-
tent order across box-key combinations, but this order might
be different over seperate experiments: the linear position is

10

necessary but the specific order is not. Finally, for the case of
only three symbols the agents again learn a policy where lin-
ear symbol order matters. Curiously, this alone should only
afford success in 56% of combinations; some policies how-
ever achieved 75% success. The policy succeeds in the addi-
tional box-key combinations by associating each with a single
symbol uttered in isolation. That is, with limitations in sym-
bol size utterance length becomes informative in addition to
positional information.

As we can see, this method of systematically altering only
a single constraint (lexicon size) yields broad variation in lin-
guistic properties even in this extremely simple domain, in-
cluding the denotation of symbols and the use of order in-
formation. The case of three and four symbols suggests that
limited memory (paired with environmental pressures) leads
to the systematic use of symbol order in optimal performance,
especially when the lexicon size is limited.

Experiment set 2: Modified agent constraints. Here our
aim is to explore further what specific constraints led to the
systematic use of order in Experiment 1. We alter the con-
straints on the agents by allowing the LISTENER two symbols
in working memory instead of one (and no long-term mem-
ory). All the other dynamics of the Treasure Box Domain
are kept constant. The actions of store and retrieve have new



1.0, T 7
Listener Speaker

0.8 Held WM/LTM | Action | M | Action
o none| e | e | Wait | e |Utter3
g g|| none| 3 | e |Encode | 3 | Utter2
20.5 g none| 2 | 3 | Move | 2 | Utter2
§ Flinone| 2 | 3 | Get K1 | 2 | Utter2
a3 K 2 | 3 |Retrieve| 2 | Utter2

0.2 K 3 | e |Get Bl 2 |Utter2

|
25 250 500
Episode -10*
(a)S=4 (b) Sample of policy? for § = 4.

1 1 1

0.8] 0.8 0.8]
g g g
B0.5) 305 B0.5)
3 3 3

0.2] 0.2 0.2]

- Episode -1 w b Episode -1 " - Episode -1 w

(c)§=3 (d)S=8 (e)S=16

Figure 2: Experiment set 1: Exploring constraints on the lex-
icon. Each figure shows 30 learning curves in the Treasure
Box Domain with B =4 and K = 4. Success rate at each
point is the average success rate over all episodes since previ-
ous point. Dotted line marks where learning and exploration
are disabled. Best policy is highlighted and described in ta-
ble 1. Figure (b) is a sample policy for S = 4 showing the sig-
nificance of symbol order. In this case, agents have learned
to associate string ”3,2” with key 1, box 1, as can be seen in
the rightmost column where SPEAKER utters first symbol “3”
then symbol “2”.

().Srf’_x'»/ Held WM |LTM  Action | M | Action
o ; Wait | e
& £ 1 | e |[Encode| 1 |Utter4
80.5 g 41 | Move | 4 Utter2
8 : . 4|1 |GetKi 2 |Utter4
» : 4 | 1 |Get B1| 4 |Utter2
0.2 p— S
— 54
25 25 500

250
Episode -10*

(a) Best policies. (b) Sample of policy? for § = 4.
Figure 3: Experiment set 2: Modified agent constraints; L1S-
TENER has two working memory locations. Left figure shows
learning curves for best policies for S =3 and S = 4. Right
figure is a sample policy for S = 4 showing that the LISTENER
can act according to the length-2 string in working memory:
LISTENER’s last two actions are box and key pickups without
a retrieval in between, unlike the policy in figure 2.
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Held |WM|LTM| Action

Action

0.8 " M
gllnone| e | e | Wait | 1 |Utter1
E[ none| 1| e |GetK1| 1 |Utter2
K | 2] e |Get_B1| 2 |Utter1

Success Rate
o <

50 500
Episode -10*

() Best policies. (b) Sample of policy? for S = 4.

Figure 4: Experiment set 3: Modified environmental pres-
sures: no room separator. Left figure shows learning curves
for best policies for S = 3 and § = 4. Right figure is a policy
sample for § = 4. The absence of a room barrier allows sym-
bols to act as direct orders: the "utter 1” action by SPEAKER
is followed by LISTENER’s “’get key 1” on the next time step.

semantics now: moving symbols between the two working
memory locations. Figure 3 shows the best trial for each case
in this experiment (for lexicon size of 3 and of 4). With 4
symbols in the lexicon, pairs of symbols can be used to de-
scribe each box-key combination. This is possible because
unlike Experiment 1 both symbols are visible to the LiSs-
TENER (when both stored in memory) and thus there is no
need for an association of order of symbol with object type
(key or box). What is perhaps surprising about this result
is that the more flexible agent structure in this experiment
yields a simpler communication system, whereas the puta-
tively more sophisticated linguistic system in Experiment 1
emerges as an adaptive response to the more computationally
limited agent structure.

Experiment set 3: Modified environmental pressures.
Here we alter the environmental constraints by removing
the separator between the communication room and the box
room. This modification relieves the pressure imposed by
delay between communication and utilization effectively re-
moving the need to remember information. Instead LiS-
TENER can act immediately from SPEAKER’s instructions.
Figure 4 shows the best trial S = 3 and S = 4. For the case of 4
symbols, SPEAKER’s utterances act as immediate instructions
to LISTENER. Word order still matters, but when a particular
symbol is uttered first it may correspond to a different object
(box-key) than if uttered second. Furthermore, the second
symbol uttered can have different meaning depending on the
context. For example if LISTENER has already chosen a box,
the second symbol will be associated with a key.

2Example policies show actions for the case key = 1 and box
= 1. Each row is one time step; e means empty memory location.
For readability, we are showing the contents of LISTENER’s long-
term memory and omitting current room. LISTENER does not have
a “wait” action, but instead uses an action which has no effect (e.g.
“pick up a key” while in the communication room). The SPEAKER’s
utterances do not impact LISTENER after it changes rooms so these
actions are unimportant.



Conclusions and Looking Ahead

We have described and illustrated a novel approach to lan-
guage emergence hypothesizing that specific properties of
language may be understood as features of boundedly opti-
mal policies to control problems imposed on computationally
limited agents. What makes the approach distinctive is its
emphasis on the shaping of linguistic systems by the joint
constraints of agent and environment structure, and the emer-
gence of such systems as the solution to the problem of how
to optimally control both cognitive and physical actions in
service of task goals (rather than communication goals). This
means that there is no associative learning component or any
other learning mechanism beyond the reinforcement learning
algorithm described above. Any associations between sym-
bols and objects or actions are arrived at not because the
agents are explicitly trying to understand each other or arrive
at shared symbol-meaning mappings, but rather implicitly as
joint solutions to the control problem.

Our initial experiments yielded two key results. First, we
have shown that even simple environments and agent archi-
tectures give rise to linguistic systems with interesting proper-
ties, including systematically structured utterances and flexi-
ble use of limited lexical resources. Second, we have shown
that changes in environmental pressures or agent constraints
may yield dramatic changes in optimal communication struc-
ture. Some constraints and pressures yield communication
with systematic symbol order, other constraints yield policies
that break the association between single symbols and sin-
gle objects in the environment. The changes to environment
and agent may seem small, raising the question of how a ro-
bust communication system can emerge, but in the context
of the environment we explored the modifications are quite
large. We expect small changes in a complex environment
would not drastically alter the resulting communication sys-
tems. Furthermore, the fact that the communication system is
strongly shaped by specific constraints of the cognitive archi-
tecture is also unproblematic, because we expect such con-
straints to be relatively stable across conspecifics. Indeed, to
the extent that language is shaped by such constraints, this is
good news for the cognitive scientist, because their detailed
nature is likely to be more accessible that the relevant details
of the shaping environments.

Our results suggest that there is promise in develop-
ing a broad systematic framework for studying language
emergence by identifying mappings between pressures, con-
straints, and language properties independent of questions re-
garding the mechanisms of evolution or adaptation. Promis-
ing future avenues include investigating the emergence of
compositional mechanisms like recursion, categorical fea-
tures including distinctions between nouns and verbs, or more
sophisticated uses of language for representation of internal
mental states.
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Abstract

We model the gestures accompanying spoken descriptions of
spatial information and propose a conception of spatial
gestures that differs from previous proposals by making a
distinction between gestures used for thinking (cognitive
gestures) and gestures used to help express predetermined
ideas (linguistic gestures), and positing a tighter integration
between gesture and language production in the latter than
most previous researchers.

Keywords: gesture; spatial reasoning; language production

Introduction

Symbolic  speech-accompanying gesture, representing
spatial information, has lately been an area of active
research (Alibali, 2005). Of particular interest is the
relationship between gesture and the language it
accompanies. In considering this relationship, we think it
is useful to distinguish between gestures that help us
determine what to communicate/express (cognitive
gestures) and gestures that help us to express what we have
determined to say, that is, gestures concerned with how to
communicate (linguistic gestures). While these two
functions clearly overlap in certain cases, we consider the
distinction useful. Specifically, we argue that, in general,
cognitive gestures lead language, whereas language leads
gesture in the case of linguistic gestures.

Cognitive gesture leads language indirectly by facilitating
thinking, thereby helping us determine what to say. Thus,
they are used in situations with competing conceptual
representations (Kita & Davies, 2009), high conceptual load
(Melinger & Kita, 2007), mental rotation tasks (Chu & Kita,
2008), expert and novice scientific thinking (Trafton et al.,
2006), and problem solving (Lozano & Tversky, 20006),
among others. Such gestures are relatively independent of
language, often expressing information different from that
expressed in the accompanying language, and sometimes
cognitively more advanced than the latter, e.g., in
development (Alibali & Goldin-Meadow, 1993) or in
problem-solving performance (Lozano & Tversky, 2006).
While cognitive gestures sometimes aid communication
(Lozano & Tversky, 2006), they are relatively independent
of communication, as evidenced by their use when solving
problems silently in solitude (Chu & Kita, 2008; Lozano &
Tversky, 2006).

In contrast to cognitive gestures, linguistic gestures are
more strongly tied to language and dependent upon
language. They convey little or no information beyond
what is expressed in the accompanying language (Beattie &
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Shovelton, 1999; So, Kita, & Goldin-Meadow, 2009),
except where the respective roles of gesture and language
are predetermined as in deixis (“Look at that!”) or in
language referring to gesture (“It was this big.”).
Neurological as well as behavioral evidence suggests the
absence of priming of words by gestures in comprehension
(Bernardis & Caramelli, 2007) or production (Beattie &
Coughlan, 1999; Bernardis, Salillas, & Caramelli, 2008).
On the contrary, language primes gesture comprehension
(Bernardis & Caramelli, 2007) and cross-linguistic studies
demonstrate that the grammatical organization of speech is
predictive of the sequence and nature of symbolic gesturing
(Kita & Ozyurek, 2003).

Also in contrast to cognitive gestures, linguistic gestures
are typically associated with communication, as evidenced
by the great reduction in gesturing when the listener cannot
see the speaker (Alibali, Heath, & Myers, 2001) and the
absence of gesturing outside of communication (e.g., in
silence or solitude). However, we do not claim that
linguistic gestures always facilitate communication, since
people gesture even when speaking on the telephone (de
Ruiter, 1995).

Note that the outward form of both cognitive and
linguistic gestures may appear very similar — they are iconic
gestures typically tied to a spatial representation of what is
being thought or said. The types of gestures may be
distinguished by the degree to which the gesturer has
difficulty determining the spatial ideas he/she wishes to
express, which may vary by population (e.g., child vs. adult)
as well as by situation (e.g., problem-solving vs. simple
description).

We will focus in the remainder of this paper on linguistic
gestures. One question that researchers have considered is
the extent to which the perceptual information being
described by the speaker inputs directly into the generation
of gestures, without the intermediary of language
processing. Some argue that direct perception accounts for
the few features of gestures that are not conveyed in the
accompanying language (Kita & Ozyurek, 2003).  Other
theories (de Ruiter, 2007; Hostetter & Alibali, 2008)
attempt to account for gesture solely on the basis of
perception or imagery. Both types of theory are challenged
in explaining the process by which perceptual features are
selected for inclusion in gestural representation.

We propose a model of linguistic gestures that posits a
tighter integration between gesture and language than most
previous models (as does McNeill, 1992) by adopting a
broader view of language representation than typically used.
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Our approach draws on a recent linguistic theory proposed
by Ray Jackendoff (2002), according to which language
representation  includes  some irreducibly  spatial
components. It also draws on the construction grammar
approach of Goldberg (1995), according to which linguistic
structures containing both semantic and syntactic
components are central to language processing. Combining
these two approaches, we hypothesize that people select a
construction before retrieving words and gestures. The
construction provides an abstract plan for speaking that
includes the semantic-syntactic information used in the
retrieval of both words and spatial representations at
appropriate places in the utterance. The spatial
representations are the basis of symbolic gestures and so
this approach helps to identify where specific gestures will
occur. Following Jackendoff, we hypothesize that the spatial
representations are abstract in nature (Avraamides et
al.,2004). We propose that these abstract representations
may be instantiated either as internal mental images or
externally as gestures.

This account predicts that the information conveyed in
linguistic gesture will be tightly tied to the accompanying
language, since both language and gesture derive from the
same construction. This helps to explain why linguistic
gestures provide little information not included in the
accompanying language. What little extra information is
included in gesture is information required for the
instantiation of an abstract spatial schema (a spatial element
of a linguistic construction) in a particular situation. For
instance, a gesture representing an observed leftward
movement is usually performed in a leftward direction (Kita
& Ozyurek, 2003), since a linear gesture must have some
direction. But the gestural reproduction of the stimulus is
limited to what is necessary to instantiate an abstract spatial
schema as a physical hand movement. Thus, this account
provides a mechanism for selecting perceptual features for
inclusion in gestural representation, in contrast to
unconstrained perceptual accounts (de Ruiter, 2007;
Hostetter & Alibali, 2008). This account also helps to
explain the observed temporal synchrony between gestures
and utterances of similar meaning (McNeill, 1998).

Modeling Language

We evaluate our conception of linguistic spatial gesture by
modeling the findings reported by Kita and Ozyurek (Kita &
Ozyurek, 2003). Native speakers of English, Japanese, and
Turkish were shown a cartoon and asked to describe it to
another person. In one scene, a cat (Sylvester) jumps out
the window of an apartment building, grabs onto a hanging
rope and swings across the street to another building. In
another scene, the cat, after swallowing a bowling ball, rolls
down the street. English speakers described both path
(down/across the street) and manner of locomotion (swing
or roll) in a single clause, such as (with clauses marked by
square brackets):

English-Swing: [The cat swings across the street.]
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English-Roll: [The cat rolls down the street.]

In contrast, speakers of Japanese and Turkish (hereafter J/T)
described path and manner in two separate clauses,
paraphrased roughly as:

JIT-Swing: [[The cat goes across the street], [ 1]
JIT-Roll: [[The cat goes down the street], [as he rolls]]

Note that J/T lack an appropriate equivalent to “swings” in
this context, an unusual lacuna in both these languages, and
so the manner is not described verbally, but is often
depicted by a gesture following the spoken clause, the
position where a dependent clause describing manner
normally occurs, as in the J/T-Roll sentence.

The clausal structure of the four sentences, above,
corresponds to linguistic constructions as characterized by
Goldberg (1995). A linguistic construction is a semantic-
syntax pair that also specifies the mapping between
semantics and syntax. While her theory focuses primarily
on clausal constructions, Goldberg considers the
construction framework to be applicable to all levels of the
language down to words. Thus, the J/T description of the
roll event consists of two constructions nested within a
larger construction, as shown in J/T-Roll, above.

Table 1 outlines a simplified English intransitive motion
construction, characterizing the semantic and syntactic
components of the clause in English-Roll, adapted from
Goldberg (1995).

Table 1: A simplified intransitive motion construction.

Semantics THEME MOVE GOAL
Lexical items “He” “rolls” down }}w
street
Syntax subject verb oblique
prep. phrase

We omit many details. A construction has semantic content
beyond that indicated by standard semantic categories, such
as those shown here; for example, this construction denotes
movement along a path. For Goldberg, the verb has a
centrality not depicted here and constructions include rules
for mapping from semantics to syntax that we omit. Note
that the lexical items are not part of the construction, but
instead are added to the construction in the course of its
application.

We adopt a simplified process model for language
production based on constructions, consisting of the
following sequence:

1. Construction retrieval/instantiation. A construction
is selected based on the match of its semantic
components to the situation, in the process of which
those semantic components are instantiated.

2. Lexical retrieval. Lexical items (e.g., words) are
retrieved for each semantic component in turn (from



left to right in Table 1) based on the semantics-syntax
mapping specified by the construction as well as by its
semantic content.

In the course of the first, construction retrieval, step,
semantic components in the construction are instantiated
with concepts and/or spatial representations. Following
Jackendoff (2002), we hypothesize that some semantic
categories are instantiated with irreducibly spatial
representations.  In fact, Jackendoff argues that the
semantics of the MOVE component in an intransitive
motion construction is exclusively spatial in nature. Note
in English, the MOVE component represents the manner of
movement (e.g., swinging, rolling). In contrast, this manner
of movement component is absent from the intransitive
motion constructions in J/T; instead, the manner of
movement is represented by a separate dependent clause
following the intransitive motion clause.

We hypothesize that the instantiated spatial components of
constructions at all levels (multi-clausal, clausal, lexemes),
resulting from step 1, constitute the basis for gesturing
during speech.

Modeling Gesture

Kita and Ozyurek (2003) categorize the manual gestures
found to accompany utterances English/J-T-Swing/Roll,
above, into one of three types:

1. Manner only: e.g., a circular motion for rolling.

2. Trajectory only: e.g., a straight-line motion from left to
right.

3. Conflated: depicting both manner and trajectory, e.g., a
looping left-to-right movement for rolling.

As a manner-only gesture is not possible for denoting
swinging, only trajectory and conflated gestures
accompanied the swing utterances. In general, the authors
found that the language groups differed in their gestures in a
manner corresponding to the structure of their utterances:
English speakers often made conflated gestures only,
whereas J/T speakers more often made manner only and
trajectory only gestures. Note that the language groups did
not differ in their overall production of conflated gestures,
but in the tendency to produce only conflated gestures,
which was more common in English. Based on these
findings, the authors proposed that the production of
gestures is influenced by the structure of language in the
planning stage of speech production.

Kita and Ozyurek also noted that among all language
speakers, the direction of gestures (e.g., left to right)
generally corresponded to the direction observed in the
cartoon, but was never mentioned in the utterances. On this
basis, they posited a separate line of influence of perception
on gesture, unrelated to language. In contrast to this, we
propose a unified account of gesture and language
production.

We hypothesize that the spatial components of
constructions at all levels (discourse, multi-clausal, clausal,
lexemes) constitute the basis for gesturing during speech.
We explain the selection of spatial features of an event for
gestural representation in terms of the requirement to
instantiate an abstract spatial representation to produce both
speech and gesture. Since a translation gesture must have
some direction, the reproduction of the observed direction is
simply part of this instantiation process.

Although Kita and Ozyurek did not report the
correspondence between gesture and language in a fine-
grained manner, we have inferred from their reported data
the correspondence outlined in Tables 2 and 3. Note that
there is no manner clause for Swing descriptions available
to J/T speakers. We make certain assumptions based on the
common observation that symbolic gestures co-occur with
like-meaning language (McNeill, 1998).  Thus, manner-
only and conflated (manner-+trajectory) gestures accompany
manner language (the verb in English, the adverbial post-
clause in J/T), while trajectory-only and conflated gestures
accompany path language (the prepositional phrase in
English, the intransitive motion clause in J/T). The relative
frequency of the two possible gestures for the two respective
language segments of interest (path vs. manner language) is
the focus of our model.

Table 2. Language and accompanying gestures during
Roll description observed and predicted by model.

% Ss
observed Model
English

Language Gesture
Manner verb | Conflated 66 51
Manner verb | Manner only 13 18
Path phrase Conflated 53 68
Path phrase Trajectory 39 23

only

Japanese / Turkish
Language Gesture

Manner Conflated 59 76
clause
Manner Manner only 40 16
clause
Path clause Conflated 25 31
Path clause Trajectory 67 66

only




Table 3. Language and accompanying gestures during

Swing description observed and predicted by model.

% Ss
observed Model
English
Language Gesture
Manner verb | Conflated 88 93
Path phrase Conflated 81 88
Path phrase Trajectory 7 3
only
Japanese/Turkish
Language Gesture
[Manner Conflated
clause 75 88
position]
Path clause Conflated 37 30
Path clause Trajectory 63 70
only

The construction approach provides a useful framework
for understanding both planning and online production of
speech. In the present context, it offers an explanation of
how ongoing speech can be influenced by elements of the
speech plan that are executed before and after the currently
executed (spoken) element, an explanation that can be
extended to gesture. Specifically, we hypothesize that
spatial semantic components within the same construction
will have a greater influence on one another (via priming,
etc.) than those in separate constructions. Further, this
influence will be greater the lower the shared construction is
in the construction hierarchy, since spatial representations
are more concrete and less abstract lower in the hierarchy.
Thus, conflated gestures, representing both trajectory and
manner, are proportionally more common during the path
language in English than in J/T because the path language in
English shares the same construction as the manner
language, in contrast to J/T where manner language is in a
separate low-level construction. However, conflated
gestures do occur sometimes in J/T because the respective
clauses describing path and manner are contained within the
same higher-level construction.

Similarly, clause structure can help to explain how an
executed gesture influences the selection of a subsequent
gesture. In English, the type of gesture selected to express
manner has a great influence on the subsequent gesture
selected to express path, whereas in J/T there is no apparent
influence of the selection of path-describing gesture on the
subsequent manner-describing gesture.  This finding is
explained by the occurrence of the two gestures within a
single clause in English, but in separate clauses in J/T.

Model of Gesture and Language

The models of gesture and language production were
developed within ACT-R (Anderson et al.,2004). ACT-R is
a hybrid symbolic/sub-symbolic production-based system.
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ACT-R consists of a number of modules, buffers, and a
central pattern matcher. Since ACT-R is not well-suited to
represent structured representations, such as nested
linguistic constructions, we attempt to capture the retrieval
of spatial representations using ACT-R’s partial matching
capability. Specifically, the relative similarity of pairs of
related spatial representations is modulated to reflect their
proximity in the construction hierarchy, as is their capability
to prime one another.

To represent space, we have developed a version of ACT-
R, ACT-R/E, that utilizes a spatial theory called Specialized
Egocentrically Coordinated Spaces (SECS) (Harrison &
Schunn, 2003). SECS provides two egocentric spatial
modules, which are responsible for the encoding and
transformation of representations in service of navigation
(configural) and manipulation (manipulative). Our model
currently includes configural spatial representations.

Non-default ACT-R parameter settings are listed in Table
4. Manner chunk similarity refers to the associative
similarity between the manner chunk in a language
construction and an imaginal or gestural spatial
representation.  Similarly for path chunk similarity. Note
that similarities are greater in English than in J/T, reflecting
the increased priming by a linguistic construction lower in
the construction hierarchy compared to a higher-level
construction. Overall, for both language groups, there was a
higher rate of conflated gestures for the swing description
than for the roll description, possibly due to the smaller
number of gesture types available for swing (i.e., the
absence of a manner-only gesture). This may explain the
need for weaker manner chunk similarities for the Roll
models relative to the Swing models. The reduction of base
level learning rates in English relative to J/T reflects the
priming of later gesture selection by the previously-selected
gesture in English, unlike in J/T.

Table 4. Non-default ACT-R parameter settings.

JIT
swing

Parameter

English
swing

English
roll
Enable

partial

matching

Activation

Noise

Retrieval

threshold

Base level

learning

rate

Manner

chunk

similarity

Path

chunk

similarity




In describing the Roll situation, the English-language
model first retrieves, and instantiates the semantics of, an
intransitive motion clause construction, based on the
observed event (see Table 1.) The instantiated construction
forms the plan for all further retrievals, gestures, and
utterances for the clause. First, the model retrieves and
utters the first clause argument, the THEME (e.g., “the cat).
Next it retrieves a manner verb corresponding to the MOVE
argument. The verb contains a spatial representation that
strongly primes a manner gesture representation, but the
clause construction itself carries path-following meaning
and so contains a spatial representation that weakly primes a
trajectory gesture representation—weakly, because the
clause construction is a higher-level construction than the
verb. Although the priming of a trajectory gesture is weaker
than that of a manner gesture in English, it is stronger than
the priming of the corresponding “non-matching” gestures
in J/T, because those gestures are primed by a still higher-
level construction. As a result, English speakers more often
retrieved both manner and trajectory gesture representations,
fusing them into a conflated gesture. However, when only
the manner gesture representation is retrieved, then a
manner-only gesture will be performed. The manner verb is
then uttered together with the selected gesture.

Next, path description language (spec. a prepositional
phrase) is retrieved based on the instantiated GOAL. Once
retrieved, this path phrase’s spatial trajectory representation
strongly primes a trajectory gesture. At the same time, the
construction’s MOVE representation weakly primes the
manner gesture, weakly because it is at a higher level than
the path language. Also, if the manner gesture was retrieved
and performed earlier with the verb, that earlier retrieval
makes an additional contribution to its activation, making it
more likely to be retrieved again; no such priming occurs in
J/T because the two successive gestures occur in separate
constructions. If the manner representation is retrieved
together with the trajectory representation, then the GOAL
utterance is accompanied by a conflated gesture. If only a
trajectory representation is retrieved, then it is accompanied
by a trajectory-only gesture.

The J/T models function in a similar manner to this
illustration, differing primarily in the nested structure of its
constructions.

Given that individual variability is typically quite high for
gesturing, the predictions of our model are rather similar to
the observed pattern of behavior (Tables 2 and 3) and were
all within the 95% confidence interval. r? was .63 for Roll
and .98 for Swing.

Discussion

We have introduced the contrast between cognitive and
linguistic spatial symbolic gestures in hopes of resolving
apparently conflicting evidence in the literature. Cognitive
gestures help us to determine what to say in a spatially
complex domain, while linguistic gestures help us to
express what we have determined to say. Obviously these
two types of gesturing may be intermixed in a given

17

situation, but certain experimental situations clearly
encourage one type of gesturing over the other for a given
population.

With regard to linguistic gestures, we hypothesize that
gestures are generated on the basis of spatial components
within linguistic representations (Jackendoff, 2002). The
grammatical framework we adopt is that of constructions
(Goldberg, 1995) in which lexical items, clauses, and more
complex linguistic expressions may all be viewed as
constructions, i.e., semantic-syntactic pairings whose
semantic content, we hypothesize, includes abstract spatial
components. The spatial semantic content at all levels of
the construction hierarchy constitutes the basis for
gesturing.

From this viewpoint, linguistic gestures are largely
constrained by language generation. Specifically, perceptual
information is incorporated in gesture during the course of
instantiating linguistic structures. This obviates the need to
hypothesize a separate, independent source of perceptual
input into gesturing, together with the problems such a
hypothesis entails: of explaining that mechanism and,
especially, of explaining the selection of perceptual features
to represent gesturally. As the information conveyed in
gesture is largely limited to that conveyed in language, it
would appear inappropriate to posit an unconstrained source
of perceptual input into gesture production.

From our perspective, linguistic gesture and language are
intimately related. Our model is an explicit computational /
process account of McNeill’s proposal that gesture and
speech arise from a single process of utterance formation
(McNeil, 1992, p. 29-30).

Although not addressed in this model, many factors
modulate the rate of gesturing, such as social stimulation
(Alibali et al., 2001), exposure to perceptual vs. verbal
information (Hostetter & Hopkins, 2002), etc. The idea of
an activation threshold governing the elicitation of
gesturing, proposed by Hostetter and Alibali (2008), may be
useful in explaining the expression of spatial representations
externally in gesture rather than internally in imagery.
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Abstract

A novel dual-task paradigm was used to investigate how
people adapt their task interleaving behavior to meet a
specific performance objective. The study required
participants to encode and enter a series of route instructions
from a secondary display while driving a simulated vehicle.
Explicit instructions were given to give greater priority to
either safe driving or rapid completion of the secondary
navigation task. Results showed that participants met the
required task objective by varying the frequency and duration
of visits to the secondary task display, and by also varying the
amount of time given up to steering control in between visits.
We explain these data using a framework for modeling driver
distraction effects. The model predicted the observed shift in
task performance between the two focus conditions and also
the observed change in task interleaving strategy. Taken
together these results support the idea that people can
strategically control the allocation of attention in multitask
settings to meet specific performance criteria.

Keywords: Multitasking, cognitive modeling.

Introduction

Consider for a moment a driver following a set of written
directions to reach an unfamiliar destination. As the driver
approaches a junction, they might want to consult their
directions, and in doing so must consider the risks of taking
their eyes off the road ahead. A safe driver, given the
opportunity, might pull over to study their directions, or if
this is not possible, they might choose to make many brief
glances to the instructions. A risky driver, on the other hand,
may choose to look away from the road for prolonged
periods to study the directions in detail. In this way, the
frequency and duration of attention shifts between tasks is
determined by the relative importance of each task, and also
a judgment of safe and acceptable behavior.

It is well known that in many multitasking situations, such
as the one sketched above, constraints on the human
cognitive architecture limit the extent to which tasks are
performed in parallel (Meyer & Kieras, 1997). How people
control the allocation of resources to multiple concurrent
tasks is a topic of considerable theoretical and practical
interest (e.g., Navon, & Gopher, 1979; Norman & Bobrow,
1975; Salvucci & Taatgen, 2008; Wickens, 2002).

One important application of multitasking theory has been
to understand driver distraction. Driving is a safety critical
task performed by millions of people on a daily basis, and
with the growing ubiquity of mobile and in-car devices there
are concerns about the deleterious effects of driver
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distraction. In this area, many studies have investigated the
impact of cell phone dialing on driving performance.
Typical results show that drivers tend to dial chunks of
digits at a time, returning their attention to driving in
between each chunk (Brumby, Salvucci & Howes, 2009;
Salvucci, 2005). This pattern of task interleaving might
reflect the fact that the dialing task has a strong
representational structure that is difficult to disrupt, and this
could be used to guide decisions about when to switch
attention between tasks (Salvucci, 2005). But how might
people decide how to interleave tasks in situations where
there are no natural cues to guide this decision?

Salvucci and Taatgen’s (2008) threaded cognition theory
assumes that relatively complex multitasking behavior can
emerge from a simple bottom-up process without the need
for any explicit top-down control structures. The theory
assumes that the cognitive system processes task threads
using a least-recently-processed scheduling heuristic. While
this theory offers a parsimonious account of multitasking
behavior, it is not clear how this account allows the
cognitive system to make strategic decisions to favor one
task over another. Indeed, a large body of empirical work
demonstrated that people can make explicit decisions about
how to allocate attention to different tasks in multitask
settings by prioritizing performance on one task over
another (e.g., Brumby et al., 2009; Horrey et al., 2006;
Gopher et al., 1982; Gopher, 1993; Wang et al., 2007).

One possibility for how people might adapt their dual-task
strategy to meet a specific task objective is that they monitor
the amount of time that has elapsed since they last checked
on the more important task. Kushleyeva, Salvucci, and Lee
(2005) found that when participants were required to
monitor a safety-critical dynamic task, they adapted their
monitoring behavior to changes in the temporal demands of
the task. This suggests that the safer driver in the example
above might simply set a lower threshold for the amount of
time that they are prepared to take their eyes off the road,
and in doing so, will interleave attention between tasks more
frequently.

Another possibility is that people select strategies to meet a
desired dual-task performance tradeoff objective. Brumby,
Salvucci, and Howes (2009) have shown that in the case of
manually dialing a standard US telephone number while
driving, dialing three or four digits at a time is a particularly
efficient strategy because any more interleaving incurs
additional time costs without significant improvement in
lane keeping, and any less interleaving sacrifices safety. To



demonstrate this claim, Brumby et al. derived performance
predictions for a range of dual-task strategies using a
computational model. This approach of explicitly considering
the performance tradeoffs involved for choosing between
various dual-task allocation strategies is similar to that of
defining a Performance Operating Characteristic (Norman
& Bobrow, 1975; Navon & Gopher, 1979). The analysis by
Brumby et al. showed that one limitation of the dialing-
while-driving paradigm is that interleaving at the natural
subtask boundaries of this task often corresponds with the
most efficient dual-task interleaving strategy, in terms of
completing the secondary dialing task in a relatively safe
and timely manner.

In this paper, we investigate multitasking behavior using a
novel dual-task paradigm. The paradigm, developed by Del
Rosario (2009), requires participants to look at a secondary
display to encode and enter a series of route instructions while
driving a simulated vehicle. The benefit of this paradigm,
over the classic dialing-while-driving paradigm, is that it
does not have an external representational structure that can be
used to guide decisions about when to interleave. Thus,
participants are free to interleave the tasks how they like.

We use this paradigm to investigate how people adapt
their dual-task interleaving behavior to meet varying
performance objectives. In particular, we manipulate the
experimental instructions and feedback given to participants
to encourage either safe driving or rapid completion of the
secondary navigation task. We consider how this change in
task objective affects task performance and also the decision
about when to interleave attention between tasks. Finally, we
seek to apply Brumby, Salvucci, and Howes’ (2009) model of
how people interleave cell phone dialing and driving to this
novel dual-task paradigm. An important question is whether the
model will generalize to this new task setup, and if so, whether
it will predict how people choose to interleave in each
condition.

Experiment

Method

Participants. Sixteen participants (five female) took part in
the study. Participants were unpaid volunteers, aged
between 21- and 42-years (M=28.3 years). All had a valid
driver’s license and at least two years of driving experience.

Materials. The experiment used a dual-task setup in which
participants had to complete a secondary navigation task
while driving a simulated vehicle. Figure 1 shows how the
two task displays were arranged.

For the driving task, participants were required to
navigate the center lane of a three-way highway
environment. The simulation environment was displayed on
a 30-inch monitor and controlled by a Logitech G25 Racing
Wheel. Participants were only required to steer the vehicle
to maintain a central lane position. The vehicle’s speed was
held at a constant 55 miles/h (88.5 km/h). To reinforce safe
lane keeping, safety cones were placed at either side of the
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Figure 1. A schematic representation of how the driving
and navigation displays were arranged.
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driver’s central lane. Noise was added to the vehicle
dynamics, causing the vehicle to gradually drift about in the
lane. This meant that the participant had to actively control
and monitor the vehicle’s lateral position and heading to
maintain a central lane position.

For the navigation task, participants had to look at and
enter a sequence of ten directions (lefts or rights). The to-be-
entered sequence was randomly generated with the
constraint that five left and five right directions were
included and that there were no more than three consecutive
repeating directions. The sequence of commands was
represented either graphically (<=) or textually (“Left”), and
was presented as a single vertical list on a 17-inch monitor
positioned to the left of the participant (see, Figure 1).

The experiment was designed so that participants would
be forced to sequentially interleave their attention between
the two tasks. This was achieved by allowing only one of
the task displays to be visible at any one time. By default
the driving display was visible and the navigator display
was blanked out. Participants activated the navigator display
by moving their left hand from the steering wheel and using
it to hold down the space bar on the keyboard in front of the
navigator display. While the space bar was depressed the
navigator display was presented and the driving display was
blanked out. This meant that participants could not monitor
the vehicle’s position in the lane while encoding instructions
for the navigation task. After viewing the instructions on the
navigator display, participants had to return their hand to the
steering wheel to use the left and a right paddle controls
positioned under the steering wheel to enter the route
instructions from memory.

Entry errors on the navigation task were associated with a
time cost. If an input error occurred (e.g., a left paddle
action was performed when a right action was required), the
trial was terminated and the participant was instructed that
they had to repeat the trial with a new list of instructions.

Design. A 2x2x2 (task-focus x representation x visual cue)
mixed design was used, where task-focus was the between-
subjects factor. To manipulate task priority, participants
were instructed to either focus on completing the secondary
navigation task as quickly as possible (the navigation-focus
condition) or to focus on keeping the car as close as possible
to lane center (the steering-focus condition).



Features of the secondary navigation task were
manipulated as within-subjects factors. The route
instructions were presented in a graphical or a textual
format. In addition, a salient visual cue, indicating the
current position in the list, was either present or absent.

The main dependent variables of interest were the time taken
to complete the secondary navigation task and the impact that
completing this task had on driving performance. The driving
simulator logged the lateral distance of the vehicle from the
center of the lane at a rate of 200 Hz. Driving performance
was indexed by calculating the root mean square error
(RMSE) of these lateral deviation samples over the period
of time that the participant was working on the secondary
navigation task. In addition, we were also interested in how
participants chose to interleave the two tasks. To index task
interleaving we consider the number and duration of each
secondary task visit, as well as the time in between two visits.

Procedure. Participants were randomly assigned to one of
the focus conditions, with the exception that effort was made to
balance gender across conditions. Participants were given an
opportunity to practice both the navigation and driving task
separately. Once familiar with each task, participants
completed four blocks of dual-task trials, one for each of the
route representation and visual cue conditions. Trials were
grouped by condition, and the order was counter-balanced
across participants. For each block, participants were
required to complete 10 error-free trials, up to a maximum
of 15 trials per block. This dissuaded participants from
making errors on the secondary navigation task.

Experimental instructions were given to encourage
participants to prioritize either safe driving (steering-focus)
or rapid completion of the navigation task (navigation-
focus). To reinforce these instructions participants received
feedback at the completion of every trial on their performance
on the relevant variable. Specifically, participants in the
steering-focus condition received feedback about the vehicle’s
RMSE lateral deviation, while participants in the navigation-
focus condition received feedback on total trial time.

Results and Discussion

Due to space limitations we do not report data on how task
performance was affected by manipulating features of the
navigation task (see, Del Rosario, 2009, for details). Instead,
we focus our analysis on how varying the instructions given
to participants to prioritize one task over the other affected
performance and decisions of how to interleave tasks. The
primary dependent measures of interest were the time taken
to complete the secondary navigation task and the lateral
deviation of the vehicle from the center of the lane. We
consider four separate measures to index task interleaving
strategy: the number of visits to the navigator display per
trial, the average duration of each visit, the number of
navigation task items entered following each visit, and the
average time between visits.

Figure 2 shows task time for the navigation task plotted
against average RMSE lateral deviation for the driving task.
There is a clear effect of task objective on how participants
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Figure 2. Data plot showing task time and RMSE lateral
deviation across for varying task objectives. Error bars on
human data points represent 95% confidence intervals.
Model data points show performance predictions for
different task interleaving strategies.

traded performance between the two tasks, in that,
participants that were instructed to prioritize the navigation
task completed it relatively quickly (M=13.76s, SD=2.31s),
but in doing so had poor lateral control of the vehicle
(M=1.07m, SD=0.41m). Conversely, participants that were
instructed to prioritize safe driving completed the navigation
task relatively slowly (M=27.30s, SD=5.57s) but were better
able to maintain lateral control of the vehicle (M=0.48m,
SD=0.10m). A 2x2x2 mixed factorial ANOVA found a
significant effect of task objective on task time,
F(1,14)=40.26, p<.001, MSE=72.76, and RMSE lateral
deviation, F(1,14)=15.87, p<.001, MSE=.35.

We were also interested in participants’ interleaving
strategy, which was indexed by considering when
participants choose to access the navigation task display.
The data presented in Figure 3 show that the reason why
participants in the steering-focus condition were better able
to maintain lateral control of the vehicle than participants in
the navigation-focus condition was because they made more
visits to the navigation display (4.5 visits vs. 3.3 visits),
F(1,14)=3.67, p=.07, MSE=6.49, entered fewer items
following each visit (2.4 items vs. 3.4 items), F(1,14)=5.19,
p=.04, MSE=3.23, and gave up more time to steering control
between visits to the secondary display (5.34s vs. 2.57s),
F(1,14)=21.05, p<.001, MSE=6.25.

The results of the study show that participants in the
steering-focus condition interleaved more frequently and



spent more time in between glances to the secondary display
stabilizing the vehicle than participants in the navigation-
focus condition. However, it is not immediately clear why
participants adapted their strategy in the way that they did.
Changing the task priority lead to only a single extra item,
on average, being encoded and entered following each visit
to the secondary display. In contrast, participants spent
nearly twice as long in between visits to the navigation
display in the steering-focus condition. But why did
participants opt to spend more time between visits rather
than interleave much more frequently? To explain the
observed pattern of task interleaving we apply a modeling
framework developed to explain behavior in a dialing-
while-driving paradigm (Brumby et al., 2007, 2009).

Model

Our modeling approach focuses on deriving performance
predictions for various strategies for completing the
navigation task while driving. The model represents basic
task operators (i.e., encoding a single instruction from the
navigation display, or performing a steering control update)
as discrete processing units that are limited by a serial
bottleneck. Within this framework, we systematically
consider every possible dual-task strategy that could have
been adopted. Specifically, given that the navigation task
required participants to enter 10 route instructions, we can
consider at least 2’ 512 different task interleaving
strategies (i.e., where strategies differ in terms of whether
after encoding an item, another item is encoded or attention
is returned to driving). For each of these strategies we also
consider varying the amount of time that is given up to
steering control in between visits to the secondary display.
We assume that glancing at the navigation display
interferes with steering control. We estimate core
parameters for the navigation task directly from the data.
With these parameters fixed, we derive performance
predictions for various dual-task interleaving strategies
using a pre-existing model of steering control processes. For
each strategy we derive predictions for critical performance
metrics, namely, task time and lane keeping performance.
The aim of this analysis is to explain the observed shift in
dual-task performance between conditions, and also the
precise change in low-level task interleaving behavior.

Navigation task. The navigation task is modeled at the
granularity of the time taken to encode and enter route
instructions. We estimate the time taken to perform these
basic activities from the empirical data. Specifically, we
estimate the time taken to:

¢  Shift attention from one task to the other

*  Encode an item from the navigation display

* Input an instruction using the paddles

The time to switch attention from the secondary display to

the driving task can be approximated by considering the
average time between the release of the space bar (signaling
the end of a visit) and the first paddle action being
performed after the visit. Analysis shows that the average
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time between these events was approximately 1 second. A
limitation of this measure as index of the cost of switching
attention between tasks is that it assumes that the participant
immediately commenced entering the instructions prior to
returning their hand to the steering wheel.

We can approximate the time needed to encode a single
route instruction by assuming that the number of items
entered after a visit corresponds to the number of items that
were encoded during that visit. Taking the average visit
duration, we can calculate the average encoding rate to be
approximately 500ms per item (i.e., in the navigation-focus
condition, visits were on average 1.67s long and 3.4 items
were entered after each visit). This assumes that participants
never encoded items that were later forgotten or simply not
entered. We shall revisit the implications of this assumption
in the general discussion.

Finally, to estimate the time taken to input an instruction
using the paddle, we consider the average time between two
consecutive paddle entries. This yields an average time
interval of 250ms between each paddle event. We assume
that participants were able to perform steering updates while
using the paddle to enter the route instructions, and that all
instructions were entered before the next visit occurred.
With these basic parameters set we can consider how this
task might have interfered with driving performance.

Driving task. We use a simple mathematical model, taken
from Brumby, Salvucci, and Howes (2009), which describes
how people tend to adjust the heading of a vehicle based on
its position in the lane. The model captures the basic idea
that as the vehicle strays closer to the lane boundary, drivers
react by making sharper corrective steering movements,
which in turn, increase the lateral velocity of the vehicle,
returning it to a central lane position more rapidly. The
model assumes that discrete steering control updates are
performed once every 250ms, which adjust the lateral
velocity of the vehicle as follows:

Velocity = 0.2617 x LD +0.0233 x LD - 0.022 (1)

where, LD represents lateral deviation from lane center, and
there is an upper bound on velocity of 1.7m/s. In between
steering updates, external factors can influence the vehicle’s
heading. To model this, we permute the vehicle’s heading
every 50 milliseconds with a value drawn from a Gaussian
distribution with a mean of zero and a standard deviation of
0.09. Next we describe how this model is used to derive
predictions of changes in a simulated vehicle’s lateral
deviation over time given discrete periods of driver attention
and inattention.

For each of the 512 different strategies, we consider
alternatives that give more or less time up to steering control
in between visits to the navigation display. Specifically, we
consider steering periods of between 250ms and 5000ms, at
intervals of 250ms. This combined with the number of basic
task interleaving strategies considered yields a fairly large
set of 6,644 alternatives. For each, 50 simulations were run
and performance averaged.
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Figure 3. Data and model predictions for various navigation task measures. Bar charts show human data, with error bars
representing standard errors of the mean. Circular data points represent model predictions for each priority condition. The
values are the means for model alternatives that fall within the Confidence Interval in Figure 2 (see text for details).

Model Results

Figure 2 shows the predicted RMSE lateral deviation and
task time for each of the 6,644 strategies that were evaluated
along with the human data for each priority condition. The
model predicts a clear dual-task performance tradeoff
between strategies that complete the navigation task quickly
and have relatively poor lane keeping performance, and
those that complete the navigation task more slowly giving
relatively better driving performance.

The shape of the tradeoff curve predicted by the model is
noteworthy. There is a clear tipping point where
improvements in lane keeping performance become smaller
with increased task time. The human data for the steering-
focus condition lie at this tipping point in the tradeoff curve,
suggesting that participant adapted their strategy to meet the
performance objective of minimizing lateral deviation while
completing the secondary task in a reasonable amount of
time (note that time is represented on a logarithmic scale).
In contrast, data from the navigation-focus condition lie at
close to the leftmost extreme of the strategy space, where
faster performance is associated with poor lane keeping.

Figure 2 shows that there are many different strategies
that fall within the predicted performance bounds of the
human data for each condition. To get a better sense of how
this performance tradeoff was achieved, we consider how
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these strategies allocated attention between the tasks.
Specifically, we consider for each condition the subset of
strategies that fall within the 95% confidence interval (CI)
of the human data for each condition.

For the navigation-focus condition there were 34
strategies that fell within the CIs of the human data, while
for the steering-focus condition there were 307 strategies
that fell within the Cls of the human data. For each of these
best-fitting strategies we define the same four measures of
task interleaving behavior used in the analysis of the human
data (i.e., the number of visits to the navigator display per
trial, the average duration of each visit, the number of
navigation task items entered following each visit, and the
average time between visits). For each measure, we
calculate the mean across the subset of best fitting strategies
for each condition. In doing so, we get a better sense of how
the best fitting strategies for each condition differed, and
can compare these indexes of behavior to the human data.

Figure 3 shows these mean model predictions along with
the corresponding human data for each condition. The fit of
the model to these low-level task interleaving measures is
remarkable, in that the model explains why participants in
the steering-focus condition would have chosen to double
the time between visits and encode one extra item per visit
in order to reach the tipping point in the tradeoff curve.



General Discussion

A novel dual-task paradigm was used to investigate how
people adapt their behavior to meet a specific performance
objective. In the study, participants were required to encode
and enter a series of route instructions while driving a
simulated vehicle. Explicit instructions were given to
participants to give greater priority to either safe driving or
rapid completion of the navigation task. Results showed that
participants met the required task objective by varying the
number and duration of visits to the navigation display, and
by also varying the amount of time given up to steering
control between visits. These findings support the idea that
people can strategically allocate attention in multitask
settings (e.g., Brumby et al., 2009; Horrey et al., 2006;
Gopher et al, 1982; Gopher, 1993; Wang et al., 2007).

We explain participants’ decisions about how to allocate
attention using an existing framework for modeling driver
distraction effects (Brumby et al., 2007, 2009). The model
represents basic task operators as discrete processing units
that are limited by a serial bottleneck. To apply the model to
this new dual-task context, a handful of parameters for the
navigation task had to be estimated from the data (i.e., the
time taken to encode a single instruction from the navigation
display, shift attention back to road, and enter that
instruction). With these basic timing estimates fixed, we
model the effects of various allocation policies for attending
to the secondary navigation display for critical task
performance metrics.

The modeling results help explain the observed shift in
task performance between the two focus conditions. The
model predicts a classic dual-task performance tradeoff
between safer driving and shorter task time. Interestingly,
the tradeoff curve has a clear tipping point, after which
improvements in lane keeping performance become
relatively small with increased time investment. Human
performance data from the steering-focus condition lie close
to this tipping point, and remarkably the modeled strategies
in this region of the strategy space corresponded with those
adopted by participants.

However, the model did not explain data from the
navigation-focus condition as well. Specifically, it under-
predicted the number of visits made to the secondary display
and over-predicted the number of items entered after each
visit (see, Figure 3). The likely explanation for this
departure is that the model assumes a perfect and limitless
memory, which could enter all ten of the route instructions
after a single visit. This is clearly an implausible assumption
given the known limits on memory. This aspect of the
model could be informed by considering how many items
participants would copy over in a single-task setting.
Alternatively, we could build on existing work that has
modeled memory retrieval processes in similar tasks. For
instance, Gray et al.'s (2006) work on modeling the impact
of memory constraints in the Blocks World paradigm.

Moreover, because of space limits we could not present
an analysis of how features of the navigation task affected
performance. Del Rosario (2009) reports that participants
could encode textual information faster than graphical
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information. Future work should point out how the model
might explain any shift in strategy based upon changes in
time take to encode an item from the display.

In summary, we have used a novel dual-task paradigm to
demonstrate that people can strategically allocate attention
in multitask settings. A model was used to explain why
particular strategies might have been favored in terms of the
shape of the performance tradeoff between safer driving and
shorter task time.
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Abstract

Goals play an important role in human cognition. Dif-
ferent aspects of human mind influence the generation
of goals they pursue, and the goals guide their behav-
ior. In psychology, researchers made significant efforts
to study goals and their origin, and cognitive architec-
tures include various facilities to handle goals of arti-
ficial agents. One such architecture, ICARUS, supports
goal-driven behaviors while maintaining reactivity, and
the top-level goals play an important role by guiding the
behavior of ICARUS agents. However, the architecture
does not cover the origin of its goals or the management
of them, and this imposes restrictions like limited auton-
omy in ICARUS. In this paper, we extend the architec-
ture to provide the capability to manage top-level goals
using the notion of long-term, general goals. We show
some illustrative examples in an urban driving domain,
and discuss related and future work in this direction.

Introduction and Motivation

Goals play an important role in human cognition. People have
ideas on what they want to do or what they should do, and
these give rise to many different goals. Such goals, in turn,
guide people’s behavior by restricting the space of possible
actions to take. Traditionally, psychologists put significant
efforts on the study of this process (Simon, 1967; Sloman,
1987; Gray & Braver, 2002 to name a few). As computational
frameworks for models of cognition, most cognitive archi-
tectures (Newell, 1990), too, have some supports for goals.
At the very least, these architectures allow the specification
of goals or subgoals that guide the artificial agent’s behav-
ior. But some architectures provide more, including nomina-
tion and prioritization of goals. For instance, CLARION (Sun,
2007) has drive and goal mechanisms that correspond to psy-
chological accounts of goal nomination. In Soar (Laird et al.,
1986), the top-level operators can act as reactive goals and
there are rules that govern their nomination as goals.
Another cognitive architecture, ICARUS (Langley & Choi,
2006), operates in a goal-directed fashion, and uses multiple
top-level goals. However, the architecture lacks any mech-
anism to add, delete, or reorder such goals, limiting its ca-
pabilities significantly. In this paper, we present the ICARUS
architecture with a new goal management mechanism that is
reactive to the environment. We extended the existing archi-
tectural distinction between long-term knowledge and short-
term structures to goals by introducing general goal descrip-
tions associated with their own relevance conditions. The sys-
tem instantiates these goals with respect to the current situa-
tion of the world and nominates them as its own top-level
goals to guide its behavior. The extended architecture also
has a new ability to prioritize its nominated top-level goals
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by modulating their priority values with continuous degrees
of match for the relevance conditions.

In the subsequent sections, we briefly review the ICARUS
architecture and explain the extension for nomination and pri-
oritization of goals in detail. Then we provide some illus-
trative examples in an urban driving domain. After that, we
conclude after a discussion on related and future work.

Review of the ICARUS Architecture

ICARUS shares its basic features with other cognitive archi-
tectures like Soar (Laird et al., 1986) and ACT-R (Anderson,
1993). It makes commitments to its representation of knowl-
edge, memory structures, and mechanisms for inference, ex-
ecution, and learning. The system provides a computational
framework for intelligent agents, which stays constant across
different domains. In this section, we review the basic ca-
pabilities of the architecture before we continue our discus-
sion on nomination and prioritization of goals. We start
with ICARUS’ representation of knowledge and memories
that support this, and then cover the architecture’s inference
and execution processes. Throughout this section, we show
examples from an urban driving domain, which we also use
for demonstration purposes in a later section.

Representation and Memories

The ICARUS architecture distinguishes conceptual and pro-
cedural knowledge. Its concepts describe various aspects of
the environment, whereas its skills define procedures that are
known to achieve corresponding concepts when executed un-
til completion. ICARUS also distinguishes long-term knowl-
edge and short-term structures. Long-term knowledge in-
cludes general descriptions of the environment and proce-
dures. The architecture instantiates them and gets short-term
structures relevant to the current situation.

The distinctions along these two directions result in four
main memories in ICARUS. Its long-term conceptual mem-
ory stores general definitions of concepts that use variablized
objects and their attributes to describe situations. A long-
term skill memory houses variablized skills that define gen-
eral procedures to achieve certain concepts, namely their
goals. When the system instantiates these general concepts
and skills, it deposits them in the corresponding short-term
memories. A short-term conceptual memory stores instanti-
ated concepts, which the system believes to be true in the cur-
rent situation. A short-term skill memory holds instantiated
skills, along with their corresponding goals. For this reason,
we often call the short-term memories as the belief memory
and the goal memory, respectively.



Table 1 shows some sample concepts in an urban driving
domain. The first two concepts are primitive, and they in-
clude only perceptual matching conditions that ground on ob-
ject information from the environment in the :percepts
and :tests fields. On the other hand, the last concept
is non-primitive, since it refers to other concepts in the
:relations field. This hierarchical organization of con-
cepts allows multiple levels of abstraction, and facilitates the
description of complex situations in the world. Meanwhile,
Table 2 provides some examples of skills in this domain. In
a similar fashion to their conceptual counterparts, there are
primitive and non-primitive skills. The first skill shown is
primitive, and it consists of perceptual matching conditions,
preconditions, and a direct reference to an immediate action
in the world. The other two skills, however, are non-primitive,
and they provide subgoal decompositions instead of refer-
ences to actions. In the next section, we cover ICARUS’ pro-
cesses that work over these knowledge structures stored in its
memories.

Table 1: Some sample ICARUS concepts for the urban driving
domain.

((yellow—-1line ?line)
:percepts ((lane—-line ?line color YELLOW)))

((at-turning-speed ?self)
:percepts ((self ?self speed ?speed))
:tests ((>= 7?speed 15)

(<= ?speed 20)))

((ready-for-right-turn ?self)
:relations ((in-rightmost-lane ?self 2?11 ?12)
(at-turning-speed ?self)))

Table 2: Some sample ICARUS skills for the urban driving
domain.

((in-intersection-for-rt ?self ?int ?c ?tg)

:percepts ((self ?self)
(street ?c)
(street ?tg)
(intersection ?int))
:start ((on—-street ?self 2c)
(ready-for-right-turn ?self))
ractions ((*xcruise)))

((on-street 7?self ?tg)

:percepts ((self ?self)

(street ?st)

(street ?tg)

(intersection ?int))
:start ((intersection-ahead ?self ?int ?tg))
:subgoals ((ready-for-right-turn ?self)

(

in-intersection-for-rt ?self ?int ?st ?tg)
(on-street 7?self ?tg)))

((ready-for-right-turn ?self)

:percepts ((self ?self))

:subgoals ((in-rightmost-lane ?self 2?11 ?12)
(at-turning-speed ?self)))

Inference and Execution

The ICARUS architecture operates in distinct cycles. On each
cycle, the system invokes a series of processes including the
inference of the current belief state and the execution of skill
paths relevant to the situation. ICARUS receives sensory data
from the environment at the beginning of each cycle. Based
on the perceptual information, the system infers its belief
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state, namely, all the concept instances that are true in the
current state. It starts with primitive concepts at the low-
est level and moves up the hierarchy to non-primitive ones.
ICcARUS performs this process on every cycle, and therefore,
any naive approach to the belief inference is susceptible to
the combinatorial effect found in domains with many objects.
In response, there have been several efforts to alleviate this
problem including Asgharbeygi et al. (2005).

When the system finishes inferring its belief state, it at-
tempts to execute its skills accordingly. ICARUS retrieves
skills that are relevant to its top-level goals, and finds one or
more executable paths through the hierarchy that start from
these skills. A skill path is executable when all the skill in-
stances on it are executable, from top to bottom. Although
a path might include a single primitive skill that achieves an
ICARUS agent’s top-level goal, a skill path usually starts with
a non-primitive skill for a top-level goal and continues down
several levels until it reaches a primitive skill at the bottom.
The primitive skill includes some actions the system needs to
perform in the environment. The ICARUS architecture takes
these actions and applies them to make changes in its sur-
roundings. Then the system repeats the processes based on
the updated sensory data. In the following section, we con-
tinue our discussion on the architecture in the context of the
new extension.

Reactive Goal Management

As seen in the previous section, the ICARUS architecture has
a goal memory that stores information on its top-level goals
and subgoals along with their corresponding skill instances.
Most contents of the memory are very specific and short-
lived, and they change as the agent moves along its path to-
ward achieving its goals. But the top-level goals themselves
did not change in this memory. It was as if a godly entity gave
the agent a set of goals it should always pursue, which does
not change over time.

This, however, is not very reasonable. When people are
pursuing some goals of their own, they do get distracted from
the environment, and sometimes more urgent matters come
up and they should deal with them first. To support this kind
of behavior, the top-level goals change dynamically in the ex-
tended architecture, rather than staying constant throughout
the course of execution. The system has a new goal nomi-
nation process that generates top-level goals for its agent on
each cycle. The nominated goals from this process are based
on the generalized descriptions stored in a new long-term goal
memory. In this new memory, we can program both general
and domain-specific rules for the nomination of goals. These
rules collectively represent a basic form of motivational struc-
ture in ICARUS.

Once the architecture finishes nominating goals that are
relevant to the current situation, it prioritizes them before start
executing for the goals. The programmer assigns a default
priority value to each general goal, and ICARUS modulates
this value based on a continuous measure for relevancy of the



goal. The architecture computes the degree of match for the
relevance conditions of a goal whenever possible, and uses
this continuous matching value during the goal prioritization
process. This continuous degree of match represents the de-
gree of relevance for the goal in the current situation, and any-
thing less than the complete relevance will reduce the priority
value accordingly. In the subsequent sections, we explain the
new representation and processes in detail.

Representation

Perhaps the best way to describe the new representation is
through examples. Table 3 shows some sample goals stored
in the long-term goal memory. Each element takes the form
of a <conditions, goal> pair that specifies the generalized
goal and the conditions under which it is relevant. The rele-
vance conditions stored in :nominate fields are templates
for concepts that the system can match against its beliefs,
and the goals are concepts that use some common variables
that appear in the relevance conditions. The relation between
this long-term goal memory and the existing short-term goal
memory is similar to those between long-term concept and
skill memories and their respective counterparts. This is a
feature that has an architectural significance, which shows the
unified nature of ICARUS.

Table 3: Some sample <relevance conditions, generalized
goal> pairs stored in ICARUS’ long-term goal memory.

((stopped-and-clear ME ?ped)
:nominate ((pedestrian-ahead ME ?ped))
:priority 10)

((clear ME Z?car)
:nominate ((vehicle—-ahead ME ?car))
:priority 5)

((cruising-in-lane ME ?linel ?line2)
:nominate nil
:priority 1)

The elements of ICARUS’ long-term goal memory also
have priority values associated with them, which represent
the relative importance of the goals compared to others in the
memory. Users predefine the goals and their associated pri-
ority values, providing a default prioritization measure. This
corresponds to the general idea people seem to have on what
is more important and what is less so. For instance, most
people agree that saving one’s life has priority over saving
his or her possessions. Many people will also save a child
before saving an adult if caught in an accident. There are
many examples like these, and we consider the default priori-
ties assigned to generalized goals in ICARUS’ long-term goal
memory as representing this behavior. Next, we continue our
discussion on the new processes that use this memory.

Nomination Process

When the ICARUS architecture finds a match for any rele-
vance condition stored in its long-term goal memory, it in-
stantiates the corresponding goal accordingly. The system
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then stores the instantiated goal in its short-term goal mem-
ory. When this nomination process is complete, the system
has a series of top-level goals, which guide the behavior dur-
ing the particular cycle.

The nomination process starts after the architecture infers
its belief state based on the perceptual information from the
environment. The system goes through each <relevance con-
dition, generalized goal> pair stored in the long-term goal
memory, and makes attempts to match the relevance condi-
tions against the current state. Whenever its attempt is suc-
cessful, ICARUS instantiates the corresponding goal with the
variable bindings it has found from the match. This also
means that the retraction of goals happens without any ad-
ditional mechanisms. If a currently nominated goal loses its
relevance in the subsequent cycles, the system no longer nom-
inates the goal, effectively retracting it from the short-term
goal memory. During this retraction, however, ICARUS stores
some information on the previous nomination, and uses it at
a later time if the same goal instance is nominated again.

Figure 1 shows a simple situation that involves the nomi-
nation and retraction of a goal. Initially, there is nothing in
front of the agent’s car (shown as a green box) moving up-
wards in the figure. Therefore, it has a single goal to get to its
target location. Then a pedestrian, ped! (shown as a yellow
smily face), suddenly starts to jaywalk the street in front of the
agent’s car and this causes a concept instance, (pedestrian-
ahead me pedl), to match in the state. In response, the sys-
tem generates the corresponding goal, (stopped me), and now
it has two goals as shown in the second column. When the
pedestrian moves away, the relevance condition disappears
and the goal is retracted. The agent has a single goal again,
as shown in the last column.

*
N
*

N

(at-location ME TARGET)

TR

Goal:
(at-location ME TARGET)

Goals:
(stopped ME)
(at-location ME TARGET)

Figure 1: An example of goal nomination process in an urban
driving domain.

Prioritization Process

Once ICARUS completes the nomination process, it attempts
to reorder the currently nominated goals to prioritize them
under the given circumstances. Since all the top-level goals
have default priority values associated with them and ICARUS
orders the goals according to these values, we need a mecha-
nism to modulate these fixed values based on the current situ-
ation of the world. This modulation will then give goals with
lower default priorities a chance to overtake higher-priority



ones. Our approach uses the continuous matching of con-
cepts, more specifically, the relevance conditions associated
with each goal.

As shown in the previous section, ICARUS’ concepts in-
clude perceptual matching conditions. Especially, some
primitive concepts have numeric tests in their bodies that of-
ten involve continuous variables. We take such variables as
the source of continuous matching. For example, consider a
concept that includes a numeric test on a variable, ?var, as in
0 <?var < 10. ICARUS normally checks if the value of the
variable is within the specified range, and returns true (1) if it
is larger than 0 and smaller than 10, but returns false (0) other-
wise. But if we make the boundaries of the tests smoother as
shown in Figure 2, we can get some partial matches between
0 and 1 when the variable falls right outside of the specified
region.

DM

1
1
|
I
b P

: test region ;

regions of partial match

[) PR

< test region ;;

regions of partial match

Figure 2: Curves applied to the boundaries of numeric tests
for continuous matching.

When the relevance conditions associated with ICARUS’
goals include a primitive concept, we can get the degree of
match between zero and one using this mechanism. This
value will then represent how relevant the associated goal is,
and we can use it to modulate the default priority value of the
goal. In this manner, a very relevant goal with a low default
priority can overtake a barely relevant goal with a high de-
fault priority. We believe this explains people’s behavior in
extreme conditions like when people are extremely hungry or
thirsty. In such cases, people will probably drink fluids with
a bad smell that they would normally reject.

Ilustrative Examples

With the extensions described so far, we believe the ICARUS
architecture provides a reasonable account of goal manage-
ment. Testing this hypothesis, however, is not of the standard
affair. As is often the case in the evaluation of cognitive archi-
tectures, capabilities like the goal management are innately at
a very high-level. We want to show performance improve-
ments we can get from the extended system over the previous
one, but doing so using several quantitative measures is not
immediately possible in this case, and those results will not
be quite representative either. Instead, we can demonstrate
the qualitative behavior of the extended system and confirm
that it is far more aligned with our intuition about human cog-
nition than the previous system. Cassimatis et al. (2008) sug-
gested that models of higher-order cognition should be eval-
uated in three aspects: their ability compared to humans, the

28

breadth of situations they cover, and the parsimony of their
mechanisms.

In this section, we challenge the original and the extended
systems with two scenarios. By comparing the two systems,
we show the advantages of the goal management in various
aspects like programmability and human-like behavior. Of-
ten the original system is not capable of demonstrating the
desired behavior at all, while the extended system can easily
simulate it.

Scenario 1: Cruiser

Imagine that you are driving a sports car cruising down the
street. You notice a car slowing down and stopping in front
of you, and you swerve around the car by changing your lane.
After a while, a group of careless pedestrians jump out to the
road all of a sudden and jaywalk the street. Startled, but deci-
sively you make a move to avoid hitting the pedestrians and
continue your cruise down the road. Unless you are driving
exclusively on freeways, this kind of situation should sound
very familiar.

In the previous version of the ICARUS architecture, we
would program this behavior by giving the system two goals,
(stopped-and-all-clear me) and (cruising-in-lane me ?linel
?line2) in this order. The system gives higher priority to the
first goal than the second one, so it correctly focuses its atten-
tion to maintaining a safe distance from pedestrians before
worrying about cruising on the street. However, we find sev-
eral issues with this program. In addition to the fact that the
system will have the first goal regardless of whether it is rele-
vant or not, a more notable problem is that the first goal does
not mention any specific pedestrian, and that the system will
need to pick a pedestrian dynamically within the skills for
this goal. This means that the system can cover for only one
pedestrian at a time. We will probably program it so that the
closest pedestrian from the ICARUS agent’s position gets the
attention, but no matter what we do, the system has no way
to consider any other pedestrians.

On the other hand, using the extended system with the
goal nomination capability, we would program three long-
term goals like, (stopped-and-clear me ?ped) with the nomi-
nation condition (pedestrian-ahead me ?ped), (clear me ?car)
with the nomination condition (vehicle-ahead me ?car), and
(cruising-in-lane me ?linel ?line2) with a null nomination
condition. Table 4 shows ICARUS concepts and skills for
the extended system that we wrote this way. The first ad-
vantage of this system over the previous one is that the agent
has only the relevant set of goals at any given moment, much
like people would. But what is more important in this par-
ticular case is that, the ICARUS agent can consider each in-
stance of the goals separately. For instance, if there are mul-
tiple pedestrians jaywalking the street in front of the agent’s
car, multiple instances of the generalized goal, (stopped-and-
clear me ?ped) will be deposited into the system’s short-term
goal memory, and the system will be able to consider all of
them in the order of their corresponding priorities. By doing
s0, the system can take an action for the highest priority goal



and continue to the subsequent ones if resources are avail-
able. It is also notable that the system no longer requires a
complicated goal concept. Instead, all the individual cases of
different pedestrians are instantiated from a generalized goal
description, and deposited into the system’s short-term goal
memory.

Table 4: ICARUS concepts and skills for the Cruiser scenario
using the extended architecture.

( (stopped-and-clear ?self ?obj)
:percepts ((self ?self)
:relations ((stopped ?self)

(clear ?self ?0bj)))

((clear ?self ?ob%)
:percepts ((self ?self)
(pedestrian 20obj)
:relations ((not (pedestrian-ahead ?self ?0bj))))

((clear ?self ?2o0b7)
:percepts ((self ?self)

) (car ?oba)) .
:relations ((not (vehicle-ahead ?self ?0obj))))
((stopped-and-clear ?self ?0bj)
:percepts ((self ?self)
sactions ((*brake 1000)))
((clear ?self ?0bj)
:percepts ((self ?self)
:start ((in-leftmost-lane ?self ?linel ?line2))
:subgoals ((in-rightmost-lane ?self ?1ine3 ?lined)))
((clear ?self 20bj)
:percepts ((self ?self)
:start ((in-rightmost-lane ?self ?linel ?line2))
:subgoals ((in-leftmost-lane ?self ?line3 ?line4)))

Let us analyze a typical run with this system. The agent
starts in the leftmost lane of a street segment. There are sev-
eral other cars in that stretch of the street, and the first one,
¢6120 is far ahead of the agent in the same lane. For the first
10 cycles, the agent has a single goal, (cruising-in-lane me
?linel ?line2) that is always nominated. On cycle 11, as the
ICARUS agent gets closer to the car, c6120, it detects that the
car is blocking its way and the predicate, (vehicle-ahead me
c6120), becomes true in the state. So, the system nominates
(clear me c6120) as its goal. On the next cycle, ICARUS re-
trieves a skill for the first goal with the same name, clear, and
the skill leads to an action, (*steer 35). While the agent is
changing its lane to the right, it notices on cycle 13 that its
speed is below the predefined cruising speed, and the second
goal cruising-in-lane is unsatisfied. The agent now executes
(*gas 20) concurrently with (*steer 35) to adjust its speed. It
continues steering to the right while it performs the speed ad-
justments as needed until cycle 20, but then it notices that it is
in the target lane, and starts aligning itself in that lane. By this
time, the agent successfully avoided the blocking vehicle, and
the concept instance, (vehicle-ahead me c6120), is no longer
true. So the goal, (clear me c6120), that was triggered by this
concept instance disappears.

Scenario 2: Ambulance

Now, to make the task more complicated, let us think about
driving an emergency vehicle, say, an ambulance. We some-
times see that an ambulance is moving quite normally, wait-
ing for pedestrians to pass, observing the speed limit, and
even stopping for red lights, although it has its lights and siren
on. Yet some other times we see an ambulance speeding by
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almost like one driven by a reckless driver, blinking every sin-
gle light it has equipped on and making a very loud sound. We
can guess that the difference is on the severity of the problem
at their destinations, or onboard, and this factor affects the
behavior of the drivers.

Modeling this behavior in the previous version of ICARUS
is close to impossible, unless the programmer is patient
enough to write concepts and skills for all possible cases there
are. Even then, the space of search will be so large that the
performance will be below what is required during the exe-
cution. However, the extended system supports this behavior
easily, with some generalized goals encoded in its long-term
memory, coupled with their corresponding triggers. Table 5
shows the new concepts that we added for this scenario.

Table 5: ICARUS concepts and skills for the Ambulance sce-
nario using the extended architecture.

((emergency ?self
:percepts ((self ?self status ?status level ?level)
:tests ((equal ?status ’emergency)
= ?level 10)
:pivot (?value))
((not-emergency ?self)
:percepts ((self ?self)
:relations ((not (emergency ?self))))

To handle the task to get to the hospital with the proper
urgency based on the current situation, we encode the goal,
(okay-to-go ME ?signal) with priority 2, to have nomination
conditions, (signal-ahead me ?signal) and (not-emergency
me). This goal is what forces the agent to observe traffic
signals when there is no emergency. But when the emer-
gency strikes and the degree of match for the concept (emer-
gency me) starts to increase from zero, that for the concept
(non-emergency me) starts to decrease from one accordingly.
When this happens, the relevance of the above goal drops
with them, eventually making the architecture focus on the
other goal of getting to the hospital first.

Now we will show how the system behaves during a typ-
ical run. In a similar fashion as before, the agent starts out
by accelerating itself to reach its cruising speed. On cycle 7,
it finds a car blocking its path, and starts steering to the right
to clear the car. With occasional accelerations to maintain
its speed, it continues steering to the right. On cycle 13, it
notices that it is in the target lane, and starts to cruise there.
But it soon finds another car, and clear it in a similar man-
ner, but this time to the left lane, and finishes the move by
cycle 21. The agent then sees a traffic signal that is red, and
brakes to stop. During the wait, its emergency level changes
to 8, which, in turn, changes the degree of match for the
concept instance, (emergency me) to 0.8. The negation of
this instance, (not-emergency me), therefore, gets its degree
of match at 0.2. This is a nomination condition for one of
the current goals, (okay-to-go me c27224). Hence the system
modulates the priority value of the goal to be 0.4 (= 2 x 0.2).
This causes the goal to be less important than the default goal,
(cruising-in-lane me ?linel ?line2) that has the priority of 1.



Therefore, the system now stops observing traffic signals, and
starts cruising even with the red traffic light. Later on cycle 95
when it reaches the next intersection, however, the emergency
level is back to 3, and the modulated priority value for (not-
emergency me) becomes 0.7. This once again puts the goal to
observe traffic signals before the default goal of cruising, and
the system starts observing signals again.

The two programs shown above, one for the original archi-
tecture and the other for the extended architecture, both result
in equivalent behaviors at the high level. However, the two
systems still have differences at lower level for basic driving
maneuvers, and the extended system shows much smoother
driving behavior. What is important to note in this scenario
is that the goal nomination capability leads to a much simpler
program that is more intuitive and reasonable to us.

Related and Future Work

Our work has been heavily influenced by related work in the
psychology literature. One can find a fair amount of research
related to motivation and goal selection there. Typically, these
also cover the topic of emotion. Simon (1967) recognized
that the central nervous system, despite being a serial infor-
mation processor, serves multiple needs in an organism sur-
rounded by unpredictable situations. He suggested that two
mechanisms, a goal-terminating mechanism and an interrup-
tion mechanism, would satisfy this requirements. Simon fur-
ther described the relationship among interruption, motiva-
tion, and emotion, and outlined an information-processing
system that covers these as wells as learning in relation to
them. More recently, Sloman (1987; 2002) suggested that
any system with priority in beliefs and actions naturally have
emotions. He argued that goals often conflict with each other,
and systems must have a mechanism to resolve such conflicts.
The author proposed that motivators can serve this purpose.

As mentioned earlier in this paper, there are also some re-
lated work in the architectural perspective. CLARION (Sun,
2007) and Soar (Laird et al., 1986) architectures possess their
own accounts of goal management. The former is more
psychologically positioned, providing interactions between
drives and goals. The latter has a rule-based mechanism to
nominate its top-level operators as its goals, which resembles
the conditionalized goals ICARUS has. Unlike ICARUS, how-
ever, the Soar architecture proposes a single goal at a time,
removing the need for prioritization or the advantage of inter-
actions among multiple goals.

Although the current work is an important first step toward
a cognitive architecture with the full capability for goal man-
agement, it still ignores a vast amount of psychological ac-
counts on human motivation and goal handling. First of all,
people can change priorities among different goal in a flex-
ible manner, depending on the current situation. We have a
way to model this behavior, and hope to report in this direc-
tion in a near future. More broadly, we should explain where
the long-term knowledge about goals comes from. It is very
likely that we will deal with even higher-level cognitions like
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motivations, emotion, and obligations. We expect the the ev-
idences in the social psychology literature will help us in the
modeling process.

Conclusions

In this paper, we introduced an extension to the ICARUS ar-
chitecture for reactive goal management. We first conceived
the idea in the architectural perspective, but the extension
makes close connections to previous work in psychology and
other related fields. The extended framework supports the
nomination, retraction, and prioritization of goals based on
the current belief state. We have demonstrated in an urban
driving domain that the extension leads to simpler programs
while supporting new behaviors that connects to the context
better than the original architecture.

References

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ:
Lawrence Erlbaum.

Asgharbeygi, N., Nejati, N., Langley, P., & Arai, S. (2005).
Guiding inference through relational reinforcement
learning. In Proceedings of the fifteenth international
conference on inductive logic programming (pp. 20—
37). Bonn, Germany: Springer Verlag.

Cassimatis, N. L., Bello, P., & Langley, P. (2008). Abil-
ity, breadth, and parsimony in computational models of
higher-order cognition. Cognitive Science, 32, 1304—
1322.

Gray, J. R., & Braver, T. S. (2002). Integration of emo-
tion and cognitive control: A neurocomputational hy-
pothesis of dynamic goal regulation. In S. C. Moore &
M. Oaksford (Eds.), Emotional cognition: From brain
to behaviour (pp. 289-316). Philadelphia, PA: John
Benjamins Publishing Company.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunk-
ing in soar: The anatomy of a general learning mecha-
nism. Machine Learning, 1, 11-46.

Langley, P., & Choi, D. (2006). A unified cognitive ar-
chitecture for physical agents. In Proceedings of the
twenty-first national conference on artificial intelli-
gence. Boston: AAAI Press.

Newell, A. (1990). Unified theories of cognition. Cambridge,
MA: Harvard University Press.

Simon, H. A. (1967). Motivational and emotional controls of
cognition. Psychological Review, 74(1), 29-39.
Sloman, A. (1987). Motives, mechanisms, and emotions.

Cognition & Emotion, 1(3), 217-233.

Sloman, A. (2002). How many separately evolved emotional
beasties live within us? In R. Trappl, P. Petta, & S. Payr
(Eds.), Emotions in humans and artifacts (pp. 35-114).
MIT Press.

Sun, R. (2007). The motivational and metacognitive control
in CLARION. In W. Gray (Ed.), Modeling integrated
cognitive systems. New York, NY: Oxford University
Press.



Modelling the Correlation Between Two Putative Inhibition Tasks:
A Simulation Approach

Richard P. Cooper (R.Cooper@bbk.ac.uk) and Eddy J. Davelaar (E.Davelaar@bbk.ac.uk)
Department of Psychological Science, Birkbeck, University of London
Malet Street, London WCI1E 7HX, UK

Abstract

Behavioural studies of individual differences have shown
mild but significant correlations in performance on tasks that
require the withholding of a response to a prepotent stimulus,
i.e., on so-called response inhibition tasks. Several
computational models of response inhibition tasks have been
developed, but the dominant models of such tasks have been
produced in isolation of each other. Consequently they fail to
present a coherent unitary picture of response inhibition. In
this paper we consider two established interactive activation
models of distinct response inhibition tasks — the stop signal
task and the Stroop task — and explore potential mechanisms
within those models that might underlie the observed
behavioural correlation. Only one plausible account of the
correlation emerges: that it results from shared mechanisms of
attentional bias. This account does not map onto the classical
concept of response inhibition. It is concluded that either the
accepted models are flawed or that the concept of response
inhibition as applied to these tasks is misleading (and hence
counterproductive). More generally the work may be taken to
support an architectural approach to modelling, albeit at the
level of interactive activation models, rather than the more
traditional production system models.

Keywords: Executive processes; cognitive control; response
inhibition; individual differences; Stroop task; Stop signal
task.

Introduction

The construct of “response inhibition” is frequently invoked
when attempting to explain behaviours in tasks or situations
that demand the withholding of a strongly prepotent
response. Response inhibition is held to be a separable task-
general executive or cognitive control function, the efficacy
of which varies across individuals.

In the laboratory response inhibition is standardly
explored in variants of the stop signal task (Logan &
Cowan, 1984). This is a form of simple reaction time task in
which subjects are normally required to respond as quickly
and accurately as possible. However, on a small number of
trials a compound stimulus is presented and on these trials
and these trials only the subject is required to withhold their
response. Such trials are referred to as “stop trials”.
Typically the compound stimulus consists of a standard
stimulus that might occur on any normal trial followed
almost immediately by an auditory beep. Stop trials are rare
in comparison to normal “go trials”. This and the need to
respond on go trials as rapidly as possible ensures that the
go response is prepotent. Performance is measured in terms
of the number or proportion of stop trials on which a
response is (incorrectly) produced. This measure varies
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reliably between subjects. Good response inhibitors produce
few stop responses, while poor response inhibitors produce
many.

There is substantial behavioural and neuroscience
evidence, as well as good theoretical reasons, for supposing
that response inhibition is a task-general control function.
From the theoretical perspective, response inhibition fits
clearly within the supervisory system/contention scheduling
framework of the control of thought and action of Norman
and Shallice (1986). On this influential account, a system
for the control of routine or well-learned behaviours,
contention scheduling, is modulated by a deliberative
system, the supervisory system, when routine behaviour is
inappropriate and must be overridden. Contention
scheduling is appropriate for generating the prepotent
response, whatever the situation. If this is not appropriate, as
in stop trials of the stop signal task, the supervisory system
must override contention scheduling. A plausible way for
this to be operationalised is in terms of response inhibition
acting as a sub-function of the supervisory system.

From a neuropsychological perspective, patients have
been reported who are well-characterised in terms of a
deficit in response inhibition. Thus, utilisation behaviour
patients tend to exhibit behaviours that are driven largely by
environmental contingencies rather than their stated
intentions (Lhermitte, 1983). Alien hand patients show
similar problems, but they are restricted to one hand
(Goldberg et al., 1981). Both deficits may be seen as arising
from a failure in response inhibition.

One source of behavioural evidence for the task-general
nature of response inhibition comes from a large individual
differences study of Miyake et al. (2000). In this study, 137
subjects were each tested on a total of 14 tasks. Performance
on 3 of these tasks was argued, on a priori grounds, to
specifically require response inhibition. Subsequent factor
analysis of subject performance across the tasks supported
this view, with performance on the response inhibition tasks
being related to a single factor that differentiated those tasks
from others in the study, which were held to primarily tap
other executive functions (namely the functions of set-
shifting and memory monitoring and updating).

The three response inhibition tasks of Miyake et al.
(2000) were a) a forced-choice decision variant of the stop
signal task, b) the Stroop colour naming task, and c) an anti-
saccade task. Our focus in this paper is on the first two, and
so we described these in detail. In the stop signal task,
subjects were required to indicate with a button press
whether a (visually presented) word was an animal or a non-
animal. The first block of 48 trials were all “go” trials.



These were used to establish a mean response time for each
subject. One quarter of the trials in the second block (of 192
trials) were stop trials. In these trials, a beep was sounded
shortly after presentation of the word (225ms prior to the
subject’s mean response time, as determined in block 1),
and subjects were required to withhold their response. The
dependent measure was the proportion of stop trials on
which a response was given. In the well-known Stroop
colour naming task, subjects were presented with a “word”
written in one of six colours. They were required to name
the colour of the stimulus word. On neutral trials the word
was a string of asterisk symbols, while on incongruent trials
it was the name of another colour. The dependent variable
was the difference in mean response times for incongruent
and neutral trials.

For our purposes, the critical result of this individual
differences study was mild but significant positive
correlations (r = 0.20) between performance on the stop
signal task and the Stroop task (and in fact between all pairs
of response inhibition tasks). In general, these correlations
were stronger than those between any single response
inhibition task and any of the non-response inhibition tasks
explored in the study. However, while the study is
impressive in its scale, interpretation of the results is limited
because Miyake et al. fail to provide process accounts of the
various tasks. While it is perhaps unreasonable to expect
such models of all 14 tasks, the absence of process models
leaves unexplained the mechanism that is, on the account
proposed by Miyake and colleagues, shared by the response
inhibition tasks. Similarly, it leaves open the issue of why
that function is not significantly involved in successful
performance of the other tasks considered in the study.

The purpose of the work presented here is to begin to
address this limitation by exploring potential common
mechanisms within established process models of two of
Miyake et al.’s response inhibition tasks. We focus on
models of the stop signal task and the Stroop task because
there are established models of each task (due to Boucher et
al., 2007, and Cohen & Huston, 1994, respectively) that
bear some correspondence. This correspondence offers the
possibility of relating the models to each other and thereby
identifying a shared response inhibition mechanism. For
such a mechanism to be explanatorily adequate, it must be
parameterisable, with the observed behavioural correlations
between tasks arising in part from variation in a shared
parameter. To foreshadow, simulation findings derived from
reimplementations of the existing published models suggest
that directly shared parameters fail to yield the required
correlation in performance. However, an appropriate
correlation is forthcoming if attentional biasing mechanisms
are yoked. Unfortunately, attentional biasing is not normally
related conceptually to response inhibition. We conclude
that either a) response inhibition is not the mechanism
underlying the behavioural correlation in these tasks, or b)
one or both of the accepted models requires updating. These
simulation results extend those of a complementary analytic
study (Davelaar & Cooper, 2010).
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The Stop Signal Task

The Model

Early work with the stop signal task demonstrated that
behaviour on the task could be well accounted for by a race
model consisting of two stochastic processes, a “go” process
which is slow to activate but has a head start, and a “stop”
process which is faster to activate but starts late (Logan &
Cowan, 1984). Successful performance on a stop trial
requires that the stop process reach threshold before the go
process. Boucher et al. (2007) note that despite this model’s
strengths, it is inconsistent with neural evidence of
interaction between stop and go processes. They present the
interactive race model, an update of the original model in
which the stop and go processes compete through mutual
lateral inhibition. The model, as applied to Miyake et al.’s
semantic categorisation variant of the stop signal task, is
shown in Figure 1.

The model is extremely simple, consisting of just three
nodes: one for each response and one for the stop process.
Processing in the model is cyclic with each node operating
as a leaky competing accumulator (Usher & McClelland,
2001). On each cycle, the activation of a node is increased
by an amount proportional to its external input, less an
amount proportional to the activation of its competitors
(corresponding to lateral inhibition), less an amount
proportional to its current activation (its leakage), plus
normally distributed random noise. Parameters control the
contributions of the various sources to this accumulation.
For default behaviour we assume ballpark parameters scaled
from those of Boucher et al. to give a response threshold of
1.0. Thus, we assume lateral inhibition, 3, of 0.025 between
all pairs of nodes, leakage of 0.0 (i.e., the accumulators do
not leak), and the standard deviation of noise, o, of 0.025
units per cycle.

In addition, it is assumed that on any trial external input to
one of the response nodes (animal or non-animal) is
provided by a semantic categorisation process (which is not
modelled). The level of input is controlled by the parameter
WUgo, s€t to 0.005 units per cycle by default. It is assumed that
the other response node receives zero external input. On
stop trials it is assumed that at some point during the trial

Animal

Hstop
8 stop

Figure 1: The interactive race model of the stop signal task. On
any one trial, either the animal or the nonanimal node receives
activation from a semantic categorisation process. On “stop”
trials, the stop node also receives activation, though this activation
is delayed relative to the activation from the semantic
categorisation process.
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Figure 2: Effects of varying key parameters on the proportion of stop errors produced by the interactive race model of the stop signal task.

external input is provided to the stop node. The level of this
input is Wsp, set to 0.030 units per cycle by default. Finally,
we assume that the delay between input to the response
nodes and input to the stop node is 250 cycles. This delay is
the sum of the actual delay between presentation of word
and stop stimuli, SSD, and the time to initiate the stop
process, Ogop. With these parameters, the model performs as
desired — on go trials its response accuracy is approximately
99% (with noise and lateral inhibition occasionally leading
to error) while on stop trials it fails to stop on approximately
65% of occasions. This compares well with mean subject
performance of 67% as reported by Miyake et al. (2000).

Simulation Results

An initial set of simulation studies was performed to
determine the relation between the model’s performance and
the key parameters that could reasonably be argued to vary
across individuals, that is: Wg,, Usop, B (lateral inhibition), o
(standard deviation of noise) and 6smp.1 Each parameter was
varied about the default value (with the other four
parameters fixed at default values) to determine the effect of
that parameter on the proportion of stop errors. Figure 2
summarises the results, based on 100 blocks per parameter,
each of 100 trials.

As can be seen from the figure, there is a slight non-
monotonic relation between B (lateral inhibition) and the
model’s performance, with fewer stop errors at intermediate
values. Similarly there is a non-monotonic relation between
o (noise) and stop errors. Perhaps surprisingly, when noise
is very low there are more stop errors than when noise is at
moderate values. This is because noise may delay the
model’s decision, causing it to respond more slowly on
some trials (but more quickly on others). On stop trials
when noise acts against the go process this gives the stop
process more time to affect behaviour. There is an optimal
value for noise, however, and if it is too high successful
stopping again becomes rare. Increasing U, also reduces
stop errors, though here the relation is monotonic and the
explanation is more obvious: with stronger excitation of the
stop node it is more likely to reach threshold on stop trials
before one of the go nodes. Stop errors correlate positively

! Indeed, Boucher et al. (2007) consider how their model may be
fit to data from different monkeys by varying these parameters.
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with g, and Ogp. In both cases the effect of the parameter is
transparent. With faster excitation of the go process or with
greater delay, the stop process has less chance of reaching
threshold before the relevant go process. Consequently stop
errors are more likely.

Relating the results to the concept of response inhibition,
it appears that good inhibitors are those who either have a)
near optimal levels of lateral inhibition or noise, b) slow go
processes or short stop process delays, or c) fast stop
processes. Miyake et al. (2000) do not report the
behavioural data that would help to discriminate between
these options.

The Stroop Task

The Model

Many models have been developed of the Stroop task. We
focus on the well-known model of Cohen and Huston
(1994), as its principal functional mechanism, interactive
activation, is shared with Boucher et al.’s interactive race
model. The model, shown in Figure 3, consists of four sets
of nodes, with nodes within each set competing for
activation through lateral inhibition. There are two task
demand nodes, three word input nodes, three colour input
nodes, and two response nodes. One task demand node
corresponds to the colour naming task while the other
corresponds to the word reading task. The colour naming
task demand node is connected to all colour input nodes,
while the word reading node is connected to all word input

Task Demand Nodes
Name Read
Colour  Word

Response Nodes
Red Green

GREEN BLACK

RED RED GREEN XXXX

Colour Input Word Input

Figure 3: The Stroop model of Cohen and Huston (1994).



nodes. Colour input nodes and word input nodes are each
connected to one response node. Crucially, the connections
from word inputs to response nodes are stronger than those
from colour inputs to response nodes. This is justified on the
grounds that word reading is the more practiced of the two
tasks. As in the stop signal model, the operation of the
network is cyclic with activation accumulating over time.
However, the accumulation functions differ. For the Stroop
model activation accumulates according to the logistic
function of the time-averaged input to a node. (See Cohen &
Huston, 1994, for details.)

Processing on any given trial occurs in two stages. First,
input is provided to one of the task demand nodes (based on
the task instructions). This causes that node to become
active and the other task demand unit (through lateral
inhibition) to become depressed. As a task demand unit
becomes active, it excites the input nodes to which it is
connected, raising the resting activation of either the colour
input nodes or the word input nodes. The network settles
into this temporary state, which, it is assumed, corresponds
to a subject who is prepared for either a colour naming or
word reading Stroop trial. Input is then provided to one
colour input node and one word input node. If, for example,
the trial was to name the colour of the word “RED” printed
in green ink, then input would be provided to the GREEN
colour node and the RED word node. In this case the colour
nodes would already be moderately activated, and so the
additional input to one colour node would tend to excite the
appropriate response node (i.e. GREEN). At the same time,
the less active word node for RED would also be receiving
input and this would be tending to excite the RED response
node. Hence both response nodes will receive excitation,
and the balance of this excitation, plus the degree of lateral
inhibition between the response nodes, will determine how
quickly either response node reaches threshold.

As is clear from the architecture, there is no dedicated
parameter of response inhibition. Thus, verbal descriptions
of performance on the Stroop task are at odds with the
computational details of the models. Nevertheless, what
may be interpreted as response inhibition may well have a
different label at the computational level.

Simulation Results
As in the case of the stop signal model, an initial set of

simulations was performed to determine the relation
between the model’s performance and key parameters that
could plausible be related to individual differences.
Paralleling Miyake et al.’s study, the dependent variable
was the difference in processing time between incongruent
and neutral colour naming trials. Once again, five
parameters were varied: lateral inhibition (B), the standard
deviation of normally distributed noise (o), the strength of
the task demand units (u), the gain of the activation function
(y) and the response threshold (t). y controls the rate at
which a node’s activation accumulates. It is included
because Cohen and Servan-Schreiber (1992) suggest that it
corresponds to an attentional modulation parameter. T
controls the sensitivity of the network to produce a
response. It is fixed at 0.60 in the Cohen and Huston (1994)
simulations, but we consider varying it here as it has a
demonstrable affect on Stroop interference and might
reasonable vary across individuals. We do not consider
varying the weights from input nodes to response nodes, as
these are intended to capture learned contingencies which,
while possibly varying across individuals, should not vary
systematically with any specific executive function.

The results of these five sets of simulations are
summarised in Figure 4. The model is more complex than
the stop signal model, and consequently the relations
between the parameters and the relevant dependent measure
— Stroop interference — are less intuitive. Nevertheless, four
of the five relations are monotonic, with Stroop interference
correlating negatively with B (lateral inhibition) and vy
(gain), and positively with o (noise) and t (threshold). That
is, good inhibitors correspond in the Stroop model to high
lateral inhibition, low noise, optimal task demand weight,
high gain or low threshold.

Yoked Simulation Studies

Recall the purpose of considering the effects of the various
parameters on the performance of the two models: we are
concerned with understanding the source of common
variance in the tasks to which the models relate. It is
hypothesised that this might be achieved by identifying a
parameter that could plausibly vary across individuals and,
in so doing, could underlie the observed behavioural
correlation between Stroop colour naming interference and
stop signal errors.
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Figure 4: Effects of varying key parameters on the difference in processing time for correct incongruent and neutral colour naming trials

produced by the interactive activation model of the Stroop task.
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Figure 5: Effects of varying key parameters in a yoked fashion on the correlation between Stroop interference and the proportion of stop

errors produced by the two models.

We are now in a position to consider candidate
parameters. For example, both models share a mechanism of
lateral inhibition, and pre-theoretically one could suggest
that it is this mechanism, and individual differences in the
shared parameter [, that underlies the behavioural
correlation. The left-most panels of Figures 2 and 4 suggest
that this is implausible. The issue is not the absolute size of
the parameter’s default value (0.025 for the stop signal
model and 3.0 for the Stroop model). One can envisage re-
engineering the models so that lateral inhibition in both is of
a similar magnitude. The issue is that relatively high values
of B lead to a reduction in Stroop interference accompanied
by, if anything, a slight increase in stop errors, i.e., a
negative correlation between the tasks. This is in direct
contrast to the observed positive correlation.

In fact, because the relation between B and stop errors is
non-monotonic, low values of P can yield a positive
correlation between the tasks. This is shown in Figure 5
(left-most panel). The figure shows simulation results from
5 studies in which the value of a parameter in one model is
yoked to the value of a corresponding parameter in the other
model. In all 5 cases the relevant parameter values vary
across the full ranges explored in Figures 2 and 4. Thus, the
data in the left-most panel was generated by random
sampling a dummy variable uniformly distributed between
0.0 to 1.0, and mapping the value of this onto a) the interval
0.00 to 0.05 to give a value of § for the stop signal model,
and b) the interval 2.0 to 6.0 to give a yoked value of B for
the Stroop model. This procedure was repeated 100 times
for each of the five scatter-plots in Figure 5.7

From the figure we may immediately rule out several
potential factors underlying the observed correlation
between performance on the tasks and hence several
candidates for the response inhibition function. Neither of
the parameters shared by the models — lateral inhibition (B)
or noise (o) — produce correlations of the appropriate form.

2 One can envisage other approaches to yoking the parameters,
e.g., by restricting attention to sub-ranges of a parameter in which
its effect on the relevant dependent variable is monotonic. A
further alternative focuses on the ranges of parameter values
chosen. As yet there is no principled way of selecting the ranges
other than through a cognitive architecture approach. Due to space
limitations we do not consider these approaches here.
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Hence, it would seem that individual differences in these
parameters cannot underlie the observed correlations.
Equally, as shown by the third plot in Figure 5, yoking the
strength of the go process and the strength of task demand
weights — an account not immediately related to any
conceptual mechanism of response inhibition but one which,
nevertheless, relates two parameters with similar
functionality — fails to yield a positive correlation between
the relevant dependent measures.

The desired positive correlation is shown, however, in the
two right-most plots of Figure 5. Thus, the models predict
that performance on the two tasks will correlate positively if
a) the strength of the stop process and the strength of task
demand weights are (positively) correlated, or b) the
strength of the stop process and the gain in the Stroop model
are (positively) correlated. There is no apriori reason to
suppose the latter, but the former is plausible as both
parameters concern the strength of deliberative or
attentional bias. Thus, these simulation results fail to
provide support for the idea that the positive behavioural
correlation between Stroop interference and stop signal
errors is due to a shared mechanism of response inhibition.
Rather, they suggest that the correlation arises because
subjects who are able to provide stronger activation to the
stop process in the stop signal task are also able to provide
stronger attentional bias to the colour naming task in Stroop.
This suggestion is backed up by the right-most plot which
shows a positive correlation resulting from yoking g, and
y (gain). Recall that y was also associated (positively) with
attentional bias by Cohen and Servan-Schreiber (1992).

Discussion and Conclusion

In a companion paper (Davelaar & Cooper, 2010), we
consider closed-form approximations to the same two
models discussed here. It is demonstrated that the
explanation of the behavioural correlation in terms of a
shared process of response inhibition is suspect, and an
attentional biasing account is proposed as a plausible
alternative. The simulation results reported here corroborate
both of these conclusions.

Our suggestion of attentional biasing, rather than response
inhibition, as the locus of shared variability on the tasks
resonates with the approach to response conflict



management of Botvinick et al. (2001). They demonstrate,
within the context of three models including the Cohen and
Huston Stroop model, how trial-by-trial regularities in
behaviour might be accounted for in terms of a mechanism
of conflict monitoring which measures the degree of conflict
in the network’s output nodes and modulates attentional
bias, increasing it under conditions of high conflict and
decreasing it under conditions of low conflict. Thus, rather
than addressing response competition through response
inhibition, Botvinick et al. (2001) do so through attentional
biasing.

We are reluctant to fully endorse this account, however.
Critically, the account is not fully consistent with the results
of Miyake et al. (2000). They hold that while stop signal
errors and Stroop interference are dependent upon response
inhibition, they are also not dependent on two other putative
executive functions — task shifting and memory monitoring
and updating. Thus, if we are to account for the behavioural
correlation between these tasks in terms of attentional bias,
it is also necessary to show that attentional bias does not
systematically affect behaviour on the other tasks of Miyake
et al. which were held to tap these other two functions and
not to tap response inhibition. Here there is reason to be
cautious. Gilbert and Shallice (2002) consider performance
on a task switching variant of the Stroop task in which
subjects switch between colour naming and word reading.
They model the critical behavioural affects by using
essentially the same mechanism proposed here (i.e., by
biasing task demand units) in exactly the same model (the
Cohen and Huston model). Yet these are effects that, on the
decomposition of Miyake and colleagues, should be
explained in terms of a distinct task shifting function.
Moreover in the study of Miyake et al. (2000) all
correlations between putative task shifting tasks and
putative response inhibition tasks were non-significant.

The concept of response inhibition held by Miyake et al.
(2000) to underlie good performance in the stop signal and
Stroop tasks was also held to underlie good performance in
the anti-saccade task. Thus, a fuller analysis of response
inhibition requires also consideration of process models of
the anti-saccade task. This remains to be attempted. We
would hypothesise, however, that performance in this task
will also correlate with an attentional bias parameter.

Returning to the two models considered, it should also be
noted that while they share principles of interactive
activation, there are also major differences between them.
For example, different equations govern the accumulation of
activation in each model. Whether these differences are
substantive or cosmetic remains to be demonstrated.
However, these differences really only serve to reinforce our
primary conclusion, namely, that until we have unified
process models of the various putative separable executive
functions, any theoretical account of their supposed unity
and diversity is incomplete. By extrapolation, to understand
the executive functions which underly the battery of tasks
used by Miyake et al. (2000), we need to develop, within a
single unified framework, models of all of those tasks. Such
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models must, of course, demonstrate the hypothesised
shared mechanisms. Only then can we be confident that we
have a plausible account of the various executive functions
that contribute to the control of complex behaviour. This is,
of course, one of Newell’s arguments for the utility of
Unified Theories of Cognition (Newell, 1990).
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Abstract

The ACT-R cognitive theory models forgetting in general with a
constant “decay due to passage of time” parameter. However, this is
not sufficient to predict learning for frequently executed tasks in
dense arrangements of items. Prominent examples are two-
dimensional location learning in finding keys on a keyboard or
clicking on items on a web page or in a graphical user interface. Our
work presents a new way to theoretically model the effect of
Proactive Interference, i.e. the effect of the history of events on
location learning, through an extension to ACT-R’s mathematical
model of declarative memory strength. It predicts that each time an
item is searched for and found, the item gets “stronger”, i.e. easier to
remember. However, this strength diminishes not only through the
passage of time, but also due to interference from other (non-target)
items that have been encountered in the past. We tested the
predictions of our new model against empirical measurements from
two previous studies that involve simple visual search and selection.
The predictions fit the experimental data very well.

Keywords: ACT-R declarative memory; Proactive Interference;
Location Learning; User Interfaces

Introduction
Forgetting occurs not only due to passage of time but also through
interference from information learned at other times (Wickens &
Hollands, 2000, p. 252). Proactive interference (PI) is one
explanation for this phenomenon, where some activity prior to
encoding the target disrupts the retrieval of that target (Underwood,
1957; Keppel & Underwood, 1962).

Proactive Interference (PI) effects have been shown to be
relevant for two-dimensional spatial memory tasks (Leung & Zhang,
2004). Spatial knowledge in two-dimensional spaces is built up
primarily through interaction. That is, people remember locations
after having had experience with that location (Darken and Sibert,
1996). When people are completely new to a spatial layout, such as a
new grid-like arrangement of characters on a keyboard or a new
arrangement of city names in a list, they will resort to visual search
for the target stimulus. In the process of searching for the target, they
may come across multiple non-target stimuli, i.e. irrelevant characters
or city-names before they arrive at the target. These irrelevant stimuli
get visually encoded during the visual search for the target. As a
consequence, these non-target items, often called distractors, will
interfere with the encoding of the memory for the target item.

The aim of our work is to model the effect of this PI together
with the effect of the passage of time on the learning of spatially
stable, two-dimensional layouts. More precisely, we limit ourselves
to grid layouts in graphical user interfaces or keyboards. We choose
the ACT-R cognitive theory (Anderson & Lebiere, 1998) as our
mathematical modeling foundation.

The current ACT-R theory models PI through the probability of
recall using a soft-max equation (Altmann & Schunn, 2002).
However, previous work has established that latency to recall, i.e.
reaction time, is a more sensitive indicator of proactive interference
(Wixted & Rohrer, 1993, p. 1034) or interference in general
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(Anderson, 1983, pp. 271-272). Motivated by this fact, we modify
ACT-R to generate better predictions of PI through a new model. We
accomplish this as follows: 1) we replace the standard decay constant
of the base-level activation equation of ACT-R theory with two
terms — a constant term and a varying term. The constant term models
the decline of memory strength with time, thereby preserving the
standard notion of decay in ACT-R theory. The new varying term
adds a function that depends on the proportion of distractor items that
get visually encoded prior to encoding the target item. Thus, this
newly extended model of base-level memory activation accounts for
the decline of memory strength of a target item not only due to
passage of time but also due to the number of distractors visually
encoded while searching for the target. The result of this new
activation function, later called PI activation equation, is then used by
ACT-R to predict the (recognition or recall) reaction time, and
therefore we generate more accurate predictions. 2) we compare the
fit of reaction time responses, as opposed to recall probability
responses, arising from the newly extended model of memory
strength against empirical data from two previous studies involving
visual search in two-dimensional layouts. This is a first step towards
validating the new model. We choose studies involving visual search
since repeated search for items leads to learning of the respective
locations, and this learning process is impeded by the PI phenomenon
owing to attention given to distractor items during that search.

We calculate the theoretical predictions for the empirical data as
described by the equations presented in this paper through an Excel
spreadsheet.

ACT-R Theory
The ACT-R cognitive theory (Anderson and Lebiere, 1998) describes
a modular system that aims to replicate the human mind. It can be
viewed from two perspectives: one, as a computer program that
simulates the dynamic behavior of the mind; second, as a framework
of mathematical equations that models the neural computations in
order to realize human dynamic behavior.

Viewed from the perspective of a computer program, the ACT-R
system is composed of memory, perceptual, and motor modules. The
memory modules consist of a procedural memory and a declarative
memory. The procedural memory is a subsystem that consists of a set
of production rules and a computational engine for interpreting those
rules. The production rules coordinate cognition, perception and
motor actions. The declarative memory module contains chunks.
Each chunk represents the memory trace of an item. A chunk can be
retrieved or updated by the production rules. The activities of the
memory modules together with the actions of the perceptual and
motor modules enable ACT-R to simulate several dynamic aspects of
the human mind.

Viewed from the perspective of a mathematical framework,
ACT-R consists of independent sets of equations, each set driving the
neural computation for the relevant ACT-R module. In this work, we
choose to pursue this mathematical perspective. We replicate the PI
effect in location learning by manipulating some of the equations
embedded in the declarative memory module. We focus our
upcoming discussion solely on those parts of the theory behind the
declarative memory that are relevant for our objective.



ACT-R Equation of Base Level Learning

In declarative memory, chunks, i.e. memory traces of items, have
different levels of activation to reflect their past use: chunks that have
been used recently or chunks that are used very often receive a high
activation. This activation decays over time if the chunk is not used.
The activation of a chunk controls both its probability of being
retrieved and its speed of retrieval. In the case where there are
multiple candidates for retrieval, the chunk with the highest
activation has the highest probability of being retrieved. A retrieval
threshold sets the minimum activation a chunk can have and still be
retrieved successfully.

The equation describing the base-level activation of a chunk i
(representing item i) is given by

A:hliyﬁ
j=1

where n is the number of practices of item i completed so far, {; is the
age of the j-th practice of the item, and d denotes the constant time-
based decay parameter. More specifically, A is the strength of the
memory trace of item i after n practices of that item. A practice of an
item occurs whenever a trace of that item is presented to the
declarative memory. Presentation may happen because of either
recognition or recall of that item.

Base-Level Activation Equation

ACT-R Equation of Reaction Time of Declarative Memory
The time required for the declarative memory to respond to a request
(recognition or recall) for an item i (represented by the chunk i) is
given by the following equation:

T =Fe®
where A is the activation of chunk i and g is the latency exponent
scale parameter. F is called the latency scale parameter, and maps
activation to time. Traditionally, a constant term reflecting the fixed
time cost of visual encoding and motor response has also been added

to the right-hand-side of this equation. Since the effect of that
constant term as well as the latency scale parameter, F, is only to

scale the critical quantity e‘gA onto the range of the latencies
(Anderson et al. 2004, p. 1044), we drop the constant term in favor of
modeling simplicity. Instead, we account for the constant term by
adjusting F, whenever necessary.

Given that the equation depends mainly on the activation of the
chunks, any differences in activation will result in different times to
respond to different tasks or trials.

Reaction Time Equation

Type Of User Interface, Task,
User, And User Behavior

In this work, we consider only user interfaces, which contain items in
a grid layout based on rows and columns. We assume that the user is
initially not familiar with the layout of the items. In this case, it is not
easy for a person to discriminate a target item from all distractors.
We further limit ourselves to layouts that have only one item per
location in this grid. Also, when we refer to an item on an interface,
we are also referring to its location and vice versa. Examples of such
interfaces include keyboards with an unfamiliar layout, Personal
Digital Assistants (PDAs) that show a grid layout of similar looking
textual or graphical items/icons, or an unfamiliar graphical
application menu with items arranged in a list.

The task we consider is a simple visual search of items in such an
interface, followed by a selection of the target item using a finger, a
stylus, or a mouse pointer depending on the input device used.

Our aim is to mathematically model the gradual transition of
novices — who do not have knowledge of item locations on the layout
—to experts —who can recall multiple items and their locations
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successfully and ideally can do this for all items. We stay within the
core mathematical framework of ACT-R’s declarative memory.

With regards to learning of interface layouts by novice users, we
point to the arguments of Nilsen (1991), Lee & Zhai (2004), and
Cockburn, Gutwin et al. (2007). All of them describe in one form or
the other that visual search and recall of item locations are of primary
concern in spatial knowledge acquisition on a two-dimensional
interface since these factors play a significant role in the early stages
of skill development in such location learning.

A fundamental assumption behind our work is that at any given
instant, the user will have zero or more items in a user interface that
she can recall. Moreover, there will be zero or more items that she
cannot recall and therefore she needs to visually search the interface
to find and select them.

Model Extension For Pl Effect

We next propose our extension to the base-level activation equation
of ACT-R in order to account for the PI effect. We explain our model
extension within the domain of tasks involving simple visual search
and selection of items in user interfaces.

Decay Rate as a function of number of distractors
One way to predict the cost of searching for a target item in an
interface with several similar looking items is through tracking the
number of distractor items visually encoded before arriving at the
target item. The number of visually encoded distractor items during a
search contributes to the PI effect: The lower the number of
distractors visually encoded during a search for a target item, the
lower should be the decay of activation of the memory trace of the
target item. Hence, the next recall of that item will be affected by the
higher activation of its memory trace, leading to the lowering of its
retrieval time. This will result in an improvement in the search-and-
selection time during the use of the corresponding user interface. The
effect of the number of visually encoded distractor items in a search
task discussed here is analogous to the primary research results of
Underwood (1957), Wickens (1972), and Wixted and Rohrer (1993)
on Proactive Interference. Namely, they describe the effect that the
number of previously learned similar items has on the recall of a
target item: The higher (lower) the number of previously learned
similar items is, the higher (lower) is the forgetting effect and
therefore the higher (lower) is the recall latency for the target item.

In order to account for the PI effect in visual search-and-selection
tasks in user interfaces, we propose a decay rate, d, for an item, after
j practices of this item have been completed, as follows:

d, =a+f(X.)

where a represents the decay-due-to-time constant replicating the
portion of decay that occurs with passage of time, and f represents a
decay-due-to-PI function which we will discuss shortly. X, is the
number of distractors visually encoded, at the time of jth practice.
Naturally, j has to be larger or equal to 1. X, denotes the number of
distractors visually encoded during the first practice and is assumed
to be the total number of items on the user interface. When X, is 0,
i.e. when user is able to complete the task by direct recall, without
going through any explicit visual search, the decay rate equation
degenerates to d; = a. This implies that in the absence of the impact
of distractors, the decay in activation of the item will occur only with
the passage of time as in case of the traditional base-level activation
equation discussed earlier.

Let us now turn to the decay-due-to-PI function, f. We introduce
this function as one that replicates the memory decay due to proactive
interference. As such, its job is to transform the number of
distractors, X.;, to a valid decay-due-to-PI value. We assume valid
decay-due-to-PI values to be between 0 and 0.5, both inclusive, i.e.
0.0 <= f(X;.;) <= 0.5. Since 0 implies no decay, it can be considered

Decay Rate Equation



as a valid lower bound on decay-due-to-PI values. The decay value of
0.5 is widely used as the decay constant in the traditional ACT-R
literature and therefore can be safely considered as a valid upper
bound on decay-due-to-PI values.

We assume that the maximum possible number of distractors in
an interface is equal to the total number of items on it. The maximum
possible number of distractors is therefore equivalent to X, the
number of distractors visually encoded at the first practice. Hence, we
set f(Xp) = 0.5, using the upper bound on decay-due-to-PI. On the
other hand, f(0) = 0.0 implies the absence of the impact of distractors,
and hence the absence of PI effect as a consequence. This occurs
when the user is able to complete the task by direct recall.

Modified ACT-R equation of Base-level Activation
With the decay rate equation now in place, we modify the base-level
activation equation to

n
=In t 1 PI Activation Equation
A > [at q
j=1

where the decay dj is not a single constant anymore, but a
combination of the traditional decay-due-to-time constant and decay-
due-to-PI function. The latter is a function of the number of
distractors that builds up the PI effect on the recall of an item during
the next practice. The factor q in the equation acts as the strength
scale parameter. The usage of such a strength scale parameter, albeit
in a different form and context, has been suggested previously by
Anderson (1983, p. 277) as well as Stewart and West (2007, p.235).

Note that when d, = a and q = 1, the PI Activation equation
collapses to the traditional base-level activation equation.

Our proposal for combining the effect of decay-due-to-time
constant and decay-due-to-PI function is analogous to the results of
experiment 3 of Keppel and Underwood (1962). There, the authors
concluded that forgetting is a combined effect of the passage of time,
i.e. the ‘retention interval’, and the number of previously visually
encoded items, i.e. ‘proactively interfering items’.

Activation boosts on distractors

The distractors visually encoded on the way to finding a target should
be considerably less salient than the target itself. Hence, their base-
level activations should receive considerably less boost compared to
that of the target. Since our main interest is in replicating PI effect on
the learning of target item and its location, we focus on the effect of
the number of distractors rather than the negligible increments in
strength they receive, as they are considerably less salient. For
convenience of modeling, we set the reference level of activation
boost to zero and consider the relative difference in boost between a
target and every distractor involved during the search. We let the
target get its full quota of boost during a given trial of search and
selection, but set the activation boosts of distractors to the reference
level, i.e. zero. This helps us to keep our analysis simple during
model validation, as we will see in the next section.

Validation of Model Extension

We validate our new extension against two empirical studies on
location learning in user interfaces. In order to adapt the observed
data to the goal of analyzing only the PI effect, we first make a few
assumptions. These assumptions help us to get an estimate of the
number of distractors at any given instant. We then validate our
extension by fitting it to the Reaction Time equation discussed
earlier, using the data from those experiments. More precisely, we
predict the average reaction time per item and per trial.

Note that the reaction time is dependent only on activation, as
determined by the PI Activation Equation. All fits in this article are
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performed using the R* and root mean square deviation (RMSD)
statistics.

Assumptions for adaptation of observed data

The heart of our extension lies in the term X, of the decay rate
equation. This term denotes the number of distractors seen at the time
of | practice. In order to extract this information from the empirical
data, we make the following assumptions: (i) Target items are always
visible in the user interface. (ii) Target items are not easy to
discriminate from the distractors. (iii) The position of an item on the
interface layout does not change. (iv) We expect the user to search all
items that cannot be directly recalled before finding the desired target
item. This exhaustive search strategy is based on the findings of
MacGregor et al. (1986). There, the authors carried out a visual
search study on (database) menus and found that 59% of all visual
searches were exhaustive in nature. (v) At any given instant, the
searchable set of items is the set of all non-recallable items on the
interface at that instant. (vi) On average, the visual search time is
linearly proportional to the number of all items that the user cannot
recall. This is warranted, since the visual search time is roughly a
linear function of a given searchable set of items in the tasks where
the target is not easy to discriminate from the distractors (Wolfe,
2000).

We compute X;_; as follows: We first obtain the average search
time per item corresponding to each session from the empirical data.
Then, we use the formula

NIS= NISPS* ST Distractor Computation Equation
where NIS is a rough estimate of X, i.e. the number of items
searched before finding the target, NISPS expresses the number of
items searched per second, and ST is the search time for NIS number
of items. We later show a sample use of this formula during our
discussion of model validation. Note that in the strictest sense, NIS
for a given trial includes the target as well. However, considering that
throughout the model validation process we deal only with values
that are relative and average in nature, using NIS as an estimate for
X;.1 is an acceptable compromise.

Next, we show how we compute the PI-caused decay from X,
values using the decay-due-to-PI function f. In order to simplify our
model validation process, we define f as a simple linear formula

f(X.1)=DVD * X Decay-due-to-PIl Equation
where DVD is the decay value per unit distractor. The linear nature of
this decay-due-to-PI equation makes it a closed-form approximation
of PI on location learning. This, in turn, makes the decay rate d,
a closed-form expression as well. We later show a sample use of the
decay-due-to-PI equation during our discussion of model validation.

Location Learning on a Graphical Virtual Keyboard
Cockburn, Kristensson et al. (2007, fig. 2, p. 1574) carried out an
experiment that tests how well users learn the location of keys on a
graphical virtual keyboard with one label per key. The labels were
iconic symbols chosen from the Microsoft Webdings font. For the
validation of our model, we focus only on the condition where the
labels on the keys are always visible, i.e. the Visible Interface
condition in that study.

All participants trained for 5 minutes through 10 iterations of
searching and selecting symbols on the interface containing 18 iconic
symbols, which were pre-cued in a separate target-cuing region. For
our validation, we had to make a few assumptions, as the
corresponding information was not given explicitly in that paper.
These assumptions are as follows: An iteration consists of a sequence
of trials. Each of the 10 iterations takes roughly equal time and each
of them gets completed in 30 seconds on average — since 10 iterations
took 5 minutes or 300 seconds as stated in that paper. We also
assume inter-trial, and inter-iteration periods to be constant. Also,



except for the target-precue, we assume that environmental context
cuing is minimal and can be ignored for our purposes.

Based on this, we now detail a sample computation of Xj.; using
our Distractor Computation Equation. For iteration #1, we assume
that the user exhaustively searches all 18 keys before hitting the
target, i.e. the NIS corresponding to iteration #1 is 18. From the
measured data we see that the search time, ST, corresponding to
iteration #1 is 2.4 sec. Consequently the number of items searched
per second, NISPS is 7.5. Next, using NISPS= 7.5, we compute the
NIS value corresponding to the ST for each iteration. These NIS
values are then used for X, (j=1to 10) in the Decay-due-to-PI
Equation.

Note that for a given iteration or session, it is sufficient to use the
average number of distractors, X;.,, directly for computing an average
activation per target through the PI Activation equation. This is
possible since we consider the relative activation boost for distractors
to be zero at any given trial, as mentioned previously.

We now detail a sample computation of f using our Decay-due-
to-PI Equation. For iteration #1, we use the boundary condition
f(Xp) = 0.5, which implies DVD * X, =0.5. Since X,= 18, the decay
value per unit distractor, DVD, is 0.028. Using this value for DVD,
we compute the f value based on the X, for each iteration.

Table 1 shows the NIS and the corresponding f(X;.;) values for
each iteration. Note that for simplicity, we assume the average NISPS
to be same over all iterations. The same holds for the average DVD as
well. The assumptions are warranted since the average NISand DVD
values themselves are only relative in nature.

Table 1. Relative estimate of the number of distractor items
searched before finding the target item, in each iteration (for
NISPS =7.5) and the corresponding decay-due-to-PI value
(for DVD =0.028).

Iteration ST NIS f(Xj.1)

j (observed (approx. decay-due-to-

search time number of Pl

per item, in distractor

Secs) items
searched, X;.)

1 2.400 18 0.500
2 2.031 15 0.417
3 1.892 14 0.389
4 1.708 13 0.361
5 1.673 13 0.361
6 1.592 12 0.333
7 1.569 12 0.333
8 1.431 11 0.305
9 1.465 11 0.305
10 1.408 11 0.305

Figure 1 shows our model fit to the observed data. We have set
the values for the model fit parameters as follows: (i) The decay-due-
to-time constant a in the decay rate equation is 0.058. In absence of
any inter-trial and inter-iteration data in this empirical study, we
assume that there have been insignificant pauses between any two
consecutive trials or between any two consecutive iterations. Hence,
we choose a relatively small value for the decay-due-to-time
constant, implying that the decay due to passage of time had been
minimal. (ii) The latency scale F is 0.96. This maps an activation
value to its corresponding time value. Further, it also takes the fixed
costs associated with visual encoding and motor response into
account. (iii) The strength scale q is 150. (iv) The latency exponent
scale g is 0.2. The last two parameters help in an overall adjustment
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of the activation value. With R* =0.992 and RMSD =0.074 for our
prediction, our model extension closely agrees to the observed data.
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Figure 1. Mean Reaction Time, RT (in secs) per item (label)
selected on a graphical keyboard, as observed in (Cockburn,
Kristensson et al. 2007, fig. 2, p. 1574), named C-K-A-Z, the
solid line with filled circles. Our prediction is the dashed line
with unfilled circles (R?=0.992, RMSD=0.074). Prediction by
Standard ACT-R at d=0.5 (fixed default decay), g=1, q=1, is
the dashed line with filled triangles (R?*= 0.952, RMSD=
0.824).

As evident from Figure 1, the prediction from our modified
equations with a RMSD of 0.074 is significantly better than the
prediction of reaction based on the standard ACT-R declarative
memory equations with a RMSD of 0.824. In case of the standard
ACT-R based calculations, the constant time-based decay parameter
d in the base-level activation equation was left at its default value of
0.5 and the latency exponent scale parameter g in the reaction time
equation was left at its default value of 1.

It should be noted that our choice of 0.058 for the decay-due-to-
time constant a is so small that the term can be removed without
incurring any significant change in the shape of the predicted curve.
With this simplification, we can claim that we have introduced only a
single new parameter into ACT-R theory of declarative memory,
namely the strength scale g (see the PI Activation Equation).

Learning of Static and Unfamiliar Menu

Cockburn, Gutwin et al. (2007, fig. 2, p. 632) carried out an
experiment that tests how well users learn the location of menu items
in a single column, single level menu where the items are never
relocated and all items are displayed at the same time to the user. The
menu items were words that were unfamiliar to the user in this study.
We are thus referring to the “Static+Unfamiliar” menu condition in
that study.

The menu-item search and selection trials were executed by the
participants in a series of 7 blocks. Participants began each trial by
clicking on a ‘Menu’ button, which caused the menu to be shown and
also the name of the target to appear beside it. For our model
validation, we assume a menu of 8 items. We use this length since it
is the next highest integer to the average of the menu lengths studied.

For our model validation and due to the lack of more accurate
information, we assume the following: Each block consisted of a
collection of trials. Each of the 7 blocks takes roughly equal time and
gets completed in 10 seconds on average. We also assume inter-trial,
inter-block periods to be constant. Again, except for the target-
precue, environmental context cuing is assumed to be minimal and
therefore ignored for our purposes.

We compute the X, for the 7 blocks using the same technique as
in the previous study. For block #1, let us assume that the user



exhaustively searches roughly all 8 menu-items before hitting the
target, i.e. NIS corresponding to block #1 is 8. In figure 2, we see that
the observed search time, ST, corresponding to block #1 is 0.819 sec.
Therefore, the number of items searched per second, NISPS is
roughly 10. Using NISPS=10, we compute the NIS value
corresponding to the ST for each block. These NIS values become the
values for X.; (j =1 to 7) in the Decay-due-to-PI Equation.
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Figure 2. Mean Reaction Time, RT (in secs) per item selected
on a graphical menu, as observed in (Cockburn, Gutwin et al.
2007, fig. 2, p. 632), named C-G-G, the solid line with filled
circles. Our prediction is the dashed line with unfilled circles
(R?= 0.978, RMSD= 0.026). Prediction by Standard ACT-R
at d=0.5 (fixed default decay), g=1, g=1, is the dashed line
with filled triangles (R?= 0.969, RMSD= 0.264).

Next we compute f using our Decay-due-to-PI Equation. For
block #1, we use the boundary condition f(Xp) = 0.5, which implies
DVD * X, =0.5. Since X,=38, therefore the decay value per unit
distractor, DVD, is 0.0625. Using this value for DVD, we compute
the f value based on the X;.; for each block.

Figure 2 shows the fit of our model to the observed data. We
have set values for the model fit parameters following similar
arguments as in the previous example: (i) The decay-due-to-time
constant, @, in the decay rate equation is 0.058. (ii) The latency scale,
F=0.362. (v) Strength scale, q=150. (vi) Latency exponent scale,
g=0.2.

As evident from Figure 2, with R =0.978 and RMSD = 0.026,
our adapted model shows good correspondence to the observed data.
Also, the prediction generated from our modified equations is much
better than the prediction based on the standard ACT-R declarative
memory equations, with an RMSD of 0.264. Similar to the previous
example and for the standard ACT-R based calculations, the constant
time-based decay parameter d and the latency exponent scale
parameter g were left at their default values of 0.5 and 1 respectively.

Discussion

General Comments

Our proposed mathematical extension to the ACT-R theory of
declarative memory model closely predicts the PI effect on location
learning in user interfaces. The model is based on the number of
distractor items visually encoded on the way to finding the target
item. Our proposal directly quantifies the PI effect on location
learning at a high level of abstraction, and is based on well
established results from PI studies. There are few potential concerns
with the analysis described above that we enumerate below.
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In our model, we implicitly assume that the number of distractors
visually encoded at the time of j™ practice, i.e. the value for the term
X.; in the decay rate equation, will be estimated by some visual
search module whose implementation lies beyond the scope of this
work.

We set the latency scale parameter F to different values for the
two predicted curves; one being relevant to our model extension and
the other being relevant to the original ACT-R equations of
declarative memory. We decided to do this in order to match their co-
ordinates for the first session (i.e. iteration #1 in the first example and
block #1 in the second example) to the co-ordinates of the first
session of the observed data. Such adjustment merged the session #1
co-ordinates of the three curves (two predicted and one empirical)
into a single reference point thereby making visual as well as
quantitative comparison of data easier. Since the effect of F in the

reaction time equation is only to scale the critical quantity e‘g“ onto
the range of the latencies (Anderson et al. 2004, p. 1044), we can
safely consider that changing F has a negligible effect on the shape of
the curve. Hence, we can state that our decision to set F to different
values for different predicted curves was an acceptable compromise.

We set the value of the strength scale q to 150 and the latency
exponent scale g to 0.2 in order to match the shape of our predicted
curves to the corresponding observed data as closely as possible.
While traditionally g and g have been left at their default values of 1,
still our choice of the same value for g and g across both the studies,
albeit different from the default, avoids compromising the fidelity of
our new model to a considerable extent.

In order to validate our model, we needed to extract the number
of distractors at a given practice (i.e. X, in decay rate equation) from
the empirical studies, which did not report this information directly.
Hence we were forced to make assumptions that enable us to extract
a rough average estimate of the number of distractors per practice, at
a given session, from those studies. Although these relative estimates
seem sufficient to demonstrate our model’s ability to replicate the PI
effect, we feel that a future empirical study that directly measures the
number of distractors visually encoded by a novice user on the way to
finding a target item in a given layout would be worthwhile.
However, this would involve eye tracking and a very carefully
constructed experiment. Such an effort would enable us to identify
more accurate values of X, thereby increasing the fidelity of our
model extension further.

Comments on computational design: A suggestion
We now briefly suggest one possible way to implement the
computation model to simulate the PI effect as presented here.

We assume that we are given a visual search module that is based
on the attentional vision module of standard ACT-R software. We
use this module as a black box and assume that it is able to return us a
list of distractors for every time the layout in question is scanned for
a pre-cued target item. We also assume that the positions of items in
the layout do not change; the target item always exists in the layout
and is found whenever searched for.

The distractors visually encoded on the way to finding a target
should be considerably less salient than the target itself. Hence their
memory strengths should get significantly smaller boosts than the
target. For simplicity of our design, we assume that, every distractor
gets zero boost in its memory strength, while in comparison the target
gets the full quota of boost it deserves, at every execution of the
visual search and selection task. One way to realize this would be
through exercising appropriate control on buffer clearing in the
productions. The other way to realize this would be through explicitly
using the getter and setter functions for manipulating base-level
activations of the chunks from within the productions.

In the Lisp implementation of ACT-R, there are many side-
effects, i.e. situations where code in the model that explicitly does



one thing also causes other actions to be performed that are not
explicitly represented in the model code (Stewart and West, 2007).
In order to avoid such side-effects, we recommend to avoid
manipulating the attributes of visual location chunks or the visual
object chunks of the vision module; instead, we recommend to
maintain a parallel set of user-defined chunks, each containing
information related to an item on the layout. Whenever a pre-cued
target item is found and the distractors involved in the search are
identified by the aforementioned visual search module, the memory
strength of the user-defined chunks representing the target and its
distractors can then be updated appropriately.

Summary

The work reported in this paper developed a model extension that
captures the proactive interference effect on two-dimensional
location learning. The extension was added to ACT-R’s model of
declarative memory strength and recognition/recall reaction times.
The model was then validated by fitting the data of two previous
experiments that tested location learning on a graphical virtual
keyboard and a graphical menu. The new model resulted in a
significantly better fit to the observed times.

References

Altmann, E. M., & Schunn, C. D. (2002). Integrating Decay and
Interference: A New Look at an Old Interaction. Proceedings of
the 24th Annual Conference ofthe Cognitive Science Society. (pp.
65-70). Mahwah, NJ: Erlbaum.

Anderson, J. R. (1983). A Spreading Activation Theory of Memory ,
Journal of Verbal Learning and Verbal Behavior, 22, pp. 261-
29s.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C.,
and Quin, Y. (2004). An integrated theory of the mind.
Psychological Review, 111(4), 1036-1060.

Anderson, J. R. and Lebiere, C. (1998). The atomic components of
thought. Lawrence Erlbaum.

Cockburn, A., Gutwin, C., & Greenberg, S. A. (2007). A Predictive
Model of Menu Performance, CHI 2007, 627-636.

Cockburn, A., Kristensson, P. O., Alexander, J., and Zhai, S. (2007).
Hard Lessons: Effort-Inducing Interfaces Benefit Spatial
Learning, CHI 2007, 1571-1580.

Darken, R., and Sibert, J. (1996) Wayfinding in Large-scale Virtual
Environments, Proc. ACM CHI 1996, 142-150.

Keppel, G., and Underwood, B. J. (1962). Proactive inhibition in
short-term retention of single items. Journal of Verbal Learning
& Verbal Behavior, 1, 153-161.

Lee, P. and Zhai, S. (2004). Top-down learning strategies: can they
facilitate stylus keyboard learning? Int. J. Human-Computer
Studies, 60, 585-598.

Leung, H-C. and Zhang, J. X. (2004). Interference resolution in
spatial working memory. Neurolmage, 23, 1013-1019.

MacGregor, J., Lee, E., & Lam, N. (1986). Optimizing the structure
of database menu indexes: A decision model of menu search.
Human Factors, 28, 387-399.

Nilsen, E. L. (1991). Perceptual-motor control in human-computer
interaction (Technical Report Number 37). University of
Michigan, Ann Arbor, MI.

Stewart, T. C. and West, R. L. (2007). Deconstructing and
reconstructing ACT-R: Exploring the architectural space.
Cognitive Systems Research, 8, 227-236.

Underwood, B. J. (1957). Interference and forgetting. Psychological
Review, 64, 49-60.

Wickens, C. D. and Hollands, J. (2000). Engineering psychology and
human performance. 3rd Ed. pp. 252, Prentice Hall.

Wickens, D. D. (1972). Characteristics of word encoding. Melton &
Martin (Ed.), Coding processesin human memory. pp. 195-215.

Wixted, J. T. and Rohrer, D. (1993). Proactive Interference and the
Dynamics of Free Recall. J. of Expt. Psychology: Learning,
Memory, and Cognition. 1993, Vol. 19, No. 5, 1024-1039.

Wolfe, J. M. (2000). Visual attention. In K. K. De Valios (Ed.),
Seeing (2nd ed., pp. 335-386), Academic Press.

Appendix
We show values from few functions corresponding to the first study, Location Learning on a Graphical Virtual Keyboard. Constant parameters are
a=0.058, F=0.96, g=150, g=0.2. All are average values per target. X;_; values are from Table 1. Human data (search time) is rightmost.

Iteration# | X1 g; t; (sec) et T=F *e® (sec) Observed search time (sec)
1 13 0.558 30 2.556 2.454 2.400
2 15 0.475 60 2.097 2.013 2.031
3 14 0.447 90 1.889 1.813 1.892
4 13 0.419 120 1.745 1.675 1.708
5 13 0.419 150 1.661 1.595 1.673
6 12 0.391 180 1.577 1.514 1.592
7 12 0.391 210 1.521 1.460 1.569
8 11 0.363 240 1.458 1.400 1.431
9 11 0.363 270 1.413 1.356 1.465
10 11 0.363 300 1.377 1.322 1.408
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Abstract

Computer simulations, or microworlds, have been used for
studying various topics including problem solving. This work
investigates strategies for complex, dynamic problem solving
in a fire-fighting microworld. Using data from a study by
Cafias, Antoli, Fajardo & Salmeron (2005), an ACT-R
cognitive model is developed with the aim of providing
insight into the development and selection of strategies
participants use. One particular behavior observed in
participants when trained repetitively on the same scenario,
the creation of a fire-break barrier to prevent the fire
spreading, is discussed. It was found that selection of a
particular strategy depends on the fine-tuning of ACT-R
production rule utilities as a consequence of environmental
rewards, highlighting the role of reward size and timing. The
model is able to capture various aspects of the data by
promoting a free competition of small blocks of behavior
based on rational analysis. A key finding is that good
performance is linked to effective combination of strategic
control with attention to changing task demands reflecting
time and care taken in informing and effecting action.

Keywords: Cognitive Modeling; ACT-R; problem solving;
strategy; microworlds.

Introduction

Microworlds are computer simulations that represent a
middle point between naturalistic scenarios and laboratory
tasks (Brehmer and Dorner, 1993). Although microworlds
are relatively simple, they embody the essential
characteristics of real-world dynamic decision-making
environments (Gonzalez, Vanyukov and Martin, 2005).
Microworlds allow for an economic and standardized
presentation of scenarios, data registration and computing of
results (Frensch and Funke, 1995; Brehmer and Dorner,
1993). These tasks have been used for studying various
domains including problem solving (Frensch and Funke,
1995; Brehmer and Dorner 1993; Taatgen 2005).
Microworlds have three characteristics.  Firstly,
complexity, owing to the number of elements and number
(and nature) of their interrelationship (Frensch and Funke,
1995). Second, lack of transparency; the problem solver
does not have access to all relevant task information,
making interaction with the world necessary for knowledge
requirements. Last, the problem state changes both
independently and as a consequence of the participant’s
actions. Microworlds consequently place a variety of
cognitive demands on the problem solver. According to
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Anderson et al. (2004) dynamic tasks require considerable
goal-directed processing within demanding perceptual
displays and execution of motor commands under severe
constraints. They require continuous processing of feedback
in order to select appropriate actions within an ever-
changing situation (Brehmer and Dorner, 1993). This paper
focuses on the demands posed by these dynamic task
characteristics, in particular the way performance feedback
from a dynamic environment is processed, and how this
allows the consolidation of strategies.

Frensch and Funke (1995) suggest that it is important to
understand the process of Complex Problem Solving (CPS),
rather than the product; this process is an interaction
between the problem solver, the task and the environment.
A cognitive model is able to reveal the internal processes for
selecting actions together with their interaction with the
environment, increasing our understanding of these
processes. Cognitive modeling has been used in dynamic
environments such as air traffic control (Taatgen, 2005).
The work presented here uses the FireChief fire-fighting
microworld (Omodei & Wearing, 1995).

The FireChief Microworld

FireChief participants combat fires spreading in a landscape
using truck and copter units. Trials last 260 seconds. A
FireChief scenario is specified by a variety of properties
such as landscape distribution of forest, clearings and
property, the number and position of initial fires, the
direction and strength of the wind, and the initial position of
fire-fighting units. Figure 1 shows the central cells of a
FireChief trial display converted for model use. Copters
(shown as CR) and trucks (TR) can move between
landscape grid cells (R, L & H) and can Drop Water (DW)
over cells to extinguish fires (Fn where n indicates fire
intensity). Copters are three times faster than trucks and
cannot be destroyed by fire, but a truck’s water tanks have
twice the capacity and are able to Control Fire (CF) by
creating a fire-break. Commands are issued through a
combination of mouse and keyboard operations and their
execution takes a fixed amount of time, 4 seconds to DW, 2
seconds to CF, and a variable amount of time to Move a unit
depending on distance and type of unit. Wind strength and
direction are in the upper right-hand corner of the display.
FireChief is a dynamic decision-making problem solving
task environment where a series of interdependent decisions



are required to reach the goal, the environment changes over
time, and user actions change the state of the world
(Gonzalez et al., 2005). The problem solver is engaged in a
strategic situation where he or she has control over a limited
number of fire fighting units and has to use them to
accomplish one mission: to fight and quell the fire. Task
performance is inversely proportional to the number of cells
destroyed by fire at the end of the trial.
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Figure 1: Central cells of the model version of a FireChief
trial display using ‘buttons’ (Lisp)

ACT-R Architecture

The CPS model is implemented in ACT-R 6.0 (Anderson et
al., 2004). ACT-R is divided into various modules
according to the kind of information they process: a visual
module for identifying objects in the visual field (in Figure
1 the focus of attention is on the cell in the fourth row of the
penultimate column), a manual module for controlling the
hands (the mouse pointer is located in the same cell), a
declarative module for retrieving information from memory,
and a goal and imaginary modules for keeping track of
current goals and intentions. Communication between
modules is achieved through buffers where the content of
any buffer is limited to a single declarative unit of
knowledge, a ‘chunk’. Thus the system can only respond to
a limited amount of information. Behavior in ACT-R occurs
through interaction of its specialized modules via the
buffers, coordinated by a central production system.

There are two types of knowledge in ACT-R: chunks
encode declarative knowledge whereas procedural
knowledge is represented by production rules, where each
rule corresponds to a cognitive processing step. Each ACT-
R production has two elements: the condition, a
combination of states from the different buffers, and an
action, which can perform transformations over the state of
buffers and trigger actions in modules. ACT-R functionality
is achieved through many mechanisms, but two are of the
utmost importance in this model: utility and reward.

Utility designates the value of executing a rule; it
represents the perceived value of a production and is
updated by rewards from the environment. Utility of
productions is compared during the process of conflict
resolution where only the rule with the highest utility is
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acted upon. From a computational perspective, a participant
can be considered as a collection of utility values. By
interacting with FireChief, these utility values are tuned
throughout a sequence of trials in a unique fashion within
constraints imposed by the properties of the FireChief task,
the procedural knowledge represented by rules, and rewards
from the environment. The combination of ACT-R utility
learning mechanisms with the dynamic nature of FireChief
means the model can run a number of times under the same
task conditions with the same knowledge and yet produce a
different pattern of behavior each time. Rewards are the
ACT-R mechanism for giving the model feedback from the
environment. When a reward is triggered the utilities of all
productions that have fired since the last reward are
updated. The amount and distribution of rewards have an
important impact on model’s behavior (Janssen, Gray and
Schoelles, 2008).

Human Study Data

The data used for specifying and fitting the CPS model
comes from a study by Cafias et al. (2005). Those
participants trained on the same, reliably predictable
FireChief scenario for 16 trials were found to increasingly
preferentially select the fire-fighting strategy that achieved
the best outcome. This paper focuses on modeling strategy
selection during constant training in order to understand this
process and thereby gain insight into strategy formation.
The constant scenario is characterized by a strong, constant
easterly wind. Participants are limited to 2 copters and 2
trucks. To begin with there are two groups of fire in close
proximity which quickly spread eastward (Figure 1 shows
their initial distribution). A variety of different strategies can
be used to stop the fire, as described in the next section.

Strategy Use

In total, 1728 protocols from 72 participants were analysed
to identify four main strategies. In the Non-Barrier strategy
CF commands are issued with noticeable spatial dispersion
and are interleaved with DW commands. In the Stop
strategy DW commands are used alone and are issued over
the most intense fires within sufficient proximity to stop the
fire. In the Follow strategy only DW commands are used but
they do not target the strongest fires nor are they issued in
close proximity to each other. The most structured strategy
is called Barrier and it turns out to be very effective in the
constant training scenario; it is used twice as often (50 vs.
27) by the top four performers compared to the four worst.
For these reasons it is discussed here in more detail.

The Barrier strategy

The Barrier strategy presents a very characteristic way of
dealing with the fire: the issuing of an ordered pattern of CF
commands in a shape, similar to a barrier, intended to stop
the fire spreading. There are many forms in which the
barrier is created but a semicircle or straight line is the most
frequent. In Figure 2 the barrier has the form of a semicircle
where the black squares represent CF commands and the



grey squares represent DW commands. The strategy recruits
top-down processes in constructing a fire-break but is
sensitive to bottom-up perceptual processes so the final
form of the barrier is a function of the shape of the fire that
is being controlled.
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Figure 2: A typical Barrier strategy formation.

The Cognitive Model

To allow interaction between ACT-R and the FireChief task
a Lisp version of FireChief was developed following the
original specification provided in the FireChief manual
(Omodei & Wearing, 1993). This is able to control all
relevant aspects of the task: the landscape, development of
fire, execution of commands, and performance calculations.
Before running the model a FireChief scenario is loaded in
an experimental window in the form of a matrix of multi-
colored labeled buttons. Buttons enable interaction between
the model and the experimental window by means of mouse
and keyboard commands

The model implements all four main strategies, deciding
which to use (based on initial utility comparisons) or
switching to another (as utilities change) during the trial if
the fire is not under control. An ineffective strategy, poorly
rewarded, can be abandoned at any point, therefore. A
chosen strategy is held in the imaginal buffer and affects
model behavior by defining, for example, whether the
model will use a mixture of DW and CF commands,
whether or not a barrier will be created, or which ways of
attacking the fire are preferred. In the very first trial the
rules that select a strategy have an initial random utility
determined by the standard ACT-R utility equation that has
a random component. After the trial ends the utility of these
productions is modified according to the final result. In this
way, the actual means of executing a strategy emerges by
rewarding certain rules over others (so a strategy is more
precisely a set of strategies manifesting similar behaviour).

Creating a barrier

The functional block of rules described here belong to the
set of strategies for creating barriers (see Figure 3). These
rules represent a small subset of all the productions that are
available to the model which is able to select and perform
any of the four main strategies identified from the human
data analysis. A FireChief trial lasts 260 seconds and a
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typical barrier is created in 60 seconds. Each cell in a barrier
requires a Move followed by a CF command and the
average number of grid cells needed for a barrier is 15. The
average number of commands in a trial is 110.

First the model must specify a starting point for the
barrier. This will depend upon the current state of fire and
wind conditions. Second, the location of the next section of
the barrier must be determined. A design decision was that
the form of the barrier should be the result of a competition
for locating the next cell of the barrier; top-down and
bottom-up processes compete through the ACT-R conflict
resolution mechanism. The selection of a target cell follows
a process in which the candidate cell is proposed and then
various tests (based on perceptual actions) are conducted.
Third, a truck is moved to the selected cell before executing
a CF command comprising a sequence of steps: locate the
target, store location of target in working memory, find a
truck, attend the unit, move the cursor to the unit, click the
unit, attend target, move mouse to target, click mouse. Of
these actions moving a cursor shows the highest time
variability in the model (this information is not recorded in
the human study protocols) stressing its importance in the
total latency of the command and its corresponding
importance to overall performance. When the truck has
finished moving a CF command can be initiated. Fourth, the
status of the barrier is monitored. Eventually, the barrier is
considered complete when the fire-break is sufficient to
contain the fire. The shape of the resulting barrier is a
product of competition between various rules and the
reward they receive when executing commands.

In the excerpt shown in Figure 3, the model is following
the Barrier strategy and has just started a Move command
with a truck. The current intention of the model is to create a
fire-break barrier using CF commands. In step 1 the model
must choose between waiting for the truck that has initiated
its movement (and is disabled until it arrives) or using the
other truck. In this step the utilities of productions 1-A and
1-B are compared and the one with the highest expected
value is fired. In this case the model decides to wait. In step
2, the model searches for a visual-location that satisfies a set
of constraints. In this example the model is verifying if the
truck has arrived at its destination. The first constraint is
spatial: the column and row of the destination cell. The
second constraint is graphical: the cell must have a light-
grey color (if the destination cell is white it means that the
truck is still moving). The result of this search determines
step 3. If the truck has not yet arrived, the model returns to
step 1. When the model detects that the truck has arrived at
its destination a shift of attention is made to that location. At
the end of this attention shift the visual buffer is loaded with
a chunk representing the content of the cell, namely the type
of landscape and whether the cell is on fire (plus its
intensity). Step 4 starts by checking whether the visual
chunk encoded in the visual buffer is a product of an explicit
shift of attention or the product of buffer stuffing. Buffer
stuffing is an ACT-R mechanism in which a chunk is stored
in the visual buffer without an explicit request from a



production rule. This can be a recurrent source of distraction
for the visual system but also allows the detection of
unforeseen events (for example new fires appearing in the
scenario). In this example, if the model is distracted a visual
chunk (that does not represent the location details for where
the CF is going to be executed) is placed in the visual
buffer. If the model proceeds with step 4 it will move the
mouse pointer to the cell that distracted its attention instead
of the correct cell. If the visual element encoded in the
visual buffer is a product of the explicit attention shift
executed in step 3, the CF command can be applied there
because now the unit is in position. Before issuing a CF
command the mouse pointer must be located over the truck,
so step 4 initiates a mouse movement towards the attended
cell. During this time the target cell may catch fire; in this
case the model aborts the execution of the CF command. In
step 5, after the mouse movement is complete, the CF
command is initiated by pressing a key. In the normal flow
of events the CF command would start after the click.
Figure 3 shows a different outcome: just after rule 5-A fires
the target cell catches fire, rendering the execution of a CF
command impossible and consequently an alarm is emitted.
Following this, the model is able to detect this alarm and,
making use of the contents of the imaginal buffer, can select
an appropriate course of action based on its strategy choice.

Rule 1-B: switch to

1 Rule 1-A: wait for the ’
other truck

truck to move

Rule 2-A: get visual-

2 location
3 Rule 3-A: truck has not Rule 3-B: truck finished
finished its movernent ils movemment

v

4 | Rule 4-A: move mouse
pointer to triyck

Rule 4-B: distraction
detected

Rule 4-A: fire detected
in the cell

¥

Rule 5-B: execute a
Control Fire (Error)

5 Rule 5-A: execute a
Control Fire (successful)

6 Rule 6-A: detect alarm

Figure 3: Sequence of Barrier strategy rules

A model run lasts 4160 seconds (16 sessions of 260
seconds). The model was run 40 times, following the same
experimental design as in the Cafias et al. (2005) study. The
data generated by the model provides a complete protocol of
interaction with FireChief, as for each human participant, as
well as a detailed trace of the operations being executed
inside its various modules.

Data Fitting

During initial development, the simplest natural model
was implemented based on a GOMS (Card, Moran, and
Newell, 1983) analysis of the task and then fitted to the
human study data. This initial model was highly efficient:
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all units were used all the time so time wasted was
negligible. This initial model also followed a rigid strategy
specification; however, the data reveals that participants do
not use time as efficiently as in the initial model nor do they
repeatedly execute the same strategy, making the
importance of achieving flexibility in behavior evident. The
approach adopted was to provide the model with complete
knowledge about all the available strategies (cf. Gray &
Boehm-Davis, 2000) but to allow them to compete freely
based on their perceived utility.

Various reward schemes were tried, the most successful
being the one that focuses on individual commands. In the
‘single reward’ scheme a reward (based on final
performance) is given at the end of the trial. In the ‘reward
sub-task’ scheme the completion of salient tasks is
rewarded. For example, in the Barrier strategy stages are
completion of a barrier, refilling a unit, or extinction of the
fire. The problem with both these schemes is that, because
several hundreds of rules may fire between rewards, the
utility values of the most recent rules are changed only. This
affects the model’s behavior because the rules responsible
for achieving good performance may not receive the proper
reward and hence appropriate learning is deterred. In the
scheme selected for use here positive rewards are awarded
for successfully completing individual commands and
negative rewards for executing unsuccessful commands and
wasting time. Executing Move and CF commands generates
a fixed amount of reward but the reward of a DW command
is a function of the intensity of the fire that is extinguished.

In fitting the model there was no attempt to obtain the
exact behavior of any individual; rather, data fitting centered
on identifying decision points, encoding rules for executing
actions and assigning rewards.

Results

Three metrics are used here to compare behaviour: task
performance (reflecting appropriate strategy use); command
duration (reflecting underlying cognitive and other
processing steps); and interactions between commands
(reflecting performance-related functional relationships
between the Move and the CF and DW commands). There
are other metrics not discussed here.

Performance

—@& - Model

—@—P articipants |-

12 3 4 5 8 7 8 9 10 11 12 13 14 15 16
Trials

Figure 4: Comparison of performance between model and

Cafias et al (2005) study participants



Figure 4 compares performance in the constant training
condition for participants and the model. As can be seen, the
model is able to replicate performance levels and also
capture the incremental improvement in performance
(R=.538). A significant performance increment was
obtained by comparing the first and last four trials for both
participants and the model. (F(1,33)=4.417, p<.05 and
F(1,33)=5.17 p<.05 respectively).

Performance | Frequency(%)
Strategy Data | Model | Data | Model
Barrier 81.59 | 81.05 0.65 0.66
NonBarrier| 72.38 | 71.74 | 0.17 0.18
Stop 91.98 71.3 0.02 0.11
Follow 57.69 | 66.42 0.16 0.06

Table 1: Strategy use during constant training trials

Table 1 shows that Barrier is the most frequently used
strategy during constant training'. Due to the high wind
strength in the constant training scenario it is very difficult
to stop the fire using DW commands only.
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Figure 5: Increase in production utilities during
consolidation of the Barrier strategy

A typical run of the model involves around 200 decisions,
and the execution of each decision requires between 1 to 6
rules. On average the model executes 103 commands and
participants execute 110 commands per trial. The model
improves performance due to the tuning of its production
utilities to the constant training trial scenario. Figure 5
shows how the utility of productions related to the creation
of the barrier steadily increases as trials are completed. This
continuous increment of utility values implies that FireChief
commands are being completed with success with more
frequency over trial runs.

! The good performance shown in the human data for the Stop
strategy is based solely on two participants who used it extremely
successfully from the outset whilst other less proficient participants
rapidly abandoned it in favour of more reliable strategies.
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Good vs. Bad Performers

A comparison of the best and worst performers in the
constant training condition is presented with the aim of
showing how utility values can be used for understanding
more about participant behavior. Performance metrics for
the top four participants in the constant training group are
compared with the worst four participants and the same is
done with model data. The best performers use the Barrier
strategy twice as often as the worst performers (50 vs. 27
times) and performers/model-runs have an average
performance per trial of 86.80/87.41 while the worst
performers have an average performance of 70.91/71.80
when using this strategy.

All participants and model-runs, take a similar amount of
time to issue a CF command that forms part of a fire-break
barrier (F(78,1)=.637, p=.427) and (F(81,1)=1.792, p=.185),
so the performance differences do not lie here. However,
there is a functional dependence between moving a unit and
issuing a CF command. Before executing a CF command
the truck must be moved to the right place. The model
embodies the assumption that the decision about where to
move the truck is taken when the execution of the
movement is initiated. There is a significant difference
between the best and worst participants in the time it takes
to execute a movement prior to issuing a CF command
when forming a barrier (F(1260,1)=67.980, p<.001). The
model captures latency times for the best performers only;
worst performers spend much less time on this activity than
the model. The best approximation to worst performance
provided by the model is to execute only a single perceptual
action to ascertain the fire location without checking
whether the target fire-break cell is on fire. The model uses
the fire-front for selecting where in a particular row the next
fire-break cell should be, and poor performers often get this
wrong (see next section). Even so, the model remains slower
than participants by 800ms. on average. Even if all
perceptual and cognitive processing could be removed from
the model it cannot reduce the time taken by a sufficient
amount to match human latencies. An explanation for this
could be connected to the duration of motor commands: a
Move command requires two key-presses and two mouse
pointer moves. Perhaps poor performers execute these
actions with more hastiness. Evidence to support or refute
this explanation is subject to ongoing research

Utility profile

With the aim of gaining insight into what differentiates best
and worst performers, two profiles were created based on
utility values for each group from the model run. To obtain
the profiles, the utility of relevant productions for each
group is queried at the end of the training phase and
averaged. In doing this, the comparison is focused only on
the rules relating to the creation of a barrier: the way trucks
are used, how they are moved, and how the barrier is
created.

The comparison shows that the most striking difference
between good and bad performers is that good performers



successfully combine top-down and bottom-up processes to
create a barrier, while the worst performers apply only top-
down processes successfully, failing to combine them well
with bottom-up processes so that cells selected for the fire-
break prove less effective. The key differences are that the
best performers pay more attention to the fire-front, and also
that they wait for the trucks to finish their (short)
movements before executing a CF command, thereby
completing the sequence of commands successfully. These
differences can be identified by looking at the utility values
of the productions that compete at the relevant decision
points (as in Figure 5).

Discussion

This paper is focused on the adaptive selection of strategies
for fire fighting with the aim of demonstrating how
cognitive modeling can improve our understanding of
problem solving behavior when interacting with dynamic
microworlds, with implications for real-world complex
problem solving. The model continuously interleaves
cognitive with perceptual-motor operations, selects different
strategies and implements them according to the reward
structure of the task. A particular implementation of a
strategy depends on the fine-tuning of ACT-R production
rule utilities as a consequence of environmental rewards and
thus is a product of both the configuration of the trial (in this
case the constant training trial) and the history of
interactions between problem solver and task (which is
stored in the collection of utility values). As noted by Canas
et al. (2005) the constant training condition allows
participants to consolidate strategies (see Figure 5).

The most important learning mechanism for the model is
the one that updates utility. The main objective during the
fitting of the model was to allow rules to be rewarded (or
punished) by their effects in the environment, however the
set of available strategies was not altered. In other words,
fitting the model was restricted to affecting the competition
between strategies.

This work highlights the role of size and location of
rewards for strategy selection. As pointed out by Janssen,
Gray & Schoelles (2008) the definition of reward has an
important influence on model behavior. Due to the large
number of rules being fired in each trial, it is necessary to
arrive to an appropriate reward frequency to enable
appropriate learning. Rewarding productions for their
effectiveness in  successfully completing individual
commands seems a good criterion; however, in doing this it
is important to identify where cognitive effort is made. In
the case of FireChief relevant cognitive effort for e.g.,
placing a new section of barrier, is traced to the time a
sequence of actions is initiated prior to the final successful
movement being executed, and not just when that final CF
command is issued (that is, there is a causal link between
the CF command and those actions previously taken).

The process by which a barrier is created is only one
amongst many others that occur during a model run. A
similar analysis based on utility comparisons can be carried
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out for other strategies by identifying the rules that govern
them. Understanding strategy selection as a consequence of
previously learned utility also offers a means to understand
more about performance differences. Worst performers
reflect a different pattern of utility values in rules used for
the creation of the fire barrier, owing to impoverished
attention to the dynamic problem solving state and apparent
lack of care in issuing commands. Overall the work
presented demonstrates that complex dynamic tasks can be
fruitfully explored through a cognitive modeling approach.
By providing a loose strategy definition the model is able to
implement complex patterns of behaviour which in turn are
able to successfully stop the fire while replicating many
other aspects of the human study data.
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Abstract

Efficient access to large declarative memories is one
challenge in the development of large-scale cognitive models.
Prior work has provided an initial demonstration of
declarative retrievals using ACT-R and a relational database.
In this paper, we provide extended analysis of the
computational challenges involved. We detail data structures
and algorithms for an efficient mechanism over a large set of
retrievals, as well as for a class of activation bias. We have
implemented this work in Soar, and present detailed
evaluation on synthetic data as well as the WordNet 3 lexicon.

Keywords: large-scale cognitive modeling; declarative

memory; cognitive architecture; Soar.

Introduction

Typical cognitive models have very modest declarative
memory (DM) requirements. In these cases, naive data
structures and algorithms, despite inefficiencies, suffice for
declarative retrievals. However, prior work (Douglass et al.,
2009) has shown that cognitive models of complex tasks
require more substantial DMs, such as a large subset of the
WordNet lexicon (Miller, 1995), and that existing retrieval
mechanisms, such as the ACT-R implementation, do not
scale to large DMs. If we are ever going to study human
behavior in knowledge-rich, temporally extended tasks,
additional research is required on the underlying
computational data structures and algorithms that support
declarative memory storage and retrieval.

In an effort to efficiently support large declarative
memories in ACT-R (Anderson et al., 2004), Douglass et al.
developed a DM using the PostgreSQL relational database
management system. While their work produced an ACT-R
module supporting persistent declarative access to large
declarative knowledge stores, there are significant
opportunities for extension and improvement. First, while
achieving significant empirical performance improvements
over the ACT-R retrieval mechanism, the authors do not
address the analytical computational profile of the DM
retrieval problem, thereby missing, for instance, situations
in which even DBMS query optimizers will not support
efficient performance. Additionally, their presented
evaluation is limited to their target application and DM, and
does not include any calculation of chunk activation.

In this paper, we extend that work along many
dimensions. First, we contribute an extended analysis of the
computational challenges of efficient declarative retrievals.
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To address many of these problems, we describe system-
independent methods for efficient retrieval functionality.
Also, while not achieving the full functionality of ACT-R
activation, we move towards that goal by formulating and
efficiently supporting a simpler class of activation bias.

To evaluate this work, we have implemented a semantic
memory system in the Soar cognitive architecture (Laird,
2008). We evaluate the system on a scalable, synthetic data
set, as well as the entire WordNet 3 lexicon. For successful
retrievals on data sets scaling to millions of declarative
chunks, we achieve retrieval times that are two orders of
magnitude faster than previously reported results.

A forewarning: much of the presented work delves into
the details of data structures, algorithms, and complexity
analysis, which are critical for communicating the results of
our work to developers of cognitive architectures. However,
these details may be of less interest to model developers.
We recommend that modelers focus on the problem
formulation sections and the empirical evaluation.

Symbolic DM Retrieval Problem

To begin, we develop an abstract problem formulation of
symbolic declarative retrievals. To exemplify this
formulation, we then map it onto the ACT-R DM.

Problem Formulation

We define a declarative memory (DM) as a set of elements.
A DM element is decomposed into a set of symbolic
augmentations. For example, consider the following
example DM, in which the letters A-D identify elements and
lower-case Greek letters represent augmentations:

A {a, B, €, ¢}
B: {a, &}

C: iy}

D: iy, ¢5

We define a DM symbolic retrieval cue as having a
required positive component and an optional negative
component, each of which is expressed as a set of symbols
(corresponding to the augmentations of a DM). For instance,
consider the following retrieval cue, corresponding to the
example DM above, consisting of both positive (+) and
negative (—) components: +{a, €}, —{y}. Semantically, the
positive set specifies augmentations that an element must
contain, and the negative set those that it must not contain.



Given a DM and a cue, we define the result of a
declarative retrieval to be a single element from the DM,
including all augmentations, that satisfies the constraints
represented semantically by the cue. Thus, the result of the
example cue and the example DM would either be element
A or B (with respective augmentation set {a, B, €, ¢} or {a,
€}). A retrieval is considered a success if there exists a result
(as with our example) and a failure otherwise.

ACT-R DM

We now compare our symbolic declarative retrieval
problem formulation to ACT-R’s declarative memory
module retrieval interface. We begin with a review of the
ACT-R DM and then map it onto our definitions above.

In ACT-R, declarative knowledge is encoded as a set of
chunks, which are collections of labeled slots that have
values. For example, consider this chunk, representing one
of the noun senses of the word “roach” from the WN-
LEXICAL interface to WordNet (Emond, 2006):

(S-105261088-1 ISA S

SYNSET-ID 105261088
W-NUM 1

WORD "roach"
SS-TYPE "n"
SENSE-NUMBER 1
TAG-COUNT 0)

To retrieve declarative knowledge, a production rule issues
a request to the declarative module by populating the
declarative buffer with positive and negative slot-value
pairs. These pairs are interpreted as hard constraints that
either must be met (positive tests) or must not be met
(negative tests). The DM module also supports non-
symbolic tests (<=, >, etc), but we do not consider them.

For example, consider a cue that requests a sense chunk
(“ISA S”) where the value of the WORD slot is equal to
“roach” and the SS-TYPE is not equal to “v” (verb):

+retrieval>
ISA S
WORD “roach”
-SS-TYPE “v”

Given this request, the ACT-R DM module searches the
store for matching chunks. If any are found, the module,
given default module parameter settings, indicates a
successful retrieval and selects randomly amongst the
candidates chunks and reconstructs it in the appropriate
buffer. The module also supports the use of non-symbolic
activation to bias selection amongst candidate chunks,
functionality that is used in many cognitive models. We
comment on this functionality later in this paper. If no
perfect match is found, the default behavior of the DM is to
report a retrieval failure. The module also supports the use
of customizable partial matching. While some modelers
may use this functionality, it makes the retrieval problem
strictly harder computationally, and we leave research on an
efficient implementation of it to future work.
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We now map the ACT-R DM to our abstract formulation.
First, without loss of generality, we interpret the chunk type
(above, “ISA S”) as a slot-value pair (slot label “ISA” and
value “S”). Next, since we are considering qualitative
matching (equality is defined as symbolic equivalence),
each distinct slot-value pair can be equivalently represented
as a single, composite symbol (by concatenating the slot
label and value with a unique separating character, such as
“ISA:S”). Since slot-value pair order is arbitrary, a chunk
instance can be equivalently represented as a set of
[composite] symbols. In ACT-R, all chunks of a given type
must contain values for the same set of slots and a chunk
type can only have one slot of a given label; without loss of
generality, we eliminate both of these constraints. Given the
analysis above, a chunk maps to a declarative memory
element, and slot-value pairs to augmentations.

We apply a similar analysis to DM retrieval requests, with
distinct slot-value pairs compressed to a single composite
symbol. If we require that equivalent slot-value pairs in
chunks and retrieval requests resolve to the same composite
symbols, then the set of positive tests form the positive cue
component and the negative tests the negative component.

With this analysis, we claim that the symbolic ACT-R
DM retrieval interface is an instance of our problem
formulation. Thus, results from our work, though
implemented in Soar, extend to ACT-R models, and any
other system that can be similarly mapped.

Supporting Efficient Retrievals

In this section, we discuss indexing structures and processes
to efficiently support a large class of symbolic DM
retrievals, accompanied by a brief computational complexity
analysis. We decompose our description into the required
positive cue component, followed by the negative. Prior to
getting lost in the weeds of data structures and algorithms,
however, let us first consider what is meant by efficient
support with respect to our problem formulation.

Contextual Meaning of Efficient Support
As a baseline, consider a naive retrieval mechanism that
iterates through the DM, comparing each element to the cue,
and returning the first valid result, if one exists. To
understand the costs, we define E as the set of elements in a
DM, and a as the average number of augmentations per
element. Given a cue C, we define P as the positive cue
component and N as the negative cue component. Sets
surrounded with vertical bars, such as |E|, refer to the
cardinality, or number of items contained in the set.
Assuming no specialized indexing, the memory cost of
the baseline mechanism grows with the product of the
number of elements and the average augmentation
cardinality (a|E]). In the worst case, the baseline mechanism
must traverse all of this memory for each cue element, and
thus the time cost multiplies by the size of the cue (a|E||C)).
In context of large declarative memories, it is likely that |E|
will dominate a and |C|, and thus memory and retrieval costs
will scale linearly with the number of elements in the DM.



Memory, though not unlimited, is generally considered
cheap and plentiful, while time is expensive and limited, and
thus our goal is to minimize retrieval time, possibly at the
cost of memory. Thus we pose efficient support for
declarative retrievals as sub-linear in the number of
elements in the DM, |E|, while remaining linear in memory.
We further require that these computational bounds hold in
the general case of our problem formulation, supporting a
broad variety of DMs and retrieval cues, as opposed to an
optimized mechanism for a specific knowledge-base and/or
query load. We now present our mechanism, revisiting these
requirements for theoretical evaluation.

Positive Cue Component
To review, the positive cue component for symbolic
declarative retrievals is a non-empty set of augmentations
that a declarative element must contain. To assist in our
analysis, we define R, as the elements that contain an
augmentation p and, accumulated over all p in P, R to be the
bag of candidate elements (which may contain duplicates, if
an element contains more than one augmentation, p, in P).
Before presenting our mechanism, we note that this
component of the retrieval problem is a constrained form of
a subset query on set-values, which has been widely studied
in database and information retrieval (IR) communities
(Terrovitis et al., 2006). In its general form, the worst-case
time cost is known to be linear in the sum of the number of
candidate elements for each positive cue augmentation, |R|,
though clever indexing methods have shown massive
average-case improvements in real-world data.

Indexing Building on this prior work, the primary indexing
structure for our mechanism is an inverted table of DM
elements, combined with cached frequency statistics. The
structure contains a sorted list of each augmentation, p, in
the DM, each paired with a sorted list of elements in which
they are contained as well as the size of this list, R,. We note
that this structure roughly doubles the size of the store and
can be updated very efficiently as the DM changes.
Consider the following index over the example DM above:

a (2): [A, B]
p(1): [A]

v (2):[C, D]
e (2): [A, B]
¢ (2): [A, D]

Algorithm To retrieve based only on the positive cue
component, we first generate a sorted list, O, of all
augmentations p in P, keyed ascending on R, which
requires |P| queries on the inverted index. O represents a
specialized query plan, sorted in ascending order of
candidate element list size. With the example positive
component above, Q is either [a,B] or [B,a] (as Ry = Rp),
and we use the former for the remainder of this analysis.
Next, we pop the first augmentation from Q (o) and
retrieve a pointer, w, to the head of the element list in the
inverted index (initially referring to the first element, A).
Note that since this list is updated incrementally with
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changes to the DM, we do not have to compute this list in
response to the query. Iterating over the remaining
augmentations in Q ([B]), we verify, using the original DM,
that w satisfies all remaining positive constraints. If so,
return w and success. Otherwise, increment w to point to the
next element in the inverted index and retry verification. If
no element successfully verifies, the retrieval is a failure.

Analysis In the worst case, this retrieval mechanism grows
linearly with |E| (as demonstrated later). However, the small
amount of indexing and query optimization bounds element
iteration to min(R,), the set of elements containing the most
selective positive query augmentation. Furthermore, we
only need to fully examine this list in the failure case,
which, as we see in the later empirical evaluation, can be
achieved in near constant-time queries in many cases.

Negative Cue Component

The negative cue component for symbolic declarative
retrievals is an optional set of augmentations that a
declarative retrieval must not contain.

We have struggled with how to efficiently support this
type of constraint given our problem formulation. What
makes this component difficult is that given a large DM
with a sparse distribution of augmentations, it can be
prohibitively expensive to maintain an index of the elements
not containing an augmentation, analogous to issues
surrounding the closed-world assumption and negated
conditions in production matching (Doorenbos, 1995).

Initial Integration Currently, we integrate this functionality
with the positive cue component above by special-casing
negative augmentations. First, |R’,|, the number of candidate
elements that do not contain a particular augmentation n,
equals (|E|] - |R,|), the total number of elements less the
number of elements that do contain the augmentation. This
quantity can be computed efficiently and used to order Q
with negative augmentations. Second, because we cannot
efficiently enumerate R’,, w is initialized as the head of the
list of the first positive augmentation in Q. Finally, when
verifying a candidate element, we simply invert the result of
the set-inclusion query on E.

Analysis Using this approach, our mechanism loses a major
performance benefit. This forfeiture arises when there exists
an augmentation in the negative component that is more
selective than any positive component augmentation, which
is probably not uncommon. While we are theoretically able
to integrate this functionality, we have neither implemented
nor evaluated this work empirically in Soar, and plan to
address this deficiency in the future.

Supporting Efficient Activation Bias

A major contribution of the ACT-R DM module to
cognitive modeling is the sub-symbolic influence of the
current context and prior retrievals as a form of activation
bias for declarative retrievals (Anderson et al., 2004). This
functionality, however, has been shown to come at a



significant computational cost that does not scale to large
declarative memories (Douglass et al., 2009).

While we have not achieved the functionality of all
aspects of ACT-R’s activation scheme, we have made
progress by formulating and efficiently supporting a simpler
class of activation bias. In this section, we first extend our
problem formulation to include retrieval bias, then define
the class of activation update processes we can efficiently
support, and discuss how we achieve this functionality.

Problem Formulation Extension

To integrate activation bias in our problem formulation, we
extend our definition of a declarative memory element to
include a numerical activation value, as exemplified below
by the numbers in square brackets:

A[1.41]: {a, P, &, ¢}
B[1.73]: {a, &}
C[3.14]: {v}

D [2.72]: {y, ¢}

We refine our previous definition of a retrieval result as an
element from the DM, including all augmentations, that
satisfies the constraints represented semantically by the cue
and has the maximal activation value. Given the example
cue (+{a, €}, —{y}) and this expanded DM, the result is now
unambiguously B (and its associated augmentations), as it
has a greater activation value than A.

Efficient Activation Bias Updates

The expanded retrieval mechanism described in the next
section efficiently incorporates activation. However, just as
the DM must support efficient updates to elements and
augmentations, so too must it support efficient updates to
activation values. In this context, for large DMs, we propose
that an activation value update process must be locally
efficient. An activation update process is locally efficient if
it satisfies two properties: (1) the update can affect the
activation value of at most a constant number of elements
and (2) updating the activation value of an element takes
time strictly sub-linear in the number of DM elements.

The locally efficient activation update process we
implement in Soar is a straightforward mechanism to bias
retrievals towards recency. After each successful retrieval,
the activation value of the retrieved element is updated to be
one greater than the previously largest activation value. This
update process is local, as it only changes a single element
per retrieval, and it is efficient, as the largest activation
value can be cached to avoid any search over E.

In ACT-R, chunk activation includes retrieval history
(base-level), current context (spreading), partial matching,
and noise. Both the base-level approximation and permanent
noise computations appear to be local, so it should be
possible to extend our approach to cover those components.
However, transient noise, partial matching, and spreading
activation appear to be global to the elements of the DM,
which suggests significant further theoretical and
engineering research are necessary to develop locally
efficient mechanisms. For reference, the mechanism in
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Douglass et al. does not efficiently compute any portion of
ACT-R chunk activation, and those components were not
included in their empirical evaluations.

Efficient Support

The most direct method of integrating activation values in
our efficient algorithm is to sort the candidate list (w) by
activation values on demand. This approach, henceforth
referred to as Scheme I, suffers from retrieval times that are
always dependent upon augmentation selectivity, as the
candidate list must be fully computed to be sorted.

Another method of integrating activation values, Scheme
II, is to maintain, for each augmentation, an element list
sorted by activation value. Thus, w is sorted in order of
activation, independent of augmentation selectivity.
However, the time required for updating activation values is
dependent upon the number of different augmentations an
element can have (its augmentation cardinality), and for
large cardinalities, this cost can be prohibitive.

Our approach to integrating activation values combines
these schemes by exploiting an assumption that most
elements will have “small” augmentation cardinality. Given
this information, we explain how we can extend our
implementation to yield efficient retrievals and then we
validate our assumption empirically by studying three large,
commonly used knowledge bases.

Our Approach. If an element has small augmentation
cardinality, Scheme II is efficient, independent of DM size.
If few elements must be sorted per retrieval, Scheme I is
efficient, independent of element augmentation cardinality.
To resolve this tension between augmentation cardinality
and element selectivity, we apply these schemes on a per-
element basis: we apply Scheme II when an element has
small augmentation cardinality, and otherwise apply
Scheme I. What we describe here are the data structure
modifications and additional processing necessary to
efficiently implement this split strategy.

First, we introduce a threshold parameter, #, which
represents a small value of augmentation cardinality. By
default, we integrate activation bias as described in Scheme
IT above. However, if the augmentation cardinality of a
particular element is greater than ¢, we associate a one-time
special “infinity” (o) activation value with all its
augmentations and maintain a separate list associating the
element with its activation value, per Scheme I. For
instance, if =3, we would have a list wherein [A=1] and our
inverted index would contain the following information:

a (2): [A=w, B=2]

B (1): [A=]

v (2): [D=4, C=3]

€ (2): [A=x, B=2]

¢ (2): [A=0, D=4]
By default, an update to an element’s activation value will
involve updating a small number of references (=f)
throughout the inverted index. For elements with
augmentation cardinality greater than #, such as A, we need



only update this value once, thereby bounding the update to
constant time and addressing the weakness of Scheme II.
During retrieval, as we are populating the list of
augmentations, O, which is sorted by activation level, we
may now encounter one or more infinite activations at the
head of the list. If so, we perform a lookup for its true
activation level and execute insertion sort into a second,
special list, O’. We then merge Q and Q’ to form our query
plan. Notice that if the size of O’ is small (i.e. few elements
have augmentation cardinality greater than ), this process is
cheap and independent of augmentation selectivity, the
weakness of Scheme 1. Thus, if we can select an appropriate
value of ¢, we will achieve efficient activation bias support.

Validation. To validate that our split strategy works well on
real data sets, we studied three large, commonly used
knowledge bases (KBs): SUMO (Niles et al., 2001),
OpenCyc (Lenat, 1995), and WordNet (Miller, 1995). For
each KB, we extracted the number of features of each
named entity. Each distribution was unimodal and exhibited
strong right skew, suggesting that while most elements had
a similar feature size, there were rare cases with
exceptionally large cardinalities. Then, we sampled from
these distributions to form synthetic data sets that were
reasonably large (5040 elements) and empirically valid in
augmentation cardinality. We then collected empirical
retrieval data, summarized in Table 1, showing that for each
KB there was a range over the value of ¢ that optimally
balanced the performance effects of cue selectivity and
augmentation cardinality. For two of the KBs, we could
efficiently employ Scheme II above for more than 99% of
elements, versus only about 93% for the SUMO data set.

Important components of this analysis for future
examination are (1) automatically selecting a value of ¢ for a
given DM and (2) tuning this value online for changing DM
contents. As to the former, we see in Table 1 that the
optimal threshold typically covers greater than 90% of the
elements using augmentation cardinality, but that value is
not constant across data sets. Further analysis of the KBs
may uncover why this is the case and suggest better factors
for prediction. As for the latter, we expect that caching t in
indexing structures will allow the algorithm to adapt in real
time, while maintaining efficient retrievals.

Table 1: Optimal Thresholds.

Data Set Optimal ¢ Range Element Coverage
SUMO 50-70 92.78 —93.86%
OpenCyc 40 - 60 99.17 - 99.74%
WordNet 20-40 99.50 — 99.90%

Evaluation

To evaluate our work, we implemented our data structures
and algorithms as the Semantic Memory long-term,
symbolic memory system in the Soar cognitive architecture
(Laird, 2008). We used version 3 of the SQLite in-process
relational database engine to manage the semantic store and
all experimental results were run on a 2.8GHz Core 2
Extreme processor with 4GB of RAM.
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Our final evaluation spans two data sets: (1) the WordNet
3 lexicon and (2) a scalable synthetic benchmark of our
design. WordNet offers a large, ecologically valid
knowledge base with which we can compare to previous
results in this space (Douglass et al., 2009). Our synthetic
dataset offers us the ability to exhaustively benchmark our
retrieval mechanism on arbitrarily large DMs.

WordNet

As with Douglass et al., we used the WN-LEXICAL
WordNet 3 data conversion (Emond, 2006). The data set has
over 820K chunks, which includes over 212K word/sense
combinations. Once imported, Soar’s semantic store,
including all indexing structures, is about 400MB.

Our first experiment was to verify (a) that retrieval time
was independent of augmentation selectivity and (b) that the
activation bias was processed efficiently in under-specified
cues. We performed DM retrievals on 100 randomly chosen,
single-augmentation cues, averaged over 10 trials. Retrieval
time was 0.1887 msec. each (0.0216 std. deviation).

Our next experiment focused on larger cues. We
randomly chose 10 nouns and formed a cue from their full
sense description (such as the “roach” example above).
Retrieval time was an average of 0.2973 msec. over 10 trials
each (0.0108 std. deviation).

Douglass et al. used a derived subset of the WN-
LEXICAL dataset, so direct replication of their work is
difficult. They reported retrievals of about 40 msec. with
cues of 1-4 augmentations on a DM with about 232.5k
chunks. Our results show 100x faster retrievals on a
comparable set of cues scaling to a 3x larger DM.

Synthetic Data

In addition to running on a known data set, we tested our
implementation more exhaustively to measure how it scales
with much larger DMs. We developed a scalable, synthetic
DM generator and, in Table 2, we list statistics of the data
sets we used as they scale with £, the size control parameter:

Table 2: Synthetic Statistics.

k Elements  Store Size (MB)
7 5,040 3.00
8 40,320 27.81
9 362,880 291.95
10 3,628,800 2048.00

While we have a DM generator, we do not have a model of
what are typical cues used to access a DM and how those
cues could interact with the performance profile of the DM
retrieval mechanism. For instance, we do not know how
selective the cues are likely to be, meaning how many
elements, termed candidates, could possibly satisfy any part
of the cue. Furthermore, we do not know the proportion of
cues that will have no perfect matches. To allow us to test
these different interactions, we constructed the DMs so that
we can generate cues with independently controlled
selectivity. In each KB, there are k! elements and each



element has augmentation cardinality of (k+1). Fori=2 ...
k, the ith augmentation of an element has selectivity (k//i).
The 0™ augmentation of each element is shared by all
elements and the 1* augmentation is unique.

Selectivity Sweep. Our first question is whether the DM
mechanism provides bounded retrievals for under-specified
cues, independent of the number of candidate elements. For
each distinct augmentation in the DM, we constructed a cue
and measured retrieval time. We found nearly constant-time
retrievals within each data set, independent of augmentation
selectivity, measuring just under 0.4 msec. for £/=10.

Cue Sweep. Our next question is whether combinations of
augmentations result in complex cues that adversely affect
retrieval time. We constructed all possible lengths of cues
using all combinations of augmentation selectivity and
measured retrieval time. As shown in Figure 1, the only
factor affecting retrieval time within a data set was the
number of augmentations in the cue (R’=~1), achieving a
maximum of about 0.5 msec. for k/=10.

Failure Sweep. For our mechanism, retrieval failure is the
algorithmic worst-case, as it must examine and fail to verify
all candidate elements. We constructed our last experiment
to measure retrieval time for cues that fail only after
examining significant proportions of the elements in the
KB. While our mechanism minimizes the chance of this
situation, these results are useful to set an expectation for
the unlikely worst-case retrieval time in any given DM. As
shown in Figure 2, the number of inspected candidate
elements was the only factor affecting retrieval time,
independent of the data set. Because the time is linear in the
number of candidates, and not the total number of KB
elements, our mechanism, for even worst worst-case cues,
scales to arbitrarily large data sets when cue augmentations
are sufficiently selective.

Conclusions

In this work, we formulate and address the computational
challenges involved with supporting efficient symbolic
retrievals for the core functionality required in representing
and accessing large DMs. We extend the research of

05 . ¢ * °*
o
o ®
< 04 O
g % e
3 m N
= o
v 03 g ==
E m N *k=10
E m =
T o, Wk=9
@
& k=8
&
01 k=7
0
1 2 3 4 s 6 7 8 9 10 1

Number of Cue Augmentations

Figure 1: Synthetic cue sweep results.
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Figure 2: Synthetic failure sweep results.

Douglass et al., demonstrating two orders of magnitude
improvement in retrieval times for comparable functionality
on significantly larger data sets. There are still challenges
ahead to efficiently support partial match, spreading
activation, and other non-local biases for retrieval for large
data sets, for which it may be necessary to explore algorithm
approximations or massively parallel computation.
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Abstract

To behave effectively and flexibly in complex situations,
models specified in cognitive architectures must be able to
store and access large amounts of declarative knowledge.
However, as research efforts employing cognitive modeling
grow in scope and complexity, currently available modeling
tools, languages and cognitive architectures are being pushed
to their practical limits. This paper describes research looking
specifically at how a large declarative memories challenge the
current implementation of ACT-R and describes an applied
effort to develop an alternative implementation of ACT-R’s
retrieval process. The alternative exploits concurrency
features of the Erlang programming language to extend the
practicality of ACT-R’s retrieval mechanisms to new levels of
scale. The ideas and methods underlying the alternative
implementation are general and illustrate how concurrency
can accelerate calculation in other architectures struggling to
support large associative declarative memories.

Keywords: declarative memory; concurrent activation

calculation; semantic networks; ACT-R; Erlang.

Introduction

As research efforts employing cognitive modeling grow in
scope and complexity, available modeling tools and
languages are being pushed to their practical limits. For
example, the implementation of ACT-R within the Lisp
programming language may hinder the development of
large-scale models due to limitations in declarative storage
capacities (Douglass, 2009). If cognitive modeling is to
grow in scope and complexity, we must meet the challenges
underlying these limits.

An AFRL large-scale cognitive modeling (LSCM)
initiative is currently exploring potential solutions to these
challenges. The LSCM initiative is committed to integrating
well understood mechanisms from cognitive architecture
research into new modeling approaches that facilitate model
scaling. For example, the empirical strength of ACT-R’s
declarative system (Anderson, 2007) has motivated us to
ensure that the LSCM initiative’s solutions preserve ACT-
R’s declarative memory mechanisms.

LSCM initiative efforts to develop domain-specific
modeling languages (DSML-s) supporting increased model
scale and persistence involve efforts to increase the scale
and persistence of a declarative memory system that mimics
ACT-R’s. This paper describes recent efforts to retain and
scale ACT-R's memory mechanisms in a modeling and
simulation framework supporting RML1 (research modeling
language), the first DSML developed in the LSCM
initiative. RML1 is a generic DSML tailored to the needs of
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cognitive modeling. RML1 has a hybrid (graphical and
textual) syntax, and executes in a runtime environment
implemented in the Erlang programming language
(Armstrong, 2007).

Modeling with Large Declarative Memories

In the following sections we provide a brief overview of
ACT-R and describe how to extend ACT-R’s declarative
retrieval process by “carving it up at the joints.” We
conclude this section with a discussion of replicating top-
down (i.e., endogenous) and bottom-up (i.e., exogenous)
constraints on ACT-R’s memory retrieval process.

Brief Overview of ACT-R

ACT-R is a cognitive architecture for developing
computational cognitive process models (Anderson, 2007).
In ACT-R, cognition revolves around the interaction
between a central production system and several modules.
There are modules for vision, motor capabilities, memory,
storing the model’s intentions for completing the task (i.e.,
the control state), information retrieved from memory, and a
module for storing the mental representation of the task at
hand (i.e., the problem state). Each module contains one or
more buffers that can store one piece of information, or
chunk, at a time. Modules are capable of massively parallel
computation to obtain chunks. For example, the memory
module can retrieve a single chunk from long-term memory
and place it into the module’s buffer.

Chunks are defined by the modeler to have a particular
type, or chunk-type, and a set of key-value pairs. Retrieval
in ACT-R is based on a combination of: (1) endogenous
influences expressed in retrieval constraints; and (2)
exogenous influences originating from chunks in the slots of
buffers assigned activation weights by the modeler. When
retrieving a chunk, the modeler must specify the type of
chunk to retrieve, and all chunks of that chunk-type are
candidates for retrieval. All candidates’ activations are
computed, and the one with the highest activation is
retrieved. Chunk activation can be exogenously influenced
(i.e., primed) by spreading activation from other modules—
any module that contains a chunk as the value in a key-value
pair spreads activation to related chunks. As the number of
chunks in declarative memory increases, the number of
candidates during retrieval also increases. As retrieval
candidates increase, retrievals may become slow, and in
some instances too slow to support large-scale models that
must interact with other system components in real-time.



Increasing Scale by Externalizing Chunk Storage

Our initial efforts to extend the viability of ACT-R’s
retrieval system to large-scale modeling contexts focused on
the storage of chunks outside of ACT-R and Lisp. Database
management systems (DBMS) such as PostgreSQL can be
effectively used to store a large and persistent set of ACT-R
declarative memories (Douglass, et al, 2009). This research
determined that services provided by the PostgreSQL
DBMS can be integrated into ACT-R via a custom
“persistent-DM” module. We found that the persistent-DM
module greatly reduced ACT-R’s storage burden and
significantly increased the practical size of declarative
memory sets that could be accessed by cognitive models.

The effectiveness of the persistent-DM module was based
on the fact that ACT-R’s application of retrieval constraints
mimics the behavior of a DBMS executing a SQL query.
When the persistent-DM module is employed, requests for
instances of a particular chunk-type possessing specific sets
of key-value properties are translated into SQL queries and
then executed to recover matching chunk instances from an
external database. “Outsourcing” the storage and recovery
of matching chunks through SQL queries in this way is
beneficial because of the capacity of PostgreSQL databases
and the effectiveness of indexing in relational databases.
Unfortunately, while persistent-DM assumed some of the
retrieval burden by efficiently isolating the subset of chunks
that had to have their activations re-calculated, the module
simply relayed them to ACT-R’s default serial activation
calculation mechanism.

Carving the Retrieval Process at the Joints

We started the development of RML1’s memory system by
asking ourselves three questions:

Q1. How do the equations that explain activation and
associative strengths in ACT-R define the fundamental
nature of the ACT-R retrieval process?

Q2. How does the current ACT-R implementation
computationally realize the retrieval process?

Q3. Can the fundamentals of the retrieval process be
computationally realized in other ways?

Q1 Human memory is more than an information storage and
retrieval system. Likewise, declarative memory in ACT-R is
more than just a mechanistic account of information storage
and retrieval (Anderson, 2007). Human memory is a part of
a system that learns and acts in the world. Human behavior
is as flexible as it is because we know lots of things and can
use what we know to craft contextually appropriate and
effective actions in many different circumstances. It is not
enough to know a lot; we also have to be able to quickly cull
through all that we know in order to retrieve and apply the
right knowledge given our circumstances. The crown jewels
of ACT-R’s memory system are a set of equations
explaining how sub-symbolic calculation, learning, and the
utilization of activations and associative strengths enable
these critical properties of human memory (see Anderson, et

al., 2004 and Anderson, 2007 for detailed descriptions). The
equations are presented in Table 1 below so that their
details—specifically their indexing of chunks i and j—can
be used to confirm a claim that they describe how sub-
symbolic properties related to the activations and associative
strengths of individual chunks influence the probabilities
and time costs of their retrievals. That is, the equations
precisely explain how activation is calculated for individual
chunks in what can be considered independent calculations.

Table 1: Equations describing chunk activation. The key
components of the equations are a single focal chunk
indexed as i and chunks in context indexed as j.

Common Name Equation
Activation

A; =B + Z W;S;;

jEC

Base-Level Learning i

Bl =In Z tk_d

k=1

Attention Weighting W, = W/n
Associative Strength Si; = In(prob(ilj)/prob(i))
Retrieval Time Time = Fe i
Retrieval Probability Prob = 1/(1 + e~4i~0/5)
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Any declarative memory system adhering to ACT-R’s

theory of human associative memory must minimally
calculate each chunk’s activation according to these
equations. The equations define a fundamental unit of
computation scoped around each chunk in declarative
memory and abstract away from how the process of retrieval
executes all the chunk activation calculations underlying a
single retrieval.
Q2 The current ACT-R implementation (ACT-R 6)
sequentially realizes all the chunk activation calculations
underlying a single retrieval. Hence, chunk activation
calculations occur one after the other as a process, not
described in the equations above, searches for and retrieves
the chunk with the highest activation. To ensure that this
point is clear, the retrieval process in ACT-R will now be
summarized.

Retrieval in ACT-R is influenced by bottom-up
contextual cues and the application of top-down constraints.
Retrievals based on top-down constraints generally proceeds
in the following way. An “ISA” property in a retrieval
request is used to isolate type-compatible chunks in
declarative memory into a candidate set. Slot value
constraints representing additional properties required of a
chunk contained in retrieval requests are then used to further
reduce the candidate set. The activations of chunks
surviving all these top-down constraints are then computed
in accordance with the equations above. The chunk meeting
all top-down retrieval constraints with the highest activation
is returned in the retrieval buffer.

The impact of the serial calculation of activation is
illustrated in Figure 1 below. The top and bottom diagrams



in the figure represent two extreme situations. When
activation calculations are computed sequentially, the total
time cost is roughly equivalent to a per-activation
computation time, t, multiplied by the number of chunks.
When activation calculations are computed concurrently, the
total time cost will be slightly more than t. Given that the
ACT-R activation equations function in the scope of single
chunks and in so doing “modularize” the calculation of
chunk activations, we argue that the challenge to extend the
scale of ACT-R’s memory system is really a challenge to
maximize the concurrency of chunk activation calculation
during retrieval events.

t | t | t | t | t | t

©—
— >

Figure 1: Costs of serial & concurrent activation calculation.

Start
Finish
Time to compute activation of a chunk

Q3 To find a way to incorporate concurrent activation
calculation into the persistent-DM module, we set out to: (1)
extend persistent-DM  with the ability to compute
activations; and (2) develop ways of partitioning databases
across multiple PostgreSQL DBMS instances. The first of
these challenges was low-hanging fruit; queries to an
extended persistent-DM can now include a query capturing
top-down retrieval constraints and a representation of
context capturing bottom-up sources of activation.
Retrievals executed by this version of persistent-DM isolate
a sub-set of chunks meeting the top-down constraints, re-
compute their activations, and then return the set sorted by
activation. Stymied by the second of these challenges, we
turned away from trying to find ways of improving query-
based retrieval with concurrency and started researching
more radical alternatives for realizing massively concurrent
retrieval processes. We quickly realized that two problems
oppose the development of a memory system utilizing
concurrent activation calculation:

P1. To parallelize activation calculation, one needs a
language supporting concurrent computation. What
language can do this for us?

P2. To continue allowing retrievals to be based on top-
down retrieval constraints, we have to integrate the
processing of top-down information with the process of
concurrently computing chunk activations. How can a
retrieval process utilizing concurrent activation
calculation use top-down information and constraints?

Concurrently Computing Activations in Erlang The
semantic anchoring of RMLL1 is currently realized in a
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modeling and simulation framework developed using the
Erlang programming language (Armstrong, 2007; Cesarini
& Thompson, 2009). Erlang is an open-source general-
purpose functional programming language developed by
Ericsson. Erlang is chiefly used to develop persistent, fault-
tolerant, dynamically re-configurable, soft real-time
constrained control systems that use large databases.
Furthermore, it supports multiple process threads and
automatically exploits multi-core and networked computing
resources. In Erlang, program components are represented
as sets of separate parallel threads. Erlang manages threads
through a middleware framework called the Open Telecom
Platform (OTP) which simplifies the development and
execution of programs consisting of large numbers of
concurrent processes. Programs written in Erlang can
contain millions of concurrent processes (Armstrong, 2007).

RML1’s Erlang-based semantic anchoring represents
declarative knowledge in OWL-compatible ontologies
(Smith, Welty, & McGuiness, 2008) that describe the
classes, class properties, object properties, data properties,
and instances constituting a domain. Each node in a
semantic network is realized as a separate OTP process
thread in Erlang. These process threads maintain
information about: (a) retrieval parameters; (b) reference
histories; (c) last activation level; (d) lists of class, object,
and data relations constituting the defining properties of the
individual; and (e) lists of object relations the individual
serves a range role in. Process threads also receive and
respond to messages sent to them by OTP supervisor
processes. Each individual process thread is capable of
responding to requests to re-compute and report their
activation. Activity spreads in RML1 semantic networks as
messages are asynchronously exchanged between the
process threads constituting their nodes. Since process
threads in Erlang execute concurrently, spreading activation
achieved through asynchronous message passing and
activation re-computing are massively parallel. The retrieval
of declarative knowledge from a RML1 semantic network
involves all concurrent multi-core computation available.

In order to maximize the parallelization of the activation
computation, retrieval in the RML1 declarative memory
system is based solely on the spread of activation in
semantic networks. At first blush, it is not obvious how
something functionally equivalent to an ACT-R top-down
“isa” constraint can be obtained through bottom-up
spreading activation. The following discussion explains how
this is accomplished.

Replicating Top-Down Constraints with Message
Filters and Endogenous/Exogenous Message Sources
Table Al (in Appendix) shows how the behavior of top-
down retrieval request patterns in ACT-R can be replicated
in RML1. Deliberate retrieval constraints introduce top-
down network activity into semantic networks as
endogenous messages. Endogenous messages introduce
network activity into semantic networks but do not convey
weighted activation to nodes and therefore do not influence
a receiving node’s calculation of its activation. Contexts



introduce bottom-up network activity into semantic
networks as exogenous messages. Exogenous messages
function just like spreading activation in ACT-R; network
activity introduced into semantic networks by exogenous
sources convey weight and fan and therefore do influence a
receiving node’s calculation and reporting of its activation.
Message filters prevent network activity from being sent to
nodes lacking defining properties corresponding to the
properties in them. For example, the “k1,v1” message filter
in example 3 of Table A1, prevents the endogenous message
“type,cl” from passing network activity into nodes lacking
the “k1,v1” property.

Retrieval in RML1 proceeds in the following way:
1) An OTP supervisor process sends, in parallel, “spread
network activation” endogenous and/or exogenous
messages to nodes serving domain roles in the relations
expressed in the messages that pass any present message
filters. For example, in example 1 of Table Al, the OTP
supervisor process will send a message to cl. Since
“type,cl1” is an endogenous message in this circumstance,
the message will convey a weight of 0.
2) Nodes receiving “spread network activation” messages
relay them, in parallel, to instances serving domain roles in
relations with them. In example 1 of Table Al, any node
serving a domain role in the “type,cl” relation will receive
network activation. As mentioned earlier, individuals
maintain lists of the relations they participate in with other
individuals. Instances receiving these messages store the
weighted activation increments they contain and notify the
OTP supervisor that their activation has been influenced by
network activity. Because “weights of activation spread”
incorporated into endogenous supervisor messages are 0,
stored activation increments from endogenous sources force
the individual to re-compute their activation but do not
increase spreading activation. If, as is the case in example 2
of Table Al, context produced an exogenous message
“k2,v2”, the “weight of activation spread” incorporated into
exogenous supervisor messages would reflect attentional
weight and fan.
3) The OTP supervisor process sends, in parallel, “report
your re-computed activation” messages to nodes that
reported contributions to their activations. Individual
processes receiving these messages concurrently re-compute
their activation. Individuals that received only messages
containing 0 weights of activation spread report activation
values based solely on changes to their base level
activations.
4) Finally, the OTP supervisor posts the defining properties
of the node reporting the highest activation to RML1’s
working memory.

Retrieval in a Large Declarative Memory

To determine the impact of concurrency in RML’s retrieval
process, a basic comparison study was conducted. In this
comparison study, the wall-clock retrieval times of ACT-R
and RML1 executing retrievals in large declarative
memories were compared. To stress test the declarative
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systems of ACT-R and RML1, portions of the Moby
Thesaurus Il synonym database were transcribed into ACT-
R’s declarative memory and RML1’s semantic network.
The Moby Thesaurus Il contains 30,260 root words that are
related to each other by 2,520,264 synonyms. Compound
root words were excluded from the comparison study. This
exclusion process reduced the number of root words to
24,890. Five different declarative memory sets were created
using this reduced set. Sets consisted of proportions of the
reduced set of root words and the synonyms relating them.
Table 2 below summarizes the properties of these sub-sets,
and Figure 2 represents a portion of the smallest of these
sub-sets.

Table 2:; Properties of the synonym sets used in the
comparison study.

20%
53,560

25%
77,313

33%
145,073

50% 100%
318,435 1,281,763

Proportion
Synonyms

. jocular

whimsical

S

mazy

T Nl

7 inconstant :

word

coquettish \
N areting

. amatory

Figure 2: Portion of the Moby Il semantic network showing
a subset of the root words and synonyms related to the root
words “coquettish”, “mazy”, and “whimsical”. 29, 52, and
67 word/syn relations involving coquettish, mazy and
whimsical are not shown.

To create a declarative memory in ACT-R, instances of a
root_word chunk-type were used to represent root words
and instances of a synonym chunk-type were used to
represent word/synonym relationships between root words.
Figure 3 shows chunk types and chunk instances that would
allow an ACT-R model to represent and process some of the
root words and relations displayed in Figure 2. To create an
ontology-based semantic network in RML1, root_word and
synonym classes were defined. Object properties necessary
to relate words to syn in synonym instances were also
defined. Figure 3 shows the definitions of the root_word
and synonym classes and definitions of employed object and



data properties. Representing these in an ontology allows
RMLI’s runtime environment to search the semantic
network and make inferences about arbitrary descriptions or
entities lacking class identifiers.

(chunk-type root word name)
(chunk-type synonym word syn)

(add-dm
(coquettish ISA root word name "coquettish")
(inconstant ISA root_word name "inconstant")
(flighty ISA root word name "flighty")
(mazy ISA root_word name "mazy")
(whimsical 1ISA root word name "whimsical")

(synl ISA synonym
word coquettish
syn flighty)
ISA synonym
word coquettish
syn inconstant)
ISA synonym
word flighty
syn mazy)

(syn2

(syn3

)
(set-all-base-levels 7 0)

{class,
{class,

{root_word,
{synonym,

[{subclass_of, thing}]}}.
[{subclass_of, relation}]}}.

{object_property,
{word, [{sub_property of, base object property},
{domain, synonym}, {range, root word}]}}.
{object property,
{syn, [{sub_property of,
{domain, synonym},
{data_property,
{name, [{sub_property of, base data property},
{domain, root word}, {range, string}l}}.

base_object property},
{range, root_word}]}}.

{individual,
{coquettish, [{type,

[ {name,

root_word}], [I],
"coquettish"}], 7}}.

{individual,

{inconstant, [{type, root_word}], [],
[{name, "inconstant"}], 7}}.
{individual,
{mazy, [{type, root_word}], I[],
[{name, "mazy"}], 7}}.
{individual,
{whimsical, [{type, root_word}l, I[I,
[ {name, "whimsical"}], 7}}.
{individual,
{sl, [{type, synonym}],
[{word, coquettish}, {syn, inconstant}], [], 7}}.
{individual,
{s2, [{type, synonym}],
[{word, inconstant}, {syn, coquettish}]l, [], 7}}.
{individual,
{s3, [{type, synonym}],
[{word, mazy}, {syn, whimsical}]l, [], 7}}.
{individual,
{s4, [{type, synonym}]
[{word, whimsical}, {syn, mazy}l, [], 7}}.

Figure 3: ACT-R (top) and RML1 (bottom) root_words and
synonyms matching some of the Figure 2 information. Note
the object and data property specifications in RML1 .

Equipment
A Dell Precision T7500 was used in the comparison study.

The Dell’s physical configuration included 2 quad core Intel
3.33Ghz Xeon (W5590) CPUs and 48 GiB of RAM. The
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computer’s software configuration included the openSUSE
11.2 Linux-based OS, SBCL 1.0.35 running ACT-R6 r845,
and Erlang R13B04.

Procedures

Context-sensitive retrievals of chunks from the sub-sets of
the Moby Thesaurus Il were carried out in ACT-R and
RML1 using the request patterns and context representation
shown in Table A2. Real-time costs of executing retrievals
in ACT-R were measured by: (1) placing three chunks
corresponding to root word chunks into slots of a goal
chunk representing retrieval context; (2) initiating a retrieval
request corresponding to the “+retrieval> isa synomym”
request pattern; and (3) measuring elapsed system time until
the retrieval process returned a chunk. The real-time costs of
executing retrievals in RML1 were measured by: (1)
distributing messages from endogenous and exogenous
message sources that passed through message filters into the
semantic network; and (2) measuring elapsed time until the
OTP supervisor process managing the retrieval determined
the network node with the highest activation.

Results

The same retrieval parameters were used in both systems:
maximum associative strength was set to 5.0, the base-level
constant was set to 0, and the base-level learning rate was
set to 0.5. All chunks were initialized with 7 references.

Retrievals executed through ACT-R and RML1 returned
the same synonym chunks, computed equivalent chunk
activations, and retrieval latencies. The use of the “isa
synonym?” constraint in the ACT-R retrieval pattern required
that the activations of all synonym chunks be calculated
before the retrieval process could finish. Treating “type,
synonym” as if it were from an endogenous message in the
RML1 retrieval process correspondingly lead to all
synonym instances re-computing and reporting their
activations. Table 3 summarizes the results of the
comparison study.

Table 3: ACT-R and RML1 performance. Times (seconds)
represent average wall-clock time to execute 10 retrievals.

20% 25% 33% 50% 100%

Synonyms 53,560 77,313 145,073 318,435 1,281,763
ACT-R 3.22 6.00 18.63 86.39 NA
RML1 0.44 0.64 1.21 2.65 10.90

The most important thing to notice in Table 3 is that while
ACT-R (SBCL) performance time is increasing at a rate
faster than the increase in chunks, RML1 (Erlang) is
essentially scaling linearly. Added concurrency from
additional processor cores will further improve the relative
performance of RML1.

Conclusion

The declarative system underneath RML1 discussed in this
paper is interesting because it: (1) does not depend on a top-



down retrieval process that functions like a query against a
relational database followed by activation calculation; (2) is
capable of producing behavior that is functionally
indistinguishable from ACT-R; (3) exploits concurrency in
Erlang and therefore scales nearly linearly; (4) is part of the
runtime environment supporting RML1, the first DSML
researched and developed by the LSCM initiative. If
cognitive modeling is to successfully grow in scope and
complexity, it must find effective ways of meeting the
challenges associated with maintaining and using large
declarative memories. RML1’s declarative system illustrates
how concurrent knowledge activation calculation in large
declarative memories can be technically realized and is
therefore progress towards meeting LSCM challenges
associated with modeling human memory on a large scale.
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Appendix

Table Al. Examples of how query-based retrieval behavior in ACT-R can be replicated using message passing in RML1
semantic networks. The character “*” is used in messages to represent a wildcard that is free to match against any relation.
The “*” is necessary because contextual priming in ACT-R is insensitive to the key component of the key/value pairs in
context chunks. Notice that examples 3 and 4 yield the same retrieval behavior while using the “type,cl1” and “kl,v1”
messages in different ways. Since it is likely to be the case that the fan of v1 is less than the fan of cl, treating the “k1,v1”
message as endogenous will greatly reduce the spread of network activity and therefore expedite retrieval.

ACT-R RML1
Example Message Sources
Retrieval Request Context Message Filters | Exogenous | Endogenous
+retrieval>
1 isa c1l type,cl
+retrieval> isa c2 *
2 isa  cl K2 v2 k2|*,v2 | type,cl
+retrieval>
3 isa cl k1,v1 type,cl
k1 vl
+retrieval>
4 isa «cl type,cl k1l,vl
k1 vl
+retrieval> .
5 iﬁa cl 1§§ \C,g type,cl k2|*,v2 k1,vl
1 vl

Table A2. ACT-R retrieval requests and contexts & RML1 message filters and message sources employed in the declarative
memory system comparison study. To ensure the fairness of the comparison, all exogenous messages conveying activation
due to contextual priming had to be insensitive to relation (they all had to use “*”). Parenthesized numbers indicate fan.

ACT-R RML1
Example Message Sources
Retrieval Request Context Message Filters Exogenous Endogenous
. =goal> _ * whimsical
1 +;(esgr1se),\?1%1n>},m E% \r/nvglgsma'l Egg% type, synonym :,mazy <h type, synonym
c3 coquettis(31) scoquettis
=goal> * vexin
; ; "y 9
2| rerieyal | L yexing G0 | type,synonym | siheavy” | type, synonym
c3 operose (42) ",operose
=goal> * entan
. , gle
3 +&%ir1s§/¥1%1n§/m g% gg;iggh Egg% type,synonym | *,stare type, synonym
c3  woo (33) ,WOo
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Abstract

In this study, we explore dimensions of comparison
amongst complex agent-based models. Specifically, we
look at holistic models of leaders-in-context. We focus our
analysis on alternative models of the same phenomenon,
that of the rise and fall of two corporations, respectively.
The models were built by students with introductory
training on the methodology and modeling framework. We
extract dimensions and examine good vs. bad modeling
behavior. We divide these dimensions into ones that are
related to modeling leader context and ones that are related
to leader profiling. We use these dimensions to address
how to facilitate modeling alternative theories across a
broad range of topics and how to compare resulting
models.

Introduction

Studying the “traits of the great man” sitting atop a
traditional organizational hierarchy is no longer sufficient
to understand leadership. This approach like other schools
of leadership study (e.g, cognitive, networks, cultural,
etc.) tends to be singularly focused. Lichtenstein et al.
(2006) and Avolio (2007) argue that leadership research
today must be holistic and synthetic (see Silverman et al.,
2007). Synthetic leadership theory underlines the
necessity to integrate various theories on cognition, traits,
and situational contingencies (e.g. context, culture, social
networks, etc.) to provide a picture of the whole. This is
what a leader encounters in the real world in the contexts
he or she must manage. Hazy (2007) highlights the
importance of hybrid computer modeling techniques to
support experimentation on the holistic perspective. Hazy
(2007) claims that hybrid models that include various
techniques are likely to become abundant with increasing
adoption of a holistic look at leadership. We feel that the
most suitable approaches to a holistic perspective are
socio-cognitive agent-based models where leader traits
and affective reasoning in context are richly defined as
endogenous parts of a complex system.

The reasons to model leaders are 1) to try and
understand mechanisms that cause them to think under
varying circumstances, and 2) once that is known and
validated, to use these models to explore what-if
possibilities, alternative courses of actions, and how to
influence them.

In the social sciences, there are no set principles, no
one-theory-fits-all situations. So ideally one wants to try
different theories and factors. The modeling architecture
must support this testing of theories allowing users to
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shift in different ideas and see if they better explain what
is making leaders function as they do.

As a result, we want greater ability to plug theories and
sub-models in and out of the framework. The holistic
leader-in-context movement means that modelers must
use a framework that covers many dimensions (cognitive,
personality, cultural, socio-economic, etc.). How to model
this breadth of topics while simultaneously permitting
ease of trying different models is one question we explore
here. In particular, this study examines how novice
modelers (student trainees) can use a socio-cognitive
architecture to plug in differing models of a leader-in-
context.

The second author has developed a socio-cognitive
modeling framework called PMFserv (Silverman et al.,
2007) that provides a model of an agent’s cognitive-
affective state and reasoning abilities that is applied to
profile the traits, cognitions, and social reasoning of
agents alone and in groups. PMFServ utilizes cognitive
appraisal theory where each agent goes through an
observe, orient, decide, and act (OODA) loop (Boyd,
1995). For each agent, PMFserv operates its perception
and runs its personality/value system to determine
individual action decisions to carry out the resulting and
emergent behaviors. The PMFserv framework also
permits the modeling of groups, economic behavior, and
socio-cultural factors. Hence, the framework is a
reasonable candidate for analyzing leader behavior within
varying contexts.

It is possible to build different versions of
computational models when systems are complex. Yet,
when these computational models are built, there are no
existing common dimensions on which to evaluate them.
A second question of interest is, “How can we compare
models that claim to model the same phenomenon?”
Recently, comparison amongst cognitive models has been
studied by Lebiere et al. (2009) and John (2010). Lebiere
et al. take on the task to compare cognitive models built
by different individuals or teams that use different
approaches. The hardest part of their approach is to come
up with common grounds for comparison amongst
different approaches. John explores the reduction in
variation between novice modelers via guidance of
CogTool (John, 2009). John first identifies common
mistakes of modelers and then compares the variation
between modelers with and without the tool support.

In this study, we take a different approach. We establish
dimensions for comparison of a certain type of holistic
leader models built by novice modelers (students) using a



common framework, ie. PMFserv’s existing socio-
cognitive appraisal framework. Specifically, the
framework allows modelers to define: 1) Context, i.e.
how leaders perceive the world; 2) Decision making
behavior, i.e. how leaders process information flowing in
and determine actions accordingly; and 3) World
behavior, i.e. how the world gets affected by these
individual actions. In this study, we define world behavior
beforehand and restrict modelers to focus on the first two
parts to replicate a given scenario. Next, we specify
dimensions of comparison in leader-in-context models by
identifying the differences amongst models. Unlike John
(2010), there are no errors in modeling but there is good
or bad modeling. Finally, we use these dimensions to
specify desired features for models of leader-in-context.
The next section summarizes the PMFserv framework
focusing on cognitive appraisal theory. The methodology
section describes the dimensions of comparison and
outlines the good and bad practices of leader-in-context
modeling. The subsequent section describes the specifics
of the scenario and task given to modelers. The results
section analyzes the differences amongst the models
based on the dimensions explored. The last section
concludes with discussion and related future work.

Cognitive Appraisal within PMFServ

The Performance Moderator Function Server (PMFserv)
was designed by Silverman et al. (2006) as a modular
system and socio-cognitive modeling framework for
implementing and evaluating performance moderator
functions (PMFs). PMFserv operates what is sometimes
known as an observe, orient, decide, and act (OODA)
loop. PMFserv agents utilize cognitive appraisal theory to
help them cope with these contexts. This involves a
perception system, a values system, an emotion model
and a decision module.

Perception Module

Perception of agents and objects around each agent
determine the context. The perception is based on
“affordances” (Cornwell, 2003) which is a form of
distributing perceptions so that an agent's knowledge of
the world is marked up onto the perceived objects, instead
of the perceiving agents. Each entity in the world, agents,
objects, groups, organizations etc., applies perception
rules to determine how it should be perceived by each
perceiving agent. Hence, each agent can perceive the
same entity differently based on these rules. For example,
a bike might afford the actions ‘ride’, or ‘walk alongside’
to an agent if it knows how to ride a bike but it might only
afford the ‘walk alongside’ action to another agent that
does not know how to ride a bike. In this case, the mark-
up rules that reveal actions depend on properties of the
perceiving agent. An example of a company that is
marked up for such perceptions is given in Figure 1. Each
gray box represents one way the company can be
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perceived. Each element of the grid is called a perceptual
type (p-type). These p-types are not mutually exclusive.

Prowiding SatisFactory Customers Service

Diversified Inventory Awailable

Location Is Favorable To Customers

In Meed of Cash Floww Urgently

Mok Enough Budget For Inventory Management

Emough Working Fund For Grow and Improve

Mok Enough Budget for Customers Service

Electronics Retailer

Figure 1: Company P-types

Modelers establish appropriate context via rules on a p-
type. For example, a CEO might see that ‘Not Enough
Budget for Customer Service’ is active and be afforded
actions ‘Decrease Customer Service’ or ‘Fire employees’
whereas this context is not valid for a customer agent.
Hence, p-type rules might require that the perceiving
agent works at the company or that it is the CEO of the
particular company. The set of active p-types determine
the actions afforded to perceiving agents. We define the
parameters that affect the p-type rules as input parameters.

Activations and Value System

An afforded action provides activations to those taking
that action. These activations are fixed and irrespective of
the agent that is afforded the action. Agents assess the
activations of each action against their values system to
compute the utility of taking that action. By comparing
utility of all alternative actions, agents complete the
primary appraisal, i.e. how alternative contexts affect their
personal well-being, emotions etc. They then select the
action that maximizes their utility.

For this to work, PMFserv requires every agent to have
goals, standards, and preferences (GSP) trees filled out.
GSP trees are multi-attribute value structures where each
tree node is weighted with Bayesian importance weights.
Within a simulation, each agent has the same tree
structure, i.e. nodes are the same but the weights differ
among agents. The assignment of node weights
determines the traits of a certain agent. Figure 2 provides
an example of a simple GSP tree structure for a company
CEO.

In order to determine a specific agent’s importance
weights, modelers utilize differential diagnosis (Bharathy,
2006) and analytical hierarchy process (AHP). This
provides a systematic and valid methodology for
assessing the weight of each node to effectively

= ] soals
D] 0.20 --- Company Well-being
0.30 --- Personal Well-being
= [1] standards
= D:] 0.50 --- Human Resource Valueness
D] 0.90 --- Meglect Human Resource
E]:] 0.10 --- ¥Yalue Human Resource

=-[1] 0.50 --- Risk Taking
ED 0.80 --- Risk Awversion
[ o.20 --- risk Seeking
= [1J pPreferences
E]:] 0.00 --- Convenience
ED 1.00 --- Power

Figure 2: An example GSP tree




profile the agents and settings of interest. Using
differential diagnosis, modelers collect and assess
relevant evidence to attribute behavior. In this process,
each hypothesis corresponds to a node in the GSP tree,
i.e. behavior or traits. The output is organized in tabular
form called an ‘evidence table’ with additional attributes
such as reliability, frequency of occurrence, and
relevance. Evidence tables allow one to consider all
competing hypotheses at once and rank them accordingly
by assigning confirmation scores to each hypothesis.
Figure 3 provides a shortened example of an evidence
table. The table shows that the first evidence relates to the
nodes ‘Risk Aversion’ and ‘Risk Seeking’. From the
evidence table, the weights are estimated through the
AHP process by pair-wise comparison of their confidence
index.

Standards

Evidence {Ei)

=
+ = Evidence supports, or can be made to support, the =
hypothesis
x = Evidence rejects the hypothesis

Reliability (Ri)

 |H2: Risk Sesking
H3: Yalue Humnan Resource
Hi: Wegalect Human Resource

[H1: Risl

rcuit City did not change business mode since 1990s

x
by

c
Circuit City laid off 3400 top salesmen in 2007
Circuit City had problems with inventory management.

o]
o
= |a|=[=

rcuit City CEO Schoonover received $1.4 million
in salary and bonuses in fiscal 2008

Figure 3: Evidence Table

Emotion model

This is the module that calculates how each agent is likely
to feel from taking an action based on arousals, i.e.
combining activations and values system (GSP tree). Each
afforded action has an activation mapping on the GSP
trees. The activation mapping is a collection of
success/failure levels on a set of GSP nodes. For a simple
example, an activation mapping on the values system (in
Figure 2) of the action ‘Decrease Customer Service’ is
given in Figure 4. It shows that the result activates two
nodes positively, ‘personal well-being’ and ‘neglect
human resource’, and one node negatively, ‘company
well-being’. The set of emotions that each agent generates
from taking an action is determined by the sum of their
activations weighted by node weights. Thus an
importance-weighted values system results in differing
emotions being generated within the same context by
different personalities. For mathematical underpinnings of
the implemented model, see Silverman et al. (2006).

fictions Resuks Hode Op Successlevel Op  FalreLevel

100% - Decrease customer service | Company Welbeing = 0 + 0,100
Neglect Human Resource + 0,100 =0
+ 01000 =1

Decrease customer service

Persand Wel-bing

Figure 4: Activation mapping for action ‘Decrease
Customer Service’

Decision Module

The decision model receives information from the value-
driven emotion model and implements utility theory to
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select actions. A decision in PMFserv is a choice made by
an agent when choosing between alternative afforded
actions. A decision-making algorithm runs to select the
decision with the highest subjective expected utility.
Subjective expected utility (SEU) for each decision is
determined by appraising all possible emotions that will
be generated if the decision is taken by that agent. The
decision taken is called an action. An action may generate
effects on the environment — actor, target and other
entities — based on its result. These result effects are
called action bindings. We will refer to parameters that
these action bindings affect as output parameters. Figure 5
gives an example of an action binding for the action
‘Decrease customer service’. The output parameters are
‘capital’ and ‘customerServiceQuality’ of the target of the
action.

Result Effects (Action Bindings)

Standard Action Binding | Custom Action Binding | Custom Psreeption Binding

Target Property Operation variale Type value
1 |target capital + Humber 1

2 target customerServiceQuality -+ Number -1

2 —
Figure 5: Action Binding rule table

Methodology

In this section, we introduce the dimensions of
comparison amongst the models. These dimensions also
highlight good versus bad modeling behavior. We divide
the dimensions of comparison into two major clusters: 1)
Dimensions related to modeling leader-context
interactions, i.e. how context, afforded actions, leader
responses and its effects on the world are modeled, and 2)
Dimensions related to modeling leader personality, i.e.
how agent value systems are constructed.

Dimensions Related to Modeling Leader-Context
Interactions

These are the dimensions that provide feedback on how
conditions that lead to leader actions (p-types and
afforded actions) and effects of leaders actions on the
world are modeled. It is possible to further divide these
dimensions into two: context richness and action-result
balance.

Context Richness It refers to the depth of the model with
respect to leader perception. Within the PMFserv
framework, context is determined by p-types. If one wants
to have finer levels of granularity in perception modeling,
it is necessary to increase the number of p-types. This will
enable one to pin down the reasons for events in finer
detail. However, increasing only the number of p-types is
not always sufficient. Number of input parameters that
affect the perception rules often needs to be correlated
with number of p-types. If number of affecting parameters
is much smaller than number of p-types then there is a
strong indication of overloading parameters with multiple
meanings which in return means p-types are not clearly
defined. This will often require accurate estimation of
these parameters. In short, the context which affords



actions to agents should be clearly defined so that agents
consider the correct set of actions at the right set of
circumstances.

Action-Result balance It refers to the relations between
actions and parameters that are affected by the results of
those actions. One must consider all aspects of taking that
action when one is defining an action’s effects on the
world. Often, results of actions come with trade-offs. The
modeler has to reflect these trade-offs via output
parameters.

Dimensions Related to Modeling Leader Traits

While the previous cluster of dimensions may reflect on
how leaders perceive and how their actions affect the
world, it is really the personality that determines how
leaders vary from one another within the same context.
The dimensions in this section refer to assessment of
leader personality models.

Quality and Quantity of Evidence Organizing
information from otherwise diverse or amalgamated
sources is critical to the success of the modeling activities.
Although differential diagnosis and AHP process
minimizes subjectivity and biases within the process, the
validity of results depend on the quality and number of
pieces of evidence. Quality of evidence refers to the
relevance and reliability of evidence. A modeler should
try to obtain reliable evidence that is relevant to the story.
Additionally, one would want to increase the number of
pieces of quality evidence attributed to each node.
Coverage in Tree to Activation Mapping Activation
mappings on GSP trees are used for emotion calculations
which in return get used in decision-making. If a node
does not get covered by an activation mapping from any
of the actions then that node will be idle throughout the
simulation. In other words, it will not have any effect on
the decision-making calculations. Modelers need to make
sure that each node gets mapped to an activation by at
least one action.

Sensitivity Analysis If change in a parameter value
causes significant changes to the main outcome of the
model then it means that the model is sensitive to that
parameter. This would require that parameter to be
estimated with higher precision. The behavior of a
validated cognitive model should ideally be fairly robust
with respect to tweaking changes on a single personality
trait. Within the PMFserv framework, sensitivity to a
node indicates that for certain key actions, activation
mappings affect mainly that node. The modeler has to be
aware of this sensitivity and carefully use techniques
discussed in the previous section and try to find additional
evidence for more accurate determination of node
weights.

Task and Scenario

After approximately 25 hours of framework and
methodology training, students were given strict
guidelines to come up with a working model that
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replicates a given scenario as one part of their coursework
requirement. The class consisted of junior and senior
Systems Science and Engineering (SSE) students with the
exception of one Economics major. Most students are also
completing a double major or a minor degree in our
business school. Students were given two weeks to
complete their assignment and they had support from
experienced model builders. The students worked in
groups of four or five. They were given a benchmark
model that required certain tasks to be completed to fully
function. Each individual had to model an agent by
picking a theory of behavior and reflect this theory onto a
values system for their agent. The set of agents to model
were given to them. Team members had to decide on
which agent each student would model. Each group had to
come up with important parameters, contexts, afforded
actions, activations and results of taking those actions for
the set of agents. The benchmark model contained a set of
rules that govern the dynamics of the world and groups
were fully aware of how the world would function.
Lastly, they were required to replicate scenario outputs
within their model.

Specifically, students were given the story of Circuit
City (CC) going bankrupt and Best Buy (BB) excelling.
They were given a news article that overviews the story.
Additionally, they were encouraged to do their own
research on the story and their specific agents. The
minimum required set of agents included Circuit City
CEO, Best Buy CEO, and two or three (depending on
group size) types of consumers. Further, two companies
were modeled and placed under the control of the
respective CEO. Each student focused on profiling a
single agent. The decisions of consumers were predefined
within the world dynamics as ‘Shop from Best Buy’ or
‘Shop from Circuit City’. The teams were required to
maintain these two actions and were not allowed to add
new actions for the consumers. CEO agents did not have
any predefined actions, thus the teams had to work on all
parts of the OODA loop for those agents.

Results

This section provides examples of dimensions discussed
in the methodology section from student models. We
provide a summary of the models in Table 1. Out of the
eight teams, six teams were able to create a model that
replicated the desired output behavior, i.e. CC’s fall and
BB’s rise. Two teams (Model_5 and Model_8) were not
able to complete their model within the given time frame.
In Table 1, we provide a collection of p-types from each
model (except Model_3) that afford actions only to CEOs
(BB CEO or CC CEO). P-type rules, action binding code,
and a portion of the p-types have been omitted due to
space restrictions.

The first set of examples relate to context richness.
Teams had a hard time balancing affordances, actions and
activations to create meaningful context. In Model_4,
CEO gets afforded actions such as ‘Acquire New



Business’ and ‘Expand to Prime Locations’ via the p-type
‘Business Expansion Possible’. These actions have no
clear context because they get afforded to the CEO all the
time. In fact, in Model_4, CEO gets afforded all the
actions (listed in Table 1) at all times, i.e. the only
requirement is for the agent to be CEO of that company.
In Model_6, CEO agents are afforded the actions
‘Increase customer service’ and ‘Increase number of new
products’ as long as companies have positive capital.
Similarly in Model_2, p-types ‘BB Customer Service
Savings Available’, ‘BB Improvement’, ‘BB Price’ are all
active if parameter ‘customerServiceQuality’ is greater
than zero. In other words, the CEO does not distinguish
between these p-types. Additionally, Model_3 uses the
parameter set ‘Inventory’ and ‘capital’ to define five
different p-types indicating possible overloading.
However, this group used different values of ‘Inventory’
and ‘Capital’ as thresholds to trigger these five p-types.
Unlike the previous examples this kind of rule format is
acceptable to define varying context but not desired as it
relies on fine tuning of these parameters. Finally, we refer
to Model_7 as an example model that defines context
appropriately. Model_7 uses differing combinations of
input parameters to define various contexts.

A majority of the modelers were able to capture the
trade-offs of actions inside the action bindings. One
obvious violation was in Model_6. ‘Decrease number of
new products’ only has an effect on the parameter
‘amount of products’. One would imagine that this action
would have direct and immediate positive effect on the
‘capital’ of the company. As an example, in Model_4 the
action ‘Expand to Prime Locations’ increases
‘Accessibility Rating’ but at the same time it hurts
company’s ‘capital’.

In order to construct the GSP structure for their agents
of interest, students were asked to collect evidence that
could help to profile their agents. The number of evidence
that students organized ranged from 8 to 25. Students
were encouraged but not required to use reliability or
relevance scores for their evidence tables. Most of the
students utilized a low-medium-high scale and rated their
evidence as medium or highly reliable. On the average, a
team had 11 nodes for Goals, Standards, and Preferences.
Hence, there was an average of 33 nodes in total on
average. This meant that roughly 33 hypotheses existed
within an evidence table. Students cross-compare these
hypotheses with each piece of evidence. Furthermore,
students were able to provide evidence for each node.
Given the limited time the modelers had, we consider this
an acceptable effort.

Each individual had to incorporate a theory and justify
how their theory reflects on the values system (GSP
structure and node weights) of their agents. Students
utilized theories such as individual theory, marketing
theory, Maslow’s theory on the hierarchy of needs,
economic buyer theory, utility theory, agency theory,
consumer behavior theory, etc. GSP node names
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(hypotheses) were formed by these theories. Each team
came up with a common GSP structure but each
individual had to incorporate a different theory for their
agent. The key here was to look at whether that theory
was confirmed for their individual agent via pieces of
evidence. The majority were able to justify that their
individual theory applied to their agent.

As a final requirement for their coursework, students
were required to come up with an if-then hypothesis
based on a change in personality trait of the agents that
each person was responsible for modeling. An example if-
then hypothesis is: “If ‘Save Money’ node weight of CC
CEO is reduced then CC would remain in business for a
longer time.” In short, students related a macro-level
metric to a change in micro-level values. Out of the 12
students who modeled either CC or BB CEO for their
teams, only four (only one of them was BB CEO)
reported that their model was sensitive to the changes that
were made on the GSP trait they analyzed. All reported
that the change in behavior was in parallel with their
initial expectations, i.e. their if-then statement. The rest
reported that their model is relatively insensitive to their
parameter changes and the hypothesis is disconfirmed.

Concluding Remarks

This study placed a benchmark model of two firms, CC
and BB, in the hands of student trainees and challenged
them to research and build alternative models of leaders
in context. The leaders they built had to account for the
cognitive and personality variables that may have caused
the decline of CC and the success of BB. Further, these
leader models had to operate in a holistic environment
and cope with many types of networks and social
dynamics that are spawned at run time: ego-networks,
economic networks, transaction networks, and so on.

Six teams successfully completed the assignment. They
researched alternative theories and built differing models
of leaders-in-context. Thus they illustrate answers to
question number one — can users build and plug-in
alternative models covering the breadth of socio-cognitive
dimensions dictated by the modern leader-in-context
theory. Their results also address the answer to the second
question and give us ample fodder to begin to understand
how to compare different models of the same
phenomenon.

We explored dimensions for comparison of leader-in-
context models. The first set of dimensions concentrated
desired features on modeling parts of the OODA loop and
the second set concentrated on leader personality
modeling and its effects on the model. We extracted these
dimensions from working student models by focusing on
differences between models. We realize that this
variability between models is likely to reduce when
models are built by experienced modelers. A future
research direction is to analyze whether these dimensions
remain salient and sufficient for assessment of expert
models.



Table 1: Summary of student models (Input parameters, p-types, afforded actions, and output parameters)

Models Input Parameters P-Types that afford actions to CEOs Afforded Actions Output Parameters
customerServiceQuality | BB Customer Service Savings Available | 1. Decrease customer service capital, customerServiceQuality
Model_2 | customerServiceQuality | BB Improvement 1. Increase customer service capital, customerServiceQuality
customerServiceQuality | BB Price 1. Reduce Price Price
Business Expansion Possible 1. Acquire New Business capital, product Range
2. Expand to Prime Locations | capital, accessibilityRating
Employee Quality 1. Allow Flexible Scheduling capital, customerServiceQuality
2. Train Employees capital, customerServiceQuality
Marketing Improvements Possible 1. Implement Centrizing capital, customerServiceQuality,
Model_4
brandImage
Payroll Increases Possible 1. Increase Top Management capital, productRange, brandlmage
Salaries
Payroll Savings Possible 1. Decrease Salesman Salaries | capital, customerServiceQuality,
brandImage, accessibilityRating
Capital Improvements available 1. Increase customer service capital, customerServiceQuality
amountOfProducts Not spending money on new products 1. Decrease number of new amountOfProducts
Model_6 products
Capital Products available 1. Increase number of new amountOfProducts
products
location Liquidate Stores 1. Close 100 Stores capital, location
location, capital Locations Available 1. Open 100 New Stores capital, location
newTechnology, capital | New Technology Available 1. Invest in New Technology capital, newTechnology
promotions, capital Promotion Available 1. Hold Promotion capital, promotions
M brandNames Savings Available by Canceling 1. Cancel Partnership capital, brandNames
odel_7 .
Partnership
promotions Savings Available by Cancelling 1. Cancel Promotion capital, promotions
Promotion
websiteQuality Web Savings Available 1. Decrease Online Presence capital, websiteQuality
websiteQuality, capital Website Improvement Available 1. Improve Online Presence capital, websiteQuality
Model comparison is fairly straightforward in Generation, Composability, and Reusability of

traditional mathematical models that are tractable.
However, cognitive agent-based models are hard to
compare because each model includes a diverse library of
models that have different assumptions and perspectives.
This is the main reason why knowledge produced by
different complex social models does not accumulate. In
fact, every modeler prefers to start from scratch to build
their own model which they can build confidence in.
Furthermore, even under strict guidelines, modelers still
come up with a whole variety of models.

Throughout the paper, we use dimensions instead of
metrics of comparison to distinguish the fact that these
dimensions of comparison are not quantified. In the
future, we hope to be able to quantify these dimensions
into metrics for assessment of socio-cognitive leader
models.
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Abstract

This paper describes changes to a model of reading
comprehension to improve its reading rate and bring it into
closer alignment with human reading rates. The broader
context of the research is development of language capable
synthetic teammates that can be integrated into team training
simulations. To use synthetic teammates in team training
without detriment, we believe the synthetic teammates must
be both functional and cognitively plausible. By functional,
we mean that the synthetic teammate operates in real time,
performs the task, and handles the range of linguistic inputs
that are encountered. By cognitively plausible, we mean that
the synthetic teammate adheres to well established cognitive
constraints on human language processing—including the
incremental and interactive processing of language at human
reading rates. Achieving human reading rates in a cognitively
plausible and functional model of reading comprehension is a
research challenge that has not been met to date.

Keywords: human language processing, reading
synthetic teammate, functional, cognitively plausible

rate,

Introduction

We are developing a model of reading comprehension
called Double-R-Language (Ball, 2007; Ball, Heiberg &
Silber, 2007). Double-R stands for Referential and
Relational—two key dimensions of meaning that get
grammatically encoded in English. The initial application of
the reading model is development of a synthetic pilot for use
in a three-person UAV simulation. The synthetic pilot flies
the simulated UAV from a ground control station and will
eventually communicate with a human navigator and
photographer in the completion of reconnaissance missions.
A prototype system has been developed (Ball, et al., 2009)
using the ACT-R Cognitive Architecture (Anderson, 2007).
The synthetic pilot prototype communicates with
lightweight agent versions of the navigator and
photographer developed outside ACT-R.

The prototype communicates with the navigator and
photographer using text chat and must be capable of reading
and comprehending the messages it receives from them. The
reading comprehension model is capable of incrementally
processing linguistic inputs and generating linguistic
representations of referential and relational meaning. These
linguistic representations are interactively mapped into a
non-linguistic representation of the objects and situations
referred to in the linguistic input. The non-linguistic
representation—called the situation model (cf. Zwann &
Radvansky, 1998)—drives the task behavior of the synthetic
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pilot and determines when to communicate with the other
teammates to acquire needed information.

A significant challenge for the reading comprehension
abilities of the model is input variability. A corpus of text
chat communications that was collected in an experiment
involving human subjects and the UAV simulation is full of
variability in the form of linguistic input (see Table 1). For
competent readers, misspelled words activate the intended
lexical items because they contain many of the same letters
and trigrams (Perea & Lupker, 2003). Hence, key
requirements of the reading model include the ability to
handle misspellings in input; the ability to separate
perceptually conjoined units (e.g. separating punctuation
from words as in “He went.”, but not “etc.”; separating
words lacking spaces as in “yougo” for “you go”); and the
ability to recognize multi-word expressions (e.g. “speed
up”’) and multi-unit words (e.g. “a priori”, “h-area”).

Table 1. Messages seen during a UAV simulation

MESSAGE: VARIANT:

i need to be beloe 3000 for f area i; beloe; f area
effective radiu radiu

any requirements for altitde/speed? altitde

can yougo faster yet or is it stll 200 yougo; stll

To satisfy these requirements, the model includes a word
recognition subcomponent that uses ACT-R’s spreading
activation mechanism to influence lexical item retrieval.
The subcomponent maps orthographic input directly into
DM representations without recourse to phonetic
processing, although a phonetic mapping is not precluded.

The model uses the spreading activation mechanism of
ACT-R to retrieve words from the lexicon that are not an
exact match to the input. Letters and trigrams in the input
spread activation to the words containing those letters and
trigrams in the mental lexicon. These processes and
encodings are based on the Interactive Activation model of
word recognition (McClelland & Rumelhart, 1981), with the
addition of trigrams based on “letter triples” (Seidenberg &
McClelland, 1989). The subcomponent is embedded in the
reading comprehension model as a whole; the effects of
context and previous activation levels are taken into
consideration when encoding each individual word
(Freiman & Ball, 2008). The reading model also includes a
verification stage to check the retrieved lexical item against
the perceptual input. The verification stage aligns with the
Activation-Verification model of Paap et al. (1982). It splits
concatenated words in the input (e.g. “yougo”) to match the



retrieved word (e.g. “you”), leaving a residual (e.g. “go”)
for subsequent processing. If the retrieved lexical item is not
a sufficiently close match to the input, the model treats the
input as an unknown word.

Even without considering the mapping of the linguistic
representations into the situation model, the previous
version of the reading model was much slower than humans
in both cognitive processing time and real time
performance. Adult readers read at a rate of 200-300 words
per minute (Taylor, 1965; Carver 1973a; Carver 1973b).
The average reading rate of the model—prior to the
introduction of the changes described in this paper—was 96
words per minute (cognitive processing time), making it
impossible to match the model’s performance against
human performance. Since we are interested in building a
model of reading comprehension that is cognitively
plausible as well as functional, this presents a real challenge.
The prior reading model read slowly for several reasons: 1)
it required multiple declarative memory (DM) retrieval
requests per word; 2) it lacked the ability to read units of
language larger than the word; and, 3) it built complex
linguistic representations necessitating the execution of
multiple productions. In addition, the model relied on
parallel spreading activation to retrieve lexical items, which
is computationally expensive for large DMs on serial
hardware.

It is important to distinguish between reading rate as
measured by the real time functional performance of the
model and the rate as measured by the cognitive processing
time. ACT-R provides support for measuring cognitive
processing time—how long it would take a human to
perform some cognitive process. Execution of a single
production in ACT-R takes 50ms of cognitive processing
time; plus, the time it takes to retrieve a chunk from DM
depends on the activation of the chunk and can be measured.
Typical ACT-R models with small DMs are capable of
executing much faster than real time while measuring
cognitive processing time. However, large DMs tax the
computational resources of serial hardware and can lead to
models that run slower than real time or not at all (cf.
Douglass, Ball & Rodgers, 2009). Although it is important
to distinguish cognitive processing considerations from real
time considerations, these considerations are intertwined.
For example, reducing cognitive processing time by
eliminating retrievals also reduces the computation of
parallel spreading activation, speeding up the real time
performance of the model. For each of the shortcomings
listed above, one or more remedies is described below and
its impact on cognitive and real time processing is
considered.

Reducing retrievals

When the model retrieves chunks from DM, the ACT-R
Declarative Memory module calculates the activation across
all chunks that match the retrieval template, selecting the
most highly activated chunk for retrieval. The retrieval
template provides hard constraints on memory retrieval—
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which are difficult to justify from the perspective of
cognitive plausibility. Only chunks exactly matching the
retrieval template are eligible for retrieval. The spreading
activation mechanism provides more cognitively plausible
soft constraints on retrieval. Chunks may be activated which
are not an exact match to current input or context. For
cognitive plausibility, we prefer ACT-R’s spreading
activation based soft constraint retrieval mechanism,
minimizing the use of hard constraints in the retrieval
template. For example, we do not want to use a hard
constraint exact match to the input which would preclude
retrieval of a word which is not an exact match (e.g.
“altitde” should retrieve “altitude”). However, use of hard
constraints reduces the amount of computation significantly
by eliminating non-matching DM elements from the
spreading activation computation.

Instead of relying on hard constraint retrievals to reduce
the amount of computation, we have pursued the more
cognitively plausible alternative of reducing the number of
retrievals. An example of this is discussed next.

Combining Word Form and Part of Speech Chunks

In the previous version of the model, there was a word-form
chunk for each word that encoded the graphical form of the
word, including the letters and trigrams in the word (e.g.
speed-wf), and part of speech chunks that encoded the
various parts of speech of the word (e.g. speed-noun and
speed-verb). The performance of the reading model has
been improved significantly by collapsing the word form
and part of speech chunks into a single word-form-pos
chunk (e.g. speed-wf-noun, speed-wf-verb). Now, a single
retrieval is required to determine the part of speech of a
linguistic input. Since the production which initiates a
retrieval takes 50ms to execute, by combining the word
form and part of speech chunks for each lexical item, 50ms
plus the retrieval time were saved per word.

From a representational perspective, combining the word
form and part of speech chunks is not ideal. The word-form-
pos chunks combine two distinct types of information (i.e.
graphical vs. grammatical) which are better kept separate. A
better solution would retain separate chunks, but support
retrieval of part of speech chunks given the linguistic input.
This could be achieved via multi-level activation spread if
the linguistic input activated a word form chunk which in
turn activated related part of speech chunks. Unfortunately,
ACT-R does not support multi-level activation spread,
although its predecessor ACT* (Anderson, 1983) did. It
should be noted that single level parallel spreading
activation is already computationally expensive for large
DMs. Supporting multi-level spreading activation would
add an additional multiple to the computation for each level.

Expanding the Perceptual Span

By default, ACT-R’s vision module splits input text into
perceptual spans at spaces and punctuation. The module
even splits at word internal punctuation, so “ACT-R”
becomes “ACT” “-“ “R”, requiring three movements of



attention to read. This behavior was changed to a more
plausible splitting of the input text, thereby reducing the
number of retrievals per input. Words with internal
punctuation are no longer split up and retrieved separately.

The width of the perceptual span is now determined
dynamically, based on the length of the first word (word,) in
the perceptual span. The boundary of word, is determined
by the first space. If word, is greater than twelve letters in
length, it takes up the entire length of the perceptual span. If
word, is fewer than twelve letters in length, up to six letters
of the next word (word,.1) can also be seen in the perceptual
span. No more than twelve letters are contained in the
perceptual span.

The size of the revised perceptual span is deliberately
conservative, so that even though three very short words
(e.g. “out of the”) could be perceived at a single attention
fixation, the model never retrieves information for more
than two words. There is a great deal of evidence that the
perceptual span of adult readers is about 14-15 letters to the
right of fixation (DenBuurman et al., 1981; McConkie &
Rayner, 1975; Rayner, 1986). We implemented a span of up
to twelve letters, with the greatest amount of activation
spreading from the first few letters of the span and
decreasing toward the end of the span. As a result, incorrect
letters at the beginning of words are more detrimental to
correct retrieval than misplaced letters later in the word.
Activation spreads from the letters, trigrams, and length of
the first word (word,). If there is more than one word in the
perceptual span, word,,; spreads activation from its
trigrams. The section of the perceptual span containing
word, is roughly equivalent to the fovea; the perceptual span
at word,.; is roughly equivalent to the parafovea.

The revised perceptual span is generally larger than ACT-
R’s default span. Just as for adult readers, information to the
right of fixation is obtained when the next word is
predictable from the preceding text (Balota, Pollatsek, &
Rayner 1985). Again, we were deliberately conservative in
determining how much information could be perceived from
word,.;. Our intent was not to model in high fidelity the
perceptual span in reading, or movements of attention in
reading; movement of attention is not our primary focus.
We merely wanted to make the vision module more
serviceable to our language comprehension model, and
more faithful to human perceptual spans in the process.

An example of the reduction in reading time can be seen
in the phrase “take us to h-area”. Previously, ACT-R’s
vision module would chop the input into seven parts:

ey 99

to

[13K13

“take” “US” sah” “area”

The model would retrieve each part from DM, integrate it
into a linguistic construction, and then move on to the next
word. The last three sections of the input would need to go
through additional processing for the model to recombine
them into a single word. Reading the entire sentence took
2.8 seconds. If ACT-R does not chop up the input at spaces
and punctuation, the same phrase takes only 1.74 seconds to
read. In the next section, the advantage of the expanded
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perceptual span for processing multi-word expressions is
described.

Multi-Word Expressions

To facilitate reading and word recognition we have
modified the ACT-R architecture and the reading model to
better interpret multi-word expression (i.e. lexical units
containing spaces). By not splitting the perceptual input at
all spaces, multi-word expressions and multi-unit words can
be retrieved as a single chunk (e.g., "of course" and "a
priori"). To accommodate multi-word expressions we
modified our lexical chunks in DM to reduce the number of
retrievals necessary per word. Multi-word expressions are
treated in much the same way as singleton words. Many
multi-word expressions are not syntactically alterable units
and need not be parsed (Sag et al. 2002), so the model treats
them as “words-with-spaces”.

An important side effect of the new perceptual span
mechanism is that it also increases the reading rate of the
model in the process. Since the perceptual span can cross
spaces as well as punctuation, multi-word units like “to go”,
“want to”, and “believe in” can be recognized as a single
unit and processed in a single attention fixation. This
capability is really the key to getting Double R-Language to
approach adult human reading speed.

Before the multi-word expression capability was
implemented, the phrase “we need to go” took 1.99 seconds
for the model to process. After the perceptual span was
expanded, the model reads the same phrase in 1.79 seconds.
In this phrase “to go” is treated as a single unit, since it is an
infinitive verb. There is one fewer retrieval, and the
infinitive can be integrated into the phrase as a whole
without having to recombine “to” and “go”. Whenever there
are multi-word units, the model now saves time in retrievals
and processing. There is no difference in the time it takes to
process other sorts of words. In addition, multi-word
expressions are less ambiguous than individual words. “To”
in isolation is very ambiguous, whereas “to go” is much less
ambiguous.

Linguistic Representations

The reading model incrementally processes the linguistic
input and builds a representation of referential and relational
meaning that is mapped into the situation model. The
building of linguistic representations is driven by the
execution of productions which retrieve or construct
linguistic elements and integrate them into the evolving
representation. It takes more productions and retrievals to
build complicated linguistic structures. In an effort to reduce
the number of productions and retrievals that are required,
we investigated how linguistic representations could be
simplified or reduced. Our current approach attempts to
build the minimal structure needed to represent the
linguistic input, but must support more complex structures
when they are needed.



Retrieving object referring expressions

Determiners are words that project definiteness and
(sometimes) number information to nominals (Ball, 2010).
In the reading model, nominals are called object referring
expressions (ORE) to emphasize their referential (referring
expression) and relational (object) functions. Determiners
include the articles “a”, “an”, and “the”, as well as the
negative “no”, demonstrative pronouns “this”, “those”, etc.
Linguists have long known that the determiner “the” is the
most commonly used word in the English language (cf.,
Zipf, 1932); other determiners are nearly as common. As the
most commonly used words, determiners are likely to be
highly proceduralized or simplified in their use (Zipf, 1949).
Therefore we concentrated on consolidating the processes
associated with determiners.

Previously, the model identified a word as a determiner,
then executed a production which projected an ORE. The
determiner was integrated as the specifier of the ORE.
Given that determiners are used so regularly and frequently,
it seems likely that there is an ORE in DM associated with
each determiner that can be retrieved without first
identifying the part of speech of the word. By retrieving the
associated ORE rather than first identifying the word as a
determiner, the processing of determiners becomes more
proceduralized, faster, and more cognitively plausible.
Where separate, general productions were required to
retrieve the part of speech, followed by projection of an
ORE if it’s a determiner, now a single specialized
production projects an ORE directly from determiners.
Although we manually created this specialized production,
we would prefer that the model learn how to compile such
productions automatically.

Reducing structure in nominal heads

Retrieval or projection of an ORE by a determiner
establishes the expectation for a head to occur. In the
previous version of the model, when a word following the
determiner was identified as a noun, a subsequent
production projected an object head and integrated the
object head as the head of the ORE (Figure 1). Projection of
the object head from the noun supported the integration of
pre- and post-head modifiers (e.g. the post-head modifier
“on the runway” in “the airplane on the runway”). When a
post-head modifier occurred, it could be integrated into the
object head in the post-head modifier slot. However, in the
absence of a post-head modifier, projection of an object
head is unnecessary and the noun could be integrated as the
head of the ORE. The current version of the model adopts
the simpler approach, integrating the noun as the head of the
ORE (Figure 2). The tree diagrams below were generated by
the previous and current versions of the model and show the
contrast between the two approaches for the linguistic input
“the restriction” (the pre- and post-head modifier slots in the
object head are not displayed):
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obj-refer-expr .

SPEC head defae number .  animate o bind-indx 4,

determiner g, obj-head *l e *sing* ¥inanimatet *]#

the-word head g

NOUM ey

restriction-word

Figure 1. Original nominal structure (including a
determiner, projected ORE and object head)

obj-refer-expr .

SPEC 4 headaq def oz numberg,  animate., bind-indx .
*the-det* MO *d ef# *sing* *inanimate* *14

restriction-word

Figure 2. Reduced nominal structure (the retrieved
determiner ORE and no object head)

But what happens when a post-head modifier occurs, or
when the pre-head modifier slot turns out to be needed? In
the processing of the input “the altitude restriction”, when
“altitude” is processed it is integrated as the head of the
nominal projected from “the”. When “restriction” is
subsequently processed there is no expectation for its
occurrence. The previous version of the model projected an
object head, so “restriction” was accommodated by shifting
“altitude” into the pre-head modifier slot so that
“restriction” could be integrated as the head. In the current
version, we have adopted a similar strategy. In parallel with
the integration of “altitude” as the head of the ORE, an
object head is constructed in which “altitude” is the head.
This object head is available if needed to support subsequent
processing. When “restriction” is processed, the object head
overrides “altitude” as the head of the ORE and “altitude” is
shifted into the pre-head modifier slot so that “restriction”
can be integrated as the head (Figure 3). Note that the object
head is projected in parallel to facilitate processing. A single
production integrates the object head as the head of the
ORE, shifts “altitude” to the pre-head modifier slot and
integrates “restriction” as the head. It takes no more time to
process “restriction” than in the previous version of the
model, but it does require parallel projection of the object
head.

obj-refer-expr .

head def. number animate.
act aa o a0

obj-head *deft *sing* *inanimate*

SPEC g bind-indx

*the-dett +1#

modag head g

NOUN gy

altitude-word restriction-word

NOUM g

Figure 3. Accommodating “restriction”



Real Time Processing & Spreading Activation

Cognitive time is the time it takes the productions and
retrievals in ACT-R to happen, with each production taking
a fixed amount of time. When a production fires, 50ms of
cognitive time elapses, so having many productions firing
for the processing of each word takes up a great deal of
cognitive time. Retrievals also take cognitive time—chunks
with high activation are retrieved more quickly than
chunks with low activation.

Retrievals take real time to calculate the activation of all
eligible chunks. Real time is the wall clock time that
passes while the computer executes the model. When a
retrieval request is not very specific, for example,
specifying only the chunk-type, then the activation for all
chunks of that type must be calculated before the most
highly activated chunk can be selected. There are
thousands of chunks of type WORD, so when the chunk-
type WORD is the only retrieval specification, thousands of
activation calculations must be performed before a chunk is
retrieved. While this is a parallel process in the brain, it is a
serial process for a microprocessor. Since the language
model specifies only the chunk type, and relies on spreading
activation to retrieve words, thousands of calculations bring
the real time reading rate down to 53words per minute

(wpm).

Disjunctive Retrieval

One way to retrieve chunks faster in real time is to impose
stronger hard constraints on the retrieval. Instead of a weak
chunk-type specification that matches thousands of chunks,
a strong constraint that matches only a limited set of chunks
can be specified. For example, the model could try to
retrieve an exact match to input text form, which might only
match a single chunk in DM. However, imposing such
constraints makes the model less flexible and less
cognitively plausible. If the model relies on a hard
constraint to match the input form against words in DM,
variants cannot be read. Even a hard constraint on just the
first letter means that words where the first letter is
transposed with the second, or in any other way misplaced,
cannot be read by the model.

The model needs the flexibility of a soft-constraint
retrieval with the real time speed of a strong hard-constraint
retrieval. In order to achieve this affect, we implemented a
disjunctive retrieval mechanism. Using an ACT-R function
called get-chunk, the model checks DM for the largest
constituent of the perceptual span. If it does not find that
constituent, it chops the perceptual span at the last
punctuation mark or space. If that constituent is not found, it
chops at the second to last punctuation mark or space, and
so on. If an entire word does not match at any point, a
simple soft constraint is attempted.

For example, if the input sentence is “og to h-area”, we
want the model to be able to retrieve GO for “0g” (see Table
2). The get-chunk function is used to try to find chunks that
correspond to smaller and smaller parts of the visual input.
If at any point the function finds what it is looking for, the

model uses that specification to make the retrieval. Get-
chunk is a simple search function into a hash table—it is not
computationally expensive, and it functions outside of the
cognitive processes of ACT-R, so it does not take any
cognitive time.

Table 2. Perceptual span contains “og to h-area”

SEARCH RESULT: RETRIEVAL RESULT:
FOR: REQUEST:
og to h-area NIL -- --
og to h- NIL -- --
ogtoh NIL -- --
og to NIL -- --
og NIL -- --
-- -- chunk-type WORD GO-word
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Using the disjunctive retrieval, the average reading rate
for the model is 249wpm in real time. The cognitive time is
unaffected, and the model runs with disjunctive retrieval are
identical to the model runs using a pure soft-constraint. The
results of retrieval requests are identical. Since the two
retrieval methods are equivalent in ACT-R, the disjunctive
retrieval is acceptable as a way to make our model fast
enough to be functional in real time while we try to catch up
in cognitive time.

Conclusions

Although we have not yet succeeded in achieving human
reading rates, we have improved the reading rate of the
Double-R-Language significantly. The initial version of the
model read at a rate of about 96wpm, far from our goal of
200-300wpm, the average reading rate of adults. The model
now reads at an average rate of 143wpm in cognitive time,
and 249wpm in real time. This rate is the average, achieved
while reading a text of just under 2,100 words, without
counting punctuation as separate words.

The perceptual span is closer in size to that of human
readers than previously. The expanded perceptual span
allows for the expansion of the model’s lexicon to include
multi-word units, as well as speeding up the reading rate.
An additional advantage of multi-word units is that they are
less ambiguous than words in compositional phrases.

The model was improved by simplifying various
linguistic constructions. Parallel constructions allow for
simplified nominal heads, and object referring expressions
in declarative memory allow the model to avoid
constructing object referring expressions whenever
determiners are encountered. We posit that the simplified
representations are not only more expedient, but more
cognitively plausible as well. Avoiding unnecessary
constructions in the model is more likely to track the
efficiency of human language use.

Ultimately, we believe that achieving human level reading
rates will require a capability to recognize multi-word units
that exceed a single perceptual span. Recognition of a
linguistic unit as forming a part of a larger linguistic unit



across perceptual spans should minimize the amount of
higher level processing required to integrate the recognized
unit into the evolving representation and speed up the
reading rate, allowing the model to approach adult human
reading rates.

Although reading rate is important, the language
comprehension model is being developed to model the full
range of linguistic processes of a competent adult reader,
rather than just modeling the reading rate. It is our hope that
any improvements we make in the reading rate of our model
will be accompanied by improvements in the models
accuracy and cognitive plausibility.
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Abstract

This work demonstrates a mechanism that autonomously
organizes an agent’s sequential behavior. The behavior
organization is driven by pre-defined values associated with
primitive behavioral patterns. The agent learns increasingly
elaborated behaviors through its interactions with its
environment. These learned behaviors are gradually organized
in a hierarchy that reflects how the agent exploits the
hierarchical regularities afforded by the environment. To an
observer, the agent thus appears to exhibit basic self-
motivated, sensible, and learning behavior to fulfill its inborn
predilections. As such, this work illustrates Piaget’s theories
of early-stage developmental learning.

Keywords: Developmental learning; cognitive architectures;
situated cognition; computer simulation.

Introduction

We report the implementation of an agent that
autonomously engages in a process of hierarchical
organization of behavioral schemes as it interacts with its
environment. This mechanism moves towards taking on
developmental constraints as Newell (1990, p. 459+) called
for, and generates high-level and long-term individual
differences in representation and behavior that arise from
lower level behavior.

This implementation also refers to an “emergentist” and a
constructivist hypothesis of cognition. According to these
hypotheses, an observer can attribute cognitive phenomena
(such as knowing, feeling, or having motivations) to the
agent while observing its activity, provided that the agent’s
behavior can appropriately organize itself. These hypotheses
have often been related to Heidegger’s philosophy of mind,
e.g., cited by Sun (2004). Additionally, these hypotheses
correspond to work featuring constructivist epistemologies
(Le Moigne, 1995; Piaget, 1937), situated cognition
(Suchman, 1987), and embodied cognition (Wilson, 2002).

We describe the agent as self-motivated because it does
not seek to solve a problem pre-defined by the modeler, nor
does it learns from a reward that is given when reaching a
pre-defined goal. Rather, the agent learns to efficiently enact
its inborn predilections by exploiting regularities it finds
through its activity. As such, the implementation constitutes
a model of agents exhibiting intrinsic motivation, pragmatic
and evolutionist learning, as well as sensible behavior.

To situate the technical approach in the field of artificial
intelligence, we can refer to Newell and Simon’s (1975)
physical symbol hypothesis. We subscribe to the
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hypothesis’s weak sense. We are using computation to
generate intelligent behavior. We, however, do not
subscribe to the hypothesis’s strong sense, in that we are not
implementing symbolic computation based on symbols to
which we would pre-attribute a denotation. Instead, we will
discuss how knowledge appears to emerge (to an external
observer) from the agent’s activity, and how the agent
seems to make sense of the knowledge because it is
grounded in the agent’s activity (Harnad, 1990).

Although we did not follow a symbolic computational
modeling approach, we have, nevertheless, implemented
this model in a cognitive architecture, namely Soar 9. We
chose Soar because it has proven efficient for implementing
mechanisms for behavior organization. In particular, we
found Soar 9’s mechanisms for graph querying and operator
selection based on valued preferences very helpful.

Knowledge representation

The agent’s behavioral patterns are represented using two
kinds of objects: schemas and acts. We use the term schema
in its Piagetian (1937) sense, meaning a behavioral pattern
or sensorimotor pattern. An act is a notion specific to our
work that refers to a schema’s enaction. By schema’s
enaction, we mean the association of a schema with the
feedback the agent receives when enacting the schema.
Concretely, an act associates a schema with a binary
feedback status: succeed (S) or fail (F). Hence, each schema
is associated with at most two acts: its failing act and its
succeeding act. Schemas and acts are organized in a
hierarchy as shown in Figure 1.

Act

Schema

- Schema's context

Schema's intention

Act's schema

Figure 1: Example schema and act hierarchy.



At its lowest level, Figure 1 shows primitive schemas S1,
S2, and S3. Primitive schemas define the agent’s primitive
possibilities of behavior within a given environment. For
example, as further detailed in the experiment section, S1
may correspond to furn right, S2 touch ahead, and S3
attempt to move forward. Primitive acts are represented
above primitive schemas. For example, act [S3, S, 5]
corresponds to succeeding in moving forward, while [S3, F,
-5] corresponds to bumping into a wall. Each act has a value
associated with it, in this case: 5 and -5 (in parentheses in
the figure). These values inform the selection of the next
schema to enact, as explained later. For now, we can
understand these values as the agent’s satisfaction for
performing the act.

Primitive satisfaction values are chosen and hard-coded
by the modeler according to the behavior she intends to
generate. In our example, act [S3, S, 5] means that the agent
enjoys moving forward, while act [S3, F, -5] means that the
agent dislikes bumping into walls. Similarly, act [S2, S, -1]
means that the agent fouches a wall in front of him, which
he slightly dislikes; while [S2, F, 0] means that the agent
touches an empty square, which leaves him indifferent.
Therefore, primitive satisfaction values are also a way for
the modeler to define the agent’s intrinsic motivations.

Higher-level schemas are learned through experience, by
combining lower level schemas. Schema learning consists
of adding the new-learned schema to the agent’s memory as
a node and two arcs pointing to the schema’s sub-acts. For
example, schema S5 is learned when the agent has turned to
the right and then touched an empty square. Schemas have a
context act (dashed line in the figures throughout this
paper), an intention act (doted line), and a weight (w). So,
S5 means that, when the agent has successfully turned right,
the agent can expect to touch an empty square. Similarly, S4
is learned when the agent has successfully turned right and
touched a wall. S4 thus generates the opposite expectation
from S5. A schema’s weight corresponds to the number of
times the schema has been enacted. Over the course of the
agent’s interactions, the relative schema weights thus
balance the agent’s expectations in specific contexts.

When a higher-level schema is learned, its succeeding act
is also learned with a satisfaction value set equal to the sum
of the satisfaction values of its sub-acts, e.g., [S4, S, -2] (-1-
1) and [S5, S, -1] (-1+0). When a higher-level schema gains
enough weight, it can be selected for enaction. Enacting a
higher-level schema consists of sequentially enacting its
sub-acts. For example, enacting S5 consists of enacting S1
with a succeeding status, then enacting S2 with a failing
status. Hence, the satisfaction for enacting a high-level act is
equal to the satisfaction for individually enacting its sub-
acts.

When a high-level schema fails during enaction, it is
interrupted. This happens if a status returned by the
environment does not match the expected status of a sub-
act. In this case, the failing act of the schema is learned or
reinforced, as well as the actually enacted act. The
satisfaction value of the failing act is set equal to the
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satisfaction value of the actually enacted act. For example, if
schema S6 fails because S2 succeeds, then [S6, F, -1] is
learned. Because high-level schemas can potentially fail at
any step of their sequence, their failing act’s satisfaction
values are averaged over their different failures.

When a high-level schema is enacted, it generates the
learning of higher schemas. For example, when S5 is
successfully enacted and followed by succeeding S3, then
S7 is learned. In this example, S7 consists of turning right,
touching an empty square, and then successfully moving
forward. [S7, S]’s satisfaction is set equal to 4 (-1 + 5).
Similarly, S8 (learned after S7) consists of touching a wall,
turning right, touching an empty square, and moving
forward.

Algorithm

The algorithm follows two overlapping cyclical loops. The
control loop consists of: 1: selecting a schema for enaction,
2: trying to enact the selected schema, 3: learning what can
be learned from this trial, 4: computing the resulting
situation, and finally looping to step 1. We call this loop the
control loop because it is at this level that the agent decides
what schema to try to enact.

Step 2: (trying to enact a schema) constitutes a nested
loop that goes through the selected schema’s hierarchical
structure and tries to enact each of its primitive acts
sequentially. We call this loop the automatic loop because
this loop enacts sub-schemas below the agent’s decision
process. Figure 2 illustrates this procedure.

4. Assess situation

[ /

ﬁ\\

Agent

2. Enact schema
in environment

Enwronment

Figure 2: Algorithm procedure.

In Figure 2, the large white circle represents the control
loop while the small white circle represents the automatic
loop. The gray circle represents the environment’s loop.
Each revolution of the automatic loop corresponds to a
revolution of the environment’s loop that returns the status
of the enacted primitive schema. From the viewpoint of the
control loop, the schema’s enaction constitutes only one
step, whatever the schema level is in the hierarchy.
Therefore, at the control loop level, any schema is handled
similarly as a primitive schema, which makes possible the
recursive learning of higher-level schemas.



The four steps of the control loop are:

Step 1: All schemas whose context act matches the
previously assessed situation propose their intention act.
The weight of this proposition is computed as the proposing
schema’s weight multiplied by the intention act’s
satisfaction. The schema with the highest proposition is
selected (if several schemas are equal, one is randomly
picked among them). In essence, this mechanism selects the
schema that will result in the expected act having the
highest satisfaction, balanced by the probability to obtain
this expected act. This probability is based on what the
agent has learned thus far concerning the current context.
Due to this mechanism, the agent appears (to an observer) as
though he was seeking to enact the act associated with the
highest believed expected satisfaction and avoiding the acts
with the lowest ones. Figure 3 illustrates this mechanism.

O Enacted act

- »

[Jenacted schema .=~ _ -
-

e
Current
situation .7
Base ’
situation

83 84 >
Figure 3: Enaction mechanism.

Figure 3 details the 84™ iteration of the control loop in the
experiment reported in Figure 5. On the 83™ iteration,
schema S6 was successfully enacted (touch empty square,
move forward), which resulted in a base situation of [S6, S],
[S3, S], and [S11, S] (and other acts on top of [S6, S] not
reported in the figure). In this context, S9 and S10 were
activated and proposed to enact S8 with a proposition
weight of 4x3+4x3 (sum of the proposing schema’s weight
multiplied by [S8, S]’s satisfaction) (the agent never
experienced S8 failing). This proposition happened to be the
highest of all the propositions, which resulted in S8 being
selected for enaction.

Step 2: The algorithm next enacts all the selected
schema’s sub-acts. If all the sub-acts meet their
expectations, the control loop proceeds to step 3. If the
enaction of one of the sub-acts is incorrect, then the
automatic loop is interrupted; the schema’s enaction status
is set to fail; and control is returned to the control loop. In
Figure 3’s example, the enaction of schema S8 consists of
the enaction of acts [S2, S], [S5, S] (made of [S1, S] and
[S2, F], as shown in Figure 1), and [S3, S] in a sequence. In
this case, S8 was successfully enacted, resulting in the
enacted act [S8, S].

75

Step 3: New schemas are learned or reinforced by
combining the base situation and the current situation. In
Figure 3’s example, S9’s weight is incremented from 6 to 7,
and S10’s weight is incremented form 4 to 5. In addition,
new schemas are learned based on the penultimate situation
and on [S10, S] (e.g., S12 and S13 are created with a weight
of 1, as well as other schemas not represented in the figure).

Step 4: The base situation becomes the penultimate
situation and the current situation becomes the base
situation for the next cycle. A situation is made of the acts
that surround the enacted act (i.e., the enacted act, the acts
directly below it, and the acts directly above it). In Figure
3’s example, the situation is made of [S8, S], [S7, S], [S9,
S], and [S10, S]. The situation can be understood as the
agent’s situation awareness, that is, a representation of the
agent’s situation in terms of affordances (Gibson, 1979)
capable of activating behavior. Limiting the situation to the
acts directly surrounding the enacted act prevents the agent
from being overwhelmed by a combinatorial explosion as
the agent creates new schemas. In essence, the agent
focuses on the current level of abstraction for representing
his situation, for making his choices, and for finding and
learning higher-level regularities. When a high-level schema
fails during enaction, the agent constructs the actually
enacted schema and falls back to a lower abstraction level.

Experiment

To test the algorithm, we developed an environment that
afforded the agent hierarchical sequential regularities to
learn and organize. Although the interaction’s structure—
resulting from the coupling of the environment with the
agent’s primitive schemas—is fundamentally sequential, the
environment appears to external observers as a two-
dimensional grid represented in Figure 4, implemented from
Cohen’s (2005) Vacuum environment.

Figure 4: Experimental environment.

In Figure 4, white squares represent empty squares where
the agent can go, and filled squares represent walls. The
agent’s primitive schemas and acts are defined as described
above (Sl=turn 90° right (-1/NA), S2=touch the square
ahead (-1/0), S3=attempt to move one square forward (5/-
5)). Additionally, we have primitive schema SO consisting
of turning to the left (-1/NA) (turning schemas SO and S1
always succeed in this environment). These settings offer a
first notable regularity, namely that the agent can increase
his average satisfaction by touching ahead before trying to
move forward, and not moving forward if he touches a wall.
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Figure 5: An example run among the 18 reported in row 6 of Table 1.

Next, the agent can increase his satisfaction by repeating the
sequence consisting of moving forward twice and turning
once. Higher-level regularities consist of repeating this later
sequence. The effects of this learning mechanism are shown
in detail in Figure 5 that reports an example run. Videos of
other runs can be seen online'.

In Figure 5, an attempt to move forward is represented as
an arrow to the right, a turn-left as an upward arrow, a turn-
right as a downward arrow, a touch as a O. Succeeding
primitive schemas use a black font, while failing primitive
schemas use a white font, i.e., white rightward arrows mean
that the agent bumped into a wall, and white Os mean that
the agent touched an empty square in front of him. Enacted
schemas are represented at the lowest level in each line with
a black outline. Learned schemas are represented on top of
the enacted schemas. Failing higher-level schemas are
represented as white boxes with gray outlines (steps 68 and
72). The numbers from 1 to 91 indicate the control-loop
iterations (steps).

At the beginning, the agent acts randomly because he has
not yet learned appropriate schemas that could propose their
associated intention sub-schema. However, every cycle, the
agent constructs or reinforces several schemas. For clarity,
Figure 5 only reports the construction and the reinforcement
of the schemas that matter for the purpose of explanation,
and references these schemas when they are mentioned in

! http://e-ernest.blogspot.com/2009/07/ernest-64.html
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the text. Schema S4 is constructed on step 8. S4 is then
reinforced on step 28, 34, and 49. The agent attempts to
enact S4 for the first time on step 68 but fails and enacts S5
instead.

Notably, a schema turn right-turn right (not named in this
paper) is constructed on step 19. This schema is reinforced
on steps 33, 42, and 43. It is then enacted twice on steps 44
and 45. It is, however, not used any further because other
options prove more satisfying (its satisfaction value is -2).

On step 46, the agent constructs the schema S5 (using act
[S1, S] that is the schema turn right-turn right’s intention
act). Then, on step 47, the agent finds the schema S6 (touch
empty, move forward), and also constructs the schema S7
on top of S5. After step 47, the schema S6 always prompts
the agent to try to move forward after touching an empty
square; therefore, from then on, S6 is quickly reinforced in
steps 55, 59, 63, and 71. The agent tries to enact S6 for the
first time on step 72, but unsuccessfully, which results in
falling back to [S2, S]. This experience instructed the agent
that schema S6’s failing act has a satisfaction of -1, which is
still better than trying to move forward without touching
first and bumping into a wall (satisfaction -5). Therefore,
from then on, the agent learned to touch before moving
forward. S6 is then successfully enacted on steps 74, 77, 80,
83, and 85.

As said previously, on step 68, the agent intended to enact
S4 but actually enacted S5. Because S7 is directly above
enacted schema S5, S7 is included in the agent’s situation



awareness, which results in the learning of the fourth-order
schema S8 on step 69. Then, on step 73, the enaction of
schema S7 generated the learning of schema S10. As
detailed in Figure 3, S8 is enacted for the first time on step
84, which generated the learning of S12. S10 starts to be
enacted on step 87.

After step 87, the agent keeps on performing the sequence
touch empty, move forward, touch wall, turn right, touch
empty, move forward. This regularity introduces repeated
circuits that lead to higher-level repetitions of this sequence.
With this sequence, the agent obtains a satisfaction of 8
within 6 primary steps, i.e., 1.33 per primary step.

In this example, the agent did not learn the optimum
sequence in the environment. In fact, the agent has no way
to know whether the stabilized sequence is optimum or not.
The agent only repeats a sequence when other actions
appear less likely to bring satisfaction, based on what he has
learned before. In most instances, the agent first learns to
touch before moving, after which he begins to build other
regularities based on this initial pattern.

The experiment was run 100 times, stopping each run
when the agent has reached a stable sequence, and clearing
the agent’s memory between each run. The results are
summarized in Table 1.

Table 1: Summary of hundred runs.

Row Runs Satisfaction/step Cycles
1 22 3.00 50
2 22 2.25 79
3 4 1.80 75
4 4 2.00 69
5 16 1.60 62
6 18 1.33 84
7 1 1.40 76
8 1 1.17 109
9 1 1.00 108
10 2 0.75 116
11 3 1.00 61
12 1 0.80 95
13 3 1.00 71
14 2 0.40 96

100 1.92 72

In Table 1, the runs are aggregated by average satisfaction
per step obtained when the agent has reached a stable
sequence. The column Cycles reports the average number of
control loop cycles before reaching this sequence. Rows 1
through 6 report 86 runs where the agent learned to go
around his environment and got a satisfaction per step
greater than or equal to 1.33. Rows 7 to 14 report 14 runs
where the agent has stabilized on a sequence that results in
staying on one edge of the environment, and reached a
satisfaction per step that ranged between 0.40 and 1.40.

The summary row shows that the average reached
satisfaction per step was of 1.92. It was reached in an
average of 72 cycles. In comparison, other experiments
yielded an average satisfaction values per step of -0.93
without any learning and -0.38 with only the first-level
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schema learning. This data demonstrates that, in all the runs,
the hierarchical learning mechanism has substantially
increased the agent’s satisfaction, compared to no or non-
hierarchical learning.

Related work

To our knowledge, this work constitutes the first
implementation of an intrinsically motivated agent who
recursively learns to exploit hierarchical sequential
regularities to fulfill drives. The closest related work is
probably Drescher’s (1991) attempt to implement Piagetian
constructivist learning through what he called the
constructivist schema mechanism. Like our implementation,
Drescher’s work constructed hierarchical schemas that
associated context, actions, and expectations. In Drescher’s
implementation, however, schemas were neither associated
with satisfaction values nor did the agents exhibit self-
driven behavior. The agent’s exploration was rather random
and resulted in a combinatorial explosion as the agent
encountered increasingly complex environments.

Chaput (2004) proposed the Constructivist Learning
Architecture (CLA) to address Drescher’s scalability issues.
The CLA implemented a scheme harvesting mechanism at
each hierarchical level. This harvesting, however, depended
on goals defined by the modeler. Chaput’s solution,
therefore, relies upon a problem-solving approach that in
fact differs from our self-driven mechanism of interest.

In developmental robotics (Weng et al., 2001), the
literature often refers to Brooks’s (1991) pioneering work.
For example, Blank, Kumar, Meeden, and Marshall (2005)
describe the principles for a self-motivated/self-organizing
robot. They use the robot’s anticipation reliability as a
motivational regulator for the robot. As opposed to our
work, these implementations do not make explicit the
robot’s driving satisfaction values. They also rely on a
limited number of predefined hard-coded hierarchical
layers, which restricts the agent’s learning possibilities.

As for the testbed environment and self-driven learning
paradigm, our approach appears to be rather unique. We
must note that our learning paradigm substantially differs
from maze solving experiments (e.g., Sun & Sessions, 2000)
or from hierarchical sequence learning as depicted in the
classical taxi cab experiment (Dietterich, 2000). In these
experiments, the learning occurs over multiple runs (often
thousands), and comes from a reward value that is given
when the goal is reached and then backward propagated
during subsequent runs. On the contrary, in our paradigm,
there is no final goal that would provide a reward; the
learning occurs through each run; and all the agent’s
memory is reinitialized between each run (including all
forms of reinforcement).

Discussion and conclusion

Besides the quantitative results of the agent’s measured
satisfaction and that it learns at a nice pace (neither one shot
nor thousands shots learning), this work offers qualitative
results in the form of the agent’s exhibited behavior. When



observing the agent, an observer can infer that the agent
seems to enjoy certain behaviors (such as moving forward)
and dislike others (such as bumping into walls). Moreover,
the agent appears to learn to endure unpleasant behaviors
(such as turning or touching) to have more opportunities to
move forward. The agent thus appears to be self-motivated
and appears to learn knowledge about his environment that
he uses to satisfy his predilections. More -elaborated
behaviors can be watched in videos online”.

In addition, the agent appears to learn to use certain
schemas as perceptions (e.g., schema S2 to sense the square
forward), and to determine subsequent actions based upon
these schema’s outcomes. Therefore, the agent seems to
simultaneously learn to perceive his environment and to
make sense of his perception. This result is original in that
the agent’s perception was not pre-defined by the modeler in
the form of a perceptual buffer, as it is in many cognitive
models. In our case, perception emerges from the agent’s
behavior, which grounds the meanings of the agent’s
perceptions in his activity.

Moreover, the agent constructs an internal data structure
made of elaborated behavioral patterns, and uses this data
structure to deal with his environment. The behavioral
patterns used in this data structure are only those confirmed
through experience, which helps the agent deal with the
environment’s complexity. These data structures can be
seen as the agent’s situation awareness that is constructed
through his interactions, and that activates subsequent
behavioral patterns based on expected enjoyment. At each
point in time, the current agent’s knowledge frames how the
agent sees the world, which makes possible the recursive
learning of higher-level regularities and which accounts for
the agent’s individualization through his development.

Preliminary experiments in more complex environments
show that this algorithm faces two notable limitations. One
limitation is that the algorithm may represent the same
primitive sequence by different schemas that have different
hierarchical structures. These different schemas are useful to
find appropriate hierarchical regularities but they impede the
agent’s performance in more complex environments. Future
studies should find a way to merge these schemas. The
second limitation is that the algorithm is not good at finding
spatial regularities. For example, if we replace the central
wall square with an empty square, the agent becomes less
likely to find the most satisfying regularity, that of making a
continuous circuit around his environment.

We, nevertheless, believe that these limitations are not
insurmountable, and we plan to gradually increase the
complexity of the agent and of the environment in future
studies. We will add new drives to the agent, for example
homeostatic drives (similar to hunger) or boredom-
avoidance based on top-level regularity detection. We will
also add other primitive schemas, especially schemas
associated with distal perception. These schemas should,
we believe, help the agent deal with open spatial
environments.

? http://e-ernest.blogspot.com/2009/10/enrest-72.html
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Abstract

Circadian rhythms cause alertness declines at night,
producing performance decrements across cognitive domains
and tasks. Building on the learning mechanisms for
declarative knowledge instantiated in the ACT-R cognitive
architecture, this research seeks to explain the effects of
circadian rhythms on performance of an orientation task
performed repeatedly across two weeks by participants
working either day or night shifts. The differences in
performance between the two groups are best explained by
varying the decay rate in declarative knowledge as a function
of the time of day the task was performed. The model
accounts well for task learning reflected in decreases in
response times across days, as well as differences in learning
between the day and night shift conditions.

Keywords: sleep; circadian rhythm; fatigue; learning; shift
work; declarative memory; spatial; ACT-R

Introduction

Variations in alertness due to circadian rhythms and sleep
loss have been shown to affect various components of
cognitive functioning (e.g. Jackson & Van Dongen, in
press). For example, vigilant attention (Lim & Dinges,
2008), perceptual learning (Mednick, Nakayama &
Stickgold, 2003), and motor learning (Walker, Brakefield,
Morgan, Hobson & Stickgold, 2003) are all affected by
fluctuations in alertness associated with time awake and
circadian rhythms.

Despite well-documented behavioral changes, it is not
well understood how nighttime operations affect learning in
different contexts. Most research on night and shift work
has focused on how shift differences affect sleep and
frequency of accidents (e.g. Akerstedt, 1988). The affect of
changes in alertness (e.g., as associated with work shift
differences) on learning is one area of research where a
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better understanding of the mechanisms involved is needed.
More detailed explanations hold the promise of enabling
predictions about how learning experiences at different
times of the day may differ, and how this may impact
eventual task performance.

Previous cognitive modeling efforts have explored some
effects of moderators on cognitive processes. In fact, several
studies have examined such effects in the context of
declarative knowledge. For instance, the effects of caffeine
on memory retrieval have been modeled by increasing the
activation of declarative knowledge (Kase, Ritter &
Schoelles, 2009). Conversely, the effects of sleep loss on
memory retrieval have been explained using decreases in
declarative activation (Gunzelmann, Gluck, Kershner, Van
Dongen & Dinges, 2007). The negative effect of time-on-
task on response accuracy has been explained by increasing
noise, making misretrievals more common (Fu, Gonzalez,
Healy, Kole & Bourne Jr, 2006).

These research efforts focused on processes associated
with retrieving declarative knowledge by impacting the
availability or confusability of chunks when they are
requested. In contrast, the effects of alertness on the learning
and retention of declarative knowledge have not been
addressed.

In the research presented here, we investigate how long-
term learning may be affected by fluctuations in alertness
resulting from circadian rhythms during laboratory-
simulated shift work. This is accomplished within the
context of a spatial direction task based on Gunzelmann,
Anderson, and Douglass (2004), which was performed
repeatedly by participants over two weeks. A computational
cognitive model is presented that accounts for changes in
observed response times across successive days of the
study, including differences in learning rates as a function of



simulated work shift. Differences in performance between
shift conditions are explained by manipulating the decay
rate parameter in ACT-R’s declarative knowledge activation
function. Increased decay (reduced learning) in the night
shift condition leads to performance decrements that match
the human data. The details of the task, the human
performance data, and the model are described in the
following sections.

Orientation Task

This experiment was conducted as part of a larger study to
understand how circadian rhythms and sleep disruption
affect performance in a variety of domains. The participants
were screened to be healthy and without sleep disorders,
with no evidence of brain damage or learning disabilities,
and free of drugs of abuse. Participants gave written
informed consent, and were paid for their participation.

Figure 1 shows the orientation task used in this study.
There are 8 possible target locations (left) and 8 possible
misalignments (right; 45 degree intervals). Twenty-five
randomly ordered trials were presented per session — 5
target locations (bottom, near, middle, far, and top) crossed
with 5 misalignments (0, 45, 90, 135, and 180 degrees).
Because performance is roughly equivalent for right-left
mirrored stimuli for both target location and misalignment
(see Gunzelmann, Anderson & Douglass, 2004), the
location was selected at random from the left or right
positions.

Participants received instructions that encouraged them to
mentally rotate the relative positions of the viewpoint
(indicated by the “You” arrow) and the target on the
overhead view (left side filled circle) to align them with the

viewpoint indicated on the map view (right side arrow).
Specifically, they were taught to imagine an angle that
connects the viewpoint to the target on the overhead view,
with the vertex at the center of the field (a 90 degree angle
in Figure 1). They were then told to mentally shift to the
map view, and to rotate the angle so that the arrow in the
overhead view was aligned with the arrow in the map view
(a rotation of 90 degrees clockwise in the trial shown in
Figure 1). At this point, the answer could be determined by
finding the target end of the angle.

Participants responded using the numeric keypad portion
of a computer keyboard, which was spatially mapped to the
possible response locations on the map view. So, if the
target was in the bottom position on the map (as it is in the
sample trial shown in Figure 1), participants responded by
pressing the “2” on the numeric keypad.

Method Thirteen participants, ranging in age from 22 to
39 years old (mean = 28), were in the laboratory for
fourteen consecutive days. The first day was a baseline day
with 10 hours in bed for sleep (22:00-08:00). Subsequently,
some of the participants (n = 6) changed to a simulated
night shift. Night shift participants were given five hours in
bed (15:00-20:00) on the second baseline day, before
starting five consecutive work days with 10 hours in bed
during the daytime (10:00-20:00) on each day. On the
seventh and eighth day, night shift participants had a
simulated “day off” during which they had 5 hours in bed
(10:00-15:00), 7 hours awake, 10 hours in bed during the
night (22:00-08:00), 7 hours awake, and then 5 hours in bed
(15:00-20:00), before resuming their night shift schedule
for the next 5 days. This schedule represented a common

schedule for individuals working a

Overhead

night shift, who frequently switch

Map back to a nighttime sleep schedule
during weekends. After the last night
o shift day, night shift participants

received 5 hours in bed (10:00—
9 15:00), 7 hours awake, and then, on
the final day of the study, were given
10 hours in bed at night (22:00—
08:00) for recovery.

Participants on the day shift (n =7)
were subjected to the same pattern of
two baseline days, five consecutive
work days, a “day off”, another five
3 consecutive work days, and a
recovery day. They maintained the
same sleep schedule throughout the
study, however, with 10 hours in bed

If the arrow points to your location,
in what direction would the blue

You
circle be?

Figure 1: An example trial. The target on the overhead ego-oriented view (left side),
indicated by the filled circle, is at middle distance to the right of center. The
perspective on the map view (right side), indicated by the arrow, is misaligned by

(22:00-08:00) each night. Note that
participants on the day shift and night
shift schedules were given the same
amount of time in bed over the
course of the experiment; it was
merely distributed differently.

90° clockwise. The correct response in this example trial is “2.”
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Over the course of the study, participants completed fifty-
one test sessions of the spatial direction task, with 2 to 4
sessions per day. Before the first session, participants were
presented with instructions for the task.

Eight to sixteen days prior to the first session (mean = 14
days), participants were given baseline training on the
spatial direction task. This included a set of instructions for
the task and four training sessions (these data are not
modeled here).

Observed Data

Average response times for each day of the study are
presented in Figure 2 for both the day and night shift
conditions. Performance during the baseline days of the
study (days 1 and 2) was similar for the two groups, and
there was no significant difference in mean RT at that point.
However, when the conditions diverged, so did performance
on the spatial direction task. The performance of the night
shift group did not recover during the simulated “day off”,
and differences in mean response time remained at the end
of the experiment.

To evaluate the differences between shift conditions, we
compared response times on the days when they were awake
for different shifts (ten days; excluding the baseline, day off,
and recovery day) using a linear mixed-effect model with
subject as a repeated-measure grouping factor. This was
planned a priori to most effectively evaluate the impact of
shift on performance. However, for the model comparisons
later in the paper, all of the observed data was used. See
Halverson, Gunzelmann, Moore, and Van Dongen (in press)
for more complete analyses of the human data.

Figure 2 shows the mean participant response times (solid
lines) as a function of day in study and simulated work shift.
There was a steady decrease of response time between days
1 and 14, as corroborated by a main effect of day, F(9,
7769) = 112.2, p < .001. While there was no evidence of an
overall effect of shift, F(1, 11) = 0.8, p = .37, there was an
interaction between shift and day, F(9, 7769) = 2.1, p = .03.
Response times did not improve as quickly when a
participant was on the night shift. Observed error rates were
low (M = 4%, SD = 3%) and are not addressed in this work.

Mental Rotation Model

A computational cognitive model of the orientation task was
developed using the ACT-R 6.0 cognitive architecture
(Anderson et al., 2004). The model behavior is primarily
driven by mental rotations and learning. The mental rotation
operation is implemented using ACT-R’s imaginal module
and the imaginal-action buffer. Learning in the model
occurs both in the declarative module and through the
compilation mechanisms in procedural knowledge. The task
procedure implemented in the model was based on the
instructions given to the participants in the empirical study.

Model Overview

The model executes the task as follows: In the overhead
view, the model encodes the angle defined by the target
(blue circle), the center of the overhead view, and the
viewpoint (circle nearest the “You” arrow) by visually
attending those locations and encoding their coordinates in
the imaginal buffer. The model then switches to the map
view, encoding the vector defined by the viewpoint (circle

3000 —

2500 —
£ 2000 - Shift
~ = Night
)
S o Day
— 1500 -
[0)
»
5
% 1000 — — Observed
[0
o Model

500 —
00— I 1 1 1 1 T I 1 I 1 T I T

Day

9 10 11 12 13 14

Figure 2: Observed and predicted mean response times as a function of day and simulated work shift (night or day). The
shaded regions indicate simulated “days off” in which night shift participants (and the model) performed the task during the
day at the same time as day shift participants. Shaded days are not included in the human data analysis.

Error bars indicate =1 standard error.
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nearest the arrow) and center of the map view by attending
those locations and encoding their coordinates.

The angle that was encoded in the overhead view is then
translated to center it on the map view (an imaginal action;
200 ms) and rotated to align the viewpoints of the overhead
and map views. The model visually attends the response
location closest to the transformed location of the target,
encodes the response digit, and presses the corresponding
keyboard key.

Mental rotations were implemented using the ACT-R
imaginal module. The time to perform the rotation was
based on previous mental rotation research (e.g. Bethell-Fox
& Shepard, 1988) and was a linear function of the angle of
rotation. The slope of the linear function was a free
parameter, as the slope can vary by task depending on the
relative complexity of the object to be rotated.

Learning

The model’s performance improves over time by learning
in three ways. First, the angle from the overhead view is
encoded in declarative memory when the first subtask is
completed. In subsequent trials, the model attempts to
retrieve an existing chunk based on the target’s location. If a
chunk exists and gets retrieved before the model completes
the process of visually encoding the angle, then the
information from the chunk that was retrieved from
declarative knowledge is used. Over time, retrievals become
more likely and faster than explicitly encoding the angle
using perceptual and imaginal actions. This leads to a speed-
up in the model’s execution of the task.

In addition to an increasing reliance on declarative
representations for target location information, the second
step of the solution process is also stored in declarative
knowledge once the response is made. These chunks contain
information about the target location from the overhead
view as well as the perspective on the map view (i.e., the
misalignment). Consequently, with experience the model
can attempt to retrieve the response based on the target
location and map view perspective location. Like encoding
the target location on the overhead view, if a chunk is
retrieved before the model completes the mental
transformations on the map view, the response is based
upon the chunk retrieved from declarative knowledge.

The final learning process in the model involves ACT-R’s
production compilation (i.e. proceduralization). Production
compilation is a process by which new productions are
created dynamically to represent in one step the
consequences of two productions that execute
consecutively. With experience, it becomes increasingly
likely that the new production will be used, as the model
learns that the utility of the new production is greater than
the utility of the original, separate productions. However,
due to the many constraints imposed on production
compilation by the architecture and the structure of this
model, the only compilation that occurs in the current model
involves encoding the mental rotation into productions
specific to each pair of overhead target and map view
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perspective  locations. Therefore, the only savings
introduced by production compilation were the infrequent,
but substantial, time savings from the mental rotation of trial
layouts that were only seen once per session.

Explaining Night Shift Performance Decrements

Several alternatives were explored to explain the
decrement in performance observed for participants on the
night shift. The solution that resulted in the best explanation
of the data was a variation of the decay rate of declarative
chunks activation as a function of simulated work shift.
Alternative solutions that did not explain the observed
trends as well are described in the Results and Discussion
section.

By default, the decay rate parameter is not allowed to
vary in the implementation of ACT-R. That is, the decay
rate can be set, but it assumes the same value for the
duration of a model run. There have been various efforts to
implement more dynamic mechanisms for decay in ACT-R.
Most of these have been related to accounting for the
spacing effect (Anderson, Fincham & Douglass, 1999;
Jastrzembski & Gluck, 2009; Pavlik & Anderson, 2005).

In our case, we utilize the decay rate to represent
differences in the effectiveness of learning as a function of
when during the day the task was performed. To implement
the mechanisms, the equation to calculate the base-level
activation of declarative chunks was modified (Equation 1).
The only change to the standard ACT-R base-level learning
equation is that the value of the decay rate parameter can
vary according to the time when a chunk was added to
declarative memory or when the chunk was rehearsed (d;),
as opposed to a constant decay rate across all rehearsals (d)
in the original equation. This modification does not change
the effect of decay for current ACT-R models.

B,=In(),t;")+B (1
j=I1

The current model was implemented with the simplifying
assumption that the level of alertness, and thus the value of
d;, is constant across all hours of a work shift (day or night).
It is well known that alertness due to circadian rhythms
varies throughout the day and night (Van Dongen & Dinges,
2005). However, while the model executed the task the
same number of times as the participants did through a
simulated workday, we aggregated the data across each day
to reduce noise. We have not yet evaluated the capacity of
the mechanism to account for finer grained circadian rhythm
fluctuations or varying inter-session intervals.

The model was fit to the day shift data using the retrieval
threshold (best fit = 1.2), retrieval latency factor (8.0), and
rotation slope (0.009 sec/degree) parameters. The rotation
slope is similar to the slope found in previous research for
simple rotations (Bethell-Fox & Shepard, 1988). The base
level learning, which controls the rate of activation decay
(dj), was left at the ACT-R default (0.5) during sessions
when participants were on the day shift. For predicting the
night shift data, the declarative chunk decay rate was



allowed to vary. The best fitting decay parameter for the
night shift sessions was 0.6.

Results and Discussion

Figure 2 shows observed (solid lines) and best fitting model
(dashed lines) mean reaction times as a function of day in
the study and simulated work shift (night or day). For both
shifts, the observed behavior is well predicted (RMSD = 65
ms, ?= .98 for day shift; RMSD = 79 ms, > = .98 for night

shift). The night shift predictions are particularly
noteworthy, as only one parameter was varied relative to the
day shift model.

The model is able to predict the observed response times
well across fourteen days, including differences across work
shifts (i.e. the interaction of day and shift). The model is
able to predict the effects of work shift changes well with
variations in declarative memory decay rates based on the
time at which the tasks are performed. While the declarative
decay mechanism explains the observed decrements well,
several alternative mechanisms for explaining the trends
were considered.

One alternative mechanism involves manipulating overall
declarative chunk activation at the time of retrieval, as was
done in Gunzelmann et al. (2007). This model did fit the
observed data on most days, but did not correctly predict the
effect on the overall learning rate when the participants in
the night shift condition temporarily switched to the day
shift on days 8 and 14. On these days, the model predicts
that the performance of participants in the night shift group
is nearly equivalent to that of participants in the day shift
group. This is because the model assumes that the
participants’ alertness recovers when performing the task
during the day. There is some evidence in associated data
(not reported here) to support this, although we do not have
conclusive evidence. Regardless, if the impact of degraded
alertness were only on activation levels, then the knowledge
should be more available during the day. As the human data
illustrate, however, the deficits associated with performing
the task on the night shift persisted.

Another alternative mechanism for explaining the
decrements of alertness is a decrement to utility values
associated with production selection and execution. This
mechanism has been used to predict performance
decrements due to decreased alertness in vigilance tasks
(e.g. Gunzelmann, Moore Jr, Salvucci & Gluck, 2009).
However, such a mechanism in the model presented here
does not explain the observed data for the current task. The
same issue is encountered as with the previous alternative
— the model recovers to day shift levels of performance on
the “day off” and “recovery” days. This is likely a result of
the current task requiring constant engagement, over short
periods, and thus mechanisms employed for sustaining
attention throughout the task would not be stressed.

A third alternative mechanism that was explored is a
variation in procedural learning as a function of shift. The
model presented in this paper has both procedural and
declarative learning enabled. It may be that the observed
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night shift decrement resulted from a slowing of procedural
learning rather than a slowing of declarative learning. To
test this, the rate of learning for productions rule utilities
was varied. This made little difference in the predicted
results. This lack of predictive power may result from either
the way in which the model was constructed, with an
emphasis on declarative knowledge, or a result of the study
design, with most of the procedural learning occurring early
in the protocol when all participants performed the task
during the day.

Thus, the model presented here provides support for the
hypothesis that variations in alertness have an impact on
learning that may persist beyond immediate task
performance. This is consistent with previous research that
has indicated that sleep loss causes deficits in encoding
declarative knowledge (see Jackson & Van Dongen, in
press, for a review). In the ACT-R theory of memory, decay
rate is arguably the parameter that most closely corresponds
to encoding and rehearsal, as this parameter determines how
much the previous exposures to knowledge will affect future
retrievals. While there is no conclusive evidence in the
literature to attribute either encoding or retrieval deficits to
the observations, the current modeling helps support the
claim that decreased alertness affects encoding.

A useful future extension to the proposed mechanism for
predicting the effects of alertness on learning would be to
account for the inter-session intervals. Currently the model
does not specifically take into account the 2 to 26 hour
intervals between consecutive sessions, which is
problematic if we want to generalize the model to tasks in
which the time between sessions varies. Incorporating
mechanisms proposed in previous modeling to account for
inter-session intervals (Anderson, et al., 1999) or practice
spacing effects (Jastrzembski & Gluck, 2009) may allow the
current model to predict these inter-session intervals.

Conclusion

Performance variations based on alertness have both
theoretical and real-world importance. The present results
illustrate how specific cognitive processes may be affected
by circadian rhythms, and have implications for task
training and performance in real-world contexts.

The cognitive modeling presented here illustrates how
learning rates may be impaired at night, during the nadir of
circadian rhythms. Because degraded learning has potential
consequences that extend beyond the immediate situation,
brief transitions to day shift may not result in immediate
recovery. While the benefit in response time was fairly
small in this study (300 ms), the modeling suggests that the
effects of learning under conditions of lower alertness may
accumulate over time and thus the benefit of training during
the day will grow. Moreover, tasks in which exposures to
declarative facts are less frequent, as seen in many real
world tasks, are expected to encounter an even greater effect
of decreased alertness due to a greater time between
rehearsals and a greater (exponential) decay rate.



Several mechanisms were explored to explain the
observed night shift response time decrement. Some
mechanisms that have been used previously to explain
observed decrements of alertness could not explain the
results found in this research. We do not find this outcome
particularly troublesome, or even surprising. Rather, in the
current study and others, the tasks were specifically selected
to ascertain the various ways in which reduced alertness
may affect performance on particular mechanisms within
the ACT-R architecture.

Our goal is to identify a general set of mechanisms to
account for the ways in which variations in alertness impact
various components of cognitive functioning. Focusing on
laboratory tasks allows us to better isolate various
components and evaluate particular computational
mechanisms. Such an understanding is necessary in order to
predict performance in more complex tasks where various
cognitive functions, and mechanisms, interact in complex
ways. This represents the focus of this research in the long
term (e.g. Gunzelmann & Gluck, 2009; Gunzelmann,
Moore, Salvucci, & Gluck, 2009; Tucker et al., 2010).
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Abstract

Cognitive models can be used to generate the behavior of vir-
tual players in simulation-based training systems. To learn
from such training, the virtual players must display realistic
human behavior, and trainees need to understand why the other
players behave the way they do. This understanding can be
achieved by explaining the underlying reasons for the virtual
players’ behavior. In this paper, it is discussed how to design
cognitive models in such a way that they are able to explain the
behavior they generate. Three users studies were carried out to
assess what type of explanations are useful for training, and
how that relates to cognitive model design. Several guidelines
for developing explainable cognitive models are proposed.

Keywords: Explanation, Cognitive modeling, Task analysis,
Virtual training.

Introduction

Virtual training systems are increasingly used for training of
complex tasks such as fire-fighting, crisis management, ne-
gotiation and social skills. To create valuable learning ex-
periences, the virtual characters in the training scenario, e.g.
the trainee’s colleagues, opponents or team members, must
display realistic behavior. Realistic behavior can be ensured
by letting humans play these roles. However, the characters
in virtual training systems often have specialist tasks which
can only be played by experts, and human experts are of-
ten scarcely available. Alternatively, required human be-
havior can be represented in cognitive models, which gives
trainees the opportunity to train whenever and wherever they
like (Heuvelink, 2009).

A valuable learning experience requires more than inter-
action with virtual players displaying realistic behavior. To
learn from training, trainees must (eventually) understand the
behavior of the other players. Instructors can explain the mo-
tives behind other players’ behavior, but that would reintro-
duce the availability problems with experts just mentioned.
Preferably, cognitive models representing human behavior
also have the ability to explain that behavior.

There are several systems providing explanations about
non-human player behavior in virtual training systems, e.g.
Debrief (Johnson, 1994), XAI I (Van Lent, Fisher, & Man-
cuso, 2004) and XAI II (Gomboc, Solomon, Core, Lane,
& Lent, 2005; Core et al., 2006). However, none of these
systems obtain their explanations directly from the cognitive
models of virtual players. The XAI I system only provides
explanations about the physical states of virtual players, e.g.

IThis research has been supported by the GATE project, funded
by the Netherlands Organization for Scientific Research (NWO)
and the Netherlands ICT Research and Innovation Authority (ICT
Regie).
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their location and health. Debrief determines what must have
been the beliefs of a virtual player, but does not have access
to its actual beliefs. XAI II gives explanations in terms the
underlying motivations of virtual players if those are repre-
sented in simulation, but this is often not the case. Moreover,
as far as we know, the explanations of these systems are not
empirically evaluated.

We advocate an approach that connects behavior genera-
tion and explanation. In other words, the cognitive mod-
els used to generate behavior can also be used to explain
that behavior. The models are not necessarily similar to hu-
man reasoning, as long as they generate useful explanations.
In this paper, we discuss three explorative studies in which
users evaluate explanations generated by explainable cogni-
tive models on their usefulness for learning. Based on the
results, we present guidelines for designing explainable cog-
nitive models.

The paper is organized as follows. First, we discuss what is
known about how people explain behavior. Second, we intro-
duce an approach for explainable cognitive models. Then, we
describe three user studies evaluating explanations of these
models, and discuss the results. From this discussion, we ab-
stract guidelines for modeling and explaining virtual player
behavior. We end the paper with a conclusion and sugges-
tions for future research.

Explaining behavior

Keil provides an extensive overview of explanation in gen-
eral, in which he categorizes explanations according to the
causal patterns they employ, the explanatory stances they
invoke, the domains of phenomena being explained, and
whether they are value or emotion laden (Keil, 2006). Hu-
mans usually understand and explain their own and others’
behavior by adopting the intentional stance.

Dennett distinguishes three explanatory stances: the me-
chanical, the design, and the intentional stance (Dennett,
1987). The mechanical stance considers simple physical ob-
jects and their interactions, the design stance considers en-
tities as having purposes and functions, and the intentional
stance considers entities as having beliefs, desires, and other
mental contents that govern their behavior. The intentional
stance is closely related to the notion of folk psychology. Folk
psychology refers to the way people think that they think, and
determines the language they use to describe their reasoning
about actions in everyday conversation (Norling, 2004).

Attribution theory is one of the most important theories
on people’s behavior explanations, and focuses on the vari-



ous causes that people assign to events and behavior (Heider,
1958; Kelley, 1967). External attribution assigns causality to
factors outside of the person, e.g. the weather. Internal attri-
bution assigns causality to factors within the person, e.g. own
level of competence. Related to attribution theory is the con-
cept of explanatory style, i.e. people’s tendency to explain
causes of events in particular ways (Buchanan & Seligman,
1995). People with a negative explanatory style believe that
positive events are caused by things outside their control and
that negative events are caused by them. People with a posi-
tive explanatory style, in contrast, believe that positive events
happened because of them and that negative events were not
their fault. Explanatory style is part of someone’s personality.

Attribution theory is criticized for not making a distinction
between the explanation of intentional and unintentional be-
havior (Malle, 1999). In reaction, Malle provided a frame-
work with different explanation modes. One explanation
mode considers explanations about unintentional behavior,
and three explanation modes consider explanations about in-
tentional behavior: reason, causal history, and enabling fac-
tors explanations. Reason explanations are most often used
and consist of beliefs and goals, causal history explanations
explain the origin of beliefs and goals, and enabling factors
explanations consider the capabilities of the actor.

A lot of research on explaining computer program behav-
ior has been done in the field of expert systems (Swartout &
Moore, 1993). Usually, outcomes like diagnoses or advices
are explained by the steps that lead to it, e.g. the rules that
were applied. It was found that the purpose of explanation
has to be taken into account during system design. The infor-
mation needed in explanations must be present, even though
not necessary for the generation of behavior.

Putting these findings into the perspective of cognitive
modeling and virtual training: trainees should get to under-
stand the intentional behavior of virtual players. Different
explanation theories use different terms for people’s expla-
nations of (intentional) human behavior. But whether called
intentional, folk or reason explanations, they all refer to ex-
planations in terms of mental concepts like beliefs, intentions
and goals. Furthermore, when a cognitive model has to deter-
mine the behavior of a virtual player, it must be executable,
e.g. by implementing the model in a cognitive architecture.
From explanation research on expert systems we learned that
the concepts needed for explanation must be present in the
design. Consequently, to develop explainable cognitive mod-
els, concepts like motivations, beliefs, and goals need to be
explicitly represented in the model.

An explainable cognitive model

Virtual players in training systems usually perform relatively
well defined tasks. We therefore represent their behavior
in the form of task hierarchies. Hierarchical task analy-
sis is a well established technique in cognitive task analy-
sis, and connects internal reasoning processes to external ac-
tions (Schraagen, Chipman, & Shalin, 2000). A task hierar-
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chy has one main task, which is divided into subtasks, which
are divided into subtasks, etc. Subtasks that are not divided
are actions that can directly be executed in the environment.
Adoption conditions are connected to each subtask, specify-
ing the conditions under which a subtask can be adopted. Sar-
dina et al pointed out the similarities between task hierarchies
and BDI (Belief Desire Intention) models (Sardina, De Silva,
& Padgham, 2006). The tasks and adoption conditions in a
task hierarchy can be seen as goals and beliefs, respectively
(see Figure 1). In earlier work we have elaborated the use of
goal hierarchies for the representation virtual player behavior,
and shown how these models can be implemented in a BDI
(Beliefs Desire Intention) architecture, and thus be made ex-
ecutable (Harbers, Bosch, & Meyer, 2009a).

Figure 1: Example of a goal hierarchy.

There are four goal-subgoal relations: an all relation means
that all subgoals must be achieved to achieve a goal, one
means that exactly one subgoal must be achieved to achieve
a goal, seq means that all subgoals must be achieved in a par-
ticular order to achieve a goal, and if means that a subgoal
must only be achieved under certain conditions, i.e. when
the player has certain beliefs. These relations yield different
action types, i.e. the relation of an action to its parent goal.

An action can be explained by the goals and beliefs respon-
sible for that action. However, providing the whole trace of
beliefs and goals delivers long explanations with irrelevant
information (Keil, 2006), in particular, with big goal hierar-
chies. Instead, a selection of ’explaining elements’ can be
provided to the trainee. For example, Action C in Figure 1
could be explained by Goal B, Goal A, belief 3, belief 1 or
Action E (provided that E must follow C). More general, an
action can be explained by different explanation types, re-
spectively, the goal directly above an action (G+1), the goal
two levels above an action (G+2), the beliefs one level above
an action (B+1), the beliefs two levels above an action (B+2),
and the goal or action that will be achieved after an action
(Gnext).

Theories on human behavior explanation do not describe
which explaining mental concepts should be part of an ex-
planation. Malle’s framework, for instance, does distinguish
beliefs and goals in reason explanations, but does not (yet)
describe in which situations which type is used more of-
ten (Malle, 1999). We performed three user studies to in-
vestigate which explanation types are considered useful to in-
crease understanding of the training task. In particular, we
investigated which explanation type is preferred for which ac-
tion type. Our hypotheses are related to explanation stance,



length and type: 1) explanations in terms of beliefs and goals
are appropriate for explaining virtual player behavior, 2) pre-
ferred explanations are relatively short and contain a selection
among explaining beliefs and goals, and 3) preferred expla-
nation type depends on the type of the action to be explained.

Three user studies

In this section we will give overviews of Study 1 (Harbers,
Bosch, & Meyer, 2009b), 2 (Harbers, Bosch, & Meyer, 2010)
and 3 (Broekens et al., 2010), and then discuss the results to-
gether. Only the results that are relevant for the discussion
in this paper are presented. In all studies, the subjects were
provided with a training scenario, and then asked to provide,
select or judge explanations for several of the actions of the
player(s) in the scenario. The independent variable in the
studies is action type (actions with an all, seq, one or if re-
lation to their parent) and the dependent variable is preferred
explanation type (G+1, G+2, B+1, B+2, or Gnext). The ex-
planations presented to the subjects were generated by imple-
mented cognitive models of the virtual players.

Study 1: Onboard firefighting

Domain and task. The domain was onboard firefighting.
The role to be trained was that of Officer of the Watch (OW),
the person in command when there is a fire aboard a ship.

Subjects. The subjects (n=8) were instructors of the Royal
Netherlands Navy and all expert on the training task.

Material. We used the CARIM system, a virtual training
system for onboard firefighting (Bosch, Harbers, Heuvelink,
& Van Doesburg, 2009). Three of the characters in the train-
ing scenario were modeled and implemented. The implemen-
tation was done in the programming language 2APL (Dastani,
2008). Questionnaires were administered to the subjects.

Procedure. Subjects played one scenario (approx 20 min-
utes), using the CARIM system, in which they were con-
fronted with a fire aboard a Navy ship. Subsequently, they
received a list with 12 actions of players in the scenario, and
were asked to explain them in a way they considered useful
for increasing trainees’ understanding. Then, they received
the same list of 12 actions, this time with four explanation
alternatives (G+1, G+2, B+1, B+2) for each action. The sub-
jects were asked to indicate which of the alternatives they
considered most useful for increasing trainees’ understand-
ing.

Results. Regarding the first part of the questionnaire, we
counted the number of elements in each of the subjects’ own
explanations, where an element is a goal, a fact, etc. Of the
88 explanations in total, 62 contained 1 element and 26 con-
tained 2 elements. Furthermore, we categorized the elements
in the subjects’ explanations in different mental concepts. We
were able to categorize all elements as either a belief or a
goal: 52 beliefs and 62 goals. Table 1 shows the results of the
second part of the questionnaire, the multiple choice ques-
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Action type Explanation type

G+1 G+2 B+l B+2
All (3 actions) | 33% 50% 13% 4%
Seq (9 actions) | 51% 21% 28% 0%

Table 1: Percentages of preferred explanation types per action
type (n=8).

tions. The agreement among the subjects for these results
differed per action: for 5 actions at least 75% of the subjects
preferred the same explanation, for 6 actions at least 50%,
and for 1 action there was no explanation which at least 50%
of the subjects preferred.

Study 2: Firefighting
Domain and task. The domain of this study was civil fire-
fighting, and the role of the trainee was leading firefighter.

Subjects. The subjects (n=20) in Study 2 were unfamiliar to
the training task. An advantage of non-expert subjects is that
they do not have to imagine how useful the provided expla-
nations are for understanding the training task. Instead, they
can introspect to determine which explanations they consider
useful. A disadvantage, on the other hand, is that non-experts
cannot be expected to provide useful explanations for expert
task actions themselves.

Material. A cognitive model of a leading firefighter was
developed and implemented, again in 2APL. Questionnaires
were used for the evaluation.

Procedure. The subjects were briefed about the training
scenario, which involved a fire in a house. Subsequently, they
received a list of 16 actions of the leading fire-fighter in the
scenario with each four explanation alternatives (G+1, G+2,
B+1, and Gnext). They were asked to indicate which expla-
nation they considered most useful for understanding the task
of leading fire-fighter.

Action type Explanation type

G+1 G+2 B+l Gnext
All (5 actions) | 25% 16% 50% 9%
One (4 actions) | 8% 8% 85% 0%
Seq (4 actions) | 43% 14% 34% 10%
If (3 actions) 2% 2% 97% 0%

Table 2: Percentages of preferred explanation types per action
type (n=20).

Results. Table 2 gives an overview of the results. For 7 of
the actions at least 75% of the subjects preferred the same
explanation, for 8 actions at least 50%, and for 1 action there
was less than 50% agreement.

Study 3: Cooking

Domain and task. The domain of this study was cooking,
and the training task was making pancakes. We purposely se-
lected a simple training task, so that it was easy to find people



that could be considered experts.

Subjects. The subjects (n=30) were all familiar to this task.

Material. A cognitive model of a cook able to make pan-
cakes was developed. The model was implemented in the
programming language GOAL (Hindriks, 2009). Again, ques-
tionnaires were used for the evaluation.

Procedure. First, the subjects were briefed about the train-
ing scenario. Subsequently, they were asked to explain 11 of
the cook’s actions as they would to a student cook. Next, the
subjects had to rate given explanations for all the 11 actions
on their naturalness and usefulness on a scale of 1 to 5. The
subjects were divided over condition 1, 2 and 3 in which they
had to rate explanations of type G+1, B+1 and Gnext, respec-
tively. In the last part of the questionnaire the subjects were
shown the underlying goal hierarchy of the virtual player, and
they were asked to indicate in the hierarchy by which beliefs
and/or goals they would use to explain each of the 11 actions.

Results. The results of the subjects rating the usefulness of
given explanations are shown in Table 3 (one of the actions
was excluded from the analysis). The numbers are the av-
erage ratings of 10 subjects on 3 or 4 actions. The average

Action type Explanation type
G+1 B+1 Gnext
All (3 actions) | 3.2 2.5 34
One (3 actions) | 3.0 2.4 2.0
Seq (4 actions) | 2.9 2.8 1.8

Table 3: Average usefulness scores (scale 1-5) of action type
per explanation type (n=30, n=10 per condition).

number of goals and/or beliefs that the subjects selected in
the goal hierarchy for using in an explanation themselves was
1.7. One of the 30 subjects scored very high, and without this
subject the average number of selected elements was 1.5.

Discussion

In this section we discuss the results of the user studies aiming
to extract guidelines for developing and explaining cognitive
models. The discussion is organized according to the three
hypotheses concerning explanation stance, length and type.

From literature we learned that people adopt the intentional
explanatory stance when they explain (intentional) human
behavior. In other words, human(-like) behavior is explained
by mental concepts such as beliefs and goals. The results of
Study 1 show that it is possible to categorize the subjects’ ex-
planations in beliefs and goals, i.e. they are compatible with
the intentional stance (we do not claim that this is the only
way to categorize these explanations). In Study 3, the sub-
jects’ explanations were not categorized systematically, but
an examination of the explanations provides a similar picture.
Thus, the results confirm that people explain human-like vir-
tual player behavior by the underlying beliefs and goals.

The results confirm our hypothesis that preferred explana-
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tions are relatively short. We expressed explanation length
by the number of elements in an explanation, where an ele-
ment is a fact, a goal, etc. In Study 1, the subjects’ expla-
nations had an average length of 1.3 elements, and in Study
3 the subjects selected an average of 1.7 elements from the
goal hierarchy (1.5 if one outlier is eliminated from the data).
The lower average in Study 1 might be due to the fact that the
subjects had to write down complete explanations, whereas
in Study 3 they only had to mark numbers of elements. So as
expected, people’s explanations about virtual player behavior
usually only contain one or two elements.

As the results discussed so far confirm that explanations
contain a selection of beliefs and goals, it makes sense to ex-
amine people’s preferred explanation type. In Study 1, ex-
cept for explanations of type B+2, all explanation types (G+1,
G+2, B+1) were sometimes considered most useful by more
than 50% of the subjects. In Study 2, for actions of type one
and if, explanations containing a belief (B+1) were clearly
preferred, and for actions of type all and seq, also explana-
tions of other types (G+1 and G+2) were sometimes preferred
by more than 50% of the subjects. These results are consis-
tent with Study 1, in which only all and seq actions were
examined. In Study 3, unlike Study 2, for all action types,
explanations of type G+1 were on average rated higher than
those of type B+1. Like in Study 2, for action types one and
seq, Gnext explanations received relatively low ratings, and
for actions of type all, they were highly rated. The usefulness
of type Gnext explanations is closely related to the underlying
cognitive model, which will be discussed in the next section.
Interestingly, in the last part of Study 3, subjects often se-
lected both a belief and a goal as their preferred explanation.

A remarkable difference between Study 1 and 3 on the one
hand, and Study 2 on the other hand is that goal-based ex-
planations were generally stronger preferred in the former,
and belief-based explanations in the latter. A possible reason
is that the subjects in Study 2 were unfamiliar, and those in
Study 1 and 3 familiar with the training task. Data suggest
that, on average, beliefs carry more idiosyncratic information
and are harder to infer than goals (Malle, 1999). For subjects
unfamiliar with a training task, belief-based explanations may
provide more information underivable from the context than
goal-based explanations. And expert subjects may not realize
that goal-based explanations are easier to infer for trainees.
Another explanation is that experts, more than non-experts,
focus on the bigger picture of a virtual character’s behavior.
The subjects in Study 1 may be expected to know what would
help trainees as they were instructors and had, besides being
expert on the training task, didactical knowledge.

To conclude, action type is sometimes, but not always pre-
dictive for preferred explanation type. Of all studies, only
Study 3 indicates to what extend explanations are preferred.
The highest usefulness scores on action type all, one and seq
are 3.4, 3.0 and 2.9, respectively. The scores are not low (all
above the average of 2.5), but not very high either. In the ex-
periments, we only provided subjects with explanations con-



taining one element, but the results seem to indicate that both
beliefs and goals carry important information.

Modeling and explanation guidelines

Though the results of the three studies give no conclusive ev-
idence, they provide directions for modeling and explaining
virtual player behavior. In this section we present a set of
guidelines for designing and explaining cognitive models.
The design and explanation of cognitive models are closely
related in our approach. Though a virtual player’s beliefs and
goals remain unknown for users when a cognitive model is
executed, they become visible when its behavior is explained.
Thus, the elements in a cognitive model determine the content
of its explanations. Guideline: the goals and beliefs in a goal
hierarchy should be meaningful. Furthermore, two cognitive
models with different underlying structures may display the
same behavior, but generate different explanations. Figure
2, for instance, shows two possible positions of action E in
a goal hierarchy. When both relations in this hierarchy are
of the type seq, the position of action E does not effect the
model’s observable behavior, but it may influence they way
it is explained, e.g. when explanations of the type G+1 are
generated. Of course, developing a cognitive model always

|Action C||Action D|Action

[Action c||Action D|

Figure 2: Same behavior, different explanations.

should be done with care, but as illustrated, this holds for ex-
plainable cognitive models in particular. Guideline: careful
attention should be paid to the internal structure of the goal
hierarchy. Though obvious, these two guidelines are crucial
for developing useful explainable cognitive models.

In the previous section, we concluded that both beliefs and
goals carry important information for explanations. The re-
sults showed that beliefs directly above an action (B+1) were
considered most useful for explaining that action. Regard-
ing goal-based explanations, the studies are less conclusive;
several goal-based explanation types were considered useful
(G+1, G+2 and Gnext) for different actions. But all together,
goal-based explanations of type G+1 were most often pre-
ferred and highest rated. Moreover, people tend to use expla-
nation types B+1 and G+1 together. Guideline: explanations
should contain the belief(s) B+1 and the goal G+1.

The guidelines presented so far are general for all action
types and supported by the results of all three studies. More
specific guidelines that take action type into account can im-
prove the default explanations. In the remainder of this sec-
tion we will propose two additional, more specific guidelines.

In some cases an explanation of type Gnext can be added
to the default explanation of G+1 and B+1. In contrast to
G+1 and G+2 explanations, Gnext explanations do not con-
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tain goals from a particular level above the action. The level
of the Gnext goal depends on the relations in the goal hi-
erarchy. Here again, the usefulness of a Gnext explanation
strongly depends on the underlying cognitive model. Con-
sider, for instance, the two goal hierarchies in Figure 3. Goal
B and C can be modeled as two neighboring goals or as goal
and subgoal, e.g. when goal A, B and C represent Report to
head officer, Go to the head officer and Report new informa-
tion, respectively. In the first case, achieving goal B enables
the achievement of goal C, and in the latter, goal C is achieved
by achieving B. In Study 3, Gnext explanations were consid-

Figure 3: Neighbors or parent and sub-goal.

ered useful for actions of type all, where for all these all type
actions it holds that their parents had a seq relation to their
parents. Guideline: for actions of type all, when their par-
ent goal has a seq relation, the explanation should contain the
goal Gnext besides B+1 and G+1. Addition of a Gnext goal
to the explanation may also be useful for other action types,
but we have no evidence for that.

Another exception to the default rule concerns actions of
the type one. The left side of Figure 4 represents a situation
where action B is followed by action C or D, for example, the
action Take money is followed by either Cycle to the shop or
Drive to the shop. Action C and D are explained by goal A
(G+1), e.g. Buy ingredients. However, a goal can only have
one relation to its subgoal/actions, so the goal hierarchy in the
left side is not allowed. The right side of Figure 4 shows how
this situation should be represented. Goal A has a relation seq
to its children, and a new goal X is introduced, e.g. Go fo the
shop, with a relation one to its children. Now, when action C
and D are explained by their parent goal X, the explanation is
not informative (I cycle to the shop because I want to go to
the shop). In this case, it would be better to provide goal A as
an explanation (I cycle to the shop because I want to buy in-
gredients). Although it may result in redundant goal-subgoal

Goal A

|Action BHActic;ln CHAct\i\on D| | Action C ||Action D|

Figure 4: Explanation of actions with a one relation.

relations, we believe that from an explanation point of view
a goal should have only one relation to its subgoals, as this
simplifies interpretation of the cognitive model. Guideline:
to explain actions of type one, instead of goal G+1, goal G+2
should be provided (i.e. B+1 and G+2).



Conclusion

In this paper we analyzed the results of three user studies in-
vestigating people’s preferred explanations of virtual player
behavior. From the analysis, we extracted a set of guidelines
for developing and explaining cognitive models. In general,
modeling should be done carefully, and by default, an ac-
tion should be explained by the goal and belief directly above
the action, i.e. explanation types G+1 and B+1. In addition,
we introduced two guidelines for specific action types, which
show how default explanations can be improved by providing
extra or other elements in the goal hierarchy. More exper-
imentation is needed for introducing more of these specific
guidelines.

Another way to improve the explanations is by extending
the cognitive model, for instance, by adding beliefs. Be-
liefs can contain information about the environment, e.g. re-
sources that are available or events that just occured. Such
beliefs are useful in particular and most often connected to
if and one type actions. Beliefs can also contain information
about internal reasoning processes, e.g. the given action is
not yet executed, or a preceding action is executed. Such be-
liefs are more often connected to all and seq type actions. In
these cases, it can be useful to add extra beliefs containing
background information as adoption conditions. These back-
ground beliefs are always believed by the virtual player, so
they do not effect the player’s observable behavior, but they
do add useful information to explanations.

There are many other directions in which this work can be
extended. For instance, the cognitive models can be extended
with emotions, a user model in which the trainee’s knowledge
is modeled can be used to select explanations, and the success
of the approach in other domains can be examined. In future
work we will first validate the present approach by comparing
understanding of played training scenarios of trainees who
did and did not receive explanations about virtual player be-
havior.

References

Bosch, K. Van den, Harbers, M., Heuvelink, A., & Van Does-
burg, W. (2009). Intelligent agents for training on-board
fire fighting. In Proc. of the 2nd internat. conf. on digital
human modeling (p. 463-472). San Diago, CA: Springer
Berlin/Heidelberg.

Broekens, J., Harbers, M., Hindriks, K., Bosch, K. Van den,
Jonker, C., & Meyer, J.-J. (2010). Do you get it? User
evaluated explainable Al. To appear.

Buchanan, G., & Seligman, M. (1995). Explanatory style.
Erlbaum.

Core, M., Traum, T., Lane, H., Swartout, W., Gratch, J., &
Van Lent, M. (2006). Teaching negotiation skills through
practice and reflection with virtual humans. Simulation,
82(11), 685-701.

Dastani, M. (2008). 2APL: a practical agent programming
language. Autonomous Agents and Multi-agent Systems,
16(3), 214-248.

90

Dennett, D. (1987). The intentional stance. MIT Press.

Gomboc, D., Solomon, S., Core, M. G., Lane, H. C., & Lent,
M. van. (2005). Design recommendations to support auto-
mated explanation and tutoring. In Proc. of BRIMS 2005.
Universal City, CA..

Harbers, M., Bosch, K. Van den, & Meyer, J.-J. (2009a).
A methodology for developing self-explaining agents for
virtual training. In Decker, Sichman, Sierra, & Castel-
franchi (Eds.), Proc. of 8th int. conf. on autonomous agents
and multiagent systems (aamas 2009) (p. 1129-1130). Bu-
dapest, Hungary.

Harbers, M., Bosch, K. Van den, & Meyer, J.-J. (2009b).
A study into preferred explanations of virtual agent behav-
ior. In Z. Ruttkay, M. Kipp, A. Nijholt, & H. Vilhjlms-
son (Eds.), Proc. of IVA 2009 (p. 132-145). Amsterdam,
Netherlands: Springer Berlin/Heidelberg.

Harbers, M., Bosch, K. Van den, & Meyer, J.-J. (2010). De-
sign and evaluation of explainable agents. To appear.

Heider, F. (1958). The psychology of interpersonal relations.
New York: John Wiley Sons.

Heuvelink, A. (2009). Cognitive models for training simula-
tions. Unpublished doctoral dissertation, Vrije Universiteit
Amsterdam, The Netherlands.

Hindriks, K. (2009). Multi-agent programming: Languages,
tools and applications. In (p. 119-157). Springer.

Johnson, L. (1994). Agents that learn to explain them-
selves. In Proc. of the 12th nat. conf. on artificial intel-
ligence (p. 1257-1263).

Keil, F. (2006). Explanation and understanding. Annual
Reviews Psychology, 57, 227-254.

Kelley, H. (1967). Attribution theory in social psychology.
In D. Levine (Ed.), Nebraska symposium on motivation
(Vol. 15, p. 192-240). Lincoln: University of Nebraska
Press.

Malle, B. (1999). How people explain behavior: A new theo-
retical framework. Personality and Social Psychology Re-
view, 3(1), 23-48.

Norling, E. (2004). Folk psychology for human modelling:
Extending the BDI paradigm. In Third internat. joint conf.
on autonomous agents and multi agent systems (p. 202-
209). New York, USA.

Sardina, S., De Silva, L., & Padgham, L. (2006). Hierarchical
planning in BDI agent programming languages: A formal
approach. In Proceedings of aamas 2006. ACM Press.

Schraagen, J., Chipman, S., & Shalin, V. (Eds.). (2000). Cog-
nitive task analysis. Mahway, New Jersey: Lawrence Erl-
baum Associates.

Swartout, W., & Moore, J. (1993). Second-generation expert
systems. In (p. 543-585). New York: Springer-Verlag.

Van Lent, M., Fisher, W., & Mancuso, M. (2004). An ex-
plainable artificial intelligence system for small-unit tacti-
cal behavior. In Proc. of IAAA 2004. Menlo Park, CA:
AAAI Press.



A Cognitive Model of Theory of Mind

Laura M. Hiatt (laura.hiatt.ctr @nrl.navy.mil)
J. Gregory Trafton (greg.trafton @nrl.navy.mil)
Naval Research Laboratory
Washington, DC 20375 USA

Abstract

It is generally well acknowledged that humans are capable of
having a theory of mind (ToM) of others. We present here a
model which borrows mechanisms from three dissenting ex-
planations of how ToM develops and functions, and show that
our model behaves in accordance with various ToM experi-
ments (Wellman, Cross, & Watson, 2001; Leslie, German, &
Polizzi, 2005).

Keywords: cognitive architectures; theory of mind

Introduction

The concept of “theory of mind” (ToM) refers to one’s ability
to infer and understand the beliefs, desires and intentions of
others, given the knowledge that one has available; without
it, people can be severely impaired in their ability to interact
with others (Baron-Cohen, Leslie, & Frith, 1985). A large
body of research has tried to explain how this critical ability
functions by studying its development in children (Wellman
et al., 2001), but has led to many contradictory accounts.

We have built a model that borrows ideas from various ex-
planations of how ToM develops and functions to form a co-
hesive theory of ToM, and show that it produces behavior in
accordance with various ToM experiments (Wellman et al.,
2001; Leslie et al., 2005). While the similarities between a
model’s behavior and data is not a certain indicator of cogni-
tive plausibility (Cassimatis, Bello, & Langley, 2008), it can
distinguish between models that show performance and data
fit (which, to us, are preferred) and models that do not.

Theories of the Theory of Mind

There are, in general, three competing views for how ToM
takes place at a cognitive level. They are typically described
in the context of “belief and desire” reasoning: ToM is the
understanding that different people can have different beliefs,
not all of which may be actually true; people also have in-
ternal desires that cause them to act in certain ways, physi-
cally, in the world. There is also a distinction between “true-
beliefs,” or beliefs that are true in the physical world, and
“false-beliefs,” which others may have but which are not ac-
tually true. The ability to understand a false-belief task, then,
indicates evidence that a person can appreciate the distinction
between the mind and the world (Wellman et al., 2001).
Conceptual change (commonly called theory-theory) is
one possible explanation for ToM (Wellman et al., 2001).
Theory-theorists believe that children learn a set of causal
laws, or theories, about the beliefs and desires of people in
general (Gopnik, 1993). Children then use these causal laws
to explain behavior observed in others, to predict desires and
behaviors, and to perform other related ToM tasks.
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Simulation theory is a second view (Gallese & Goldman,
1998). It posits that when a person (“A”) tries to understand
another (“B”), A simulates what he/she would do in B’s place,
and attributes the result to B. More specifically, the theory
states that humans perform ToM by representing the mental
states of others, and then using their own decision-making
systems to operate on these foreign mental states to predict
others’ behavior; similar processes can be used to explain ob-
served behavior, making backward inferences. Gallese and
Goldman (1998) describe the distinction between this and
theory-theory as, while theory-theory is performed as a “‘de-
tached’ theoretical activity,” simulation theory involves at-
tempting to mimic or impersonate the mental state of another.

A third body of literature posits that the mind has two sep-
arate mechanisms that work together to provide ToM (Leslie,
Friedman, & German, 2004). The theory of mind mecha-
nism (ToMM) allows people to generate and represent multi-
ple possible beliefs. It is argued that this mechanism is fully
functional in even very young children. The second mecha-
nism provides a selection process (SP) that uses inhibition to
reason about others’ beliefs, such as inhibiting a true-belief
to select a false-belief answer; this processing ability, it is ar-
gued, develops in children during the pre-school years. To
describe how the mechanisms work together as “ToMM-SP”
to provide ToM, the authors break it down into four steps:
(1) identify candidate belief possibilities; (2) provide a priori
weights to the candidates, with true-belief receiving the high-
est weight; (3) adjust the weights given the belief inquiry; and
(4) select the highest-weighted candidate as the answer.

A variety of experiments, primarily in developing children,
have led to a range of results that supports each of these the-
ories. We describe next some of these experiments, followed
by our interpretation of the data and our overall view of ToM.

Experiments in Developing Children

The majority of experiments in this area concerns false-belief
tasks. Arguably, the most well-known false-belief task (and
the one on which we focus in this paper) is the Sally-Anne
task (Baron-Cohen et al., 1985), in which a child is shown
a play with two characters, Sally and Anne (Figure 1). The
true-belief answer (to where Sally believes the marble is) is
that the marble is in Anne’s box (the “TB box”), since that is
where the marble actually is. In contrast, the correct answer
is the false-belief answer, Sally’s box (the “FB box”).
Variations on the Sally-Anne task have also been explored.
One is the avoidance false-belief task (which we shorten to
“avoidance task”). In a sample set-up, the marble is replaced
by a kitten that crawls between boxes while Sally is out of
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Figure 1: A diagram of the Sally-Anne task. A child watches
while: (1) Sally puts a marble in her box; (2) Sally leaves the
room; (3) Anne moves the marble to Anne’s box; (4) Sally
returns to the room. The child is then asked where Sally be-
lieves the marble is.

the room; when Sally returns, she wants to put a piece of
fish under the unoccupied box so that the kitten will not eat
the food and get sick. Therefore, the correct answer to the
question “where will Sally try to put the fish” is the TB box.
This task involves not only identifying Sally’s false belief,
but also taking into account her avoidance desire to predict
her behavior, presumably making the task more difficult.

To individually consider all the experiments in this area is
nearly impossible. Instead, we focus on a meta-analysis that
compiled a broad range of false-belief experiments (Wellman
et al., 2001), and a more detailed experiment performed after
the meta-analysis was compiled (Leslie et al., 2005). These
two studies involve two developmental shifts that are believed
to occur in children. The first is at about 3-4.5 years of age,
when children go from being mostly incorrect to mostly cor-
rect on the standard false-belief task; this seems to corre-
late with the ability to recognize and identify beliefs of oth-
ers. The second developmental shift is at around 4.5-6 years,
when children go from having difficulty with the avoidance
task to performing it mostly correctly; this seems to correlate
with a child’s ability to account for both beliefs and desires,
and to use them to predict the behavior of others.

The meta-analysis performed by Wellman et al. (2001) pro-
vides three results pertinent to this paper. First, it identified
several task components that were statistically insignificant,
including the exact type of task being performed as well as
the phrasing of the false-belief question (e.g., whether it asks
where Sally will look, what Sally believes, or what she will
say). Other factors such as whether the characters in the task
are dolls, photographs, etc., are also inconsequential. Our fo-
cus on the Sally-Anne task, then, and the exact experimental
set-up we chose should not affect the validity of the results.

Secondly, several task components were identified as main
effects, which improve performance but do not interact with
age, including whether the child participated in the experi-
ment (e.g., helped to set up props), whether Sally’s absence
was explicitly emphasized, and in which country the experi-
ment took place. We do not model such task variations.

Thirdly, the compiled results show a significant, if noisy,
effect between age and the proportion of children that an-
swered the false-belief query correctly (p < 0.001). Figure
2 shows the findings; it plots the results from each individ-
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Figure 2: Results from (Wellman et al., 2001) showing a scat-
terplot of the results and best-fit curve.

ual study considered, as well as the curve that best fits it.
They found that at an age of about 44 months, the odds of
answering correctly are even, or 1.0; then, the odds of being
correct increase 2.94 times for every year. The linear regres-
sion model which considers only age is y = —3.96 +0.09 -
[age in months], with r> = 0.39!. Their best statistical model,
which had six variables (including age, the country in which
the experiment took place, and child participation), yielded an
R? of 0.55. The results clearly document the developmental
shift that seems to happen between roughly 3 to 4.5 years of
age where children go from being mostly incorrect to mostly
correct on the standard false-belief task.

We also consider an experiment involving the avoidance
task (Leslie et al., 2005). The experiment, performed with
4.75-year-olds on average, supports the belief that this task is
more difficult than the standard task, and provides evidence
for the second developmental shift. After several children
were eliminated for failing the false-belief task, only 25%
of 16 children correctly answered the query of “Where will
Sally try to put the fish.” The experiment showed, however,
that by asking the question in terms of where the first place
Sally will try to put the fish is, almost three times as many
children (71%) passed the task; we refer to this as “look-first
avoidance.” Overall, the results suggest that children gain the
ability to understand others’ desires and their implications af-
ter they gain the capability to understand their beliefs.

Discussion of Experiments

The area of how children develop theory of mind remains
controversial. One of the pressing questions that emerges
from the literature is whether the various developmental shifts
are due to learning concepts and causal laws (for clarity, we
refer to this as “learning”), as the theory-theorists strongly
posit, or due to increasing capabilities/functionality of mech-
anisms of the brain (we refer to this as “maturation”), as oth-
ers argue. There is certainly evidence for both.

I'This model transformed the proportion correct, p, via a logit
transformation, In (p/ (1 — p)) where “In” is the natural logarithm.



Leslie et al. (2004) argues that maturation of processing ca-
pabilities and resources, alone, can account for all ToM devel-
opments, and have designed reasonable process models (e.g.,
ToMM-SP) demonstrating the idea’s plausibility. Further ev-
idence shows that the capabilities of specific mechanisms in
the brain (such as selection processing and inhibition of be-
liefs) play a crucial role in ToM (German & Hehman, 2006;
Carlson, Moses, & Claxton, 2004).

Wellman et al. (2001), however, makes several arguments
for learning over maturation based on the results of the meta-
analysis; specifically, the strong presence of task manipula-
tions that act as main effects (e.g., child participation). If
maturation were true, presumably many task manipulations
would interact with age since they should help younger chil-
dren’s processing competence more than older children’s;
however, they do not. The presence of such manipulations
does, however, support conceptual change accounts. Over-
all, the authors argue that there is a potential interrelation of
learning and maturation: children improve as they grow and
acquire conceptual understanding of ToM but, within an age
group, processing capabilities could be highly correlated with
performance and could account for much of the variance.

Many of the above papers argue against simulation the-
ory based on these results; however, much of the arguments
are neither substantive nor well supported. Wellman et al.
(2001) argues that, since children do not systematically err
about their own false beliefs, simulation theory is not as plau-
sible; however, this could easily be explained by children re-
membering their own past mental states. Leslie et al. (2004)
simply says about simulation theory, “it is also hard to see a
role for ‘simulation’ in accounting for this data... the mech-
anisms of theory of mind might simply figure out what one
would do... there is currently no evidence that it is the first-
person singular.” The opposite argument could just as eas-
ily be made. Unfortunately, there are few developmental ac-
counts available for simulation theory; (Harris, 1992) is an
exception, and states that a child’s inability to perform simu-
lation early on may be due to memory limitations. In general,
simulation theorists support their arguments as in (Gallese &
Goldman, 1998), with the presence of mirror neurons that fire
both when one views an action and when one performs it.

Overall, we agree in part with Wellman et al. (2001), who
say that the ability of children to recognize false-beliefs in
others is due to both learning and maturation, accounting for
the first developmental shift we discussed where children gain
the ability to recognize and predict beliefs in others. We ar-
gue, however, that the second developmental shift that oc-
curs, which results in children being able to account for both
beliefs and desires to predict another’s behavior, is due to
children gaining the ability to perform simulation. This ac-
counts for 4.75-year-olds’ inabilities to reliably answer the
avoidance query: they are still in the middle of learning and
maturing this ability. Note that this view is not necessarily
incompatible, at the process level, with some of the others;
e.g., in highly complex situations, there is not much differ-
ence between Leslie et al. (2004)’s SP mechanism inhibiting
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everything that should not be used and operating only on what
is left, and identifying pertinent beliefs and decision-making
processes and subsequently using them in simulation.

Some recent experiments also suggest that very young chil-
dren (15 months of age) can perform implicit (non-verbal)
false-belief tasks (Onishi & Baillargeon, 2005). This sup-
ports the theory of processing mechanisms in the brain that
work with false-beliefs and, further, suggests that the ability
to recognize situations involving false-beliefs develops before
the ability to explicitly reason about them. We anticipate fur-
ther modeling work concerning this would be compelling.

Core Cognitive Architecture

As our core cognitive architecture we use ACT-R, a hybrid
symbolic/sub-symbolic production-based system (Anderson,
2007). ACT-R consists of a number of modules, buffers and a
central pattern matcher. Modules contain a relatively specific
cognitive faculty typically associated with a specific region
of the brain. For each module, there are one or more buffers
that communicate directly with that module as an interface to
the rest of ACT-R. At any point in time, there may be at most
one symbolic item, or “chunk,” in any individual buffer; the
module’s job is to decide when to put chunks into a buffer.
Chunks are used to represent knowledge or memories related
to any of the modules/buffers, and, in addition to symbolic in-
formation, contain subsymbolic information (e.g., activation).
The pattern matcher uses the contents of the buffers, if any,
to match specific productions which, when fired, can modify
the current contents of the buffers. Ties between competing
productions are broken based on the productions’ expected
utilities, which can be initially set and adjusted via a rein-
forcement learning process; random noise can also be added
in during execution to affect production selection.

The relevant modules of ACT-R to this paper are the in-
tentional and declarative modules. In addition, ACT-R in-
terfaces with the world through the visual, vocal, motor and
aural modules. The open-source, robotic simulation environ-
ment Stage (Collett, MacDonald, & Gerkey, 2005) was used
as the “world” of the model in order to enable fast model de-
velopment and data collection.

ACT-R is able not only to learn new facts and rules, but
also to learn which rule should fire (called utility learning in
ACT-R). It accomplishes this by learning which rule or set
of rules lead to the highest reward. ACT-R uses an elabora-
tion of the Rescorla-Wagner learning rule and the temporal-
difference algorithm (Fu & Anderson, 2006). This algorithm
has been shown to be related to animal and human learning
theory.

Any time a reward is given (e.g., children being told they
responded with the correct answer), a reward is propagated
back in time through the rules that had an impact on the model
getting that reward. Punishments are performed similarly.

Model Description

As stated above, our model is based on the conjecture that,
as children grow, they learn and mature simultaneously; i.e.,



as they develop, they learn to take advantage of their matur-
ing ability to select between competing beliefs. Further, we
believe that being able to select between beliefs acts as a pre-
curser for simulation, which allows people to use the beliefs
and desires of others to predict and understand their behavior,
and is ultimately what provides full-fledged ToM.

In our model, the Sally-Anne task takes place in the Stage
simulator, which feeds the model visual information; i.e., it
passes the model visual locations to fixate on and, when at-
tended to, what is at that location. This allows the model to
“watch” the Sally-Anne play unfold. As the story unfolds,
the model explicitly notes what happened (e.g., Sally moved
the marble into her box), and who saw it happen (e.g., only
Anne saw herself move the marble into her box). After the
play completes, the model is asked several false-belief ques-
tions. If the model answers a question correctly, the model is
rewarded; otherwise, it is punished.

We first describe the core mechanisms that enable ToM.
Then, we describe how the model learns to effectively use
these mechanisms (as well as develops the ability to use
them). Although much of the description is in the context
of the Sally-Anne task, as are our experiments, recall that this
acts as a proxy for false-belief tasks in general and our results
are not specific to this task (Wellman et al., 2001).

Theory of Mind Mechanisms

When its goal is to answer a query about someone’s belief,
a fully-developed model will answer the question similar to
Leslie et al. (2004)’'s ToOMM-SP. As the story unfolds, the
model generates possible beliefs for the marble’s location;
for the standard Sally-Anne task, then, this set is {sallys-box,
annes-box }. The model first retrieves the TB answer because
it has the highest activation. It realizes, however, that the an-
swer is not correct since Sally does not know about it. To
address this, it considers the various possible beliefs of the
marble’s location and, from these, it selects the most salient
belief that Sally was known to be privy to, the FB box.

When faced with an avoidance task, a fully-developed
model will first use the above process to select knowledge
to use as input to its simulation. For the Sally-Anne avoid-
ance task variant, the simulation’s input would be the differ-
ent boxes, as well as Sally’s belief of the location of the kitten.
All subsymbolic information of the knowledge, including ac-
tivation levels, is preserved. The model next performs simu-
lation by spawning a sub-model with: this input; access to the
model’s productions and cognitive resources; and the goal of
deciding where to put the kitten (Kennedy, Bugajska, Harri-
son, & Trafton, 2009). Then, the sub-model can infer that, if
Sally wants to put the fish under a box without the kitten, she
will put it under the TB box.

Developmental Mechanisms

As stated, our model both learns and matures as it develops
ToM. The learning mechanism is similar to standard ACT-
R learning. The model begins with a production that answers
false-belief queries simply by retrieving the belief chunk with
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the highest activation, and returning it. It can learn, however,
to consider an alternate competing production that, upon the
retrieval of the belief, considers whether the person the query
is about knows about the belief. This production acts as the
gateway to the selection process. Learning over time can
teach the model to exclusively favor this production, as it ul-
timately leads to the correct answer. A similar process occurs
when learning to perform simulation.

ACT-R does not normally model increasing functionality
in the brain. In order to model maturation, therefore, we in-
troduce the notion of a “maturation parameter.” This parame-
ter determines whether a model has the ability to fire certain
sets of productions (i.e., whether the model is mature enough
to have that functionality). Since maturation is not an “all
or nothing” concept, and happens gradually, the parameter
acts as a guideline for how strong the model’s abilities are at
that moment. Any time the model attempts to fire a matur-
ing set of productions, their availability is random according
to the parameter (e.g., if a randomly selected number is less
than the parameter, the productions will be able to fire). Intu-
itively, maturation parameters should be correlated with age:
the older the child, the higher the parameter.

In the case of selecting between different beliefs, the matu-
ration parameter is called the “selection parameter” and deter-
mines the availability of the productions that select between
beliefs. A model with a selection parameter of 0 would never
be able to correctly select a false-belief as the involved pro-
ductions would be unable to fire; a model with a selection pa-
rameter of 0.5 would be able to do so on half of its attempts;
and a model would a selection parameter of 1 will always be
able to fire the involved productions.

In the case of simulation, the model should be able to per-
form larger and larger simulations as it ages. This is in accor-
dance with Harris (1992)’s view that children have difficulty
performing simulation early on due to memory limitations.
The “simulation parameter” determines the availability of the
productions that perform simulation, given the size of sim-
ulation that is being attempted; for low sizes, the model is
more likely to be able to do it, but at high sizes the model be-
comes overwhelmed and cannot process all the data, and so
simulation is less likely. Specifically, any time a simulation
is attempted, the probability that the simulation productions
will be available is min(1,sp/s), where sp is the simulation
parameter and s is the size of the attempted simulation. The
size of the simulation is discussed in the subsequent section.

Modeling Developmental Progress

The model begins at approximately 2 years of age with the
ability to generate multiple possible beliefs (Leslie et al.,
2004). Model development mirrored the two ToM develop-
mental phases. With respect to the first phase and the stan-
dard false-belief task, the model has a selection parameter of
0.5, but does not yet know to do the selection; i.e., when it
initially retrieves the most salient belief, it does not know to
check whether Sally saw it and simply returns the belief. Of
course, the most salient belief is likely the true-belief, and so



the model will be incorrect, leading to a punishment. This
causes the model to begin to explore using the selection pro-
cess. If the model is able to access that functionality (i.e., if
a number randomly selected at the time of the attempt is less
than the selection parameter), it will attain the correct answer
and receive reward; otherwise, it will default to returning the
initially-retrieved belief, likely leading to punishment. Note
that if this occurs, the productions leading to the selection at-
tempt will incur lower expected utility, making it less likely
that the model will attempt selection during the next trial.

Experience is simulated by engaging the model in false-
belief trials and by slowly increasing the selection parameter.
Therefore, as the model grows more experienced, it concur-
rently learns to utilize its selection mechanism and is able
to more reliably perform selection: by the age of about 44
months (3.7 yrs), the selection parameter is up to 0.8, and
by the age of 68 months (5.7 yrs) that parameter equals 0.95.
Note that, as the selection parameter increases, so does the ef-
ficacy of learning, since more trials that attempt to select the
false-belief do so successfully and receive positive reward.
Learning was concentrated such that about 2 trials approxi-
mates 12 months of experience; the function relating learning
trials to age was determined post hoc after comparing our re-
sults with those of (Wellman et al., 2001).

The second developmental component (concerning the
avoidance task) occurs in an analogous way. Whenever the
child successfully answers the standard false-belief task, it is
queried about the look-first avoidance task (and, upon suc-
cessfully answering that, is further queried on the standard
avoidance task). The model first tries to calculate Sally’s be-
lief exactly as in the standard false-belief task; note that, es-
pecially at early ages, it may or may not be able to do so and
may end up thinking about either the TB or FB box. Once a
belief is in hand, the model initially does not know what to do
with it; so it defaults to where it would put the kitten, the FB
box, resulting in punishment. Over time, the model will start
using the initial belief as input to simulation. If the model is
able to simulate, it will return the box other than the belief;
otherwise, it will again default to returning the FB box.

As mentioned, the model’s ability to perform simulation
is dependent on a simulation parameter, which in turn is de-
pendent on the “size” of the simulation. For the look-first
avoidance query, the simulation size is 1, as the child is being
asked to predict Sally’s actions only one step in the future.
For the standard avoidance query, the simulation size is set to
32. When the model begins at age 2, the simulation parameter
is 0 and so no simulation is possible; by age 56 months (4.7
yrs), it is 1, and by age 72 months (6 yrs), it is 5.

For all models, we kept most of the ACT-R parameter de-
faults. We did change the utility noise parameter (set at a
moderate 1.0) to allow low-use productions to occasionally
fire. Because the rate of learning is dependent entirely on the
utility learning rate parameter (set at the default of 0.2), learn-

2Although this is ad hoc, with such limited data to match, a more
pleasing parameter choice and justification is not possible.
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Figure 3: Model results showing a scatterplot of the standard
false-belief results and best-fit curve.

ing occurred quite quickly in this model. Utility learning rate
could be scaled down substantially to match actual develop-
ment and learning time. In order to do this correctly, it would
be important to know approximately how often children en-
counter false-belief and avoidance tasks, and learn from them.

Model Results

In our first experiment, corresponding to the first phase of
model development, we started testing the model at age 32
months (2.7 yrs), and test roughly every 7 months until the
model reaches around age 92 months (7.7 yrs), for a to-
tal of 10 tests. Each test period consisted of 8 repetitions
of the Sally-Anne task, including all three queries. During
these tests, learning is turned off in order to reliably test the
model’s abilities at that age. To simulate the variability of
children’s development, we randomly perturbed the models’
starting ages around their a priori value of 2 years, selecting
uniformly in the range [17, 31] months. This made the age of
the models in our experiment comparable to the ages of the
children in the meta-analysis (Wellman et al., 2001).

Figure 3 shows the results for the false-belief task, and
plots each model’s age during a test period against the propor-
tion of correct answers the model gave during the test. The
graph appears very similar, visually, to that of Figure 2, and
shows a clear learning trend as well as noise which presum-
ably stems from different maturation levels. Using Wellman
et al. (2001)’s linear regression model (which considers only
age) on this data, r2 = 0.51 with a residual standard error of
1.73. This is considerably higher than their 7> = 0.39. It also
approaches the R of their multi-variate model, 0.55. We ar-
gue, then, that our model is stronger since it is both a process
model that learns to perform this task, as compared to a sta-
tistical model, and depends on fewer parameters.

Note that this curve is due to an interaction between the
selection parameter increasing, and the model learning that
attempting to select between beliefs often leads to the correct
answer. We expect, therefore, that if the selection parameter
increased more slowly, learning would be impeded and mod-
els’ performance would not improve as quickly.



Our avoidance false-belief results were also compared to
those of (Leslie et al., 2005), which showed that 71% of chil-
dren around the age of 4.75 years could answer the look-
first avoidance query but only 25% could answer the stan-
dard avoidance query. We were able to match these results,
but further experimental data is needed in order to distinguish
our parameterization from other valid possibilities.

Discussion

We have shown in this paper a cognitive model for theory of
mind. Our model borrows ideas from all three main postu-
lates of ToM to develop a cohesive explanation for how ToM
functions. The model uses a selection process to identify the
beliefs and knowledge others may have; then, to predict the
desires and behaviors of others, it uses the identified concepts
as input to its own decision-making mechanisms, simulating
what the model would do in the other’s place. This ToM func-
tionality develops by concurrent learning and maturation of
the required functional capabilities. The model was found to
be a good match to existing data from developing children.

One of the strengths of this model is that it generalizes to
many other types of false-belief and ToM tasks. The matu-
ration parameters are very general, and can be applied with
little change to other tasks. The same holds true for simu-
lation; the cognitive mechanism which enables it can accept,
and work with, any input. The learning of ToM in this paper is
not as general, as it chooses between productions which are
relatively task-specific; however, if the model were to have
experience on a variety of ToM tasks, we expect that it would
generalize what it learns into a broader concept.

Our work is also distinguished from previous work in cog-
nitive architectures. Laird (2001)’s QuakeBot performs men-
tal simulation of opponents to predict their behavior, for ex-
ample, but to our knowledge their approach has not been
matched against human cognitive data.

A future step is to explicitly address other observed ToM
phenomena. One experiment added a third “neutral” box to
the avoidance task, introducing a second correct answer, and
had both children and adults as subjects (Leslie et al., 2004).
The study showed that children have a bias towards the TB
box, whereas adults have a bias towards the new neutral box.
Our model does predict this phenomena for children, since
the TB box is the correct box with the highest activation (it is
the last box to receive a kitten, and it is identified as the true-
belief of the kitten’s location before the selection of beliefs
begins), and so it is the answer that simulation will select.
As far as the results for adults, we believe that with further
learning, simple simulations can be avoided in favor of gen-
eral, learned inference rules. In this case, therefore, adults
are simply returning an answer that is true from anyone’s per-
spective. The paper describes further experiments that our
model can predict, but that is outside the scope of this paper.
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Abstract

A multimodal dual task experiment that contributed to the
original development and tuning of the EPIC cognitive
architecture is revised and revisited with the collection of new
high fidelity human performance data, most notably detailed
eye movement data, that reveal the complex overlapping of
perceptual and motor processes within and between the two
competing tasks. The data permit a new detailed evaluation
of assumptions made in previous models of the task, and
contribute to the development of new models that explore
opportunities for overlapping visual-perceptual, auditory-
perceptual, ocular-motor, and manual-motor activities. Three
models are presented:  (a) A hierarchical task-switching
model in which each task locks out the other; the model
explains reaction time but does not account for eye movement
data. (b) A maximum-perceptual-overlap model that
maximizes parallel processing and predicts the trends in the
eye movement data, but performs too quickly. (c) A
moderately-overlapped model that introduces task-motivated
constraints and predicts both reaction time and eye movement
data. The best-fitting model demonstrates the complex task-
constrained interleaving of perceptual and motor processes in
a time-pressured dual task.

Keywords: Cognitive strategies, EPIC cognitive architecture,
eye tracking, multimodal dual task, multitasking.

Introduction

A critical task domain for the research enterprise of
cognitive modeling is that of multimodal (auditory and
visual) multitasking. Psychologists and cognitive modelers
puzzle over the question of how people engage in two or
more time-pressured tasks that compete for perceptual,
cognitive, and motor processes, such as for air-traffic
control or in-car navigation (Byrne & Anderson, 2001;
Howes, Lewis, & Vera, 2009; Meyer & Kieras, 1997;
Salvucci & Taatgen, 2008). Gaining an understanding and
ability to predict aspects of multimodal multitasking is of
critical scientific and practical importance.  This paper
advances an understanding of such tasks by presenting
cognitive models of time-critical multimodal multitasking
and evaluates these models in detail using eye tracking data.

The Time-Critical Multimodal Dual Task

An earlier version of the experiment that forms the basis of
this theoretical exploration was conducted in the early 1990s
at the Naval Research Laboratory (NRL) (Ballas,
Heitmeyer, & Perez, 1992). The experiment produced
human speed and accuracy data that proved useful for
developing detailed computational cognitive models of dual
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task performance (Kieras, Ballas, & Meyer, 2001). In the
NRL dual task, participants use a joystick to track a moving
target on one display and, in parallel, key-in responses to
objects that appear on a secondary “radar” display. This
paper presents an experiment that extends the original NRL
dual task in numerous important ways, including that (a) eye
movements are recorded, (b) eye tracking is used in some
conditions to hide objects on the not-currently-looked-at
display, (c) auditory cues relate more directly to required
responses, and (d) participants are rigorously trained,
financially motivated, and given extensive feedback so that
performance approaches that of an expert.

Figure 1 shows an overview of the two displays used in
the multimodal dual task modeled in this paper. Two tasks
(or subtasks) were performed in parallel: a tracking task and
a tactical classification task. The tracking task consisted of
keeping a small circle on a moving target using a joystick.
When the circle was positioned as such, it turned green, and
the participant was financially rewarded at a constant rate.
The tactical classification task consisted of monitoring
groups of icons or “blips” (fifty-seven in a nine-minute
scenario) that moved down a radar display, and keying-in
the blip number and “hostile” or “neutral” as soon as the
blip changed from black to red, green, or yellow, indicating
that it was “ready to classify”. When a blip became ready to
classify, a financial bonus was awarded though it diminished
at a constant rate until the blip was keyed-in, or classified.
Red blips were hostile; green were neutral; yellow blips
were classified based on their shape, speed, and direction,
following practiced rules.

Two important factors were manipulated in the
experiment: (a) peripheral visibility on or off and
Classification Task
([O) Tactigal Radar Display (OD Tracking Task
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Figure 1: An overview of the visual and auditory displays
and input devices used in the multimodal dual task.



(b) auditory cues present or absent. Peripheral Visibility
manipulated whether participants could see the contents of
the other display—radar or tracking—that they were not
currently looking at. This simulates a task environment in
which visual displays are separated by enough distance such
that they cannot be monitored with peripheral vision.
Auditory Cues (Sound Omn) indicates that a blip’s initial
appearance (as black) and color change (to red, green, or
yellow) were indicated with spatialized auditory cues. Each
nine-minute scenario maintained a constant setting of
peripheral visible or not-visible and sound on or off.

Figure 2 summarizes the most important eye and hand
movement data from the experiment, which is described in
more detail in Hornof, Zhang, Halverson (2010). Figure 2
shows the time required for the four consecutive stages of
classifying a blip: (a) Initiate the eye movement from the
tracking display to the tactical display; (b) once on the
tactical, find the target and move the eyes to it; (c) keep the
eyes on the blip long enough to identify it and then move
the eyes back to tracking; and (d) after the eyes are back on
tracking, key-in the blip (keying-in was consistently
performed afier the eyes were back on tracking). These data
serve to reveal the complex interleaving of perceptual,
cognitive, and motor processing, and provide a basis for the
current modeling endeavor.
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Figure 2. Time preceding eye movements across the

lifetime of a colored blip. Each panel shows a unique

combination of the factors of peripheral visibility and

sound on/off. The x-axis shows a sort of timeline of
the stages involved in classifying a blip.

The EPIC Cognitive Architecture

The EPIC cognitive architecture (Executive Process-
Interactive Control; Kieras & Meyer, 1997) was used to
model the multimodal dual task, as it was used previously to
model the earlier version of the same task (ibid.; Kieras,
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Ballas, & Meyer, 2001). EPIC is particularly well-suited for
exploring a range of explanations of multitasking
performance because of its specific commitment, at the
architectural level, to only enforcing sequential processing
for motor activities, such as to constrain the eyes to rotate to
only one point at a time, and the hands to only execute one
sequence of movements at a time. Perceptual information
can flow into the auditory and visual processors in parallel,
and multiple production rules—IF-THEN statements that
represent the strategy used to do a task—can fire in a single
50 ms cycle. Strategies can be written to permit only one
rule to fire at a time (as in our initial model) or to explore
the full potential of overlapping (as in our second model).

Extensions to the EPIC Cognitive Architecture

Initial sets of production rules that were constructed to put
the eyes and hands through the tasks revealed two
extensions to the EPIC cognitive architecture that would be
needed to model this task: (a) a computational solution to
the binding problem, which is the question of how people
assemble perceptual stimuli to maintain a seamless
conscious experience, and (b) a temporal processor to
determine, entirely from within the simulated organism,
when a certain amount of time has elapsed.

To address the binding problem, the visual processor in
the EPIC cognitive architecture was updated (by EPIC’s
creator David Kieras) so that psychological objects in
EPIC’s visual working memory maintain their identity even
as they disappear and reappear in the physical environment.
In other words, if the simulated human moves its eyes so
that a blip disappears (as in the peripheral-not-visible
conditions), and then moves its eyes so that the same blip
reappears, EPIC would previously have created a new
psychological object for the reappeared blip. Now, provided
that the initial psychological object associated with the blip
did not fully decay, the reappeared blip is reconnected to the
already-existing psychological object.

The second extension to EPIC was to add a temporal
processor that replicates the temporal processor added to the
ACT-R cognitive architecture (Taatgen, van Rijn, &
Anderson, 2007). This gives the models a way to make self-
motivated periodic checks of the tactical display when there
was no peripheral visibility or auditory cuing.

Modeling Overview

Each of the models below were presented with the exact
same auditory and visual stimuli in identical nine-minute
scenarios that were presented to our human participants.

The following parameters were used in the models: The
time required to determine the classification of a yellow blip
based on its speed and direction was set to 800 ms. Alarm
sounds are identified 300 ms after their onset in auditory
perception rather than with their onset, to give enough time
to distinguish the alarm from the blip appearance sound.

A common element within all strategies include that
tracking adjustments (by moving the joystick with a Ply)
were made only when the tracking circle was not green,
consistent with a strategy that maximizes payoff.



The model development presented here follows the
“bracketing” approach advocated by Kieras & Meyer (2000)
in which the analyst attempts to “bracket” the human data
with a slowest-reasonable and fastest-reasonable strategies.
Three corresponding task strategies are developed:
(a) Hierarchical task-switching (the slowest-reasonable
model); (b) Maximum-perceptual-overlap (the fastest-
reasonable model); and (¢) Moderately-overlapped (the
fastest-reasonable model slowed down based on task
constraints). Models based on these three strategies, and
comparisons of each model’s predictions with the human
data, are presented next.

Hierarchical Task-Switching Model

The hierarchical task-switching (the slowest-reasonable)
model represents a straightforward translation of the
multimodal dual task into a hierarchical task with strict
serial processing of each subtask. Figure 3 shows the
corresponding hierarchical task analysis. The production
rules were generated by first creating a GOMS model (John
& Kieras, 1996) of the task, and then translating that model
into the corresponding production rules. Parallelism existed
in the model primarily in terms of auditory and visual
information getting deposited in EPIC’s perceptual stores.

A key characteristic of the model includes that, once it
determines that a blip is ready to classify, it holds the eyes
on that blip until the keystrokes for that blip are initiated.
During this period, the cognitive processor is dedicated to
just classifying the blip. Tracking is completely locked out.
This aspect of the model resembles the original EPIC
models of the task, in which “the dual-task executive
enforces mutual exclusion between the tracking task and the
tactical task.” (Kieras, Ballas, & Meyer, 2001, p.10)

Figure 4 shows the mean blip classification times across
the four combinations of peripheral-visibility and sound-on-
or-off, and for red/green versus yellow blips. The model
explains the overall reaction time data very well across all
eight conditions, with an average absolute error (AAE) of
4.6%. (Note that all AAEs presented in this paper are
calculated using the overall observed mean as the
denominator for each percentage calculation, to reduce the
distortion that would otherwise result from observed and
predicted values that are very close to zero.)

If an analyst were primarily interested in the classification
task and hence did not proceed to model the tracking task
with any degree of fidelity, and if the analyst did not have
any eye movement data to work with, the modeling project
would likely be done at this point, and we might declare
victory—we modeled the primary data of interest with good
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Figure 4: The mean classification time of blips as a function
of blip color, observed (dark bars) and predicted (light bars)
by the hierarchical task-switching model. The average
absolute error (AAE) of the prediction is 4.6%.

accuracy. But a deeper look at the data that are available in
this modeling exercise reveal a dark truth—the model is not
accounting for the complex overlapping of visual and motor
processes that participants are exhibiting with their eye
movements. As well, a look at the tracking task data show
that the model is performing far worse than skilled
participants, predicting an overall mean tracking error of 42
pixels compared to the observed tracking error of 29 pixels.

Figure 5 shows the same observed data presented in
Figure 2, along with the eye movement times predicted by
the hierarchical task-switching model. As can be seen in
Figure 5, the model is spending far too long looking at each
blip. The tracking-to-keypress is negative (and hence a
value of zero is used) because the model returns the eyes to
tracking after the classification. Participants spent far less
time on each blip, and spent substantial time with the eyes
back on tracking before keying-in a classification.

The hierarchical task-switching model, though intended
as a slowest-reasonable bracket, does a good job of
predicting the mean classification times. But the model
does not capture the interleaving of perceptual and motor
processes that people clearly exhibited. The next model
attempts to capture and maximize such an interleaving.

Do dual task
|
[ I 1

Determine if a blip If a blip is ready to If no blips are ready to
is ready to classify classify, do tactical. classify, do tracking.

| | I_I—l
I 1 I T T 1
Check for auditory If no peripheral Selectblip Lookat Get blip Key-in Move eyes If tracking
alarm or visible visibility or sound, and to classify  blip features  response to tracking cursor is not
change in blip. time has passed, cursor green, move
move eyes to tactical. joystick.

Figure 3: The hierarchical task analysis used to generate the hierarchical task-switching model.
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Figure 5: The time preceding eye movements observed
(solid lines) and predicted (dashed lines) by the
hierarchical task-switching model. (AAE = 91.4%)

Maximum-Perceptual-Overlap Model

The maximum-perceptual-overlap (fastest-reasonable)
model is written to maximize all aspects of parallel
processing that are built into the EPIC cognitive
architecture. The production rules are written such that
ocular-motor and manual-motor processing proceed entirely
independently of each other, with manual-motor processing
resulting from visual-perceptual features that become
available based on ocular-motor activity.

Figure 6 shows two state transition diagrams that
represent how one set of production rules moves the eyes
between tracking and tactical to acquire visual information,
and another set of rules independently shifts manual motor
activity between tracking and tactical. When the model
runs, both sets of rules—ocular-motor and manual-motor—
spend most of their time on tracking. When a blip appears,
the ocular-motor rules shift to tactical just long enough to
perceive blip features, which become available to the
manual-motor rules, which switch briefly to tactical to key-
in a response. Each set of rules returns to tracking as soon
as its tactical subtask is completed.

Figure 7 shows the classification time predictions of the
maximum-perceptual-overlap model. As can be seen, the
model is too fast, as would be expected for a fastest-
reasonable model. Looking at the predicted eye movement
times in Figure 8, however, reveals that the model does a
good job predicting the overall trends in how long the eyes
took to move through the stages involved in classifying a
blip, especially in the peripheral-visible conditions. The
comparably good fit of the eye movement data, especially
when compared to the first model’s poor fit with the same
data, suggest that participants may truly have developed
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Figure 6: State transition diagrams that represent the
independent ocular-motor and manual-motor processing
in the maximum-perceptual-overlap model.
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Figure 7: Classification times observed (dark bars)
and predicted (light bars) by the maximum-
perceptual-overlap model. (AAE =29.2%)

expert strategies that include independent parallelism
between ocular-motor and manual-motor decision making.
But, as might be expected, the fastest-reasonable model is
overall too fast. The predicted mean tracking error is also
substantially better (20 pixels) than the observed (29 pixels).
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Figure 8: The time preceding eye movements observed
(solid lines) and predicted (dashed lines) by the maximum-
perceptual-overlap model. (AAE = 32.6%)

The final strategy explores constraints that can be
introduced to the fastest-reasonable model.

Moderately-Overlapped Model

The moderately-overlapped model was constructed by
starting with the maximum-perceptual-overlap (fastest-
reasonable) model, presented in the previous section. Three
analyses were conducted.  First, the model traces and
observed data were studied side-by-side to reveal subtle
differences between the predicted and observed eye and
hand movements. Second, opportunities were explored to
adjust strategies to maximize payout (see Howes et al.,
2009). Third, the manual-motor devices were examined to
improve the fidelity of their simulation.

These analyses led to the following five adjustments to
the model, all of which are represented by the bold italic
additions in Figure 9: (a) Eye-to-radar time is delayed by
having the tracking task finish any joystick Ply underway,
waiting for the tracking circle to turn green, to leave that
task in a money-making mode. (b) The time on yellow blips
is extended to permit identification of speed and direction
(set to 250 ms). (c) Tracking-to-keypress time is extended
by assuming that, when moving the eyes from tactical back
to tracking, people make one joystick adjustment before
keying-in the blip classification; this increases tracking
payment while further considering the classification.
(d) The timing for a Ply was increased (to a coefficient of
300 and minimum time of 400 ms) assuming that the Ply
effectively requires separate joystick movements to start and
then stop the tracking circle. (e) The Punch was replaced
with a Keypress to represent how the fingers are not
positioned directly above the keys, but need to travel.
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Figure 9: The moderately-overlapped model, with
additions to the previous model shown in bold italics.
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Figure 10: Times observed (dark bars) and predicted (light
bars) by the moderately-overlapped model. (AAE =7.1%)

Figures 10 and 11 show how the moderately-overlapped
model does a good job of predicting both classification and
eye-movement timings. The model also accurately predicts
tracking error, predicting 26 pixels compared to the
observed 29 pixels. Table 1 shows how this model provides
the best overall fit with the observed data.
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Figure 11: The time preceding movements observed
(solid lines) and predicted (dashed lines) by the
moderately-overlapped model. (AAE = 10.1%)

Table 1. Average absolute error of each model’s predictions.

Classification Time Preceding Tracking

Model Time Movements Error
Hierarchical o o o
Task-Switching 4.6% 91.4% 43.6%
Maximum- 29.2% 32.6% 31.2%
Overlap
Moderately- 7.1% 10.1% 13.9%
Overlapped ’ ’ ’

Conclusion

The models presented here demonstrate the difficulty in
accurately modeling complex multitasking behavior. First,
there is the challenge of collecting enough data to evaluate
the accuracy of a model; the initial hierarchical task-
switching model accurately predicted the classification time,
but not eye movements. Then, there is the challenge of
correctly identifying opportunities for expert, overlapped
behavior; the maximum-perceptual-overlap model presented
here relied on the massive parallelism of the EPIC
architecture’s cognitive processor to demonstrate that expert
strategies might manage ocular-motor and manual-motor
processes largely independently. Lastly, there is the
challenge of determining which task-based constraints
should be introduced to govern the use of perceptual
information that passes within and between two tasks that
compete for motor processing; those presented for the
moderately-overlapped model may or may not accurately
capture the true constraints that governed behavior.
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The models presented here do not clearly subscribe to the
notion of an independent process that actively coordinates
between two task strategies, whether that process be an
executive process, as in the original models for a similar
task (Kieras, Ballas, & Meyer, 2001) or an independent
mechanism, as in Salvucci and Taatgen (2008). This paper
explores the possibility that a dual task strategy is perhaps
an altogether new, carefully interleaved strategy.
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Abstract

The process of interleaving two tasks can be described as
making trade-offs between performance on each of the tasks.
This can be captured in performance operating characteristic
curves. However, these curves do not describe what, given the
specific task circumstances, the optimal strategy is. In this
paper we describe the results of a dual-task study in which
participants performed a tracking and typing task under
various experimental conditions. An objective payoff function
was used to describe how participants should trade-off
performance between the tasks. Results show that
participants’ dual-task interleaving strategy was sensitive to
changes in the difficulty of the tracking task, and resulted in
differences in overall task performance. To explain the
observed behavior, a cognitively bounded rational analysis
model was developed to understand participants’ strategy
selection. This analysis evaluated a variety of dual-task
interleaving strategies against the same payoff function that
participants were exposed to. The model demonstrated that in
three out of four conditions human performance was optimal;

that is, participants adopted dual-task strategies that
maximized the payoff that was achieved.
Keywords: multitasking; performance operating

characteristic; cognitively bounded rational analysis

Introduction

Multitasking behavior often involves trade-offs in
performance (e.g., time, errors, extension, etc.) between the
tasks. Such trade-offs can be described graphically with
Performance Operating Characteristics, which show how the
performance of separate tasks vary together systematically
(Navon & Gopher, 1979; Norman & Bobrow, 1975). Trade-
offs reflect strategic choices and can be modified, for
example, in response to instructions to prioritize one task
over another (e.g., Brumby, Salvucci, & Howes, 2009;
Janssen & Brumby, in press).

Consideration of the strategic choices made in
multitasking (i.e., of why a specific way of performing the
tasks is chosen) naturally supposes some optimal trade-off.
Why time is allocated differentially to the tasks, and why
particular patterns of interleaving are adopted, must
reference the relative success of those different strategies. In
this paper we use an objective payoff function to integrate
into a single score the performance rewards in a tracking-
while-typing dual-task situation. Such payoff functions have
been used before in multitask studies, but only to show that
performance is sensitive to isolated factors such as changes
in reward structure (e.g.,Wang, Proctor, & Pick, 2007).
Objective payoff functions have not previously been used to
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support explanations of multitasking strategy choices, or to
assess the optimality of strategies.

Combined with a cognitive model that can perform
alternative multitasking strategies (i.e., alternatives for when
to interleave and execute multiple tasks), a payoff function
enables an evaluation of the success of each of the strategies
(Howes, Lewis, & Vera, 2009). Strategies with the highest
payoff can be determined and compared with human
performance in experimental settings. This can be used to
explain the strategic choices participants make.

We developed a tracking-while-typing dual-task to test
the hypothesis that people can hone their dual-task behavior
to maximize the payoff that is achieved. The task required
participants to keep a randomly moving cursor inside a
circular area and to type a string of digits. Tracking tasks
have been used in several multitasking studies (e.g., Gopher,
1993; Hornof, Zhang, & Halverson, 2010; Kieras, Meyer,
Ballas, & Lauber, 2000; Lallement & John, 1998; Salvucci
& Taatgen, 2008). For example, Gopher (1993) showed that
performance trade-offs in a tracking-while-typing task can
be influenced by instructions to spend more time on one of
the tasks. Within the cognitive modeling literature, the work
by Lallement and John (1998) is interesting as it compares
performance of models developed in several cognitive
architectures on a tracking and choice task. We attempt to
extend this work by showing how a payoff function enables
us to bind normative cognitive models with experimental
observations of multitasking behavior, and specifically, to
show how multitasking strategy choice can be better
explained by seeing it in relation to optimal performance.

Experiment

Method

Participants Eight participants (4 female) between 20 and
35 years of age (M = 23 years) from the subject pool at UCL
participated for monetary compensation. Payment was based
on performance (details are provided in the Materials
section). The total payment achieved by participants ranged
between £7.13 and £11.45 (M = £9.14).

Materials The dual-task setup required participants to
perform a continuous tracking task and a discrete typing
task, presented on a single monitor. Figure 1 shows the
layout of the tasks on the display. The typing task was
presented on the left side and the tracking task on the right.
Each task was presented within a 450 x 450 pixels area,
with a vertical separation of 127 pixels between the tasks.



The tracking task required participants to keep a square
cursor that drifted about the display in a random fashion
inside a target circle (see Figure 1). The cursor was 10 x 10
pixels and the target had a radius of either 80 (small target)
or 120 pixels (large target). A random walk function was
used to vary the position of the cursor in the display every
20 milliseconds. The rate at which the cursor drifted about
the display was varied between different experimental
conditions. In a low noise condition the random walk had a
mean of zero and standard deviation of 3 pixels per update,
while in a high noise condition the random walk had a mean
of zero and standard deviation of 5 pixels per update.

Participants used a Logitech Extreme 3D Pro joystick
with their right-hand to control the position of the cursor in
the tracking display. The drift function of the cursor was
suspended whenever the joystick angle was greater than
0.08 (the maximum angle was 1). The speed was scaled by
the angle, with a maximum of 5 pixels per 20 milliseconds.

The typing task required participants to enter a string of
twenty digits using a numeric keypad with their left-hand.
The string was made up of the digits 1 to 3, where each digit
occurred at least six times in a given sequence. Digits were
presented in a random order with the constraint that no
single digit was presented more than three times in a row in
the sequence (e.g., “11233322132123132123” as in Figure
1). When a digit was entered correctly it was removed from
the to-be-entered sequence. In this way, the left-most digit
on the display was always the next one to be entered.

The study used a forced interleaving paradigm, in which

only one of the two tasks was visible and could be worked
on at any moment. By default the typing task was visible
and the tracking task was covered by a gray square. In order
to see and control the tracking task, participants had to hold
down the trigger of the joystick. When the trigger was
released, the tracking task was covered by a gray square and
the typing task revealed.
Design The study manipulated aspects of the tracking task
using a 2 (cursor noise: low vs. high) x 2 (target size: small
vs. large) within-subjects design. The main dependent
variables were the time required to complete the typing task
and maximum distance of the cursor from the center of the
target circle.

Participants were remunerated based on performance, as
determined by an objective payoff function that was
calculated for each dual-task trial. The function was
designed to encourage fast completion of the typing task,
while keeping the cursor inside the target. The payoff (in
pounds) for a given trial was defined as:

Payoff = Gain + Digit Penalty + Tracking Penalty

The minimum payoff for a given trial was limited to £-0.20.
The gain component was based on the total time required to
complete a dual-task trial (in seconds):

-1*TotalTrialTimel 20+ 0.2
Gain = 0.15 * ¢ otalTrialTimeInSec/20 + 0.25
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This function was determined using pilot studies, to make
sure participants mostly gained money. To encourage
accurate typing, a digit penalty deduced £0.01 from the total
payoff whenever an incorrect digit was entered. To
encourage participants to keep the cursor inside the target
circle of the tracking task, a tracking penalty was applied:

SecOutside/1.386 - 0.6931
Tracking Penalty = - 0.1%e ecOutside

This penalty was crafted such that £0.10 was lost when

the cursor was outside of the radius for 0.5s, and £0.20 was
lost when it was outside of the radius for ls. In the
remainder of this paper we will not look at the effect of digit
penalty on payoff.
Procedure Participants were informed that they would be
required to perform a series of dual-task trials and that they
would be paid based on their performance. A participant’s
payment was based on the cumulative payoff over the
course of the study, in addition to their base payment of £3.
Participants were told that they would gain more points by
completing the typing task as quickly as possible, but that
they would lose points if they made a typing error or if the
cursor drifted outside of the target area in the tracking task.
We chose not to give participants a formal description of the
payoff function, but instead provided explicit feedback after
every dual-task trial with the payoff score achieved.

After explaining how to perform each of the tasks
participants performed two single-task training trials for
each task and two dual-task practice trials. Participants were
instructed that for dual-task trials only one of the two tasks
would be visible and controllable at any moment in time,
and they were instructed how to switch between tasks.

Participants then completed four blocks of experimental
trials (one for each experimental condition). The order of
conditions was randomized and counter-balanced across
participants, with the exception that blocks of the same
noise level were grouped together. The order of radius sizes
was repeated across the first two blocks and the second two
blocks. For each block, participants completed five single-
task tracking trials, five single-task typing trials, and twenty
dual-task trials. The dual-task trials were further grouped
into sets of five trials, with a short pause between each set.
The total procedure took about one hour to complete.

Figure 1: Position of the two tasks in the interface



o — :
~ j O low noise, small target
A O low noise, big target
™ - A high noise, small target
° S < high noise, big target
§ w | i
g - A s
> J—
3 2 - :
o - i
o .
£ T
o '
£ v |
g S —
o
-
e |
(=)

T I T T

5 10 15 20
Number of digits typed per visit

Figure 2: Number of digits typed and tracking time,
both per visit. Error bars depict standard errors.

Results

We focus on performance during the last five dual-task
trials of each experimental condition, as these reflect a
period during which the participant has had time to adapt
behavior to the objective payoff function. A 2 (cursor noise)
X 2 (target size) analysis of variance (ANOVA) was used for
all statistical analysis with a significance level of .05.
Overall performance We first consider the effect of
varying aspects of the tracking task on the time required to
complete the typing task and the maximum distance of the
cursor from the center of the target circle in the tracking
task. It was found that trial time was significantly longer
when there was greater noise in the tracking task (M =
11.17s, SD = 4.32s) than when there was a lower level of
noise in the tracking task (M = 7.51s, SD = 2.00s), F(1, 7) =
15.07, p < .01. Trials were also longer when the target in the
tracking task was smaller (M = 10.59s, SD = 4.01s) than
when it was larger (M = 8.09s, SD = 3.22s), F(1, 7) =11.84,
p = .01. There was no significant interaction, F(1, 7) = 0.22.

In the tracking task we consider the maximum distance of
the cursor from the center of the target over the course of a
trial. It was found that the cursor drifted more when there
was a higher level of noise (M = 95 pixels, SD = 15 pixels)
than when there was a lower level of noise (M = 61 pixels,
SD = 8 pixels), F(1,7)=33.42, p <.001. There was no effect
of target size on the maximum distance that the cursor
drifted over a trial (F(1,7) = 1.19, p = .31), nor was the
interaction effect significant (F(1,7) = 0.07).

These differences in overall task performance between
conditions are somewhat expected and unsurprising because
they partly reflect differences in the difficulty of the
tracking task. We were far more interested in how this
performance was achieved. We next consider the dual-task
interleaving strategy that was adopted in each condition.
Strategies Two aspects determine a strategy: (1) the number
of digits typed during each visit to the typing window and
(2) the amount of time spent in the tracking window per
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visit to this window. Figure 2 shows these two basic
strategy dimensions for each of the four conditions. It can be
seen that for each experimental condition there is a unique
point in this strategy space — strategies differ between
conditions. The number of digits entered per visit increased
with an increase in target size (F(1, 7) = 17.4, p < .01), and
it also increased with a decrease in cursor noise (that is,
more digits were typed when it took longer for the cursor to
cross the boundary; F(1, 7) = 15.18, p < .01). There was no
significant interaction (F(1, 7) = 3.24, p = .12).

It can also be seen in Figure 2 that the time spent in the
tracker window per visit increased with an increase in the
noise associated with the cursors movement (F(1,7)=14.98,
p = .01). An interaction effect was present as visit time was
particularly short in the low noise, large radius condition
(F(1,7)=11.55, p = .01). There was no significant effect of
radius (F(1,7)=0.54).

A CBRA Model of Tracking-while-Typing

The results show that participants adapted their dual-task
behavior to changes in the difficulty of the tracking task.
However, what these results do not show is whether
participants were adopting a strategy that is optimal in terms
of maximizing the expected payoff that could be achieved in
each condition. To answer this question we developed a
cognitively bounded rational analysis model (Howes, et al.,
2009). This framework is particularly useful for comparing
the performance of alternative strategies, allowing strategies
to be discriminated based on the payoff achieved. The
model developed here is inspired by our previous work in
developing models of a dialing-while-driving dual-task set-
up (e.g., Brumby, Salvucci, & Howes, 2007; Brumby, et al.,
2009; Janssen & Brumby, in press). Both dual-task
environments share core characteristics, but the current
work differs in that it incorporates an explicit payoff
function against which various dual-task interleaving
strategies can be evaluated. In the next section, we use a
model to determine whether people were selecting strategies
that would maximize the financial payout that could be
achieved in each condition.

Model Development

Tracking Model The crucial question for developing a
model of the tracking task was at what angle participants
held the joystick given their current distance from the center
of the target. Figure 3 shows the mean values for discrete
bins of 5 pixels for the horizontal axes (vertical data is
similar). We fitted a linear function (shown as a dotted line):

Angle =-0.01 * current distance from target

The joystick had a maximum angle of (-)1. As in the
experiment, the speed of the cursor is calculated by
multiplying the angle of the joystick with a value of 5
pixels. Speed is calculated once every 250 milliseconds of
tracking, and the cursor position is updated every 20
milliseconds based on this speed value. As in the
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experiment, the cursor could only be controlled when the
tracking window was open. The total time spent tracking in
dual-task was varied as part of the strategy (see below).
Typing Model To model the typing task we fitted model
performance to human single-task typing performance data.
The time taken to type a digit (260 milliseconds) is identical
to the mean inter-keypress interval measured in single-task.
Dual-Task Model The dual-task model works as followed.
The model starts of with typing a series of digits (the length
of which is varied as a strategy). For switching between
typing and tracking a switch cost of 250 milliseconds is
incurred, based on experimental data (time between last key
press and pressing the trigger on the joystick: 247
milliseconds). The model then tracks the cursor for a
designated amount of time (varied between runs as a
strategy aspect). When it switches back to typing, a switch
cost of 180 milliseconds is incurred (time between releasing
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the trigger and pressing the first key press minus single task
inter-keypress interval: 185 milliseconds). Noteworthy,
switch cost values are close to those in ACT-R models (e.g.,
Borst, Taatgen, & Van Rijn, 2010) and in the Cognitively
Bounded Rational Analysis driving models.

Strategies We used this basic model to explore performance
of a variety of strategies. A strategy is determined by the
number of digits that are typed in sequence during a visit to
the target window. We consider only a subset of twenty
simple strategies that placed a consistent number of digits
during each visit (between 1 and 20), with the exception of
the last visit during which the remaining digits were placed
(e.g., strategy 6-track-6-track-6-track-2, but not 6-track-4-
track-6-track-4). In addition, for each visit to the tracking
task, more or less time can be spent on tracking. We
systematically explored performance for models that spent
between 250 to 3000 milliseconds on tracking during each
visit to the tracking window, using steps of 250 milliseconds
(i.e., 12 alternatives). This gave a total of 229 (20 x 12 —11)
strategy alternatives.

The objective function for rating performance is similar as
in the experiment with the exception that the model does not
make typing errors. For each strategy alternative 100 runs
were performed. Mean performance is reported.

Model Results

The first question of interest was whether the model
would fit the experimental data. In particular, if we
hardcode a strategy that types the same number of digits per
visit and spends about the same amount of time tracking as
participants did in each condition (with both measures lying
within two standard errors of human means), does this then
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Figure 4: Maximum deviation versus predicted payoff per trial for the ten best (black crosses), and other strategies (gray
crosses) per condition. Human results are shown as circles with standard error. The dotted line shows the target boundary.
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result in similar total trial time and maximum deviation in
each experimental condition (again with performance within
two standard errors of the mean)? This is important so as to
know that we have a reasonable calibration of the model’s
performance relative to the human data. This was the case.
Given that we can be confident that the model is
reasonably calibrated to the human data on the observed
strategy, we can now use the model to evaluate the payoff
achieved by different (unobserved) dual-task interleaving
strategies. Figure 4 shows a plot of the average maximum
deviation versus payoff. We plotted the ten highest scoring
strategies with black crosses, and the other strategies with
gray crosses. In each condition there is a strong peak,
though the shape of the distribution of scores differs
between experimental conditions. In three out of four
conditions the human data (black circles) lies in the region
of maximum deviations that can achieve the highest
performance. In each figure a vertical line shows the
boundary of the target. Note that in the low noise, large
radius condition participants could have let the cursor drift
more to improve their score slightly (they would never cross
the target boundary). Due to space limitations, we omitted a
plot of total time data versus score; the pattern is similar.
Traditionally, differences in dual-task performance are
plotted in Performance Operating Characteristics (POCs), in
which performance on one measure or task is shown against
performance on the other measure or task (Navon &
Gopher, 1979; Norman & Bobrow, 1975). In Figure 5 we
show the POC of total time and maximum deviation for the
model and human data. The ten best performing strategy
alternatives are again plotted with black crosses. There are a
couple of interesting aspects to these graphs. First, the best
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performing models lie on the outer edge (left side, and
bottom side) of the strategy space: the trade-off curve. That
is, the best strategies make an optimal trade-off between
performance on the two tasks. Furthermore, the position of
the optimum strategies is at a different section (e.g., top left,
or bottom right) of this curve for each condition. The model
is essential for this assessment, as traditional POCs cannot
predict optimal regions by themselves.

Human data again lies in the region of optimum payoff
for three out of four conditions. Only in the low noise large
target condition could participants have scored better by
spending less time on the tracking task (increasing
maximum deviation, but decreasing trial time). In all other
conditions, the model illustrates that participants made good
performance trade-offs to optimize their payoff.

General Discussion

In this paper we have presented an experiment and a
model of a tracking-while-typing dual-task setup. A good
feature of the task environment, in which participants need
to track a cursor and type in digits, is that it translates
performance on both tasks into a single performance score.
Due to this feature, we were able to move beyond
observations that participants trade-off performance in tasks,
as done in classical dual-task research (Navon & Gopher,
1979; Norman & Bobrow, 1975) and in research on dual-
task driving behavior (e.g., Janssen & Brumby, in press).
Here, we were able to demonstrate that participants mostly
made performance trade-offs in an optimal manner, so as to
maximize pay-off (cf. Howes et al., 2009).

These claims are possible because of the use of a payoff
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Figure 5: POCs of model performances for the ten best (black crosses), and other strategies (gray crosses) per condition.
Human results are shown as circles with standard error. The dotted line shows the target boundary.



function that explicitly describes how participants ought to
trade performance on each task to gain payment. The goal of
this paper is not to argue that objective functions are the
most prevalent aspect of performance in the real world.
However, they make it possible to quantify how good
performance is. This contrasts with previous work where
verbal instructions on how to trade performance on each
task is given (e.g., Gopher, 1993; Horrey, Wickens, &
Consalus, 2006; Levy & Pashler, 2008), or where
performance is sensitive to a change in payment (e.g.,
Wang, et al., 2007). In contrast, we can define optimal
performance in terms of maximizing payoff.

There was however one condition (the low noise, large
target condition) in which participants did not maximize the
payoff that was achieved. In this condition, participants
could have typed all of the digits in one sequence (i.c.,
without multitasking) to receive a slightly higher payoff
than was actually observed. Two possible explanations for
suboptimal performance are that participants overestimated
the danger of the cursor crossing the boundary (which
would give a severe penalty), or they were biased to switch
between the two tasks (which is necessary in the other
conditions). In this sense, participants not always adapt their
behavior to maximize the payoff function. Further research
is required to investigate such biases.

The model was developed with a minimal set of
assumptions. This was already enough to demonstrate that
people mostly adapt performance to an objective function.
Further research can investigate how people adapt their
behavior to different payoff functions, which, for instance,
give greater weight to performance on one of the two tasks.
Also, the model of the typing task might be refined to
predict typing errors, and to predict the effect of the
different times needed to type repeating digits versus non-
repeating digits (cf. Janssen, Brumby, & Garnett, 2010). At
a different level of analysis, the role of eye-movements can
be considered to explore a wider variety of strategies (cf.
Hornof, et al., 2010), such as strategies in which some visits
to the typing task window are only spent on studying, and
not typing digits.
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Abstract

The Predictive Performance Equation (PPE) is a
mathematical model of learning and forgetting developed
to capture performance effectiveness across training
histories, and to generate precise, quantitative point
predictions of performance by extrapolating the unique
mathematical regularities indicative of the learner. This
equation is implemented in the Predictive Performance
Optimizer (PPO) cognitive tool, designed to help learners
and instructors make principled training decisions through
examination of the learning and retention tradespace.
Because the point predictive nature of the model implies a
high degree of certainty, decision-makers could be misled
into making less than optimal decisions in applied settings;
and with regards to basic science, the model lacks
prediction error and uncertainty which would more
accurately represent the predicted range of human
performance. Implementation of prediction intervals into a
point predictive model of human performance is
unprecedented in the psychological literature. We must
balance the competing factors of reduced performance
variation as practice accumulates, and greater prediction
uncertainty as time spans increase. In this paper, we
explore new methodologies for incorporating prediction

intervals into quantitative predictions of future
performance.
Keywords: point prediction; mathematical model;

prediction interval; knowledge retention; skill retention

Introduction

The Predictive Performance Equation (PPE) is a
mathematical model of learning and forgetting developed
to capture performance effectiveness across training
histories, and to generate precise, quantitative point
predictions of performance. This is accomplished by
extrapolating unique mathematical regularities indicative
of the learner from training history, while additionally
accounting for the spacing at which knowledge and skills
were trained to estimate the stability of performance
across time. This equation is based upon robust findings
in the psychological literature, and designed with the
intent to be relevant in applied learning domains. As such,
the PPE is implemented in the Predictive Performance
Optimizer (PPO)-a cognitive tool designed to help
learners and instructors make principled training decisions
through examination of the learning and retention
tradespace.

What the PPE currently lacks is a measure of
uncertainty, because it contains no noise or error
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parameter in its current form. If the model is run 100
times, it will produce the same answer again and again.
We know that if a human performs a task 100 times a
range of performance values will be produced due to the
usual suspects (e.g., distractions, fatigue, fluctuating
motivation, random noise) coming into play. Thus, the
point predictive nature of the model could be misleading
due to the high degree of accuracy implied in its
predictions. Therefore, it is necessary to incorporate
principled measures of uncertainty, or prediction intervals
(PlIs), around model point predictions. This provides the
likely range of performance that is expected, and equips
decision-makers with a more thorough picture.

Unfortunately, implementation of Pls into a hybrid
point predictive model of human performance (to be
detailed in the next section) is unprecedented in the
psychological literature. By hybrid, we are referring to the
notion that one step of the model functions by calibrating
parameters to available historical data, while the other
step extrapolates mathematical regularities beyond known
data, to make true a priori predictions of performance for
practical applications and purposes (e.g., Kahrs &
Marquardt, 2007; Psichogios & Ungar, 1992).
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Figure 1: Example of prediction uncertainty in the
meteorological domain.

Other disciplines, including meteorology,
econometrics, and the physical natural sciences, have
well-established methods for incorporating uncertainty
into time-series model predictions, such that in general,
prediction uncertainty increases as time increases (see
Figure 1). We may think of this trend as an expanding
cone of uncertainty as lead time increases.

In the human performance domain, this is also a fair
assumption to make. As the length of time between
known data and a prediction increases, uncertainty would
be expected to increase (see Figure 2).
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Figure 2: Notional training historical data and predicted
refreshers to maintain performance from 1-10 months out.

What meteorological and econometric disciplines do
not have to contend with is the fact that as practice
accumulates, variability in human performance decreases
(e.g., Ericsson, 1996; Rabbitt & Banjeri, 1989). Thus,
model uncertainty should decrease as practice amasses
(see Figure 3).
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Figure 3: Expected levels of uncertainty for 3 regimens
immediately following a 45-day lag and within a 2-4 day
training block.

Furthermore, if multiple predictions are made, as
shown in Figure 3, uncertainty is conditionally dependent
on all previous model predictions. Thus, prediction
uncertainty n-steps ahead of known empirical training
history should generally grow incrementally larger-and
prediction uncertainty should additionally be greater after
a 12-month lag compared to a 1-month lag.

Thus, we are in the unique predicament of requiring a
Pl calculation method that balances the competing factors
of reduced performance variation as practice amasses, and
greater prediction uncertainty as lead time increases.
Furthermore, to adhere to both basic and applied science
demands, we need to ensure our methods are based on
principle, while concurrently providing useful and
relevant guidance for decision-making purposes. Before
we turn our attention towards the new methodologies we
are exploring to achieve alignment with these trends, we
must first detail the nature of the hybrid point predictive
human performance model.

The Performance Prediction Equation

The PPE is built upon the strengths of the General
Performance Equation (GPE) (Anderson & Schunn,
2000), which handles effects of recency and frequency
very well, but is ill-equipped to handle effects of massed
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versus distributed practice. As such, the PPE formally
extends the GPE by capturing effects of spacing, while
providing the additional capability to predict performance
at later points in time in an a priori fashion. The PPE is
expressed as:

Performance=S - St-N¢-T¢:
(Equation 1a)

where free parameters include S, a scalar to accommodate
any variable of interest, c, the learning rate, and d, the
decay rate. Fixed parameters include T, the true time
passed since the onset of training, and N, the discrete
number of training events that occurred over the training
period. The term St, defined in Equation 1b, is short for
Stability Term and is responsible for capturing effects of
spacing by calculating experience amassed as a function
of temporal training distribution and true time passed.

J - .
St = Y lag P Ei(lagmaxi} lanInI-J)

J

P T N;

(Equation 1b)

Lag is computed as the amount of wall clock time passed
between training events and P is computed as the true
amount of time amassed in practice. As such, experience
and training distribution attenuate performance by
affecting knowledge and skill stability at the macro-level
of analysis.

Descriptive Adequacy across Data

We have validated the descriptive adequacy and
predictive validity of this mathematical model across
multiple types of previously published datasets available
in the cognitive/experimental psychology literature,
including empirical studies spanning knowledge
acquisition, knowledge retention, skill acquisition, and
skill retention. Goodness-of-fit measures across those
domains have achieved an average R® of 0.98 (see
Jastrzembski & Gluck, 2009, for additional information).

These results are encouraging. However, the datasets
available in the psychological literature are from simple
laboratory tasks, possessing few data points over an
extensive retention period (e.g., Bahrick et al., 1993,
study measured performance at seven points over the
course of eight years), or measuring performance at short
timescales (e.g., Glenberg, 1976, examined monotonic
versus non-monotonic effects within one paired-associate
training session). These datasets are useful to include in a
larger test harness of empirical data to thoroughly validate
model mechanisms, but their ecological validity is
questionable.

Thus, it is necessary to validate against empirical data
from more applied realms - where the interplay of
knowledge and skill are often inextricably linked,
extended lags between practice opportunities are on the



order of several weeks to multiple months, and
knowledge and skill decay across extended lags can have
a real impact on mission success. These features often
characterize the nature of military training, where
resources are both costly and scarce. As such, we
validated PPE in a team coordination Unmanned Air
Systems (UAS) reconnaissance task (Cooke, 2005), and
with F-16 simulator air-to-air combat data collected in the
Distributed Missions Operations testbed at the Air Force
Research Laboratory (see Jastrzembski, et al., 2009).
These highly complex datasets possess significantly
longer inter-stimulus intervals than those found in the
literature, and provide excellent opportunities to evaluate
the incorporation of uncertainty within training blocks
and across extended lags, where the need to provide
estimates of uncertainty have very clear ramifications.

Predictive Performance Equation Methodology

We will now explain the two distinct, non-stochastic
sequential steps in our performance prediction
methodology. The first step in using PPE deals with
calibrating, or optimizing (using maximum likelihood
estimation), the learning and decay parameters to the
unique mathematical regularities of the learner, identified
by tracking training history. The second step is
extrapolating the mathematical regularities to make true a
priori predictions of performance at specified future
times. We make this distinction because it is
commonplace for modelers in the cognitive science
community to use the term prediction when fitting
empirical datasets, often in a post-hoc manner; whereas
we use the term calibration to refer to that fitting process,
and prediction for out of sample calculations.

With regard to the UAS reconnaissance study
(Cooke, 2005), teams of three individuals were required
to coordinate to fly a UAS and attain pictures of targets.
They completed five 40-minute missions on the first day
of training (the training baseline used for model
calibration), and returned either one or three months later
to complete an additional three missions (used to validate
model a priori predictions) (see Figure 4).

The design of the DMO study was similar in nature,
but required teams of four F-16 pilots to fly air-to-air
combat missions over a more extensive training baseline
(one to two hour-long missions trained each day over for
five days), allowing us to examine skill acquisition and
decay patterns both within days (where prediction
uncertainty should decrease) and across days (where
prediction uncertainty should increase). Teams were
reassessed either three or six months later and completed
three hour-long missions over the course of two training
days (see Figure 5 for individual team level analysis).

The need to incorporate valid Pls around model point
predictions becomes extremely evident in the following
potential use cases, as PPO is indeed intended to help
decision-makers make informed training decisions. As
shown in Figure 6, PPO may be used to help determine
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how many additional practice opportunities unique
learners (an F-16 pilot team in this case) need to achieve a
desired level of performance (denoted as achievement of a
wing standard of 0.015 in this particular case).
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Figure 4. Aggregate team performance in a UAS task,
with a three month lag.
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Figure 5: Number of times enemy airspace was violated
by an individual F-16 team, with a lag of three months.

PPO takes in the historical data for each unique team,
optimizes the learning and decay parameters to the
mathematical regularities inherent in the training history,
and makes customized team performance predictions by
extrapolating those learning trends into the future. Thus,
Team 115 (shown in Figure 6, Panel A) is predicted to
require six additional training events to achieve the
desired performance level, while Team 112 (shown in
Figure 6, Panel B) is predicted to require 20 more events.
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Figure 6: Model predictions for two unique F-16 pilot
teams to achieve the same criterion.
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In line with statistical principles, as PPO makes
multiple time-series dependent predictions, significant
uncertainty will build for predictions made farther and
farther ahead in time from actual historical data. Thus, in
the example above, Team 115’s predicted attainment of
criterion is actually more certain than Team 112°s, simply
due to the fact that criterion is reached with fewer
timesteps ahead from the historically calibrated data.

Another potential use case that nicely demonstrates
the need to incorporate “risk” into model point predictions
is revealed by PPO’s capability to examine performance
implications across a multitude of potential future training
regimens.

Predcted Performance % EE

Predicted Performance
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Figure 7: Future training regimen comparisons to identify
which training routine best meets desired goals.

The graph revealed in Figure 7 is calibrated upon the
historical F-16 pilot team performance data shown in
Figure 6, Panel A, and depicts predicted levels of
performance under three distinct training regimens. The
green line depicts two training opportunities given in each
training block (occurring every 45 days), while the red
line reveals three, and the black line reveals four. Noting
that a desired performance effectiveness level of 0.015 is
to be reached by the intended deployment date, the learner
or instructor may easily inspect and assess the efficiency
and effectiveness each potential future training regimen
will likely provide.

As shown in Figure 7, the red and black lines both
achieve the desired performance level by deployment,
while the green line does not. However, Pls for the black
line should theoretically be smaller than those in the red
line - because more training opportunities are provided
meaning performance variability should be reduced. Thus,
less risk would be involved in deploying trainees who
completed the black training regimen.

Given the potential ramifications these types of
prospective use case decisions entail, it becomes very
clear why the incorporation of prediction uncertainty
measures is needed. Further, equipping PPE with these
measures will better aid decision-makers’ understanding
both learning and training needs, as well as the risks.

Prediction Interval Calculation Methodology

As previously expressed, there is no precedent for
incorporating PIs into a human performance point
prediction model of this nature. As such, we have
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developed and are investigating new methods to achieve
our goals of both reducing variability as practice amasses,
and increasing variability at longer lead times.

Extrapolation of Residuals

The first method we are investigating involves
extrapolating residuals from calibrated model predictions
and human empirical data to model point predictions.
Residuals are often used to add uncertainty to models in
other disciplines, like econometrics (see Chatfield, 2001,
for a review); but as previously mentioned, other
disciplines do not have the added phenomenological
complexity of uncertainty decreasing as practice
increases, nor do they have good solutions for estimating
how much larger Pls should be after lags of increased
length. Thus, in order to base a Pl method on residuals in
the human performance domain, a good deal of
innovation will be required to ensure estimates stay true
to expected human performance trends.

As such, we have modified the residuals by the
stability term (see Expression 1) and will illustrate Pl
incorporation based on this method later in this paper.

S*St*N°*T ™ +(z,, *E[RMSD]*St;.,)

(Expression 1)

The Coefficient of Variation

The second method we have developed and are
continuing to investigate deals with adding variability into
the learning and decay parameters themselves. The
amount we have chosen to vary parameters by is the
coefficient of variation (CV), selected because it is a
unitless measure of deviation between model predictions
and human empirical data, generally ranging between
zero and one (Schweickert, et al., 2003), and it has
previously been used to incorporate stochasticity into
other types of cognitive and task performance models
(Patton, et al.,, 2009; Patton & Gray, submitted;
Schweickert, et al., 2003). It is calculated across historical
training calibration data using Equation 2:

CV = RMSD/model mean;
(Equation 2)

and integrated into PPE in the following way (see
Expression 2):

S * St * N ctc*CV *T —(did*CV);

(Expression 2)

thus producing upper and lower PI bounds.

Desirable qualities of this measure include a readily
available mapping to the learning and decay rates, which
also range from zero to one; and greater variability being
added into models that produce lower quality calibrated
fits to empirical data, producing larger Pls as a result.



Prediction Interval Utility in the Applied Domain
We now illustrate the PI incorporation across four unique
F-16 pilot teams, possessing differences in learning
regularities and quality of calibration fit — leading to
differences in PI spans as a result (see Figures 8 and 9).
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Figure 8: CV Pl incorporation for F-16 pilot teams.
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As revealed by Figures 8 and 9 (Figure 9 displays
identical empirical data displayed in Figure 8, Panels A
and D), each method produces larger Pls between training
days and smaller Pls within training days — thus, mapping
nicely onto human empirical findings showing that
performance variation decreases as practice amasses.
They also reveal wider PI bands following the three or six
month lag relative to other predicted points; thereby
aligning with the notion that longer lead time predictions
are more uncertain than predictions at shorter lead times.

An added unexpected, but very desirable effect, of
the CV method was that the Pl bands are asymmetrical in
nature — thereby diverging from standard symmetrical
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estimates of confidence or error (as revealed by the
residual-based method). This is pleasing in cases where
human performance is bounded by a floor or ceiling,
(ceiling performance was zero on the y-axis in Figures 8
and 9). Thus, there is more room to err (the higher end of
the y-axis) and less room to gain (performing closer to
zero), mapping nicely to CV-based error bars having
longer upper than lower whiskers.
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Figure 9: Residual-based Pls across unique F-16 teams.

Comparison of these Pl methods to empirical data
reveal that utilization of residuals, compared to the CV-
based method, tends to produce larger error bars in
general (it is more liberal, but covers more of the data),
produces error bands outside the bounds of possible
performance (below zero in this case), and is more
sensitive to noisy data (see Figure 9, Panel B — the same
empirical data as Figure 8, Panel D). This raises concerns
for how useful a residual-based approach will be as a
decision-making guide. As such, additional modifications
are being examined.

Resolution of Data In our last set of analyses, we will
limit our discussion to the CV Pl methodology, due to
limitations of the residual-based method described above.
Using data collected in the UAS reconnaisance task
(Cooke, 2005), we applied Pls to models aggregated at
different grains of analysis. Given the intended utility of
the PPO as a principled training decision guide, it is
important to understand the implications of using a
predictive model at the aggregate, team, and individual
learner levels of performance (see Jastrzembski, et al.,
2006), as aggregate data, by definition, reduces noise
through averaging procedures that smooth out the shape
of human performance curves. Thus, data will always be
noisier at finer and finer grains of resolution, implying Pls
should be wider and wider as aggregation decreases. We
inspect the ability of the CV Pl method to align with this
phenomenon as shown in Figures 10-12 below.



As we might expect, Pls for the first point prediction
after the lag are indeed larger after the long delay (Pl ange
= 146) compared to the short delay (Pliange = 129),
revealed in Figure 9, showcasing the fact that predictions
at longer lead times will be less certain than predictions at
shorter lead times. This effect is generated in PPE because
the upper and lower CV bounds are placed in the learning
and decay exponents, which interact with the number of
training opportunities accumulated, as well as the actual

amount of time passed.
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Figure 10: Aggregate performance across all teams in the
UAS reconnaissance task, with lags of 30 or 91 days.
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Figure 12: Individual UAS team member performance.

Finally, we note that the CV increases as we move
from aggregate to team to individual levels of
performance, as expected (see Figures 10-12). This is a
useful property to note because it shows that decisions
may be riskier at finer grains of resolution. One way to
help circumvent this problem at finer grains of analysis is
to in fact accumulate larger training histories to calibrate
PPE upon, allowing variability and noise to be smoothed.

These illustrative exercises help lend credence to the
notion that use of this newly developed CV PI calculation
method may have merit as being a useful way to help
guide training decisions in a way that nicely accounts for
the competing trends of reduced performance variability
expected with increases in practice, and increased
prediction uncertainty expected for longer lead times.
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Conclusions

The incorporation of estimates of uncertainty into model
point predictions is a necessary extension to our point
predictive model in order to provide learners and
instructors with relevant and useful guidance concerning
the amount of predictive uncertainty that should be
expected at specific future points in time and under
competing future training regimens. Because there are no
precedented existing methodologies to apply to this
problem, we plan to further the validation effort across the
two potential solutions we proposed in this paper against
human empirical data, and we are hopeful this new
capability will apply not only to our modeling effort, but
also for others who are working on the optimization of
training (e.g., Lindsey, et al., 2009; Pavlik, & Anderson,
2008; van Rijn et al., 2009).
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Abstract

Human performance modeling promises to be a valuable tool
for early evaluation of user interface designs, predicting
different performance for different design alternatives and,
recently, different performance on a single design between
younger and older adults (Jastrzembski & Charness, 2007;
Jastrzembski, et al., 2010). When using modeling in the
development process, the costs of creating models must be
traded-off against the accuracy needed to guide design
choices. It is therefore a meaningful exercise to examine and
weigh the costs and benefits of different modeling
approaches, to provide practitioners information to help them
choose the modeling approach best suited for their needs. We
compare younger and older adult human performance data
captured from dialing and text-messaging tasks, across two
mobile phones, against age-specific GOMS (Card, Moran &
Newell, 1983) and various CogTool models (John, et. al.
2004), and examine the trade-offs between time and effort
required to build those models and the predictive validity each
model produces.

Keywords: predictive human performance modeling, design.

Introduction

Research in computational cognitive process modeling
continues to progress by creating models able to account for
human data on more tasks across more domains, often
through years of effort by PhD students, post-docs and/or
senior researchers. However, when practitioners wish to use
cognitive modeling approaches in user interface (UI) design,
issues of costs and benefits become a stark reality. It is
therefore often necessary for the practitioner to base the
selection of a modeling approach by trading off the costs of
producing the human performance models against the
desired accuracy of the predictions of those models.

The costs of producing models for design include how
much knowledge the practitioner must have to develop an
appropriate cognitive model in the task domain of interest
for the intended user group, learning and understanding the
modeling theory that underlies a modeling tool, learning
how to use the modeling tool itself, and the time it takes to
accurately implement the models after learning the
modeling theory and associated tools. Benefits include the
ability of a modeling approach to detect differences between
design alternatives and the ability to make accurate
predictions of quantitative measures of performance (e.g.,
time for a skilled user to execute a task or number of errors).
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As the consumers of interactive systems age it is
becoming economically important to evaluate designs
specifically for the older adult. Thus, an additional concern
we address in this paper, are costs related to modifying
existing modeling approaches and tools to account for the
human processing capabilities of the older adult. Given the
range of knowledge, time, and effort required to make these
model modifications, this paper compares the quality of
predictions against the efficiency of each approach.

To put these issues into context, consider a practitioner
who is under a tight deadline to choose a final design that is
efficient for both younger and older adults from among
several design alternatives. A less time-intensive modeling
approach may be required to fit into the development life
cycle, even if use of that modeling approach comes at the
cost of producing less accurate predictions. This paper
begins to address cost-benefit concerns by assessing the
accuracy of a variety of modeling approach predictions
against empirical data, and examining the costs incurred to
produce those predictions.

The Designs, Tasks & Empirical Results

We chose to examine two tasks on two mobile phones
because Jastrzembski and Charness (2007) provides pre-
existing empirical data for younger and older adults. The
tasks are dialing a 10-digit phone number (dialing) and
sending a text message to a person in the contact list
(texting). Participant groups included a sample of younger
adults (M, = 20) and older adults between the ages of 60-
75 (Mage = 69). The purpose of their study was to validate
elemental model human processing parameters updated to
account for the older adult, which had been estimated
through a comprehensive literature review. These parameter
values were then used to build age-specific GOMS (Goals,
Operators, Methods, and Selection rules) models (Card, et
al., 1983) to predict skilled performance of younger and
older “average” adults in the mobile phone tasks.

Figure 1. Mobile phones
studied by Jastrzembski and
Charness (2007) and used in
this analysis: the Nokia 3595
(left) and the Motorola CI155

(right).




Predictions were compared to empirical data at each button
press required by the task.'

Since GOMS models are designed to predict performance
of skilled users on routine tasks, the participants were
required to complete extensive practice sessions to ensure
that they were skilled in the performance of these tasks on
these devices. “Skill” was operationally defined as
completing three consecutive trials with less than a 1s
deviation from each other. Upon successfully achieving
criterion in the practice sessions, participants were then
given new stimuli to complete three repeated blocks of five
different trials for each task. This allowed the authors to
average the human performance data for a single stimulus
over three trials — thus producing the empirical findings
displayed in Figure 2.

The following results were revealed (Figure 2, Table 1).

* Older adults took significantly longer than younger

adults to complete both tasks on both phones.

* Dialing completion times were not significantly

different across phones for either age group.

¢ Text-messaging completion times were significantly

longer using the Motorola compared to the Nokia phone
for both age groups.

These findings give us an interesting spread of results to
assess the evaluation of the designs across modeling
approaches from a cost-benefit perspective. In order for a
model to be useful in practice, it must account for all three
results, i.e., detecting a difference between devices and age
groups where this is one in the empirical data and detecting
no difference where there isn’t.

The Modeling Approaches & Their Results

Seven modeling approaches were implemented for the
dialing task and four for the texting task, as described below
(Table 1 displays completion time results).

GOMS-MHP. A pre-existing model by Jastrzembski &
Charness (2007), this approach updated Model Human
Processor (MHP) parameters through extensive literature
review, to allow GOMS models to predict older adult
performance. These models most closely match the “K2”
models put forth by Card, et al., (1983, p. 166), where
operators are at the level of hundreds of milliseconds, and
map closely to MHP cycle times. The cognitive task
analysis that underlies these models was informed by
observing pilot participants using an eye-tracker while
performing the tasks. Eye-fixation operators and subsequent
decisions operators were placed in the models guided by
these data. These models achieved excellent fits to the
human data for tasks, phones, and age groups.

CogTool-OotB. The next modeling approach we examine
is CogTool (John, et al., 2004), a tool for prototyping Ul
designs and automatically producing Keystroke-Level
Models (KLM, Card, et al., 1983) through demonstration.

! The original GOMS parameters were set with data from younger
adults, therefore we will use the original GOMS parameters for
younger adults unless otherwise noted in this paper.
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Figure 2. Empirical data for younger and older adults
completing tasks on the Nokia and Motorola phones.

KLM is a simplified form of GOMS that sums each key
press, K (including typing on a keyboard and mouse clicks);
pointing movement, P; homing movement between devices,
H; system response time, R; and “mental operator”, M (an
averaged amalgamation of visual search, perception and
cognitive operations like deciding, recalling commands,
etc.), required to do a task.

CogTool automates KLM model construction through a
demonstration of a task on a storyboard of a Ul, adding
perceptual operations in line with Salvucci (2001), and
cognitive operations similar to Card, Moran And Newell’s
Ms®, called “Think operators.” The resulting script
approximate a KLM produced by an expert modeler. The
storyboard and script together compile into an ACT-R
model (Anderson & Lebiere, 1998), which runs to produce
quantitative predictions of skilled performance time.
CogTool allows people with no cognitive psychology or
modeling background to make accurate predictions with
little variance (John et al., 2004; John, 2010).

This approach used CogTool “out of the box” examining
its default predictions without modifications of the script it
produced or to any of its parameters. This approach resulted
in far better predictions for the texting task than for the
dialing task. The remaining approaches progressively add
information to this “out of the box” approach.

2 Card, et. al. (1983) set the duration of M to 1.35s, but CogTool
uses 1.2s because it has separate processes for eye movement and
visual perception, which require about 0.15s processing time.



CogTool+KLM. To improve predictions for the dialing
task, our third modeling approach brought knowledge of the
KLM to bear, editing out Think operators where they
violated Card, Moran & Newell’s M-placement rule
concerning cognitive units. We deemed this approach
reasonable because people separate US telephone numbers
into cognitive units consisting of a 3-digit area code, a 3-
digit exchange, and a 4-digit station number. Because
CogTool-OotB does not automatically identify these units,
analysts must use their knowledge to delete unnecessary
Think operators from the scripts. (Such modification was
reasonable for the dialing task, but not for the texting task
where CogTool-OotB = CogTool+KLM.)

CogTool+KLM+RatioThink. Since CogTool generates
predictions specific to younger adults, it cannot make
predictions for older adults without modifications.
Therefore, our fourth modeling approach augments
CogTool+KLM by applying Hale and Myerson’s (1995)
findings that older adults take 1.5 times as long as younger
adults to process linguistic information. This means that the
analyst simply copies the original CogTool+KLM script for
a task and edits each Think to be 1.5 times as long as the
standard younger adult time (i.e., 1.8s v 1.2s). This resulted
in an average absolute percent error of less than 10% for the
texting task, but 36% for the dialing task — vastly over
predicting the time it takes both young and old to dial a
phone number (see Table 1).

CogTool+KLM+RatioThink+ExtremePractice.
Reflecting on the previous method’s poor fit to the dialing

task data, we realized that participants in 2005 would have
had almost a lifetime of experience dialing touch-tone
phones and substantially less practice sending text messages
on mobile devices. Prior research in extreme practice has
shown that pauses indicating mental operations almost
disappear. Thinking is both getting shorter with practice and
also presumably happens in parallel with the perceptual and
motor actions necessary to do the task (e.g., Card, et al.,
1983, pp. 279-286). Simulating extreme practice is an easy
process in CogTool; the analyst simply deletes every Think
step in the script except the first (which is still required
because the digits must be visually acquired from a sheet of
paper). This resulted in predictions that better fit the
younger and older adult data. However, these predictions
were within 10% of each other, meaning that these models
no longer detected the main effect of age.
CogTool+KLM+RatioThink+ExtremePractice+Older

WMcapacity. Our next approach examines the accuracy of a
CogTool model created by analysts possessing additional
information about older adult performance, as was
uncovered by Jastrzembski & Charness’ (2007) literature
review. That review revealed that the working memory
(WM) capacity of older adults is smaller than that of
younger adults. This may cause a strategy change in older
adults; they may spend more time with written instructions
than younger adults, trading off time for accuracy. With this
insight, we put the Think steps associated with looking at
the paper for the area code, exchange and station digits,
back into the older adult dialing task models. This reduced

Table 1. Modeling approach predictions for the mobile phone dialing task with percent deviations from empirical data.

Nokia Motorola
Abs Avg Younger Older Younger Older

Source of data or predictions %diff | Time (s) %diff | Time (s) %diff || Time (s) %diff | Time (s) %diff
Dialing Task

Human Data 6.606 9.442 6.268 8.812

GOMS-MHP 0.6% 6.559  -0.7% 9.369  -0.8% 6.228  -0.6% 8.804 -0.1%

CogTool-OotB 169.9%| 16.451 149.0% 18.227 190.8%

CogTool+KLM 44.1% 9.171  38.8% 9.359  49.3%

CogTool+KLM+RatioThink 36.0% 9.171 38.8%| 11.571 22.6% 9359 493%| 11.759 33.4%

CogTool+KLM+RatioThink

+ExtremePractice 15.5% 5.976 -9.5% 6.576  -30.4% 6.302 0.5% 6.902 -21.7%

CogTool+KLM+RatioThink

+ExtremePractice

+OlderWMcapacity 5.0% 5.976  -9.5% 8.092 -14.3% 6.302 0.5% 8.387 -4.8%

CogTool+KLM+RatioThink

+ExtremePractice

+OlderWMcapacity

+LitReviewACT-Rparameters 6.4% 5.830 -11.8% 9.505 0.7% 6.205  -1.0% 9.520  8.0%
Texting Task

Human Data 24.905 35.127 32.186 44.991

GOMS-MHP 0.0%| 24.901 0.0%| 35.126 0.0%|| 32.153 0.1%| 44989 0.0%

CogTool-OotB (=CogTool+KLM) 13.9%| 27.582  10.7% 37.664 -17.0%

CogTool+KLM+RatioThink 9.4%| 27.582 10.7%]| 35.382 0.7%|| 37.664 -17.0%| 49.064 9.1%

CogTool-KLM+RatioThink

+LitReviewACT-Rparameters 11.7%| 27.148 9.0%| 37.442 6.6%|| 37.118 -153%| 52.177 16.0%
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the average absolute percent error to 5% for the dialing task.
CogTool+KLM+RatioThink+ExtremePractice+Older
WMcapacity+LitReviewACTRparameters. The last
modeling approach modifies the ACT-R models running
under the hood of CogTool. This approach requires both
more cognitive psychology knowledge and programming
skill. It leverages the aforementioned literature review as
well as Jastrzembski, et al.’s (2010) translation and
extension of age-specific parameters to ACT-R. We ran
CogTool in a development environment rather than as an
executable, and edited four specific underlying ACT-R
parameters identified by Jastrzembski, et. al. (2010), in
order to account for age. We modified the best of the
CogTool approaches previously mentioned
(CogTool+KLM+RatioThink+ExtremePractice+Older WM
capacity for dialing and CogTool-OotB for texting), but
results produced overall goodness-of-fit values slightly less
than other approaches, for both dialing and texting tasks.

Cost and Benefit Metrics

We now assess the costs each modeling approach would
incur, based upon the estimated amounts of knowledge,
time, and effort required to produce predictions using each
method. Benefits are assessed relative to the empirical data
collected by Jastrzembski and Charness (2007), which will
be considered “the gold standard” - that is, the “truth”
against which the models will be compared. Costs are
assigned a value pertaining to the length of time required to
attain the appropriate knowledge base and perform the
modeling itself. A large cost entails months of experience to
learn and/or use the method; a medium cost requires weeks
of training and use; a small cost requires days.

Of course, actual costs to an organization depend on both
workforce and resources. For instance, empirical collection
of human data is characterized as having a large cost in this
analysis because many practitioners are not trained in
experiment design, they lack data collection laboratories,
and they often do not possess statistical packages or analytic
know-how to properly interpret the empirical data. These
costs may be much smaller for organizations like Google or
Microsoft, which already have highly equipped labs, PhD-
level experimentalists and statisticians, and a network for
recruiting appropriate participants.

In addition, the costs are estimated for moving into a new
domain or user group where parameters are not already
routinely used in models or built into tools. Many of these
estimates would reduce as modeling knowledge increases
and tool functionality is enhanced to embody that
knowledge. Given these caveats, we identified the following
costs for the analyses described in this paper.

Collect Human Data. Cost = Large because of expertise
and resource issues discussed above, and because
participants must be trained to a skilled level of performance
on the tasks and devices studied.

Literature Review. Cost = Large for a full review and
meta-analysis (it took Jastrzembski approximately nine
months to complete the parameter estimation alone). Cost =
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Small if only a rule-of-thumb 50% increase (as reported by
Hale & Myerson (1995)) is used.

Program a running prototype. Cost = Large due to
required programming skill expertise (Ul designers often
possess graphic design backgrounds rather than a computer
science backgrounds to compound the problem).

Measure for Fitts's Law. Cost = Small because estimates
of size and distance between all keys are required for
movement times to be integrated into models. (Although it
does not take days to learn or accomplish this, the sheer
tedium bumps this, in our estimation, into a real cost).

Build a Storyboard. Cost = Low because building a
storyboard in CogTool (John, et. al., 2004) involves only
creating a frame using a picture of what the device looks
like, placing button widgets on that frame, and drawing
transitions to represent user actions required to accomplish
the task. Storyboards for the two phones used in this
investigation took the first author about 15 minutes to build.

Know GOMS/MHP. Cost = Large. In the first author’s 25
years of experience teaching GOMS, it takes engineers
several sessions to learn the typical version of GOMS but
requires feedback on multiple exercises and often an
apprenticeship with an expert GOMS model builder to be
able to produce high-quality models. The GOMS-MHP
models assessed here were built with PhD-level knowledge
of cognitive psychology guided by eye-tracking
observations (Jastrzembski, 2006).

Know KLM. Cost = Small. In the first author’s 25 years
of experience teaching GOMS, KLM can be taught in a
single class session but requires feedback on several
exercises to be able to remove mental operators
appropriately to account for “cognitive units” (John, 1994).
The cost increases to Medium when knowledge of different
strategies due to older adults’ smaller WM span and the
effects of extreme practice are required in the model.

Know CogTool. Cost = Small. Recent research has shown
that CogTool can be taught in one class session and novice
modelers building their first model produced predictions
within 4% of an expert’s model prediction, with a CV of
only 7% (John, 2010).

Edit ACT-R. Cost = Large. In the final approach we
studied, the practitioner must edit an ACT-R file to modify
specific parameters to those established for younger and
older adults (Jastrzembski, et al., 2010). This requires
accessing CogTool’s open source code, editing the code in
the Eclipse programming environment, and knowing how
and where to change the parameters. Although it is only four
lines of Lisp code, the knowledge necessary to perform this
procedure is, in our estimation, daunting, and would be
required until CogTool could be enhanced to provide a GUI
to switch between user groups.

There are two types of benefits possible in our analysis:
the ability to correctly detect a difference between devices
or user populations, and the numeric accuracy of its
predictions. An approach is assigned a large thumbs-up
when it correctly detects a statistically-significant difference
present in the human data and, just as important for design,



Table 2.

Assessment of costs and benefits of empirical data collection and seven modeling approaches.

(CogTool+ KLM+ RatioThink)

CogTool+KLM+RatioThink + deleting
all but the first Think operator to

account for extreme practice dialing
(CogTool+ KLM+ RatioThink+ ExtremePractice)

Benefits
Costs Approach Detecting Match to Observed Times
Differences
o
3 ° £ g9 |8
s @ -
5 3 g 3 5 55 8, o 2
£ -4 5 2 ] ° o0 |0 O 5 - 35 -
=) ® o w = 2 g = = = 4 T |E© 3 o o 3
T £ o2 S o ® S Q - o] = T c |Tc > Q i 7
B 22 2 5 0 O X O @) S0 |50y o o =2 =2
=18 © 0 z z z < [SaN 0 O O c c = =
Om |loc = B b=l 0z |03 = = =] =]
SB|2S9 £ | 88| 3 2 2 2 S 58 |8g2| = = % %
oo |&§24qf I =i o ~ ~ ~ ix 0o 0o o a a = =
Empirical: Train participants to
skilled level, then collect data
(Human Data)
GOMS + literature parameters for all
% operators
(GOMS-MHP)
CogTool "Out of the box", naive use
@ % (CogTool-OotB) & é
CogTool + KLM knowledge to delete
$ & Think operators & &
(CogTool+KLM)
CogTool+KLM + 1.5:1 ratio (Hale &
$ & & Myerson, 1995) for Think operators & & &

9

CogTool+KLM+RatioThink
+ExtremePractice + WM capacity of
Older Adults causes more looking at

task description in Dialing task
(CogTool+ KLM+ RatioThink+ ExtremePractice+ Older WM)

&

I B B R B

S
S

Best CogTool from Tables 1&2 +
literature review parameters for all

ACT-R operators
(CogTool(Best)+ LitReview ACT-R parameters)

& & o T &
& O & &

&
IE
SIESIES

Key

@ Months to acquire knowledge or do this work
‘% Weeks to acquire knowledge or do this work

% Days to acquire knowledge or do this work

Detects difference when there is one
and not when there isn't, or numerically
within 5% of human data

Does not (or cannot) detect difference
when there is one

w & & & & & &

Numerically within 5-10% of human

data

% Numerically within 10-20% of human
data
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human data

does not claim a difference when there is no statistically-
significant difference in the human data; a large thumbs-
down is assigned when this is not the case. With respect to
numeric accuracy, we assigned each prediction to one of
four categories as shown in the key in Table 2.

Discussion of Costs & Benefits

The results of our assessments appear in Table 2. As
mentioned before, collecting human data is considered the
gold standard in UI design practice, but its cost is high,
particularly for organizations with little staff or resources
for experiment design, collection and analysis. Jastrzembski
and Charness’s GOMS-MHP modeling produced excellent
predictions, but required eye-tracking and PhD-level
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understanding of the psychology literature and the Model
Human Processor in order to attain those levels of predictive
accuracy.

CogTool-OotB 1is less costly to learn and use, even for
people with no psychology background. It correctly detected
the difference between the devices when there was one in
the data (for texting), but it was not designed to detect age-
related performance differences, as it applies only to the
performance of younger adults. Only by augmenting that
tool with levels of knowledge of KLM and age-related
literature, do models constructed within CogTool approach
the level of accuracy useful for UI design if age is a factor.
In fact, when only consideration of extreme practice is taken
into account, the CogTool models produced fail to detect the



age-related differences in the dialing task. Only when the
combination of extreme practice and WM capacity for older
adults were incorporated, did the predictions fall into
alignment with the empirical results. This requires
substantial knowledge of the psychology literature that
many practitioners would likely not possess.

Finally, the addition of specialized ACT-R parameters for
younger and older adults in fact increased the average
absolute percent error, demonstrating that utilization of
substantially increased requirements of knowledge and skill
(ACT-R, Eclipse & Lisp) does not always improve
predictions sufficiently to warrant the increased effort.

Conclusions & Future Work

This research compares the efficiency and effectiveness of a
variety of modeling approaches across tasks, designs, and
user populations. There is no “right answer” for any
particular development project, as each will vary in their
need for accuracy, the current knowledge and skill of their
team, and the value placed on acquiring modeling skill for
future use. For example, if a design project must have
predictions for all tasks within 5% of the “gold standard”,
the only approaches we examined achieving that criterion
are empirical data collection’ or GOMS-MHP modeling,
with their associated high costs. However, if slightly less
accurate predictions are acceptable, CogTool models
augmented with some knowledge of KLM and psychology
may be useful. Table 2 should be considered a guide when

considering modeling, not a table of definitive
recommendations.
Furthermore, advocates of wusing models in the

development process always suggest that modeling can be
used in conjunction with empirical testing, i.e., quick and
easy CogTool modeling could be used as a means of
weeding out detectibly poor designs from an assortment of
design options in a tractable amount of time, so that
empirical data collection may then be used to evaluate the
few remaining candidates where accuracy is of high value.
No one method need stand alone.

Several areas of future tool development are suggested by
this investigation, pending, of course, repeatability of these
results. First, if age-specific Think values detect age-related
differences on other tasks on other devices, it would be a
simple matter to put a radio button in the CogTool UI to
allow analysts to select younger or older adults and attain
appropriate predictions without editing scripts. Likewise, if
future research showed that age-specific ACT-R parameters
increased accuracy in the majority of cases, they also could
be brought into play without analysts touching the
underlying ACT-R Lisp code. Thus, it is beneficial to
examine the costs and benefits of modeling approaches
periodically, because such examinations may be used to
improve model tool development, and allow us, as a field, to
change the costs associated with the most useful approaches.
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Abstract

Human reactions appear to be controlled by two separate
types of mental processes: one fast, automatic, and
unconscious and the other slow, deliberate, and conscious.
With the attention in the literature focused on the taxonomy
of the two processes, there is little discussion of how they
interact. In this paper, we focus on modeling the slower
process’s ability to inhibit the fast process. We present
computational cognitive models in which different strategies
allow a human to consciously inhibit an undesirable fast
response. These general strategies include (a) blocking
sensory input, (b), blocking or interrupting the fast process’s
response, and (c) slowing down or delaying processing by
introducing additional task. Furthermore, we discuss an
approach to learning such strategies based on the inference of
the causes and effects of the fast process.

Keywords: dual-processes, impulse control, inhibition, social
behavior

Introduction

People appear to have two processes or systems controlling
their actions: one fast, unconscious, or automatic and one
slow, conscious, and deliberative (Kahneman 2003). Thus
far the focus in the literature has been on discussing the
differences in the processes in support of developing dual
process theories of cognition (Evans 2008).

Evans (2008) provides an excellent review of the dual
process theories of reasoning and decision-making.
Although researchers use different terms for the two
systems, almost all distinguish one system as “unconscious,
rapid, automatic, and high capacity” while the other as
“conscious, slow, and deliberative” (Evans, 2008).
Researchers also differentiate between the systems saying
the faster process is implicit and automatic and the slower is
explicit and controlled. Many researchers also include the
point that the faster process’s control of behavior occurs
without our being aware of the fact. The faster processing
was described as “associative” and the slower process as
“rule-based”. Another theme reported was that the faster
process was more concrete and situation specific and the
slower, rational process more abstract and general. The key
concept here is the characterization of the two systems by
awareness and volition.

Our focus is on building a computational model of the
interaction of these processes; specifically, we look at the
ability of the slow, conscious process to inhibit the faster,
automatic process. Blinking, for example, is one such fast,
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automatic action that with some effort can be inhibited.
Under normal circumstance, blinking is an unconscious
process occurring periodically whose rate is influenced by
environmental conditions as well as internal, emotional
state. But it is also well known that we can resist blinking.
However, it is best described as “resisting” because it takes
cognitive effort to not blink. The maintenance of our
concentration is an example of the slow, cognitive process’s
inhibition on the blinking behavior. But when the
concentration is broken, the fast, unconscious, and
automatic process is back in control.

We propose that there are general strategies that humans
use to inhibit the undesirable fast processes based on our
ability to infer the causes and to detect the effects of those
processes. We propose that a learned conscious process can
effectively control the execution of the faster process
through the control of the focus of attention and the
deliberate common-resource management.

With this introduction, we will first discuss how the slow
process can perceive the fast process and how the slow
process can inhibit the fast process. We will then propose a
general model integrating the fast and slow cognitive
processes, present three instantiations of that general model,
and discuss learning in these models before concluding.

Perception of a Fast Process

As Evans reported, many researchers noted that the faster
process occurs without our awareness. Even though we may
not be cognitively aware of the faster process while it is in
progress, we can note its effect and infer its cause. When
physical motion is involved, we have ability to attend to our
own movement. In other words, we can sometimes sense the
resulting action as soon as after it has been initiated, and
definitely sense it after it has been completed. This is
subject to the speed and the extent of the response as well as
our focus of attention. Furthermore, Gladwell (2005)
provided evidence that such fast, unexplainable processes
can be the result of deep expertise we cannot easily
articulate, but have ability to control including using them to
our benefit as well as to inhibit them.

Humans are also capable of inferring a cause of a
response. Whether it is attending to an environmental
stimulus resulting in a movement, or an association between
a memory and our emotional state resulting in an expression
change, we can make the association.



For example, consider those nearly thoughtless responses
to what we see, such as ducking a fast moving object, to
what we hear, such as jumping at an unexpected sound, or
even what we feel, such as uttering expletives or grimacing
when we stub our toe, or smiling at a pleasant memory.

The ability to detect such effects and to infer the causes of
the fast processes allows us to learn strategies to inhibit
these fast processes. These general strategies for inhibiting
them include (a) blocking the sensory input, (b) blocking (or
interrupting) the response, and (c) running an additional
process concurrently with the fast process. A general model
of interaction of the two processes is shown in Figure 1. The
undesirable fast process is represented as a direct Sense-Act
thread while the desirable but slow process is shown below
as a Sense-Think-Act thread. In the figure, the radar circle
indicates the extent of changes to the focus of attention and
the vertical lines are the boundaries between the cognitive
model and the outside world. Attending to our own actions
including vocalizations or facial expressions (indicated by
the question mark icon in the figure), supports a deliberate
choice or development of a control strategy.

Control of a Fast Process

To present how we envision a slow process can control a
fast process, we begin by grounding both processes within a
cognitive  architecture. =~ We  will present three
implementations of the general model as computational
models within the ACT-R cognitive architecture (Anderson,
2007; Anderson et all, 2004). ACT-R is a symbolic and sub-
symbolic, production-based cognitive architecture. The
internal modules of ACT-R represent relatively specific
cognitive functions (and regions of the brain) including
declarative and procedural memory, auditory and visual
perception, vocalization, and motor functions (based on the
hand).

During each cycle, modules representing sensors fill
buffers with representations of the environment. Like many
production systems, ACT-R repeatedly matches production
conditions with the contents of the buffers, but only selects
a single production to fire, and then executes that production
resulting in changes to internal buffers and module requests.

ACT-R, and more recently, JACT-R (Harrison & Trafton,
2010), have been embodied on a robotic platform which
necessitated extension of motor functionality to control face
muscles, head and limbs movements. For this project, we
also added a rudimentary “emotional module” to allow us to
keep track of the internal state of the robot. The emotions
are based on appraisals according to the Appraisal Theory
(Scherer, 2001; Marinier, et al, 2009), which are provided
during the execution of the model. For example, unexpected
stimulus is recorded automatically as it is being attended to,
but the modeler could also issue an appraisal within a
production to signify a successful completion of a goal or a
failure. The intensity of the emotion is based on the number
and recency of the appraisals along the dimensions
indicative of the specific emotion. Unless the emotion is
fueled after the initial event, it will decay over time; we
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modeled the activation of the emotion on the base-level
activation equation used in the recall of declarative memory
(Anderson, 2004).
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Figure 1. A General Model of Fast and Slow Process
Integration.
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Our theory of control of the fast process centers on the
points at which its execution can be foiled. The alternative
strategies leading to inhibition of the fast process are: (1) to
block the perception of or attending to the relevant stimulus,
and (2) to block the reaction to the stimulus, as indicated by
the traffic cones graphic in Figure 1, and (3) running an
additional process concurrently with the fast process, as
indicated by the light bulb. It is also possible to interrupt or
override, to certain degree, actions in progress, such as most
large motions including face expressions.

Recall in the discussion of blinking, a slow, cognitive
process could inhibit the fast, automatic blinking, but it took
cognitive effort. We propose that, in general, it takes
sustained cognitive effort to block fast responses. The
blocking may not be completely effective in that there is
evidence that like interrupting the non-blinking
concentration, fleeting micro-expressions of emotion will
still occur (Ekman & Friesen, 1969). An extreme example
of blocking involves the patellar reflex test (the knee-jerk
reaction). A patient can inhibit the normal knee jerk reaction
but interrupting the patient’s concentration allows the
normal reaction to be observed. The common technique to
break this concentration is the Jendrassik’s Maneuver
initially described in 1883 (Zehr & Stein 1999).

We propose that the slow process can both inhibit the
faster process through the following alternative strategies:

(1) Intentionally blocking the stimulus by physically
removing the stimulus, for example: by closing eyes or
covering the ears, or by shifting the perceptual attention.

(2) Intentionally blocking the response by keeping the
efferent processor busy, for example: performing another
movement or subvocalizing to render the processor
unavailable for other processes, or

(3) Intentionally performing another task at the same time.
ACT-R supports this model of process interaction through:

(a) Allowing productions of various specificities.

(b) Buffer status queries including buffer contents and

status at various phases of motor processing.

(c) Serialization of processing.



Below is a sample ACT-R production implementing a fast
movement in response to an unexpected sound, which could
be undesirable in context of many office tasks:

fast-response-to-sound
=aural-location> ;aural module detects
isa audio-event ;s a sound
?aural-location> ;the sound was
buffer unrequested ; not expected

(p ;production name

?manual> ;the motor controller
state free ; 1is free, (not busy)
==> ; THEN
+manual> ;initiate a manual
isa press-key ; action, press
key "return" ; "return” key

For this production, the strategy to block the sensory input
would be any action that would block the detection of an
auditory event, such as covering one’s ears with one’s
hands. To block the reaction part of this production, one
needs to engage and keep the motor module unavailable
because it is busy. Furthermore, due to ACT-R’s adherence
to serial processing, any other production whose utility is
greater than this production would decrease the probability
of the undesirable response.

Note that these strategies are temporary and require
continuous attention, i.e., cognitive effort, to maintain the
strategy. If the cognitive focus is interrupted and the sensory
input is still present, the original fast response production
will be able to fire.

Model Implementation

We will demonstrate the applicability of the general model
by discussing its instantiation in three different models,
specifically: (1) inhibiting the Stroop Effect through
deliberate shift of visual attention, (2) inhibiting the startle
reflex with respect to eye blinking, and (3) inhibiting
socially unacceptable response in an emotional situation.
Due to space constraints, we will present the model of only
one of the alternate control strategies for each of these tasks,
but other strategies are applicable as well.

Task: Inhibiting Stroop effect by blocking stimulus

Stroop (1935) identified a large increase in the time taken
by participants to complete the color reading in the
experiment that presented the participant with incongruent
ink color and text, as compared to the naming of the colors
of basic shapes. Original experiment has been extended and
thoroughly studied over the years to determine in excess of
18 other effects (MacLeod, 1991). In this work we focus on
the interpretation of the behavior within the dual processes
presented earlier.

Our ACT-R model only captures relative speed difference
between the color naming and word reading. Other
researchers (Lovett 2002; van Maanen, van Rijn, & Porst,
2008) provide better models of an actual response times in
the task, but ability to detect one’s errors and to improve the
performance at the cost of the response time is a focus of
our model’s implementation of the dual process theory.
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When the fast word-reading process generates an incorrect
response and it is detected due to a disparity between fast
verbal response and the result of the intentional, but slower
color naming process. As the response is being vocalized or
as it was heard depending on the duration of the color
vocalization process, an alternative strategy can be initiated.
The easiest strategy simply calls for delaying, or in essence
blocking the response, by pausing before giving the verbal
response allowing time to reevaluate the color of the text.

As another strategy, Besner (2001) provides evidence that
priming a location of a letter within the word eliminates the
Stroop Effect. It stands to reason that a good, and in fact
optimal, strategy would be for the participant to adjust
visual attention accordingly hence blocking the word
reading entirely. An easy way to achieve this is to upon or
even prior to presentation of the stimulus, to shift attention
to the right-most character of the text. With no competing
response there is no need to confirm the answer and
response can be given immediately.

To block the stimulus in our model, the automatic left-to-
right visual search production competes with an intentional
visual search production for the right-most symbol from the
current location. As long as the expected location is
attended to, the word reading (fast process) will not have a
chance to happen resulting in a single and correct response.
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Task: Inhibiting startle reflex by blocking response

The startle reaction, also startle reflex, is the response to a
sudden unexpected stimulus, such as a flash of light, a loud
noise, or a quick movement near the face. These reactions
include movement away from the stimulus, a contraction of
arm and leg muscles, a verbal response, and often blinking.
It also includes blood pressure, respiration, and breathing
changes that are often described as being startled or scared.
In this section, we focus on the acoustic startle reflex, a
response to an unexpected, loud, and near sound on the
order of 40ms in duration.  Specifically, we present an
ACT-R model in which intentionally keeping eyes open
inhibits blink-response to the acoustic event. Like other
strategies described in this paper, muscle contraction is only
a temporary strategy since it requires constant focus to
maintain; any lapse in attention will result in muscle
relaxing and ability for any process including the startle or
routine physical maintenance reflex to control the muscle.
Our ability to control blinking is often tested in a staring



contest. Due to the speed of the response, which on average,
takes between 300 and 400 milliseconds to complete, this
strategy works best when initiated before the stimulus is
heard to act to prevent rather than override the reflex or fast
response.

Our ACT-R system is capable of perceiving and attending
to a sound. The general model strategy to engage the muscle
in expectation of the stimulus translates in ACT-R to
keeping motor module busy. Assuming the concentration
can be maintained and the muscle stays engaged, the fast
process’s impulse to blink will be blocked. To capture the
cognitive effort involved in this strategy, we allow the goal
to be removed from focus of attention and the motion to be
no longer than 350 ms. The model detects the unintentional
motion, based on lack of the intention to move the muscle
and presence of the motion.
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Figure 3. Preventing blinking.

This is definitely not the only strategy that can be used.
Interestingly, Fillon, et al. (1993) presented an experiment
which showed that an attended pre-pulse, a weaker pre-
stimulus, produced greater blink inhibition at the 120 ms
lead interval than an ignored pre-pulse. Obviously, covering
your ears (or closing your eyes in the case of visual
stimulus) is an effortless strategy and guarantees better
performance, but is only feasible when task allows for it.

Both of these instantiations of the general model involve
blocking the fast process. The next instantiation of the
general model develops an acceptable alternative to an
emotional response.

Task: Inhibiting emotional response by distraction

Thomas Jefferson is credited with having said "When angry,
count to ten before you speak. If very angry, to a hundred,"
which even nowadays is considered a sound advice since
time and distraction are key to anger management. An
emotional response is a fast process behavior that rarely
leads to positive result, especially in social interactions.
However, given time to calm down, most people can get a
handle on their initial impulses.

Evans reported that although some researchers ignore
emotions in their discussions of the two systems, others
place emotions within the faster process and some
contemporary work includes an emotional influence in the
slower, more deliberative process. Due to this lack of
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consistency, Evans considered emotions outside the scope
of his review of dual systems theory, but we will regard the
basic, spontaneous emotional responses as the fast
processes.

Ekman identified basic emotions including joy and anger,
as being universally recognized from facial expressions
(Ekman, 1992; Ekman, 1999). The automatic nature of his
basic emotions included specification that the processing
was very fast, between 150 and 250 ms. Another researcher,
Griffiths (1997), suggested some emotions are higher-level
introspective processes, i.e., belonging to the slower, more
deliberative process. Others have suggested classifying
emotions based on the part of the brain that is activated by
the emotion, either the amygdala or prefrontal cortex
(Evans, 2001; Frank, 2009). This later differentiation is
useful here because although both classifications involve the
brain in the response to emotions, the separation of the high-
level cognitive function from the low-level processes based
on the region of the brain involved, serves our purposes.

While an emotion can be treated as either a stimulus or as
a response, for the sake of our argument, we will consider
an emotion state as a perceivable stimulus. The emotional
responses vary widely and include changes in vocalization
characteristics and content, flailing arms or legs, and
obviously as facial expressions. For ease of explanation, in
the current instantiation of the model, we assume that
emotions can be perceived as form of an internal state akin
to perception of time (Taatgen, Van Rijn, & Anderson,
2007).

In this instantiation of the general model, we simulate the
behavior of an individual that is impatiently waiting for a
stimulus to appear (e.g. imagine waiting for a bus or a friend
while time is wasting). Since we will be focusing on
blocking the undesirable response, the actual stimulus that is
cause of the anger is not relevant. Upon stimulus
presentation, specifically, the bus or friend’s arrival, the
subject vocalizes the response based on the emotional state
of the model. (See Figure 4.) The model monitors its
emotional state as well as the response. A negative reward is
associated with the undesirable response (or positive reward
is associated with the socially acceptable response).

TIME

VISUAL
OBJECT

©

Figure 4. Preventing an emotional response.

As the passage of time is attended to, a negative appraisal is
recorded and the model becomes angry. When the stimulus
is detected, a fast response process is initiated. At first, the



process does not include the counting to ten and results in a
negative, unacceptable response. The counting process
triggered by intention to speak while angry, has the property
of delaying the response to allow the emotion to decay, and
it also distracts the perception of time process from “adding
fuel to the fire.”

A similar delay tactic can be employed during Stroop task
to reinforce the color-naming process. Before giving the
answer, the participant could confirm that the response is
indicative of the task, which would force the color
information of the stimulus to be processed independently.
Detecting the conflict is resolved by the conduct (repeat) of
a deliberate process to produce the correct answer. Our
model of this strategy rewards the response from the
deliberate process and may explain the observed brain
activity associated with conflict detection and cognitive
control (Egner & Hirsch, 2005).

Role of Learning

The feasibility of the strategies discussed in the previous
section relies on two forms of learning. First, the alternative,
slow process has to be crafted based on the input and output
characteristics of the fast process. Second, the model has to
learn that the alternative process is useful.

Our general model calls for learning of a control strategy
upon detection of an unexpected and undesirable condition.
The strategies presented in the task models were hand-
crafted. We expect that a problem-solving process focused
on addressing the causes of the undesired behavior can
develop these strategies. Based on the realization that the
causes involve both a stimulus and a response, we expect to
be able to learn strategies that involve blocking both the
stimulus as in the model of the first task and the response as
in the model of the second task. Additionally, introducing a
delay or distraction process can be learned if it can be
inferred that the causes are time sensitive. This is, of course,
subject for future research.

Once the control strategy, i.e., the slow, conscious
process, has been crafted, it will eventually become
procedurelized and compete with the fast, unconscious
process productions. ACT-R utility learning provides the
necessary mechanism. In accordance with the ACT-R
theory, the utility of a production is determined based on its
presence and position in the sequence leading to the reward;
specifically, a negative reward issued upon detection of an
unexpected and undesirable model behavior leads to relative
increase of alternate processes. Since, in the tasks presented
here, the fast process is the cause of the unexpected events,
this reward mechanism results in the reinforcement of the
slower processing path. For example, by punishing the
sequence of productions leading up to undesirable response,
we lower their utility allowing the counting process to have
the higher utility and be included in execution on
subsequent runs. Due to this approach, our task models
make testable predictions that human error rates in
experiments like the Stroop Effect should decrease over
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time and the response times should be representative of the
shift between the two processes.

Essential to both forms of learning is detection of an
incorrect or undesirable response. We define an error as an
inconsistency between the fast and slow processes’
responses indicating a need to decide which is the intended
response. Within an ACT-R model, such inconsistencies are
described by contents of the relevant buffers. For example,
as we have described in the startle reflex task, the detection
of a movement when none is expected indicated that a fast,
unconscious process was being executed. It should be noted
that attending to these cues requires additional processing
and given the dynamics of the processing, such cues can be
easily missed. Due to this approach, our task models make
testable predictions that learning can be part of repeated
tests of the Stroop Effect and that learning will not occur if
the task dynamics preclude detection and adaptation.

Discussion

In the tasks modeled here, the fast process provided the
wrong or undesirable response; this is not true in general.
Humans have long depended on these impulses or reflexes
to keep us safe as well as to provide the fast responses
required in many tasks. Essentially, while slow, rational
thinking has its role in our behavior, so does actually
allowing the fast, irrational process guide us in a controlled
manner. We have described how the slow process can
control the fast process. However, this is only a beginning.

However, we have not yet presented evidence that our
integration of the two processes matches experimental data.
Several experiments are suggested by this work including
re-visiting the Stroop Effect looking for learned strategies
and performance over time.

Conclusions

We have shown that what has been widely discussed as a
dual processes, one fast, automatic, and unconscious and the
other slow, deliberate, and conscious, can be implemented
within a single cognitive architecture and we provided a
general model of their integration. We instantiated this
general model using the ACT-R architecture and showed the
slow process’s control of the fast process in three different
tasks. The general model’s fast-process-control strategies
we implemented and demonstrated included: (a) blocking
the sensory input for the fast process, (b) blocking (or
interrupting) the response from the fast process, and (c)
substituting a slow process for the fast process. Finally, we
discussed the architectural ability to reinforce the slow
process’s control of the fast process and an approach to
learning the alternate processes.
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Abstract

This paper describes a classic data set on visual search of
100-object displays that differ in size, shape, and color and
presents a cognitive architecture model based on the active
vision concept that accounts for the effects using differential
visual acuity and fixation memory provided by a persistent
visual store. The results provide an approximate upper bound
on the duration of fixation memory, and some approximate
acuity functions for modeling visual search.

Keywords: visual search; cognitive modeling; eye
movements.

Introduction

Many everyday and work activities involve visual search,
the process of visually scanning or inspecting the
environment to locate an object of interest that will then be
the target of further activity. An especially tractable form of
visual search takes place in many human-computer
interaction tasks in which a particular icon coded by color,
shape, and other attributes must be located on a screen and
then clicked on using a mouse. Such visual search takes
place in a visual environment that is much simpler than
natural scenes, and so is a both a good theoretical and
practical domain to model visual search processes: it
combines relative simplicity of the visual characteristics of
the searched-for objects with practical relevance: the task is
a natural one in the sense that such activities are very
common in current technology; an example is current radar
displays in military applications, which can contain a large
number of icons and other objects (cf. Kieras & Marshall,
2006). Thus understanding in detail how visual search
works in such domains can lead to better system designs.

This paper presents a model for the results of a classic
study on visual search of large and dense displays of
multiple items that can be searched by multiple attributes.
This paper follows Kieras (2009), who presented a model
for the Peterson et al. (2001) results demonstrating memory
for fixations in a visual search task. In the Peterson et al.
task, a single object, identified by shape, had to be located
in field of a dozen objects which were very small and
widely separated, meaning that each object had to be
fixated before it could be identified. This paper presents a
model for a task at the other extremes: A large number of
objects, differing in several attributes had to be searched,
but they were large enough and closely spaced enough that
the properties of several objects could be considered in a
single fixation. Memory for fixations still plays a role, but a
critical role is also played by the differential availabilities
of visual properties in extra-foveal vision, termed
differential acuity in what follows.
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Visual Search and Active Vision

In a laboratory visual search task, a display of objects is
presented, and the participant must locate a particular
object specified by perceptual properties and make a
response based on whether such an object is present or
exactly which properties it has (e.g. the specific shape). In
most experiments, the display is static and contains some
number of objects, only one of which is the target that must
be responded to; the others are distractors. The properties
of the display or the displayed objects are manipulated, and
reaction time (RT) and/or eye movements are measured.

The empirical literature on visual search was dominated
for a long time by studies that measured only RT, and often
for tachistoscopically presented displays that ruled out eye
movements. But more recently the cost of eye movement
data collection has decreased to the point that it has become
much more common, and deservedly so. While any
behavioral measurement only indirectly reflects the mental
processes that produce it, RT is clearly much less
diagnostic of what goes on during visual search than eye
movements. Furthermore, tasks in which the eye is free to
move about a static display in a naturalistic manner, typical
of eye movement studies of visual search, will be more
representative of the normal operation of the visual system
and the role of attention in visual activity. This point was
argued eloquently by Findlay & Gilchrist (2003) in
presenting an active vision framework for understanding
visual activity; it is markedly different from traditional
approaches to visual attention which have ignored both the
role of eye movements and extra-foveal information.

In active vision, a key process is choosing the next object
for inspection. A variety of studies (see Findlay & Gilchrist,
2003, for a review) have shown that this choice is not at all
random; rather the color, shape, size, orientation, or other
visual properties of objects influences which object is
chosen for the next fixation; the phenomenon is called
visual guidance. In the active vision framework, these
properties are available in extra-foveal or peripheral vision
to some extent, meaning that visual attention, which in the
context of normal visual activity is almost synonymous
with where the eye is fixated, is a process of selecting for
detailed examination one of a large number of objects
currently perceived to be in the visual scene, and doing this
selection on the basis of the visual properties available in
extra-foveal vision.

The availability of a perceptual property in extra-foveal
vision depends heavily on the eccentricity (the distance in
degrees of visual angle from the center of gaze) of the
object, normally referred to in degrees of visual angle, and
on the size of the object (also measured in degrees of visual
angle), and on the specific property involved. For example,



the color of an object of a given size in the periphery is
usually more likely to be visible than its shape.

The EPIC Cognitive Architecture

The EPIC architecture for human cognition and
performance directly supports an active vision approach to
visual search and provides a general framework for
simulating a human interacting with an environment to
accomplish a task. Due to lack of space, the reader is

referred to Kieras (2004), Kieras & Meyer (1997), Meyer &

Kieras (1997) for a more complete description of EPIC.

The EPIC architecture consists of software modules for
the simulated task environment, or device, that interacts
with a simulated human, which consists of perceptual and
motor processor peripherals surrounding a cognitive
processor. The device and all of the processors run in
parallel with each other. To model human performance of a
task, the cognitive processor is programmed with
production rules that implement a strategy for performing
the task. When the simulation is run, the architecture
generates the specific sequence of perceptual, cognitive,
and motor events required to perform the task, within the
constraints determined by the architecture components and
the task environment.

Figure 1 shows the visual system of EPIC. The eye
processor explicitly represents differential retinal
availability in terms of acuity functions that specify
whether each visual property of each object is currently
visible as a function of the size of the object and its
eccentricity. The currently available visual properties for
each object are represented in the sensory store; the
perceptual processor then encodes the properties of each
object, possibly in relation to other objects, and passes the
encoded representation on to the perceptual store where
they are available to the cognitive processor to match the
conditions of production rules. The perceptual store thus
contains the current representation of the visual world that
cognition can reason and make decisions about, including
decisions about where to move the eyes next by
commanding the ocular motor processor. The perceptual
store retains the representations for all objects currently
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Figure 1. EPIC's visual system.
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visible, with more information and detail about those that
have been fixated.
Persistence of the visual perceptual store

When the eyes move away from an object, the properties
of the object persist for a short time (e.g. 200 ms) in the
sensory store, and when lost, the perceptual processor notes
that the corresponding property in the perceptual store no
longer has sensory support. After a relatively long time, the
property will then be lost from the perceptual store. But if
the object disappears completely, it and all of its properties
will be removed from the perceptual store fairly quickly.

The concept is that as the eyes move around the visual
scene, a complete and continuous representation of the
objects currently present in the visual situation will be built
up and maintained in the perceptual store, allowing the
cognitive processor to make decisions based on far more
than the properties of the currently fixated object. The
notion that this information persists for a considerable time
as long as the scene is present is supported by studies
summarized by Henderson & Castelhano (2005): a
naturalistic visual scene is continuously present, but using a
gaze-contingent forced-choice paradigm, subjects are tested
for their memory of a previously fixated object; retention
times at least several seconds long were observed. The
model for the Peterson task (Kieras, 2009) provided a good
fit to the repeat-fixation data with a retention time of at
least 4 sec.

The Williams Study

A classic study using early eye-movement recording
methodology was done by Williams (1966, 1967), who
ventured into experimental territory commonly avoided
even today. This study manipulated the size of the objects
along with their color and shape, an unusual combination in
the visual search literature, and used a very large number of
objects, which provides an upper bound on the difficulty of
search tasks of this sort.

The task required visual search of 100 objects varying in
size, color, and shape, each with a unique two-digit label.
The 100 objects represented all combinations of 4 sizes, 5
colors, and 5 shapes. The search task was to locate the
object with the matching label. Depending on the
experimental condition, additional attributes of the target
object were cued; all combinations of size, color, and shape
cues were tested in addition to the Number-only cue, which
was only the object label. The hypothesis was that if a
specification is an effective cue for visual guidance, more
fixations should be on objects matching the cue than
expected by chance.

The entire display is 39° X 39° (all degrees are degrees
of visual angle), and the search objects range from 0.8° to
2.8° in size and distributed at random into the 13 X 13 grid
of 3° X 3° cells. The cue specifications were shown in the
center of the display. To convey an overall impression of
the task, Figure 2 provides an example display produced by
the model to be described later. Due to space restrictions
this figure is too small for the details to be visible in a
paper printing, especially in monochrome, but the details
can be seen easily by zooming in with the original pdf file.
In this example, the specified target is the medium-size
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Figure 2. An example of the physical display in a Williams (1966)
task trial after several fixations as depicted in EPIC's
automatically-generated display. Zoom in on this figure in the pdf
file to see the detail.

yellow cross labeled 38, which is in the upper-left of the
display. The concentric circles at center left show the
current location of EPIC's eyes; the small inner circle has a
1° diameter corresponding to the conventional fovea size;
the outer circle is a calibration ring with 10° diameter. The
display is shown to scale, except that to maintain legibility,
the numeric labels are shown as magnified and left-justified
in the object bounding boxes; in the actual stimuli and
model representation, they are only 0.3° high, which would
require foveation to recognize, and centered in the object.

The specification names for color and shape were the
obvious names, but the four sizes were described as small,
medium, large, and very large. The specifications appeared
first in the center of the display; when a button is pressed,
the search objects were added to the display. The
participant pressed another button when he or she had
located the specified object.

Eye movements were recorded with a corneal-reflection
film camera system and scored by hand. The total number
of fixations were counted, and classified by whether they
fell on objects whose size, color, and shape matched the
specifications. While 61% of the fixations were attributed
to a specific object, 29% were deemed unclassifiable, a
relatively large number by current methodological
standards.

Unlike modern practice, Williams obtained approximate
reaction times (RT) indirectly by counting the number of
fixations and dividing by 3.25, the observed average
number of fixations per second. Because the observed
number of fixations and the reported RTs are perfectly
correlated, the RTs will only be mentioned occasionally.

The Data

This being an early and basically descriptive study,
Williams did not report confidence intervals or information
sufficient for their calculation, and conventional statistical
tests were not relevant. However, the data set consisted of
many thousands of fixations collected from 30 participants
who performed 200 trials spread over 8 conditions. Based
on the original reports, it appears that a typical sample size
for the statistics for any one condition as reported below is
in the neighborhood of about 1000. The proportions of
fixations on objects of various types are the most important
results; for an observed proportion of 0.5, the 95% binomial
confidence interval for a sample size of 1000 is about
0.47-0.53; this £0.03 range can be used as an approximate
confidence interval for this important subset of the data.

Figure 3 shows the observed proportion of fixations on
objects that matched the cued properties (the predicted
values will be discussed below). E.g., if the color was the
only specified cue, about 60% of the fixations were on
objects with the specified color. Figure 4 shows the number
of fixations for each cue type.
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Figure 3. Observed (solid bars) and predicted (shaded bars)
proportion of fixations on objects that matched each cue type. The
95% confidence intervals would be roughly +0.03 for each
observed proportion.
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Figure 4. Observed and predicted number of fixations for each
cue type.



Visual guidance produced by color, size, and shape

It is clear from the results that color is the strongest cue
for visual guidance, resulting in the highest proportion of
fixations on matching objects (0.61), the fewest fixations
(25) and the fastest RTs (not shown, 7.6 s). Size comes
next, and shape is a distant third. There is a tendency for
each cue to have little or no effect if a stronger cue is also
present. If only the label is provided (the Number-only cue),
the fixations on objects that match the target properties is at
chance level, the number of fixations is large (74), and the
RT is quite long (23 s).

The importance of color in visual search is consistent
with many results ranging from classic human factors

studies (e.g. Sanders & McCormick, 1987) to recent HCI-
oriented studies (e.g. Fleetwood & Byrne, 2006). But in the
active vision framework, color is not specially privileged in
some way, but rather, various direct measurements show
that the color of an object is visible over a wide range of
eccentricity and object sizes (e.g. Gordon & Abramov,
1977), and so can often serve as an effective cue about
where to look next. The relative ineffectiveness of shape is
likewise not due to a fundamental problem with shape, but
rather that in many cases, recognizing the shape requires
resolving detailed features that can only be seen close to the
fovea. As an extreme of shape recognition, recognizing the
text label involves detecting small features, and so requires
foveation unless the text is quite large (Anstis, 1974).
Repeat fixations and memory failures

One overall feature of these results is that many more
fixations are required than should be necessary if each
object only received one fixation; for example, it should
require no more than 50 fixations on average in the
Number-only condition to find the labeled object. Williams
reports a small number (3%) of immediate repeat fixations,
but does not report how many repeat fixations appeared
over longer time periods. Apparently objects are frequently
looked at repeatedly; e.g. the 74 fixations in the Number-
only condition implies a repeat rate of about 33%!

In contrast, recent observation and modeling of repeat
fixations (see Peterson et al. 2001, Kieras & Marshall,
2006, Kieras, 2009) suggests that repeat fixations are
relatively rare, around 5%, implying a good memory for
previous fixations, and almost all are performed
immediately, being due to recognition (encoding) failures
rather than failures of the memory for previous fixations.
The 3% immediate repeat rate reported by Williams is
consistent with this, but not the much higher overall repeat
rate implied by the total number of fixations.

However, the low-rate results were obtained in search
tasks involving many fewer objects and that took much less
time than Williams' task. Perhaps the much higher repeat
rate in Williams' results is due to time decay of the fixation
memory. In fact, in Peterson's task, repeat fixations at long
lags become more frequent if the trial has gone on for an
unusually long time (Peterson, personal communication).
This issue will be important in modeling the Williams data.

Model for the Williams Task

Constructing an EPIC model for the Williams task
required a choice of (1) visual acuity parameters, (2) a
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parameter for the decay time of visual properties in the
perceptual store that are no longer sensorily supported, and
(3) a set of production rules that implemented the visual
search strategy. Each of these will be described briefly.
Acuity functions

Despite the many decades of research on vision, the
literature does not contain a comprehensive set of
parametric data on acuity for different visual properties as a
function of their eccentricity and size, especially for the
properties and values typical of computer displays. Space
limitations do not allow even a cursory review of the
available data (but see Findlay & Gilchrist, 2003). To deal
with this non-definitive picture, a simple family of acuity
functions were proposed, and their parameters determined
by a combination of general constraints set by the literature
and iterative maximization of fit in the models. A separate
function was specified for each property: encoded size
(small, medium, etc.), color, shape, and text label. The text
acuity function was specified as text being available within
1° of the current eye position, corresponding to the
conventional definition of foveal vision and the small size
of text used. A psychophysical acuity function was used for
the other properties: For the property to be available, its
size s must exceed a threshold which increases
quadratically with eccentricity e and includes a Gaussian
noise component X whose variability increases with the
object size and coefficient of variation v:

threshold = ae’ + be + ¢
P(available) = P(s + X > threshold)
X~ N(0, vs)

Such a function produces a wide area of highly probable
availability, with a sharp tapering-off towards the periphery.
The quadratic form was selected for simplicity: the
parameters can be easily set to reflect a minimum size,
general trend, and degree of curvilinearity, and were set to
be consistent with models for other tasks not described
here, and to have as much uniformity in the parameter
values as possible. The function for color availability used
in the model had parameter values of v=0.7, a=0.035,
b=0.1, ¢=0.1. The acuity functions for encoded size and
shape had the same values except for larger quadratic
coefficients a of 0.2 and 0.3 respectively. Thus, consistent
with the literature, the availability of the size and shape
properties drops off with eccentricity much more rapidly
than for color.

The availability for each property at the retinal and
sensory store level is independently resampled for all
objects whenever the eye is moved. Figure 5 shows an
example of EPIC's visual sensory store after several
fixations, corresponding to Figure 2, showing what is
currently available around the fixation point. In EPIC's
display, objects whose location, but no other properties, are
known are represented as light gray open circles. Objects
which are close enough to the current fixation point to have
their color available, but not their shape, are represented as
colored open circles. In Figure 5, the shape, color, encoded
size, and label are available for the currently fixated object.
The colors of several extrafoveal objects are also available,
and even the shape for a nearby large object. As the eye
moves around, the available properties of the same object
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Figure 5. An example of the contents of the sensory store
corresponding to the lower left corner of Figure 2, showing
available properties of objects near the current fixation point.

can fluctuate, and will not be reliably available from one
fixation to the next.
Perceptual store persistence time

Once a property of an object is visible, that property is
attached to the object representation in the visual perceptual
store where it can serve to match conditions of production
rules. The visual perceptual store is persistent, in that as
long as an object is within the visual field, its properties,
once acquired, will persist for a long time and thus can
serve as a memory for previous fixations, as described in
Kieras (2009). Figure 6 shows a sample of EPIC's visual
perceptual store, corresponding to Figures 2 and 5, several
seconds into the visual search, showing the information
persisting from previous fixations. Previously fixated
objects have all properties including the label, but will
eventually lose this information until fixated again. But in
the meantime, their color, size, or shape can be used to
guide the choice of which object to fixate next.

Perceptual Vision
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Figure 6. An example of the contents of the perceptual store after
several fixations, showing the accumulated object information.
Zoom in on this figure in the pdf file to see the detail.
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The duration parameter was estimated iteratively by
fitting the model, starting with the 4 sec lower bound
determined in Kieras (2009); a good fit was found with a
duration of 9 seconds.

Task strategy

The visual search strategy in the model is an application
of a basic strategy, shown in Figure 8, that has been used in
several EPIC visual search models. There are two threads
of execution. Nomination rules in the first thread propose
objects to fixate based on available visual properties, and
also nominate a random choice. Choice rules then pick a
single candidate from the nominated objects according to a
priority scheme, and launch an eye movement to the chosen
candidate. The rules in the second thread wait for all
relevant properties of the fixated candidate to be fully
visible and either respond if it is a target, or discard the
candidate if not. Given the typical 100 ms transduction and
encoding times for visual properties and the 50 ms
production rule cycle time, the overlapped processing
provided by the two threads enables the time between
successive eye movement initiations to be short, in the
range of 250 to 300 ms, which is commonly observed in
high-speed visual search tasks.

For the Williams model, the strategy nominates candidate
objects that have the cued properties, such as the cued color
or cued shape. The fixation memory effect is implemented
by only nominating objects whose text label property is
currently unknown; either because the object was never
fixated, or it was fixated a long time ago and has been lost
from the perceptual store. The priority scheme for choosing
a fixation target favors the more available information, and
so chooses an object with a matching color over one with a
matching size over one with a matching shape. For
simplicity, given the apparent very high repeat fixation
rates in the data, the mechanism for the relatively rare
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Figure 8. Flowchart for the search task strategy.



encoding failures used in previous models (e.g. Kieras,
2009; Kieras & Marshall, 2006) to trigger repeat fixations
was not implemented in this model, corresponding to an
assumption that most of the revisits are due to memory
failure in this task.

Model Results

The model was run for 500 trials in each experimental
condition, and the simulated eye movements and response
time data were collected and tabulated analogously to the
original experiment. Figure 3 above shows the observed
and predicted proportion of fixations of each type. Clearly
the fit is very good using the acuity function and perceptual
store persistence parameters listed above (R’ = .99; average
absolute error (AAE) = 3%).

The observed and predicted number of fixations is shown
in Figure 4 above. Again there is a very good fit (R? = 0.98,
AAE = 12%). The observed and predicted RTs (not shown)
also fit well (R? = 0.98 and AAE = 9%), although there is a
general tendency for the model RTs to run longer than
William's results. Given the unusual methodology used to
determine the RTs, it is not clear that attempting to improve
the fit to the absolute value would be worthwhile.

In an analysis of the model output, the proportion of
repeat fixations was found to increase substantially as the
perceptual store duration was decreased, and the number of
fixations (or RT) increased. The persistence parameter was
adjusted to produce the overall good fit on the number of
fixations shown in Figure 4, and the proportion of repeat
fixations on search objects was then determined with the
final parameter value. The range was 11% repeats in the
best condition to 33% in the Number-only condition. This
proportion was highly linear with the predicted number of
fixations (R? = 0.95). This suggests that the loss of fixation
memory over time is a good account for the excess number
of fixations in the data.

Conclusion

This model, along with the one in Kieras (2009),
represents a realization of the active vision concept in terms
of a computational cognitive architecture that incorporates
differential acuity and a persistent visual store that
represents the current visual situation and provides a
memory of previous fixations. Two more specific points
emerge: (1) Simplistic statements about which properties
can guide visual search must be replaced by statements
about which properties are available in a specific visual
situation. For example, color should not be very effective if
the objects were very small, and shape should be more
effective if the objects were larger. (2) Repeat fixations
have two causes: the persistent visual store is capacious and
reliable at short durations, meaning that repeat fixations are
due just to encoding errors, but if the search takes a very
long time, information from previous fixations is lost, and
more repeat fixations are the result.

This general model appears to be ready for practical
application in situations where the to-be-searched display
contains uniform-color objects with simple geometric
shapes and very small distinguishing features such as text
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labels. The specific acuity functions determined here
should be useful approximations in modeling such displays.

At the theoretical level, this type of model appears to be a
simple and sound approach to representing visual activity,
and is ready to use either as a component in models of more
complex tasks that involve visual search as a subtask, or as
a basis for models of more advanced visual processing.
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Abstract

Predicting the results of one’s own actions is a powerful
cognitive capability that can aid in determining which action to
take in a given situation. In this paper, we describe a task-
independent framework based on the Soar cognitive architecture
in which rules, episodic memory, semantic memory, mental
imagery, and task decomposition are available for predicting an
action’s consequences. We include results from two domains
and make predictions for human behavior based on these results.

Keywords: Action modeling; prediction; cognitive architecture

Introduction

When faced with a decision between alternative actions, an
intelligent agent may have sufficient knowledge to
immediately determine which choice is best. However, in
situations where directly available knowledge is insufficient
or in conflict, an agent can often use predictions of how its
actions will change the environment to make its decision.
We call the knowledge used to make such a prediction an
action model. Using this approach to make a decision
typically involves the following steps:

1. Choose one of the alternative actions to evaluate.

2. Create an internal representation of the situation.

3. Apply the action model to the internal representation to
generate a prediction.

4. Repeat for all other actions.

5. Choose the action that leads to the best predicted state.

This approach to decision making is ubiquitous in humans
(de Groot, 1965; Newell & Simon, 1972) and has been used
throughout artificial intelligence (AI) systems, where the
agent internally simulates multiple steps into the future. A
critical ingredient in this process is the action model: the
means by which the results of actions are predicted. Action
modeling is important because it allows an agent to move
beyond reactive behavior — an agent can plan and deliberate
about the implications of its actions before choosing one.

Historically, Al systems have used rule-like structures as
action models, such as STRIPS operators (Fikes & Nilsson,
1972). Cognitive science research has addressed action
modeling, but it has typically been isolated within specific
cognitive processes, such as mental imagery (Johnson,
2000; Wintermute & Laird, 2009) or episodic memory
(Atance & O’Neill 2005, Schacter & Addis 2007).

Rather than focus on one particular approach to action
modeling, we investigate the problem in general. We
propose that different combinations of memory and
processing systems can be used for action modeling, and
that domain characteristics and the agent’s knowledge
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determine which mechanisms are used for a specific task.
The mechanisms we propose include rule-based procedural
knowledge, episodic knowledge, semantic knowledge,
mental imagery, action decomposition, and arbitrary
combinations thereof. These mechanisms vary along many
dimensions including generality, reportability, learnability,
computational expense, and the types of problems where
they are appropriate. Forbus & Gentner (1997) have
previously posited a similar diversity of processing to
support mental models, although they did not focus on
detailed architectural mechanisms as we do here.

Included in our work is task-independent knowledge that
dynamically combines these mechanisms, implemented
within Soar (Laird, 2008). Soar has the requisite
representational capabilities to support the diverse forms of
memories, processing units and knowledge required for
action modeling. In the next section, we give an overview of
Soar and our approach to using action models in support of
decision making. This is followed by descriptions of the
different forms of action modeling, with demonstration of
them on a simple blocks world task. We then demonstrate
them together on a simple board game, and analyze their
relationship to human behavior.

Framework for Action Modeling in Soar

Figure 1 shows the structure of Soar, including its long-term
and short-term memories and processing components.
Working memory is a shared, symbolic memory that
maintains the agent’s primary representation of the current
situation. Long-term symbolic memories hold procedural,
semantic, and episodic knowledge, which are retrieved
based on either the total contents of working memory (for
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Figure 1: Structure of Soar



procedural) or cue structures created in working memory
(for episodic and semantic). Soar has a non-symbolic,
spatially-based perceptual short-term memory (STM) from
which symbolic information can be extracted into working
memory. This memory is the medium of mental imagery.

Behavior in Soar is driven by rules stored in procedural
memory. Rules that successfully match the contents of
working memory fire in parallel. Operators are the locus of
sequential behavior in Soar and only a single operator can
be selected at a time.' Operators are implemented via rules
that propose, evaluate, and apply them. Rules that propose
and evaluate an operator create preferences, while rules that
apply an operator modify elements in working memory
when that operator is selected.

If there is insufficient knowledge to select or apply an
operator, an impasse arises, and a substate is created. Within
the substate, operators can be proposed, selected, and
applied to resolve the impasse. A side effect of resolving an
impasse in a substate is that Soar builds a rule that
summarizes the processing in the substate. This process is
called chunking. The learned rule fires in similar situations
so that the same impasse is avoided in the future.

Conceptually, operators are either external, in that they
initiate action in the environment, or internal, in that they
change the internal state of an agent. Throughout this paper,
we call external operators actions, so that an action model
refers to an internal model of the changes that result from
the application of an external operator.

Figure 2 shows how action modeling arises in Soar. When
an agent is unable to make a decision using its directly
available knowledge, it internally simulates the effects of
proposed actions to aid in decision making. In this example,
the agent is attempting to create a stack of blocks, with A on
B, B on C, and C on the table. In the upper left corner of the
figure, the agent’s state is shown, with the lower half
corresponding to a representation of the problem state as it
might be in the agent’s perceptual short-term memory. The
top half of the state shows the symbolic relations that the
agent extracts from perception, and it is these relations that
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' Operators in Soar correspond most closely to rules in ACT-R
(Anderson, 2007); however, operators in Soar provide a richer
representation for organizing action than do rules in ACT-R because of the
independent representations of knowledge (as rules) for proposing,
selecting, and executing the actions associated with an operator.
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are available in working memory.

We assume the agent has sufficient knowledge to propose
the three legal actions for this state: move B onto C, move C
onto B, and move C onto the table. However, there are no
rules to create preferences, so an impasse arises (1), and
Soar automatically creates a substate (2).

To resolve this impasse, the agent tries out each proposed
action on a copy of the state and then evaluates the quality
of the result. Task-independent knowledge (TIK), encoded
as rules, carries out this strategy. The only additional task-
dependent knowledge required in this processing are action
models and state evaluations, both of which can use the
various forms of knowledge presented below.

As shown in Figure 2, following the impasse, operators
are selected (at random) to evaluate the actions. In the
example, move C to the table is evaluated first (3). In this
case, the agent does not have rules to evaluate this action
directly, and thus, another impasse arises. In the resulting
substate (4), the TIK copies the contents of the original task
state and uses a model of the action being evaluated to
predict the resulting state. Once this state is computed (5),
the agent must also have some knowledge (usually encoded
as rules) for evaluating it. In this case, we use an evaluation
that counts the number of blocks in their desired positions,
which assigns the state an evaluation of 1. The creation of
this evaluation terminates the evaluate operator, which is
followed by the selection of operators to evaluate the
remaining actions (6, 7). When all the evaluations are
computed, preferences are created for the actions, leading to
the selection of the action to move C to the table, and
resolving the first impasse. The action is then performed.
Chunking learns rules for evaluating each of the actions
(from the substates where the action modeling occurs), and
for creating the preferences based on those evaluations.

Different Forms of Action Modeling

In this section, we describe how action modeling can be
implemented using different processing and memory
systems, with the blocks world serving as an example.

Procedural Knowledge

The most direct way to encode an action model in Soar is as
rules. These rules test features of the state, features of the
selected action, and that the state is an internal copy of the
task state. They modify the internal copy in the same way
the external action would modify the real state. For complex
actions, the model can be implemented with multiple rules
that fire in parallel and/or in sequence.

Episodic Memory

Soar has an episodic memory that automatically stores
“snapshots” of working memory over time (Nuxoll & Laird,
2007). Soar’s episodic memory is an idealization of human
episodic memory, and emphasizes basic functionality, such
as efficient storage and associative retrieval of temporally
organized episodes. For action modeling, episodic memory
requires that the agent has a previous experience when the
action being considered was applied in the environment.



The agent can then use its memory of that experience to
make a prediction as to what will happen when the operator
is applied to a similar situation (Xu & Laird, 2010).

When episodic memory is used, the behavior of the agent
is as follows. The first time the agent gets to the point where
the action is selected in Figure 2, an impasse would arise
because there is no rule to apply the action. In the resulting
substate (not shown in Figure 2), the TIK for using episodic
memory selects an operator which creates a cue consisting
of the task state with the action selected, in an attempt to
retrieve a similar previous episode. Once the cue is created,
the episodic memory system retrieves the most recent, best
match to the cue and reconstructs it in working memory. If
no match is found, then this approach to action modeling
fails, and the agent must either try other methods, or assign
a default evaluation value to the action being evaluated.
Chunking does not create rules to summarize processing in
substates where episodic memory retrieval failed.

If the retrieval is successful, the agent then retrieves the
following episode. The agent continues retrieving
subsequent episodes until it finds one where the action is no
longer selected, which indicates the action has terminated.
The agent then compares the task state in that episode to the
current task state and modifies the internal copy of the task
state to reflect any changes. Chunking creates a rule that
summarizes the processing, so that in the future, the
retrievals are not required.

Figures 3 and 4 compare results for using the rule-based
versus the episode-based approaches to action modeling.
Both figures show the progression of performance across
four identical trials of the blocks world problem described
above, and both use log scales for the y-axis. Figure 3
shows the number of external actions that the agent takes to
solve the problem, while Figure 4 shows the number of
decisions (processing cycles in Soar). These results are not
intended to precisely model human behavior (for example,
we are not including time for perception or motor actions);
however the comparisons should be meaningful in
predicting qualitative differences across methods and trials.

In Figure 3, the top line shows the average performance
of an agent using episode-based action modeling where
episodes are not learned, so that a random selection is
always made. The next line shows the performance when

episodes are being learned. Initially there are no relevant
episodes, so the selections are random, but with experience,
the episodes accumulate and the agent’s performance
improves as it is able to correctly predict future states and
select the correct action, until finally it achieves optimal
performance. Even the first trial gets some improvement
from learned episodes. The bottom line shows the
performance with the rule-based action model, which
always makes the correct predictions.

Figure 4 shows the performance in terms of decisions, not
just external actions. The top line corresponds to the steps
required when episodes are not learned. The next line shows
the performance as episodes are learned. The dashed line
that starts at the same point for trial 1 shows that when
chunking is used with episodic memory, it eliminates the
need for episodic retrievals over time as the agent learns
action models based on rules that replace those based on
episodic memory. The agent eventually learns rules that
choose actions directly, eliminating the need for action
models. Thus, there is a combined gain with episodic
memory improving solution quality, and chunking
improving the efficiency of the problem solving process.
Note that external actions take orders of magnitude more
time to execute than internal reasoning steps, so the
differences are more pronounced in real environments.

The next line shows the performance for the rule-based
action model without chunking, which serves as the optimal
base line for action modeling. The final line shows the
impact of using chunking with the rule-based action model,
where after one trial, rules are learned that eliminate the
need for the action model. As these figures show, in only a
few trials, the combination of episodic memory and
chunking converts an agent with little task knowledge into
one that solves the problem in few actions (due to episodic
memory-based action modeling), while eliminating the need
for purely internal decisions (due to chunking).

Semantic Knowledge

Whereas episodic memory is based on specific experiences,
semantic memory consists of decontextualized facts — such
as knowledge about objects and their structure, independent
of when they were experienced. This makes semantic
knowledge more difficult to learn than episodic knowledge,
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but more useful across a variety of tasks. Soar as yet does
not have a theory of how semantic memories are
automatically learned, and instead Soar agents must
deliberately store semantic data they encounter.

The use of semantic memory for action modeling is
analogous to the use of episodic memory — when there is no
action model encoded as rules, an impasse arises, and in the
resulting substate, an operator is selected which queries
semantic memory to retrieve knowledge that can aid in
predicting the result of applying that action. Semantic
memory covers a broad range of knowledge, and one can
imagine many ways it can aid in action modeling. For
example, the fact boiling kettles are hot can be useful when
predicting the consequence of touching one. Here, we use
declarative instructions that specify how to modify the
internal task state to model the action.

To use semantic memory, the agent selects an internal
operator that initiates a retrieval for instructions related to
the action being evaluated. If the relevant instructions are
retrieved, TIK selects the “interpret” operator, whose
purpose is to apply the instructions to the copy of the task
state. The interpret operator is not implemented directly in
rules, but leads to a substate where operators are selected
and applied for each of the instructions. The processing in
the substate allows for arbitrarily complex implementations
of instructions, and is similar in spirit to how declarative
instructions are used in ACT-R (Anderson 2007; Best &
Lebiere 2003); however, in those cases the instructions are
interpreted to control the execution of a task, while here
they are used to model the execution of an action.

The format of declarative instructions is like that of an
imperative programming language or a recipe. We have
developed task-independent declarative representations for
common control flow instructions and state modifications.
In the blocks world example, instructions specify additions
and deletions of predicates. The rules that interpret those
instructions assume a specific representation of predicates in
working memory. Figure 5 shows the instructions for
moving a block. When using semantic memory, the number
of decisions decreases after one trial, as chunking creates
action model and action selection rules.

Mental Imagery

Mental imagery involves the maintenance of a separate
memory structure grounded in perception, which represents
objects and their spatial properties. While the contents of the
memory is mostly created bottom-up from perception, an
agent can create new “imagined” structures and manipulate
them by operations such as translation, rotation, and scaling,
as well as simulate complex motions, such as the path of a
car (Wintermute, 2009). The agent can extract spatial
predicates from perceptual memory, such as the relative
positions of objects and whether they collide. When applied

Move-block(blk, dest):

1. Del-predicate ontop(blk, X) V X # dest
2. Add-predicate ontop(blk, dest)

Figure 5: Instructions encoded in semantic memory.
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to perceived structures, this can be used to create the initial
symbolic representation of the problem. When applied to
imagined structures, symbolic consequences of actions can
be predicted. The use of mental imagery for action modeling
is restricted to actions that involve spatial motion, or actions
that can be mapped onto such motion.

As in the use of episodic and semantic memory, mental
imagery is employed when there are no rules for an action
model, and an impasse arises. Mental imagery takes
advantage of the spatial representation and maps the action
to be modeled onto imagery operations. Making the
connection between the action and mental imagery
operations can involve accessing knowledge in semantic
memory, or such knowledge can be encoded in rules. In our
example, the agent knows that to move a block, it should
imagine it centered on top of the destination block. Once the
perceptual memory has changed, relevant predicates can be
extracted, creating a symbolic description of the situation
that serves as the resulting state.

Mental imagery involves processing that cannot be
analyzed by chunking because the results of the processing
are not uniquely determined by the symbolic structures
available in working memory. Therefore, chunking does not
create rules that summarize mental imagery processing. This
is similar to ACT-R avoiding rule compilation for
processing over external interactions (Anderson, 2007).

Although not as general as the other methods, mental
imagery has wide applicability because of the ubiquity of
spatial problems. Imagery-based action models are effective
in a range of problems, from simple tasks in the blocks
world (Wintermute & Laird, 2009) to complex tasks such as
path planning for cars (Wintermute, 2009).

Action Decomposition

The final alternative approach is to model an action by
decomposing it into simpler actions that can be modeled
using any of the approaches described above. In Soar,
hierarchical operator decomposition is ubiquitous, and arises
when complex operators are selected, and then implemented
in substates by simpler operators. In the blocks world
example, when move-block is selected, it can be
decomposed into pickup-block and put-down-block actions.
When these actions are selected, any of the previous
methods can be used as models for them, including further
decomposition. One typical use of action decomposition is
to take an action that involves complex spatial interactions
and decompose it into simpler parts until those parts can be
mapped onto imagery operations. Chunking will create rules
for the action model of a complex operator as long as mental
imagery was not used in any substate processing.

A Policy for Controlling Action Modeling Approaches

We have presented these action modeling approaches as
alternatives, with no attention to when each would be used
in an integrated agent. Inherent to Soar is that it uses rules
for action modeling if they are available. That is the default
behavior and it is not under control of the agent. When rules
are not available, an impasse arises, and in the ensuing



substate, operators are proposed for the alternative methods,
as well as any operators that decompose the selected action.
This structure introduces an extra level of deliberation,
which adds flexibility at minimal cost to the agent (the
results in Figure 4 are without this additional layer).
Although it may be possible for an agent to learn when best
to use each method, that could be a difficult learning
problem and we leave it to future research. As an
alternative, we encoded a simple ordering preference for
these approaches in the TIK and use this method in the
board game demonstration below.

Integrated Demonstration

To provide additional illustration of how these approaches
work, both independently and in unison, we present an agent
that plays a simple board game, shown in Figure 5. In this
game, the agent must slide the hexagonal marker on the left
along the directional paths to numbered nodes until it gets to
the end (node 10). As the marker slides along a path, it may
touch one of three different objects, labeled X, Y, and $. If
the marker hits an object, the agent gets points. The agent
has semantic knowledge that the $ is worth 20 points, but
does not initially know the values of the other objects (X is
worth 10 points and Y is worth 5). The goal is to get to the
end with the highest possible score, which is achieved via
path A, C, F, H, I, K. We assume that the agent can sense
the marker position, the paths, and the objects, but it does
not a priori know whether the marker will hit a nearby
object as it slides along a path.

To perform the task, the marker starts at position 1, and
the agent is faced with making a decision to take path A or
B. To make this decision, the agent will attempt to predict
the result of each move. At this point, the agent does not
have any action model rules, nor does it have any episodes
or relevant information in semantic memory. However, it
can use mental imagery to imagine moving the marker along
each of the paths. Mental imagery predicts that if it moves
along A, it will intersect with object X, while for B, it will
intersect with Y. In both cases, it does not know how
encountering those objects will affect its score, so it chooses
at random. We assume it picks path B. It executes that
action, encountering Y and getting 5 points.

Once at 3, the agent picks path D to get to 4. Here, the
decision is between going along path E or F. This time, after
it uses mental imagery to detect that it will encounter object
Y, it then uses episodic memory to recall that the last time it
encountered object Y it received 5 points. When it considers

Figure 6: Board game task performed by agent.
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path F, it uses imagery to predict it will encounter object $,
and then semantic memory to predict that it will receive 20
points. Based on these evaluations, it chooses path F. It
receives 20 points, moves to 6 and then 7. At this point, it
uses a combination of mental imagery and episodic memory
to predict the result of moving to 8 (10 points). In imagining
moving to 9, imagery shows that it will not encounter Y, so
it will get a score of 0. It selects moving to 8, and then
finishing by moving to 10, getting a total score of 35.

The next time the agent plays the game, it uses episodic
memory to predict the results of the paths it took the first
time (B, F, I). Since it has no episodic memories of moving
on paths A, E, and J, and cannot chunk over imagery action
models, it must continue to use imagery for those paths.’
Thus, in its second attempt, it will use imagery and episodic
memory to predict a 10 score for A, while it will use only
episodic to predict a score of 5 for B. Similar use of imagery
and episodic memory will be used at nodes 4 and 7. As a
result, the optimal path is taken, resulting in a score of 40.

Figure 7 shows the progression of how the agent’s
decisions are distributed across using imagery versus
episodic memory over multiple trials. The highest line
shows the total number of internal reasoning steps. The
bottom two lines are the number of decisions that involve
imagery and episodic memory operations. In the first trial,
imagery dominates as the agent has no prior experiences it
can draw on. In the second run, the agent must still use
imagery for those cases where it has not taken a path, but it
uses episodic memory for those cases where it had prior
experiences. Although not evident in the graph, chunking
replaces the use of semantic memory with a rule. For the
third run, chunking decreases the total number of steps by
eliminating the use of episodic memory. In the final trial,
some imagery is still required for those paths the agent
never actually tried, and episodic memory is no longer used
as it has been replaced by rules learned through chunking.

Predictions

From these examples and an understanding of the
approach, we can make some predictions about the behavior
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Figure 7: Agent performance over multiple trials.

% Soar’s episodic memory does not capture subgoal processing, so the
agent has no episodic memories of previous predictions. Otherwise, these
steps could also be removed.



of an agent with the capabilities we described.

In a spatial environment, an agent initially relies on
mental imagery for action modeling (and semantic
knowledge if it is available). As the agent gains experience,
it switches to using episodic memory when possible. With
further experience, rules learned via chunking replace
episodic memory, and eventually rules are learned that
choose actions directly, eliminating action modeling.

Concurrent with learning, the agent’s ability to report on
its internal reasoning should change, as different structures
become available in working memory (which is the basis for
our predictions about reporting). Initially, for spatial
problems, the agent can report imagining spatial situations,
which then transitions to reports of using episodic memory
(things it “remembers”). When using semantic memory, it
can report on the instructions and facts it is using (things it
“knows”). With practice, the agent loses the ability to report
on its reasoning as intermediate structures are no longer
generated in working memory and processing is done purely
with rules. The rules produce behavior without the creation
of a declarative trace that the agent can report.

As shown in Figure 7, our model predicts there are also
changes over time in terms of which mechanisms are used
in action modeling, and thus decision making. The obvious
prediction is that in humans the brain areas used for action
modeling, and thus decision making, will change based on
characteristics of the task (whether it is spatial or symbolic)
and a subject’s experience (whether it has access to relevant
semantic, episodic, or procedural knowledge).

Conclusions

The major claim of this paper is that intelligent agents,
including humans, have a variety of available mechanisms
that can be used to predict the results of their actions in
service of decision making. A related claim is that internal
prediction does not occur in any specific architectural
module, but results from a combination of characteristics of
the domain, the agent’s background knowledge, prior
experience, and the agent’s available memories and
processing elements. We have demonstrated two agents in
two domains using rules, episodic memory, semantic
memory, mental imagery, and action decomposition for
action modeling. Although the domains are simple, the
results predict significant changes in behavior as knowledge
accumulates in episodic memory and is compiled into rules.

Central to achieving these results are the various
memories and processing units in Soar as presented in
Figure 1, as well as the task-independent knowledge that
controls the use of these knowledge sources. A critical
component of Soar’s ability to support these methods is its
employment of impasses when knowledge is incomplete.
Impasses are critical for identifying when action modeling is
necessary (a tie among competing actions) and for invoking
alternative approaches when rule-based action modeling
knowledge is missing. In addition, substates provide the
representational structure needed to support retrieving and
combining knowledge without disrupting the state of the
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problem being attempted. These components appear to be
missing, or at least difficult to achieve, in other
architectures, and it would be informative to attempt to
duplicate the qualitative structure achieved here in other
cognitive architectures.
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Abstract

The efficient detection and resolution of conflicts represent
the key tasks of Air Traffic Controllers in enroute
environments. The complexity of these tasks imposes
significant challenges on the design of cognitive models that
are capable of adequately simulating them. Yet, the
availability of such models is crucial for a number of
applications, including the evaluation of current and future
Air Traffic Control concepts. In this paper, we will propose a
novel modeling approach which adopts the principles of the
A* graph search scheme from Artificial Intelligence to
represent the cognitive decision making process of the human
operator. Results of an initial version of this model will be
presented, showing that the proposed approach has promise.

Keywords: Cognitive Modeling; Cognitive Systems
Engineering; Artifical Intelligence; Decision Making; Air
Traffic Control.

Introduction

In most western economies, the volume of air traffic is
currently growing at a rate of 4 to 6 percent per annum.
According to its 2006 annual report, the US Federal
Aviation Administration (FAA) acknowledges that air
traffic controllers will not be able to handle traffic at
25 percent above today’s level, and that traffic may increase
this much by 2016 (ICAO, 2004). In response to this
problem, the United States Federal Aviation Administration
and Eurocontrol are currently pursuing programs to greatly
increase airspace capacity (FAA, 2010; Eurocontrol, 2008),
without raising either the workload or number of air traffic
controllers.

Cognitive modeling could provide an important vehicle
for the evaluation of new operational concepts if it is
possible to simulate performance on challenging air traffic

139

control operations. For example, models making reasonable
estimates of sector workload could inform evaluations of
safety and staffing. One of the more cognitively complex
tasks of controllers is the detection and resolution of
conflicts (Lehmann, Bolland, Remington, Humphreys,
Fothergill, Hasenbosch, & Neal, 2010). The n-aircraft
conflict resolution problem is highly combinatorial and
cannot be optimally solved using classical mathematical
optimization techniques. This inherent complexity imposes
significant challenges on the design of corresponding
models.

This paper will propose a new method that simplifies the
task of modeling expert decision making in Air Traffic
Control (ATC) environments by relying on domain-specific
simple heuristics that humans deploy to produce accurate
decisions (Todd & Gigerenzer, 2007). The conflict
resolution mechanism adopts the principles of the A* search
algorithm (Felner, Stern, Ben-Yair, Kraus, & Netanyahu,
2004; Lee, Osman, & Sabudin, 2009; Leigh, Louis, &
Miles, 2007). The resulting scheme implements a search
through a space of conflict solutions. System states are
evaluated using optimization criteria encapsulating the
controller’s goals. Each optimization criterion is associated
with a number of individual cost functions that penalize
deviations of the system states from the goal states. The
focus on psychologically plausible strategies, rather than
representative psychological processing mechanisms, was in
part a response to the complexity of decision making in
ATC and the large number of unobservable factors that
would need to be incorporated (e.g., memories for previous
or typical solutions). Moreover, the strategies we use were
elicited from highly experienced controllers and thus
encapsulate experts' insights and knowledge. Our working
hypothesis is that the use of psychologically plausible



solution heuristics and optimization criteria in conjunction
with the constraints imposed by the environment will
produce human like behavior.

We first describe the conflict detection mechanism, then
detail the manner in which the model selects solutions using
the optimization criteria to find a path in the search tree.
Finally, we present empirical tests of an initial
implementation of the model showing good but not perfect
fits to data from human controllers.

Conflict Detection Scheme

The current implementation of the conflict detection scheme
is based on the model proposed in Loft et al. (2009). It
detects pairs of conflicting aircraft in a hierarchical fashion.
Its decomposition into three operational stages allows for a
run-time efficient implementation. Potential conflicts are
verified by extrapolating the flight paths of all aircraft that
are present in the given scenario, and by subsequently
identifying violations of separation standards between the
flight paths. Positional aircraft uncertainty is accounted for
in this process. The three stages proceed as follows:

Stage 1: Coarse check of vertical separation

A coarse check is performed to verify the vertical separation
between aircraft. This stage checks if the vertical corridors
of any two aircraft of interest are separated by more than
1000 ft, where the vertical corridors are defined by the
aircraft’s target altitude and cleared altitude respectively.

Stage 2: Lateral separation check

If the first stage (coarse check) reveals the existence of a
possible vertical conflict between two aircraft, the model
deploys the so-called Trajectory Modeller to check for a
lateral conflict. At any given time ¢, the Trajectory Modeller
extrapolates the flight paths up to time 7 + 10 min in discrete
AT = 5 sec steps. The aircraft positions at each time step are
subject to positional uncertainty, where the uncertainty
increases successively over time based on a step function.
More specifically, the extrapolated aircraft position at a
discrete time step #,=kAT, k=0, 1, 2, 3,... is associated with
a discrete uncertainty interval [a AT, byAT], where the
coefficients a; and b, associated with the lower and upper
limits of the interval are:

a; =trunc (0.98 - k)
b, =trunc (1.02-[k +1])

Equation 1
Equation 2

Stage 3: Final vertical separation check

If the second stage (lateral separation check) verifies a
potential lateral conflict between two aircraft of interest, a
third stage will be deployed to check for vertical conflicts.
For this purpose, the respective flight paths are vertically
extrapolated based on the maximum and minimum climb or
descent rates of the aircraft. Response times of the aircraft
are currently not considered. That is, the aircraft are
assumed to instantaneously initiate the actions associated
with the controller’s interventions.
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Decision Making Model

The proposed decision making model adopts the principles
of the A* graph search algorithm (Felner, Stern, Ben-Yair,
Kraus, & Netanyahu, 2004; Lee, Osman, & Sabudin, 2009;
Leigh, Louis, & Miles, 2007). This algorithm relies on a
state-space search engine to evaluate the decision
alternatives in a hierarchical fashion. Hierarchical search
has been shown to produce good modeling solutions to
complex aeronautical problems in the past (Nason & Laird,
2005; Rosbe, Chong & Kieras, 2001).

A* finds the minimum cost path in a decision tree through
a partial search in the solution space. The avoidance of an
exhaustive search presents a significant advantage for its
application in the ATC domain, where the decision making
process poses a complex problem that typically leads to an
extensive search tree in general traffic scenarios. That is, the
topology of the search structure does not need to be known
a-priori. In our model, the search space consists of solution
types, each representing an action that could be taken to
resolve the conflict. The solution types are based on simple
heuristics that have been obtained from experts (using
interviews and controlled experiments), and from data
mining (using radar track data).

Solution Types

The current implementation of the conflict resolution model
provides a set of three different solution types which may be
applied to the aircraft involved in potential conflicts. Before
a solution can be considered for exploration, one or more
conditions of applicability must be satisfied. Each solution
has a particular weight. A smaller weight corresponds to a
more favourable solution. The effective weight of a solution
is the sum of a base weight and a penalty value. The purpose
of the penalty values is to impede the selection of solutions
that would severely disturb an aircraft’s intended flight path.
The individual solution types and their weights are:

A. Assign closest level below or above conflict zone

The principle of this solution type is to ensure sufficient
vertical separation by assigning one of the two aircraft of
the conflict pair a safe altitude either beneath (low solution)
or above (high solution) the other aircraft whilst they are in
the region of the airspace where a loss of lateral separation
is possible. More specifically, assuming two conflicting
aircraft A and B, the low solution is applicable if A is not
already descending through the low solution. Alternatively,
the high solution is applicable if A is not already climbing
through the high solution. This avoids direct transitions
from a descent into a climb or from a climb into descent
respectively.

Figure 1 illustrates an example where both aircraft A
and B are on climb from Flight Level (FL) 110 to FLI150
and from FL120 to FL160 respectively.
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Figure 1: Assign closest level below

The climb of aircraft A is halted below aircraft B by
assigning FL130 to aircraft A.

The base weight of this solution type is (-0.5). Penalty
values in the amount of +0.1 are additionally applied if the
solution applied to A falls outside the transitional altitude
band defined by A’s current and cleared altitudes.

B. Assign separated levels

The second solution type involves modifying the levels of
both aircraft, assuming a pair of conflicting aircraft where
one aircraft is climbing and the other aircraft is descending.
Figure 2 illustrates the basic concept of this solution, once
again using a conflict pair of aircraft A and B. In this
example, aircraft A is climbing from FL110 to FL150, while
aircraft B is descending from FL150 to FLI110.
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Figure 2: Assign separated levels

In this case, the applicable solution is to interrupt both the
climb of aircraft A and the descent of aircraft B by assigning
FL130 to aircraft A and FLI40 to aircraft B, thereby
ensuring that sufficient vertical separation between the
aircraft is maintained.

The base weight of this solution type is (-0.5). Penalty
values in the amount of +0.1 are added to the weight for any
reverse climb or reverse descent intervention.

C. Vector behind solution

The vector behind solution proceeds as follows: A circle
with a radius of 6mm (nautical miles) is placed around
aircraft B at its current position. Aircraft A is pointed behind
aircraft B by vectoring it to the heading that establishes a
tangent to this circle, thereby ensuring sufficient lateral
separation between the two aircraft.

This solution is generally applicable to all conflicting
aircraft. Its base weight is (-0.5). There are no additional
penalties.
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Adaptation of A* to the ATC decision making task

The search space of the A* algorithm can be graphically
represented by a decision tree. An example graph is shown
in Figure 3. Each node in the decision tree represents a
system state that, with the exception of the start node (),
results from the path of previous actions leading to it. The
edges between the nodes represent the path of actions. Each
edge has a value (shown as an integer in Figure 3)
representing the cost incurred by traversing that edge. It is
worthwhile to note that apart from the goal node (G), each
node has at least one decision alternative associated with it,
leading to a so-called child node.

Figure 3: A* example graph

The decision making process is effectively driven by the
cost function f{x). That is, A* ranks each path currently
under consideration based on f{x) to find the path with the
lowest traversal cost. f{x) is decomposed into a so-called
path-cost function g(x) reflecting the cost from the starting
node to the node of interest, and a “heuristic estimate” A(x)
of the distance to the goal node.

f(x)=gx)+h(x), Equation 3
where x denotes some partial path. In other words, f{x)
represents the estimated final cost of the path leading to the
goal and including x. Under the right conditions, A*
guarantees to find the path with the lowest traversal cost
(Leigh, Louis, & Miles, 2007). The performance of A*
relies heavily upon the heuristic estimate s(x). A necessary
condition for A* to find the shortest path is that the heuristic
must underestimate the remaining distance.

One of the key aims in adopting the A* search scheme to
the ATC conflict resolution task consists in achieving a
model behavior that is closely aligned to the behavior of
human controllers. For this purpose, the concept of
optimization criteria was introduced. Each optimization
criterion C, encapsulates the n” goal of the controller.
Table 1 shows three examples for possible optimization
criteria:

Table 1: Three exemplary optimization criteria

Optimization criterion C,

Minimization of total number of aircraft interventions
Minimization of disruption to aircraft flow
Minimization of the controller’s workload

w N —S




Each optimization criterion C, is associated with a set of
descriptive attributes, A,. These attributes are represented
by corresponding cost functions

Sok = 8n + Mot Equation 4

Summing up all the cost contributions across the
individual attributes yields the final cost function for the
individual criterion C,;

fn :z(gnk +hn/<)
k

Equation 5

Our initial version mainly aims at the implementation of
optimization criterion C; from Table 1. That is, it tries to
resolve all conflicts given in the scenario with the fewest
aircraft interventions. However, the second criterion listed
in Table 1, C,, was additionally integrated into the model, to
account for the attempts of controllers to minimize
unfavorable flight maneuvers. Table 2 shows the individual
attributes for C; and C,.

Table 2: Attributes of the optimization criteria as per the
current model implementation

C, |l k Attribute A,

C; | 1| Preference of graph nodes of lower depth level

C; | 2| Preference of nodes showing fewer remaining conflicts
C; | 3| Number of conflicts of the aircraft subject to intervention
C; | 4| Number of occurrences of the solution of interest

C, | 1| Obstruction of unfavorable flight maneuvers

As Table 2 shows, C; is represented by four attributes
and C; by one attribute respectively. The aim of the
attribute A;; in Table 2 is to prioritize the selection of
solutions that belong to graph nodes at low depth levels.
The depth level of a node is determined by the number of
subsequent nodes lying in the decision path, that is, by the
number of actions leading to it. Therefore, the node depth
defining the corresponding cost function g;;(x) represents
the number of interventions that have already occurred in
the path of interest x, and that have consequently already
imposed a penalty on the achievement of optimization
criterion C;.

Generally, the number of remaining conflicts in a given
node establishes a good indicator for the expected number
of remaining interventions. Consequently, this measure was
taken to define the cost component #h;,(x) for the
corresponding attribute A, in Table 2. The metric was
encapsulated in the heuristic component & of the cost
function f as it represents a predictive cost estimate. The
number of conflicts that the aircraft the solution acts upon is
involved in represents an additional indicator for the
efficiency of the solution with respect to achieving
criterion C, in the remaining path to the goal. The number of
remaining conflicts therefore forms the cost component
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h;a(x) corresponding to attribute Aj,. The underlying idea is
that in comparison to solutions that are applied to aircraft
that are involved in a single conflict only, solutions applied
to an aircraft involved in multiple conflicts have a greater
than zero probability of resolving multiple conflicts this
aircraft is subject to in one go. This likelihood of efficiently
minimizing the intervention count is further increased if in
addition to acting on aircraft involved in multiple conflicts,
the particular solution is suggested multiple times by the
solution logics for resolving different conflicts. The number
of total occurrences of the solution under consideration was
therefore taken to define cost component /h;3(x)
corresponding to attribute A ;.

The cost function for attribute A;; is simply the sum of the
base weights of the solutions and the respective penalties as
described in the subsection entitled Solution Types. While
the base weights for the individual solutions are identical for
all solution types in the current implementation, the
additional penalties depend on the situational context. Their
purpose is to prevent the selection of solutions yielding
unfavorable aircraft maneuvers, such as reverse climbs and
reverse descents.

Based on this set of individual cost components, the cost
functions fy(x) and f;(x) are computed using Equation 5. The
final cost function f{x) is then just formed by adding fy(x),
fi(x), and a Gaussian noise term that accounts for the
probabilistic nature of the human decision maker. This noise
term is characterized by a relatively small variance and
therefore predominantly influences the selection of solutions
belonging to the same search tree level. Impacts of this
noise on solutions belonging to different tree levels are very
unlikely. All parameters required for the formulation of the
cost functions, including the variance of the noise, were
empirically chosen in the current implementation. The
effective cost f(x) establishes the basis for the decision
making process in the ATC search tree. This process will be
discussed in the following subsection.

ATC Search Tree

An example of the resulting ATC search tree is depicted in
Figure 4.

Serial search
Limitcd capacity

Conflicts
SSE & IDE
MUA & BAW
) XXS & IDE
" UAL & MUA

°

Give requirement to VHSSE

Downhill search

Driven by heuristics

Conflicts Shaped by constraints

MUA & BAW
XXS & IDE
UAL & MUA

Give XXS new level

Give MUA new level
Conflicts
XXS & IDE
UAL & MUA

Creates new conflict with
VHGBT

Figure 4: ATC search tree



In this example, the conflict detection model initially detects
four potential conflicts between aircraft pairs in the
scenario, as depicted in the root node within Figure 4. A set
of potential solutions is then constructed for each of the
potential conflicts present in this node. The entire set of
potential solutions is then evaluated by assigning individual
cost values f;; to the solutions, where i (i = 0 for root node)
and j denote the indices of the current node and the solution
under consideration respectively. The solution having the
smallest cost value will finally be selected and applied,
creating a new child node with an associated set of conflicts.
In the example in Figure 4, the solution selected in the root
node resolves one of the four problems, leaving the
respective child node with three remaining problem pairs.
The process applied to the root node is then repeated for the
child node in a recursive fashion. Figure 4 also demonstrates
that solutions selected via a-priori evaluation may be
deemed to be inefficient via a-posteriori evaluation. For
example, the solution entitled ‘Give XXS new level’ creates
a new conflict, which leads to back-tracking behavior in the
search process. That is, the subsequent search evaluation
step may select a solution associated with the parent node,
rather than propagating further down from the child node
produced by the previous, inefficient solution. The overall
optimization scheme effectively leads to a downhill search
which is driven by the available set of solution types

(heuristics) and shaped by the situational context
(constraints).

Experiments
Aim and Methodology

To compare the model’s behavior against the behavior of
controllers, we simulated performance on a set of four
different scenarios of varying complexity that were also
presented to /4 En-Route, radar endorsed air traffic
controllers from Brisbane Centre. Figure 5 shows the
scenario with the highest complexity.
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Figure 5: Scenario of highest complexity
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The time participants had been endorsed as a controller
ranged from 70 to 20 years. Controllers were asked to
resolve the scenario by issuing restrictions to one or more of
the aircraft. They were instructed to work through the
scenario step by step, and to explain their actions in detail,
including the evaluation of potential problems, and the
processes of considering options and deciding on actions or
priorities. The interviews were based on the critical decision
method (Klein, Calderwood & MacGregor, 1989).

The simulation consisted of /00 runs of our decision
making model for each scenario. Our interest centers on the
degree to which the model used the same intervention rates
and types as the human controllers. Table 3 shows the
intervention types.

Table 3: Intervention types

Type Description
HO Intervention other than H1, H2,..., H8
H1 Vector aircraft to the left
H2 Vector aircraft to the right
H3 Issue climbing instruction
H4 Issue descent instruction
H5 Extend an existing climb
H6 Extend an existing descent
H7 Interrupt an existing climb
HS Interrupt an existing descent

Results

The results for the scenario with the highest complexity are
presented in Figures 6 and 7. Figure 6 shows the total
average intervention rates for the individual aircraft for both
controllers and model runs. Figure 7 shows the selection
rates of the individual intervention types.

It can be seen from Figure 6 that there is a reasonable
agreement between controllers and the model in selecting
the aircraft that are subject to intervention. However,
controllers appear to intervene with a wider range of aircraft
than the model, at more variable intervention rates: Aircraft
‘VHETR’ is excluded by the model in Figure 6.

I Controllers
[IModel output

|

VHSSE ~VHTTO  VHXXS

1

Average intervention rate
o o
PO

BAW12 MUA177 UAL66 VHETR VHIDE

Figure 6: Total average intervention rates for the aircraft



Figure 7 demonstrates a reasonable agreement between
controllers and the model in the selection of the intervention
types. However, a reduced variability of the model can be
observed: In contrast to controllers, the model essentially
excludes the generation of intervention types HO
(‘Intervention other than HI, H2,..., H8’) and H5 (‘Extend
an existing climb’).
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Figure 7: Average selection rates of the intervention types

Conclusions and Outlook

This paper describes a novel approach for modeling the Air
Traffic Control (ATC) task using intelligent graph search.
The A* algorithm was adopted to model human decision
making under uncertainty and environmental constraints.
This model relies on the definition of optimization criteria
and associated attributes, where the attributes are
represented by corresponding components of the overall
cost function. The optimization criteria encapsulate
properties of the situational context that influence the
decision strategies of a human controller. They can
consequently enable the model to alter its behavior
accordingly. An initial implementation of this model is
proposed that aims at minimizing the total aircraft
intervention count under preservation of the realism of the
generated solutions. Empirical tests demonstrate good but
not perfect fits to data from human controllers. A reduced
variability of the model over controllers was observed, in
the selection of both the aircraft for intervention and the
actual types of intervention. This variability might be
induced by psychological processes that the model does not
capture, such as human attention and perception.

The results suggest that the modeling concept has promise
for its application to decision making in complex, dynamic
task environments. We therefore plan to extend the
approach in our future work by incorporating additional
optimization criteria; by advancing the current decision
making mechanisms; and by integrating adaptive behavior
into the model.
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Abstract

Humans have a remarkable ability to adapt their perceptual
acuity to the task at hand, commonly referred to in the liter-
ature as perceptual learning. Understanding this ability at a
computational level may have important implications across
a wide variety of different psychological phenomena. There
is evidence suggesting this ability plays an important role in
speech comprehension, mathematics, and perceptual expertise,
for instance. Computational models of perceptual learning
have largely focused on hypothesizing how one or more mech-
anisms might explain the observed perceptual learning for a
single task. Here we explore how a single model might ex-
plain the learning curves across two auditory perceptual learn-
ing tasks. Our results suggest that an ideal observer model
with noisy input can predict learning when daily limits are not
reached, and that daily limits on learning can be modeled by
a decay of memory for trials observed on the current day of
practice.

Keywords: perceptual learning; ideal observer; plasticity vs.
stability; frequency discrimination; duration discrimination;
temporal interval discrimination

Introduction

Humans have a remarkable ability to adapt their perceptual
acuity to the task at hand, commonly referred to in the liter-
ature as perceptual learning (Fahle and Poggio, 2002). Per-
ceptual learning has been demonstrated in many different ex-
periments. In vision for instance, there are studies of vernier
hyper-acuity (Poggio et al., 1992), orientation discrimination,
and spatial frequency discrimination (Fiorentini and Berardi,
1980). Examples in the auditory domain include results for
frequency discrimination (Demany, 1985), and temporal in-
terval discrimination (Wright et al., 1997). Perceptual learn-
ing is often characterized as being highly specific both to the
task (Fiorentini and Berardi, 1980), and to the specific loca-
tion or range within a dimension (Wright and Zhang, 2009;
Poggio et al., 1992).

There is evidence that perceptual learning is important for
a great variety of real world tasks humans face (Kellman and
Garrigan, 2008). There is data suggesting that perceptual
learning helps us during speech comprehension (Notris et al.,
2003), that it can help children with dyslexia (Hayes et al.,
2003) and that it has an important role to play in the compre-
hension of mathematical formulae (Kellman et al., 2008).

Computational models of perceptual learning have the po-
tential to enable better predictions and to help us better under-
stand human data. Past computational work studying percep-
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tual learning has largely focused on how specific mechanisms
might explain the particular properties of perceptual learn-
ing for a single task (e.g. Poggio et al., 1992; Petrov et al.,
2005; Jacobs, 2009). Such studies focus on the question of
how and/or where perceptual learning occurs within the hu-
man brain for a single perceptual task. Our goal here is to
develop a model of multiple perceptual learning tasks. By
looking across several tasks we can ultimately constrain our
model by requiring that a single parameter explain qualita-
tively different results across several tasks. Our research also
differs from past work in that, to the best of our knowledge,
there are no computational studies of perceptual learning for
auditory tasks.

Here we model auditory perceptual learning across two
tasks: temporal interval discrimination and frequency dis-
crimination, as discussed in Wright and Sabin (2007). By
modeling learning across several tasks our goal is to gain a
better understanding of why learning does or does not occur
under various training conditions. Our focus here is on mod-
eling the daily limits of learning: it was observed in Wright
and Sabin (2007) that training beyond some point in a sin-
gle day does not yield extra learning. Our results suggest
that limits on daily learning can be modeled by a decay of
the memory of trials observed on the current day of practice.
This decay is consistent with numerous studies of consolida-
tion suggesting newly acquired information in a day begins
in a volatile state, and is not made permanent until memories
are consolidated (e.g. McGaugh, 2000).

Human Data

This section reviews the human data and results originally
described in Wright and Sabin (2007). In this paper, they ex-
amined how varying the number of training trials practiced
per day affected learning over multiple days on two auditory
discrimination tasks: frequency discrimination and temporal-
interval discrimination. The basic question asked in the paper
was “how much daily training is sufficient for learning to oc-
cur?” The set of relevant findings we model here is that extra
trials practiced per day, past a certain point, do not appear to
lead to any further learning.

During the experiments, subjects practiced either a tempo-
ral interval discrimination task or a frequency discrimination
task for a single session each day of practice, for six days
over no more than two weeks. Each task was a two inter-



val forced choice: on each trial participants must pick which
of two stimuli is longer (higher) for the interval (frequency)
discrimination task. The stimuli were adjusted adaptively as
practice continues. As subjects do better, the difference be-
tween the standard (shorter) and comparison (longer) stimu-
lus gets smaller. This is a common procedure used in psy-
chophysics to find a performance threshold. The experiments
consisted of a two-by-two design over number of trials in a
day (360 or 900) and task type (frequency or interval). Each
of the four conditions used a different set of participants. Fur-
ther details of the training procedure can be found in Wright
and Sabin (2007).

The data suggest there are important within-day limitations
on human perceptual learning: extra practice past some point
does not improve learning any further and insufficient prac-
tice in a day yields little to no learning across days. Further,
the number of trials needed for learning is task dependent.
Specifically, if a subject practiced the temporal interval task
for 360 trials per day this yielded the same amount of learn-
ing as 900 trials per day. During the practice of frequency
discrimination, 900 trials of practice produced significantly
more learning than 360 trials. All the above observations
were statistically verified. Details can be found in Wright
and Sabin (2007).

Here our focus will be on modeling this first observed limit
within a day: past a certain point no further trials within a day
appear to yield further learning.

Method

This section describes and justifies the basic principles of our
model (which is evaluated in our Results section).

In terms of Marr’s (1982) levels of analysis, we restrict
ourselves largely to the informational level. When operating
at this level we make no claims about what algorithm is used
internally or how that algorithm is implemented in the human
brain. Since the informational constraints are not yet fully
understood for the modeled experiments, we believe this is
an appropriate level of analysis for the time being.

Specifically, we utilize an ideal observer analysis (Geisler,
2003). The idea is to consider human performance in refer-
ence to an ideal observer, which processes information in a
way that is ‘optimal’ in some sense. This can help to avoid
conflation between two distinct types of limitations on human
behavior. These are, respectively, informational and psycho-
logical limits. Informational limits are those limits that are
inherent to the task: even if an observer were to be perfect
they would still be subject to informational limits. An ex-
ample of an informational limit would be noise in the input:
any learner, no matter how smart, would have to deal with
the problems introduced by noise. Psychological limits on
the other hand are a product of resource limitations on the
part of the observer: if the observer was ‘smarter’ they might
be able to improve their behavior. An example of a psycho-
logical limit would be memory: with limited memory only so
many units of information can be stored, but a smarter learner
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would be able to store more, and so improve behavior.

Since any observer is subject to informational limits, we al-
ways assume these are present. Psychological limits are then
only hypothesized as necessary: if a behavior could be ex-
plained solely in terms of informational limits, then no addi-
tional psychological limits would be hypothesized. Through-
out our discussion we make a distinction between the ideal
observer and the proposed psychological limits.

Based upon this principle we designed a system capable of
modeling the observed limits on the amount of useful daily
practice, as observed in Wright and Sabin (2007). We begin
by describing the commitments we made regarding what in-
formation is available to humans when performing this task.
We then describe an ideal observer model, and then identify
the ways in which our model of human performance differs
from the ideal observer.

Input

The input to our model is consistent with the following prop-
erties, which are explained in more detail below. These
choices represented a number of educated guesses as to
the form of the information humans receive, based on psy-
chophysical and physiological findings.

1. Differentiation along task relevant dimensions: e.g. 1 kHz
is represented differently than 2 kHz.

Corruption by noise.

Range specificity: e.g. energy near 1 kHz is encoded sepa-
rately from energy near 2 kHz.

Weber’s law.

Each of these properties is based on many observations.
Clearly the input is differentiated along task relevant dimen-
sions: if there was no differentiation at all along a task rele-
vant dimension, different stimuli of a task would appear the
same to us. Second, there are many evident sources of noise
to perceptual data, from noise in the world, noise during the
transduction of sound to neural impulses, and noise in the
nervous system itself. Range specificity is consistent with
the narrow generalization patterns observed during percep-
tual learning tasks (e.g. Poggio et al., 1992; Fiorentini and
Berardi, 1980; Wright and Zhang, 2009) and with the great
multitude of physiological data suggesting that neurons are
responsive to specific, limited ranges of stimuli (e.g. Brugge,
1992; De Valois and De Valois, 1980). Range specificity is
distinct from differentiation: for instance a single source of
information can differentiate between 1000 Hz and 200 Hz
by using a single number, 1000 or 200, which would not be
specific to a particular range; range specificity means that the
sources of information (e.g. neurons) representing 1000 Hz
and 200 Hz would be at least somewhat disjoint.

Weber’s law—which states that the minimum discernible
difference (or just noticeable difference) between stimuli
along a particular dimension is proportional to the magnitude



of the stimuli along that dimension—has long been estab-
lished as a useful rule of thumb for perceptual data (Moore,
2006).

In addition we make a number of simplifying assumptions.
We assume that, prior to perceptual learning, the input has
been correctly broken down into the various experimentally
relevant units (i.e. each input to our model represents a single
stimulus). How this happens in humans is not the focus of
this modeling experiment. Our second assumption is that the
dimensions of the stimulus are independent cues for the tasks
in question, which is correct for the two tasks we consider.

Frequency and temporal interval are represented on a log
scale. The frequency representation is found directly from the
model described in (Wang and Shamma, 1994)!. Our interval
representation is found based on a windowed autocorrelation
of the stimulus onsets. Both of these choices yield a repre-
sentation consistent with our above assumptions. The input
to the observer is a vector x of 228 terms: 128 features rep-
resenting frequency and 100 features representing temporal
interval. There are 128 bins for frequency because this is the
resolution of the model from (Wang and Shamma, 1994). The
number 100 for the interval representation was chosen arib-
trarially. The observations made in the Results section did not
change when this number was changed to 50 or 200.

We permute the input by an experimentally determined
amount of noise specific to each dimension of the stimulus
(o7 for the interval noise and G% for the frequency noise).
Note that since the representatiori is deterministic, when it is
applied directly to an ideal observer it would always respond
correctly. Choosing to represent all error in the system as in-
put noise is conservative in the sense that the ideal observer
will do more poorly under these conditions than if some of
the error was modeled as output noise, for instance.

Ideal Observer

We implement the ideal observer using a Bayesian approach
to learning: a probabilistic model which is learned during the
course of practice is used to determine the correct response on
each practice trial. This model is not meant to be a psycho-
logically plausible model of perceptual discrimination. It is
an optimal decision maker for this task, whose performance
can thus be used to identify in what ways humans are different
from an optimal choice.

For a single trial, there are two stimuli, and each stimulus
is encoded as a vector, x, of 228 terms: 128 features for the
frequency representation and 100 for the interval representa-
tion. Since we know that this input is permuted by Gaussian
noise the likelihood of each stimulus type—the standard (or
longer) and the comparison (or shorter)—can be modeled us-
ing a Normal distribution. We calculate the posterior model
analytically by assuming a conjugate prior (Gelman, 2004).
Learning and use of this model then follows a straightforward
application of Bayes rule and conjugate priors, described be-

'An implementation of this model can be found at
http://www.isr.umd.edu/Labs/NSL/Register.htm.
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low.

Specifically the ideal observer learns a model of the stan-
dard (e.g. shorter) stimulus, S, and one for the comparison
(e.g. longer) stimulus, C for each task. Each model is a
multivariate Normal distribution, describing the probability
of observing a given input vector x. This distribution is spec-
ified by the mean vector ug for the standard model and u-
for the comparison. Each mean has 228 terms (one for each
frequency and interval value) and covariance matrix Xg,or X¢
with 228 rows and columns. Hence, the probability of ob-
serving a given input vector, assuming it is the standard is as
follows.

p(x|ug, Ts) o< exp [ (x — pug) " Zg ' (x — )| (1)

To learn the model of S and C the observer must be pro-
vided with examples of the standard and the comparison.
These can be used to determine the probability of a given
u, and Xg, using Bayes rule. Below Xx; represents the exam-
ple of the standard (shorter) stimulus observed at time . On
each practice trial, feedback is given to the observer after it
responds, so on each trial the observer is provided with an-
other example of both the standard and the comparison.

p(us, Zs[x1) o< p(x1|ug, Es) p(us, Zs) 2

P(ug, Zs|x1,X2) o< p(Xa|ug, Xs) p(ug, Zs|x1) (3)
p(nu5725|xt7 tee 7X1) o< P(Xt|,US,ZS)P(.Us»ES|X171a T axl)

“)

Equation 2 requires that the prior probability p(ug,Xs) be
known, which we will discuss shortly. Subsequent equations
show how an example x; updates the distribution of parame-
ters for S. Given a set of training examples, the probability of
x for model S is defined as follows:

p(x1S) = /[ plxluss. Zs)plus. Esf - x1) dusdZs (5

Equation 5 can be calculated given that conjugate priors are
used. Once p(x|S) and p(x|C) are known, Bayes rule can be
used to find the probability that the model should indicate that
the first (or second) stimulus is the longer of the two stimuli
presented on a trial.

To use this Bayesian learner we must define the prior of the
model (p(u, X)), representing what people know before they
practice the task. There are many deep questions that might
be asked about what humans know about task before practice
and how they know it. Here we choose a simple approach
to selecting a prior: starting with a naive model (with mean
vector 0, and an identity matrix for covariance) the learner is
presented an experimentally determined number of trials of
each task (N, trials of the interval task, and Ny trials of the
frequency task).



Psychological Limits

We consider two modifications of the ideal observer de-
scribed in the previous section to model psychological lim-
its. The first is a direct result of the observation in (Wright
and Sabin, 2007) that for these tasks people do not appear
to learn within a day but only across days, hence our ‘daily’
model. The ‘daily’ model learns as per the ideal observer, but
responds based only on data from previous days of practice,
and not from the current day. This is used as a baseline model
during our evaluation in the next section. Our second mod-
ification models the hypothesis that there is a daily limit on
training: it does this by introducing a decay on the knowledge
obtained from trials on the current day. The ‘decay’ model
incorporates this limit, in addition to the limits of the ‘daily’
model. This proposed decay is a novel contribution of this
paper in that it has not been considered as an explanation for
the observed daily limit in these tasks before.

The decay in the model is implemented as follows. Given
a new example, X,y at trial 7 + 1, normally the model of
the standard (or comparison) stimulus is updated according
to Bayes rule in the following manner.

fraW, 2| Dy, C) o<
P(Xep1 | 1) fra(u, 2 | Dr)fT,d—1(,U,Z 1C) (6)

In Equation 6, the function f; 4 is the distribution over stimu-
lus parameters u and X, on trial # of day d. D, represents all
training examples observed for the current day, and C repre-
sents all examples observed on previous days (i.e. the con-
solidated information). 7 is the maximum number of trials
observed in a day. This expresses the same relation expressed
in Equation 4. However, with memory decay, this optimal
update is changed to the following rule.

Jra(,Z | Dry1,C) o<
Pt | D) fra( 2| D) fray (X C) (7

Equation 7 means that memory decay occurs for trials ob-
served on the current day. The distribution learned from a
previous day of practice remains in the same state it was at
the end of that day of practice (as determined by fr4—1), in-
cluding any decay that occurred on that day. This decay is a
reasonable representation of loss of information within a day.
If L = 0 then the model is equivalent to the ‘daily’ model. If
L =1 the daily practice has no effect on the model. Values
between 1 and O represent a continuum between these two
extreme conditions.

Note that it’s possible the decay should be over some
shorter period of time, rather than including all trials within a
day. For instance, it has been suggested that if a short nap is
taken this has the same benefit as a night of sleep for purposes
of perceptual learning (Mednick et al., 2003). This could eas-
ily be explained by our model by having D, contain only those
trials that occur after the last period of sleep, and C contain
all other trials. However, this is beyond the scope of the ex-
periments modeled in this paper.
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Results

Our hypothesis is that the observed daily limits on learning
can be modeld as a decay of the memory of trials on the cur-
rent day (while leaving memory of previous days’ trials un-
touched). We compared a computational model that had this
hypothesized limit (the ‘decay’ model) to one that did not (the
‘daily’ model). To compare these models to human data we
ran the same adaptive track blocks used in (Wright and Sabin,
2007) to determine thresholds. On each trial the original au-
dio input was represented to the model and a response was
given, and then feedback about the correct answer was used
by the model to learn. This procedure was repeated 30 times,
to simulate 30 different experimental subjects. This number
was chosen to yield satisfactory statistical power for our anal-
ysis.

Results for the two models are discussed below. Figure 1
displays the results of these two models alongside human per-
formance, as observed in (Wright and Sabin, 2007). From the
graphs it appears that both models appear to fit the results well
for the 360 trials/day interval discrimination condition and the
900 trials/day frequency discrimination condition. The decay
model appears to also fit the data for the 900 trials/day inter-
val discrimination condition better than the daily model.

Our statistical tests supported this observation. For each
iteration, condition and day of a model we found the squared
error to the mean human performance on that day. Table 1
shows the mean squared errors across conditions and models.
Because the human and model data were qualitatively dif-
ferent in the 360 trial/day frequency condition we excluded
it from the below analysis, since any differences between the
two models in this condition will not be meaningful. A 3x2x6
ANOVA across conditions and models and within days of
these squared errors showed a main effect across condition
and model (p < 0.028). A Tukey’s HSD test suggested that
the decay model’s mean squared error was significantly less
than the daily model’s mean square error (p < 0.014).

Interval Frequency
360 900 360 900
daily | 2.68(0.32) 3.40(0.37) 18.09(1.1) 1.24(0.11)
decay | 2.77(0.29) 2.03(0.19) 24.60(1.2) 1.19(0.14)

Table 1: Mean squared errors for the daily and decay model.
Errors are the difference between a model threshold and the
mean for the human data on a given day and condition. Num-
bers in parenthesis indicated standard errors.

Model parameters (which determined noise and prior
knowledge) were adjusted so that the daily model matched
human performance on day 1 and day 6 of all conditions ex-
cept the 360 trials/day frequency condition, using the opti-
mization algorithm described in Huyer and Neumaier (2008).
These conditions were chosen because this was where learn-
ing appeared to occur. Since the noise of the model strongly
influences the final performance of our model on day 6 (after
learning), it should be fit to those conditions where learning
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Figure 1: Results for ‘daily’ and ’decay’ models compared to human performance. Results are averaged across 30 runs of

each model.

Af represents the difference between the standard (lower) and comparison (higher) frequency stimuli for the

frequency task, and At the difference between the standard (shorter) and comparison (longer) stimuli for the interval task. The
adaptive track method used finds the 79% accuracy of a subject or model. Lower delta’s indicate that the human participants
are performing better. A model is accurately predicting the human data if its curve is closer to the human curves. Bars indicate

standard errors.

appears to occur. The parameters for prior knowledge are de-
pendent on this noise and so we fit it jointly and under the
same conditions as the noise. For reasons that will become
clear below we also matched this data to human performance
on day 2 of the 900 trials/day interval discrimination task.

An analogous procedure was used for the decay model ex-
cept that the decay parameter (L) was also adjusted, and fit
to the same days as above. The data was fit to day 2 for the
900 trials/day interval. This single day was chosen so as to
be minimal (to avoid overfitting) and such that it was a place
where L might cause an observable change in the results. This
same day was used for the daily model above so that both
procedures had access to the same information. All parame-
ters were selected so as to maximize the posterior probability
of the selected days given the human thresholds (assuming
thresholds on a day are Normally distributed, which is con-
sistent with the analysis in Wright and Sabin (2007)).

Discussion & Conclusions

In this paper we evaluated a model of learning across two
simple auditory tasks. Our goals differed from that of pre-
vious work (e.g. Poggio et al., 1992; Petrov et al., 2005; Ja-
cobs, 2009) in that we considered auditory tasks rather than
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visual tasks, and in that we considered a single model that
could explain results across several tasks. To the best of our
knowledge, ours is the first computational model of auditory
perpetual learning.

Our contributions in this paper were to show that our
‘daily’ model could accurately model two of the four con-
sidered experimental conditions and that our ’decay’ model
(which included a decay of memory for the trials observed on
current days) could model an additional condition (900 tri-
als/day of interval discrimination). This result suggests that
the minimal difference in learning for this condition and the
360 trials/day of interval discrimination could be caused by
memory loss.

Modeling this condition using memory decay is consistent
with numerous studies of consolidation suggesting newly ac-
quired information begins in a volatile state, and is not made
permanent until consolidation occurs after practice is com-
plete (McGaugh, 2000). In cases where consolidation is in-
terfered with, perhaps what happens is that the memory of
observed trials on a task decays before it can be stored in long
term memory. The 900 trial/day interval discrimination con-
dition would then represent an intermediate case where con-
solidation has yet to occur (perhaps because practice is still



ongoing), and hence memory decay degrades part of what
has been learned. Once practice is complete consolidation
can commence given that no other interfering effects occur.

The model presented here does not explain one of the ex-
perimental conditions we considered (the condition with 360
a trials of frequency discrimination a day). In this condition
people did not appear to learn but our model did, suggest-
ing that the human results cannot be explained simply by
the fact that fewer trials were observed, which is consistent
with the observations made in Wright and Sabin (2007). We
have considered several possible factors that might explain
this condition, but as of yet, no factor we have considered
can explain both the 360 trial interval discrimination task and
the 360 trial frequency discrimination task using a single pa-
rameter. Any model using a different parameter per condition
would be meaningless in that any such model would fit the
data. This suggests to us that more perceptual learning tasks
must be considered before a meaningful model for this condi-
tion and others like it can be proposed, and is a goal of future
work. In the future, it is also our plan to consider conditions
where people practice several tasks at once, to help us under-
stand why learning does or does not occur, such as in (Banai
et al., 2009).

This paper thus represents a first step toward developing a
model that can explain learning across a number of percep-
tual learning tasks, rather than modeling behavior on a single
task. Such a model must consider more constraints than one
that doesn’t, which can help provide a better understanding
of how and when perceptual learning occurs and why.
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A Human-Markov Chain Monte Carlo Method For Investigating Facial
Expression Categorization

Daniel M cDuff (djmcduff@mit.edu)
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Cambridge, MA 02139 USA

Abstract systematically manipulated in order to investigate the impor-

This paper demonstrates how a human-Markov Chain Monte tance of particular facial regions in expression recognition.
Carlo (MCMC) method can be used to investigate models of Padgett (Padgett & Cottrell, 1997; Padgett, 1998) investigates

facial expression categorization. Data were collected from four  rapresentations of facial images for emotion classification.
participants. At each step participants were asked to select a

representation from a pair, that most resembled a particular However, only 97 images are included in the data set. As a
emotional state; this was repeated iteratively. As such, they resultthere are a limited number of examples in a high dimen-

formed a component in the MCMC process. The representa-  gjnna| space from which participants were forced choose one.
tions were line drawn facial images with 10 nodes and four

degrees of freedom. The judgements formed samples for a set BOth these studies consider a pre-scripted set of stimuli and
gf interlleavelzd II\/larkov.Cha(gns. Tr;gs% vg)ere mapped Ao a} two- do not allow efficient exploration of each participant’s psy-
imensional plane using Generalized Discriminant Analysis. i ; i .
We contrast the results of the MCMC task with those of a sec- Phomglcal representations by aIonvmg them to accept and re
ond discrimination task. ject samples based on how they fit with the category. Padgett
Estimates of the distributions along each of the four dimen- represents human face judgements under multi-dimensional
sions showed that for the outer eyebrow and lip corner vari- scaling (MDS). Such a method allows for a quantitative mea-

ables one of the categories could be discriminated with confi- ¢;re of similarity in the relationships between facial expres-

dence. .
The average examples from both MCMC and discrimination SIOI’]S.. . .
tasks were both plausible. However, the MCMC method al- This work considers human labels for expressions rather

lowed for greater sampling from areas of high interest. Finally,  than the subjects state when displaying the emotion. It is im-

we show that a naive Bayes classifier trained on the MCMC ; ;
data can be used to succyessfully predict human classification portant to consider that a persons evaluation of another affect

in a discrimination task. given their facial expression may not be representative of their
Keywords: MCMC; categorization; representations; facial ex- ~ actual internal state.
pressions; emotion. Reasonable facial expressions for a particular emotion la-

: bel are likely to occupy only a small subspace of the total
I ntroduction : ) ; :

) ) .. space of possible expressions. This motivates the use of an
The face provides an important channel for communicating;cyc method. MCMC allows regions within a facial action

affect. Much emotional information is encoded in people’steatyre space to be populated with labels more efficiently that
facial expressions (Darwin, Ekman, & Prodger, 2002). HOW-g yiscrimination task.

ever, aﬁect_label mapping from facial expressions |s.often dif- In particular, we investigate the significance of each feature
ficult to define. In this paper we apply a Markqv Chain Momedimension in the categories found. We estimate the density
Carlo (MCMC) method (Neal, 1993) to investigate facial X" distributions for each category along each dimension. For a

pression categorization. Using humans as components in ple three category case considered, certain dimensions al-
MCMC process we demonstrate how we can sample from

o . . . low a particular category to be discriminated with confidence.
cognitive representations of facial expressions. L i .
: : . This is the first work | am aware of that models the relation-
MCMC is a sampling method that can be used to estimate, . : : :
- : . . hip between emotional states and facial expressions drawn
probability density functions. A parameter space is searche

. . ! - from continuous values within a multi-dimensional feature
via Markov Chains. The sampling procedure forms a Chalns ace. We allow the participants to navigate to an area of high
that can be shown to tend to the correct distribution (Neal bace. P P 9 g

1993). In an environment where the distributions of interest’l.SSOCIatIon with the particular label and sample from this re-

are likely to occupy a small subspace only, MCMC can be a Jion more frequently (Neal, 1993). _Representatlons are not
- ) imited by the number of examples in a data set but only by
efficient sampling method.

Emotions are controversially defined. However, Ekmanthe ranges placed on the variables.

a_md Friesen's (Ekman & Frlesgn, 1978) set of six basic emo- Related Work

tions are an accepted set of simple examples. These six are

used as a starting point for our study: anger, disgust, fealosofsky’s Generalized Context Model (GCM) of classifica-

happiness, sadness and surprise. tion proposes that people represent categories by storing ex-
This paper investigates how people map observed facial exemplars in memory (Nosofsky, 1986). The prototype theory

pressions to affect labels. Griesser et al. (Griesser, Cunningssumes a category’s mental representation is based on a pro-

ham, Wallraven, & Bulthoff, 2007) consider a psychophysi-totypic exemplar (Dopkins & Gleason, 1997). In contrast,

cal investigation of facial expressions. Scene parameters wethe exemplar theory assumes a set of exemplars are encoded

151



T Outer Eyebrow Elevation
\'*-..__.. ._...-/ ] |}
o~ \ . . 0 107 "
/ \ Inner Eyebrow Elevation
f 1 2 2 1 ‘ =R =S I e T
i e i . -0 10 :
° ' * (o =) Lip Corner Elevation (o =)
[ 1
L -\4;-] S o 10 /__..—.._‘\
3 3 I \ Lip Separation l ' ]

~Z_

=l
—
et

Figure 1. Face representation used in the tests. There are .

four degrees of freedom. 1. Position of outer eyebrows, 2Figure 2: Continuous ranges of four free parameters on the
Position of inner eyebrows, 3. Position of lip corners andface Representations of the extreme cases are shown at either
4. Lip center separation. Center of the eyebrows was fixe@nd of the scales.

(black node). Point about which lip center separation was

measured was fixed (black node). loosely correspond to the following action units which

are identified in Ekman’s (Ekman & Friesen, 1978) Facial

in the category’s mental representation (Nosofsky & PalmeriAction-unit Coding System (FACS).
1997). A new entity is compared to the exemplars in order to )
establish whether it belongs to the category. Outer Eyebrows - Outer Brow Raiser (AU2).

Sanbourn et al. (Sanborn & Griffiths, 2008; Sanborn, Grif-Inner Eyebrows - Inner Brow Raiser (AU1), Brow Lowerer
fiths, & Shiffrin, 2009) were the first to demonstrate the use(AU4)- _ _
of people as components in an MCMC algorithm, in orderLip Corners - Lip Corner Puller (AU12), Lip Corner Depres-
to explore psychological categories. A method was verifiedOr (AU15).
and used to demonstrate that human-MCMC can be used {gP Separation - Lips Part (AU25), Jaw Drop (AU26), Mouth
estimate the structures of real-world animal shape categorieStretch (AU27).

Padgett (Padgett & Cottrell, 1997) considered representa-
tion of facial images for emotional classification. However In a set of initial tests two participants performed discrim-
this study is constrained by the fact that the facial image datfation tasks with three facial representations. The first pre-
set used was limited to a small number of images. The trainsénted a mouth, nose and eyebrows where the nodes were
ing data relied upon is limited in many cases as the image'@ined by straight lines. The second added an outline of the

must be subject to agreement by expert labelers. face to the image. The third joined the nodes with smooth
curves and also contained the outline of the face, as in Fig-
M ethodology ure 1. The participants more consistently labeled the expres-

This is the first investigation, to my knowledge, using cartoorSIONS given the third representation. As a result, this was used
representations of faces in order to investigate categorizatidf" the subsequent tests. This was a male face. Investigation
of affect by facial expressions. As such it was necessary t§110 the effects of gender and ethnicity in this domain are not
begin with a facial representation having a small number ofOnsidered here.

degrees of freedom. A cartoon representation was created All tests described in this paper were performed on a 15
with four degrees of freedom that allowed variation of eye_MacBook Pro. Processing of the data and all GUI interfaces

brows, lip corners and lip separation. These are demonstratd¥ere created in MATLAB. None of the participants in the
in Figure 1. study were given rewards for completing the tasks. This study

The limits placed on the displacement of each node ar¥/@s approved by the Massachusetts Institute of Technology
shown in Figure 2. The representation was symmetricapomm'ttee On the Use of Humans as Experimental Subjects
(eyebrows mirrored one another as did the left and righﬂCOUHES)-
sides of the mouth). A restriction was applied in all tests that .
prevented the center of the eyebrows being the lowest point. Experiments
This was the only restriction on the movement other thanThree experiments were designed. The preliminary experi-
parameter range limits described. The degrees of freedoment was carried out to identify appropriate categories for the
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30 ‘ ‘ ' ‘ ‘ ' ‘ Human-Markov Chain Monte Carlo Experiment

Markov chain Monte Carlo (MCMC) is a sampling technique.
At each step of the algorithm a proposed state is compared
to the current state and one is rejected. The accepted state
becomes the current state for the next step. The desired dis-
tribution is approximated using the Markov chain formed by
the accepted samples. In this experiment, the MCMC analy-
sis was performed by presenting two representations, one the
current state in the chain and the other a proposed represen-
tation. The participants were asked: ‘Which one is the more
happy face?’ for chain one, ‘Which is the more sad face?’
for chain two and ‘Which is the more angry face?’ for chain
three. They selected the appropriate choice using a mouse
Hoppy - Sad - Suprised Ay Disaisted Fearil - Cer click on a button below the appropriate picture.
gory

Sanborn et al. identified in their human-MCMC analy-

] ) o _ sis of animal representations that decision rule biases could
Figure 3: Histogram of results from the preliminary experi-torm towards the current state or proposal (Sanborn et al.,
ment showing the frequency with which each category wasypog). This led to unfavorable effects on the outcomes. In or-
chosen. Four participants labeled 40 different faces each. §er to reduce the effect of such problems the MCMC chains

for happy, sad and angry were interleaved. The decision to
sample from a particular chain at any point was random and

human-MCMC tests. The human-MCMC experiment WaSsccurred with equal probability for all chains. As such, over

then conducted to collect samples from these categories. T'?ﬁany trials an approximately equal number of samples were

discrimination experiment was carried out to validate the dis-
N taken from each category. The current and proposed states
tributions formed by the MCMC tests. gory brop

were displayed side by side on the screen during the tests.

Each of the MCMC chains was initialized by drawing a set
of values from a uniform distribution over the lower 20% of
In a preliminary experiment four participants were separatelghe ranges in Figure 2. The proposed states were drawn from
shown a series of 40 cartoon faces and were asked to visd-multivariate Gaussian distribution with the current state as
ally categorize them as angy, disgusted, fearful, happy, sa¢he mean and a diagonal covariance matrix. The standard de-
surprised or other. The visual stimuli were generated from &iation of the variables was set to 8% of their total range. In
uniform distribution over the parameter ranges shown in Figpreliminary tests this was found to give a proposal acceptance
ure 2. Representations outside these ranges were not consigte from 30-50%. The ranges of the variables for the MCMC
ered as they were significantly different from natural move-est are shown in Figure 2. If a proposal was outside the range
ments, as judged by two participants in the initial tests. then it was rejected and another set of samples taken.

Figure 3 shows a histogram of results from the preliminary Many studies fail to carefully consider the the impact of
discrimination experiment. Surprised, disgusted and fearfulhe experimental design on the data collected. To mitigate the
were each identified as the expression label in less than S5%ffect of biases due to the participants not moving the cursor
of cases. an unbiased coin flip was used to decide whether the current

The results demonstrate that the four degree of freedorstate would appear on the right or the left hand side of the
faces were not versatile enough to clearly represent all of thecreen. The select buttons were placed close together in order
states. For instance the widening of the eyes that might b#® minimize the effort required to change between the two.
expected in a fearful expression was not represented. Four participants performed the task. Participants 1, 2 and

There are likely to be many other indicators that influence3 evaluated 750 pairs over three chains and participant 4 eval-
our judgement of a person’s affect that are not captured hereated 350 pairs over three chains, they all took between 30
Ekman’s facial action coding system (FACS) contains overand 60 minutes to complete the task. Table 1 shows the statis-
60 facial actions and movements many of which have beetics from the MCMC experiment. The acceptance rate aver-
shown to discriminate between affective state (El Kaliouby &aged over the whole participant pool was 36.5%.

Robinson, 2005). These include skin texture changes, more In carrying out these tests we must be aware of assump-
subtle facial actions and movements. Examples are: nostons made that may affect the results. Firstly, the MCMC
wrinkles, head nods, shakes and tilts. Contextual informatiomethod assumes that participants accept proposals by a rule
is also absent in our stimuli. that accepts less likely proposals with a certain probability.

As a result, the affect categories were restricted to happysecondly, the Markov assumption is that decisions are based
sad and angry, which were the 3 most commonly identifiecbn the current pair of stimuli. In such an experiment where
categories in the preliminary experiment. the participants were each asked to evaluate a large number of

Frequency

Preliminary Experiment
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No. of Samples Acceptance %
Happy Sad Angry| Happy Sad Angry
P1| 241 267 242 38 43 34
P2| 231 271 248 53 41 37
P3| 237 244 274 33 38 41
P4| 113 114 123 30 20 30

Table 1: Participant’s statistics. Number of samples per chain
Acceptance % per chain.

images they may make judgements based on previous image
or may become bored with a particular image.

Discrimination Experiment

In this task the participants were presented with a single rep-

resentation and asked to categorize it as happy, sad or akigure 4: MCMC chains from all participants, before burn-in
gry. The representations were drawn from uniform distribu-sampges were removed, mapped to the plane that best dis-
tions over the ranges shown in Figure 2. 750 different stimulicriminates between the categories. The dotted lines show
were categorized. The human-MCMC method allows samthe burn-in lengths chosen visually, the first 40 samples from
pling from the probability from the distribution in the the pa- each chain. Chain one - happy (green), chain two - sad (blue),
rameter space associated with each category. Thus even ¢hain three - angry (red).

the same context discrimination and MCMC would produce

different information (Sanborn et al., 2009).

sky, 1987). A potential downside of MDS is that it does not
Results and Discussion find an explicit mapping function from the parameter space.

Human-MCMC is a sampling method. The data collected>@nPom et al. (Sanborn et al., 2009) use Dimensionality Re-
was in four dimensions (outer eyebrow, inner eyebrow, lipduction by Learming an Invariant Mapping (DrLIM) (Hadsell,
separation and lip corner dimensions). The samples obtainddn®Pra, & LeCun, 2006) that does provide an explicit func-
from the MCMC tests were mapped to a two dimensiona["on' This was not tried here but would be worth considering
plane that best discriminated between the expression distril future work.
butions. This was carried out in order to create a visual struc- Within a large parameter space the categories are likely
ture of the expression categories (Olman & Kersten, 2004)0 occupy small subspaces only. As a result a method such
The dimensionality reduction was performed using General@s MCMC that allows sampling from the whole parameter
ized Discriminant Analysis (GDA) with a Gaussian kernel. SPace but enables navigation to a particular region is useful
GDA is a method of combining features so as to separatg0mpared to a discriminative test that samples from the space
classes within the data. Figure 4 shows the resulting chain@ndomly.
for all four participants. Using this visualization a judgement However, in Figure 6 we compare the mean faces from the
was made on how many samples should be rejected in ord®CMC task and the discrimination task for one participant.
that the distributions were stationary. The number of sam!n both cases the mean representations are reasonable exam-
ples burned (samples removed from the start of a chain) pgHes. This suggests that the advantage of the MCMC method
chain was 40, leaving the average chain length 213 sampleis not seen in this four dimensional space with the ranges de-
The GDA was then performed on the samples in four dimenscribed. As we increase the ranges and the number of de-
sional space that remained after burn-in. Figure 5 shows th@rees of freedom the space will increase greatly in size and it
resulting samples for the four participants. The average facés likely that the benefit of the MCMC method will become
for each participant and each category are shown in Figure gpparent.
A mean face for each category, aggregated across the whole The discrimination experiment stimuli were categorized
participant pool is shown in Figure 5. These faces appear tosing the distributions found from the MCMC results. A
be reasonable examples of the three categories. This resultiv@ive Bayes classifier with Gaussian kernal was fitted to the
part supports the use of the MCMC method. four dimensional human-MCMC samples. Using this model
In these tasks, with only three categories in a limited di-the most likely label for each of the discrimination stimuli
mensional space the categories can be separated effectivelyas chosen. These labels were then compared to the human
However, if there were a great number of categories a Multiresponses.
Dimensional Scaling (MDS) representation could be created. The model matched the human identification of the stimuli
We can calculate the similarity of categories by counting then 70.1% of cases. This is much better than chance at 33%.
confusions between pairs of stimuli (Rothkopf, 1957; Nosof-The error is likely to be due to the fact that the discrimination
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Figure 6: Comparison of mean faces for one participantin the
Figure 5: Scatter plot of samples from the four participantsdisaimination task and MCMC task.
after burn-in, mapped to the plane that best discriminates be-

tween the categories. The average face for each category is

shown. Samples from: chain one - happy (green), chain twEXperiment that must be noted. As described above, when a
_sad (blue), chain three - angry (red). proposal was outside the range set it was automatically re-

jected. In certain cases this rule was enforced and the dis-
tribution met one of the boundaries. This is not necessarily
stimuli were generated from uniform distributions over thea negative point as the ranges restricted the participants to
ranges. As such, many were far from the samples generatedove within a space of reasonably natural expressions. We
by the MCMC method. It is likely that many of the discrim- see from Figure 7 that for the inner eyebrows and lip corners
ination stimuli would not have been classified as any of thehe distributions did push up against the boundaries to a cer-
three categories if there had been other alternatives. Testirtgin extent. This is something to consider in future work.
on results of a discrimination task with an ‘other’ option may  We should also note some general comments about aspects
produce even stronger performance. of the experimental set up. We must consider the impact
For each of the dimensions the probability distributions forof participants becoming bored during the experiment and
each category were estimated from the human-MCMC samselecting their response arbitrarily. Many samples were re-
ples. The samples were separated into 25 equal size binguired in order to generate stationary distributions. Ways of
Gaussian Process Regression (GPR3s then used to ap- minimizing the effects of boredom should be considered in
proximate the distributions. A squared exponential (SE) cofuture.
variance summed with an independent noise function was
used. This does not make the assumption of an underlying Conclusions

structure but rather assumes the function is infinitely smoothr . paper demonstrates that human-MCMC methods can be
The characteristic noise scale and signal variance were set o

used to gain insight into facial expression categorization us-

one and the noise variance also to one. The hyper—parametelzrr]% simple cartoon representations. We demonstrated that

could .be adjusted .fur-ther.. However, for a qualitative reP"C%om 750 samples over three categories the method provides
sentation of the distributions given by the data these wer

reasonable choices feasonable mean representations for each of the categories
' and reasonable distributions. By using GDA we were able

Figure 7 shows the estimated density plots for each dlme% map the four dimensional points to a plane and after burn-

sion after aggregating the data from all participants. It show?n reveal three categories. The sad and angry chain samples

that in some dimensions (lip separation, inner eyebrow) nong . o ot separable in two dimensions. The happy chain sam-
of the categories are significantly distinguished from the othe les were separable

two. However in the cases of the outer eyebrow and lip corne We also show estimates of the distributions for each of the

dimensions one of the categories was distinct. For the outer ; . . .
categories along each of the four dimensions. This reveals

eyebrow dimension the distribution for anger is Slgnlflcantlythat for the features tested the lip corner is the best discrimina-

different from the distributions for happy and sad. For the "ptor for happy expressions and the outer evebrow the strongest
corner it is happy that is more distinguishable. The sad cat; PPy exp y 9

egory distributions were not significantly different from both Or angry expressions. The sad dlstrlbut_|ons were not distin-
of the other two in any of the cases. guishable from both happy and angry distributions in any of

There are certain assumptions and limitations within thethe cases. :
The mean faces generated by the human-MCMC and dis-

IRasnussen and William’'s GPML toolbox was used for this task. crimination tasks were both reasonable and neither signifi-
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Figure 7: Density estimates for each of the four parameters gatge over all the participants. The parameter dimensions
correspond to the ranges shown in Figure 2. Chain one - happy (green), chain two - sad (blue), chain three - angry (red).

cantly more realistic than the other. El Kaliouby, R., & Robinson, P. (2005). Generalization
A naive Bayes classifier trained on the aggregated samplesof a vision-based computational model of mind-reading.
generated from the MCMC task performed strongly predict- Proceedings of First International Conference on Affective

ing over 70% of the human labels in the discrimination task Computing and Intelligent Interactio®82-589.
correctly. Griesser, R., Cunningham, D., Wallraven, C., & Bulthoff, H.

(2007). Psychophysical investigation of facial expressions
Further Work using computer animated faces. Proceedings of the 4th
symposium on applied perception in graphics and visual-
ization(p. 18).
adsell, R., Chopra, S., & LeCun, Y. (2006). Dimensionality

This paper describes the first investigation evaluating hu-
man facial expression categorization using a human-MCMq_|

method. It justifies a basis for applying a human-MCMC reduction by learning an invariant mapping.Rroc. com-

method for exploring people’s representations of facial ex- . s
P g peop P puter vision and pattern recognition conference (cvpr06).

Pressions. Grles_ser etal. (Griesser et al., 2007) dem_opstraﬂaeal’ R. (1993)Probabilistic inference using Markov chain
the use of detailed computer avatars that can realistically .
Monte Carlo method<Citeseer.

demonstrate skin texture changes as well as facial aCtionﬁlosofsky R (1986).  Attention, similarity, and the

This type of stimuli could be used in order to seriously inves- . o . . .
yp y identification-categorization relationshipJournal of Ex-

tigate a wider range of categories. It would also allow more perimental Psychology: Generdl15(1), 39-57.

d_etalled Investigation qf th_e degree to which specific dlmen'Nosofsky, R. (1987). Attention and learning processes in the
sions allow discrimination in terms of affect.

identification and categorization of integral stimuliour-
Sanborn et al. (Sanborn et al., 2009) suggest that the nal of Experimental Psychology: Learning, Memory, and

human-MCMC method may be used to test models of cate- Cognition 13(1), 87108,

gorlzatllon. Pr(cj)tclnype modelsﬂprgéiluczunlmo:il .d'zt.:c'ft.)u“l?tnsNosofsky, R., & Palmeri, T. (1997). An exemplar-based ran-
Xemplar models are more flexib'e. AS Such itis diticultto 4, \yaik model of speeded classificatioRsychological

establish whether a category distribution more closely resem- Review 104(2), 266—299

bles a prototype or exemplar model in many cases but rath Iman, C., & Kersten, D. (2004). Classification objects, ideal

we can test whether a distribution has properties that rule ou . o .
a prototype model (Sanborn & Griffiths, 2008; Sanborn et al., ggiirzvseés & generative model€ognitive Sciencez§(2),

2009). Padgett, C. (1998)A neural network model for facial affect

classification(Tech. Rep.).
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Abstract

This paper presents the development of a cognitive model of
cognitive lockup: the tendency of humans to deal with
disturbances sequentially, possibly overseeing crucial data
from unattended resources so that serious task failures can
appear—e.g., in a cockpit or control centre. The proposed
model should support the design and evaluation of user
interfaces that prevent such failures, being used outside the
academic community. Based on the practical cognitive task
load theory of Neerincx (2003), this model distinguishes time
pressure and number of tasks-to-do as two factors that
increase task switch costs and the corresponding risk of
cognitive lock-up. The CASCaS architecture proved to fit best
with the requirements to incorporate these factors and to
support the UI engineering process.

Keywords: cognitive lockup; cognitive modeling; cognitive
task load model; cognitive architectures; user interface
engineering.

Introduction

Aircraft pilots are faced with a complex traffic environment.
Cockpit automation and support systems help to reduce this
complexity. Currently, a lot of research is done to improve
the onboard management of flight trajectories and the
negotiation of trajectory changes with Air Traffic Control.
During the flight, many factors may induce changes to the
original flight plan, e.g. bad weather, traffic conflicts, or
runway changes. Safe operation of aircrafts is based on
normative flight procedures (standard operating procedures)
and rules of good airmanship, which we will refer to as
normative activities. We define pilot errors as deviations
from normative activities.

In the past, several cognitive explanations and theories
have been proposed to understand why pilots deviate from
normative activities (e.g. Dekker (2003)). The European
project HUMAN, in which the research described in this
paper is done, strives to pave a way of making this
knowledge readily available to designers of new cockpit
systems. We intend to achieve this by means of a valid
executable flight crew model which incorporates cognitive
error-producing mechanisms leading to deviations from
normative activities. The model interacts with models of
cockpit systems in a virtual simulation environment to
predict deviations and its potential consequences on the
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safety of flight. The ultimate objective of HUMAN is to
apply this model to analyze human errors and support error
prediction in ways that are usable and practical for human-
centered design of systems operating in complex cockpit
environments.

At the initial stage of HUMAN we performed
questionnaire interviews with pilots and human factor
experts based on a literature survey of error-producing
mechanisms. We identified cognitive lockup to be among
the most relevant mechanisms for modern and future
cockpit human machine interfaces. We take the definition of
cognitive lockup from Moray and Rotenberg (1989) who
define the term ‘cognitive lockup’ as the tendency of
operators to deal with disturbances sequentially. This has as
a result that operators focus on a subpart of a system and
ignore the rest of it (Meij, 2004).

In this paper, we discuss factors that can cause cognitive
lockup and an architecture of a cognitive model that can be
used to help prevent lockup failures during User Interface
engineering.

Cognitive Lockup

Previous Research

As the definition from Moray and Rotenberg (1989) shows,
cognitive lockup does not occur when people can perform
all their tasks consecutively. Therefore they designed a task
where this was not possible. Participants were asked to
supervise a simulated thermal hydraulic system that
consisted of four subsystems. In one scenario they needed
only to focus on one fault in one of the subsystems. In
another scenario a first fault was followed by a second fault
in a different subsystem, which occurred before the
participant could have handled the first fault. It was shown
that participants shifted attention much later to the second
fault then they did to the first fault. Moray and Rotenberg
attributed this to limited information processing capacities.
In another study that demonstrated cognitive lockup
(Kerstholt et al, 1996), participants had to supervise four
dynamic subsystems and deal with disturbances. The system
included the option to stabilize a subsystem in which
additional faults occurred, with which participants
acknowledged their understanding of the development of a



disturbance over time. Most participants did not use this
option and handled the disturbances sequentially.

Cognitive lockup as a phenomenon is related to the rise of
automation, but the tendency to proceed with the current
task is not new. Meij (2004) investigated cognitive lockup
in relation to planning, task-switching and decision making.
He found that both prior investments into a task as the time
that is needed to complete the task increases the probability
of cognitive lockup. No support was found for refrainment
of monitoring (a second fire was detected, but not tended to
before the first fire was solved), too optimistic scenarios,
and lack of resources (the complexity of the first task did
not influence the degree of cognitive lockup).

Cognitive Task Load Model

A model that specifies core aspects of cognitive lockup is
the cognitive task load (CTL) model of Neerincx (2003).
The development of this model is driven by the need for
limited and practical theories and models on human
cognition to take validation of the theories and models out
the laboratory and into the real world, where the
environment is more dynamic.

The CTL-model describes load in terms of three
behavioral factors: time pressure, level of information
processing and number of task set switches (see Figure 1).

Time Pressure The time pressure is dependent on the
scenario and the actions of tasks. The scenario provides
information on the number of tasks due to events and the
actions that are called upon by the tasks can take a long or a
short time to handle. A standard measure for the time
pressure is:

Time pressure = time required for tasks

time available for tasks

Humans reach overload when the time pressure is more
than 70-80% (Beevis et al., 1994).

Overload
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Figure 1: CTL model, with the three dimensions task set
switches, level of information processing, and time occupied
(time pressure).
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Level of Information Processing The level of information
processing factor is measured as the percentage of
knowledge-based actions using the Skill-Rule-Knowledge
framework from Rasmussen (1986). Input information that
can be processed at skill level (e.g. when you touch
something hot with your hand, you immediately react by
removing your hand from the heat source) is not cognitively
demanding. When input information triggers a routine
consisting of rules (i.e. procedures with rules of the type "if
<event/state> then <actions>") it takes some cognitive
capacities to resolve the if/then, but the rest of the procedure
is quite automatic. Cognitive demanding are the situations
where there is problem analysis needed on the input
information and knowledge to reason about it, this can have
a large influence on the working memory.

Rasmussen’s framework corresponds to the cognitive
theory of skill acquisition of Anderson (1982) that
distinguishes three memory representations: cognitive,
associative and autonomous. These three levels are linked to
different memory representations; declarative, procedural
and implicit.

Task Set Switches To take into account situations where
people have to perform different tasks that appeal to
different sources of human knowledge and different objects
in the environment, the CTL-model comprises the task set
switches factor. A task set contains both the human
resources and environmental objects with momentary states,
which are involved in the task performance. A switch occurs
when the applicable task knowledge on the operating and
environment level change. A task set can thus be seen as a
goal that is comprised of several (sub-)tasks.

Rubinstein, Meyer and Evans (2001) distinguish two
types of task switching: task switching in successive tasks
and task switching in concurrent tasks. With successive
tasks the first task is responded to and finished before the
second task is presented. Concurrent tasks on the other hand
are tasks where the second task is presented before the first
task has been finished. We are only interested in concurrent
tasks, because a pilot usually has multiple concurrent tasks
that can be executed, e.g. monitoring different interfaces in
the cockpit. Successive task switching studies show that
task switching takes time (Jersild, 1927, Rogers & Monsell,
1995). In concurrent task switching studies (De Jong, 1995;
Schumacher et al., 1999), it is observed that people are
unable to deal with multiple tasks. They postpone the
second task until the first task is completed. In these
experiments the second task is not of such importance that it
should be handled immediately, but in real life situations not
handling the second task before finishing the first can cause
life threatening situations (e.g. the crash of flight 401 of
Eastern Air Lines in 1972 (NTSB, 1973)). Tasks can be
interrupted, but with every switch time and effort is needed
to do context acquisition to bring the environment
information up-to-date (Olsen & Goodrich, 2003).

In the CTL-model, the task set switches can be seen as the
number of task set switches possible at a particular moment



in time. This number comes thus forth from the environment
and the situation a person is in.

Cognitive Lockup in the CTL Model The three factors of
the CTL model are interrelated (Figure 1). Cognitive lockup
is independent of information processing level, but does
occur when both time pressure and number of task set
switches is high. That the information of processing level is
not of importance seems counterintuitive, but in an
experiment of Meij (2004) (experiment 2) this is supported.
In the experiment of Meij, participants were asked to
monitor for fires on a ship. When a fire was detected it had
to be diagnosed on both priority and treatment. Two fires
could exist simultaneously and the participant had to decide
which fire to fight. The complexity of this task was varied
by making the diagnosis of priority and treatment harder
and by varying the moment of introduction of the second
fire (e.g. after diagnosis of the first fire or during diagnosis).
The data showed that an increasing level of complexity had
no influence on when the second fire was detected.

Pilots and Cognitive Lockup

The most famous example of cognitive lockup comes from
the aviation domain. In 1972 a plane from Eastern Air
Lines, flight 401, crashes. During the landing the pilot is
warned about a problem with the landing gear. He cancels
the landing and sets the plane in autopilot so that he can
solve the problem. Unfortunately, due to his occupancy with
the landing gear, the pilot missed the warning signals
(alarms and air-traffic control) about decreasing altitude,
and the plane crashed (NTSB, 1973).

Modeling of Cognitive Lockup

Cognitive Architecture

Cognitive architectures were established in the early eighties
as research tools to unify psychological models of particular
cognitive processes (Newell, 1994). These early models
only dealt with laboratory tasks in non-dynamic
environments (Anderson, 1993; Newell, Rosenbloom, &
Laird, 1989). Furthermore, they neglected processes such as
multitasking, perception and motor control that are essential
for predicting human interaction with complex systems in
highly dynamic environments like the air traffic
environment addressed in HUMAN with the AFMS target
system. Models such as ACT-R and SOAR have been
extended in this direction (Anderson et al., 2004; Wray &
Jones, 2005) but still have their main focus on processes
suitable for static, non-interruptive environments. Below we
provide a short overview of the requirements we have for
the cognitive model and how these requirements are met by
ACT-R 6.1.4, SOAR 9.3.0 and EPIC. Note that we evaluate
the requirements only for these versions. ACT-R and SOAR
are under constant development and requirements that are
not met at the moment might be met in future versions.

The first requirement is that the cognitive model should
support multitasking. The three best known cognitive
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architectures all support a form of multitasking; ACT-R
with threading (e.g. Salvucci & Taatgen, 2008), to SOAR
(Newell, Rosenbloom, & Laird, 1989) and EPIC (Meyer &
Kieras, 1997) it is inherent to the architecture. Secondly,
because we want to test interfaces there is a need for
perception and motor action abilities. This is inherent to
EPIC (Meyer & Kieras, 1997), ACT-R is able to do this
since ACT-R/PM (Byrne, 2001), and SOAR cannot do this
without coupling with EPIC, although since SOAR 9 there
is a vision module (Laird, 2008). All three need interface
coupling with a model of the interface (e.g. developed with
SegMan (Amant et al., 2005)). Thirdly, the model should be
able to learn, SOAR and ACT-R are able to learn, but EPIC
is not. Fourthly, we want an explicit Skills-Rules-
Knowledge separation (Rasmussen, 1983) to make it easier
for users to choose a level on which they want to work and
to make it more clear for end users where errors came from.
When it is from rules (procedures), adapting procedures can
be a solution, when it comes from the knowledge level the
solution can be more difficult, because the problems that
arise from this level are inherent to people. Finally, it is very
important that non-expert users can use the cognitive model
in the design and testing process of interfaces. With none of
the three discussed cognitive architectures this is possible,
because they all require a high level of knowledge of the
model, in addition to programming skills, before being able
to adapt them to a certain domain or interface.

In the following, we describe shortly the architecture used
in the HUMAN project. We choose to describe the
architecture to show that our theory of cognitive lockup is
embedded in a broader concept. However, this description
will only be short and will not go into (implementation)
details, as for the theory of cognitive lockup, these details
are not necessary.

The cognitive architecture CASCaS (Cognitive
Architecture for Safety Critical Task Simulation) is used to
model the cognitive process described in the previous
section. For a more detailed description of the CASCaS
architecture see Lidtke et al. (2009). CASCaS has
multitasking abilities, has a perception and motor module, is
able to learn (e.g. production compilation), has a skills, a
rules (associative layer) and a knowledge (cognitive layer)
based level. Finally, only when you really want to change
something of the architecture programming skills are
necessary. Otherwise there are editors for the procedures
(domain knowledge) and for the interface description. The
procedure editor (Frische et al., 2009) can be used by any
domain expert, which has been shown by an informal
review that was performed by one of the end user partners in
the HUMAN project. And UsiXML (Limbourg et al., 2005)
which describes the interface in a way that it can be used by
the model can automatically transfer HTML pages into the
right format, has a graphical editor so that interface
designers can use tools that are similar to what they know
and XML programming is also possible. UsiXML is
developed by human factor experts at the Belgian
Laboratory of Computer-Human Interaction (BCHI).



The core of CASCasS is formed by the layered knowledge
processing component that contains the associative and the
cognitive layer.

A task that is encountered for the first time is processed
on the cognitive level with maximal cognitive effort. This
processing is goal driven; alternative plans to reach a goal
are evaluated usually through mental simulation, and finally
one plan is selected to be executed. With some experience,
the associative level is used, where solutions are stored that
proved to be successful; the pilot has for example learned
how to handle the cockpit systems in specific flight
scenarios. According to Rasmussen (1983), processing is
controlled by a set of rules that have to be retrieved and then
executed in the appropriate context. On the autonomous
level routine behavior emerges that is applied without
conscious thought, e.g. manually maneuvering an aircraft.
When solving a task, people tend to apply a solution on the
lower levels first, and only revert to solutions on higher
levels when lower-level ones are not available (Rasmussen,
1983) or when the situation requires very careful handling
due to unusual and safety relevant conditions.

The associative layer selects and executes rules from
long-term memory. It is modeled as a production system.
Characteristic for such systems is a serial cognitive cycle for
processing rules: A goal is selected from the set of active
goals (Phase 1), all rules containing the selected goal in their
goal-part are collected and a short-term memory retrieval of
all state variables in the Boolean conditions of the collected
rules is performed (Phase 2). If a variable is absent in
memory, a dedicated percept action is fired and sent to the
percept component to perceive the value from the
environment and to write it into the short-term memory.
After all variables have been retrieved, one of the collected
rules is selected by evaluating the conditions (Phase 3).
Finally the selected rule is fired (Phase 4), which means that
the motor and percept actions are sent to the motor and
percept component respectively and the sub-goals are added
to the set of active goals. This cycle is started when a
Boolean condition of a reactive rule is true. In Phase 2
reactive rules may be added to the set of collected rules if
new values for the variables contained in the State-Part have
been added to the memory component (by the percept
component). In Phase 3, reactive rules are always preferred
to non-reactive rules. The cognitive cycle is iterated until no
more rules are applicable.

The cognitive layer reasons about the current situation
and makes decisions based on this reasoning. Consequently,
we differentiate between a decision-making module, a
module for task execution and a module for interpreting
perceived knowledge (sign-symbol translator). In the
following, we will describe the decision-making module in
more detail, as it is relevant to modeling cognitive lockup.
For more information on the cognitive layer see Liidtke et
al. (2009).

The decision-making module determines which goal is
executed. Goals have priorities, which depend on several
factors: goals have a static priority value that is set by a
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domain expert. In addition, priorities of goals increase over
time if not executed. Implicitly, temporal deadlines are
modeled in this way. If, while executing a goal, another goal
has a distinctively higher priority than the current one, the
execution of the current goal is stopped and the new goal is
attended to. This decision depends on the priorities of the
goals and is extended by the parameter Task Switching
Costs (TSC), which determines the difference the priorities
need to have to halt the execution of a goal to select a
different goal to be executed. TSCs are described
extensively in literature (e.g. Jersild, (1927); Rogers &
Monsell (1995)). The higher the TSC is, the higher the
priority of another goal needs to be to switch to that goal. To
determine whether a goal should be interrupted and a
different goal should be executed, the TSC is added to the
current task priority. Only if a priority of another active goal
is above this threshold, this other goal is chosen to be
executed. For a visualization of the goals see Figure 2.
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Figure 2: Visualization of the goals on the cognitive layer.
Dark gray and green goals are active. The framed goal is

currently executed. The yellow the

additional task switch costs.

staff represents

Cognitive Lockup Model

In this section we describe how cognitive lockup is modeled
in the cognitive architecture described above. We model
cognitive lockup on the cognitive layer. The main reason for
this is that, as described above, on the cognitive layer we
have an explicit goal decision mechanism in which
cognitive lockup can easily be integrated. However, this can
be extended to the associative layer, as the principles
explained below are generally applicable to the goals of the
associative layer as well.

Time Pressure As described in Neerincx (2003), the time
pressure for a person plays an important role for cognitive
lockup. If a person has a value for the time pressure of more
than 0.75 (Neerincx, 2007), the task switch cost increases.
In general, this factor depends both on the time pressure of
the associative and cognitive layer. However, to simplify
matters, we will model this temporarily only related to the
cognitive layer, but will extend the concept later to the
associative layer. As written above, the formula that we use
is the following:

Time pressure = time required for tasks
time available for tasks




For example, if we have a task that can be done in 25
seconds and we have 100 seconds before it needs to be
finished, the predicted time pressure is 0.25.

The time required for a task is the time needed for
cognitively processing the task. This knowledge comes both
from the analysis of normative behavior, i.e. discussions
with experts that give an indication of the time a task takes,
in addition to cognitive theories on which the cognitive
architecture is based (e.g. (Anderson, 1993; Kieras &
Meyer, 1997)).

Modeling the time that is available for a task is quite
complex. For some tasks this knowledge is given in the
normative behavior. For example, a pilot needs to have set
the flaps before reaching the final approach phase. The time
that is available for a task can thus be calculated by the
knowledge of the current task, and a prediction of when the
approach phase begins, which can be gained from the
environment. For other tasks, it is not that easy to know the
time that is available to execute it. For example, for a
monitoring task, there is no standard deadline at which
monitoring has to be finished. However, the time pressure
will slowly increase, without having a clear deadline of the
task, as there is no unlimited time to execute any task.

Thus, for each task, it has to be evaluated whether the
time pressure can be based on a calculation of elements of
task knowledge and the environmental input, or whether it
has to be given a general estimate.

The time pressure is inherent to each goal as it only takes
aspects of the individual goal into account, but is dynamic
as the time until it needs to be finished is constantly
diminishing. We decided that this calculation is done each
50 ms, which is the cycle time of our architecture.

Level of Information Processing As described above, the
level of information processing does not play a relevant role
for cognitive lockup. This factor is not taken into account in
the model of task switching costs.

Task Set Switches As described above, task set switches
are defined as possible goal switches at a given moment.
The number of task sets is modeled as the number of goals
that are active at the moment. Temporarily, we only look at
goals in the cognitive layer.

The value of the task set switches is thus the number of
active goals in the environment. We assume that the model
always has activated all possible tasks that play a role at the
moment in the environment and are needed to handle the
current situation.

The Model

Above, we have described different aspects that increase the
probability of cognitive lockup. In our model, this is
simulated by increasing the task switch costs (TSCs) of the
goal that at that moment is processed. The TSC determines
the difference that the priorities need to have to halt the
execution of a goal to select a different goal to be executed.
The TSC depends on the number of goals that at that
moment is also active and could be selected to be processed,
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and on the time to spare to execute the current goal. The
TSC is higher when there is high time pressure.
Furthermore, the higher the number of active goals is (i.e.
the possible task set switches) the higher are the costs to
switch to another goal. The following formula determines
the TSC:

TSC = StartTSC * (Time pressure + Task set switches),

with Time pressure = 0 if Time pressure <0.75.

This means that the task switch costs depend on a start
value, which is a constant, and the sum of the two factors of
the time pressure and the task set switches.

As at each moment if there are active goals, at least one
goal is selected and executed, the task set switches
parameter is always at least 1. If there is only one goal, and
the task pressure is not high, the TSC is equal to the
constant start value. The moment there are several active
goals or the time pressure for the currently selected goal is
above the threshold of 0.75, the TSC is increased.

Conclusion

This paper presented the development of a cognitive model
of cognitive lockup: the tendency of humans to deal with
disturbances sequentially, possibly overseeing crucial data
from unattended resources so that serious task failures can
appear—e.g., in a cockpit or control centre. The model is
based on real life examples of cognitive lockup and the
psychological theories that are derived from these examples,
and laboratory experiments. It distinguishes time pressure
and number of tasks-to-do as two factors that increase task
switch costs and the corresponding risk of cognitive lockup.
A heightened task switch cost leads to less task switching,
even when another task has a higher priority, as the
difference between the priorities needs to be higher.

The proposed model should support the design and
evaluation of user interfaces that prevent such failures,
being used outside the academic community. The CASCaS
architecture proved to best fit with the requirements to
incorporate these factors and to support the Ul engineering
process.

At the moment, we calculate the time pressure as a value
inherent to the individual goal. The interdependencies
between the timing of several goals will be taken into
account in the next version of the cognitive model (i.e.,
several tasks might in themselves not have a high time
pressure, but might together be time-critical, as all of them
might need to be finished before all of them can be
executed).

The values for the parameters we have chosen for our
cognitive model are mainly based on literature, and are
currently being evaluated in both laboratory experiments
and realistic simulator experiments. In this way, we refine
and validate the model, improving its plausibility and
predictions about the behavior of pilots. Application of the
model will provide user interfaces and procedures that
reduce the risks for lockup errors. Due to the cognitive
plausibility, we predict that the model can also be used in
other domains without substantial changes.
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Abstract

John R. Anderson proposed a correspondence between ACT-
R modules and brain regions (Brain Mapping Hypothesis).
Using a paradigm requiring rule-based matching of chemical
structures (pseudo formulae) with their respective names, we
compared ACT-R-generated blood-oxygen-level dependent
(BOLD) signal curves with BOLD curves obtained from
functional Magnetic Resonance Imaging (fMRI) scans. We
found significant correlations between ACT-R generated and
human BOLD curves for sensory and motor modules and
regions in particular, whereas a lack of significant results was
observed for mappings between internal modules and regions.
This result was ascribed to the fact that in contrast to
Anderson’s studies, our subjects were not urged to follow a
single strategy. Instead the task allowed them to construct
their personal strategy within a constraint-based strategy
space. Accordingly, the mapping hypothesis was tested
strategy-specific. As subjects are generally not able to reliably
identify their own in a retrospective manner, we used
Response-Time (RT) data in combination with a Bayesian
Belief Net to identify personal problem solving strategies.

Keywords: ACT-R; BOLD signal prediction, brain-mapping
hypothesis

Introduction

The ACT-R architecture (Anderson, 2004) provides a set of
modules with sensory, motor, and internal functions.
Anderson (2007a; Anderson, et al., 2008b) proposes a
neurophysiologic analogy and postulates a mapping
between these modules and brain regions (Table 1). For
instance, the Procedural module is mapped onto the basal
ganglia, while the Declarative module is mapped around the
inferior frontal sulcus. The ACT-R 6.0 implementation
provides a set of tools which directly predict BOLD signals
for these brain regions. Indeed, Anderson has “[..] defined
these regions once and for all and use them over and over
again in predicting different experiments” (2007b).

Several studies were conducted by Anderson et al. in
order to empirically validate the mapping hypothesis. These
included experiments from various domains, like algebraic
problem solving (Danker & Anderson, 2007; Stocco &
Anderson, 2008), associative learning (Anderson et al.,
2008a) or insight problems (Anderson et al., 2009). One

particular feature in common of all these experiments was
the fact that participants had to employ the same problem
solving strategy on all tasks.

The empirical validation of the mapping hypothesis is
among the research goals of our multidisciplinary research
project (see Section Acknowledgements). While also the
effects of affective and informative feedback on learning are
being studied (Ozyurt, Rietze, & Thiel, 2008) an
accompanying fMRI study offers us the possibility to
compare BOLD signal predictions generated from strategy-
specific ACT-R models with BOLD signals obtained from
actual fMRI scans.

Table 1: ACT-R module/regions mappings according to
Anderson (2007a) with positions in Talairach coordinate
and dimensions (D, W, H) in voxels

Module Region X Y Z D W H
Declarative  Prefrontal 40 21 21 5 5 4
Imaginal Parietal +23 -64 34 5 5 4
Manual Motor +41 20 50 5 5 4
Goal ACC +5 10 38 5 3 4
Procedural Caudate +15 9 2 4 4 4
Visual Fusiform +42 61 9 5 5 4
Aural Auditory +46 -22 9 5 5 4
Vocal Motor +43 -14 33 5 5 4
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Results of the present study suggest a further refinement
of our modeling methods. In contrast to the experiments
described by Anderson et. al. (2008a; Danker & Anderson,
2007; Stocco & Anderson, 2008), the tasks in our
experimental setting were far more complex; because in
order to solve these tasks, participants were free to choose
their personal strategies. Because different strategies lead to
different predictions of brain region activation, we had to
model these different strategies and identify the chosen
subject-specific strategy without using fMRI data (Mobus &
Lenk, 2009). We would work unduly in favor of the
mapping hypothesis if we would assign subjects to
strategies according to similarity of their BOLD curves with
the strategy-specific ACT-R-BOLD curves.



Experiment

All participants were lower-grade schoolchildren with ages
ranging from 11 to 13. The exercises which the children had
to solve came from the domain of the chemical formula
language (Heuer & Parchmann, 2008), which is generally
unknown to children of that age. However, instead of real-
world chemical elements, pseudo-clements (like Pekir or
Nukem) were used to ensure that the children exclusively
applied the rules of the artificial formula language. The
children were asked to answer 80 trials in two sessions
during fMRI scans. A single trial consisted of the auditive
and visual presentation of a chemical compound name and
the visual presentation of a pair of structural formulae
(Figure 1). The subjects were asked to decide which of the
two structural formulae (one on the left, the other on the
right matches the compound name. The total presentation of
a structural formula lasted for 4.5 seconds. An additional
time of 1 second for the answer has been granted, so that the
maximum response time amounted to 5.5 seconds.

Plipekirplonukem

Nu Nu
Pe = Pe

MNu”

Mu = Pe = Pe = Pe = Pe = Nu
Nu

Figure 1: A typical experimental trial: The compound
name is at the top, structural formulae left and right below.

If the response had occurred in time, a feedback was
given after a jitter time of 2-18 seconds. The feedback
consisted of two parts: one part informed about the
participant's performance; a second, affective part informed
about the performance of a fictional peer group. The total
feedback presentation lasted for 2.5 seconds.

In order to find the correct structural formula for a
compound name, six rules, which were part of the
instruction given to all participants, had to be applied and
checked for violations:

1. The abbreviation for an element is defined by two
letters

2. The first letter of the abbreviation is the same as
the first letter in the name of the element

3. Both letters appear in the element’s name

4. An element may have a multiplicity from 1 to 4 in

the compound. Distinct numerals are used to
denote the multiplicity:
e -/one
pli/two
pla/three
plo/four
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5. The position of a numeral is always in front the
element in the compound name
6. The central or inner element of the structural

formula is always the first in the compound name

In Figure 1, the left structural formula actually matches
the compound, while the right formula’s cardinalities
mismatch. These rules define the constraints of a strategy
space from which correct personal strategies can be
constructed by the subjects. There is no explicit order in
which the rules should be applied. Either the left or the right
formula violates at least one of the rules. The trials are thus
classified by the position of the faulty formula (left/right)
and by the number of the violating rule.

The rules were well known by the children because they
went through an extensive instruction phase in multiple
sessions. They familiarized themselves with the rules using
age-based material and games especially designed for that
purpose. They also passed 20 trials on a computer and
another 40 in an fMRI simulator prior to entering the actual
fMRI experiment.

Overall, 33 participants were included in our study
concerning the brain-mapping hypothesis. They were
distributed among five experimental groups defined by
design matrices, which described the sequential order of
trials and jitter times. These 33 participants scored an
average 54.64 correct answers from a whole of 80 problems
with a standard deviation of 11.9. On the average, they were
able to signal the correct solution to the problem in a trial
within 3.78 seconds with a standard deviation of 0.8s.

A SONATA MRI system (Siemens, Erlangen, Germany)
operating at 1.5T was used with a standard whole-head coil
to obtain T2*-weighted echoplanar (EPI) images with
BOLD contrast (matrix size: 64x64, pixel size: 3x3 mm®).
Participants completed two experimental runs consisting of
40 trials each. During each functional run 408 volumes of
30 three mm-thick axial slices were acquired sequentially
with a 0.6 mm gap (TR = 2 sec, TE = 50 msec). Data were
preprocessed with the Statistical Parametric Mapping
software SPM5'. Following rigid body motion correction,
the time series of each voxel was realigned temporally to the
middle slice to correct for differences in slice acquisition
time. Structural and functional volumes were coregistered
and spatially normalised to a standard T1 template based on
the Montreal Neurological Institute (MNI) reference brain
(resampled to 2x2x2mm’ voxel). The data were then
smoothed with a Gaussian kernel of 8 mm full-width-half-
maximum to accommodate intersubject anatomical
variability.

Models

Two input channels are available to the problem solver. The
visual input channel is mandatory, while the auditory input
channel is auxiliary. This fact adds to the complexity of the
problem, especially as both channels may be perceived in
parallel or consecutively. Either the left or the right formula

! http://www.fil.ion.ucl.ac.uk/spm/software/spm5 6/16/2010



or both have to be evaluated visually. This results in a
variability of conceivable strategies, which differ in
efficiency as well as module activation. A set of basic tasks
is derived from the rules. These tasks are shared by all
strategies, though not necessarily in the order presented
here:
1. Visually and/or auditorially perceive and encode
the different parts of the compound name
(mandatory for any successful strategy)

2. Count the outer elements of a structural formula
and compare them with the second numeral in the
compound name

3. Count the inner elements of a structural formula
and compare them with the first numeral

4. Compare the inner element with the first element
of the compound name

5. Compare the outer element with the second
element of the compound name

6. Indicate the correct formula

Tasks 2-5 may be applied to both formulae, or, more
efficiently, to either the left or the right formula. It should be
noted that some concurrency can take place if the compound
name is encoded using only auditory input. Tasks 4 and 5
may be split into two different tasks as the abbreviation of
an element always consists of two letters. Since the first
letter is easier to compare with the name, it may be more
appropriate to prioritize the first comparison and leave the
second letter for later. A second open question which is not
reflected within the above list of tasks is the position of the
retrieval for the numerals. It can take place very early when
encoding the compound name, but there is also the
possibility to retrieve the numeral later on between the
counting and comparison stages.

A strategy is defined by the order of task processing and
the formulae Tasks 2-5 are applied to. While all the
strategies share the same basic set of tasks, they all perform
differently on each trial. Some trials may only be solved by
counting the elements as in Figure 1, others by name-
element comparisons, still others by both. A strategy shows
higher performance (shorter response time) if it concentrates
on a single structural formula to decide whether it matches
or not. Each trial class (the violated rule and location of the
violating formula) may have an impact on the performance
of the strategy.

Several, though so far not all possible, strategies were
modeled, at first on an abstract layer as UML activity
diagrams, and subsequently within the ACT-R environment
as a set of production rules. As only expert participants were
modeled, all modeled strategies find the correct answer but
with a large variation in performance. So far, four different
strategies, S1 to S4, have been modeled (Table 2). They
differ in that they either process the structural formula and
the compound name simultaneously using the different
input channels, or by processing the compound name first
and then proceed to the structural formulae. Thus they either
process the trial single- or multithreaded, or single-formula
or both formulae.

Table 2: Characteristics of strategies/models

Multi-Thread Single-Thread

S1
S2

S3
S4

Single Formula
Both Formulae
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Apart from these single- vs. multi-tasking and single vs.
both formulae considerations, even more design options are
available to the modeler yet. For instance, the exact time
when certain tests are carried out may be varied. Thus, the
model could compare the element's abbreviations with their
respective names before comparing the cardinalities. Also,
the costly checking of the second letter of the abbreviation
may be postponed by the strategy in order to save time. A
heuristic approach could leave the second letter out of
consideration completely.

The models perform quite differently on the various trials,
which is reflected in the ACT-R module traces. This affects
the BOLD prediction. Any realization of Task 1, perceiving
and encoding the compound name, would surely engage
ACT-R's Visual or Aural module, if not both, and the
Imaginal module. Tasks 2 and 3, which encompass
encoding and counting the structural formulae, would
involve the Imaginal, the Visual and the Declarative
module. Tasks 4 and 5 would also require at least the
Imaginal module, but it could involve the Visual module if
the second letter of the symbol has to be checked for
occurrence in the compound name. As Tasks 2-5 can be
arranged in any arbitrary order, or even be split into
subtasks which could run in parallel, quite different patterns
of module activation would emerge. This implies that even
models which produce similar behaviors may predict
distinct BOLD signals, if the productions involved activate
different modules.

Data Analysis

It is doubtful whether the participants are able to remember
their problem solving strategy for each trial. It is also
possible that they applied varying strategies to trials. The
choice of strategy may be related to the trial class. However,
we assume that the participants already settled for a single
strategy after the extensive instruction and training phases.
In order to determine which of our models is suitable to
explain the performance of the actual strategy used by the
participant, we devised a Bayesian Classifier with a
Bayesian Belief Network (BBN) (Jensen, 2007) as
diagnostic tool. The BBN (Figure 2) is trained with data
from ACT-R model runs. Subsequently, behavioral data
from the actual experiment is entered as evidence for
identifying the personal trial-independent strategy of the
subject. Strategies are thus classified by response times
(RT).

The main idea is that all models produce distinct response
times for each trial. We assume that response times for a
strategy are dependent on the trial. This is reflected in the
BBN in Figure 2. The probability tables of the BBN are



being learned by running all of the strategy-specific ACT-R
models to generate cases. This results in a data matrix
whose columns correspond to the nodes from the BBN and
whose rows correspond to trials. During model runs, the
default values of ACT-R’s parameters were used.
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Figure 2: BBN for strategy classification

The trial is entered as evidence into the “Trial”, “Matrix”,
and “Session” nodes. The response time of the participant is
entered as evidence into the “RT” node. It is then possible to
infer on the strategy most likely used by the participant in
the “Strategy” node. In Figure 2, the trial in question is the
14™ trial from the second session of the experimental group
defined by design matrix 1407. In this particular case, for
participant with a response time between 4 and 4.5 seconds,
S2 and S3 are equally probable.

The collected fMRI data is analyzed by using the Regions
of Interest (ROI) approach (Jancke, 2005). The regions are
specified by the module positions and dimensions given by
Anderson’s Brain Mapping Hypothesis in Table 1. The
Talairach coordinates were transformed into MNI

coordinates. The raw values of each voxel lying in the ROI
are extracted from the images and averaged per region,
resulting in an activation timeline for each person and
region (Figure 3).

An averaged BOLD curve for each region is obtained by
applying a strategy-specific weighted means function to and
subsequent aggregation of the individual BOLD curves. For
each trial t of the 80 trials, a probability p,, for a particular
strategy s is inferred with the BBN from Figure 2. In order
to neutralize the effects of varying base levels of individual
BOLD signals, we employed ipsative measures: the
deviations from the individual’s BOLD curve averages are
aggregated as weighted averages using trial- and strategy-
specific weights and compared with the deviations from the
predictions.

For each ROI/Module pair, the averaged BOLD curve
deviations are tested for correlation with the respective
BOLD prediction computed from the ACT-R module
activation (Anderson et al., 2008). The default parameters of
the ACT-R BOLD module were used for this computation.
Each time series consists of 400 data points.

As the Pearson’s correlation coefficients were calculated
independently for each experimental group, the resulting
values were averaged among the experimental groups by
using the Fisher-z transformation. Table 3 shows the final
correlation results for each strategy separately for left and
right brain hemispheres. If the correlation coefficient is
higher than 0.098, the null hypothesis is rejected with
a = 0.05. In this case, nearly all correlations between the
BOLD signal in the ROI and the ACT-R module’s
prediction can be considered statistically significant. This is
due to the large N. The practical significance depends on the
percentage of explained variance 72 - 100. This is the basis
of our discussions.
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Figure 3: Aggregation of BOLD curve per ROI and correlation test with ACT-R prediction
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Table 3: Correlations between ACT-R predictions and ROI activities. Each module’s prediction has been tested for
correlation with any of the regions from Table 1. Correlations marked with an asterisk are highest for the postulated mapping

Hemisphere Strategy Production Declarative Imaginal Visual Goal Manual Aural
S1 0.458 0.365 0.258 0.525 -0.262 0.389 *0.691
Left S2 0.489 0.402 0.259 *0.647 -0.267 0.403 *0.691
S3 0.495 0.408 0.258 *0.617 -0.264 0.414 *0.692
S4 0.489 0.414 0.246 *0.367 -0.265 0.194 *0.693
S1 0.428 0.191 0.389 0.556 -0.218 -0.052 *0.659
Right S2 0.438 0.220 0.397 *0.606 -0.218 -0.049 *0.660
S3 0.450 0.216 0.389 *0.596 -0.218 -0.044 *0.659
S4 0.432 0.231 0.397 0.295 -0.218 -0.065 *0.660
participants may be occupied with other processes which the

Discussion

Correlations between the Aural Module’s predictions and
left and right ROIs alike are high for every strategy. This
might be expected, as the aural input is only available to
each model for a short time, and thus the productions which
perceive and encode that information fire at approximately
the same time for all models.

The same applies to the Visual Module. The visual
presentation lasts 4.5 seconds. During this time span, any
model will perceive and encode visual information. Models
S2 (multi-threaded, both formulae) and S3 (single threaded,
single formula) perform with the highest correlation here.
Both models show the same behavior regarding response
times. However, the visual module is more engaged in the
S2 model, which examines both formulae. Correlation is
also the highest for this model.

The Manual Module’s predictions are higher for the left
than for the right hemisphere. This was expected as all
subjects responded with their right hand. All strategies
except S4 (single-threaded, both formulae) have a moderate
correlation coefficient. The moderate correlation is
surprising, as models were matched to the participants’
BOLD signals according to their response time, which
would suggest a higher correlation coefficient.

The Procedural Module offers fair correlations for both
hemispheres and all strategies, even if the correlations for
S1 are somewhat lower than those for the other strategies.
The correlations of the Declarative Module’s predictions are
moderate for the left hemisphere and low for the right
hemisphere. The higher prediction for the left Retrieval
Module is in line with previous research showing a left
hemispheric dominance for the retrieval of verbal
information (Petrides Alivisatos, & Evans, 1995;
McDermott, Buckner, Petersen, Kelley, and Sanders, 1999).

The opposite is the case for the Imaginal Module’s
prediction: These correlate better with the right than with
the left hemisphere. The Goal Module’s correlation is
negative in all cases.

In general, the correlations are higher for the sensor
modules, the Visual and Aural Modules. The internal
modules, Procedural, Declarative, and Imaginal, show lower
correlations alike. However, this cannot be ascribed to
faulty assumptions in the modeling process, as they are still
high when tested for significance. Rather, they suggest that
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models do not account for. This could especially be the case
as the experimental design provided large jitter times or
delays, during which the participant remained inactive. This
has also been observed by Danker and Anderson (2007).

All of our models assume a single goal which is created at
the beginning of a trial. The negative correlation
coefficients suggest that this assumption is wrong. Thus, the
creation of sub-goals for individual tasks should be
considered an alternative. A model using sub-goals would
have a decreased performance and higher response times
due to goal chunk creation costs. Using the Competing
Strategies paradigm (Taatgen, Lebiere, & Anderson, 2006),
the model would optimize performance by production rule
learning.

The models’ deficiencies are also evident from the scatter
plots in Figure 4. These show predictions versus
experimental evidence. Ideally, experimental evidence
would increase with model predictions with little variance to
the regression line, which would indicate similar peaks and
depressions for both curves. This is clearly not the case for
the Goal module on the right. Instead, both scatter plots
show clustering on the prediction axis. This indicates
monotonous activity patterns in the respective modules,
which is due to the chunk loading and manipulation actions
as implemented by the model.

Visual Module: Prediction vs. Experiment for $2 Goal Module: Prediction vs. Experiment for S2

W s o W00 150 0 280 a0 % 0 s w0 0 0 20

Experiment
Experiment

) . Prediction Prediction
right hemisphere, percentual deviation, R?=0.36, r=0.603 left hemisphere. percentual deviation, R?=0.07, r=-0.267

Figure 4: Scatter plots of predictions vs. evidence for S2

Conclusion

The correlations presented here are generally lower than in
previous studies (Danker and Anderson, 2007). However,
the experimental design, which does not account for
functional separation, might contribute to that fact. For a



complex task which allows for a multitude of strategies to
be pursued, many models may reproduce similar human
behavior but do not predict the same BOLD curves.

The ACT-R architecture features many free parameters
which may be altered in order to fit the model to
experimental data, even if this may seem contrary to the
intention of a cognitive architecture (Taatgen & Anderson,
2008). Also, many different modeling paradigms exist
which may be more or less appropriate to the task.

Thus, three options arise for the continuation of our
research. First, we could redesign our experiment in order to
separate functionalities, which is the approach currently
done by other research groups. Second, we could refine our
models by using a modified internal representation such as
sub-goal chunks. Third, we could define other ROIs and
look for correlations there.

So far, the second and third choices are being pursued by
us. The second choice would also include the calibration of
the modified model to the individual participant’s behavior
by adjusting ACT-R’s parameters. This should have positive
effect on BOLD prediction and signal correlations.

Especially the third choice of defining alternative ROIs is
of great importance. As can be seen in Table 1, Anderson’s
brain mapping hypothesis covers only a very small portion
of the brain. However, a review of imaging research
attributes the functions of ACT-R’s modules to a much
wider range of areas (Kaspera, 2010). Also, many of these
regions seem to interact when performing a certain function,
a phenomenon which the one-to-one mapping presented by
Anderson cannot account for.
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Abstract

The change signal task is a two alternative forced choice task
with the addition of a change signal presented on 1/3 of the
trials at some delay relative to the initial stimulus. The change
signal indicates to participants that they should inhibit their
initial choice and respond with the other alternative. It
provides an opportunity to examine the cognitive mechanisms
involved in statistical learning and response inhibition. Within
the task, change signal delays are associated with stimulus
color, and are adjusted independently with a step function to
produce high and low error conditions. Observed data show a
significant difference in reaction times between these two
conditions. In this paper we propose a model for the change
signal task that leverages existing declarative memory
mechanisms in ACT-R as a surrogate for the implicit
contextual learning observed in human trials. We compare the
mechanisms in this model briefly to an existing neural
account, and use the model to predict the consequences of
cue-conditional reversal.

Keywords: response inhibition; statistical learning;
declarative memory; ACT-R.
Introduction

Executive control of behavior is a defining component of
high-level cognition. One aspect of executive control,
response inhibition, has been explored extensively using the
stop signal paradigm. The classic task from Logan and
Cowan (1984) visually presented subjects with one of four
letters, which the subjects then classified into groups by
pressing one of two buttons. On 25% of the trials an audible
tone signaled that they should inhibit their response. The
probability of responding was related to the timing of the
stop signal (with a greater chance of inhibition with shorter
delays) and so the authors proposed a “horse race” model
for resolving executive conflict.

Brown and Braver (2005) extended the stop signal
paradigm to assess error-likelihood effects. In their change
signal task, a two alternative forced choice task is presented.
On one third of the trials, however, a second stimulus is
presented at some delay following the original stimulus. The
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second stimulus — the change signal — indicates to subjects
that they should inhibit their response to the original
stimulus and respond with the other alternative instead. To
ensure a particular error rate in the task, the delay between
the initial stimulus and the change signal is manipulated.

In Brown and Braver (2005), two colors were used for the
stimuli, each of which was associated with a different target
error rate. They collected fMRI data from participants
across the four stimulus conditions (i.e., Change versus No
Change trials crossed with High versus Low error
probability) to evaluate two alternative models of anterior
cingulate cortex (ACC) function. The successful model,
known as the error-likelihood model, correctly predicted a
learned response in the ACC that was sensitive to the
stimulus color (error rate condition), for both the “go” and
“change” trials.

The model presented in Brown and Braver (2005) was
focused on understanding the role of the ACC in learning to
recognize situations in which the risks of errors are high.
Previous work suggested that the ACC detected actual
errors (Dehaene et al., 1994) as well as conditions of
response conflict (Botvinick et al., 2001). The error
likelihood model further suggested that the ACC activity
warns of an impending error as a basis for implementing
proactive control.

There are other interesting aspects to the empirical data
that are not addressed directly by Brown and Braver (2005).
For instance, the model does not address the sequential
behavior of participants in terms of their reaction times. In
addition, the model does not explicitly account for
differences in reaction times for the two different error
conditions. These effects in the empirical data provide
further evidence regarding the cognitive mechanisms
involved in human performance on this task that will be
explored in the current research.

To better understand the mechanisms influencing human
performance on the change signal task, we have created a
complementary model that focuses on the detailed behavior



of participants. For instance, the data illustrate that the
conditional learning predicted by the error-likelihood model
(i.e., differences in ACC activation for High versus Low
error conditions) has an impact on reactions times that
unfolds over the course of many trials. We used the ACT-R
(Anderson, 2007) computational cognitive architecture to
model these results from Brown and Braver (2005) study.
After we describe the model and results in detail, we discuss
the distinct and complementary insights afforded by the
modeling approach used here versus Brown and Braver
(2005).

The Task

We reimplemented the original Brown and Braver change
signal task in Lisp to accommodate integration with ACT-R.
The only known differences include color choices, symbols
presented, and response keys. Although these items were
altered for implementation convenience, they have no
bearing on model behavior or performance. The remaining
description will focus on the task as presented to human
subjects. Additional details regarding the task and
instructions can be found in the supplementary materials
from Brown and Braver (2005).

A schematic of the change signal task is shown in Figure
1. After a .5s blank inter-trial delay, subjects were presented
with a cue stimulus in one of two colors. Unbeknownst to
the subjects, the cue color represented either a high error
rate condition or a low error rate condition. After one
second, the cue was replaced with a similarly colored go
signal—an arrow pointing either right or left. The subjects
were instructed to respond to the go signal by pressing the
corresponding right or left arrow key on the keyboard.

On one third of the trials, a larger arrow pointing in the
opposite direction of the go signal appeared after a change
stimulus delay (CSD). (Again, the coloring was consistent
with the error rate condition.) In this case, subjects were
instructed to inhibit their initial response to the go signal,
and instead respond to the “change signal.” A response
ended the trial, which progressed directly to a blank screen
and the inter-trial delay. No feedback was presented. If the
subject failed to respond within one second after the go
signal appeared, the trial timed out.

The high and low error rate conditions were bound to
unique CSDs, which were adjusted independently using a
step function to maintain a consistent error rate defined for
each condition. In both error rate conditions, CSDs were
constrained to a range of 20 to 800ms and incorrect
responses reduced the CSD by 50ms. In the low error rate
condition, correct responses led to a 2ms increase in the
CSD, while in the high error rate condition the CSD
increased by 50ms when a correct response was made.
These adjustments were made to motivate a 4% error rate,
and a 50% error rate, respectively. Responses made prior to
the presentation of the change stimulus were considered
errors.

The original experiment used five blocks with
approximately 107 trials each, although the trial count
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varied slightly across subjects. Our task fixed this number to
107, and the direction of the go signals and error rate
conditions was randomized and counterbalanced within
each block as best as possible. Stimulus colors were
consistent with the error rate condition in all blocks except
the last. For the final block, the relationship between stimuli
colors and error rate conditions was reversed.

1. Cue 2. Go Signal 3. Change Signal
Time -> 0s 1s 1s + high CSD
33%
50% - chance e
High Error Rate Color cf7
— L 33% %
50% < change <
chance

.

50 /50 chance

N

1s + low CSD

33%

50%
chance
_

chance
+—

Low Error Rate Color 50%
chance =

Figure 1: Task schematic. A cue signal is presented in one
of two colors, followed by a go signal 1 second later. There
is a 33% chance that a subsequent change signal will be
presented, the timing of which is determined by a change
stimulus delay bound to the signal color.

33%
chance

Human Performance

Figure 2 shows aggregate reaction times across trials
collapsed across subjects and conditions. The solid line
represents the central tendency as predicted by a simple
linear regression of a logarithmic model, although the
regression is intentionally discontinuous at the start of the
reversal block, indicated by the grey area. The subjects
performed more slowly across trials until they reach an
asymptote. The regression model coefficient affecting the
rise and asymptote of the curve is significantly greater than
zero for the normal trials (p < .001), and not significant for
the reversal block. This suggests that there are not enough
reversal block trials to reveal an effect, if there is one.

Time on task effects may account for some of the
performance decline (e.g., Gunzelmann, G., Moore, L. R,
Gluck, K. A., Van Dongen, H. P. A., & Dinges, D. F.,
2010), but we believe that the more influential factor is that
subjects were strategically hedging their responses to
improve their odds of successfully responding to change
signals. (Of course, such a strategy is futile in this
experiment because the CSDs were adjusted to encourage a
consistent error rate.) Evidence for strategic hedging
becomes apparent when we examine reaction times for each
condition, also shown in Figure 2. The dashed line shows
the central tendency for the high error rate condition, and
the dotted line shows the central tendency for the low error



rate condition. Again, the regression is intentionally
discontinuous at the start of the reversal block.

Not surprisingly, the statistics for the two error rate
conditions match those of the collapsed data, with highly
significant coefficients for the normal blocks (p < .001) and
insignificant coefficients for the reversal block. The
confidence intervals for the normal block coefficients,
however, are more interesting because they do not overlap.
(17.8 < Apjgn < 27.7, and 3.0 < Ay, < 11.2) The significant
difference between these coefficients suggests a relationship
between stimulus color and reaction time. In other words,
over the duration of the experiment, subjects learn to delay
their response more for the high error rate condition than for
the low error rate condition. A simple time on task effect
would not produce a disparate hedge times across error rate
conditions.
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Figure 2: Reaction times collapsed across conditions are
shown in the grey scatterplot, with the central tendency
shown as a solid black line. Central tendencies for the high
and low error conditions are shown as dashed and dotted
lines, respectively. The central tendencies, generated
through regressions, are discontinuous at the start of the
reversal block, shown in grey.

The Model

The ACT-R 6 (Anderson, 2007) cognitive architecture
provides the computational framework for our model. It
integrates perceptual, cognitive, and motor processing
mechanisms from the psychological literature. At its core, it
is a symbolic production system with a semantic network
memory and simulated subsymbolic effects. Specifically,
our model leverages the procedural and declarative
capabilities, the intentional module, and a timing capability
derived from a temporal module (Taatgen, Van Rijn, &
Anderson, 2007).

The empirical data from Brown and Braver (2005)
demonstrate that subjects implicitly learned the association
of stimulus color to error rate condition. In this paper, we
show that this learning measurably influenced subject
performance—their response times were strategically
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mediated by stimulus color. Out of several possible
approaches to model this in ACT-R, we chose to use the
declarative module to emulate the statistical learning
attributed to the ACC.

From the perspective of the ACT-R theory, the
declarative module is not intended to represent the
functional properties of the ACC (see Anderson, 2007), but
it does provide the appropriate Bayesian dynamics to
represent the learning we hypothesize may be involved.
Thus, we treat the declarative module as a surrogate for the
ACC functionality that is not represented by existing
mechanisms in ACT-R. This absent functionality would
appear to appropriately reside within ACT-R’s intentional
module, which is associated, in part, with ACC function
(Anderson, 2007).

The model employs a simple hedging strategy to
accomplish the task. Upon attending to a cue, it attempts to
retrieve a similar trial from declarative memory based on the
cue color. When the subsequent go signal is attended, the
model does not respond immediately. Instead, it waits
according to a remembered “hedge time” from the trial that
was retrieved from declarative memory. If no similar trial
exists (i.e., nothing was retrieved), a default initial hedge
time is used, which is a free parameter discussed below. If a
change signal is seen prior to the expiration of the hedge
time, a response is made accordingly. If no change signal is
seen and the hedge time expires, the model responds to the
go signal.

Even when the model responds to the go signal, the key
press does not occur immediately. Instead, the ACT-R
motor module initiates a 3-phase motor movement that can
take well over 100 milliseconds before the actual key press
is registered by the task (Byrne & Anderson, 2001). During
this time, the model can detect a change signal, although it
is too late to cancel the requested motor action. The model
learns from its failure by associating the CSD with the color
for that trial in its goal buffer of the intentional module.
This timing information is based upon estimates from the
temporal module (Taatgen et al., 2007).

At the start of the next trial, the contents of the goal
buffer, which includes the association between the stimulus
color and hedge time, is stored in declarative memory to
serve as an exemplar for future trials. Because detected
errors typically associated a longer hedge time than what
was originally retrieved, they have the effect of increasing
future hedge times (Rabbitt, 1966). As currently written, the
model has no specific mechanism to reduce hedge times.

Without a mechanism to reduce hedge times, it might
seem that model response times would always increase and
never asymptote. Indeed, sharp increases in hedge times do
occur in early trials. However, because each stimulus color
/ hedge time pairing is stored as an independent chunk (i.e.
there is no merging) the likelihood of retrieving a particular
hedge time increases the more often it is used, in part due to
the influence of stochasticity in declarative memory. After
a large number of trials, the declarative memory becomes so
saturated with hedge times associated with each stimulus



color, that the model’s hedging essentially reaches a steady
state.

Three parameters were involved with fitting the model to
observed data. The first is the initial hedge time, which we
believe was established either through practice trials or as a
side effect of instructions that informed subjects of delayed
change signals. This has the simple effect of moving the y-
intercept in Figure 3.

The second free parameter was activation noise, which
reflects the effect of subsymbolic processes in the
declarative memory system. Noise influences the likelihood
that recent and correct declarative information will be
retrieved. In terms of the curve in Figure 2, noise affects the
overall shape—higher noise flattens it out. In ACT-R,
activation noise is set with the ans parameter, for which we
settled on a value of .53. This produces a standard deviation
of .96 in the distribution of noise that is sampled to add
stochasticity to the activation of declarative memories.

Lastly, the ACT-R declarative memory system allows for
errors of commition through a mechanism called partial
matching. We used this mechanism so that the model would
be indifferent to stimulus colors in early trials and develop a
differentiation in later trials. The mechanism requires us to
specify a degree of similarity between stimulus colors,
which we set to 50%. We did not use this as a free
parameter in the fitting processes because the other
parameters provided the necessary degrees of freedom.

Results

Using the parameter values described above, we
aggregated the results from 100 model runs to obtain
reliable measures of central tendency. A comparison of
reaction times between model and human data are shown in
Figure 3. Because a large amount of stochasticity still
remains even after aggregation, the model results are
represented using linear regressions of a logarithmic model
in the same way the human data is shown. (The standard
deviation is considered as a separate measure of fitness
below.)
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Figure 3: ACT-R model results are shown as dashed lines
on top of the human data shown as black lines.
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The RMSD values calculated from the model and human
reaction time data are shown in Table 1. The overall mean
RMSD was 58.5ms, which seems reasonable given that
some of the deviation is a result of remaining stochasticity
in the model and human data.

Table 1: RMSD values between model and human data.

Condition / Block RMSD (ms)
High Error / Normal 51.6
High Error / Reverse 48.8
Low Error / Normal 74.3
Low Error /Reverse 59.1

The high stochasticity suggests that the standard deviation
of the reaction time is another important measure of fitness
(non-responses were removed for this analysis). Figure 4
overlays model performance on top of a box plot of the
subject data. The model’s standard deviation was in the
middle of the 1* quartile for the subject data. This could be
improved by increasing noise in other areas of ACT-R, but
we opted against doing so in the interest of parsimony.
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Figure 4: ACT-R model standard deviation, error
proportion, and non-responses overlaid on subject data. The
hollow diamonds indicate ACT-R values.

The proportion of incorrect responses made was also a
consideration. For purposes of this analysis, an incorrect
response occurs when the subject presses the wrong arrow
key, regardless of condition. Since a response is actually
made, this does not included non-responses, which are
analyzed separately below. Also shown in Figure 4, the
results were within the range of humans, although on the
high side.

The remaining measure of fitness is the proportion of
non-responses. A non-response occurs when the model fails
to respond to a go signal within 1 second. The temporal
module in ACT-R adds some stochasticity to the timing so
this can occur even if the intended hedge time is within the
trial period. Again, the non-responses were well within the
human range (see Figure 4), but on the low side of the
second quartile. As was the case with standard deviation,
this could be improved if we allowed the model another
degree of freedom.

Finally, fMRI studies, including the Brown and Braver
(2005) work, often use a blood oxygenation level-dependent
(BOLD) contrast mechanism. With this technique, regions



of the brain with higher blood oxygenation appear more
intensely on images, which indicates greater neural activity.
ACT-R uses buffer activity to make BOLD predictions
(Anderson, Bothell, Byrne, Douglass, Lebiere, & Qin,
2004), as shown in Figure 5. In this figure, ACT-R makes
BOLD predictions for the ACC region based on activity in
the goal buffer of the intentional module. To produce this
graph, the inter-trial delay was extended to 10 seconds to
isolate responses. Data was aggregated from 12 normal
blocks of 107 trials.
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Figure 5: ACT-R BOLD predictions for the ACC region
in each of the four conditions.

Discussion

As modelers, we often confront (and perhaps carry our
own) biases related to specific modeling approaches,
whether it be production level architectures like ACT-R,
connectionist approaches like the error likelihood model,
diffusion models, dynamic systems, or others (Anderson &
Lebiere, 2003). This is unfortunate, because as this research
demonstrates, each methodology maintains distinct
advantages as well as disadvantages that may be overcome
using a variety of techniques. Specifically, the error
likelihood model makes detailed predictions about
neurological processes in the ACC beyond the current scope
of ACT-R. However, ACT-R brings to the table a
generalized account of end-to-end perceptual-cognitive
activity, which can reproduce observed behavior.

If we accept that both models contain elements of truth,
there must be some functional overlap despite the differing
levels of abstraction. Recent work on the theory of ACT-R
has focused on mapping functionality to specific brain
regions (e.g., Anderson, Bothell, Byrne, Douglass, Lebiere,
& Qin, 2004). Specifically, the ACC is attributed to the
ACT-R intentional module, which includes the goal buffer
(Anderson, 2007). The goal buffer typically maintains the
internal and relevant external information required to make
decisions. This is intended to include the conflict resolution
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typically attributed to the ACC, but it is a functionally
broader interpretation.

In our change signal model, the goal buffer contains the
stimulus color and hedge time, among other state
information. The current implementation of ACT-R
provides no functional computation in the intentional
module, so the statistical learning demonstrated by the error
likelihood model involves knowledge maintained in the
declarative module, which acts as a surrogate. Our position
that the declarative memory acts as a surrogate is largely
based on that fact that many subjects were unable to
explicitly distinguish the difference between stimulus colors
in terms of their pairing with error likelihood even after the
experiment.

This is not a firm position, and we are planning a follow-
up study to guide our modeling direction. A more detailed
participant debriefing will help determine the degree of
declarative learning and influence on behavior. The results
may suggest that the declarative component is more than
just a surrogate—perhaps the ACC activity is
epiphenomenal to declarative function. On the other hand, it
may be confirmed that there is little relation between
declarative knowledge and subject behavior with respect to
high and low error conditions. In this case, the model may
evolve towards a bottom-up learning approach, perhaps
though augmenting the intentional module in ACT-R or
focusing on a procedural learning approach.

In the mean time, the declarative module provides a
reasonable proxy for ACC function because it employs a
similar statistical learning process. Because the information
managed in declarative memory relates stimulus color and
hedge times, greater activity occurs when change signal
errors are detected. This is reflected in the goal buffer,
which results in higher predicted BOLD responses in ACT-
R. Furthermore, because errors are detected 3x more often
in the high error rate change condition, its mean BOLD
response will rise above all other conditions. This is
supported in Figure 5.

The ACC BOLD responses recorded in the Brown and
Braver (2005) study aligns with some, but not all, of the
ACT-R predictions. Specifically, the high error change
condition shows the highest activation, followed by low
error change and high error go conditions which are
essentially tied.

The low error rate go condition is a significant
divergence, as the BOLD response show that the activation
is clearly lower than the other conditions in that region.
Unfortunately this was one of the key findings that
distinguished the error likelihood model from the alternative
“conflict” model. The current ACT-R model does not
produce a similar prediction because extra goal
manipulation only occurs when errors are detected in
change conditions. One could argue that this is a response to
the statistical learning that was delegated to the declarative
memory system in our model. In this regard, the ACT-R
model stands in contrast with the Brown and Braver (2005)
model, which predicted greater fMRI activity in ACC for



high vs. low error likelihood trials, even when restricted to
correct trials with no change signal. Nevertheless, if the
hedge time in the declarative memory were to increase the
simulated fMRI activity, then our model might be able to
simulate an error likelihood effect in ACC activity.

Finally, with an ACT-R model of the change signal task
performing reasonably well, we have an opportunity to
make a prediction. The reversal block in the observed
human data had surprisingly little effect, and the ACT-R
model produced similar results. By extending the number of
reversal blocks, we can predict how many trials will be
required to see an effect, and what that effect might be.

The predicted results of 24 reversal blocks are shown in
Figure 6. As mentioned previously, the model does not
currently have a mechanism to reduce hedge times. Both
conditions achieve a steady state at their asymptotes through
a combination of accumulated statistical evidence and
retrieval noise. Even when failures to respond to change
signals are detected and increased hedge times remembered,
noise in the declarative retrieval process makes it unlikely
that the latest trial information will be retrieved over the
large number of older, lower trial hedge times available.

Without this statistical influence, the low error rate
condition would never achieve an asymptote below the high
error condition without a mechanism to hedge downward.
This also provides an explanation for the predictions in
Figure 6, which continue on the same trajectory as the
normal block. In contrast, the error likelihood model of
Brown and Braver (2005) would predict that over time, the
ACC will learn the reversed error likelihood pairings,
leading to a reversal of error likelihood effects on reaction
time. Although our current data is insufficient to make
concrete statements about which prediction is correct, our
follow-up study will extend the number of reversal blocks
with hopes to allow such a test. Once again, this will help
inform future model development.
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Figure 6: ACT-R model prediction of color reversal over
24 blocks, shown in the grey region.
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Abstract

Iterated decision making can be studied in laboratory using sit-
uations, like the Jowa Gambling Task (IGT), in which partici-
pants face repeatedly the same decision problem getting feed-
back after each choice. In the paper we focus on a recurring
finding in experiments carried out with the IGT, the frequency
of the contingent event effect—i.e., the fact that people consis-
tently prefer options associated with rare losses, independently
of their attractiveness, expected value and loss magnitude—
that has not yet received a satisfactory explanation. An ex-
periment reveals that the effect relies on simply experiencing
rewards and punishments, not being influenced by the net out-
come (loss or win) to which they are associated, and a compu-
tational model, implemented in the ACT-R cognitive architec-
ture, corroborates the idea that punishments and losses on one
hand, and rewards and wins on the other, play the same func-
tional role in determining the participants’ behavior in IGT.

Keywords: Iterated decision making; Reinforcement learning;
Iowa Gambling Task; ACT-R; Feedback.

Introduction

Iterated decision making relies on the regulation of behav-
ior according to its consequences. This process is character-
ized by three steps (Ahn, Busemeyer, Wagenmakers, & Stout,
2008): (1) the choice of a possible option and the execution
of the associated action, (2) the encoding of the action conse-
quences, (3) the integration of the consequences in a format
that allows options comparison. Iterated decision making can
be simulated in laboratory using the so-called multi-armed
bandit tasks (Sutton & Barto, 1998) in which participants
face repeatedly the same decision problem and get a numeri-
cal reward after each choice. Behavior in multi-armed bandit
tasks is usually modeled by Reinforcement Learning models
in which agents, requested to maximize their expected total
reward over a given number of trials, learn about the struc-
ture of the environment by taking into account the reward as-
sociated with each choice. In the paper we will adopt Rein-
forcement Learning to explain the results obtained in a par-
ticular multi-armed bandit task, the Iowa Gambling Task—
henceforth, IGT (Bechara, Damasio, Damasio, & Anderson,
1994). Our models will be based on the ACT-R cognitive ar-
chitecture (Anderson, 2007) which provides the resources for
the steps (1) and (3) of the decision making process described
above, and we try to figure out how step (2) is carried out.
The IGT has been proposed as a simulation of real life de-
cision making in the way it factors reward, punishment and
outcome uncertainty (Bechara et al., 1994). The IGT in-
volves four decks of cards. Participants repeatedly choose
a card at a time from one of the decks. Each time a card is
turned, it allows participants to gain a given amount of money,
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but sometimes the card forces them to give up some money,
too; therefore, while all cards contain a reward, only some
cards contain a punishment. Two card decks (let’s call them
A and B) feature high wins per card ($100) but they yield
also higher losses so that, by choosing them, participants lose
more money than they win. These decks are referred to as
“bad decks”. The remaining decks (C and D) give rise to
small gains ($50) but even smaller losses, so that it is prof-
itable to choose cards from them. These decks are referred to
as “good decks”. Generally participants, after being initially
attracted by the dangerous bad decks featuring high wins and
higher losses, gradually shift their preferences toward the
good ones, a result which has been replicated by most IGT
studies (Dunn, Dalgleish, & Lawrence, 2006). So, accord-
ing to the standard interpretation, participants’ behavior can
be explained by a conflict between two deck features: their
attractiveness, i. e., the amount of money each cards allows
immediately to win—which drives the participants choices in
the first trials—and the long term expected value, i. e., the net
amount of money gained or lost— which drives them in the
subsequent trials.

In recent years a growing number of researchers have been
suggesting that this interpretation of the IGT is unsatisfac-
tory (see Dunn et al. (2006) for a critical review of the lit-
erature). In the present paper we will focus on a recurring
finding in the experiments carried out with the IGT which has
not yet received a satisfactory explanation. This finding has
been termed the “frequency of the contingent event effect”
by Fum, Napoli, and Stocco (2008) and the “prominent deck
B phenomenon” by Chiu et al. (2008) and refers to the fact
that people consistently prefer the decks associated with rare
losses—to the point that the bad-but-rare-loss deck B which
gives raise to a small number of losses is consistently pre-
ferred to the good-but-frequent-loss deck C—independently
of their attractiveness, expected value and loss magnitude.
Even if the theoretical interpretations of the phenomenon put
forward by the two research groups are similar, they differ in
some important details.

Frequency of the contingent event

Traditionally, the performance in the IGT has been recorded
by subtracting the number of bad deck selections from the
good ones (the so-called Good—Bad index). In the original
version of the IGT (see Table 1), for every block of ten cards,
decks A and C originate five money losses while decks B and
D give rise to only one.



Table 1: Deck matrices of the original lowa Gambling Task

Card A B C D
# Rew Pun Rew Pun Rew Pun Rew Pun
1 +100 0 +100 0 +50 0 +50 0
2 +100 0 +100 0 +50 0 +50 0
3 +100 -150 +100 0 450 -25 450 0
4 +100 0 +100 0 450 0 +50 0
5 +100 -300 +100 0 450 -75 +50 0
6 +100 0 +100 0 +50 0 +50 0
7 +100 -200 +100 0 450 -25 +50 0
8 +100 0 +100 0 +50 0 +50 0
9 +100 -250 +100 -1250 +50 -75 450 -250
10 +100 -350 +100 0 450 -50 +50 0
EV Bad Bad Good Good

Rew: Reward. Pun: Punishment. EV: Expected Value. Pun-
ishments which do not result in a net loss are evidenced in

gray.

Because A and B are the bad decks and C and D are the
good ones, any possible effect of the number of losses is con-
founded with that of the deck quality, as expressed by their
expected value. In recent years researchers have started to
present the analytical data for each deck and evidence has
been growing about the “frequency effect”, i.e. the functional
role that the frequency of money losses could play in addic-
tion (or in opposition) to the effects of decks’ attractiveness
and expected value.

To understand which deck features exert the most impor-
tant effect on IGT, Fum et al. (2008) manipulated the decks
pay-off matrices in three different experimental conditions.
In all the conditions the decks attractiveness and the loss fre-
quency were kept the same as in the original IGT, while their
expected values were manipulated. The first condition repli-
cated the setting of the original IGT. In the second condi-
tion the expected value of the decks was zeroed, so that the
amount of money participants were expected to win in the
long run for each deck was identical to that they were ex-
pected to lose. In the third condition the two decks with fre-
quent punishments (A and C) were good while the decks with
less frequent punishments (B and D) were the bad ones; in
this case loss frequency and expected value were put in oppo-
sition for each deck.

Two findings were particularly significant: (1) the num-
ber of selections from each deck was almost the same in all
the conditions, and (2) participants showed a strong prefer-
ence for the low frequency loss decks, even in the condi-
tion in which these decks were bad. In the same study, the
IGT task was carried out in a scenario in which participants
always lost money when they turned a card while the con-
tingent event was represented by a win, a variant originally
developed by Bechara, Tranel, and Damasio (2000). Simi-
lar results were obtained with the same pattern of choices in
all the conditions and a strong preference for the decks orig-
inating a higher number of wins. The fact that participants
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chose the same number of cards from all decks despite the
change in their expected value means that this feature plays a
small or no functional role in determining their choices. The
fact that participants preferred the decks with a small num-
ber of losses (or those with a high number of wins) means
that the frequency effect is both independent from and much
stronger than the effect of the other two features. This effect
was termed “the contingent event effect”.

An important empirical finding remains, however, unex-
plained by the contingent event effect and it is constituted by
the fact that, when this effect is confounded with that of the
expected value, a preference for the economically advanta-
geous decks (a “goodness” effect) is normally found which
indicates that the frequency of the contingent event cannot
cover the whole story in the IGT. Stocco, Fum, and Napoli
(2009) hold the idea that participants’ behavior in this task
is guided by a dual process. The first one is a low-level
emotion-based mechanism which is sensitive to punishment
(or reward) frequency, while the second one, high-level and
based on the analysis of the monetary outcomes, is sensitive
to the decks’ expected value. Even if the former is normally
the most important factor in guiding participants’ choices, the
latter may sometimes enter into play being responsible for the
goodness effect.

A different explanation for the goodness effect which de-
valuates the deck’s expected value has been put forward by
Chiu et al. (2008). In order to understand their proposal it
is necessary, however, to introduce some terminological dis-
tinctions.

From now on, we will discriminate between a punishment
and a loss, on one hand, and between a reward and a gain, on
the other. A punishment is an event that happens every time
participants turn a card that makes them give away money.
So, for example (see Table 1), in card #3 of deck C, after
having earned $50 you are forced to give $25 back, and this
is a punishment. A /loss is a particular kind of punishment in
which the amount of money lost is higher than that won; so, in
card #3 of deck A, you win $100 but you are forced to refund
$150, and this constitues a loss. All losses are therefore pun-
ishments, but not vice versa. In the same vein, in the variant
IGT in which every card turn makes you lose some money, a
reward is a contingent event in which you earn some money
while a gain is a reward in which the amount of money gained
is higher than that lost.

Chiu et al. (2008) argue that the process driving partici-
pants’ behavior in the IGT is sensitive to loss (in the sense
we have just defined) frequency. Some cards in deck C (evi-
denced in gray in Table 1) present a punishment which is not a
loss, as for example the card (+$50, -$25), whose outcome is
anet gain of $25. Every block of 10 cards, deck C contains on
average 6.25 gains, 2.5 standoffs and 1.25 losses, deck D con-
tains 9 gains and 1 loss, deck A contains 5 gains and 5 losses,
and deck B contains 9 gains and 1 loss. Therefore, taken
together, the good decks (C and D) present a total of 15.25
gains, 2.5 standoffs and 2.25 losses, whereas the bad decks



(A and B) present 14 gains and 6 losses. According to Chiu
et al. (2008), the lower number of losses in the good decks
explains the participants’ preference for them. These authors
also propose their own version of the IGT, the Soochow Gam-
bling Task (henceforth, SGT), in which every punishment is
always a loss, thus eliminating the “ambiguous” Deck C. In
SGT the bad decks have a high number of wins, while the
good decks have a high number of losses. Results show that
participants choose more cards from the former than from the
latter type of decks, and this corroborates the idea that their
behavior is more sensitive to losses than to expected value.

The proposals of the two research groups differ in two re-
spects: the first one is that Fum et al. (2008) assume that par-
ticipants avoid all kind of punishments, while according to
Chiu et al. (2008) they avoid only punishments which result
in a net loss. The second, which is strictly tied to the first, is
that according to Stocco et al. (2009), the goodness effect is
due to an understanding of the decks’ expected value, while
according to Chiu et al. (2008) the goodness effect is due to
the lower number of losses in the deck C. In this paper we
present an experiment which tries to distinguish between the
two proposals by addressing the (possible) different effects of
punishments and losses.

The Experiment

A first idea for discriminating between the above mentioned
positions is to compare the choices made from two different
kind of decks that, while sharing the same expected value,
provide the same number of punishments but a different num-
ber of losses. So, the first deck should give rise to a given
number of losses (which are all punishments) while the sec-
ond should originate the same number of punishments of
which, however, only some are losses. According to Chiu et
al. (2008), participants should prefer the latter kind of deck
while, according to Fum et al. (2008), participants should
choose the same number of cards from the two decks.

A second way of discriminating between the hypotheses
would take into account the specific format of the information
provided during the experiment, i.e., the feedback received
after each choice. In the original IGT, participants received
a “double feedback”™ stating separately the amount of money
provided by the default and the contingent event (which could
be possibly null). In a “single feedback” task (such as the
SGT) each card turn informs only about the net amount of
money lost or gained. According to Chiu et al. (2008), par-
ticipants should exhibit the same pattern of choices both in
a Single and in a Double feedback task, while, according to
Fum et al. (2008), participants should modify their behavior
whenever the manipulation changes the number of punish-
ments in one or more decks.

In the experiment we contrasted the participants’ behavior
in a variant of the IGT featuring both a Double feedback and
a Single feedback condition. In the Double condition all the
decks (A, B, C and D) provided the same punishment fre-
quency (5 every 10 cards), but for two of the decks (A and C)

all the punishments were losses (giving thus 5 losses every 5
punishments) while the remaining decks (B and D) provided
only 1 loss every 5 punishments (see Table 2).

Table 2: Deck matrices of the Double Feedback - Standard
Frame condition.

Card A B C D

# Rew Pun Rew Pun Rew Pun Rew Pun

1 +90 0 +90 0 +90 0 +90 0
2 +110 -300 +110 -25 +110 -125 +110 = -25
3 +120 -250 +120 -1050 +120 -175 +120 -550
4 +90 0 +90 0 +90 0 +90 0
5 +100 -250 +100 -50 +100 -150 +100 = -50
6 +110 0 +110 0 +110 0 +110 0
7 +120 -150 +120 -50 +120 -150 +120 = -50
8 +100 0 +100 0 +100 0 +100 0
9 +80 0 +80 0 +80 0 +80 0
10 +80 -300 +80 -75 +80 -150 +80 -75
EV Bad Bad Good Good

Rew: Reward. Pun: Punishment. EV: Expected Value. Pun-
ishments which do not result in a loss are evidenced in gray.

In the Single condition we used the same pay-off matrices
of the Double condition but we presented participants only
the net amount of money won or lost. This resulted in a dif-
ferent effect for the punishment cards which were losses and
those which were not. In fact, a card such as (+$100, -$75)
in the Double condition would become a (+$25) card in the
Single one, thus resulting in a non-loss card. On the other
hand, a card such as (+$100, -$300) would become a (-$200)
card in the Single condition, giving thus rise to a net loss. As
a result, decks B and D, which presented 1 loss every 5 pun-
ishments in the Double condition, had 1 loss every 10 cards
in the Single condition, while the decks C and D, which had
5 losses every 5 punishments in the Double condition, pre-
sented 5 losses every 10 cards in the Single condition (see
Table 3).

To control for the other features, all decks had the same
attractiveness, so participants gained on average $100 every
time they turned a card. The expected value was balanced
instead: there was one good deck and one bad deck among
the ones with high loss frequency, and one good deck and
one bad deck among the ones with low loss frequency.

We ran both feedback conditions in two different frames:
a Standard condition, which we just described and in which
each card turn originated as default event a win and the con-
tingent event was represented by punishments as in the orig-
inal IGT scenario presented in Bechara et al. (1994), and a
Reversed condition, in which participants always got a pun-
ishment when they turned a card and the contingent event was
represented by rewards, as in Bechara et al. (2000). In the Re-
versed condition all the decks had the same reward frequency
but differed in the number of gains; the effect of attractive-
ness and expected value was controlled in the same way as in
the Standard condition.



Table 3: Deck matrices of the Single Feedback - Standard
Frame condition.

Card A B C D
# Payoff Payoff Payoff Payoff
1 +90 +90 +90 +90
2 -190 +85 -15 +85
3 -130 -930 -55 -430
4 +90 +90 +90 +90
5 -150 +50 -50 +50
6 +110 +110 +110 +110
7 -30 +70 -30 +70
8 +100 +100 +100 +100
9 +80 +80 +80 +80
10 -220 +5 -70 +5

EV Bad Bad Good Good

Please note that the “Payoff” column results from the sum of
“Reward” and “Punishment” columns of Table 2.

Method

Participants. Eighty-eight participants (40 males) were re-
cruited from students enrolled at the University of Trieste,
in Italy. They were aged between 19 and 28 years (M= 19.9,
SD=3.7). The participants were randomly assigned to the ex-
perimental conditions. We excluded from the analyses those
participants who, in some condition, turned a number of cards
from a deck that differed by 3 SDs, or more, from the aver-
age number of choices made for that deck. Eight participants
satisfied this criterion and were discarded.

Experimental Design. The experiment followed a 2x2 be-
tween subjects design with Feedback (Single vs. Double) and
Frame (Standard vs. Reversed) as main factors.

Materials. Deck features are summarized in Table 2 and Ta-
ble 3. Note that in all the conditions A and B were the bad
decks while C and D were the good ones, and that B and D
were those decks in which a possible frequency effect should
show up since they provided low-frequency losses in the Stan-
dard condition and high-frequency gains in the Reversed con-
dition.

Procedure. Experimental sessions were held individually.
Participants played a computer-based implementation of the
IGT. Decks were visually presented in the lower part of a
15 in LCD screen, and participants used a mouse to point
and select the deck they had chosen. Immediately after each
card selection, the amount of money obtained through the de-
fault event (and possibly through the contingent one) was dis-
played in the upper half of the screen. The running total of
money was coarsely indicated by a colored bar in the upper-
most part of the screen that was updated after each selection.
In each experimental condition participants had to perform
100 card selections.
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Results and Discussion

Table 4 reports the average number of choices made from
each deck in the different experimental conditions.

Table 4: Means (and Standard Deviations) of deck choices in
the four experimental conditions.

Deck

Condition A B C D
21.06 2294 2671 2929
Double-Reversed 7 59) 503y (93)  (948)
2245 23.65 2335 2855
Double-Standard ¢ 100 9330 (9.68) (12.56)
SineloRoversed 1959 2586 2418 3036
& (5.82)  (8.08) (10.03) 10.57)
SineloStndard 1702 2895 1957 3336
& 6.4) (12.24) (6.87) (13.24)

We analyzed the participant’s performance on two syn-
thetic indices: P, which measures the tendency to choose
according to the expected value and is calculated by
(C+D)—(A+B), and Q, which measures the tendency to
choose according to the frequency of the contingent event.
Q is calculated by (B+D)—(A+C) and it measures the prefer-
ence for decks with low loss frequency in the Standard con-
dition and decks with high gain frequency in the Reversed
condition (see: Stocco et al. (2009)). We monitored the par-
ticipants’ behavior throughout the experiment by analyzing
the two indices in successive blocks of 20 choices each. We
ran a mixed design ANOVA both on P and Q, using Feedback
(Single vs. Double) and Frame (Standard vs. Reversed) as
between factors, and Blocks (from 1-20 to 81-100) as within
factors.

As for P, the ANOVA didn’t reveal any significant differ-
ence for the two factors nor for the blocks. The interaction
between Blocks and Feedback resulted marginally significant
(F(4,304)=2.39, p=0.51) and was caused by the low number
of selections from good decks in the first block made by par-
ticipants in the Single condition in comparison to those in the
Double one. Since there was no main effect of any factor, we
collapsed the value of P at the end of the experiment across
all conditions. A r-test on this value revealed that participants
chose more cards from the good decks than from the bad ones
(M=8.8, 1(79)=3.44, p<.001).

As for Q, the effect of Feedback (F(1,76)=8.15, p<.01), of
Blocks (F(4,304)=4.72, p<.01) and the Blocks x Frame inter-
action (F(4,304)=3.6, p<.01) resulted statistically significant,
while the Blocks x Feedback interaction was only marginally
significant (F'(4,304)=2.1, p =.081). We also performed two -
tests on the value of Q at the end of the experiment separately
for the Single and Double Feedback conditions collapsing the
Standard and Reversed Frame. The results were significant
for the Single condition (M=18.89, #(42)=5.32, p<.0001) but



not for the Double condition (M=4.43, #(36)=1.19, p=.24).

The analyses show thus that there was a frequency effect
only in the Single condition but not in the Double one. As
explained in the previous section, according to Chiu et al.
(2008), participants were expected to be influenced by the
frequency of the contingent event in both cases, while accord-
ing to Fum et al. (2008) the effect should only be present in
the Single feedback. The results support our hypothesis that
participants try to avoid all kind of punishments and not just
the ones which result in a net loss (and are sensible to any re-
ward and not only to wins). Because the matrices of the decks
in the Single feedback condition were obtained directly from
those used in the Double one, this result cannot be attributed
to possible different values employed in the two conditions.
On the other hand, because the SGT did not directly contrast
Single vs. Double feedback, the results obtained by Chiu et
al. (2008) could depend critically on the specific values used
in their matrices. This experiment also suggests that partic-
ipants, being sensible to the difference between Single and
Double feedback, take separately into account the value of
both the default and contingent event and do not rely only on
the net value of each trial.

The analyses, by highlighting a goodness effect in all the
conditions, show that participants are somehow sensible to
the expected value of the decks, too. However, if they had re-
ally understood which decks were the good ones, they would
have consistently chosen them. This did not happen because
in no condition the (good) deck C was chosen more frequently
than the (bad) deck B, a result that is compatible with the
“prominent deck B phenomenon” normally found in tradi-
tional IGT.

The difference between the results of our experiment and
those obtained with the SGT by Chiu et al. (2008) demon-
strate that participants’ behavior cannot be easily ascribed to
the effect of a single feature. Participants could behave differ-
ently when dealing with decks which have similar qualitative
features but that vary in their numerical values. Therefore,
an understanding of their performance would require the use
of cognitive models capable of making any feature effect an
emergent property of their parameters providing thus an ex-
planation for the influence of the qualitative features.

Modeling the results

In discussing the models of the IGT used by previous re-
searchers, Ahn et al. (2008) identified three general assump-
tions: “First, an individual’s evaluation of the positive and
negative payoffs can be represented by a unidimensional util-
ity function. Second, expectations about payoffs for each
deck are learned on the basis of the experienced utilities on
each trial. Third, these expectancies determine the choice
probabilities for selecting each deck on each trial” (p. 1393).
As a consequence, any model for this task, and similar it-
erated decision making problems, will employ at least three
different functions: (1) an evaluation function to assess the
payoff associated with each choice, (2) a learning function to
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upgrade the expectancies concerning the expected payoff of
each option, (3) a selection function to choose on each trial a
particular option on the basis of its expected payoff.

By adopting an architectural approach to modeling, the
problem of identifying the functions necessary to replicate
human performance in the task of interest is facilitated be-
cause some of these are considered as resources provided di-
rectly by the architecture. In particular, ACT-R (Anderson,
2007) makes available, by default, both a learning and a se-
lection function. The former is given by the linear equation
proposed by Bush and Mosteller (1955):

U[(I’l):U,‘(I’l—1)+(X[R,‘(I’l)—U,'(n—1)} (D

where:
U; is the utility associated with option i
n is the current time step, with n — 1 indicating the previous
one
R; is the reward associated with option i,
and o is a parameter regulating the learning rate.
The second equation is given by:

U
_ 9 /s
Yie¥ /s

and determines the probability P that a given option i will
be selected among the j possible options. This probability
is a function of the value U (the utility, in ACT-R parlance)
of the particular option compared to the sum of all the pos-
sible option values, while s is a noise parameter, analogous
to the temperature of Boltzmann machines, that introduces
some kind of nondeterminism in the selection process.

By having two of the three main modeling problems solved
by the architecture, we concentrated on the evaluation func-
tion used to assess the outcome of each card choice. Tradi-
tionally (Ahn et al., 2008; Yechiam & Busemeyer, 2005) two
different kind of functions have been employed.

The first one, called the expectancy function by Ahn et al.
(2008), computes a weighted average of the rewards and pun-
ishment associated with the chosen option in each trial. This
function can be expressed as following:

2

i

v(t)=(1—W)-rew(t)" —W - pun(t)" 3)

with rew(t) and pun(r) indicating the value of the reward and
punishment at time #, respectively, while 7y is a parameter that
determines the curvature of the evaluation function, and W
denotes the differential weight participants place on losses
over gains.

An alternative evaluation rule is provided by the so called
prospect function (Ahn et al., 2008) expressed by:

v(t) = {

with net(t) indicating the net outcome, i.e. the difference be-
tween the default and contingent event, and A representing a
loss aversion parameter.

net (t)Y
—A|net(t)[Y

if net(t) >0

if net(t) <0 @



The two functions are similar according to several features:
they both assume a nonlinear evaluation of the monetary out-
come and both weight losses differently from gains. The most
important difference between them is constituted by how they
take into account the default and contingent event. The ex-
pectancy function assess them separately before combining
them into a scalar value; the prospect function, on the other
hand, assumes that decision makers process directly the net
outcome. The two functions can thus be considered as imple-
menting the different assumptions held by Fum et al. (2008)
and Chiu et al. (2008), respectively, and we used them to im-
plement two different computational models through which
we tried to replicate the empirical results. We ran a series of
500-run simulation trials with a large range of parameters and
the results we obtained were quite straightforward.

Both functions are able to capture the frequency of the con-
tingent event effect as revealed in the Single feedback condi-
tion but the prospect function, taking into account only gains
and losses, is not sensitive to the effect of rewards and pun-
ishments, which also play a critical role in determining the
participants’ behavior in IGT, and therefore gives raise in the
Double feedback condition to an effect that is absent in the ex-
perimental data. Table 5 reports the best performing models
employing the expectancy (with parameters W=0.05 and y =
0.15) and the prospect functions (with parameters A = 0.1 and
Y= 0.1) respectively. While these models have grossly sim-
ilar synthetic measures of fit (for instance, RMSE= 2.35 for
the expectancy and RMSE= 3.23 for prospect; chi-squared=
3.56 (p = .99) for the expectancy and chi-squared= 6.87 (p =
.96) for the prospect) the prospect model fails to replicate the
participants’ performance by providing predictions that fall
out of the 95% confidence intervals in four data points.

Table 5: Means of deck choices by the two models. The
predictions which fall out of the confidence intervals are evi-
denced in grey.

Deck

Condition Model A B C D
DR Expectancy Function = 25.01 24.63 24.79 25.58
Prospect function 20.86 = 284 21.00 29.74
DS Expectancy Function 24.55 25.03 2493 255
Prospect function 21.23 £ 2921 20.31 28.76
SR Expectancy Function 20.35 281 20.79 30.77
Prospect function 20.82 2849 2099 297
SS Expectancy Function 20.22 29.59 19.84 30.36
Prospect function 20.31 29.43  20.71 29.56

DR: Double-Reversed. DS: Double-Standard. SR: Single-

Reversed. SS: Single-Standard.

Conclusions

In the paper we proposed an explanation for the frequency
of the contingent event phenomenon which lies beneath the
fact that people are attracted by options that are associated
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with the most frequent positive, and the less frequent nega-
tive, outcomes. A fundamental problem, deriving from the
fact that the IGT is grounded on a conflict between the value
of the default event (which codes the immediate attractive-
ness of an option) and the contingent one (which represents
the options’ long term expected value) is to establish whether
this phenomenon is caused by any positive or negative out-
come independently of its magnitude or, on the contrary, it is
triggered by the net result deriving from the two events. The
findings of our experiment corroborate the former hypothesis
and the simulation results indicate that only a model sensible
to rewards and punishments, and capable of analyzing them
separately, can replicate the empirical data.
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Abstract these highly inflected languages. Spanish verbs can have
How do children cope with the general regularities that govern aboutforty possible different suffixes (Alcoba, 1999) depend-

language while keeping track of the exceptions to them? This ing on mood, time, aspect, number or person. Moreover, this
question has been the subject of debate for many years and itis great amount of possible endings is not the only difficulty

still an open question. In particular, learning the English past o i : ; ;
tense has been studied in depth given that It is a simple prob- the Spanish inflectional system presents. Also its regularity

lem that combines a rulelike process with many irregularities. IS very striking compared to simpler verb systems (like that
In this paper we try to extend these studies to a quite more of English). In Spanish verbs, inflectional affixes are typi-

complex problem: the Spanish verb inflectional system. This ; ; . ;
paper presents an ACT-R model that shows the well-known cally combined with stems and both parts of the final inflected

U-shaped learning and mimics in many aspects the process Word can be irregular. These particular features in combina-
of learning exhibited by children. Thus, our approach shows tion with the pattern of errors presented by children suggest

how a highly inflected morphology system can be acquired in o ; ; ; ; _
terms of dual-mechanism theories and sheds light on the posi- that the cognitive processes involved in Spanish verb inflec

ble structures involved in general language acquisition. tion are more complicated than the English ones. This fact
Keywords: Cognitive Modelling; Cognitive Linguistics: Lan- turns the modeling of Spanish verb inflections into a quite
guage Acquisition; Spanish Morphology; ACT-R more challenging task.
) In this paper we present a cognitive model of Spanish verb
Introduction morphology acquisition based on dual-mechanism theories

Language acquisition has been one of the central topics iand implemented under the largely used cognitive architec-
Cognitive Science. However, it is still an open question howture ACT-R (Anderson, 2007).
children manage to discover the general patterns present in . ) i
language while maintaining knowledge of the exceptions to Single vs. Dual mechanism theories
them. Verb inflection has been studied not only because it i3wo competing classes of theories try to explain how in-
an inherently interesting task but also because is an isolabRected word forms are mentally represented, processed and
subsystem in which grammatical mechanisms can be studieatquired. The dual-mechanism theories (Pinker & Prince,
in detail, without complex interactions with the rest of lan- 1988; Marcus et al., 1992; Ullman, 2001) argue that knowl-
guage. Verb inflection is independent of syntax, semanticedge is somehow dissociated. Regular forms are built by a
or phonology given that no aspect of these three other sulyule that appends an affix to the stem. Irregular forms are as-
systems works differently with regular and irregular verbs.sociatively listed in memory as entries in the mental lexicon.
Furthermore, the particular phenomenon of U-shaped leari/ithin this representational framework, the three stages of U-
ing that presents the irregular inflection acquisition proccesshaped learning of irregular inflections are easily explained.
lead us to the interesting question of what are the causes fdn the first stage, when the regular rules are not yet avail-
that U-shaped learning and, going beyond, how we humanable, the lexical entries of irregular forms that have been fre-
deal with the general regularities that govern language whilguently heard can be retrieved. On a second stage, the regu-
keeping track of the exceptions to them. There are two maitar rules are acquired and overregularization errors appear in
accounts to these questions. On the one hand, the so-calledses in which the lexical entry for an irregular verb is not
dual-mechanism theories posit that knowledge is somehowavailable (note that the memory retrieval process is noisy and
dissociated. Irregular forms are stored in memory as entriedepends on the frequency of the lexical item that is looked
in the mental lexicon while regular forms are computed byfor). Finally, on the third stage, the overregularization errors
rules. On the other hand, single-mechanism theories arguowly disappear as more correct examples of irregular verbs
that a single representational system, usually an associatiae learned. Many empirical studies have been performed
memory, is enough to explain verb inflection. Both theoriesthat support dual-mechanism theories in many inflectional
present some problems and thus, the controversial debatepsocesses and some languages (Marcus et al., 1992; Clah-
far from settled. sen, Rotweiler, Woest, & Marcus, 1992; Clahsen, Aveledo, &
English past tense inflection has been the focus of atterRoca, 2002). However, the dual-mechanism theories are still
tion of many studies in the last years. However, not muchot widely accepted.
work has been done to widen these studies to other languagesAlternative accounts are the single-mechanism theories
with a much richer inflectional system. Spanish is one of(Rumelhart & McClelland, 1986), also called association-
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ism. These approaches propose that both regular and irregimstead otraj-e, due to the 1st conjugation suffi&is overap-

lar forms are computed by the same representational systemplied). The other suffix overregularization error is produced
an associative memory usually modeled by a neural networlby substituting an irregular suffix by the regular suffix corre-
Following these theories, U-shaped learning is due to changesponding to its conjugation.

in vocabulary. The overregularizations occur because chil- Also as predicted by dual-mechanism theories, irregular-
dren have heard the regular pattern with many different verbszation errors are almost inexistent. Irregularization errors in
So, before the first overregularization occurs, the childrerthe stem occur always with verbs that present irregular forms
have to be familiar with many regular verbs. However, theren the verbal paradigms for this same tense. No verb with a
is little evidence for these assumptions in empirical experi-completely regular paradigm was irregularized. For example
ments with children. Another problem of single-mechanisma child saidcay4i* (I fell) instead ofca-. This is atributed to
models is that many of them need external feedback to adan overapplication of the third person stem (the third person
just their weights. But actually, negative evidence (correctivenflection is: cay-0) to the first person.

feedback) plays little to no role in the process of recovery Making a deeper analysis of the errors, it is also important
(Brown & Hanlon, 1970; Marcus, 1993), so this assumptionto note that the stem formation and inflectional processes are

does not seem to be adequate. dissociated in Spanish children language. There exist mixed
. . ) errors in which children combine correct irregular stems with
How do Spanish children inflect? incorrect inflectional endings (for example, to conjugate the

From middle 80's the acquisition of verb morphology by third person singular of the immediate past of the wezb-ir
Spanish children has been largely investigated by many ayto come), some children sain-i6* (he came) instead ofn-
thors (Hernandez-Pina, 1984; Radford & Ploennig-Pacheca) which is accepted to support that different processes come
1995; Serrat & Aparici, 1999). However, a systematic and deinto play to form the two different parts of the final inflected
tailed study of the development of overregularization, similarword. This dissociation supposes a great difference with the
to the one carried out by (Marcus et al., 1992) for the EnglistEnglish inflectional system. This fact significantly increases
past tense, was not carried out until 2002 by (Clahsen et althe complexity of the task and consequently, the complexity
2002). In this study the authors try to shed light on the quesef the model compared to other similar models of the English
tion of whether or not the dual-mechanism model extends tpast tense (Taatgen & Anderson, 2002).
Spanish child language. The study consisted of 64 samples of )
spontaneous speech from 15 children covering the age peridd-Shaped leaming
of 1;07 to 4;07 (see (Clahsen et al., 2002) for a detailed breakFhe study of (Clahsen et al., 2002) clearly extends to Spanish
down of the data). There are longitudinal data from 4 childrerihe results obtained by (Marcus et al., 1992) for English. The
in the relevant age range and cross-sectional samples from fevelopment of irregular verb acquisition is not guided by a
children. linear learning function but by a U-shaped learning function
Table 1 (extracted from (Clahsen et al., 2002)) shows thén which three stages can be clearly distinguished.
types of errors present in the children’s speech and their fre- In a first stage, the child is able to inflect very little verbs
quency distribution. but the inflected irregular verbs are correct. In a second stage,
the children have acquired some kind of knowledge about the
regular rule and start to overapply it to irregular verbs. In

Table 1: Distribution of error types in the study of (Clahsenthe third stage, the overregularization errors diminish until

etal., 2002) mastery is achieved. The learning of regular verbs is quite
A Stem Erors B. Suffixation Ermos simpler. Children start inflecting correctly a very low number
l. Overregularizations 116 |. Overregularizations (132) of regUIar verbs and their performance Steadlly grows until
a. T conj. Overapplications 8 they master the task.
b. Conj.-internal regularizations 124
1. Irregularizations 1 Irregularizations 0 The model
. Othererrors 8 Il Othererrors ! In this paper we propose a dual-mechanism model imple-
Totals 120 Totals 133

mented in the ACT-R cognitive architecture. The core com-
Ronents that are used for the model, including the declara-

The first error type is overregularization. In such cases, a
: - h tive and procedural memory systems, are parts of the ACT-R
irregular stem or suffix is substituted by a regular one. As pre- " - : .
. . ) o architecture, which has been largely validated through exten-
dicted by dual-mechanism theories, overregularizations are. .
2 : : Sive separate experiments not only related to language. More-
the main kind of errors that children present. Suffix overreg- : L .
o - . . 2 over, the main processes used, like instance-based learning
ularization errors are divided into two subtypes: overappli-

. . ; ) L and the use of analogy, are part of the ACT-R modeling tradi-
cations of 1st conjugation suffixes to verbs pertaining to the. ! . .
eBon. The two basic strategies of memory retrieval and anal-

other conjugations (for example, the second conjugation ver . o .
1 N ) ) . . .. _ 0gy are neither specific to the task of producing a past tense
tra-er* (to bring) is sometimes conjugated in pastiag-é o ! »
nor even specific to language but general domain cognitive

IStemand suffix are shown separated in Spanish verb forms.  strategies:
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e Memory retrieval: This strategy simply consists in retriev- e Rule 1 (verb form retrieval): When the model tries to find
ing a fact from declarative memory. the verb form of a given verb with given MTA and NP slots,
this rule simply tries to find a chunk in declarative memory

e Analogy: This strategy forms the required knowledge us- that shares the INFIN, MTA and NP slots with the given
ing a similar retrieved fact as a template. As stated by one.

(Salvucci & Anderson, 1998), analogy is probably one of
the dominant human strategies for problem solving anc® Rule 2 (stem retrieval): This rule tries to find the stem of
discovery. the goal verb form. To do that, it looks for a chunk in the
declarative memory with the same INFIN and MTA slots.
It is important to note that the strategies we suppose that . i
children have at the moment they start learning a languag® Rulé 3 (stem analogy): When the model tries to find the
are very basic strategies common to many cognitive tasks. VE'P form of a given verb, this rule just copies the INFIN-

Note that, at the beginning, the proposed model has nothing STEM Of the goal verb form on the STEM slot only if the
similar to a regular rule to inflect regular verbs. The pro- INFIN-STEM and the STEM slots of an arbitrary retrieved

posed model will learn them later on as a specialization of (i.e. the verb with a highest activation) verb are the same.

the analogy strategy. Thesc_e initial strategies are similar to the Rule 4 (suffix analogy): This rule tries to find out the cor-
ones proposed by (MacWhinney, 1978; Taatgen & Anderson, o gy ffix of the goal verb form. To do that, it looks for
2002), who claimed that the basis of the learning of the regu- a chunk in the declarative memory with the same CONJ

lar rules is analogy. MTA and NP slots and, if the slots INFIN-STEM and
Detailed description STEM of the retrieved form are the same, it copies the

value of the SUFFIX slot to the SUFFIX slot of the goal
The two main components of the model are described as yerp form.

declarative-memory chunks and production rules. The de-
clarative-memory chunks represent verb forms as follows. These four rules cover the two basic strategies of the model
and the two processes that Spanish speaking people are sup-

VERB-EFORM posed to use when trying to inflect a verb. Figure 1 shows the
ISA VERB-TENSE processes that our model uses to inflect a verb. Dashed lines
INFIN CANTAR means that these processes are not available when the model
CONJ AR starts working but they are learnt during the running.
INEIN-STEM CANT Learning in ACT-R consists in the production of new rules.
MTA IND-PAST-PERF New rules are created by collapsing two rules that are applied
NP s3 in succession into a single rule. The basic idea is to combine
STEM CANT the tests in the two conditions into a single set of tests that
SUFFIX 0O will recognize when the pair of productions can be applied.

Also the actions of both rules are combined into a single ac-
tion that will have the effect of both. The resulting rule is
The chunk is of type VERB-TENSE. Its infinitive @nt-  therefore a specialization of the two parent rules. The spe-
ar (to sing) and the infinitive stem and conjugation ea@ét-  cialization, which is of particular interest, occurs when Rule
and-ar respectively. Moreover, given the characteristics of3 (stem analogy) fires first and Rule 4 (suffix analogy) fires
the Spanish verb inflectional system, it is necessary to storgecondly. In this case, the corresponding suffix is substituted

the mood, time and aspect of the verb form (in the slot MTA,into the rule, producing one of the regular rules. For example:
the value IND-PAST-PERF stands for indicative mood, past the goal is to inflect a verb with

tense, perfective aspect) and the number and person of tﬂ'é

. CONJ="AR’
represented verb form (in the slot NP, the value 3S stands for MTA = 'IND-PAST-PERFE’
third person, singular). The verb form corresponding to the NP = 'S3’

information represented on the precedent slots is represented s
by the _STEM and SUFFIX slots. Note that when the goal isTHEN igro;htiSIUNFlflllil(-;l?Emlot to the STEM slot
to obtain a verb form, these two slots start with a NIL value
and the task of the model is to fill them. Note that one of these rules has to be learned for each com-
Procedural memory stores the strategies that guide the ifpination of the values of the slots CONJ, MTA and NP, given
flection process. As stated before, two basic strategies are tlieat each regular suffix is different. Also it is important to
core of the model. However, given the dissociation betweemote that the initial utility of the learned rules is very low.
stem formation and inflectional processes that Spanish verbhis means that newly created rules are not used just after be-
inflection presents, these strategies are also dissociated in difig learned. It is necessary to reinforce the utility of this rule.
ferent rules that try to form the stem or to find the correctThis reinforcement occurs every time the rule is recompiled
suffix. The main rules of the model are: because its two parents fire consecutively. This way, the most
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Produce retrieved form

OK

Rulel Rule2 OK
(Ret. form) 1 (Ret. stem) 2

Fail

Rule3 OK Rule4 OK
(Anal. stem) 3 (Anal. suffix)

| cail Fail
I
Omission Omission
I
I

Produce form

Reguiar |
9 — — > Produce form

—

| rules

Figure 1: Processes used by the model. Dashed lines show protessieave to be learnt.

useful rules (the ones that are recompiled many times) are fguage.

nally used by the model and those rules created just by chanceIn order to perform the different experiments we followed
are practically forgotten by the model. Moreover, ACT-R pro-the design given by (Taatgen & Anderson, 2002). Every 200
vides a way by which useful rules are reinforced: utility learn-simulated seconds two words are presented for perception
ing. This process reinforces the rules that have been used #nd one word is selected for generation. These words are
reach to a specific inflection. When the model cannot inflectelected based on the frequency distribution given in the SVI.
averb, it propagates a lower reward than the one it propagategso following the design of (Taatgen & Anderson, 2002),

if the verb is inflected. This seems to be natural given thatin each simulated month, approximately 1300 past tenses are
when the model could not inflect a verb, it could not “say” produced. This number is chosen somewhat arbitrarily, but
what he wanted to “say”. However, the reward received whenhe model is not critically dependent on the exact rate of pro-
a verb is inflected incorrectly is exactly the same as the onguction.

that is received when a verb is inflected correctly given that

the model cannot know whether his production is correct oRResults

not. Note that one of the most important criticism to Many as stated before, the great majority of errors done by children

nnectionist models is that they n me kind of external o :
connectionist models is that they need some kind of exte 6%tweoverregularlzanonerrorswh|leonlyafewerrorsweredue

feedback while, as stated before, it is widely accepted thato irregularization of regular forms. According to (Clahsen et

children do not receive feedback when talking to_thelr par—al_’ 2002), more of the 90% (94.7% in the stem and 92.5% in
ents. Thus, the unique feedback our model receives com

from itself ?ﬁe suffixes) of the errors done by childrgn are overregulariz_a—
: tion errors. Our model also presents a similar unbalanced dis-
tribution of errors between irregular and regular forms. The
93.3% of errors were overregularization errors. Moreover, the
Data and Procedure irregularization errors are mainly of the same kind of the ones

The data we used as the input for the model consists of th@@ne by children. As stated before, no verb with a completely
verbs contained in the Spanish Verb Invenfq§VI, (Rivera, ~ "egular paradigm was irregularized.

Bates, Orozco-Figueroa, & Wicha, 2009)) which is made of Figures 2(a) and 2(b) show the learning curves of the model
50 of the earliest acquired common Spanish verbs, with con@nd of Maria, one of the children from the study of (Clahsen
jugations across person, number and 4 verb tenses (imperfe€t al., 2002) (Itis important to note that the other children on
immediate past, future, and present indicative), for a total ofhat study have similar learning curves). Figure 2 shows the
920 unique verb forms. Future tense forms were discarde@verregularization rate and the regular mark rate as they are
given its low frequency of use on child language and also imUusually plotted. Overregularization equals the number of cor-
perfect forms were discarded given that they do not presef€ct responses on irregular verb forms divided by the sum of
almost any irregularity. So the final input for the model con-correct irregulars and irregulars inflected regularly. The reg-
sists of the 220 immediate past forms and the 250 preseitar mark rate shows the number of correctly inflected regu-
tense forms of the Spanish Verb Inventory. Each of theséars divided by the total number of regulars produced. The

forms has its associated frequency of use on children lardevelopment of the model clearly shows the U-shaped learn-
ing curve typical of children’s learning of irregular verbs. As

2Accesible atht tp: // crl . ucsd. edu/ experi ment s/ svi / such, the results are quite similar to the ones of Maria. Our

How does the model inflect?
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model obtains a global 3.9% of overregularization, which is At the beginning the model has no regular or irregular ex-
in line with children’s performance. Spanish children studiedamples, so it fails every time it tries to inflect a verb. Grad-
by (Clahsen et al., 2002) present an average overregularizaally, high-frequency irregular verbs increment its activation
tion rate of 3.4% in the longitudinal samples and a 13.2% inon the declarative memory. If the model tries to inflect one of
the cross-sectional experiments. As pointed by (Clahsen ghese high-frequency verbs, the retrieval strategy will find the
al., 2002) this difference could be due to the type of samplesorrect form on declarative memory. On that first stage anal-
and the semi-structured style of the records. ogy usually fails given that it needs a regular form to work
Not only overregularization errors of our model are similaras a template. Regular forms are not as frequent as irregu-
to the ones done by children. The percentage of irregularizdar forms (see thatleb-ehas a frequency of almost a third
tion errors done by our model was 0.5% while in children,of the frequency opued-¢ and their activation is lower and
overregularizations amount to 0.4% and in both cases no ver$p, analogy is not available on a first stage. Thus, verb forms
with a completely regular paradigm was irregularized. such agdeb-eor salt-acannot be inflected. Moreover, there
are no overregularization errors given that the source of over-
X ‘ ‘ — ; regularizations is also analogy. These facts explain the first

stage of the U-shaped learning.

; After some examples have been learned the number of reg-
08 ular verbs with enough activation in memory steadily grows
/ up. Analogy is now a viable strategy, as there are examples
that can be retrieved as templates. These uses of analogy lead
to eventually learn the regular rules. However, most of the
regular rules are not yet used given that its initial utility is
j not sufficiently high. At this stage, if the model has to inflect
o4 ;“ the formjueg-an it is very probable that the retrieval strategy
/ fails given its low frequency. If analogy finds suitable regular
: - - - - - . forms in declarative memory (suppose, for example, that the
Time (months) regular formcant-an(they sing) has enough activation) the
(@) model will produce the overregularizatiqug-an*. Thus, at
this stage overregularizations start to appear. However, they
are still not very frequent because the regular forms that are
used by analogy are not very frequentin memory and the reg-
ular rules do not have enough utility to be fired.

As analogy continues working, the utility of the regular
rules increases to a point in which they start to be used. At this
point, the rate of overregularizations, which start to appear on
the previous stage, reaches a maximum. In the previous stage,
j verb forms such gsieg-anare rarely overregularized because
04 analogy needs to retrieve a regular form from memory (and

’ usually an irregular form is retrieved given that they are more

‘ ‘ ‘ ‘ ‘ ‘ frequent). However, regular rules do not need to retrieve a

“ “ ® vegnewm * ¥ regular form. Thus overregularizations are much more fre-

(b) guent at this stage in which regular rules have a higher utility.

For the same reason, the rate of correctly inflected regular

Figure 2: Overregularization and regular mark rate presentefprms highly increases. On previous stages, low frequency
by the model (a), and by Maria (b) regular forms such asalt-a could not be inflected because
the retrieval strategy failed and it was difficult to find a regu-

In order to better understand why U-shaped learning idar form to do the analogy with the stem and another regular

achieved, we should go through the model’'s functioning inform to do the analogy with the suffix. As regular rules do
some more detail using some examples of irregular and redl0t need any memory retrieval, the model just has to fire the
ular vebs: a very frequent irregular verb form suctpasd-e corresppndlr}g regular rule to correctly llnflect the faatlt-a

(he can) with a frequency in the SVI of 19269, a very frequenf T0M this point on, analogy strategy will be used very rarely,
regular verb form such ateb-e(he should) with a frequency 2S it has to compete Wlth the regular rules that_b_ecome now
of 6955, a low frequency irregular verb form suchjasg- the backup strategy given that they are more efficient.

an (they play) with a frequency of 201 and a low frequency On the last stage, irregular forms are stored in declarative
regular form such asalt-a (he jumps) with a frequency of memory with a sufficient and stable activation. This way,
252. every time the model has to inflect an irregular form such
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Abstract

In this paper, we describe a high-level behavior representation
language (Herbal) and report new work regarding Herbal’s
ACT-R compiler. This work suggests that Herbal reduces
model development time by a factor of 10 when compared to
working directly in Soar, ACT-R, or Jess. We then introduce
a large ACT-R model (541 rules) that we generated in
approximately 8 hours. We fit the model to learning data.
The comparison indicates that humans performing
spreadsheet tasks appeared to start with some expertise. The
comparison also suggests that ACT-R, when processing tasks
consisting of hundreds of unique memory elements over times
spans of twenty to forty minutes, may have problems
accurately representing the learning rates of humans. In
addition, our study 