

Proceedings of the
10th International Conference

on Cognitive Modeling

August 5-8, 2010

Drexel University
Philadelphia, PA

Edited by

Dario D. Salvucci & Glenn Gunzelmann

Table of Contents

Introduction i

Sponsors i

Committees ii

Awards iii

Papers

How to Investigate the Living Cognition: An Application to Dynamic Simulation of
Mental Activities while Driving
Thierry Bellet, Pierre Mayenobe, & Jean-Charles Bornard

1

A New Approach to Exploring Language Emergence as Boundedly Optimal
Control in the Face of Environmental and Cognitive Constraints
Jeshua Bratman, Michael Shvartsman, Richard L. Lewis, & Satinder Singh

7

Linguistic Spatial Gestures
Leonard A. Breslow, Anthony M. Harrison, & J. Gregory Trafton

13

When to Switch? Understanding How Performance Tradeoffs Shape Dual-Task
Strategy
Duncan P. Brumby, Nina del Rosario, & Christian P. Janssen

19

Nomination and Prioritization of Goals in a Cognitive Architecture
Dongkyu Choi

25

Modelling the Correlation Between Two Putative Inhibition Tasks: A Simulation
Approach
Richard P. Cooper & Eddy J. Davelaar

31

Proactive Interference in Location Learning: A New Closed-Form Approximation
Arindam Das & Wolfgang Stuerzlinger

37

Cognitive Modeling of Strategies in Dynamic Tasks
Alberto De Obeso Orendain & Sharon Wood

43

Towards Efficiently Supporting Large Symbolic Declarative Memories
Nate Derbinsky, John E. Laird, & Bryan Smith

49

Concurrent Knowledge Activation Calculation in Large Declarative Memories
Scott A. Douglass & Christopher W. Myers

55

Dimensions of Leader-in-Context Models
Ceyhun Eksin, Barry G. Silverman, David Pietrocola, & Rui Kang

61

Improving the Reading Rate of Double-R-Language
Mary Freiman & Jerry Ball

67

An Algorithm for Self-Motivated Hierarchical Sequence Learning
Olivier L. Georgeon, Jonathan H. Morgan, Frank E. Ritter

73

Modeling the Effects of Work Shift on Learning in a Mental Orientation and
Rotation Task
Tim Halverson, Glenn Gunzelmann, L. Richard Moore Jr., & Hans Van Dongen

79

Guidelines for Developing Explainable Cognitive Models
Maaike Harbers, Joost Broekens, Karel van den Bosch, & John-Jules Meyer

85

A Cognitive Model of Theory of Mind
Laura M. Hiatt & J. Gregory Trafton

91

Task-Constrained Interleaving of Perceptual and Motor Processes in a Time-
Critical Dual Task as Revealed Through Eye Tracking
Anthony J. Hornof & Yunfeng Zhang

97

A Cognitively Bounded Rational Analysis Model of Dual-Task Performance Trade-
Offs
Christian P. Janssen, Duncan P. Brumby, John Dowell, & Nick Chater

103

Prediction Intervals for Performance Prediction
Tiffany S. Jastrzembski, Kelly Addis, Michael Krusmark, Kevin A. Gluck, & Stuart
Rodgers

109

Exploration of Costs and Benefits of Predictive Human Performance Modeling for
Design
Bonnie E. John & Tiffany S. Jastrzembski

115

Integrating Fast and Slow Cognitive Processes
William G. Kennedy & Magdalena Bugajska

121

Modeling Visual Search of Displays of Many Objects: The Role of Differential
Acuity and Fixation Memory
David Kieras

127

Using Diverse Cognitive Mechanisms for Action Modeling
John E. Laird, Joseph Z. Xu, & Samuel Wintermute

133

Using A* Graph Traversal to Model Conflict Resolution in Air Traffic Control
Stefan Lehmann, Scott Bolland, Roger Remington, Michael S. Humphreys, & Andrew
Neal

139

Computational Models of Perceptual Learning across Multiple Auditory Tasks:
Modeling Daily Learning Limits as Memory Decay
David Little & Bryan Pardo

145

A Human-Markov Chain Monte Carlo Method For Investigating Facial Expression
Categorization
Daniel McDuff

151

Developing a Model of Cognitive Lockup for User Interface Engineering
Tina Mioch, Rosemarijn Looije, & Mark Neerincx

157

Checking the Brain Mapping Hypothesis: Predicting and Validating BOLD Curves
for a Complex Task Using ACT-R
Claus Möbus, Jan Charles Lenk, Arno Claassen, Jale Özyurt, & Christiane Thiel

163

Modeling Statistical Learning and Response Inhibition with the Change Signal Task
L. Richard Moore Jr., Glenn Gunzelmann, Joshua W. Brown

169

Rewards and Punishments in Iterated Decision Making: An Explanation for the
Frequency of the Contingent Event Effect
Antonio Napoli & Danilo Fum

175

Cognitive Modeling of the Acquisition of a Highly Inflected Verbal System
Jesús Oliva, José Ignacio Serrano, María Dolores del Castillo, & Ángel Iglesias

181

Building Large Learning Models with Herbal
Jaehyon Paik, Jong W. Kim, Frank E. Ritter, Jonathan H. Morgan, Steven R. Haynes, &
Mark A. Cohen

187

Deductive Spatial Reasoning: From Neurological Evidence to a Cognitive Model
Marco Ragni, Thomas Fangmeier, & Sven Brüssow

193

Accountable Modeling in ACT-UP, a Scalable, Rapid-Prototyping ACT-R
Implementation
David Reitter & Christian Lebiere

199

Combining Procedural and Declarative Knowledge in a Graphical Architecture
Paul S. Rosenbloom

205

Modeling a Three Term Fan Effect
Matthew F. Rutledge-Taylor, Aryn A. Pyke, Robert L. West, & Hana Lang

211

A Computational Account of Complex Mental Image Construction
Jan Frederik Sima

217

Toward an Analog Neural Substrate for Production Systems
Patrick Simen, Marieke Van Vugt, Fuat Balci, David Freestone, & Thad Polk

223

Deriving Behavior from Personality: A Reinforcement Learning Approach
Christopher Simpkins, Charles L. Isbell Jr., & Nicholas Marquez

229

Dynamic Behaviour of a Spiking Model of Action Selection in the Basal Ganglia
Terrence C. Stewart, Xuan Choo, & Chris Eliasmith

235

A Temporally Asymmetric Hebbian Network for Sequential Working Memory
Jared C. Sylvester, James A. Reggia, Scott A. Weems, & Michael Bunting

241

Nice Graphs, Good R2, but Still a Poor Fit? How to Be More Sure Your Model
Explains Your Data
Niels A. Taatgen & Hedderik van Rijn

247

The Evolution of a Goal-Directed Exploration Model: Effects of Information Scent
and Go-back Utility on Successful Exploration
Leonghwee Teo & Bonnie E. John

253

A Computational Model of Second-Order Social Reasoning
Leendert van Maanen & Rineke Verbrugge

259

Neural Correlates of Temporal Credit Assignment
Matthew M. Walsh & John R. Anderson

265

A Computational Model of Functional Category Learning in a Cognitive
Architecture
Yongjia Wang & John E. Laird

271

Interference and ACT-R: New evidence from the fan effect
Robert L. West, Aryn A. Pyke, Matthew F. Rutledge-Taylor, & Hana Lang

277

An Online Database of ACT-R Parameters: Towards a Transparent Community-
Based Approach to Model Development
Tsunhin John Wong, Edward T. Cokely, & Lael J. Schooler

282

Poster Abstracts

Locating the Neural Correlates of the Problem State Resource: Analyzing fMRI
Data on the Basis of a Computational Model
Jelmer Borst, Niels A. Taatgen, & Hedderik van Rijn

287

“Hello Java” Linking ACT-R 6 with a Java Simulation
Philippe Büttner

289

Answer Set Programming for Computational Psychological Models
Sara Girotto & Marcello Balduccini

291

Towards a Cognitive Model of Conceptual Blending
Markus Guhe, Alan Smaill, & Alison Pease

293

Modeling Interaction and Integration of Perception and Action
Pascal Haazebroek & Bernhard Hommel

295

LETF: A Lisp-Based Exploratory Testing Framework for Computational
Cognitive Models
Clayton T. Stanley

297

A Cognitive Model of the Acquisition and Use of Referring Expressions
Jacolien van Rij, Hedderik van Rijn, & Petra Hendriks

299

Doctoral Consortium Abstracts

Contextual Memory for Goals: On the Role of Context, Attention, and
Intention in Cognitive Control
Michel E. Brudzinski, Rensselaer Polytechnic Institute

301

Long-Term Symbolic Memories for Long-Living Learning Agents
Nate Derbinsky, University of Michigan

303

Towards Descriptive and Prescriptive Double-Loop Learning Agents
Ceyhun Eksin, University of Pennsylvania

305

Learning to Use Memory
Nicholas A. Gorski, University of Michigan

307

Understanding Strategic Adaptation in Multitask Settings
Christian P. Janssen, University College London

309

Recognizing Behaviors and the Intentional State of the Participants
Wesley Kerr, University of Arizona

311

A Probabilistic Model of Phonetic Cue Restructuring
James P. Kirby, University of Chicago

313

Canonical Behavior Patterns
Walter C. Mankowski, Drexel University

315

Modeling Memes, A Memetic View of Affordance Learning
Benjamin D. Nye, University of Pennsylvania

317

Exploring a Novel Training Paradigm for Knowledge and Skills Acquisition
Jaehyon Paik, Pennsylvania State University

319

Modeling of Modality Selection in Multimodal Human-Computer Interaction
Stefan Schaffer, Berlin Institute of Technology

321

Visual Search Strategies and the Layout of the Display
Bella Z. Veksler, Rensselaer Polytechnic Institute

323

Symposium Abstracts

Cognitive Control: A Symposium
Andrew Howes & Richard P. Cooper

325

Tutorial Abstracts

Modeling and Simulation Work Practice with the Brahms Agent Environment
Maarten Sierhuis

327

The CLARION Cognitive Architecture: A Tutorial
Nicholas Wilson & Michael Lynch

329

 i

Introduction
The International Conference on Cognitive Modeling (ICCM) is the premier conference for
research on computational models and computation-based theories of human behavior. ICCM is a
forum for presenting, discussing, and evaluating the complete spectrum of cognitive modeling
approaches, including connectionism, symbolic modeling, dynamical systems, Bayesian modeling, and
cognitive architectures. ICCM includes basic and applied research, across a wide variety of domains,
ranging from low-level perception and attention to higher-level problem-solving and learning. The
10th ICCM was held at Drexel University in Philadelphia, PA, on August 5-8, 2010.

All papers and abstracts in the ICCM 2010 proceedings may be cited as follows:

Doe, J., & Doe, J. (2010). This is the title of the paper. In D. D. Salvucci & G. Gunzelmann (Eds.),
Proceedings of the 10th International Conference on Cognitive Modeling (pp. 1-6). Philadelphia, PA:
Drexel University.

Sponsors

Air Force Office of
Scientific Research

Air Force Research Laboratory,
Human Effectiveness Directorate

Aptima, Inc.

Cognitive Science Society

National Science Foundation

Office of Naval Research

Drexel University

 ii

Committees

Organizing Committee
Conference Chairs: Dario Salvucci & Glenn Gunzelmann
Tutorials & Workshops: Frank Ritter
Doctoral Consortium: Robert St. Amant
Local Administration: Julie Fisher & Tuyet Sithiphavong

Program Committee
Erik Altmann
Thomas Barkowski
Martin Baumann
Roman Belavkin
Thierry Bellet
Duncan Brumby
Mike Byrne
Nick Cassimatis
Balakrishnan Chandrasekaran
Richard Cooper
Garrison Cottrell
Fabio Del Missier
Wai-Tat Fu
Danilo Fum
Kevin Gluck
Fernand Gobet
Tim Halverson
Andrew Howes
Christian Janssen

Gary Jones
Mark Keane
David Kieras
Boicho Kokinov
John Laird
Peter Lane
Christian Lebiere
Richard Lewis
Yili Liu
Michael Matessa
Alain Mille
Claus Möbus
Shane Mueller
Christopher Myers
Josef Nerb
Hansjoerg Neth
David Noelle
David Peebles
Thad Polk

Marco Ragni
Frank Ritter
Ute Schmidt
Mike Schoelles
Lael Schooler
Christian Schunn
Barry Silverman
Patrick Simen
Robert St. Amant
Terry Stewart
Andrea Stocco
Ron Sun
Niels Taatgen
Greg Trafton
Hedderik van Rijn
Boris Velichkovsky
Robert West
Sharon Wood
Richard M. Young

Tutorials Committee
Erik Altmann
Mark Cohen

Jim Davies
Fabio Del Missier

Olivier Georgeon
Randolph M. Jones

Awards Committee
Erik Altmann
Wai-Tat Fu
Wayne Gray

Andrew Howes
Tiffany Jastrzembski
Shane Mueller

Terry Stewart
Leendert van Maanen
Richard M. Young

 iii

Awards
The following awards honor the best paper and poster contributions in select categories as chosen
by a committee of distinguished researchers. Congratulations to our winners and honorees!

Siegel-Wolf Award for Best Applied Paper
Sponsored by Aptima, Inc.

This award, given for the best applied research paper, is named in recognition of Art Siegel and Jay
Wolf, who worked on human performance models for more than 20 years at Applied Psychological
Services in Wayne, PA. The winners are:

Task-Constrained Interleaving of Perceptual and Motor Processes in a Time-Critical Dual Task as
Revealed Through Eye Tracking
Anthony J. Hornof & Yunfeng Zhang

The Evolution of a Goal-Directed Exploration Model: Effects of Information Scent and Go-back
Utility on Successful Exploration
Leonghwee Teo & Bonnie E. John

Honorable mention goes to the following papers:

Modeling the Effects of Work Shift on Learning in a Mental Orientation and Rotation Task
Tim Halverson, Glenn Gunzelmann, L. Richard Moore Jr., & Hans Van Dongen

Exploration of Costs and Benefits of Predictive Human Performance Modeling for Design
Bonnie E. John & Tiffany S. Jastrzembski

Allen Newell Award for Best Student Paper
Sponsored by the Office of Naval Research

This award, given for the best full paper with a student as first author, is named in recognition of
Allen Newell, one of the founders of the field of cognitive modeling. The winner is:

A Cognitively Bounded Rational Analysis Model of Dual-Task Performance Trade-Offs
Christian P. Janssen, Duncan P. Brumby, John Dowell, & Nick Chater

Honorable mention goes to the following papers:

A New Approach to Exploring Language Emergence as Boundedly Optimal Control in the Face of
Environmental and Cognitive Constraints
Jeshua Bratman, Michael Shvartsman, Richard L. Lewis, & Satinder Singh

Rewards and Punishments in Iterated Decision Making: An Explanation for the Frequency of the
Contingent Event Effect
Antonio Napoli & Danilo Fum

Neural Correlates of Temporal Credit Assignment
Matthew M. Walsh & John R. Anderson

Best Student Poster
Sponsored by the Cognitive Science Society

This award is given for the best poster presentation for a paper or abstract, submitted to the main
program, with a student as first author and presenter. Committee members will visit student
posters during the poster sessions and the award winner(s) will be announced on Sunday morning
at the start of the 9am session.

HOW TO INVESTIGATE THE LIVING COGNITION:
AN APPLICATION TO DYNAMIC SIMULATION OF MENTAL ACTIVITIES WHILE DRIVING

Thierry Bellet (thierry.bellet@inrets.fr), Pierre Mayenobe (pierre.mayenobe@inrets.fr),

Jean-Charles Bornard (jean-charles.bornard@inrets.fr)
INRETS (LESCOT) - French National Institute on Transport and Safety Research,

25 Avenue François Mitterrand, 69675 Bron cedex, France

Abstract
This paper is dedicated to the “living cognition” issues, which
concern the ability of a cognitive model to simulate humans’
mental activities when dynamically interacting with the
external environment. After having introduced the theoretical
foundations of this approach, an integrative COgnitive
Simulation MOdel of the DRIVEr is presented (i.e.
COSMODRIVE). The central process that supports the living
cognition in this model is the deployment of a cognitive
schema, corresponding to the driver’s mental representation
of the driving situation as instantiated in the Working
Memory. This dynamic visual-spatial mental model, defined
as the driver’s situational awareness, is used by the driver for
perceptive exploration of the road scene, decision-making,
anticipation and action planning, in order to interact with the
road environment. This dynamic process of regulation is
based on both implicit and explicit mental simulations and is
illustrated through an example in the last section of the paper.

Keywords: Cognitive simulation, car driving, visual-spatial
mental representation, dynamic cognition, implicit and
explicit situation awareness.

1.Theoretical foundation of the living cognition
Although a familiar task of everyday life, car driving is

however a complex activity that involves every levels of
human cognition. Indeed, driving a car requires (i) to select
relevant information from the environment, (ii) to
understand the current situation and to anticipate its
progression in the more or less long term, (iii) to take
decisions in order to dynamically interact - via the vehicle -
with the road environment and the other road users, (iv) and
to manage owns resources (physical, perceptive and
cognitive) in order to satisfy the time constraints of the task,
inherent to the dynamic nature of the driving situation. The
selective dimension of information collection is especially
important as drivers cannot take in and process all the
information available in the road environment. As we shall
argue in this paper, this information is not selected
haphazardly. It depends on the aims the drivers pursue, their
short-term intentions (i.e. tactical goals, such as turn left at a
crossroads) and long-term objectives (i.e. strategic goals,
such as reaching their final destination within a given time),
the knowledge they possess and the attentional resources
allocated to the driving task. Information selection is the
result of a complex process whose keystone is the driver’s
mental representation of the driving situation. Indeed, from
their interaction with the road environment, drivers build
mental models of the events and objects that surround them.
These mental representations are dynamically formulated in
working memory through a matching process between (i)

pre-existing operative knowledge (Ochanine, 1977) and (ii)
perceived information extracted in the external environment.
They are formulated by and for the action, and they provide
interiorized models of the task (Leplat, 2005). When
driving, these representations provide 3-Dimensional (i.e.
visual-spatial) models of the environment, liable to be
mentally manipulated by the driver, in order to support
anticipation through cognitive simulations, and thus
providing expectations on future situational states. Drivers
continually update these mental models as and when they
carry out their activity. This dynamic process, based on both
implicit and explicit mental simulations (Bellet et al., 2009),
is the central focus of the “living cognition” (Bellet, 2010)
as investigated in this paper. At a theoretical level, the living
cognition is jointly based on three scientific traditions: (i)
the cybernetics and the human information processing
theories, (ii) the Russian theory of activity, and (iii) the
ecological approach of human perception.

Figure 1: the car driving activity as a dual regulation loop

According to Wiener’s cybernetics theory (1948), human

can be defined as a self-adaptive system who interacts with
the external environment through a feedback regulation
mechanism. Humans’ mental activities are then described as
a black box owning information processing mechanisms,
able to generate outputs from perceptual inputs, in order to
adapt itself to the situation. As and when this cycle repeats
itself recursively, the human cognitive system perceptually
assesses the effects of its action on the environment, and
then determines which new action is needed to achieve the
expected state of the surroundings. This iterative process
start again until this state-goal is obtained. Although
cybernetics has finally introduced an epistemological break
with the behaviorist approach in Psychology, the initial
model proposed by Wiener was fully compatible with the
Skinner’s “S-R” approach, until the Pandora's black box
was opened. However, with the development of the human

COgnitive Simulation
MOdel of the DRIVEr

(COSMODRIVE)
Road

Environment

PERCEPTION
MODULE

COGNITION MODULE:
Situation Awareness & Decision-Making

(TACTICAL LEVEL)

- Automatic control mode (implicit)

- Attentional control mode (explicit)

Perception-Cognition-Action
Loops of Control :ACTION MODULE

(OPERATIONAL
LEVEL)

COgnitive Simulation
MOdel of the DRIVEr

(COSMODRIVE)
Road

Environment

PERCEPTION
MODULE

COGNITION MODULE:
Situation Awareness & Decision-Making

(TACTICAL LEVEL)

- Automatic control mode (implicit)

- Attentional control mode (explicit)

Perception-Cognition-Action
Loops of Control :Loops of Control :ACTION MODULE

(OPERATIONAL
LEVEL)

1

information processing theory, the internal mechanisms
implemented into the black box, like mental representations
elaboration, reasoning, or decision-making, became the new
central topics of the cognitive sciences. Nevertheless,
according to the experimental method used in laboratory for
investigating cognition in well-controlled conditions, the
Cybernetics "loop logic" has been progressively lost for two
main reasons. First, the experimental paradigm applied in
cognitive sciences requires to artificially break down human
cognition into several functions to be individually
investigated. Moreover, and maybe more critical from the
living cognition point of view, in-lab investigation of human
cognition are based on repetitive measures collected for
similar artificial tasks, in similar conditions. Therefore, the
story must re-start after each new stimulus, as if it was a
totally “new story”, in order to allow the scientists to
rigorously control the experiment. After each S-R sequence,
the task is thus completed, without any expected feedback
effect. Therefore, by using the experimental method,
cognitive sciences ended up losing the notion of “cycle”,
however so important in the cybernetics feedback process
supporting the dynamic of the living cognition, in favor of a
sequential string of processes, from perception to action.

Like Cybernetics, the Russian Theory of Activity considers
human operators through their dynamic interactions with the
external environment. But in this approach, Activity is the
starting point and the core topic of the scientific study of
human cognition, because it is argued that activity directly
structures the operator’s cognitive functions. The
fundamental postulate of the Theory of Activity is well
summarized by Smirnov (1966): human becomes aware of
the surrounding world, by acting on it, and by transforming
it. From this point of view, human is not a passive cognitive
system whose undergoes the stimulus given by the external
environment. S/he is an active observer, with inner
intentions, able to voluntary act on the world and to modify
the situation by their activity, in accordance with their own
needs. Indeed, behind activity there is always a need, which
directs and regulates concrete activity of the subject in the
objective environment (Leontiev, 1977; p. 88). Such a
consideration, so essential in our everyday life as
psychological subjects with needs, intents and will, has been
nevertheless progressively forgotten by the modern
cognitive sciences, when based on the experimental
paradigm. Through laboratory experiments, inner needs and
spontaneous motives disappear, as well as the dynamic “life
cycle” of the natural living cognition.

The same criticism against the destructive effect of
experimental method when applied to cognition has been
formulated by Neisser (1976), through his ecological
approach of human perception. Neisser's work was initially
based on the direct perception theory of Gibson (1979), who
postulates that some affordances, corresponding to
properties of the objects, are directly perceived by the
organism. By contrast with the Gibson “un-cognitive”
theory of perception, Neisser admits the existence of mental
functions, even if he criticizes the sequential vision of the

cognition dominated the human information processing
theory. In a synthetic way, Neisser considers perception as a
skilled and iterative process. Like the Russian theorists of
the activity, he argues that human are not passive receivers
of perceptual inputs, but that they are active in the world, in
accordance with their own motives, their abilities, and their
expectations. His approach describes perception as a
dynamic cycle focused on the relationships between pre-
existing knowledge and the human information-gathering
activity. According with this perceptive cycle, the perceiver
actively explores the surroundings, and then constructs a
dynamic understanding of the current environment. The
mental structure that supports such processes of perception
is described as an active schema of the environment, which
is continually modified by the new perceptual information,
and which also contains anticipatory expectations. This
mental schema includes a cognitive map of the world, and
therefore directs perceptual explorations of the environment,
or prepares the mind for perception of anticipated events. It
can be consequently considered as a kind of control
structure of the perceptive processes.

2. An integrative model of the car driver
In this section, we would like to present a comprehensive

model of the human driver, so-called COSMODRIVE (for
COgnitive Simulation MOdel of the DRIVEr, Bellet et al.,
1999, 2010), that combines in an integrative way the
different theoretical approaches presented above. Several
driver models have been developed during the last decades,
even if the most of them are focused human's performance
more than on cognitive simulation (for a discussion on this
issue, see Bellet et al., 2007). One of the most advanced one
is surely the driver model developed by Salvucci (2006),
that is based on the ACT-R cognitive architecture
(Anderson and al., 2004). Like COSMODRIVE, this model
provides an integrative approach of the driver’s cognition,
by considering 3 components of (i) control, (ii) monitoring,
(iii) and decision making. Cognitive abilities at the
monitoring level are conceptually close to our approach of
mental representation simulation, even if they are different
from the computational point of view (ACT-R chuncks in
declarative memory versus visual-spatial [3D] and dynamic
mental models in COSMODRIVE). Nevertheless, the aim
of this paper is not to theoretically discuss on driver models,
but only to provide an illustrative example of the living
cognition, applied to a very familiar task. The figure 2
provides a synthetic overview of the cognitive architecture
of COSMODRIVE. The heart of the model are the drivers’
mental representations of the driving environment,
corresponding to the driver’s Situation Awareness according
to Endsley (1995) definition of this concept: the perception
of the elements in the environment within a volume of time
and space, the comprehension of their meaning, and the
projection of their status in the near future. These mental
models are built in working memory. At the tactical level
(Michon, 1985), they provide an ego-centered and a goal-
oriented understanding of the traffic situation, including

2

anticipations of the future changes of the current driving
situation, liable to be mentally investigated by the driver at
an explicit level. At the operational level, which generally
corresponds to the driver’s implicit awareness of the
situation, driving activity is implemented through operative
know-how for vehicle lateral and longitudinal controls
(Bellet et al., 2009). This dichotomy between implicit and
explicit cognition is well established in scientific literature,
for example, with the distinction proposed by Schneider and
Schiffrin (1977) between controlled processes, which
require cognitive resources and which can only be
performed sequentially, and automatic processes, which can
be performed in parallel without any attentional effort. In
the same way, Rasmussen (1986) distinguishes different
levels of activity control according to whether the behaviors
implemented rely on (i) integrated sensorial-motor reflexes
(Skill-based behaviors), (ii) decision rules for managing
familiar situations (Rule-based behaviors), or (iii) generic
knowledge activated in new situations for which the driver
doesn’t have any experience (Knowledge-based behaviors).

Figure 2: Cognitive architecture of COSMODRIVE

Four dynamic cycles regulate the internal functioning of
the model. The perceptive cycle supports the human
perception functions, allowing the driver to actively explore
the road environment, according to their current needs and
objectives (top down perceptive exploration process) and to
integrate new information into their mental models (bottom
up cognitive integration process). The memory cycle plays a
central role for pre-existing knowledge activation (based on
categorization and matching processes permitting to fit
knowledge with the reality, Bellet et al., 2007) as well as in
terms of new knowledge acquisition. The cognitive cycle
corresponds to a set of cognitive agents (like mental
representation elaboration, understanding, anticipation,
decision-making, or action planning) which collectively
handled the internal mental representations, in order to take
appropriate decision and then, to act into the current
environment. Lastly, the cognitive resources allocation
cycle is in charge to dynamically regulate and control the
life cycle of the driver’s cognitive system, in accordance
with the attentional resources that are currently available.

The central structure supporting to the living cognition in
this cognitive architecture is the working memory. From this
point of view, this architecture is directly inspired by the

ACT-R theory (Anderson et al., 2006). However, the
working memory of COSMODRIVE merges both
procedural and declarative memories, and comes more
from the operational memory concept of Zintchenko than
from the Baddeley’s working memory model (1986). For
Zinchenko (1966), the operational memory is a structure
whose main function is to serve the real needs of the
activity. Thus, it is a transitory rather than permanent
memory. However, it should be distinguished from a short-
term buffer limited in storage capacities, in so far as the
information it contains remains available for as long as the
task is performing (for several hours in some cases).

Through COMSODRIVE approach, car driving is
modeling as a dynamic process of interaction between the
driver and the environment through a dual iterative
regulation loop, supporting the living cognition. In
accordance with the Cybernetics theory, human activity is
defined here as an continuous loop of regulation between (i)
inputs, coming from the road environment, and (ii) outputs,
corresponding to the driver’s behaviors implemented into
the real world via the car, which generate (iii) feedbacks, in
the form of a new inputs, requiring new adaptation from the
driver. From this general point of view, the first iteration of
the Perception-Decision-Action regulation loop corresponds
to the moment when the driver starts up the engine, and the
last iteration comes when the driver reaches the final trip
destination, and stops the car. In accordance with the
Human information processing theory, human is not
described here as a closed black box, but as a set of
perceptive, cognitive and behavioral functions allowing the
driver to dynamically regulate their interactions with the
surrounding environment. In terms of cognitive activities,
mental representation of the driving situation plays a key-
role in the cognitive system functioning. This mental model,
based on perceptive information extracted into the road
environment, corresponds to the driver’s awareness of the
driving situation, and therefore determines directly all their
decision-making concerning the relevant adaptive behaviors
to be carried out in the current driving context. In
accordance with the Russian theory of activity, this mental
representation is based on operative knowledge practically
learnt “in situation”. Moreover, the driving task is
performed by using an artifact (i.e. the vehicle), and the
driving situation is directly transformed by the human
operator's activity (e.g. car position on the road depending
of the driver's action on the vehicle controls), as well as the
situation modifies the driver's cognitive states (in terms of
mental representation updating, for example, or new
operative knowledge learning). Lastly, in accordance with
the ecological theory of Neisser (1976), driver’s perception
in figure 2 is based on a dynamic perceptive cycle when (i)
an active schema directs gathering-information activity (i.e.
top down processes) and (ii) focus driver’s attention on
information currently available in the environment. Then
(iii), this active schema provides a mental model that is
continuously updated by dynamic integrating the new pieces
of information collected into the road scene.

3

3. Computational and dynamic simulation of
the driver’s mental activities while driving

By considering this theoretical background, the
COSMODRIVE model is composed of three main
functional modules (i.e. the Perception, the Cognition, and
the Action modules) in order to drive a virtual Car into a
virtual Environment through two synchronized “Perception-
Cognition-Action” regulation loops (Bellet et al., 2010): an
attentional control mode (mainly focused on Rasmussen’s
rule-based behaviors, and simulated through Driving
Schemas, and an automatic control loop (corresponding to
the skill-based behaviors simulated through the Envelope
Zones concept and the Pure-Pursuit Point method).

3.1 Modeling the explicit cognition: the Driving Schemas

Based on both the Piaget’s concept of operative scheme
and the Minsky (1975) frames theory, driving schema is a
computational formalism defined in order to implement
operative driving knowledge a the tactical level of
COSMODRIVE (Bellet et al., 1999). They correspond to
prototypical empirical situations, actions and events, learnt
by the driver from practical experience.

Figure 3: The Driving Schemas formalism

From a formal point of view (Figure 3), a Driving Schema
is composed of (i) a functional model of road Infrastructure,
(ii) a Tactical Goal (e.g. turn left), (iii) a sequence of States
and (iv) a set of Zones. Two types of Zone are distinguished:
Driving Zones (Zi), corresponding to the driving path of the
vehicle as it progresses through the crossroads, and the
Perceptive Exploration Zones (exi), in which the driver
seeks information (e.g. potential events liable to occur).
Each driving zone is linked to Actions to be implemented
(e.g. braking or accelerating, in view to reach a given state
at the end of the zone), the Conditions of performing these
actions, and the perceptive exploration zones that permit
checking these conditions (e.g. color of traffic lights,
presence of other road users). A State is defined by a vehicle
position and speed. The different sequences of the driving
zones make up the Driving Paths that progress from the
initial to the final state (achievement of the tactical goal).

Once activated in working memory and instantiated with
the road scene, the active driving schema becomes the
tactical mental representation of the driver, which will be
continually updated as and when s/he progresses into the
current environment. Tactical representation corresponds to
the driver’s explicit awareness of the driving situation and
provides a mental model of the road functionally structured,
according to the tactical goal pursued by the driver in this
particular context (e.g. turn on the left).

3.2 Modeling the implicit cognition: the Envelope-Zones
and Pure Pursuit Point regulation strategies

At the operational level (corresponding to the automatic
control loop presented in fig. 1), COSMODRIVE regulation
strategy is based on two implicit regulation mechanisms: the
envelope zones and the pure pursuit point. From a
theoretical point of view (Bellet et al., 2007), the concept of
envelope zones recalls two classical theories in psychology:
the notion of body image proposed by Schilder (1950), and
the theory of proxemics defined by Hall (1966), relating to
the distance keeping in social interactions with other
humans. Regarding car-driving activity, envelope zones also
refer to the notion of safety margins. At this last level,
COSMODRIVE model approach (Fig.4) is more
particularly based on Kontaratos’ work (1974), and
distinguishes a safety zone, a threat zone, and a danger zone
in which no other road user should enter (if this occurs, the
driver automatically activates an emergency reaction).

Figure 4: COSMODRIVE “Envelope-Zones” model

The envelope zones correspond to the portion of the path
of driving schema to be occupied by the vehicle in the near
future. Moreover, as an “hidden dimension” of the social
cognition, as suggested by Hall’s theory (1966), these
proxemics zones are also mentally projected to other road
users, and are then used to dynamically interact with them,
as well as to anticipate and manage collision risks. This
“virtual skin” is permanently active while driving, as an
implicit awareness of our expected allocated space for
moving. As with the Schilder’s body schema, it belongs to a
highly integrated cognitive level (i.e. implicit regulation
loop), but at the same time favors the emergence of critical
events in the driver’s explicit awareness. Therefore, the
envelope zones play a central role in the regulation of social
as well as physical interactions with other road users under
normal driving conditions (e .g. inter-vehicle distance
keeping), and in the risk assessment of path conflicts and
their management if a critical situation occurs (commitment
of emergency reactions).

The second hidden dimension of the implicit cognition
implemented at the operational level of COSMODRIVE is

4

the Pure Pursuit Point method. This method was initially
introduced for modeling in a simplified way the lateral and
the longitudinal controls of an automatic car along a
trajectory (Amidi, 1990), and has been adapted by
Sukthankar (1997), and then Mayenobe (2004), for driver’s
situational awareness modeling. Mathematically, the pure-
pursuit point is defined as the intersection of the desired
vehicle path and a circle of radius centered at the vehicle’s
rear axle midpoint (assuming front wheel steer). Intuitively,
this point describes the steering curvature that would bring
the vehicle to the desired lateral offset after traveling a
distance of approximately l. Thus the position of the pure-
pursuit point maps directly onto a recommended steering
curvature: k = -2x/l, where k is the curvature (reciprocal of
steering radius), x is the relative lateral offset to the pure-
pursuit point in vehicle coordinates, and l is a parameter
known as the look-ahead distance. According to this
definition, the operational control of the car by
COSMODRIVE can be seen as process of permanently
keeping the Pursuit Point in the driving path, to a given
speed assigned with each segment of the current tactical
schema, as instantiated in working memory.

4. The emerging living cognition
By using the functional architecture and the cognitive

agents of COSMODRIVE described in figure 2, (ii) the
driving schemas as operative knowledge activated and then
dynamically updated in the form of a functional mental
representation matched with the road scene, and (iii) the
operational skills corresponding to the pure-pursuit point
and the envelopes zones regulation process, it becomes thus
possible to dynamically simulate of the driver’s “living
cognition”. The central process that supports the living
cognition is the deployment of the active driving schema, as
instantiated in Working Memory through the current mental
representation. This deployment consists in moving the car
along a driving path (cf. fig. 3), by successively traveling
through the different driving zones of the schema, from the
initial state (i.e. Z1) until reaching the tactical goal (i.e. Z4).
This deployment process may occurs at two levels: (i) at the
representational level (explicit and implicit mental
simulations of the future activity to be carried out), when the
drivers anticipate and project themselves mentally in the
future, (ii) and through the activity itself, during the
effective implementation of the schema while driving the
car. This twofold deployment is not performed by a specific
process in COSMODRIVE. It is an emergent collective
product, resulting from the combined effect of several
cognitive processes (like anticipation or decision-making),
and merged with the computations based on the envelope
zones and the pursuit point regulation laws. As a result, the
deployment process generates a particular instance of the
active schema execution, composed of a temporal sequence
of mental representations, causally interlinked, and
corresponding to the driving situation as it is progressively
understood and anticipated, then experienced, and lastly
acted by the driver, along the driving path progression.

The figure 5 provides an example of COSMODRIVE
simulation results, permitting to visualize the mental
representation evolution of a novice driver (who has the
intention to turn on the left), while approaching of an urban
crossroads with traffic lights. In a first time (i.e. first left
view, corresponding to the driver’s mental representation at
a distance of 30 meters of the traffic lights), the driver’s
situation awareness is centered on the near traffic and on the
traffic lights color, that directly determine the short-term
activity to be implemented. Then, as s/he progresses
towards the crossroads, the driver’s attention is gradually
focused on the ahead area, and the traffic flow occurring in
the intersection center is progressively integrated into the
driver’s mental representation (i.e. second left view, at a
distance of 10 meters of the traffic lights).

Figure 5: virtual simulation of a driver’s mental models

The advantage of the driving schema formalism as

defined in COSMODRIVE is to combine declarative and
procedural knowledge in the unified computational
structure. When associated with the operational regulation
processes linked with the envelope zones and the pursuit
point strategies, it is then possible to use such driving
schemas as a structure of control for both monitoring the
operative activity, as well as for supervising the mental
derivation of the “schema deployment”, as this process is
implemented by the human cognitive system in order to
anticipate future situational status, or to mentally explore the
potential effects of an action before applied it. In accordance
with the activity theories, these cognitive structures
guarantee a continuum between the different levels of
awareness (implicit versus explicit) and the activity control
(tactical versus operational), thereby taking full account of
the embedding of operative know-how (i.e. the level of
implementation) in the explicit and decisional regulation
loop of the activity.

5. Conclusion: “in silico veritas”
By considering the challenge of the living cognition study,

it is needed to apprehend the dynamic functioning of the
human cognitive system in interaction with the environment
where s/he is currently immersed. Thus, computational
models able to virtually simulate the human mental activities
on computer are required. One of the key issues of the living
cognition is mental representations simulation, that are

5

dynamically elaborated and continually updated in the
working memory of the human operator before (i.e. action
planning) and during the activity, when practically carried
out. Indeed, mental representations and operative activity
are intimately connected. In the same way as the human
activity fuels itself directly with mental representations, the
operator’s mental representations are also fuelled “by” the
activity, and “for” the activity, according to a double
deployment process: cognitive and representational, on the
one hand, and sensorial-motor and executive, on the other.

The key mental structure supporting both drivers’ mental
representations and their activity are driving schemas. From
a metaphorical standpoint, such schemas can be compared
to a strand of DNA. They “genetically” contain all the
potential behavioral alternatives that allow the driver to act
within a generic class of situations. Nonetheless, only a tiny
part of these “genotypic potentialities” will finally express
themselves in the current situation – with respect to the
constraints and specific characteristics of reality – during
the cognitive (i.e. mental deployment), and then executive
implementation of this schema (i.e. effective activity carried
out to drive the car). And it is only through this dynamic
process of deployment of operative mental representations,
involving a collective effort of several cognitive processes,
that certain of intrinsic properties of the living cognition will
emerge. From this point of view, the scientific investigation
of the living cognition cannot forego the use of computer
simulation of the human mental activities, without taking
the risk of being largely incomplete.

Acknowledgments
The research is currently supported by the European
Commission Seventh Framework Program (FP7/2007-
2013), in the frame of ISi-PADAS Project.

References
Amidi O. (1990). Integrated mobile robot control,

(Technical Report CMU-RI-TR-90-17). Pittsburgh, PA:
Carnegie Mellon University, the Robotics Institute.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y . (2004). An integrated theory of the
mind. Psychological Review, 111, (4), 1036-1060.

Baddeley A.D. (1986). Working Memory. Clarendon Press.
Bellet, T. (2010). Analysis, modeling and simulation of

human operator’s mental activities. In G. A. Boy (Ed),
Handbook of Human-Machine Interaction, Ashgate.

Bellet, T., Bailly-Asuni, B., Mayenobe, P., & Banet, A.
(2009). A theoretical and methodological framework for
studying and modelling drivers’ mental representations.
Safety Science, 47,1205–1221.

Bellet, T., Bailly, B., Mayenobe, P., & Georgeon, O. (2007).
Cognitive modelling and computational simulation of
drivers mental activities. In P. Cacciabue (Ed.), Modelling
Driver Behaviour in Automotive Environment: Critical
Issues in Driver Interactions with Intelligent Transport
Systems, 315-343, Springer Verlag.

Bellet, T., Mayenobe, P., Bornard, J.C., Gruyer, D., &
Mathern, B. (2010). COSMO-SIVIC: a first step towards a
virtual platform for Human Centred Design of driving
assistances. Proceedings of the 11th IFAC/IFIP/IFORS/IEA
Symposium on Analysis, Design, and Evaluation of
Human-Machine Systems, Valenciennes, France

Bellet, T., Tattegrain-Veste, H. (1999). A framework for
Representing Driving Knowledge. International Journal
of Cognitive Ergonomics, 3 (1), 37-49.

Endsley, M. R. (1995). Toward a theory of situation
awareness in dynamic systems. Human Factors 37, 32-64.

Gibson, J.J. (1979). The Ecological Approach to Visual
Perception. Boston, Mass.: Houghton Mifflin.

Hall, E.T. (1966). The hidden dimension. New York:
Doubleday.

Kontaratos, N.A. (1974). A system analysis of the problem
of road casualties in the United States. Accident Analysis
and Prevention, 6, 223-241.

Leontiev, A. (1977). Activity and Consciousness, on-line
available at: http://www.marxists.org/archive/404.htm

Leplat, J. (1985). Les représentations fonctionnelles dans le
travail. Psychologie Française, 30 (3/4), 269-275.

Mayenobe, P. (2004). Perception de l’environnement pour
une gestion contextualisée de la coopération Homme-
Machine. PhD Thesis, University of Clermont-Ferrand.

Michon, J.A. (1985). A critical view of driver behavior
models : what do we know, what should we do ?. In:
Evans, L., Schwing, R.C. (Eds), Human behavior and
traffic safety. New York: Plenum Press.

Minsky, M. (1975). A Framework for Representing
Knowledge. In P.H. Winston (Ed.), The Psychology of
Computer Vision. New York: Mc Graw-Hill.

Ochanine V.A. (1977). Concept of operative image in
engineering and general psychology. In B.F. Lomov, V.F.,
Rubakhin & V.F. Venda (Eds), Engineering Psychology.
Moscow: Science Publisher.

Rasmussen J. (1986). Information processing and human-
machine interaction: an approach to cognitive
engineering. Amsterdam: North Holland.

Salvucci, D. D. (2006). Modeling driver behavior in a
cognitive architecture. Human Factors, 48, 362-380.

Schilder, P. (1950). The image and appearance of the
human body. New York: International Universities Press.

Schneider W., & Shiffrin R.M. (1977). Controlled and
automatic human information processing I: Detection,
search and attention. Psychological Review, 84, 1-88.

Smirnov A. (1966). La mémoire et l'activité. In A. Leontiev,
A. Luria & A Smirnov (Eds), Recherches Psychologiques
en URSS. Moscow: Editions du Progrès.

Sukthankar R. (1997). Situation Awareness for Tactical
Driving, Phd thesis, Carnegie Mellon University.

Wiener N. (1948). Cybernetics or control and communication
in the animal and the machine. Cambridge: MIT Press.

Zintchenko P. (1966). Quelques problèmes de psychologie
de la mémoire. In A. Leontiev, A. Luria & A Smirnov
(Eds), Recherches Psychologiques en URSS. Moscow:
Editions du Progrès.

6

A New Approach to Exploring Language Emergence as Boundedly Optimal
Control in the Face of Environmental and Cognitive Constraints

Jeshua Bratman1 (jeshua@umich.edu)
Division of Computer Science and Engineering, University of Michigan, Ann Arbor, MI 48109

Michael Shvartsman1 (mshvarts@umich.edu)
Richard L. Lewis (rickl@umich.edu)

Department of Psychology, University of Michigan, Ann Arbor, MI 48109

Satinder Singh (baveja@umich.edu)
Division of Computer Science and Engineering, University of Michigan, Ann Arbor, MI 48109

Abstract

Computational experiments have been used extensively to
study language emergence by simulating the evolution of lan-
guage over generations of interacting agents. Much of this
work has focused on understanding the mechanisms of how
language might have evolved. We propose a complementary
approach helpful in understanding why specific properties of
language might have emerged as an adaptive response to joint
pressures from the environment and constraints on an agent’s
cognitive architecture. The approach suggests that linguistic
systems can be described as boundedly optimal policies in
multi-agent dynamic control problems defined by specific en-
vironments, agent computational structures, and task-oriented
(vs. communication oriented) rewards. We illustrate the ap-
proach with a set of computational experiments.
Keywords: language emergence, bounded optimality, cogni-
tive architecture, reinforcement learning, adaptive control

Introduction
The goal of this paper is to begin exploring a new approach
to understanding the emergence of language. The primary
scientific aim is understanding how pressures from the envi-
ronment and constraints on the agent’s cognitive architecture
jointly lead to the emergence of specific properties of lin-
guistic communication as optimal policies for obtaining well-
defined long-term task- or environment-related reward.

Taking this perspective allows us to abstract away from the
question of how language evolved and systematically explore
constraints explaining why language appeared in the form that
it has. We hypothesize that specific language-like proper-
ties (for instance, compositionality and systematic reliance
on surface cues such as order) can in part be explained as
bounded optimal solutions to control problems faced by com-
putationally limited agents in environments exerting specific
pressures. We propose investigating language through such
environments in which we can formulate control problems for
two or more bounded agents. If the optimal policies for these
agents exhibit certain linguistic properties, then we can be-
gin to define a mapping from the original pressures and agent
constraints to the properties exhibited.

Finding solutions to these control problems computation-
ally can be accomplished through various means such as rein-
forcement learning, game-theoretic analysis, or evolutionary

1The first two authors contributed equally to this paper.

algorithms. Thus, the approach allows us to step away from
assumptions about specific mechanisms of learning or evolu-
tion, and focus on the joint relationship of agent structure and
environment to derived linguistic systems. A feature of this
approach that distinguishes it from related efforts is the focus
on deriving control for internal cognitive processes and ex-
ternal actions generally rather than communication systems
specifically, with communication processes emerging only if
they are part of the optimal policy.

This paper proceeds as follows: first, we review related
work on language emergence and discuss ways in which our
approach complements this work. Next, we move to an ex-
ample (the “Treasure Box Domain”) designed to illustrate the
approach by exploring constraints leading to the emergence
of structured utterances — here the systematic use of serial
order and allocation of lexical items to aspects of the environ-
ment. Finally, we show how this domain, and the approach
in general, can be extended to investigate more sophisticated
phenomena and propose future directions of inquiry.

Related Work
Research into the origins of language has a rich and contro-
versial history. Chomsky addressed it in his early work on
generative grammar, prompting a longstanding debate on the
extent to which language is a biological adaptation arrived
at via natural selection (Chomsky, 1968; Pinker & Bloom,
1990; for a more recent treatment, see Hauser, Chomsky, &
Fitch, 2002; Pinker & Jackendoff, 2005; Fitch, Hauser, &
Chomsky, 2005; Jackendoff & Pinker, 2005). Chomsky’s
(Chomksy, 2010) own recent approach to the question at-
tempts to minimize—in fact, nearly eliminate—the role of
language-specific biological adaptation. A more recent line
of research by Nowak and colleagues (Nowak, Krakauer, &
Dress, 1999; Nowak & Krakauer, 1999; Nowak, Plotkin, &
Jansen, 2000; Nowak, Komarova, & Niyogi, 2002), estab-
lishes a mathematical framework used to explore the evolu-
tion of language from the standpoint of computational learn-
ing theory and evolutionary game theory. This work also pro-
vides evidence for coding constraints that may have resulted
in increased fitness for agents capable of multi-symbol utter-
ances.

7

Several recent computational experiments explore the no-
tion that cultural adaptation and domain-general cognition
may be sufficient for the emergence of language (Beckner
et al., 2009, also see Christiansen & Chater, 2008; Steels,
1998; De Beule, 2008; Gong, Minett, Ke, Holland, & Wang,
2005). This work shows a number of features emerging from
repeated interactions of pairs of computational agents in a
population playing a language game. In a way, this work im-
plicitly frames language emergence as a function of environ-
ment, agent, and learning mechanism. Our work attempts to
remove the last of these and more explicitly address what as-
pects of environment and agent architecture are important—
potentially leading to a more deeply explanatory account.

The questions we are interested in are in part orthogonal to
these debates: we are not making claims about either domain-
specificity or the mechanisms of learning or evolution, but
rather the interplay of cognitive constraints and environmen-
tal pressures that lead to the emergence of particular language
features as adaptive. By leaving the mechanism of adaptation
unspecified, our approach is relevant to researchers working
in both biological and cultural frameworks.

Our work also departs from the approaches above in that
it does not create a pressure for language by explicitly re-
warding cooperation or communication of a particular type.
This approach considers communication not as an end-goal
but rather as the means to obtain some primary reward such
as sustenance, shelter or reproduction. This may give us a
principled way to examine and sharpen what it is about lan-
guage which directly contributes to effective behavior.

Environmental Pressures & Agent Constraints
Natural environments comprise extremely complicated sets
of pressures acting on agents. A key part of the work in this
approach is identifying tractable sets of specific pressures that
are independently motivated by the study of the environments
of early hominids or humans and that might plausibly be im-
portant in the emergence of language. It is not our intent in
this initial exploration to undertake this identification system-
atically, but we propose here a few plausible candidates as
starting points that suffice to illustrate the approach.

Many environments naturally limit agent’s ability to ob-
serve and act. For example human beings can only manipu-
late small pieces of the natural world. Furthermore, knowl-
edge and ability to act is not usually distributed uniformly
among agents, making information sharing between agents
potentially useful. The nature of tasks that must be performed
by agents may limit how immediately information can be
utilized, requiring memory and independent action. A re-
lated pressure is limitation on the lexicon size available to
the agents for communication. This could require generaliza-
tion and furthermore may be a natural consequence of coding
constraints on noisy information transmission (see Nowak et
al., 1999, for a complete discussion). Another important pres-
sure might be temporal: environment dynamics might require
speed or brevity in communication.

Figure 1: Treasure box domain.

Identifying structural constraints on agents is a second ma-
jor requirement for this approach. These constraints may be
independent of learning mechanisms and describe computa-
tional and physical capabilities of an agent. Our interests
initially are in cognitive and perceptual constraints, such as
limited attention and short-term memory. In the experiments
below we adopt highly idealized versions of such constraints,
but we always define computationally complete agents that
can condition their control of internal and external processes
on an internal state that combines memory and perception.

One concern about this approach is the prospect that pres-
sures in the real world and human cognitive capabilities are
so complex that our proposed analysis is impossible. How-
ever, this is an empirical question. It could very well be that
careful investigation will yield simple features or ones that
can be idealized while retaining their important aspects. It
could very well be that careful investigation will yield sim-
ple features or ones which could be idealized while keeping
their important aspects. It may also be possible to separate
and explain specific language properties on a large scale.

Example: Treasure Box Domain
To demonstrate this approach to understanding language
emergence we designed a set of experiments in which par-
ticular kinds of communication may emerge as optimal (or
approximately optimal) behavior in a simple domain popu-
lated by two computationally limited agents. We describe
next the structure of this domain and then discuss why it is
of potential interest for our purposes—why we expect inter-
esting linguistic systems to emerge.

Environment and agent structure
Figure 1 shows the Treasure Box domain. There are two
agents, SPEAKER and LISTENER, who share the goal of
opening a locked treasure box. These agents are in an en-
vironment containing two rooms: a first room, communica-
tion room, in which LISTENER can hear symbols uttered by
SPEAKER and a second room, box room, in which there are
B different boxes and K keys. At any one time, only one par-
ticular box contains treasure and can only be opened by one
particular key. To solve this problem, LISTENER must go into
box room and choose the correct box and key. However, LIS-
TENER knows neither which box contains treasure nor which
key opens it. The second agent, SPEAKER, knows the cor-
rect box and key, but cannot leave the communication room
and therefore cannot open the box itself. Instead, SPEAKER

8

can communicate with LISTENER by uttering symbols from
a lexicon of size S which LISTENER observes while in com-
munication room.

When SPEAKER utters a symbol it is placed into LIS-
TENER’s immediate perception: a buffer holding a single
symbol (working memory). In addition to the working mem-
ory store, LISTENER has a second memory location to hold a
single symbol (long-term memory), the value of which can-
not be observed without retrieving it. LISTENER can move a
symbol from the working memory store into long-term mem-
ory and vice-versa (memory encoding and retrieval), but can
only observe the symbol in working memory. The agent does,
however, know whether long-term memory contains informa-
tion. SPEAKER remembers the last symbol uttered in an ob-
servable working memory.

Speaker. This agent observes: (1) The box containing
treasure; (2) the key which opens that box; and (3) last symbol
it uttered. It can act by either (1) waiting or; (2) uttering a
single symbol out of a limited set of size S.

Listener. This agent observes: (1) the room it is in; (2)
whether it holds a key; (3) whether it holds a box; (4) whether
its long-term memory contains information; and (5) the con-
tents of its working memory. It can act by (1) moving to the
box room; (2) encoding a symbol from working memory into
long-term memory; (3) retrieving a symbol from long-term
memory into working memory (4) picking up a specific key;
or (5) picking up a specific box.

Dynamics. The domain is structured as an episodic task
where each episode ends when LISTENER picks up both a
box and a key (at which point the key is automatically used
to open the box). If the key is correct and the box and the
box contains treasure then both agents will receive a positive
reward (of +1); otherwise no reward is received and a new
episode begins. At the beginning of an episode the box con-
taining treasure and the key that opens it are chosen randomly,
LISTENER is returned to communication room holding nei-
ther key nor box, and both agents’ memories are cleared.

Learning algorithm. Although the specifics of the learn-
ing mechanism are not the focus, we needed a method for dis-
covering good agent behavior. Both agents use the ε-greedy
Sarsa(λ) algorithm (Sutton & Barto, 1998). This algorithm
learns by estimating state-action values Q(s,a) that represent
the best expected discounted sum of rewards over an episode
that can be gained by following action a from state s and then
the best policy thereafter (we initialize the Q values to 0). At
each step actions are chosen greedily based on the current Q
function except with a probability of ε when a random action
is chosen instead (yielding exploration). We use a low explo-
ration rate of ε = 0.01 across our experiments. After action at
in state st at time t, the algorithm updates the Q value for all
state-action pairs (s,a) according to their eligibility et(s,a) as
follows earlier actions by

Qt+1(s,a)← Qt(s,a)+αδtet(s,a), ∀s ∈ S,∀a ∈ A

where before the update et(st ,at) is set to 1.0 and the eligibil-
ity for every other state-action is decreased by a multiplicative

factor of γ,λ (we used λ = 0.8 for all of our experiments); the
more recently a state-action pair is visited the higher its eli-
gibility and the more credit or blame it gets for the temporal
difference error δt = rt+1 + γQt(st+1,at+1)−Qt(st ,at) which
is the the current estimated value of the resulting (st+1,at+1)
plus the reward rt immediately gained minus the predicted
value of the pair (st ,at). The discount factor γ describes how
much less future reward is valued compared to immediate re-
ward; we used γ = 0.8 for all our experiments. The step-size
parameter α controls how fast the algorithm incorporates new
experience, we use α = 0.03 in all of our experiments.

Why this domain is of potential linguistic interest
Without any communication the best LISTENER can do is to
open an arbitrary box with an arbitrary key. Given KB possi-
ble box-key combinations the probability of success at each
episode is 1

KB . To improve beyond this, a communicative pol-
icy is required wherein SPEAKER informs LISTENER of the
correct box and/or key in some way.

Different environmental pressures and agent constraints
make different behaviors optimal. For example, we can ex-
plore how varying the size of the available lexicon alters be-
havior. If there are enough symbols (S ≥ KB), then a sin-
gle symbol suffices to describe each box-key combination.
If there are at least K +B but fewer than KB symbols, then
two symbols are required but each box and each key could be
given a unique symbol removing the need for symbol order.
Finally, with S=max(K,B) the meaning of symbols will have
to be shared between boxes and keys, so order may be impor-
tant. In all cases these interpretation of the symbols must be
learned by both agents.

We can explore the effects of changing other constraints
as well, such as agents’ memory or environment structure.
For example, if LISTENER can store two symbols in working
memory, then consistent symbol order may not matter. If the
environment is no longer divided into two rooms (so commu-
nication and box opening can occur simultaneously) symbol
order might still matter, but the LISTENER may not need to
encode anything into long-term memory, instead acting based
on the contents of its working memory at every step—in ef-
fect becoming a situated instruction-taker.

Linguistic Properties of Emergent Policies
We conducted three sets of experiments (eight individual ex-
periments) to demonstrate how environmental pressures and
agent constraints jointly effect communication properties; the
experiment structure and results are summarized in Table 1.
In all experiments the number of boxes and keys is equal
K = B = 4. The first set is the domain originally described
with two separate rooms where LISTENER has a working
memory of one symbol and a long-term memory of one sym-
bol. The second set modifies the agent constraints by giving
the LISTENER two symbols in working memory (no long-
term memory). The third set changes the environmental pres-
sures by removing the room separator.

9

Table 1: Summary of three sets of experiments and policies learned. See text for detailed description.

ENVIRONMENT AGENT MEMORY LEXICON SIZE (S) PROPERTIES OF EMERGENT LINGUISTIC SYSTEM

Two Rooms

one symbol
working memory
+ one symbol
long-term
memory

3

Association and systematic order, where in addition
single symbols uttered in isolation denote specific box-
key combinations. Can only achieve 75% success.

4 Association and systematic symbol order. SPEAKER
first describes the box, then the key (see Figure 2b).

8
Highly context-dependent and idiosyncratic symbol
meanings. For example key 2 is represented by sym-
bol 4 if uttered before box, but symbol 5 after.

16 Each symbol denotes a box-key combination. For ex-
ample symbol 5 means key 1 and box 1.

Two rooms

two symbol
working memory
(no long-term
memory)

3 Similar to case with 3 symbols above.

4
Complex lexical forms. Describes entire box-key com-
bination with two symbols which can be observed si-
multaneously by LISTENER effectively creating a 2-
symbol length word (see Figure 3b).

One room

one symbol
working memory
+ one symbol
long-term
memory

3 Symbols act as direct orders to LISTENER, but other-
wise policy is similar to the cases of 3 symbols above.

4

Association and symbol order, but no storing or re-
trieving from long-term memory is necessary because
LISTENER can act immediately upon hearing a symbol
(see Figure 4b).

Experiment set 1: Exploring constraints on the lexicon.
We explore four different lexicon sizes: S = 16, S = 8, S = 4,
and S = 3. Figure 2 shows 30 independent learning trajecto-
ries for each value of S. The high variance is due to the nature
of the learning algorithm which may not converge for both
agents every trial (or may get stuck on a less-than-optimal
policy)—but what we are interested in are the best policies
learned (because the mechanism used can be improved sig-
nificantly beyond our initial implementation of Sarsa(λ) with
fixed parameters across all experiments).

The first four rows of Table 1 summarize the results. Here
we will discuss the resulting policies in more detail. For 16
available symbols, as expected, a different symbol is associ-
ated with each box-key combination and the agents arrive at
perfect performance. With eight symbols, again the best per-
forming policies use two-symbol utterances for each box-key
combination, but not always in the same order (i.e. for some
combinations keys are uttered first and in other boxes are ut-
tered first). For the case of four symbols, the best performing
policies communicate box and key in a particular order, with
each symbol able to refer to either box or key (see Figure 2b).
Of particular interest is that the the agents settle on a consis-
tent order across box-key combinations, but this order might
be different over seperate experiments: the linear position is

necessary but the specific order is not. Finally, for the case of
only three symbols the agents again learn a policy where lin-
ear symbol order matters. Curiously, this alone should only
afford success in 56% of combinations; some policies how-
ever achieved 75% success. The policy succeeds in the addi-
tional box-key combinations by associating each with a single
symbol uttered in isolation. That is, with limitations in sym-
bol size utterance length becomes informative in addition to
positional information.

As we can see, this method of systematically altering only
a single constraint (lexicon size) yields broad variation in lin-
guistic properties even in this extremely simple domain, in-
cluding the denotation of symbols and the use of order in-
formation. The case of three and four symbols suggests that
limited memory (paired with environmental pressures) leads
to the systematic use of symbol order in optimal performance,
especially when the lexicon size is limited.

Experiment set 2: Modified agent constraints. Here our
aim is to explore further what specific constraints led to the
systematic use of order in Experiment 1. We alter the con-
straints on the agents by allowing the LISTENER two symbols
in working memory instead of one (and no long-term mem-
ory). All the other dynamics of the Treasure Box Domain
are kept constant. The actions of store and retrieve have new

10

(a) S = 4 (b) Sample of policy2 for S = 4.

(c) S = 3 (d) S = 8 (e) S = 16

Figure 2: Experiment set 1: Exploring constraints on the lex-
icon. Each figure shows 30 learning curves in the Treasure
Box Domain with B = 4 and K = 4. Success rate at each
point is the average success rate over all episodes since previ-
ous point. Dotted line marks where learning and exploration
are disabled. Best policy is highlighted and described in ta-
ble 1. Figure (b) is a sample policy for S = 4 showing the sig-
nificance of symbol order. In this case, agents have learned
to associate string ”3,2” with key 1, box 1, as can be seen in
the rightmost column where SPEAKER utters first symbol “3”
then symbol “2”.

(a) Best policies. (b) Sample of policy2 for S = 4.

Figure 3: Experiment set 2: Modified agent constraints; LIS-
TENER has two working memory locations. Left figure shows
learning curves for best policies for S = 3 and S = 4. Right
figure is a sample policy for S= 4 showing that the LISTENER
can act according to the length-2 string in working memory:
LISTENER’s last two actions are box and key pickups without
a retrieval in between, unlike the policy in figure 2.

(a) Best policies. (b) Sample of policy2 for S = 4.

Figure 4: Experiment set 3: Modified environmental pres-
sures: no room separator. Left figure shows learning curves
for best policies for S = 3 and S = 4. Right figure is a policy
sample for S = 4. The absence of a room barrier allows sym-
bols to act as direct orders: the ”utter 1” action by SPEAKER
is followed by LISTENER’s ”get key 1” on the next time step.

semantics now: moving symbols between the two working
memory locations. Figure 3 shows the best trial for each case
in this experiment (for lexicon size of 3 and of 4). With 4
symbols in the lexicon, pairs of symbols can be used to de-
scribe each box-key combination. This is possible because
unlike Experiment 1 both symbols are visible to the LIS-
TENER (when both stored in memory) and thus there is no
need for an association of order of symbol with object type
(key or box). What is perhaps surprising about this result
is that the more flexible agent structure in this experiment
yields a simpler communication system, whereas the puta-
tively more sophisticated linguistic system in Experiment 1
emerges as an adaptive response to the more computationally
limited agent structure.

Experiment set 3: Modified environmental pressures.
Here we alter the environmental constraints by removing
the separator between the communication room and the box
room. This modification relieves the pressure imposed by
delay between communication and utilization effectively re-
moving the need to remember information. Instead LIS-
TENER can act immediately from SPEAKER’s instructions.
Figure 4 shows the best trial S= 3 and S= 4. For the case of 4
symbols, SPEAKER’s utterances act as immediate instructions
to LISTENER. Word order still matters, but when a particular
symbol is uttered first it may correspond to a different object
(box-key) than if uttered second. Furthermore, the second
symbol uttered can have different meaning depending on the
context. For example if LISTENER has already chosen a box,
the second symbol will be associated with a key.

2Example policies show actions for the case key = 1 and box
= 1. Each row is one time step; e means empty memory location.
For readability, we are showing the contents of LISTENER’s long-
term memory and omitting current room. LISTENER does not have
a “wait” action, but instead uses an action which has no effect (e.g.
“pick up a key” while in the communication room). The SPEAKER’s
utterances do not impact LISTENER after it changes rooms so these
actions are unimportant.

11

Conclusions and Looking Ahead
We have described and illustrated a novel approach to lan-
guage emergence hypothesizing that specific properties of
language may be understood as features of boundedly opti-
mal policies to control problems imposed on computationally
limited agents. What makes the approach distinctive is its
emphasis on the shaping of linguistic systems by the joint
constraints of agent and environment structure, and the emer-
gence of such systems as the solution to the problem of how
to optimally control both cognitive and physical actions in
service of task goals (rather than communication goals). This
means that there is no associative learning component or any
other learning mechanism beyond the reinforcement learning
algorithm described above. Any associations between sym-
bols and objects or actions are arrived at not because the
agents are explicitly trying to understand each other or arrive
at shared symbol-meaning mappings, but rather implicitly as
joint solutions to the control problem.

Our initial experiments yielded two key results. First, we
have shown that even simple environments and agent archi-
tectures give rise to linguistic systems with interesting proper-
ties, including systematically structured utterances and flexi-
ble use of limited lexical resources. Second, we have shown
that changes in environmental pressures or agent constraints
may yield dramatic changes in optimal communication struc-
ture. Some constraints and pressures yield communication
with systematic symbol order, other constraints yield policies
that break the association between single symbols and sin-
gle objects in the environment. The changes to environment
and agent may seem small, raising the question of how a ro-
bust communication system can emerge, but in the context
of the environment we explored the modifications are quite
large. We expect small changes in a complex environment
would not drastically alter the resulting communication sys-
tems. Furthermore, the fact that the communication system is
strongly shaped by specific constraints of the cognitive archi-
tecture is also unproblematic, because we expect such con-
straints to be relatively stable across conspecifics. Indeed, to
the extent that language is shaped by such constraints, this is
good news for the cognitive scientist, because their detailed
nature is likely to be more accessible that the relevant details
of the shaping environments.

Our results suggest that there is promise in develop-
ing a broad systematic framework for studying language
emergence by identifying mappings between pressures, con-
straints, and language properties independent of questions re-
garding the mechanisms of evolution or adaptation. Promis-
ing future avenues include investigating the emergence of
compositional mechanisms like recursion, categorical fea-
tures including distinctions between nouns and verbs, or more
sophisticated uses of language for representation of internal
mental states.
Acknowledgments: This work was supported by NSF grant
IIS 0905146. Any opinions, findings, conclusions, or recom-
mendations expressed here are those of the authors and do not

necessarily reflect the views of the sponsors.

References
Beckner, C., Ellis, N. C., Blythe, R., Holland, J., Bybee, J.,

Ke, J., et al. (2009). Language Is a Complex Adaptive
System: Position Paper. Language Learning, 59, 1–26.

Chomksy, N. (2010). Some simple evo devo theses: How
true might they be for language? In Y. H. Larskon R. K.
Deprez V. (Ed.), The evolution of human language: Biolin-
guistic perspectives. Cambridge: Cambridge University
Press.

Chomsky, N. (1968). Language and mind. New York: Har-
court, Brace & World.

Christiansen, M., & Chater, N. (2008). Language as shaped
by the brain. Behavioral and Brain Sciences, 31(05), 489–
509.

De Beule, J. (2008). The emergence of compositionality, hi-
erarchy and recursion in peer-to-peer interactions. In Pro-
ceedings of the 7th international conference on the evolu-
tion of language (pp. 75–82). World Scientific Pub Co Inc.

Fitch, W. T., Hauser, M. D., & Chomsky, N. (2005). The
evolution of the language faculty: clarifications and impli-
cations. Cognition, 97(2), 179–210; discussion 211–25.

Gong, T., Minett, J. W., Ke, J., Holland, J. H., & Wang, W. S.-
Y. (2005, July). Coevolution of lexicon and syntax from a
simulation perspective. Complexity, 10(6), 50–62.

Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The
faculty of language: What is it, who has it, and how did it
evolve? Science, 298(5598), 1569-1579.

Jackendoff, R., & Pinker, S. (2005). The nature of the lan-
guage faculty and its implications for evolution of language
(Reply to Fitch, Hauser, and Chomsky). Cognition, 97,
211-225.

Nowak, M., Komarova, N., & Niyogi, P. (2002). Com-
putational and evolutionary aspects of language. Nature,
417(6889), 611–617.

Nowak, M., & Krakauer, D. (1999). The evolution of lan-
guage. PNAS, 96(14), 8028.

Nowak, M., Krakauer, D., & Dress, A. (1999). An error limit
for the evolution of language. Proceedings of the Royal
Society, 266(1433), 2131.

Nowak, M., Plotkin, J., & Jansen, V. (2000). The evolution
of syntactic communication. Nature, 404(6777), 495–498.

Pinker, S., & Bloom, P. (1990). Natural language and natural
selection. Behavioral and Brain Sciences, 13(4), 707–784.

Pinker, S., & Jackendoff, R. (2005). The Faculty of Lan-
guage: What’s Special About it? Cognition, 95(2), 201–
36.

Steels, L. (1998). Synthesising the origins of language and
meaning using co-evolution, self-organisation and level
formation. In Approaches to the evolution of language:
Social and cognitive bases (pp. 384–404). Edinburgh Uni-
versity Press.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning:
An introduction. MIT Press.

12

Linguistic Spatial Gestures

Leonard A. Breslow (len.breslow@nrl.navy.mil)
Anthony M. Harrison (anthony.harrison@nrl.navy.mil)

J. Gregory Trafton (Trafton@itd.nrl.navy.mil)
NCARAI, Naval Research Lab., Code 5515

Washington, DC 20375 USA

Abstract
We model the gestures accompanying spoken descriptions of
spatial information and propose a conception of spatial
gestures that differs from previous proposals by making a
distinction between gestures used for thinking (cognitive
gestures) and gestures used to help express predetermined
ideas (linguistic gestures), and positing a tighter integration
between gesture and language production in the latter than
most previous researchers.

Keywords: gesture; spatial reasoning; language production

Introduction
Symbolic speech-accompanying gesture, representing
spatial information, has lately been an area of active
research (Alibali, 2005). Of particular interest is the
relationship between gesture and the language it
accompanies. In considering this relationship, we think it
is useful to distinguish between gestures that help us
determine what to communicate/express (cognitive
gestures) and gestures that help us to express what we have
determined to say, that is, gestures concerned with how to
communicate (linguistic gestures). While these two
functions clearly overlap in certain cases, we consider the
distinction useful. Specifically, we argue that, in general,
cognitive gestures lead language, whereas language leads
gesture in the case of linguistic gestures.
 Cognitive gesture leads language indirectly by facilitating
thinking, thereby helping us determine what to say. Thus,
they are used in situations with competing conceptual
representations (Kita & Davies, 2009), high conceptual load
(Melinger & Kita, 2007), mental rotation tasks (Chu & Kita,
2008), expert and novice scientific thinking (Trafton et al.,
2006), and problem solving (Lozano & Tversky, 2006),
among others. Such gestures are relatively independent of
language, often expressing information different from that
expressed in the accompanying language, and sometimes
cognitively more advanced than the latter, e.g., in
development (Alibali & Goldin-Meadow, 1993) or in
problem-solving performance (Lozano & Tversky, 2006).
While cognitive gestures sometimes aid communication
(Lozano & Tversky, 2006), they are relatively independent
of communication, as evidenced by their use when solving
problems silently in solitude (Chu & Kita, 2008; Lozano &
Tversky, 2006).
 In contrast to cognitive gestures, linguistic gestures are
more strongly tied to language and dependent upon
language. They convey little or no information beyond
what is expressed in the accompanying language (Beattie &

Shovelton, 1999; So, Kita, & Goldin-Meadow, 2009),
except where the respective roles of gesture and language
are predetermined as in deixis (“Look at that!”) or in
language referring to gesture (“It was this big.”).
Neurological as well as behavioral evidence suggests the
absence of priming of words by gestures in comprehension
(Bernardis & Caramelli, 2007) or production (Beattie &
Coughlan, 1999; Bernardis, Salillas, & Caramelli, 2008).
On the contrary, language primes gesture comprehension
(Bernardis & Caramelli, 2007) and cross-linguistic studies
demonstrate that the grammatical organization of speech is
predictive of the sequence and nature of symbolic gesturing
(Kita & Ozyurek, 2003).
 Also in contrast to cognitive gestures, linguistic gestures
are typically associated with communication, as evidenced
by the great reduction in gesturing when the listener cannot
see the speaker (Alibali, Heath, & Myers, 2001) and the
absence of gesturing outside of communication (e.g., in
silence or solitude). However, we do not claim that
linguistic gestures always facilitate communication, since
people gesture even when speaking on the telephone (de
Ruiter, 1995).
 Note that the outward form of both cognitive and
linguistic gestures may appear very similar – they are iconic
gestures typically tied to a spatial representation of what is
being thought or said. The types of gestures may be
distinguished by the degree to which the gesturer has
difficulty determining the spatial ideas he/she wishes to
express, which may vary by population (e.g., child vs. adult)
as well as by situation (e.g., problem-solving vs. simple
description).
 We will focus in the remainder of this paper on linguistic
gestures. One question that researchers have considered is
the extent to which the perceptual information being
described by the speaker inputs directly into the generation
of gestures, without the intermediary of language
processing. Some argue that direct perception accounts for
the few features of gestures that are not conveyed in the
accompanying language (Kita & Ozyurek, 2003). Other
theories (de Ruiter, 2007; Hostetter & Alibali, 2008)
attempt to account for gesture solely on the basis of
perception or imagery. Both types of theory are challenged
in explaining the process by which perceptual features are
selected for inclusion in gestural representation.
 We propose a model of linguistic gestures that posits a
tighter integration between gesture and language than most
previous models (as does McNeill, 1992) by adopting a
broader view of language representation than typically used.

13

mailto:len.breslow@nrl.navy.mil�

Our approach draws on a recent linguistic theory proposed
by Ray Jackendoff (2002), according to which language
representation includes some irreducibly spatial
components. It also draws on the construction grammar
approach of Goldberg (1995), according to which linguistic
structures containing both semantic and syntactic
components are central to language processing. Combining
these two approaches, we hypothesize that people select a
construction before retrieving words and gestures. The
construction provides an abstract plan for speaking that
includes the semantic-syntactic information used in the
retrieval of both words and spatial representations at
appropriate places in the utterance. The spatial
representations are the basis of symbolic gestures and so
this approach helps to identify where specific gestures will
occur. Following Jackendoff, we hypothesize that the spatial
representations are abstract in nature (Avraamides et
al.,2004). We propose that these abstract representations
may be instantiated either as internal mental images or
externally as gestures.
 This account predicts that the information conveyed in
linguistic gesture will be tightly tied to the accompanying
language, since both language and gesture derive from the
same construction. This helps to explain why linguistic
gestures provide little information not included in the
accompanying language. What little extra information is
included in gesture is information required for the
instantiation of an abstract spatial schema (a spatial element
of a linguistic construction) in a particular situation. For
instance, a gesture representing an observed leftward
movement is usually performed in a leftward direction (Kita
& Ozyurek, 2003), since a linear gesture must have some
direction. But the gestural reproduction of the stimulus is
limited to what is necessary to instantiate an abstract spatial
schema as a physical hand movement. Thus, this account
provides a mechanism for selecting perceptual features for
inclusion in gestural representation, in contrast to
unconstrained perceptual accounts (de Ruiter, 2007;
Hostetter & Alibali, 2008). This account also helps to
explain the observed temporal synchrony between gestures
and utterances of similar meaning (McNeill, 1998).

Modeling Language
We evaluate our conception of linguistic spatial gesture by
modeling the findings reported by Kita and Ozyurek (Kita &
Ozyurek, 2003). Native speakers of English, Japanese, and
Turkish were shown a cartoon and asked to describe it to
another person. In one scene, a cat (Sylvester) jumps out
the window of an apartment building, grabs onto a hanging
rope and swings across the street to another building. In
another scene, the cat, after swallowing a bowling ball, rolls
down the street. English speakers described both path
(down/across the street) and manner of locomotion (swing
or roll) in a single clause, such as (with clauses marked by
square brackets):

 English-Swing: [The cat swings across the street.]

 English-Roll: [The cat rolls down the street.]

In contrast, speakers of Japanese and Turkish (hereafter J/T)
described path and manner in two separate clauses,
paraphrased roughly as:

 J/T-Swing: [[The cat goes across the street], []]
 J/T-Roll: [[The cat goes down the street], [as he rolls]]

Note that J/T lack an appropriate equivalent to “swings” in
this context, an unusual lacuna in both these languages, and
so the manner is not described verbally, but is often
depicted by a gesture following the spoken clause, the
position where a dependent clause describing manner
normally occurs, as in the J/T-Roll sentence.
 The clausal structure of the four sentences, above,
corresponds to linguistic constructions as characterized by
Goldberg (1995). A linguistic construction is a semantic-
syntax pair that also specifies the mapping between
semantics and syntax. While her theory focuses primarily
on clausal constructions, Goldberg considers the
construction framework to be applicable to all levels of the
language down to words. Thus, the J/T description of the
roll event consists of two constructions nested within a
larger construction, as shown in J/T-Roll, above.
 Table 1 outlines a simplified English intransitive motion
construction, characterizing the semantic and syntactic
components of the clause in English-Roll, adapted from
Goldberg (1995).

 Table 1: A simplified intransitive motion construction.

Semantics THEME MOVE GOAL

Lexical items “He” “rolls” “down the
street”

Syntax subject verb oblique
prep. phrase

We omit many details. A construction has semantic content
beyond that indicated by standard semantic categories, such
as those shown here; for example, this construction denotes
movement along a path. For Goldberg, the verb has a
centrality not depicted here and constructions include rules
for mapping from semantics to syntax that we omit. Note
that the lexical items are not part of the construction, but
instead are added to the construction in the course of its
application.
 We adopt a simplified process model for language
production based on constructions, consisting of the
following sequence:

1. Construction retrieval/instantiation. A construction

is selected based on the match of its semantic
components to the situation, in the process of which
those semantic components are instantiated.

2. Lexical retrieval. Lexical items (e.g., words) are
retrieved for each semantic component in turn (from

14

left to right in Table 1) based on the semantics-syntax
mapping specified by the construction as well as by its
semantic content.

In the course of the first, construction retrieval, step,
semantic components in the construction are instantiated
with concepts and/or spatial representations. Following
Jackendoff (2002), we hypothesize that some semantic
categories are instantiated with irreducibly spatial
representations. In fact, Jackendoff argues that the
semantics of the MOVE component in an intransitive
motion construction is exclusively spatial in nature. Note
in English, the MOVE component represents the manner of
movement (e.g., swinging, rolling). In contrast, this manner
of movement component is absent from the intransitive
motion constructions in J/T; instead, the manner of
movement is represented by a separate dependent clause
following the intransitive motion clause.
 We hypothesize that the instantiated spatial components of
constructions at all levels (multi-clausal, clausal, lexemes),
resulting from step 1, constitute the basis for gesturing
during speech.

Modeling Gesture

Kita and Ozyurek (2003) categorize the manual gestures
found to accompany utterances English/J-T-Swing/Roll,
above, into one of three types:
1. Manner only: e.g., a circular motion for rolling.
2. Trajectory only: e.g., a straight-line motion from left to

right.
3. Conflated: depicting both manner and trajectory, e.g., a

looping left-to-right movement for rolling.

As a manner-only gesture is not possible for denoting
swinging, only trajectory and conflated gestures
accompanied the swing utterances. In general, the authors
found that the language groups differed in their gestures in a
manner corresponding to the structure of their utterances:
English speakers often made conflated gestures only,
whereas J/T speakers more often made manner only and
trajectory only gestures. Note that the language groups did
not differ in their overall production of conflated gestures,
but in the tendency to produce only conflated gestures,
which was more common in English. Based on these
findings, the authors proposed that the production of
gestures is influenced by the structure of language in the
planning stage of speech production.
 Kita and Ozyurek also noted that among all language
speakers, the direction of gestures (e.g., left to right)
generally corresponded to the direction observed in the
cartoon, but was never mentioned in the utterances. On this
basis, they posited a separate line of influence of perception
on gesture, unrelated to language. In contrast to this, we
propose a unified account of gesture and language
production.

 We hypothesize that the spatial components of
constructions at all levels (discourse, multi-clausal, clausal,
lexemes) constitute the basis for gesturing during speech.
We explain the selection of spatial features of an event for
gestural representation in terms of the requirement to
instantiate an abstract spatial representation to produce both
speech and gesture. Since a translation gesture must have
some direction, the reproduction of the observed direction is
simply part of this instantiation process.
 Although Kita and Ozyurek did not report the
correspondence between gesture and language in a fine-
grained manner, we have inferred from their reported data
the correspondence outlined in Tables 2 and 3. Note that
there is no manner clause for Swing descriptions available
to J/T speakers. We make certain assumptions based on the
common observation that symbolic gestures co-occur with
like-meaning language (McNeill, 1998). Thus, manner-
only and conflated (manner+trajectory) gestures accompany
manner language (the verb in English, the adverbial post-
clause in J/T), while trajectory-only and conflated gestures
accompany path language (the prepositional phrase in
English, the intransitive motion clause in J/T). The relative
frequency of the two possible gestures for the two respective
language segments of interest (path vs. manner language) is
the focus of our model.

 Table 2. Language and accompanying gestures during
Roll description observed and predicted by model.

 % Ss
observed Model

English
Language Gesture
Manner verb Conflated 66 51
Manner verb Manner only 13 18
Path phrase Conflated 53 68
Path phrase Trajectory

only 39 28

Japanese / Turkish
Language Gesture

Manner
clause Conflated 59 76

Manner
clause Manner only 40 16

Path clause Conflated 25 31
Path clause Trajectory

only 67 66

15

Table 3. Language and accompanying gestures during
Swing description observed and predicted by model.

 % Ss
observed Model

English
Language Gesture

Manner verb Conflated 88 93
Path phrase Conflated 81 88
Path phrase Trajectory

only 7 3

Japanese/Turkish
Language Gesture

[Manner
clause
position]

Conflated
75 88

Path clause Conflated 37 30
Path clause Trajectory

only 63 70

 The construction approach provides a useful framework
for understanding both planning and online production of
speech. In the present context, it offers an explanation of
how ongoing speech can be influenced by elements of the
speech plan that are executed before and after the currently
executed (spoken) element, an explanation that can be
extended to gesture. Specifically, we hypothesize that
spatial semantic components within the same construction
will have a greater influence on one another (via priming,
etc.) than those in separate constructions. Further, this
influence will be greater the lower the shared construction is
in the construction hierarchy, since spatial representations
are more concrete and less abstract lower in the hierarchy.
Thus, conflated gestures, representing both trajectory and
manner, are proportionally more common during the path
language in English than in J/T because the path language in
English shares the same construction as the manner
language, in contrast to J/T where manner language is in a
separate low-level construction. However, conflated
gestures do occur sometimes in J/T because the respective
clauses describing path and manner are contained within the
same higher-level construction.
 Similarly, clause structure can help to explain how an
executed gesture influences the selection of a subsequent
gesture. In English, the type of gesture selected to express
manner has a great influence on the subsequent gesture
selected to express path, whereas in J/T there is no apparent
influence of the selection of path-describing gesture on the
subsequent manner-describing gesture. This finding is
explained by the occurrence of the two gestures within a
single clause in English, but in separate clauses in J/T.

Model of Gesture and Language
 The models of gesture and language production were
developed within ACT-R (Anderson et al.,2004). ACT-R is
a hybrid symbolic/sub-symbolic production-based system.

ACT-R consists of a number of modules, buffers, and a
central pattern matcher. Since ACT-R is not well-suited to
represent structured representations, such as nested
linguistic constructions, we attempt to capture the retrieval
of spatial representations using ACT-R’s partial matching
capability. Specifically, the relative similarity of pairs of
related spatial representations is modulated to reflect their
proximity in the construction hierarchy, as is their capability
to prime one another.

To represent space, we have developed a version of ACT-
R, ACT-R/E, that utilizes a spatial theory called Specialized
Egocentrically Coordinated Spaces (SECS) (Harrison &
Schunn, 2003). SECS provides two egocentric spatial
modules, which are responsible for the encoding and
transformation of representations in service of navigation
(configural) and manipulation (manipulative). Our model
currently includes configural spatial representations.
 Non-default ACT-R parameter settings are listed in Table
4. Manner chunk similarity refers to the associative
similarity between the manner chunk in a language
construction and an imaginal or gestural spatial
representation. Similarly for path chunk similarity. Note
that similarities are greater in English than in J/T, reflecting
the increased priming by a linguistic construction lower in
the construction hierarchy compared to a higher-level
construction. Overall, for both language groups, there was a
higher rate of conflated gestures for the swing description
than for the roll description, possibly due to the smaller
number of gesture types available for swing (i.e., the
absence of a manner-only gesture). This may explain the
need for weaker manner chunk similarities for the Roll
models relative to the Swing models. The reduction of base
level learning rates in English relative to J/T reflects the
priming of later gesture selection by the previously-selected
gesture in English, unlike in J/T.

Table 4. Non-default ACT-R parameter settings.

Parameter English
swing

J/T
swing

English
roll

J/T
roll

Enable
partial
matching

true true true true

Activation
Noise

0.3 0.3 0.3 0.3

Retrieval
threshold

-6.0 -6.0 -6.0 -6.0

Base level
learning
rate

0.2 0.9 0.5 0.9

Manner
chunk
similarity

-0.1 -1.0 -0.9 -3.0

Path
chunk
similarity

-0.2 -1.0 -0.1 -1.0

16

In describing the Roll situation, the English-language
model first retrieves, and instantiates the semantics of, an
intransitive motion clause construction, based on the
observed event (see Table 1.) The instantiated construction
forms the plan for all further retrievals, gestures, and
utterances for the clause. First, the model retrieves and
utters the first clause argument, the THEME (e.g., “the cat).
Next it retrieves a manner verb corresponding to the MOVE
argument. The verb contains a spatial representation that
strongly primes a manner gesture representation, but the
clause construction itself carries path-following meaning
and so contains a spatial representation that weakly primes a
trajectory gesture representation—weakly, because the
clause construction is a higher-level construction than the
verb. Although the priming of a trajectory gesture is weaker
than that of a manner gesture in English, it is stronger than
the priming of the corresponding “non-matching” gestures
in J/T, because those gestures are primed by a still higher-
level construction. As a result, English speakers more often
retrieved both manner and trajectory gesture representations,
fusing them into a conflated gesture. However, when only
the manner gesture representation is retrieved, then a
manner-only gesture will be performed. The manner verb is
then uttered together with the selected gesture.

Next, path description language (spec. a prepositional
phrase) is retrieved based on the instantiated GOAL. Once
retrieved, this path phrase’s spatial trajectory representation
strongly primes a trajectory gesture. At the same time, the
construction’s MOVE representation weakly primes the
manner gesture, weakly because it is at a higher level than
the path language. Also, if the manner gesture was retrieved
and performed earlier with the verb, that earlier retrieval
makes an additional contribution to its activation, making it
more likely to be retrieved again; no such priming occurs in
J/T because the two successive gestures occur in separate
constructions. If the manner representation is retrieved
together with the trajectory representation, then the GOAL
utterance is accompanied by a conflated gesture. If only a
trajectory representation is retrieved, then it is accompanied
by a trajectory-only gesture.

The J/T models function in a similar manner to this
illustration, differing primarily in the nested structure of its
constructions.
 Given that individual variability is typically quite high for
gesturing, the predictions of our model are rather similar to
the observed pattern of behavior (Tables 2 and 3) and were
all within the 95% confidence interval. r2 was .63 for Roll
and .98 for Swing.

Discussion
 We have introduced the contrast between cognitive and
linguistic spatial symbolic gestures in hopes of resolving
apparently conflicting evidence in the literature. Cognitive
gestures help us to determine what to say in a spatially
complex domain, while linguistic gestures help us to
express what we have determined to say. Obviously these
two types of gesturing may be intermixed in a given

situation, but certain experimental situations clearly
encourage one type of gesturing over the other for a given
population.

With regard to linguistic gestures, we hypothesize that
gestures are generated on the basis of spatial components
within linguistic representations (Jackendoff, 2002). The
grammatical framework we adopt is that of constructions
(Goldberg, 1995) in which lexical items, clauses, and more
complex linguistic expressions may all be viewed as
constructions, i.e., semantic-syntactic pairings whose
semantic content, we hypothesize, includes abstract spatial
components. The spatial semantic content at all levels of
the construction hierarchy constitutes the basis for
gesturing.

From this viewpoint, linguistic gestures are largely
constrained by language generation. Specifically, perceptual
information is incorporated in gesture during the course of
instantiating linguistic structures. This obviates the need to
hypothesize a separate, independent source of perceptual
input into gesturing, together with the problems such a
hypothesis entails: of explaining that mechanism and,
especially, of explaining the selection of perceptual features
to represent gesturally. As the information conveyed in
gesture is largely limited to that conveyed in language, it
would appear inappropriate to posit an unconstrained source
of perceptual input into gesture production.

From our perspective, linguistic gesture and language are
intimately related. Our model is an explicit computational /
process account of McNeill’s proposal that gesture and
speech arise from a single process of utterance formation
(McNeil, 1992, p. 29-30).
 Although not addressed in this model, many factors
modulate the rate of gesturing, such as social stimulation
(Alibali et al., 2001), exposure to perceptual vs. verbal
information (Hostetter & Hopkins, 2002), etc. The idea of
an activation threshold governing the elicitation of
gesturing, proposed by Hostetter and Alibali (2008), may be
useful in explaining the expression of spatial representations
externally in gesture rather than internally in imagery.

Acknowledgments
This work was supported by the Office of Naval Research
under job order number N0001409WX20173. The views
and conclusions contained in this document should not be
interpreted as necessarily representing official policies,
either expressed or implied, of the U.S. Navy.

References
Alibali, M. W. (2005). Gesture in Spatial Cognition:

Expressing, Communicating, and Thinking About
Spatial Information. Spatial Cognition and
Computation, 5(4), 307–331.

Alibali, M. W., & Goldin-Meadow, S. (1993). Transitions in
learning: What the hands reveal about a child's state of
mind. Cognitive Psychology, 25, 468-523.

Alibali, M. W., Heath, D. C., & Myers, H. J. (2001). Effects
of visibility between speaker and listener on gesture

17

production: Some gestures are meant to be seen. Journal
of Memory and Language, 44, 169-188.

Anderson, J. R., Bothell, D., Byrne, M. D., Lebiere, C., &
Qin, Y. (2004). An integrated theory of the mind.
Psychological Review, 111(4), 1036-1060.

Avraamides, M. N., Loomis, J. M., Klatzky, R. L., &
Golledge, R. G. (2004). Functional Equivalence of
Spatial Representations Derived From Vision and
Language: Evidence From Allocentric Judgments.
Journal of Experimental Psychology: Learning,
Memory, and Cognition, 30(4), 801-814.

Beattie, G., & Coughlan, J. (1999). An experimental
investigation of the role of iconic gestures in lexical
access using the tip-of-the-tongue phenomenon. British
Journal of Psychology, 90, 35-56.

Beattie, G., & Shovelton, H. (1999). Do iconic hand
gestures really contribute anything to the semantic
information conveyed by speech? An experimental
investigation. . Semiotica, 123, 1-30.

Bernardis, P., & Caramelli, N. (2007). Semantic priming
between words and iconic gestures. In S. Vosniadou, D.
Kayser & A. Protopapas (Eds.), Proceedings of the
Second European Cognitive Science Conference (pp.
614-619). Delphi, Greece: Lawrence Erlbaum
Associates.

Bernardis, P., Salillas, E., & Caramelli, N. (2008).
Behavioural and neurophysio-logical evidence of
semantic interaction between iconic gestures and words.
Cognitive Neuropsychology, 25(7-9), 1114-1128.

Chu, M., & Kita, S. (2008). Spontaneous Gestures During
Mental Rotation Tasks: Insights Into the
Microdevelopment of the Motor Strategy. Journal of
Experimental Psychology: General 137 (4), 706–723.

de Ruiter, J. P. (1995). Why do people gesture at the
telephone? In M. Biemans & M. Woutersen (Eds.),
Proceedings of the Center for Language Studies:
Opening, Academic Year 95-96 (pp. 49-55). Nijmegen:
University of Nijmegen.

de Ruiter, J. P. (2007). Postcards from the mind: The
relationship between speech, imagistic gesture, and
thought. Gesture, 7(1), 21-38.

Goldberg, A. E. (1995). Constructions: A construction
grammar approach to argument structure. Chicago:
University of Chicago Press.

Harrison, A. M., & Schunn, C. D. (2003). ACT-R/S: Look
Ma, No "Cognitive-map"! Paper presented at the
International Conference on Cognitive Modeling.

Hostetter, A. B., & Alibali, M. W. (2008). Visible
embodiment: Gestures as simulated action. Psychonomic
Bulletin & Review, 15(3), 495-.

Hostetter, A. B., & Hopkins, W. D. (2002). The effect of
thought structure on the production of lexical
movements. Brain and Language 82, 22–29.

Jackendoff, R. (2002). Foundations of Language: Brain,
Meaning, Grammar, Evolution. Oxford: Oxford
University Press.

Kita, S., & Davies, T. S. (2009). Competing conceptual
representations trigger co-speech representational
gestures. Language and Cognitive Processes, 24(5),
761-775.

Kita, S., & Ozyurek, A. (2003). What does cross-linguistic
variation in semantic coordination of speech and gesture
reveal? Evidence for an interface representation of
spatial thinking and speaking. Journal of Memory and
Language, 48, 16-32.

Lozano, S. C., & Tversky, B. (2006). Communicative
gestures facilitate problem solving for both
communicators and recipients. Journal of Memory and
Language, 55, 47–63.

McNeill, D. (1992). Hand and mind: What gestures reveal
about thought. Chicago: University of Chicago Press.

McNeill, D. (1998). Models of Speaking (To Their
Amazement) Meet Speech-Synchronized Gestures. In D.
McNeill (Ed.), Language and gesture: window into
thought and action. Hillsdale, NJ: Lawrence Erlbaum
Assoc.

Melinger, A., & Kita, S. (2007). Conceptualisation load
triggers gesture production. Language and Cognitive
Processes, 22(4), 473-500.

So, W. C., Kita, S., & Goldin-Meadow, S. (2009). Using the
Hands to Identify Who Does What to Whom: Gesture
and Speech Go Hand-in-Hand. Cognitive Science, 33,
115-125.

Trafton, J. G., Trickett, S. B., Stitzlein, C. A., Saner, L.,
Schunn, C. D., & Kirschenbaum, S. S. (2006). The
relationship between spatial transformations and iconic
gestures. Spatial Cognition and Computation, 6(1), 1-29.

18

When to Switch? Understanding How Performance

Tradeoffs Shape Dual-Task Strategy

Duncan P. Brumby (Brumby@cs.ucl.ac.uk)

Nina del Rosario (Nina.Del@gmail.com)

Christian P. Janssen (C.Janssen@ucl.ac.uk)
UCL Interaction Centre

University College London

London WC1E 6BT UK

Abstract

A novel dual-task paradigm was used to investigate how

people adapt their task interleaving behavior to meet a

specific performance objective. The study required

participants to encode and enter a series of route instructions

from a secondary display while driving a simulated vehicle.

Explicit instructions were given to give greater priority to

either safe driving or rapid completion of the secondary

navigation task. Results showed that participants met the

required task objective by varying the frequency and duration

of visits to the secondary task display, and by also varying the

amount of time given up to steering control in between visits.

We explain these data using a framework for modeling driver

distraction effects. The model predicted the observed shift in

task performance between the two focus conditions and also

the observed change in task interleaving strategy. Taken

together these results support the idea that people can

strategically control the allocation of attention in multitask

settings to meet specific performance criteria.

Keywords: Multitasking, cognitive modeling.

Introduction

Consider for a moment a driver following a set of written

directions to reach an unfamiliar destination. As the driver

approaches a junction, they might want to consult their

directions, and in doing so must consider the risks of taking

their eyes off the road ahead. A safe driver, given the

opportunity, might pull over to study their directions, or if

this is not possible, they might choose to make many brief

glances to the instructions. A risky driver, on the other hand,

may choose to look away from the road for prolonged

periods to study the directions in detail. In this way, the

frequency and duration of attention shifts between tasks is

determined by the relative importance of each task, and also

a judgment of safe and acceptable behavior.

It is well known that in many multitasking situations, such

as the one sketched above, constraints on the human

cognitive architecture limit the extent to which tasks are

performed in parallel (Meyer & Kieras, 1997). How people

control the allocation of resources to multiple concurrent

tasks is a topic of considerable theoretical and practical

interest (e.g., Navon, & Gopher, 1979; Norman & Bobrow,

1975; Salvucci & Taatgen, 2008; Wickens, 2002).

One important application of multitasking theory has been

to understand driver distraction. Driving is a safety critical

task performed by millions of people on a daily basis, and

with the growing ubiquity of mobile and in-car devices there

are concerns about the deleterious effects of driver

distraction. In this area, many studies have investigated the

impact of cell phone dialing on driving performance.

Typical results show that drivers tend to dial chunks of

digits at a time, returning their attention to driving in

between each chunk (Brumby, Salvucci & Howes, 2009;

Salvucci, 2005). This pattern of task interleaving might

reflect the fact that the dialing task has a strong

representational structure that is difficult to disrupt, and this

could be used to guide decisions about when to switch

attention between tasks (Salvucci, 2005). But how might

people decide how to interleave tasks in situations where

there are no natural cues to guide this decision?

Salvucci and Taatgen’s (2008) threaded cognition theory

assumes that relatively complex multitasking behavior can

emerge from a simple bottom-up process without the need

for any explicit top-down control structures. The theory

assumes that the cognitive system processes task threads

using a least-recently-processed scheduling heuristic. While

this theory offers a parsimonious account of multitasking

behavior, it is not clear how this account allows the

cognitive system to make strategic decisions to favor one

task over another. Indeed, a large body of empirical work

demonstrated that people can make explicit decisions about

how to allocate attention to different tasks in multitask

settings by prioritizing performance on one task over

another (e.g., Brumby et al., 2009; Horrey et al., 2006;

Gopher et al., 1982; Gopher, 1993; Wang et al., 2007).

One possibility for how people might adapt their dual-task

strategy to meet a specific task objective is that they monitor

the amount of time that has elapsed since they last checked

on the more important task. Kushleyeva, Salvucci, and Lee

(2005) found that when participants were required to

monitor a safety-critical dynamic task, they adapted their

monitoring behavior to changes in the temporal demands of

the task. This suggests that the safer driver in the example

above might simply set a lower threshold for the amount of

time that they are prepared to take their eyes off the road,

and in doing so, will interleave attention between tasks more

frequently.

Another possibility is that people select strategies to meet a

desired dual-task performance tradeoff objective. Brumby,

Salvucci, and Howes (2009) have shown that in the case of

manually dialing a standard US telephone number while

driving, dialing three or four digits at a time is a particularly

efficient strategy because any more interleaving incurs

additional time costs without significant improvement in

lane keeping, and any less interleaving sacrifices safety. To

19

demonstrate this claim, Brumby et al. derived performance

predictions for a range of dual-task strategies using a

computational model. This approach of explicitly considering

the performance tradeoffs involved for choosing between

various dual-task allocation strategies is similar to that of

defining a Performance Operating Characteristic (Norman

& Bobrow, 1975; Navon & Gopher, 1979). The analysis by

Brumby et al. showed that one limitation of the dialing-

while-driving paradigm is that interleaving at the natural

subtask boundaries of this task often corresponds with the

most efficient dual-task interleaving strategy, in terms of

completing the secondary dialing task in a relatively safe

and timely manner.

In this paper, we investigate multitasking behavior using a

novel dual-task paradigm. The paradigm, developed by Del

Rosario (2009), requires participants to look at a secondary

display to encode and enter a series of route instructions while

driving a simulated vehicle. The benefit of this paradigm,

over the classic dialing-while-driving paradigm, is that it

does not have an external representational structure that can be

used to guide decisions about when to interleave. Thus,

participants are free to interleave the tasks how they like.

We use this paradigm to investigate how people adapt

their dual-task interleaving behavior to meet varying

performance objectives. In particular, we manipulate the

experimental instructions and feedback given to participants

to encourage either safe driving or rapid completion of the

secondary navigation task. We consider how this change in

task objective affects task performance and also the decision

about when to interleave attention between tasks. Finally, we

seek to apply Brumby, Salvucci, and Howes’ (2009) model of

how people interleave cell phone dialing and driving to this

novel dual-task paradigm. An important question is whether the

model will generalize to this new task setup, and if so, whether

it will predict how people choose to interleave in each

condition.

Experiment

Method

Participants. Sixteen participants (five female) took part in

the study. Participants were unpaid volunteers, aged

between 21- and 42-years (M=28.3 years). All had a valid

driver’s license and at least two years of driving experience.

Materials. The experiment used a dual-task setup in which

participants had to complete a secondary navigation task

while driving a simulated vehicle. Figure 1 shows how the

two task displays were arranged.

For the driving task, participants were required to

navigate the center lane of a three-way highway

environment. The simulation environment was displayed on

a 30-inch monitor and controlled by a Logitech G25 Racing

Wheel. Participants were only required to steer the vehicle

to maintain a central lane position. The vehicle’s speed was

held at a constant 55 miles/h (88.5 km/h). To reinforce safe

lane keeping, safety cones were placed at either side of the

Figure 1. A schematic representation of how the driving

and navigation displays were arranged.

driver’s central lane. Noise was added to the vehicle

dynamics, causing the vehicle to gradually drift about in the

lane. This meant that the participant had to actively control

and monitor the vehicle’s lateral position and heading to

maintain a central lane position.

For the navigation task, participants had to look at and

enter a sequence of ten directions (lefts or rights). The to-be-

entered sequence was randomly generated with the

constraint that five left and five right directions were

included and that there were no more than three consecutive

repeating directions. The sequence of commands was

represented either graphically (<=) or textually (“Left”), and

was presented as a single vertical list on a 17-inch monitor

positioned to the left of the participant (see, Figure 1).

The experiment was designed so that participants would

be forced to sequentially interleave their attention between

the two tasks. This was achieved by allowing only one of

the task displays to be visible at any one time. By default

the driving display was visible and the navigator display

was blanked out. Participants activated the navigator display

by moving their left hand from the steering wheel and using

it to hold down the space bar on the keyboard in front of the

navigator display. While the space bar was depressed the

navigator display was presented and the driving display was

blanked out. This meant that participants could not monitor

the vehicle’s position in the lane while encoding instructions

for the navigation task. After viewing the instructions on the

navigator display, participants had to return their hand to the

steering wheel to use the left and a right paddle controls

positioned under the steering wheel to enter the route

instructions from memory.

Entry errors on the navigation task were associated with a

time cost. If an input error occurred (e.g., a left paddle

action was performed when a right action was required), the

trial was terminated and the participant was instructed that

they had to repeat the trial with a new list of instructions.

Design. A 2x2x2 (task-focus x representation x visual cue)

mixed design was used, where task-focus was the between-

subjects factor. To manipulate task priority, participants

were instructed to either focus on completing the secondary

navigation task as quickly as possible (the navigation-focus

condition) or to focus on keeping the car as close as possible

to lane center (the steering-focus condition).

20

Features of the secondary navigation task were

manipulated as within-subjects factors. The route

instructions were presented in a graphical or a textual

format. In addition, a salient visual cue, indicating the

current position in the list, was either present or absent.

The main dependent variables of interest were the time taken

to complete the secondary navigation task and the impact that

completing this task had on driving performance. The driving

simulator logged the lateral distance of the vehicle from the

center of the lane at a rate of 200 Hz. Driving performance

was indexed by calculating the root mean square error

(RMSE) of these lateral deviation samples over the period

of time that the participant was working on the secondary

navigation task. In addition, we were also interested in how

participants chose to interleave the two tasks. To index task

interleaving we consider the number and duration of each

secondary task visit, as well as the time in between two visits.

Procedure. Participants were randomly assigned to one of

the focus conditions, with the exception that effort was made to

balance gender across conditions. Participants were given an

opportunity to practice both the navigation and driving task

separately. Once familiar with each task, participants

completed four blocks of dual-task trials, one for each of the

route representation and visual cue conditions. Trials were

grouped by condition, and the order was counter-balanced

across participants. For each block, participants were

required to complete 10 error-free trials, up to a maximum

of 15 trials per block. This dissuaded participants from

making errors on the secondary navigation task.

Experimental instructions were given to encourage

participants to prioritize either safe driving (steering-focus)

or rapid completion of the navigation task (navigation-

focus). To reinforce these instructions participants received

feedback at the completion of every trial on their performance

on the relevant variable. Specifically, participants in the

steering-focus condition received feedback about the vehicle’s

RMSE lateral deviation, while participants in the navigation-

focus condition received feedback on total trial time.

Results and Discussion

Due to space limitations we do not report data on how task

performance was affected by manipulating features of the

navigation task (see, Del Rosario, 2009, for details). Instead,

we focus our analysis on how varying the instructions given

to participants to prioritize one task over the other affected

performance and decisions of how to interleave tasks. The

primary dependent measures of interest were the time taken

to complete the secondary navigation task and the lateral

deviation of the vehicle from the center of the lane. We

consider four separate measures to index task interleaving

strategy: the number of visits to the navigator display per

trial, the average duration of each visit, the number of

navigation task items entered following each visit, and the

average time between visits.

Figure 2 shows task time for the navigation task plotted

against average RMSE lateral deviation for the driving task.

There is a clear effect of task objective on how participants

Figure 2. Data plot showing task time and RMSE lateral

deviation across for varying task objectives. Error bars on

human data points represent 95% confidence intervals.

Model data points show performance predictions for

different task interleaving strategies.

traded performance between the two tasks, in that,

participants that were instructed to prioritize the navigation

task completed it relatively quickly (M=13.76s, SD=2.31s),

but in doing so had poor lateral control of the vehicle

(M=1.07m, SD=0.41m). Conversely, participants that were

instructed to prioritize safe driving completed the navigation

task relatively slowly (M=27.30s, SD=5.57s) but were better

able to maintain lateral control of the vehicle (M=0.48m,

SD=0.10m). A 2x2x2 mixed factorial ANOVA found a

significant effect of task objective on task time,

F(1,14)=40.26, p<.001, MSE=72.76, and RMSE lateral

deviation, F(1,14)=15.87, p<.001, MSE=.35.

We were also interested in participants’ interleaving

strategy, which was indexed by considering when

participants choose to access the navigation task display.

The data presented in Figure 3 show that the reason why

participants in the steering-focus condition were better able

to maintain lateral control of the vehicle than participants in

the navigation-focus condition was because they made more

visits to the navigation display (4.5 visits vs. 3.3 visits),

F(1,14)=3.67, p=.07, MSE=6.49, entered fewer items

following each visit (2.4 items vs. 3.4 items), F(1,14)=5.19,

p=.04, MSE=3.23, and gave up more time to steering control

between visits to the secondary display (5.34s vs. 2.57s),

F(1,14)=21.05, p<.001, MSE=6.25.

The results of the study show that participants in the

steering-focus condition interleaved more frequently and

21

spent more time in between glances to the secondary display

stabilizing the vehicle than participants in the navigation-

focus condition. However, it is not immediately clear why

participants adapted their strategy in the way that they did.

Changing the task priority lead to only a single extra item,

on average, being encoded and entered following each visit

to the secondary display. In contrast, participants spent

nearly twice as long in between visits to the navigation

display in the steering-focus condition. But why did

participants opt to spend more time between visits rather

than interleave much more frequently? To explain the

observed pattern of task interleaving we apply a modeling

framework developed to explain behavior in a dialing-

while-driving paradigm (Brumby et al., 2007, 2009).

Model

Our modeling approach focuses on deriving performance

predictions for various strategies for completing the

navigation task while driving. The model represents basic

task operators (i.e., encoding a single instruction from the

navigation display, or performing a steering control update)

as discrete processing units that are limited by a serial

bottleneck. Within this framework, we systematically

consider every possible dual-task strategy that could have

been adopted. Specifically, given that the navigation task

required participants to enter 10 route instructions, we can

consider at least 2
9

= 512 different task interleaving

strategies (i.e., where strategies differ in terms of whether

after encoding an item, another item is encoded or attention

is returned to driving). For each of these strategies we also

consider varying the amount of time that is given up to

steering control in between visits to the secondary display.

We assume that glancing at the navigation display

interferes with steering control. We estimate core

parameters for the navigation task directly from the data.

With these parameters fixed, we derive performance

predictions for various dual-task interleaving strategies

using a pre-existing model of steering control processes. For

each strategy we derive predictions for critical performance

metrics, namely, task time and lane keeping performance.

The aim of this analysis is to explain the observed shift in

dual-task performance between conditions, and also the

precise change in low-level task interleaving behavior.

Navigation task. The navigation task is modeled at the

granularity of the time taken to encode and enter route

instructions. We estimate the time taken to perform these

basic activities from the empirical data. Specifically, we

estimate the time taken to:

• Shift attention from one task to the other

• Encode an item from the navigation display

• Input an instruction using the paddles

The time to switch attention from the secondary display to

the driving task can be approximated by considering the

average time between the release of the space bar (signaling

the end of a visit) and the first paddle action being

performed after the visit. Analysis shows that the average

time between these events was approximately 1 second. A

limitation of this measure as index of the cost of switching

attention between tasks is that it assumes that the participant

immediately commenced entering the instructions prior to

returning their hand to the steering wheel.

We can approximate the time needed to encode a single

route instruction by assuming that the number of items

entered after a visit corresponds to the number of items that

were encoded during that visit. Taking the average visit

duration, we can calculate the average encoding rate to be

approximately 500ms per item (i.e., in the navigation-focus

condition, visits were on average 1.67s long and 3.4 items

were entered after each visit). This assumes that participants

never encoded items that were later forgotten or simply not

entered. We shall revisit the implications of this assumption

in the general discussion.

Finally, to estimate the time taken to input an instruction

using the paddle, we consider the average time between two

consecutive paddle entries. This yields an average time

interval of 250ms between each paddle event. We assume

that participants were able to perform steering updates while

using the paddle to enter the route instructions, and that all

instructions were entered before the next visit occurred.

With these basic parameters set we can consider how this

task might have interfered with driving performance.

Driving task. We use a simple mathematical model, taken

from Brumby, Salvucci, and Howes (2009), which describes

how people tend to adjust the heading of a vehicle based on

its position in the lane. The model captures the basic idea

that as the vehicle strays closer to the lane boundary, drivers

react by making sharper corrective steering movements,

which in turn, increase the lateral velocity of the vehicle,

returning it to a central lane position more rapidly. The

model assumes that discrete steering control updates are

performed once every 250ms, which adjust the lateral

velocity of the vehicle as follows:

Velocity = 0.2617 x LD
2
 + 0.0233 x LD - 0.022 (1)

where, LD represents lateral deviation from lane center, and

there is an upper bound on velocity of 1.7m/s. In between

steering updates, external factors can influence the vehicle’s

heading. To model this, we permute the vehicle’s heading

every 50 milliseconds with a value drawn from a Gaussian

distribution with a mean of zero and a standard deviation of

0.09. Next we describe how this model is used to derive

predictions of changes in a simulated vehicle’s lateral

deviation over time given discrete periods of driver attention

and inattention.

For each of the 512 different strategies, we consider

alternatives that give more or less time up to steering control

in between visits to the navigation display. Specifically, we

consider steering periods of between 250ms and 5000ms, at

intervals of 250ms. This combined with the number of basic

task interleaving strategies considered yields a fairly large

set of 6,644 alternatives. For each, 50 simulations were run

and performance averaged.

22

Figure 3. Data and model predictions for various navigation task measures. Bar charts show human data, with error bars

representing standard errors of the mean. Circular data points represent model predictions for each priority condition. The

values are the means for model alternatives that fall within the Confidence Interval in Figure 2 (see text for details).

Model Results

Figure 2 shows the predicted RMSE lateral deviation and

task time for each of the 6,644 strategies that were evaluated

along with the human data for each priority condition. The

model predicts a clear dual-task performance tradeoff

between strategies that complete the navigation task quickly

and have relatively poor lane keeping performance, and

those that complete the navigation task more slowly giving

relatively better driving performance.

The shape of the tradeoff curve predicted by the model is

noteworthy. There is a clear tipping point where

improvements in lane keeping performance become smaller

with increased task time. The human data for the steering-

focus condition lie at this tipping point in the tradeoff curve,

suggesting that participant adapted their strategy to meet the

performance objective of minimizing lateral deviation while

completing the secondary task in a reasonable amount of

time (note that time is represented on a logarithmic scale).

In contrast, data from the navigation-focus condition lie at

close to the leftmost extreme of the strategy space, where

faster performance is associated with poor lane keeping.

Figure 2 shows that there are many different strategies

that fall within the predicted performance bounds of the

human data for each condition. To get a better sense of how

this performance tradeoff was achieved, we consider how

these strategies allocated attention between the tasks.

Specifically, we consider for each condition the subset of

strategies that fall within the 95% confidence interval (CI)

of the human data for each condition.

For the navigation-focus condition there were 34

strategies that fell within the CIs of the human data, while

for the steering-focus condition there were 307 strategies

that fell within the CIs of the human data. For each of these

best-fitting strategies we define the same four measures of

task interleaving behavior used in the analysis of the human

data (i.e., the number of visits to the navigator display per

trial, the average duration of each visit, the number of

navigation task items entered following each visit, and the

average time between visits). For each measure, we

calculate the mean across the subset of best fitting strategies

for each condition. In doing so, we get a better sense of how

the best fitting strategies for each condition differed, and

can compare these indexes of behavior to the human data.

Figure 3 shows these mean model predictions along with

the corresponding human data for each condition. The fit of

the model to these low-level task interleaving measures is

remarkable, in that the model explains why participants in

the steering-focus condition would have chosen to double

the time between visits and encode one extra item per visit

in order to reach the tipping point in the tradeoff curve.

23

General Discussion

A novel dual-task paradigm was used to investigate how

people adapt their behavior to meet a specific performance

objective. In the study, participants were required to encode

and enter a series of route instructions while driving a

simulated vehicle. Explicit instructions were given to

participants to give greater priority to either safe driving or

rapid completion of the navigation task. Results showed that

participants met the required task objective by varying the

number and duration of visits to the navigation display, and

by also varying the amount of time given up to steering

control between visits. These findings support the idea that

people can strategically allocate attention in multitask

settings (e.g., Brumby et al., 2009; Horrey et al., 2006;

Gopher et al, 1982; Gopher, 1993; Wang et al., 2007).

We explain participants’ decisions about how to allocate

attention using an existing framework for modeling driver

distraction effects (Brumby et al., 2007, 2009). The model

represents basic task operators as discrete processing units

that are limited by a serial bottleneck. To apply the model to

this new dual-task context, a handful of parameters for the

navigation task had to be estimated from the data (i.e., the

time taken to encode a single instruction from the navigation

display, shift attention back to road, and enter that

instruction). With these basic timing estimates fixed, we

model the effects of various allocation policies for attending

to the secondary navigation display for critical task

performance metrics.

The modeling results help explain the observed shift in

task performance between the two focus conditions. The

model predicts a classic dual-task performance tradeoff

between safer driving and shorter task time. Interestingly,

the tradeoff curve has a clear tipping point, after which

improvements in lane keeping performance become

relatively small with increased time investment. Human

performance data from the steering-focus condition lie close

to this tipping point, and remarkably the modeled strategies

in this region of the strategy space corresponded with those

adopted by participants.

However, the model did not explain data from the

navigation-focus condition as well. Specifically, it under-

predicted the number of visits made to the secondary display

and over-predicted the number of items entered after each

visit (see, Figure 3). The likely explanation for this

departure is that the model assumes a perfect and limitless

memory, which could enter all ten of the route instructions

after a single visit. This is clearly an implausible assumption

given the known limits on memory. This aspect of the

model could be informed by considering how many items

participants would copy over in a single-task setting.

Alternatively, we could build on existing work that has

modeled memory retrieval processes in similar tasks. For

instance, Gray et al.'s (2006) work on modeling the impact

of memory constraints in the Blocks World paradigm.

Moreover, because of space limits we could not present

an analysis of how features of the navigation task affected

performance. Del Rosario (2009) reports that participants

could encode textual information faster than graphical

information. Future work should point out how the model

might explain any shift in strategy based upon changes in

time take to encode an item from the display.

In summary, we have used a novel dual-task paradigm to

demonstrate that people can strategically allocate attention

in multitask settings. A model was used to explain why

particular strategies might have been favored in terms of the

shape of the performance tradeoff between safer driving and

shorter task time.

Acknowledgments

This work was supported by EPSRC grant EP/G043507/1. The

study reported here was undertaken as part of the second

author’s Master’s dissertation work. We thank Dario Salvucci

for providing the code for the driving simulator used here. We

are grateful to three anonymous reviewers for their valuable

comments on this work.

References

Brumby, D.P., Howes, A., & Salvucci, D.D. (2007). A cognitive

constraint model of dual-task trade-offs in a highly dynamic driving

task. In Proc. SIGCHI Conference on Human Factors in Computing

Systems, CHI’07 (pp. 233-242). New York, NY: ACM Press.

Brumby, D.P., Salvucci, D.D., & Howes, A. (2009). Focus on driving:

How cognitive constraints shape the adaptation of strategy when

dialing while driving. In Proc. SIGCHI Conference on Human

Factors in Computing Systems, CHI’09 (pp. 1629-1638). New

York, NY: ACM Press.

Del Rosario, N. (2009). Reasons to Switch: The Effects of Priority and

Information Presentation on Dual-Task Interleaving Strategies.

Master’s dissertation, University College London, London, UK.

Gopher, D., Brickner, M., & Navon, D. (1982). Different difficulty

manipulations interact differently with task emphasis: Evidence for

multiple resources. Journal of Experimental Psychology: Human,

Perception, & Performance, 8, 146–157.

Gopher, D. (1993). The skill of attention control: Acquisition and

execution of attention strategies. In D.E. Meyer & S. Kornblum

(Eds.), Attention and Performance XIV: Synergies in Experimental

Psychology, Artificial Intelligence, and Cognitive Neuroscience (pp.

299–322). Cambridge: MA: MIT Press.

Gray, W.D., Sims, C.R., Fu, W.-T., & Schoelles, M.J. (2006). The soft

constraints hypothesis: A rational analysis approach to resource

allocation for interactive behavior. Psychological Review, 113, 461-

482.

Horrey, W.J., Wickens, C.D., & Consalus, K.P. (2006). Modeling

drivers' visual attention allocation while interacting with in-vehicle

technologies. Journal of Experimental Psychology: Applied, 12, 67-

78.

Navon, D., & Gopher, D. (1979). On the economy of the human-

processing system. Psychological Review, 86, 214-255.

Norman, D.A., & Bobrow, D.G. (1975). On data-limited and resource-

limited processes. Cognitive Psychology, 7, 44-64.

Salvucci, D.D. (2005). A multitasking general executive for compound

continuous tasks. Cognitive Science, 29, 457-492.

Salvucci, D.D., & Taatgen, N.A. (2008). Threaded cognition: An

integrated theory of concurrent multitasking. Psychological Review,

115, 101-130.

Wickens, C. D. (2002). Multiple resources and performance

prediction. Theoretical Issues in Ergonomics Science, 3, 159-177.

Wang, D.D., Proctor, R.W., & Pick, D.F. (2007). Acquisition and

transfer of attention allocation strategies in a multiple-task world

environment. Human Factors, 49, 995–1004.

24

Nomination and Prioritization of Goals in a Cognitive Architecture
Dongkyu Choi

Department of Aeronautics and Astronautics
Stanford University, Stanford, CA 94305

dongkyuc@stanford.edu

Abstract

Goals play an important role in human cognition. Dif-
ferent aspects of human mind influence the generation
of goals they pursue, and the goals guide their behav-
ior. In psychology, researchers made significant efforts
to study goals and their origin, and cognitive architec-
tures include various facilities to handle goals of arti-
ficial agents. One such architecture, ICARUS, supports
goal-driven behaviors while maintaining reactivity, and
the top-level goals play an important role by guiding the
behavior of ICARUS agents. However, the architecture
does not cover the origin of its goals or the management
of them, and this imposes restrictions like limited auton-
omy in ICARUS. In this paper, we extend the architec-
ture to provide the capability to manage top-level goals
using the notion of long-term, general goals. We show
some illustrative examples in an urban driving domain,
and discuss related and future work in this direction.

Introduction and Motivation
Goals play an important role in human cognition. People have
ideas on what they want to do or what they should do, and
these give rise to many different goals. Such goals, in turn,
guide people’s behavior by restricting the space of possible
actions to take. Traditionally, psychologists put significant
efforts on the study of this process (Simon, 1967; Sloman,
1987; Gray & Braver, 2002 to name a few). As computational
frameworks for models of cognition, most cognitive archi-
tectures (Newell, 1990), too, have some supports for goals.
At the very least, these architectures allow the specification
of goals or subgoals that guide the artificial agent’s behav-
ior. But some architectures provide more, including nomina-
tion and prioritization of goals. For instance, CLARION (Sun,
2007) has drive and goal mechanisms that correspond to psy-
chological accounts of goal nomination. In Soar (Laird et al.,
1986), the top-level operators can act as reactive goals and
there are rules that govern their nomination as goals.

Another cognitive architecture, ICARUS (Langley & Choi,
2006), operates in a goal-directed fashion, and uses multiple
top-level goals. However, the architecture lacks any mech-
anism to add, delete, or reorder such goals, limiting its ca-
pabilities significantly. In this paper, we present the ICARUS
architecture with a new goal management mechanism that is
reactive to the environment. We extended the existing archi-
tectural distinction between long-term knowledge and short-
term structures to goals by introducing general goal descrip-
tions associated with their own relevance conditions. The sys-
tem instantiates these goals with respect to the current situa-
tion of the world and nominates them as its own top-level
goals to guide its behavior. The extended architecture also
has a new ability to prioritize its nominated top-level goals

by modulating their priority values with continuous degrees
of match for the relevance conditions.

In the subsequent sections, we briefly review the ICARUS
architecture and explain the extension for nomination and pri-
oritization of goals in detail. Then we provide some illus-
trative examples in an urban driving domain. After that, we
conclude after a discussion on related and future work.

Review of the ICARUS Architecture
ICARUS shares its basic features with other cognitive archi-
tectures like Soar (Laird et al., 1986) and ACT-R (Anderson,
1993). It makes commitments to its representation of knowl-
edge, memory structures, and mechanisms for inference, ex-
ecution, and learning. The system provides a computational
framework for intelligent agents, which stays constant across
different domains. In this section, we review the basic ca-
pabilities of the architecture before we continue our discus-
sion on nomination and prioritization of goals. We start
with ICARUS’ representation of knowledge and memories
that support this, and then cover the architecture’s inference
and execution processes. Throughout this section, we show
examples from an urban driving domain, which we also use
for demonstration purposes in a later section.

Representation and Memories
The ICARUS architecture distinguishes conceptual and pro-
cedural knowledge. Its concepts describe various aspects of
the environment, whereas its skills define procedures that are
known to achieve corresponding concepts when executed un-
til completion. ICARUS also distinguishes long-term knowl-
edge and short-term structures. Long-term knowledge in-
cludes general descriptions of the environment and proce-
dures. The architecture instantiates them and gets short-term
structures relevant to the current situation.

The distinctions along these two directions result in four
main memories in ICARUS. Its long-term conceptual mem-
ory stores general definitions of concepts that use variablized
objects and their attributes to describe situations. A long-
term skill memory houses variablized skills that define gen-
eral procedures to achieve certain concepts, namely their
goals. When the system instantiates these general concepts
and skills, it deposits them in the corresponding short-term
memories. A short-term conceptual memory stores instanti-
ated concepts, which the system believes to be true in the cur-
rent situation. A short-term skill memory holds instantiated
skills, along with their corresponding goals. For this reason,
we often call the short-term memories as the belief memory
and the goal memory, respectively.

25

Table 1 shows some sample concepts in an urban driving
domain. The first two concepts are primitive, and they in-
clude only perceptual matching conditions that ground on ob-
ject information from the environment in the :percepts
and :tests fields. On the other hand, the last concept
is non-primitive, since it refers to other concepts in the
:relations field. This hierarchical organization of con-
cepts allows multiple levels of abstraction, and facilitates the
description of complex situations in the world. Meanwhile,
Table 2 provides some examples of skills in this domain. In
a similar fashion to their conceptual counterparts, there are
primitive and non-primitive skills. The first skill shown is
primitive, and it consists of perceptual matching conditions,
preconditions, and a direct reference to an immediate action
in the world. The other two skills, however, are non-primitive,
and they provide subgoal decompositions instead of refer-
ences to actions. In the next section, we cover ICARUS’ pro-
cesses that work over these knowledge structures stored in its
memories.

Table 1: Some sample ICARUS concepts for the urban driving
domain.

((yellow-line ?line)
:percepts ((lane-line ?line color YELLOW)))

((at-turning-speed ?self)
:percepts ((self ?self speed ?speed))
:tests ((>= ?speed 15)

(<= ?speed 20)))

((ready-for-right-turn ?self)
:relations ((in-rightmost-lane ?self ?l1 ?l2)

(at-turning-speed ?self)))

Table 2: Some sample ICARUS skills for the urban driving
domain.

((in-intersection-for-rt ?self ?int ?c ?tg)
:percepts ((self ?self)

(street ?c)
(street ?tg)
(intersection ?int))

:start ((on-street ?self ?c)
(ready-for-right-turn ?self))

:actions ((*cruise)))

((on-street ?self ?tg)
:percepts ((self ?self)

(street ?st)
(street ?tg)
(intersection ?int))

:start ((intersection-ahead ?self ?int ?tg))
:subgoals ((ready-for-right-turn ?self)

(in-intersection-for-rt ?self ?int ?st ?tg)
(on-street ?self ?tg)))

((ready-for-right-turn ?self)
:percepts ((self ?self))
:subgoals ((in-rightmost-lane ?self ?l1 ?l2)

(at-turning-speed ?self)))

Inference and Execution
The ICARUS architecture operates in distinct cycles. On each
cycle, the system invokes a series of processes including the
inference of the current belief state and the execution of skill
paths relevant to the situation. ICARUS receives sensory data
from the environment at the beginning of each cycle. Based
on the perceptual information, the system infers its belief

state, namely, all the concept instances that are true in the
current state. It starts with primitive concepts at the low-
est level and moves up the hierarchy to non-primitive ones.
ICARUS performs this process on every cycle, and therefore,
any naive approach to the belief inference is susceptible to
the combinatorial effect found in domains with many objects.
In response, there have been several efforts to alleviate this
problem including Asgharbeygi et al. (2005).

When the system finishes inferring its belief state, it at-
tempts to execute its skills accordingly. ICARUS retrieves
skills that are relevant to its top-level goals, and finds one or
more executable paths through the hierarchy that start from
these skills. A skill path is executable when all the skill in-
stances on it are executable, from top to bottom. Although
a path might include a single primitive skill that achieves an
ICARUS agent’s top-level goal, a skill path usually starts with
a non-primitive skill for a top-level goal and continues down
several levels until it reaches a primitive skill at the bottom.
The primitive skill includes some actions the system needs to
perform in the environment. The ICARUS architecture takes
these actions and applies them to make changes in its sur-
roundings. Then the system repeats the processes based on
the updated sensory data. In the following section, we con-
tinue our discussion on the architecture in the context of the
new extension.

Reactive Goal Management
As seen in the previous section, the ICARUS architecture has
a goal memory that stores information on its top-level goals
and subgoals along with their corresponding skill instances.
Most contents of the memory are very specific and short-
lived, and they change as the agent moves along its path to-
ward achieving its goals. But the top-level goals themselves
did not change in this memory. It was as if a godly entity gave
the agent a set of goals it should always pursue, which does
not change over time.

This, however, is not very reasonable. When people are
pursuing some goals of their own, they do get distracted from
the environment, and sometimes more urgent matters come
up and they should deal with them first. To support this kind
of behavior, the top-level goals change dynamically in the ex-
tended architecture, rather than staying constant throughout
the course of execution. The system has a new goal nomi-
nation process that generates top-level goals for its agent on
each cycle. The nominated goals from this process are based
on the generalized descriptions stored in a new long-term goal
memory. In this new memory, we can program both general
and domain-specific rules for the nomination of goals. These
rules collectively represent a basic form of motivational struc-
ture in ICARUS.

Once the architecture finishes nominating goals that are
relevant to the current situation, it prioritizes them before start
executing for the goals. The programmer assigns a default
priority value to each general goal, and ICARUS modulates
this value based on a continuous measure for relevancy of the

26

goal. The architecture computes the degree of match for the
relevance conditions of a goal whenever possible, and uses
this continuous matching value during the goal prioritization
process. This continuous degree of match represents the de-
gree of relevance for the goal in the current situation, and any-
thing less than the complete relevance will reduce the priority
value accordingly. In the subsequent sections, we explain the
new representation and processes in detail.

Representation
Perhaps the best way to describe the new representation is
through examples. Table 3 shows some sample goals stored
in the long-term goal memory. Each element takes the form
of a <conditions, goal> pair that specifies the generalized
goal and the conditions under which it is relevant. The rele-
vance conditions stored in :nominate fields are templates
for concepts that the system can match against its beliefs,
and the goals are concepts that use some common variables
that appear in the relevance conditions. The relation between
this long-term goal memory and the existing short-term goal
memory is similar to those between long-term concept and
skill memories and their respective counterparts. This is a
feature that has an architectural significance, which shows the
unified nature of ICARUS.

Table 3: Some sample <relevance conditions, generalized
goal> pairs stored in ICARUS’ long-term goal memory.

((stopped-and-clear ME ?ped)
:nominate ((pedestrian-ahead ME ?ped))
:priority 10)

((clear ME ?car)
:nominate ((vehicle-ahead ME ?car))
:priority 5)

((cruising-in-lane ME ?line1 ?line2)
:nominate nil
:priority 1)

The elements of ICARUS’ long-term goal memory also
have priority values associated with them, which represent
the relative importance of the goals compared to others in the
memory. Users predefine the goals and their associated pri-
ority values, providing a default prioritization measure. This
corresponds to the general idea people seem to have on what
is more important and what is less so. For instance, most
people agree that saving one’s life has priority over saving
his or her possessions. Many people will also save a child
before saving an adult if caught in an accident. There are
many examples like these, and we consider the default priori-
ties assigned to generalized goals in ICARUS’ long-term goal
memory as representing this behavior. Next, we continue our
discussion on the new processes that use this memory.

Nomination Process
When the ICARUS architecture finds a match for any rele-
vance condition stored in its long-term goal memory, it in-
stantiates the corresponding goal accordingly. The system

then stores the instantiated goal in its short-term goal mem-
ory. When this nomination process is complete, the system
has a series of top-level goals, which guide the behavior dur-
ing the particular cycle.

The nomination process starts after the architecture infers
its belief state based on the perceptual information from the
environment. The system goes through each <relevance con-
dition, generalized goal> pair stored in the long-term goal
memory, and makes attempts to match the relevance condi-
tions against the current state. Whenever its attempt is suc-
cessful, ICARUS instantiates the corresponding goal with the
variable bindings it has found from the match. This also
means that the retraction of goals happens without any ad-
ditional mechanisms. If a currently nominated goal loses its
relevance in the subsequent cycles, the system no longer nom-
inates the goal, effectively retracting it from the short-term
goal memory. During this retraction, however, ICARUS stores
some information on the previous nomination, and uses it at
a later time if the same goal instance is nominated again.

Figure 1 shows a simple situation that involves the nomi-
nation and retraction of a goal. Initially, there is nothing in
front of the agent’s car (shown as a green box) moving up-
wards in the figure. Therefore, it has a single goal to get to its
target location. Then a pedestrian, ped1 (shown as a yellow
smily face), suddenly starts to jaywalk the street in front of the
agent’s car and this causes a concept instance, (pedestrian-
ahead me ped1), to match in the state. In response, the sys-
tem generates the corresponding goal, (stopped me), and now
it has two goals as shown in the second column. When the
pedestrian moves away, the relevance condition disappears
and the goal is retracted. The agent has a single goal again,
as shown in the last column.

Goal: 
 (at‐loca+on ME TARGET) 

Goals: 
 (stopped ME)  
 (at‐loca+on ME TARGET) 

Goal: 
 (at‐loca+on ME TARGET) 

Figure 1: An example of goal nomination process in an urban
driving domain.

Prioritization Process
Once ICARUS completes the nomination process, it attempts
to reorder the currently nominated goals to prioritize them
under the given circumstances. Since all the top-level goals
have default priority values associated with them and ICARUS
orders the goals according to these values, we need a mecha-
nism to modulate these fixed values based on the current situ-
ation of the world. This modulation will then give goals with
lower default priorities a chance to overtake higher-priority

27

ones. Our approach uses the continuous matching of con-
cepts, more specifically, the relevance conditions associated
with each goal.

As shown in the previous section, ICARUS’ concepts in-
clude perceptual matching conditions. Especially, some
primitive concepts have numeric tests in their bodies that of-
ten involve continuous variables. We take such variables as
the source of continuous matching. For example, consider a
concept that includes a numeric test on a variable, ?var, as in
0 <?var < 10. ICARUS normally checks if the value of the
variable is within the specified range, and returns true (1) if it
is larger than 0 and smaller than 10, but returns false (0) other-
wise. But if we make the boundaries of the tests smoother as
shown in Figure 2, we can get some partial matches between
0 and 1 when the variable falls right outside of the specified
region.

a  b 
vp 

test region 

regions of par/al match 

a  b 
vp 

test region 

regions of par/al match 

0  0 

1  1 

DM  DM 

Figure 2: Curves applied to the boundaries of numeric tests
for continuous matching.

When the relevance conditions associated with ICARUS’
goals include a primitive concept, we can get the degree of
match between zero and one using this mechanism. This
value will then represent how relevant the associated goal is,
and we can use it to modulate the default priority value of the
goal. In this manner, a very relevant goal with a low default
priority can overtake a barely relevant goal with a high de-
fault priority. We believe this explains people’s behavior in
extreme conditions like when people are extremely hungry or
thirsty. In such cases, people will probably drink fluids with
a bad smell that they would normally reject.

Illustrative Examples
With the extensions described so far, we believe the ICARUS
architecture provides a reasonable account of goal manage-
ment. Testing this hypothesis, however, is not of the standard
affair. As is often the case in the evaluation of cognitive archi-
tectures, capabilities like the goal management are innately at
a very high-level. We want to show performance improve-
ments we can get from the extended system over the previous
one, but doing so using several quantitative measures is not
immediately possible in this case, and those results will not
be quite representative either. Instead, we can demonstrate
the qualitative behavior of the extended system and confirm
that it is far more aligned with our intuition about human cog-
nition than the previous system. Cassimatis et al. (2008) sug-
gested that models of higher-order cognition should be eval-
uated in three aspects: their ability compared to humans, the

breadth of situations they cover, and the parsimony of their
mechanisms.

In this section, we challenge the original and the extended
systems with two scenarios. By comparing the two systems,
we show the advantages of the goal management in various
aspects like programmability and human-like behavior. Of-
ten the original system is not capable of demonstrating the
desired behavior at all, while the extended system can easily
simulate it.

Scenario 1: Cruiser
Imagine that you are driving a sports car cruising down the
street. You notice a car slowing down and stopping in front
of you, and you swerve around the car by changing your lane.
After a while, a group of careless pedestrians jump out to the
road all of a sudden and jaywalk the street. Startled, but deci-
sively you make a move to avoid hitting the pedestrians and
continue your cruise down the road. Unless you are driving
exclusively on freeways, this kind of situation should sound
very familiar.

In the previous version of the ICARUS architecture, we
would program this behavior by giving the system two goals,
(stopped-and-all-clear me) and (cruising-in-lane me ?line1
?line2) in this order. The system gives higher priority to the
first goal than the second one, so it correctly focuses its atten-
tion to maintaining a safe distance from pedestrians before
worrying about cruising on the street. However, we find sev-
eral issues with this program. In addition to the fact that the
system will have the first goal regardless of whether it is rele-
vant or not, a more notable problem is that the first goal does
not mention any specific pedestrian, and that the system will
need to pick a pedestrian dynamically within the skills for
this goal. This means that the system can cover for only one
pedestrian at a time. We will probably program it so that the
closest pedestrian from the ICARUS agent’s position gets the
attention, but no matter what we do, the system has no way
to consider any other pedestrians.

On the other hand, using the extended system with the
goal nomination capability, we would program three long-
term goals like, (stopped-and-clear me ?ped) with the nomi-
nation condition (pedestrian-ahead me ?ped), (clear me ?car)
with the nomination condition (vehicle-ahead me ?car), and
(cruising-in-lane me ?line1 ?line2) with a null nomination
condition. Table 4 shows ICARUS concepts and skills for
the extended system that we wrote this way. The first ad-
vantage of this system over the previous one is that the agent
has only the relevant set of goals at any given moment, much
like people would. But what is more important in this par-
ticular case is that, the ICARUS agent can consider each in-
stance of the goals separately. For instance, if there are mul-
tiple pedestrians jaywalking the street in front of the agent’s
car, multiple instances of the generalized goal, (stopped-and-
clear me ?ped) will be deposited into the system’s short-term
goal memory, and the system will be able to consider all of
them in the order of their corresponding priorities. By doing
so, the system can take an action for the highest priority goal

28

and continue to the subsequent ones if resources are avail-
able. It is also notable that the system no longer requires a
complicated goal concept. Instead, all the individual cases of
different pedestrians are instantiated from a generalized goal
description, and deposited into the system’s short-term goal
memory.

Table 4: ICARUS concepts and skills for the Cruiser scenario
using the extended architecture.

((stopped-and-clear ?self ?obj)
:percepts ((self ?self))
:relations ((stopped ?self)

(clear ?self ?obj)))

((clear ?self ?obj)
:percepts ((self ?self)

(pedestrian ?obj))
:relations ((not (pedestrian-ahead ?self ?obj))))

((clear ?self ?obj)
:percepts ((self ?self)

(car ?obj))
:relations ((not (vehicle-ahead ?self ?obj))))

((stopped-and-clear ?self ?obj)
:percepts ((self ?self))
:actions ((*brake 1000)))

((clear ?self ?obj)
:percepts ((self ?self))
:start ((in-leftmost-lane ?self ?line1 ?line2))
:subgoals ((in-rightmost-lane ?self ?line3 ?line4)))

((clear ?self ?obj)
:percepts ((self ?self))
:start ((in-rightmost-lane ?self ?line1 ?line2))
:subgoals ((in-leftmost-lane ?self ?line3 ?line4)))

Let us analyze a typical run with this system. The agent
starts in the leftmost lane of a street segment. There are sev-
eral other cars in that stretch of the street, and the first one,
c6120 is far ahead of the agent in the same lane. For the first
10 cycles, the agent has a single goal, (cruising-in-lane me
?line1 ?line2) that is always nominated. On cycle 11, as the
ICARUS agent gets closer to the car, c6120, it detects that the
car is blocking its way and the predicate, (vehicle-ahead me
c6120), becomes true in the state. So, the system nominates
(clear me c6120) as its goal. On the next cycle, ICARUS re-
trieves a skill for the first goal with the same name, clear, and
the skill leads to an action, (*steer 35). While the agent is
changing its lane to the right, it notices on cycle 13 that its
speed is below the predefined cruising speed, and the second
goal cruising-in-lane is unsatisfied. The agent now executes
(*gas 20) concurrently with (*steer 35) to adjust its speed. It
continues steering to the right while it performs the speed ad-
justments as needed until cycle 20, but then it notices that it is
in the target lane, and starts aligning itself in that lane. By this
time, the agent successfully avoided the blocking vehicle, and
the concept instance, (vehicle-ahead me c6120), is no longer
true. So the goal, (clear me c6120), that was triggered by this
concept instance disappears.

Scenario 2: Ambulance
Now, to make the task more complicated, let us think about
driving an emergency vehicle, say, an ambulance. We some-
times see that an ambulance is moving quite normally, wait-
ing for pedestrians to pass, observing the speed limit, and
even stopping for red lights, although it has its lights and siren
on. Yet some other times we see an ambulance speeding by

almost like one driven by a reckless driver, blinking every sin-
gle light it has equipped on and making a very loud sound. We
can guess that the difference is on the severity of the problem
at their destinations, or onboard, and this factor affects the
behavior of the drivers.

Modeling this behavior in the previous version of ICARUS
is close to impossible, unless the programmer is patient
enough to write concepts and skills for all possible cases there
are. Even then, the space of search will be so large that the
performance will be below what is required during the exe-
cution. However, the extended system supports this behavior
easily, with some generalized goals encoded in its long-term
memory, coupled with their corresponding triggers. Table 5
shows the new concepts that we added for this scenario.

Table 5: ICARUS concepts and skills for the Ambulance sce-
nario using the extended architecture.

((emergency ?self)
:percepts ((self ?self status ?status level ?level))
:tests ((equal ?status ’emergency)

(= ?level 10))
:pivot (?value))

((not-emergency ?self)
:percepts ((self ?self))
:relations ((not (emergency ?self))))

To handle the task to get to the hospital with the proper
urgency based on the current situation, we encode the goal,
(okay-to-go ME ?signal) with priority 2, to have nomination
conditions, (signal-ahead me ?signal) and (not-emergency
me). This goal is what forces the agent to observe traffic
signals when there is no emergency. But when the emer-
gency strikes and the degree of match for the concept (emer-
gency me) starts to increase from zero, that for the concept
(non-emergency me) starts to decrease from one accordingly.
When this happens, the relevance of the above goal drops
with them, eventually making the architecture focus on the
other goal of getting to the hospital first.

Now we will show how the system behaves during a typ-
ical run. In a similar fashion as before, the agent starts out
by accelerating itself to reach its cruising speed. On cycle 7,
it finds a car blocking its path, and starts steering to the right
to clear the car. With occasional accelerations to maintain
its speed, it continues steering to the right. On cycle 13, it
notices that it is in the target lane, and starts to cruise there.
But it soon finds another car, and clear it in a similar man-
ner, but this time to the left lane, and finishes the move by
cycle 21. The agent then sees a traffic signal that is red, and
brakes to stop. During the wait, its emergency level changes
to 8, which, in turn, changes the degree of match for the
concept instance, (emergency me) to 0.8. The negation of
this instance, (not-emergency me), therefore, gets its degree
of match at 0.2. This is a nomination condition for one of
the current goals, (okay-to-go me c27224). Hence the system
modulates the priority value of the goal to be 0.4 (= 2× 0.2).
This causes the goal to be less important than the default goal,
(cruising-in-lane me ?line1 ?line2) that has the priority of 1.

29

Therefore, the system now stops observing traffic signals, and
starts cruising even with the red traffic light. Later on cycle 95
when it reaches the next intersection, however, the emergency
level is back to 3, and the modulated priority value for (not-
emergency me) becomes 0.7. This once again puts the goal to
observe traffic signals before the default goal of cruising, and
the system starts observing signals again.

The two programs shown above, one for the original archi-
tecture and the other for the extended architecture, both result
in equivalent behaviors at the high level. However, the two
systems still have differences at lower level for basic driving
maneuvers, and the extended system shows much smoother
driving behavior. What is important to note in this scenario
is that the goal nomination capability leads to a much simpler
program that is more intuitive and reasonable to us.

Related and Future Work
Our work has been heavily influenced by related work in the
psychology literature. One can find a fair amount of research
related to motivation and goal selection there. Typically, these
also cover the topic of emotion. Simon (1967) recognized
that the central nervous system, despite being a serial infor-
mation processor, serves multiple needs in an organism sur-
rounded by unpredictable situations. He suggested that two
mechanisms, a goal-terminating mechanism and an interrup-
tion mechanism, would satisfy this requirements. Simon fur-
ther described the relationship among interruption, motiva-
tion, and emotion, and outlined an information-processing
system that covers these as wells as learning in relation to
them. More recently, Sloman (1987; 2002) suggested that
any system with priority in beliefs and actions naturally have
emotions. He argued that goals often conflict with each other,
and systems must have a mechanism to resolve such conflicts.
The author proposed that motivators can serve this purpose.

As mentioned earlier in this paper, there are also some re-
lated work in the architectural perspective. CLARION (Sun,
2007) and Soar (Laird et al., 1986) architectures possess their
own accounts of goal management. The former is more
psychologically positioned, providing interactions between
drives and goals. The latter has a rule-based mechanism to
nominate its top-level operators as its goals, which resembles
the conditionalized goals ICARUS has. Unlike ICARUS, how-
ever, the Soar architecture proposes a single goal at a time,
removing the need for prioritization or the advantage of inter-
actions among multiple goals.

Although the current work is an important first step toward
a cognitive architecture with the full capability for goal man-
agement, it still ignores a vast amount of psychological ac-
counts on human motivation and goal handling. First of all,
people can change priorities among different goal in a flex-
ible manner, depending on the current situation. We have a
way to model this behavior, and hope to report in this direc-
tion in a near future. More broadly, we should explain where
the long-term knowledge about goals comes from. It is very
likely that we will deal with even higher-level cognitions like

motivations, emotion, and obligations. We expect the the ev-
idences in the social psychology literature will help us in the
modeling process.

Conclusions
In this paper, we introduced an extension to the ICARUS ar-
chitecture for reactive goal management. We first conceived
the idea in the architectural perspective, but the extension
makes close connections to previous work in psychology and
other related fields. The extended framework supports the
nomination, retraction, and prioritization of goals based on
the current belief state. We have demonstrated in an urban
driving domain that the extension leads to simpler programs
while supporting new behaviors that connects to the context
better than the original architecture.

References
Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ:

Lawrence Erlbaum.
Asgharbeygi, N., Nejati, N., Langley, P., & Arai, S. (2005).

Guiding inference through relational reinforcement
learning. In Proceedings of the fifteenth international
conference on inductive logic programming (pp. 20–
37). Bonn, Germany: Springer Verlag.

Cassimatis, N. L., Bello, P., & Langley, P. (2008). Abil-
ity, breadth, and parsimony in computational models of
higher-order cognition. Cognitive Science, 32, 1304–
1322.

Gray, J. R., & Braver, T. S. (2002). Integration of emo-
tion and cognitive control: A neurocomputational hy-
pothesis of dynamic goal regulation. In S. C. Moore &
M. Oaksford (Eds.), Emotional cognition: From brain
to behaviour (pp. 289–316). Philadelphia, PA: John
Benjamins Publishing Company.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunk-
ing in soar: The anatomy of a general learning mecha-
nism. Machine Learning, 1, 11–46.

Langley, P., & Choi, D. (2006). A unified cognitive ar-
chitecture for physical agents. In Proceedings of the
twenty-first national conference on artificial intelli-
gence. Boston: AAAI Press.

Newell, A. (1990). Unified theories of cognition. Cambridge,
MA: Harvard University Press.

Simon, H. A. (1967). Motivational and emotional controls of
cognition. Psychological Review, 74(1), 29–39.

Sloman, A. (1987). Motives, mechanisms, and emotions.
Cognition & Emotion, 1(3), 217–233.

Sloman, A. (2002). How many separately evolved emotional
beasties live within us? In R. Trappl, P. Petta, & S. Payr
(Eds.), Emotions in humans and artifacts (pp. 35–114).
MIT Press.

Sun, R. (2007). The motivational and metacognitive control
in CLARION. In W. Gray (Ed.), Modeling integrated
cognitive systems. New York, NY: Oxford University
Press.

30

Modelling the Correlation Between Two Putative Inhibition Tasks:
A Simulation Approach

Richard P. Cooper (R.Cooper@bbk.ac.uk) and Eddy J. Davelaar (E.Davelaar@bbk.ac.uk)

Department of Psychological Science, Birkbeck, University of London
Malet Street, London WC1E 7HX, UK

Abstract
Behavioural studies of individual differences have shown
mild but significant correlations in performance on tasks that
require the withholding of a response to a prepotent stimulus,
i.e., on so-called response inhibition tasks. Several
computational models of response inhibition tasks have been
developed, but the dominant models of such tasks have been
produced in isolation of each other. Consequently they fail to
present a coherent unitary picture of response inhibition. In
this paper we consider two established interactive activation
models of distinct response inhibition tasks – the stop signal
task and the Stroop task – and explore potential mechanisms
within those models that might underlie the observed
behavioural correlation. Only one plausible account of the
correlation emerges: that it results from shared mechanisms of
attentional bias. This account does not map onto the classical
concept of response inhibition. It is concluded that either the
accepted models are flawed or that the concept of response
inhibition as applied to these tasks is misleading (and hence
counterproductive). More generally the work may be taken to
support an architectural approach to modelling, albeit at the
level of interactive activation models, rather than the more
traditional production system models.

Keywords: Executive processes; cognitive control; response
inhibition; individual differences; Stroop task; Stop signal
task.

Introduction
The construct of “response inhibition” is frequently invoked
when attempting to explain behaviours in tasks or situations
that demand the withholding of a strongly prepotent
response. Response inhibition is held to be a separable task-
general executive or cognitive control function, the efficacy
of which varies across individuals.

In the laboratory response inhibition is standardly
explored in variants of the stop signal task (Logan &
Cowan, 1984). This is a form of simple reaction time task in
which subjects are normally required to respond as quickly
and accurately as possible. However, on a small number of
trials a compound stimulus is presented and on these trials
and these trials only the subject is required to withhold their
response. Such trials are referred to as “stop trials”.
Typically the compound stimulus consists of a standard
stimulus that might occur on any normal trial followed
almost immediately by an auditory beep. Stop trials are rare
in comparison to normal “go trials”. This and the need to
respond on go trials as rapidly as possible ensures that the
go response is prepotent. Performance is measured in terms
of the number or proportion of stop trials on which a
response is (incorrectly) produced. This measure varies

reliably between subjects. Good response inhibitors produce
few stop responses, while poor response inhibitors produce
many.

There is substantial behavioural and neuroscience
evidence, as well as good theoretical reasons, for supposing
that response inhibition is a task-general control function.
From the theoretical perspective, response inhibition fits
clearly within the supervisory system/contention scheduling
framework of the control of thought and action of Norman
and Shallice (1986). On this influential account, a system
for the control of routine or well-learned behaviours,
contention scheduling, is modulated by a deliberative
system, the supervisory system, when routine behaviour is
inappropriate and must be overridden. Contention
scheduling is appropriate for generating the prepotent
response, whatever the situation. If this is not appropriate, as
in stop trials of the stop signal task, the supervisory system
must override contention scheduling. A plausible way for
this to be operationalised is in terms of response inhibition
acting as a sub-function of the supervisory system.

From a neuropsychological perspective, patients have
been reported who are well-characterised in terms of a
deficit in response inhibition. Thus, utilisation behaviour
patients tend to exhibit behaviours that are driven largely by
environmental contingencies rather than their stated
intentions (Lhermitte, 1983). Alien hand patients show
similar problems, but they are restricted to one hand
(Goldberg et al., 1981). Both deficits may be seen as arising
from a failure in response inhibition.

One source of behavioural evidence for the task-general
nature of response inhibition comes from a large individual
differences study of Miyake et al. (2000). In this study, 137
subjects were each tested on a total of 14 tasks. Performance
on 3 of these tasks was argued, on a priori grounds, to
specifically require response inhibition. Subsequent factor
analysis of subject performance across the tasks supported
this view, with performance on the response inhibition tasks
being related to a single factor that differentiated those tasks
from others in the study, which were held to primarily tap
other executive functions (namely the functions of set-
shifting and memory monitoring and updating).

The three response inhibition tasks of Miyake et al.
(2000) were a) a forced-choice decision variant of the stop
signal task, b) the Stroop colour naming task, and c) an anti-
saccade task. Our focus in this paper is on the first two, and
so we described these in detail. In the stop signal task,
subjects were required to indicate with a button press
whether a (visually presented) word was an animal or a non-
animal. The first block of 48 trials were all “go” trials.

31

These were used to establish a mean response time for each
subject. One quarter of the trials in the second block (of 192
trials) were stop trials. In these trials, a beep was sounded
shortly after presentation of the word (225ms prior to the
subject’s mean response time, as determined in block 1),
and subjects were required to withhold their response. The
dependent measure was the proportion of stop trials on
which a response was given. In the well-known Stroop
colour naming task, subjects were presented with a “word”
written in one of six colours. They were required to name
the colour of the stimulus word. On neutral trials the word
was a string of asterisk symbols, while on incongruent trials
it was the name of another colour. The dependent variable
was the difference in mean response times for incongruent
and neutral trials.

For our purposes, the critical result of this individual
differences study was mild but significant positive
correlations (r ≈ 0.20) between performance on the stop
signal task and the Stroop task (and in fact between all pairs
of response inhibition tasks). In general, these correlations
were stronger than those between any single response
inhibition task and any of the non-response inhibition tasks
explored in the study. However, while the study is
impressive in its scale, interpretation of the results is limited
because Miyake et al. fail to provide process accounts of the
various tasks. While it is perhaps unreasonable to expect
such models of all 14 tasks, the absence of process models
leaves unexplained the mechanism that is, on the account
proposed by Miyake and colleagues, shared by the response
inhibition tasks. Similarly, it leaves open the issue of why
that function is not significantly involved in successful
performance of the other tasks considered in the study.

The purpose of the work presented here is to begin to
address this limitation by exploring potential common
mechanisms within established process models of two of
Miyake et al.’s response inhibition tasks. We focus on
models of the stop signal task and the Stroop task because
there are established models of each task (due to Boucher et
al., 2007, and Cohen & Huston, 1994, respectively) that
bear some correspondence. This correspondence offers the
possibility of relating the models to each other and thereby
identifying a shared response inhibition mechanism. For
such a mechanism to be explanatorily adequate, it must be
parameterisable, with the observed behavioural correlations
between tasks arising in part from variation in a shared
parameter. To foreshadow, simulation findings derived from
reimplementations of the existing published models suggest
that directly shared parameters fail to yield the required
correlation in performance. However, an appropriate
correlation is forthcoming if attentional biasing mechanisms
are yoked. Unfortunately, attentional biasing is not normally
related conceptually to response inhibition. We conclude
that either a) response inhibition is not the mechanism
underlying the behavioural correlation in these tasks, or b)
one or both of the accepted models requires updating. These
simulation results extend those of a complementary analytic
study (Davelaar & Cooper, 2010).

The Stop Signal Task

The Model
Early work with the stop signal task demonstrated that
behaviour on the task could be well accounted for by a race
model consisting of two stochastic processes, a “go” process
which is slow to activate but has a head start, and a “stop”
process which is faster to activate but starts late (Logan &
Cowan, 1984). Successful performance on a stop trial
requires that the stop process reach threshold before the go
process. Boucher et al. (2007) note that despite this model’s
strengths, it is inconsistent with neural evidence of
interaction between stop and go processes. They present the
interactive race model, an update of the original model in
which the stop and go processes compete through mutual
lateral inhibition. The model, as applied to Miyake et al.’s
semantic categorisation variant of the stop signal task, is
shown in Figure 1.

The model is extremely simple, consisting of just three
nodes: one for each response and one for the stop process.
Processing in the model is cyclic with each node operating
as a leaky competing accumulator (Usher & McClelland,
2001). On each cycle, the activation of a node is increased
by an amount proportional to its external input, less an
amount proportional to the activation of its competitors
(corresponding to lateral inhibition), less an amount
proportional to its current activation (its leakage), plus
normally distributed random noise. Parameters control the
contributions of the various sources to this accumulation.
For default behaviour we assume ballpark parameters scaled
from those of Boucher et al. to give a response threshold of
1.0. Thus, we assume lateral inhibition, β, of 0.025 between
all pairs of nodes, leakage of 0.0 (i.e., the accumulators do
not leak), and the standard deviation of noise, σ, of 0.025
units per cycle.

In addition, it is assumed that on any trial external input to
one of the response nodes (animal or non-animal) is
provided by a semantic categorisation process (which is not
modelled). The level of input is controlled by the parameter
µgo, set to 0.005 units per cycle by default. It is assumed that
the other response node receives zero external input. On
stop trials it is assumed that at some point during the trial

Figure 1: The interactive race model of the stop signal task. On
any one trial, either the animal or the nonanimal node receives
activation from a semantic categorisation process. On “stop”
trials, the stop node also receives activation, though this activation
is delayed relative to the activation from the semantic
categorisation process.

32

external input is provided to the stop node. The level of this
input is µstop, set to 0.030 units per cycle by default. Finally,
we assume that the delay between input to the response
nodes and input to the stop node is 250 cycles. This delay is
the sum of the actual delay between presentation of word
and stop stimuli, SSD, and the time to initiate the stop
process, δstop. With these parameters, the model performs as
desired – on go trials its response accuracy is approximately
99% (with noise and lateral inhibition occasionally leading
to error) while on stop trials it fails to stop on approximately
65% of occasions. This compares well with mean subject
performance of 67% as reported by Miyake et al. (2000).

Simulation Results
An initial set of simulation studies was performed to
determine the relation between the model’s performance and
the key parameters that could reasonably be argued to vary
across individuals, that is: µgo, µstop, β (lateral inhibition), σ
(standard deviation of noise) and δstop.1 Each parameter was
varied about the default value (with the other four
parameters fixed at default values) to determine the effect of
that parameter on the proportion of stop errors. Figure 2
summarises the results, based on 100 blocks per parameter,
each of 100 trials.

As can be seen from the figure, there is a slight non-
monotonic relation between β (lateral inhibition) and the
model’s performance, with fewer stop errors at intermediate
values. Similarly there is a non-monotonic relation between
σ (noise) and stop errors. Perhaps surprisingly, when noise
is very low there are more stop errors than when noise is at
moderate values. This is because noise may delay the
model’s decision, causing it to respond more slowly on
some trials (but more quickly on others). On stop trials
when noise acts against the go process this gives the stop
process more time to affect behaviour. There is an optimal
value for noise, however, and if it is too high successful
stopping again becomes rare. Increasing µstop also reduces
stop errors, though here the relation is monotonic and the
explanation is more obvious: with stronger excitation of the
stop node it is more likely to reach threshold on stop trials
before one of the go nodes. Stop errors correlate positively

1 Indeed, Boucher et al. (2007) consider how their model may be

fit to data from different monkeys by varying these parameters.

with µgo and δstop. In both cases the effect of the parameter is
transparent. With faster excitation of the go process or with
greater delay, the stop process has less chance of reaching
threshold before the relevant go process. Consequently stop
errors are more likely.

Relating the results to the concept of response inhibition,
it appears that good inhibitors are those who either have a)
near optimal levels of lateral inhibition or noise, b) slow go
processes or short stop process delays, or c) fast stop
processes. Miyake et al. (2000) do not report the
behavioural data that would help to discriminate between
these options.

The Stroop Task

The Model
Many models have been developed of the Stroop task. We
focus on the well-known model of Cohen and Huston
(1994), as its principal functional mechanism, interactive
activation, is shared with Boucher et al.’s interactive race
model. The model, shown in Figure 3, consists of four sets
of nodes, with nodes within each set competing for
activation through lateral inhibition. There are two task
demand nodes, three word input nodes, three colour input
nodes, and two response nodes. One task demand node
corresponds to the colour naming task while the other
corresponds to the word reading task. The colour naming
task demand node is connected to all colour input nodes,
while the word reading node is connected to all word input

Figure 2: Effects of varying key parameters on the proportion of stop errors produced by the interactive race model of the stop signal task.

Figure 3: The Stroop model of Cohen and Huston (1994).

33

nodes. Colour input nodes and word input nodes are each
connected to one response node. Crucially, the connections
from word inputs to response nodes are stronger than those
from colour inputs to response nodes. This is justified on the
grounds that word reading is the more practiced of the two
tasks. As in the stop signal model, the operation of the
network is cyclic with activation accumulating over time.
However, the accumulation functions differ. For the Stroop
model activation accumulates according to the logistic
function of the time-averaged input to a node. (See Cohen &
Huston, 1994, for details.)

Processing on any given trial occurs in two stages. First,
input is provided to one of the task demand nodes (based on
the task instructions). This causes that node to become
active and the other task demand unit (through lateral
inhibition) to become depressed. As a task demand unit
becomes active, it excites the input nodes to which it is
connected, raising the resting activation of either the colour
input nodes or the word input nodes. The network settles
into this temporary state, which, it is assumed, corresponds
to a subject who is prepared for either a colour naming or
word reading Stroop trial. Input is then provided to one
colour input node and one word input node. If, for example,
the trial was to name the colour of the word “RED” printed
in green ink, then input would be provided to the GREEN
colour node and the RED word node. In this case the colour
nodes would already be moderately activated, and so the
additional input to one colour node would tend to excite the
appropriate response node (i.e. GREEN). At the same time,
the less active word node for RED would also be receiving
input and this would be tending to excite the RED response
node. Hence both response nodes will receive excitation,
and the balance of this excitation, plus the degree of lateral
inhibition between the response nodes, will determine how
quickly either response node reaches threshold.

As is clear from the architecture, there is no dedicated
parameter of response inhibition. Thus, verbal descriptions
of performance on the Stroop task are at odds with the
computational details of the models. Nevertheless, what
may be interpreted as response inhibition may well have a
different label at the computational level.

Simulation Results
As in the case of the stop signal model, an initial set of

simulations was performed to determine the relation
between the model’s performance and key parameters that
could plausible be related to individual differences.
Paralleling Miyake et al.’s study, the dependent variable
was the difference in processing time between incongruent
and neutral colour naming trials. Once again, five
parameters were varied: lateral inhibition (β), the standard
deviation of normally distributed noise (σ), the strength of
the task demand units (µ), the gain of the activation function
(γ) and the response threshold (τ). γ controls the rate at
which a node’s activation accumulates. It is included
because Cohen and Servan-Schreiber (1992) suggest that it
corresponds to an attentional modulation parameter. τ
controls the sensitivity of the network to produce a
response. It is fixed at 0.60 in the Cohen and Huston (1994)
simulations, but we consider varying it here as it has a
demonstrable affect on Stroop interference and might
reasonable vary across individuals. We do not consider
varying the weights from input nodes to response nodes, as
these are intended to capture learned contingencies which,
while possibly varying across individuals, should not vary
systematically with any specific executive function.

The results of these five sets of simulations are
summarised in Figure 4. The model is more complex than
the stop signal model, and consequently the relations
between the parameters and the relevant dependent measure
– Stroop interference – are less intuitive. Nevertheless, four
of the five relations are monotonic, with Stroop interference
correlating negatively with β (lateral inhibition) and γ
(gain), and positively with σ (noise) and τ (threshold). That
is, good inhibitors correspond in the Stroop model to high
lateral inhibition, low noise, optimal task demand weight,
high gain or low threshold.

Yoked Simulation Studies
Recall the purpose of considering the effects of the various
parameters on the performance of the two models: we are
concerned with understanding the source of common
variance in the tasks to which the models relate. It is
hypothesised that this might be achieved by identifying a
parameter that could plausibly vary across individuals and,
in so doing, could underlie the observed behavioural
correlation between Stroop colour naming interference and
stop signal errors.

Figure 4: Effects of varying key parameters on the difference in processing time for correct incongruent and neutral colour naming trials
produced by the interactive activation model of the Stroop task.

34

We are now in a position to consider candidate
parameters. For example, both models share a mechanism of
lateral inhibition, and pre-theoretically one could suggest
that it is this mechanism, and individual differences in the
shared parameter β, that underlies the behavioural
correlation. The left-most panels of Figures 2 and 4 suggest
that this is implausible. The issue is not the absolute size of
the parameter’s default value (0.025 for the stop signal
model and 3.0 for the Stroop model). One can envisage re-
engineering the models so that lateral inhibition in both is of
a similar magnitude. The issue is that relatively high values
of β lead to a reduction in Stroop interference accompanied
by, if anything, a slight increase in stop errors, i.e., a
negative correlation between the tasks. This is in direct
contrast to the observed positive correlation.

In fact, because the relation between β and stop errors is
non-monotonic, low values of β can yield a positive
correlation between the tasks. This is shown in Figure 5
(left-most panel). The figure shows simulation results from
5 studies in which the value of a parameter in one model is
yoked to the value of a corresponding parameter in the other
model. In all 5 cases the relevant parameter values vary
across the full ranges explored in Figures 2 and 4. Thus, the
data in the left-most panel was generated by random
sampling a dummy variable uniformly distributed between
0.0 to 1.0, and mapping the value of this onto a) the interval
0.00 to 0.05 to give a value of β for the stop signal model,
and b) the interval 2.0 to 6.0 to give a yoked value of β for
the Stroop model. This procedure was repeated 100 times
for each of the five scatter-plots in Figure 5.2

From the figure we may immediately rule out several
potential factors underlying the observed correlation
between performance on the tasks and hence several
candidates for the response inhibition function. Neither of
the parameters shared by the models – lateral inhibition (β)
or noise (σ) – produce correlations of the appropriate form.

2 One can envisage other approaches to yoking the parameters,

e.g., by restricting attention to sub-ranges of a parameter in which
its effect on the relevant dependent variable is monotonic. A
further alternative focuses on the ranges of parameter values
chosen. As yet there is no principled way of selecting the ranges
other than through a cognitive architecture approach. Due to space
limitations we do not consider these approaches here.

Hence, it would seem that individual differences in these
parameters cannot underlie the observed correlations.
Equally, as shown by the third plot in Figure 5, yoking the
strength of the go process and the strength of task demand
weights – an account not immediately related to any
conceptual mechanism of response inhibition but one which,
nevertheless, relates two parameters with similar
functionality – fails to yield a positive correlation between
the relevant dependent measures.

The desired positive correlation is shown, however, in the
two right-most plots of Figure 5. Thus, the models predict
that performance on the two tasks will correlate positively if
a) the strength of the stop process and the strength of task
demand weights are (positively) correlated, or b) the
strength of the stop process and the gain in the Stroop model
are (positively) correlated. There is no apriori reason to
suppose the latter, but the former is plausible as both
parameters concern the strength of deliberative or
attentional bias. Thus, these simulation results fail to
provide support for the idea that the positive behavioural
correlation between Stroop interference and stop signal
errors is due to a shared mechanism of response inhibition.
Rather, they suggest that the correlation arises because
subjects who are able to provide stronger activation to the
stop process in the stop signal task are also able to provide
stronger attentional bias to the colour naming task in Stroop.
This suggestion is backed up by the right-most plot which
shows a positive correlation resulting from yoking µstop and
γ (gain). Recall that γ was also associated (positively) with
attentional bias by Cohen and Servan-Schreiber (1992).

Discussion and Conclusion
In a companion paper (Davelaar & Cooper, 2010), we
consider closed-form approximations to the same two
models discussed here. It is demonstrated that the
explanation of the behavioural correlation in terms of a
shared process of response inhibition is suspect, and an
attentional biasing account is proposed as a plausible
alternative. The simulation results reported here corroborate
both of these conclusions.

Our suggestion of attentional biasing, rather than response
inhibition, as the locus of shared variability on the tasks
resonates with the approach to response conflict

Figure 5: Effects of varying key parameters in a yoked fashion on the correlation between Stroop interference and the proportion of stop
errors produced by the two models.

35

management of Botvinick et al. (2001). They demonstrate,
within the context of three models including the Cohen and
Huston Stroop model, how trial-by-trial regularities in
behaviour might be accounted for in terms of a mechanism
of conflict monitoring which measures the degree of conflict
in the network’s output nodes and modulates attentional
bias, increasing it under conditions of high conflict and
decreasing it under conditions of low conflict. Thus, rather
than addressing response competition through response
inhibition, Botvinick et al. (2001) do so through attentional
biasing.

We are reluctant to fully endorse this account, however.
Critically, the account is not fully consistent with the results
of Miyake et al. (2000). They hold that while stop signal
errors and Stroop interference are dependent upon response
inhibition, they are also not dependent on two other putative
executive functions – task shifting and memory monitoring
and updating. Thus, if we are to account for the behavioural
correlation between these tasks in terms of attentional bias,
it is also necessary to show that attentional bias does not
systematically affect behaviour on the other tasks of Miyake
et al. which were held to tap these other two functions and
not to tap response inhibition. Here there is reason to be
cautious. Gilbert and Shallice (2002) consider performance
on a task switching variant of the Stroop task in which
subjects switch between colour naming and word reading.
They model the critical behavioural affects by using
essentially the same mechanism proposed here (i.e., by
biasing task demand units) in exactly the same model (the
Cohen and Huston model). Yet these are effects that, on the
decomposition of Miyake and colleagues, should be
explained in terms of a distinct task shifting function.
Moreover in the study of Miyake et al. (2000) all
correlations between putative task shifting tasks and
putative response inhibition tasks were non-significant.

The concept of response inhibition held by Miyake et al.
(2000) to underlie good performance in the stop signal and
Stroop tasks was also held to underlie good performance in
the anti-saccade task. Thus, a fuller analysis of response
inhibition requires also consideration of process models of
the anti-saccade task. This remains to be attempted. We
would hypothesise, however, that performance in this task
will also correlate with an attentional bias parameter.

Returning to the two models considered, it should also be
noted that while they share principles of interactive
activation, there are also major differences between them.
For example, different equations govern the accumulation of
activation in each model. Whether these differences are
substantive or cosmetic remains to be demonstrated.
However, these differences really only serve to reinforce our
primary conclusion, namely, that until we have unified
process models of the various putative separable executive
functions, any theoretical account of their supposed unity
and diversity is incomplete. By extrapolation, to understand
the executive functions which underly the battery of tasks
used by Miyake et al. (2000), we need to develop, within a
single unified framework, models of all of those tasks. Such

models must, of course, demonstrate the hypothesised
shared mechanisms. Only then can we be confident that we
have a plausible account of the various executive functions
that contribute to the control of complex behaviour. This is,
of course, one of Newell’s arguments for the utility of
Unified Theories of Cognition (Newell, 1990).

References
Botvinick, M.M. Braver, T.S., Barch, D.M., Carter, C.S. &

Cohen, J.D. (2001). Conflict monitoring and cognitive
control. Psychological Review, 108, 624–652.

Boucher, L., Palmeri, T. J., Logan, G. D., & Schall, J. D.
(2007). Inhibitory control in mind and brain: An
interactive race model of countermanding saccades.
Psychological Review, 114, 376–397.

Cohen, J. D. & Huston, T. A. (1994). Progress in the use of
interactive models for understanding attention and
performance. In Attention and performance 15:
Conscious and nonconscious information processing. C.
Umiltà & M. Moscovitch (Eds) (pp. 453–476).
Cambridge, MA, US: The MIT Press.

Cohen, J. D., & Servan-Schreiber, D. (1992). Context,
cortex, and dopamine: A connectionist approach to
behavior and biology in schizophrenia. Psychological
Review, 99, 45–77.

Davelaar, E. J., & Cooper, R. P. (2010). Modelling the
correlation between two putative inhibition tasks: An
analytic approach. In Catrambone, R., & Ohlsson, S.
(Eds.), Proceedings of the 32nd Annual Conference of the
Cognitive Science Society. Cognitive Science Society
Incorporated, Portland, OR, USA.

Gilbert, S. & Shallice, T. (2002). Task switching: A PDP
model. Cognitive Psychology, 44, 297–337.

Goldberg, G., Mayer, N.H., & Toglia, J.U. (1981). Medial
frontal cortex infarction and the alien hand sign. Archives
of Neurology, 38, 683–686.

Lhermitte, F. (1983). Utilisation behaviour and its relation
to lesions of the frontal lobes. Brain, 106, 237–255.

Logan, G. D., & Cowan, W. B. (1984). On the ability to
inhibit thought and action: A theory of an act of control.
Psychological Review, 91, 295–327.

Miyake, A., Friedman, N.P., Emerson, M.J., Witzki, A.H.,
Howerter, A. & Wager, T.D. (2000). The unity and
diversity of executive functions and their contributions to
complex “frontal lobe” tasks: A latent variable analysis.
Cognitive Psychology, 41, 49–100.

Newell, A. (1990). Unified Theories of Cognition. Harvard
University Press, Cambridge, MA.

Norman, D.A. & Shallice, T. (1986). Attention to action:
willed and automatic control of behaviour. In R.
Davidson, G. Schwartz, and D. Shapiro (eds.)
Consciousness and Self Regulation, Volume 4, pp. 1−18.
Plenum: NY.

Usher, M., & McClelland, J. L. (2001). The time course of
perceptual choice: The leaky, competing accumulator
model. Psychological Review, 108, 550–592.

36

Proactive Interference in Location Learning:
A New Closed-Form Approximation

Arindam Das, Wolfgang Stuerzlinger

Department of Computer Science and Engineering, York University, Toronto, Canada
 {arindam, wolfgang} @cse.yorku.ca

Abstract
The ACT-R cognitive theory models forgetting in general with a
constant “decay due to passage of time” parameter. However, this is
not sufficient to predict learning for frequently executed tasks in
dense arrangements of items. Prominent examples are two-
dimensional location learning in finding keys on a keyboard or
clicking on items on a web page or in a graphical user interface. Our
work presents a new way to theoretically model the effect of
Proactive Interference, i.e. the effect of the history of events on
location learning, through an extension to ACT-R’s mathematical
model of declarative memory strength. It predicts that each time an
item is searched for and found, the item gets “stronger”, i.e. easier to
remember. However, this strength diminishes not only through the
passage of time, but also due to interference from other (non-target)
items that have been encountered in the past. We tested the
predictions of our new model against empirical measurements from
two previous studies that involve simple visual search and selection.
The predictions fit the experimental data very well.

Keywords: ACT-R declarative memory; Proactive Interference;
Location Learning; User Interfaces

Introduction
Forgetting occurs not only due to passage of time but also through
interference from information learned at other times (Wickens &
Hollands, 2000, p. 252). Proactive interference (PI) is one
explanation for this phenomenon, where some activity prior to
encoding the target disrupts the retrieval of that target (Underwood,
1957; Keppel & Underwood, 1962).

Proactive Interference (PI) effects have been shown to be
relevant for two-dimensional spatial memory tasks (Leung & Zhang,
2004). Spatial knowledge in two-dimensional spaces is built up
primarily through interaction. That is, people remember locations
after having had experience with that location (Darken and Sibert,
1996). When people are completely new to a spatial layout, such as a
new grid-like arrangement of characters on a keyboard or a new
arrangement of city names in a list, they will resort to visual search
for the target stimulus. In the process of searching for the target, they
may come across multiple non-target stimuli, i.e. irrelevant characters
or city-names before they arrive at the target. These irrelevant stimuli
get visually encoded during the visual search for the target. As a
consequence, these non-target items, often called distractors, will
interfere with the encoding of the memory for the target item.

The aim of our work is to model the effect of this PI together
with the effect of the passage of time on the learning of spatially
stable, two-dimensional layouts. More precisely, we limit ourselves
to grid layouts in graphical user interfaces or keyboards. We choose
the ACT-R cognitive theory (Anderson & Lebiere, 1998) as our
mathematical modeling foundation.

The current ACT-R theory models PI through the probability of
recall using a soft-max equation (Altmann & Schunn, 2002).
However, previous work has established that latency to recall, i.e.
reaction time, is a more sensitive indicator of proactive interference
(Wixted & Rohrer, 1993, p. 1034) or interference in general

(Anderson, 1983, pp. 271-272). Motivated by this fact, we modify
ACT-R to generate better predictions of PI through a new model. We
accomplish this as follows: 1) we replace the standard decay constant
of the base-level activation equation of ACT-R theory with two
terms – a constant term and a varying term. The constant term models
the decline of memory strength with time, thereby preserving the
standard notion of decay in ACT-R theory. The new varying term
adds a function that depends on the proportion of distractor items that
get visually encoded prior to encoding the target item. Thus, this
newly extended model of base-level memory activation accounts for
the decline of memory strength of a target item not only due to
passage of time but also due to the number of distractors visually
encoded while searching for the target. The result of this new
activation function, later called PI activation equation, is then used by
ACT-R to predict the (recognition or recall) reaction time, and
therefore we generate more accurate predictions. 2) we compare the
fit of reaction time responses, as opposed to recall probability
responses, arising from the newly extended model of memory
strength against empirical data from two previous studies involving
visual search in two-dimensional layouts. This is a first step towards
validating the new model. We choose studies involving visual search
since repeated search for items leads to learning of the respective
locations, and this learning process is impeded by the PI phenomenon
owing to attention given to distractor items during that search.

We calculate the theoretical predictions for the empirical data as
described by the equations presented in this paper through an Excel
spreadsheet.

ACT-R Theory

The ACT-R cognitive theory (Anderson and Lebiere, 1998) describes
a modular system that aims to replicate the human mind. It can be
viewed from two perspectives: one, as a computer program that
simulates the dynamic behavior of the mind; second, as a framework
of mathematical equations that models the neural computations in
order to realize human dynamic behavior.

Viewed from the perspective of a computer program, the ACT-R
system is composed of memory, perceptual, and motor modules. The
memory modules consist of a procedural memory and a declarative
memory. The procedural memory is a subsystem that consists of a set
of production rules and a computational engine for interpreting those
rules. The production rules coordinate cognition, perception and
motor actions. The declarative memory module contains chunks.
Each chunk represents the memory trace of an item. A chunk can be
retrieved or updated by the production rules. The activities of the
memory modules together with the actions of the perceptual and
motor modules enable ACT-R to simulate several dynamic aspects of
the human mind.

Viewed from the perspective of a mathematical framework,
ACT-R consists of independent sets of equations, each set driving the
neural computation for the relevant ACT-R module. In this work, we
choose to pursue this mathematical perspective. We replicate the PI
effect in location learning by manipulating some of the equations
embedded in the declarative memory module. We focus our
upcoming discussion solely on those parts of the theory behind the
declarative memory that are relevant for our objective.

37

ACT-R Equation of Base Level Learning
In declarative memory, chunks, i.e. memory traces of items, have

different levels of activation to reflect their past use: chunks that have
been used recently or chunks that are used very often receive a high
activation. This activation decays over time if the chunk is not used.
The activation of a chunk controls both its probability of being
retrieved and its speed of retrieval. In the case where there are
multiple candidates for retrieval, the chunk with the highest
activation has the highest probability of being retrieved. A retrieval
threshold sets the minimum activation a chunk can have and still be
retrieved successfully.

The equation describing the base-level activation of a chunk i
(representing item i) is given by









= ∑

=

−
n

j

d
ji tA

1
ln Base-Level Activation Equation

where n is the number of practices of item i completed so far, tj is the
age of the j-th practice of the item, and d denotes the constant time-
based decay parameter. More specifically, Ai is the strength of the
memory trace of item i after n practices of that item. A practice of an
item occurs whenever a trace of that item is presented to the
declarative memory. Presentation may happen because of either
recognition or recall of that item.

ACT-R Equation of Reaction Time of Declarative Memory
The time required for the declarative memory to respond to a request
(recognition or recall) for an item i (represented by the chunk i) is
given by the following equation:

igA

i FeT −= Reaction Time Equation
where Ai is the activation of chunk i and g is the latency exponent
scale parameter. F is called the latency scale parameter, and maps
activation to time. Traditionally, a constant term reflecting the fixed
time cost of visual encoding and motor response has also been added
to the right-hand-side of this equation. Since the effect of that
constant term as well as the latency scale parameter, F, is only to

scale the critical quantity igAe− onto the range of the latencies
(Anderson et al. 2004, p. 1044), we drop the constant term in favor of
modeling simplicity. Instead, we account for the constant term by
adjusting F, whenever necessary.

Given that the equation depends mainly on the activation of the
chunks, any differences in activation will result in different times to
respond to different tasks or trials.

Type Of User Interface, Task,
User, And User Behavior

In this work, we consider only user interfaces, which contain items in
a grid layout based on rows and columns. We assume that the user is
initially not familiar with the layout of the items. In this case, it is not
easy for a person to discriminate a target item from all distractors.
We further limit ourselves to layouts that have only one item per
location in this grid. Also, when we refer to an item on an interface,
we are also referring to its location and vice versa. Examples of such
interfaces include keyboards with an unfamiliar layout, Personal
Digital Assistants (PDAs) that show a grid layout of similar looking
textual or graphical items/icons, or an unfamiliar graphical
application menu with items arranged in a list.

The task we consider is a simple visual search of items in such an
interface, followed by a selection of the target item using a finger, a
stylus, or a mouse pointer depending on the input device used.

Our aim is to mathematically model the gradual transition of
novices – who do not have knowledge of item locations on the layout
 – to experts – who can recall multiple items and their locations

successfully and ideally can do this for all items. We stay within the
core mathematical framework of ACT-R’s declarative memory.

With regards to learning of interface layouts by novice users, we
point to the arguments of Nilsen (1991), Lee & Zhai (2004), and
Cockburn, Gutwin et al. (2007). All of them describe in one form or
the other that visual search and recall of item locations are of primary
concern in spatial knowledge acquisition on a two-dimensional
interface since these factors play a significant role in the early stages
of skill development in such location learning.

A fundamental assumption behind our work is that at any given
instant, the user will have zero or more items in a user interface that
she can recall. Moreover, there will be zero or more items that she
cannot recall and therefore she needs to visually search the interface
to find and select them.

Model Extension For PI Effect
We next propose our extension to the base-level activation equation
of ACT-R in order to account for the PI effect. We explain our model
extension within the domain of tasks involving simple visual search
and selection of items in user interfaces.

Decay Rate as a function of number of distractors
One way to predict the cost of searching for a target item in an
interface with several similar looking items is through tracking the
number of distractor items visually encoded before arriving at the
target item. The number of visually encoded distractor items during a
search contributes to the PI effect: The lower the number of
distractors visually encoded during a search for a target item, the
lower should be the decay of activation of the memory trace of the
target item. Hence, the next recall of that item will be affected by the
higher activation of its memory trace, leading to the lowering of its
retrieval time. This will result in an improvement in the search-and-
selection time during the use of the corresponding user interface. The
effect of the number of visually encoded distractor items in a search
task discussed here is analogous to the primary research results of
Underwood (1957), Wickens (1972), and Wixted and Rohrer (1993)
on Proactive Interference. Namely, they describe the effect that the
number of previously learned similar items has on the recall of a
target item: The higher (lower) the number of previously learned
similar items is, the higher (lower) is the forgetting effect and
therefore the higher (lower) is the recall latency for the target item.

In order to account for the PI effect in visual search-and-selection
tasks in user interfaces, we propose a decay rate, dj, for an item, after
j practices of this item have been completed, as follows:

)(1−+= jj Xfad Decay Rate Equation
where a represents the decay-due-to-time constant replicating the
portion of decay that occurs with passage of time, and f represents a
decay-due-to-PI function which we will discuss shortly. Xj-1 is the
number of distractors visually encoded, at the time of jth practice.
Naturally, j has to be larger or equal to 1. X0 denotes the number of
distractors visually encoded during the first practice and is assumed
to be the total number of items on the user interface. When Xj-1 is 0,
i.e. when user is able to complete the task by direct recall, without
going through any explicit visual search, the decay rate equation
degenerates to dj = a. This implies that in the absence of the impact
of distractors, the decay in activation of the item will occur only with
the passage of time as in case of the traditional base-level activation
equation discussed earlier.

Let us now turn to the decay-due-to-PI function, f. We introduce
this function as one that replicates the memory decay due to proactive
interference. As such, its job is to transform the number of
distractors, Xj-1, to a valid decay-due-to-PI value. We assume valid
decay-due-to-PI values to be between 0 and 0.5, both inclusive, i.e.
0.0 <= f(Xj-1) <= 0.5. Since 0 implies no decay, it can be considered

38

as a valid lower bound on decay-due-to-PI values. The decay value of
0.5 is widely used as the decay constant in the traditional ACT-R
literature and therefore can be safely considered as a valid upper
bound on decay-due-to-PI values.

We assume that the maximum possible number of distractors in
an interface is equal to the total number of items on it. The maximum
possible number of distractors is therefore equivalent to X0, the
number of distractors visually encoded at the first practice. Hence, we
set f(X0) = 0.5, using the upper bound on decay-due-to-PI. On the
other hand, f(0) = 0.0 implies the absence of the impact of distractors,
and hence the absence of PI effect as a consequence. This occurs
when the user is able to complete the task by direct recall.

Modified ACT-R equation of Base-level Activation
With the decay rate equation now in place, we modify the base-level
activation equation to

 







= ∑

=

−
n

j

d
ji

jqtA
1

][ln PI Activation Equation

where the decay dj is not a single constant anymore, but a
combination of the traditional decay-due-to-time constant and decay-
due-to-PI function. The latter is a function of the number of
distractors that builds up the PI effect on the recall of an item during
the next practice. The factor q in the equation acts as the strength
scale parameter. The usage of such a strength scale parameter, albeit
in a different form and context, has been suggested previously by
Anderson (1983, p. 277) as well as Stewart and West (2007, p.235).

Note that when dj = a and q = 1, the PI Activation equation
collapses to the traditional base-level activation equation.

Our proposal for combining the effect of decay-due-to-time
constant and decay-due-to-PI function is analogous to the results of
experiment 3 of Keppel and Underwood (1962). There, the authors
concluded that forgetting is a combined effect of the passage of time,
i.e. the ‘retention interval’, and the number of previously visually
encoded items, i.e. ‘proactively interfering items’.

Activation boosts on distractors
The distractors visually encoded on the way to finding a target should
be considerably less salient than the target itself. Hence, their base-
level activations should receive considerably less boost compared to
that of the target. Since our main interest is in replicating PI effect on
the learning of target item and its location, we focus on the effect of
the number of distractors rather than the negligible increments in
strength they receive, as they are considerably less salient. For
convenience of modeling, we set the reference level of activation
boost to zero and consider the relative difference in boost between a
target and every distractor involved during the search. We let the
target get its full quota of boost during a given trial of search and
selection, but set the activation boosts of distractors to the reference
level, i.e. zero. This helps us to keep our analysis simple during
model validation, as we will see in the next section.

Validation of Model Extension
We validate our new extension against two empirical studies on
location learning in user interfaces. In order to adapt the observed
data to the goal of analyzing only the PI effect, we first make a few
assumptions. These assumptions help us to get an estimate of the
number of distractors at any given instant. We then validate our
extension by fitting it to the Reaction Time equation discussed
earlier, using the data from those experiments. More precisely, we
predict the average reaction time per item and per trial.

Note that the reaction time is dependent only on activation, as
determined by the PI Activation Equation. All fits in this article are

performed using the R2 and root mean square deviation (RMSD)
statistics.

Assumptions for adaptation of observed data
The heart of our extension lies in the term Xj-1 of the decay rate
equation. This term denotes the number of distractors seen at the time
of jth practice. In order to extract this information from the empirical
data, we make the following assumptions: (i) Target items are always
visible in the user interface. (ii) Target items are not easy to
discriminate from the distractors. (iii) The position of an item on the
interface layout does not change. (iv) We expect the user to search all
items that cannot be directly recalled before finding the desired target
item. This exhaustive search strategy is based on the findings of
MacGregor et al. (1986). There, the authors carried out a visual
search study on (database) menus and found that 59% of all visual
searches were exhaustive in nature. (v) At any given instant, the
searchable set of items is the set of all non-recallable items on the
interface at that instant. (vi) On average, the visual search time is
linearly proportional to the number of all items that the user cannot
recall. This is warranted, since the visual search time is roughly a
linear function of a given searchable set of items in the tasks where
the target is not easy to discriminate from the distractors (Wolfe,
2000).

We compute Xj-1 as follows: We first obtain the average search
time per item corresponding to each session from the empirical data.
Then, we use the formula

 NIS = NISPS ∗ ST Distractor Computation Equation
where NIS is a rough estimate of Xj-1, i.e. the number of items
searched before finding the target, NISPS expresses the number of
items searched per second, and ST is the search time for NIS number
of items. We later show a sample use of this formula during our
discussion of model validation. Note that in the strictest sense, NIS
for a given trial includes the target as well. However, considering that
throughout the model validation process we deal only with values
that are relative and average in nature, using NIS as an estimate for
Xj-1 is an acceptable compromise.

Next, we show how we compute the PI-caused decay from Xj-1
values using the decay-due-to-PI function f. In order to simplify our
model validation process, we define f as a simple linear formula
 f (Xj-1) = DVD ∗ Xj-1 Decay-due-to-PI Equation
where DVD is the decay value per unit distractor. The linear nature of
this decay-due-to-PI equation makes it a closed-form approximation
of PI on location learning. This, in turn, makes the decay rate dj
a closed-form expression as well. We later show a sample use of the
decay-due-to-PI equation during our discussion of model validation.

Location Learning on a Graphical Virtual Keyboard
Cockburn, Kristensson et al. (2007, fig. 2, p. 1574) carried out an
experiment that tests how well users learn the location of keys on a
graphical virtual keyboard with one label per key. The labels were
iconic symbols chosen from the Microsoft Webdings font. For the
validation of our model, we focus only on the condition where the
labels on the keys are always visible, i.e. the Visible Interface
condition in that study.

All participants trained for 5 minutes through 10 iterations of
searching and selecting symbols on the interface containing 18 iconic
symbols, which were pre-cued in a separate target-cuing region. For
our validation, we had to make a few assumptions, as the
corresponding information was not given explicitly in that paper.
These assumptions are as follows: An iteration consists of a sequence
of trials. Each of the 10 iterations takes roughly equal time and each
of them gets completed in 30 seconds on average – since 10 iterations
took 5 minutes or 300 seconds as stated in that paper. We also
assume inter-trial, and inter-iteration periods to be constant. Also,

39

except for the target-precue, we assume that environmental context
cuing is minimal and can be ignored for our purposes.

Based on this, we now detail a sample computation of Xj-1 using
our Distractor Computation Equation. For iteration #1, we assume
that the user exhaustively searches all 18 keys before hitting the
target, i.e. the NIS corresponding to iteration #1 is 18. From the
measured data we see that the search time, ST, corresponding to
iteration #1 is 2.4 sec. Consequently the number of items searched
per second, NISPS, is 7.5. Next, using NISPS = 7.5, we compute the
NIS value corresponding to the ST for each iteration. These NIS
values are then used for Xj-1 (j = 1 to 10) in the Decay-due-to-PI
Equation.

Note that for a given iteration or session, it is sufficient to use the
average number of distractors, Xj-1, directly for computing an average
activation per target through the PI Activation equation. This is
possible since we consider the relative activation boost for distractors
to be zero at any given trial, as mentioned previously.

We now detail a sample computation of f using our Decay-due-
to-PI Equation. For iteration #1, we use the boundary condition
f(X0) = 0.5, which implies DVD ∗ X0 = 0.5. Since X0 = 18, the decay
value per unit distractor, DVD, is 0.028. Using this value for DVD,
we compute the f value based on the Xj-1 for each iteration.

Table 1 shows the NIS and the corresponding f(Xj-1) values for
each iteration. Note that for simplicity, we assume the average NISPS
to be same over all iterations. The same holds for the average DVD as
well. The assumptions are warranted since the average NIS and DVD
values themselves are only relative in nature.

Table 1. Relative estimate of the number of distractor items

searched before finding the target item, in each iteration (for
NISPS = 7.5) and the corresponding decay-due-to-PI value
(for DVD = 0.028).

Iteration
j

ST
(observed

search time
per item, in

secs)

NIS
(approx.

number of
distractor

items
searched, Xj-1)

f(Xj-1)
decay-due-to-

PI

1 2.400 18 0.500
2 2.031 15 0.417
3 1.892 14 0.389
4 1.708 13 0.361
5 1.673 13 0.361
6 1.592 12 0.333
7 1.569 12 0.333
8 1.431 11 0.305
9 1.465 11 0.305

10 1.408 11 0.305

Figure 1 shows our model fit to the observed data. We have set
the values for the model fit parameters as follows: (i) The decay-due-
to-time constant a in the decay rate equation is 0.058. In absence of
any inter-trial and inter-iteration data in this empirical study, we
assume that there have been insignificant pauses between any two
consecutive trials or between any two consecutive iterations. Hence,
we choose a relatively small value for the decay-due-to-time
constant, implying that the decay due to passage of time had been
minimal. (ii) The latency scale F is 0.96. This maps an activation
value to its corresponding time value. Further, it also takes the fixed
costs associated with visual encoding and motor response into
account. (iii) The strength scale q is 150. (iv) The latency exponent
scale g is 0.2. The last two parameters help in an overall adjustment

of the activation value. With R2 = 0.992 and RMSD = 0.074 for our
prediction, our model extension closely agrees to the observed data.

As evident from Figure 1, the prediction from our modified

equations with a RMSD of 0.074 is significantly better than the
prediction of reaction based on the standard ACT-R declarative
memory equations with a RMSD of 0.824. In case of the standard
ACT-R based calculations, the constant time-based decay parameter
d in the base-level activation equation was left at its default value of
0.5 and the latency exponent scale parameter g in the reaction time
equation was left at its default value of 1.

It should be noted that our choice of 0.058 for the decay-due-to-
time constant a is so small that the term can be removed without
incurring any significant change in the shape of the predicted curve.
With this simplification, we can claim that we have introduced only a
single new parameter into ACT-R theory of declarative memory,
namely the strength scale q (see the PI Activation Equation).

Learning of Static and Unfamiliar Menu
Cockburn, Gutwin et al. (2007, fig. 2, p. 632) carried out an
experiment that tests how well users learn the location of menu items
in a single column, single level menu where the items are never
relocated and all items are displayed at the same time to the user. The
menu items were words that were unfamiliar to the user in this study.
We are thus referring to the “Static+Unfamiliar” menu condition in
that study.

The menu-item search and selection trials were executed by the
participants in a series of 7 blocks. Participants began each trial by
clicking on a ‘Menu’ button, which caused the menu to be shown and
also the name of the target to appear beside it. For our model
validation, we assume a menu of 8 items. We use this length since it
is the next highest integer to the average of the menu lengths studied.

For our model validation and due to the lack of more accurate
information, we assume the following: Each block consisted of a
collection of trials. Each of the 7 blocks takes roughly equal time and
gets completed in 10 seconds on average. We also assume inter-trial,
inter-block periods to be constant. Again, except for the target-
precue, environmental context cuing is assumed to be minimal and
therefore ignored for our purposes.

We compute the Xj-1 for the 7 blocks using the same technique as
in the previous study. For block #1, let us assume that the user

Figure 1. Mean Reaction Time, RT (in secs) per item (label)
selected on a graphical keyboard, as observed in (Cockburn,
Kristensson et al. 2007, fig. 2, p. 1574), named C-K-A-Z, the
solid line with filled circles. Our prediction is the dashed line
with unfilled circles (R2=0.992, RMSD=0.074). Prediction by
Standard ACT-R at d=0.5 (fixed default decay), g=1, q=1, is
the dashed line with filled triangles (R2= 0.952, RMSD=
0.824).

40

exhaustively searches roughly all 8 menu-items before hitting the
target, i.e. NIS corresponding to block #1 is 8. In figure 2, we see that
the observed search time, ST, corresponding to block #1 is 0.819 sec.
Therefore, the number of items searched per second, NISPS is
roughly 10. Using NISPS = 10, we compute the NIS value
corresponding to the ST for each block. These NIS values become the
values for Xj-1 (j = 1 to 7) in the Decay-due-to-PI Equation.

Next we compute f using our Decay-due-to-PI Equation. For

block #1, we use the boundary condition f(X0) = 0.5, which implies
DVD ∗ X0 = 0.5. Since X0 = 8, therefore the decay value per unit
distractor, DVD, is 0.0625. Using this value for DVD, we compute
the f value based on the Xj-1 for each block.

Figure 2 shows the fit of our model to the observed data. We
have set values for the model fit parameters following similar
arguments as in the previous example: (i) The decay-due-to-time
constant, a, in the decay rate equation is 0.058. (ii) The latency scale,
F = 0.362. (v) Strength scale, q = 150. (vi) Latency exponent scale,
g = 0.2.

As evident from Figure 2, with R2 = 0.978 and RMSD = 0.026,
our adapted model shows good correspondence to the observed data.
Also, the prediction generated from our modified equations is much
better than the prediction based on the standard ACT-R declarative
memory equations, with an RMSD of 0.264. Similar to the previous
example and for the standard ACT-R based calculations, the constant
time-based decay parameter d and the latency exponent scale
parameter g were left at their default values of 0.5 and 1 respectively.

Discussion
General Comments
Our proposed mathematical extension to the ACT-R theory of
declarative memory model closely predicts the PI effect on location
learning in user interfaces. The model is based on the number of
distractor items visually encoded on the way to finding the target
item. Our proposal directly quantifies the PI effect on location
learning at a high level of abstraction, and is based on well
established results from PI studies. There are few potential concerns
with the analysis described above that we enumerate below.

In our model, we implicitly assume that the number of distractors
visually encoded at the time of jth practice, i.e. the value for the term
Xj-1 in the decay rate equation, will be estimated by some visual
search module whose implementation lies beyond the scope of this
work.

We set the latency scale parameter F to different values for the
two predicted curves; one being relevant to our model extension and
the other being relevant to the original ACT-R equations of
declarative memory. We decided to do this in order to match their co-
ordinates for the first session (i.e. iteration #1 in the first example and
block #1 in the second example) to the co-ordinates of the first
session of the observed data. Such adjustment merged the session #1
co-ordinates of the three curves (two predicted and one empirical)
into a single reference point thereby making visual as well as
quantitative comparison of data easier. Since the effect of F in the

reaction time equation is only to scale the critical quantity igAe− onto
the range of the latencies (Anderson et al. 2004, p. 1044), we can
safely consider that changing F has a negligible effect on the shape of
the curve. Hence, we can state that our decision to set F to different
values for different predicted curves was an acceptable compromise.

We set the value of the strength scale q to 150 and the latency
exponent scale g to 0.2 in order to match the shape of our predicted
curves to the corresponding observed data as closely as possible.
While traditionally q and g have been left at their default values of 1,
still our choice of the same value for q and g across both the studies,
albeit different from the default, avoids compromising the fidelity of
our new model to a considerable extent.

In order to validate our model, we needed to extract the number
of distractors at a given practice (i.e. Xj-1 in decay rate equation) from
the empirical studies, which did not report this information directly.
Hence we were forced to make assumptions that enable us to extract
a rough average estimate of the number of distractors per practice, at
a given session, from those studies. Although these relative estimates
seem sufficient to demonstrate our model’s ability to replicate the PI
effect, we feel that a future empirical study that directly measures the
number of distractors visually encoded by a novice user on the way to
finding a target item in a given layout would be worthwhile.
However, this would involve eye tracking and a very carefully
constructed experiment. Such an effort would enable us to identify
more accurate values of Xj-1, thereby increasing the fidelity of our
model extension further.

Comments on computational design: A suggestion
We now briefly suggest one possible way to implement the
computation model to simulate the PI effect as presented here.

We assume that we are given a visual search module that is based
on the attentional vision module of standard ACT-R software. We
use this module as a black box and assume that it is able to return us a
list of distractors for every time the layout in question is scanned for
a pre-cued target item. We also assume that the positions of items in
the layout do not change; the target item always exists in the layout
and is found whenever searched for.

The distractors visually encoded on the way to finding a target
should be considerably less salient than the target itself. Hence their
memory strengths should get significantly smaller boosts than the
target. For simplicity of our design, we assume that, every distractor
gets zero boost in its memory strength, while in comparison the target
gets the full quota of boost it deserves, at every execution of the
visual search and selection task. One way to realize this would be
through exercising appropriate control on buffer clearing in the
productions. The other way to realize this would be through explicitly
using the getter and setter functions for manipulating base-level
activations of the chunks from within the productions.

In the Lisp implementation of ACT-R, there are many side-
effects, i.e. situations where code in the model that explicitly does

Figure 2. Mean Reaction Time, RT (in secs) per item selected
on a graphical menu, as observed in (Cockburn, Gutwin et al.
2007, fig. 2, p. 632), named C-G-G, the solid line with filled
circles. Our prediction is the dashed line with unfilled circles
(R2= 0.978, RMSD= 0.026). Prediction by Standard ACT-R
at d=0.5 (fixed default decay), g=1, q=1, is the dashed line
with filled triangles (R2= 0.969, RMSD= 0.264).

41

one thing also causes other actions to be performed that are not
explicitly represented in the model code (Stewart and West, 2007).
In order to avoid such side-effects, we recommend to avoid
manipulating the attributes of visual location chunks or the visual
object chunks of the vision module; instead, we recommend to
maintain a parallel set of user-defined chunks, each containing
information related to an item on the layout. Whenever a pre-cued
target item is found and the distractors involved in the search are
identified by the aforementioned visual search module, the memory
strength of the user-defined chunks representing the target and its
distractors can then be updated appropriately.

Summary

The work reported in this paper developed a model extension that
captures the proactive interference effect on two-dimensional
location learning. The extension was added to ACT-R’s model of
declarative memory strength and recognition/recall reaction times.
The model was then validated by fitting the data of two previous
experiments that tested location learning on a graphical virtual
keyboard and a graphical menu. The new model resulted in a
significantly better fit to the observed times.

References
Altmann, E. M., & Schunn, C. D. (2002). Integrating Decay and

Interference: A New Look at an Old Interaction. Proceedings of
the 24th Annual Conference ofthe Cognitive Science Society. (pp.
65-70). Mahwah, NJ: Erlbaum.

Anderson, J. R. (1983). A Spreading Activation Theory of Memory ,
Journal of Verbal Learning and Verbal Behavior, 22, pp. 261-
295.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C.,
and Quin, Y. (2004). An integrated theory of the mind.
Psychological Review, 111(4), 1036–1060.

Anderson, J. R. and Lebiere, C. (1998). The atomic components of
thought. Lawrence Erlbaum.

Cockburn, A., Gutwin, C., & Greenberg, S. A. (2007). A Predictive
Model of Menu Performance, CHI 2007, 627-636.

Cockburn, A., Kristensson, P. O., Alexander, J., and Zhai, S. (2007).
Hard Lessons: Effort-Inducing Interfaces Benefit Spatial
Learning, CHI 2007, 1571-1580.

Darken, R., and Sibert, J. (1996) Wayfinding in Large-scale Virtual
Environments, Proc. ACM CHI 1996, 142-150.

Keppel, G., and Underwood, B. J. (1962). Proactive inhibition in
short-term retention of single items. Journal of Verbal Learning
& Verbal Behavior, 1, 153-161.

Lee, P. and Zhai, S. (2004). Top-down learning strategies: can they
facilitate stylus keyboard learning? Int. J. Human-Computer
Studies, 60, 585–598.

Leung, H-C. and Zhang, J. X. (2004). Interference resolution in
spatial working memory. NeuroImage, 23, 1013–1019.

MacGregor, J., Lee, E., & Lam, N. (1986). Optimizing the structure
of database menu indexes: A decision model of menu search.
Human Factors, 28, 387–399.

Nilsen, E. L. (1991). Perceptual-motor control in human-computer
interaction (Technical Report Number 37). University of
Michigan, Ann Arbor, MI.

Stewart, T. C. and West, R. L. (2007). Deconstructing and
reconstructing ACT-R: Exploring the architectural space.
Cognitive Systems Research, 8, 227–236.

Underwood, B. J. (1957). Interference and forgetting. Psychological
Review, 64, 49-60.

Wickens, C. D. and Hollands, J. (2000). Engineering psychology and
human performance. 3rd Ed. pp. 252, Prentice Hall.

Wickens, D. D. (1972). Characteristics of word encoding. Melton &
Martin (Ed.), Coding processes in human memory. pp. 195-215.

Wixted, J. T. and Rohrer, D. (1993). Proactive Interference and the
Dynamics of Free Recall. J. of Expt. Psychology: Learning,
Memory, and Cognition. 1993, Vol. 19, No. 5, 1024-1039.

Wolfe, J. M. (2000). Visual attention. In K. K. De Valios (Ed.),
Seeing (2nd ed., pp. 335–386), Academic Press.

Appendix
We show values from few functions corresponding to the first study, Location Learning on a Graphical Virtual Keyboard. Constant parameters are
a=0.058, F=0.96, q=150, g=0.2. All are average values per target. Xj-1 values are from Table 1. Human data (search time) is rightmost.

Iteration# j Xj-1 dj tj (sec) e-gA T = F * e-gA (sec) Observed search time (sec)

1 18 0.558 30 2.556 2.454 2.400
2 15 0.475 60 2.097 2.013 2.031
3 14 0.447 90 1.889 1.813 1.892
4 13 0.419 120 1.745 1.675 1.708
5 13 0.419 150 1.661 1.595 1.673
6 12 0.391 180 1.577 1.514 1.592
7 12 0.391 210 1.521 1.460 1.569
8 11 0.363 240 1.458 1.400 1.431
9 11 0.363 270 1.413 1.356 1.465
10 11 0.363 300 1.377 1.322 1.408

42

Cognitive Modeling of Strategies in Dynamic Tasks

Alberto De Obeso Orendain (a.de-obeso-orendain@sussex.ac.uk)
Representation and Cognition Group, School of Informatics

University of Sussex, Falmer, Brighton, BN1 9QJ, UK

Sharon Wood (s.wood@sussex.ac.uk)
Representation and Cognition Group, School of Informatics

University of Sussex, Falmer, Brighton, BN1 9QJ, UK

Abstract
Computer simulations, or microworlds, have been used for
studying various topics including problem solving. This work
investigates strategies for complex, dynamic problem solving
in a fire-fighting microworld. Using data from a study by
Cañas, Antolí, Fajardo & Salmerón (2005), an ACT-R
cognitive model is developed with the aim of providing
insight into the development and selection of strategies
participants use. One particular behavior observed in
participants when trained repetitively on the same scenario,
the creation of a fire-break barrier to prevent the fire
spreading, is discussed. It was found that selection of a
particular strategy depends on the fine-tuning of ACT-R
production rule utilities as a consequence of environmental
rewards, highlighting the role of reward size and timing. The
model is able to capture various aspects of the data by
promoting a free competition of small blocks of behavior
based on rational analysis. A key finding is that good
performance is linked to effective combination of strategic
control with attention to changing task demands reflecting
time and care taken in informing and effecting action.

Keywords: Cognitive Modeling; ACT-R; problem solving;
strategy; microworlds.

Introduction
Microworlds are computer simulations that represent a
middle point between naturalistic scenarios and laboratory
tasks (Brehmer and Dörner, 1993). Although microworlds
are relatively simple, they embody the essential
characteristics of real-world dynamic decision-making
environments (Gonzalez, Vanyukov and Martin, 2005).
Microworlds allow for an economic and standardized
presentation of scenarios, data registration and computing of
results (Frensch and Funke, 1995; Brehmer and Dörner,
1993). These tasks have been used for studying various
domains including problem solving (Frensch and Funke,
1995; Brehmer and Dörner 1993; Taatgen 2005).

Microworlds have three characteristics. Firstly,
complexity, owing to the number of elements and number
(and nature) of their interrelationship (Frensch and Funke,
1995). Second, lack of transparency; the problem solver
does not have access to all relevant task information,
making interaction with the world necessary for knowledge
requirements. Last, the problem state changes both
independently and as a consequence of the participant’s
actions. Microworlds consequently place a variety of
cognitive demands on the problem solver. According to

Anderson et al. (2004) dynamic tasks require considerable
goal-directed processing within demanding perceptual
displays and execution of motor commands under severe
constraints. They require continuous processing of feedback
in order to select appropriate actions within an ever-
changing situation (Brehmer and Dörner, 1993). This paper
focuses on the demands posed by these dynamic task
characteristics, in particular the way performance feedback
from a dynamic environment is processed, and how this
allows the consolidation of strategies.

Frensch and Funke (1995) suggest that it is important to
understand the process of Complex Problem Solving (CPS),
rather than the product; this process is an interaction
between the problem solver, the task and the environment.
A cognitive model is able to reveal the internal processes for
selecting actions together with their interaction with the
environment, increasing our understanding of these
processes. Cognitive modeling has been used in dynamic
environments such as air traffic control (Taatgen, 2005).
The work presented here uses the FireChief fire-fighting
microworld (Omodei & Wearing, 1995).

The FireChief Microworld
FireChief participants combat fires spreading in a landscape
using truck and copter units. Trials last 260 seconds. A
FireChief scenario is specified by a variety of properties
such as landscape distribution of forest, clearings and
property, the number and position of initial fires, the
direction and strength of the wind, and the initial position of
fire-fighting units. Figure 1 shows the central cells of a
FireChief trial display converted for model use. Copters
(shown as CR) and trucks (TR) can move between
landscape grid cells (R, L & H) and can Drop Water (DW)
over cells to extinguish fires (Fn where n indicates fire
intensity). Copters are three times faster than trucks and
cannot be destroyed by fire, but a truck’s water tanks have
twice the capacity and are able to Control Fire (CF) by
creating a fire-break. Commands are issued through a
combination of mouse and keyboard operations and their
execution takes a fixed amount of time, 4 seconds to DW, 2
seconds to CF, and a variable amount of time to Move a unit
depending on distance and type of unit. Wind strength and
direction are in the upper right-hand corner of the display.

FireChief is a dynamic decision-making problem solving
task environment where a series of interdependent decisions

43

are required to reach the goal, the environment changes over
time, and user actions change the state of the world
(Gonzalez et al., 2005). The problem solver is engaged in a
strategic situation where he or she has control over a limited
number of fire fighting units and has to use them to
accomplish one mission: to fight and quell the fire. Task
performance is inversely proportional to the number of cells
destroyed by fire at the end of the trial.

Figure 1: Central cells of the model version of a FireChief
trial display using ‘buttons’ (Lisp)

ACT-R Architecture
The CPS model is implemented in ACT-R 6.0 (Anderson et
al., 2004). ACT-R is divided into various modules
according to the kind of information they process: a visual
module for identifying objects in the visual field (in Figure
1 the focus of attention is on the cell in the fourth row of the
penultimate column), a manual module for controlling the
hands (the mouse pointer is located in the same cell), a
declarative module for retrieving information from memory,
and a goal and imaginary modules for keeping track of
current goals and intentions. Communication between
modules is achieved through buffers where the content of
any buffer is limited to a single declarative unit of
knowledge, a ‘chunk’. Thus the system can only respond to
a limited amount of information. Behavior in ACT-R occurs
through interaction of its specialized modules via the
buffers, coordinated by a central production system.

There are two types of knowledge in ACT-R: chunks
encode declarative knowledge whereas procedural
knowledge is represented by production rules, where each
rule corresponds to a cognitive processing step. Each ACT-
R production has two elements: the condition, a
combination of states from the different buffers, and an
action, which can perform transformations over the state of
buffers and trigger actions in modules. ACT-R functionality
is achieved through many mechanisms, but two are of the
utmost importance in this model: utility and reward.

Utility designates the value of executing a rule; it
represents the perceived value of a production and is
updated by rewards from the environment. Utility of
productions is compared during the process of conflict
resolution where only the rule with the highest utility is

acted upon. From a computational perspective, a participant
can be considered as a collection of utility values. By
interacting with FireChief, these utility values are tuned
throughout a sequence of trials in a unique fashion within
constraints imposed by the properties of the FireChief task,
the procedural knowledge represented by rules, and rewards
from the environment. The combination of ACT-R utility
learning mechanisms with the dynamic nature of FireChief
means the model can run a number of times under the same
task conditions with the same knowledge and yet produce a
different pattern of behavior each time. Rewards are the
ACT-R mechanism for giving the model feedback from the
environment. When a reward is triggered the utilities of all
productions that have fired since the last reward are
updated. The amount and distribution of rewards have an
important impact on model’s behavior (Janssen, Gray and
Schoelles, 2008).

Human Study Data
The data used for specifying and fitting the CPS model
comes from a study by Cañas et al. (2005). Those
participants trained on the same, reliably predictable
FireChief scenario for 16 trials were found to increasingly
preferentially select the fire-fighting strategy that achieved
the best outcome. This paper focuses on modeling strategy
selection during constant training in order to understand this
process and thereby gain insight into strategy formation.
The constant scenario is characterized by a strong, constant
easterly wind. Participants are limited to 2 copters and 2
trucks. To begin with there are two groups of fire in close
proximity which quickly spread eastward (Figure 1 shows
their initial distribution). A variety of different strategies can
be used to stop the fire, as described in the next section.

Strategy Use
In total, 1728 protocols from 72 participants were analysed
to identify four main strategies. In the Non-Barrier strategy
CF commands are issued with noticeable spatial dispersion
and are interleaved with DW commands. In the Stop
strategy DW commands are used alone and are issued over
the most intense fires within sufficient proximity to stop the
fire. In the Follow strategy only DW commands are used but
they do not target the strongest fires nor are they issued in
close proximity to each other. The most structured strategy
is called Barrier and it turns out to be very effective in the
constant training scenario; it is used twice as often (50 vs.
27) by the top four performers compared to the four worst.
For these reasons it is discussed here in more detail.

The Barrier strategy
The Barrier strategy presents a very characteristic way of
dealing with the fire: the issuing of an ordered pattern of CF
commands in a shape, similar to a barrier, intended to stop
the fire spreading. There are many forms in which the
barrier is created but a semicircle or straight line is the most
frequent. In Figure 2 the barrier has the form of a semicircle
where the black squares represent CF commands and the

44

grey squares represent DW commands. The strategy recruits
top-down processes in constructing a fire-break but is
sensitive to bottom-up perceptual processes so the final
form of the barrier is a function of the shape of the fire that
is being controlled.

Figure 2: A typical Barrier strategy formation.

The Cognitive Model
To allow interaction between ACT-R and the FireChief task
a Lisp version of FireChief was developed following the
original specification provided in the FireChief manual
(Omodei & Wearing, 1993). This is able to control all
relevant aspects of the task: the landscape, development of
fire, execution of commands, and performance calculations.
Before running the model a FireChief scenario is loaded in
an experimental window in the form of a matrix of multi-
colored labeled buttons. Buttons enable interaction between
the model and the experimental window by means of mouse
and keyboard commands
 The model implements all four main strategies, deciding
which to use (based on initial utility comparisons) or
switching to another (as utilities change) during the trial if
the fire is not under control. An ineffective strategy, poorly
rewarded, can be abandoned at any point, therefore. A
chosen strategy is held in the imaginal buffer and affects
model behavior by defining, for example, whether the
model will use a mixture of DW and CF commands,
whether or not a barrier will be created, or which ways of
attacking the fire are preferred. In the very first trial the
rules that select a strategy have an initial random utility
determined by the standard ACT-R utility equation that has
a random component. After the trial ends the utility of these
productions is modified according to the final result. In this
way, the actual means of executing a strategy emerges by
rewarding certain rules over others (so a strategy is more
precisely a set of strategies manifesting similar behaviour).

Creating a barrier
The functional block of rules described here belong to the
set of strategies for creating barriers (see Figure 3). These
rules represent a small subset of all the productions that are
available to the model which is able to select and perform
any of the four main strategies identified from the human
data analysis. A FireChief trial lasts 260 seconds and a

typical barrier is created in 60 seconds. Each cell in a barrier
requires a Move followed by a CF command and the
average number of grid cells needed for a barrier is 15. The
average number of commands in a trial is 110.

First the model must specify a starting point for the
barrier. This will depend upon the current state of fire and
wind conditions. Second, the location of the next section of
the barrier must be determined. A design decision was that
the form of the barrier should be the result of a competition
for locating the next cell of the barrier; top-down and
bottom-up processes compete through the ACT-R conflict
resolution mechanism. The selection of a target cell follows
a process in which the candidate cell is proposed and then
various tests (based on perceptual actions) are conducted.
Third, a truck is moved to the selected cell before executing
a CF command comprising a sequence of steps: locate the
target, store location of target in working memory, find a
truck, attend the unit, move the cursor to the unit, click the
unit, attend target, move mouse to target, click mouse. Of
these actions moving a cursor shows the highest time
variability in the model (this information is not recorded in
the human study protocols) stressing its importance in the
total latency of the command and its corresponding
importance to overall performance. When the truck has
finished moving a CF command can be initiated. Fourth, the
status of the barrier is monitored. Eventually, the barrier is
considered complete when the fire-break is sufficient to
contain the fire. The shape of the resulting barrier is a
product of competition between various rules and the
reward they receive when executing commands.

In the excerpt shown in Figure 3, the model is following
the Barrier strategy and has just started a Move command
with a truck. The current intention of the model is to create a
fire-break barrier using CF commands. In step 1 the model
must choose between waiting for the truck that has initiated
its movement (and is disabled until it arrives) or using the
other truck. In this step the utilities of productions 1-A and
1-B are compared and the one with the highest expected
value is fired. In this case the model decides to wait. In step
2, the model searches for a visual-location that satisfies a set
of constraints. In this example the model is verifying if the
truck has arrived at its destination. The first constraint is
spatial: the column and row of the destination cell. The
second constraint is graphical: the cell must have a light-
grey color (if the destination cell is white it means that the
truck is still moving). The result of this search determines
step 3. If the truck has not yet arrived, the model returns to
step 1. When the model detects that the truck has arrived at
its destination a shift of attention is made to that location. At
the end of this attention shift the visual buffer is loaded with
a chunk representing the content of the cell, namely the type
of landscape and whether the cell is on fire (plus its
intensity). Step 4 starts by checking whether the visual
chunk encoded in the visual buffer is a product of an explicit
shift of attention or the product of buffer stuffing. Buffer
stuffing is an ACT-R mechanism in which a chunk is stored
in the visual buffer without an explicit request from a

45

production rule. This can be a recurrent source of distraction
for the visual system but also allows the detection of
unforeseen events (for example new fires appearing in the
scenario). In this example, if the model is distracted a visual
chunk (that does not represent the location details for where
the CF is going to be executed) is placed in the visual
buffer. If the model proceeds with step 4 it will move the
mouse pointer to the cell that distracted its attention instead
of the correct cell. If the visual element encoded in the
visual buffer is a product of the explicit attention shift
executed in step 3, the CF command can be applied there
because now the unit is in position. Before issuing a CF
command the mouse pointer must be located over the truck,
so step 4 initiates a mouse movement towards the attended
cell. During this time the target cell may catch fire; in this
case the model aborts the execution of the CF command. In
step 5, after the mouse movement is complete, the CF
command is initiated by pressing a key. In the normal flow
of events the CF command would start after the click.
Figure 3 shows a different outcome: just after rule 5-A fires
the target cell catches fire, rendering the execution of a CF
command impossible and consequently an alarm is emitted.
Following this, the model is able to detect this alarm and,
making use of the contents of the imaginal buffer, can select
an appropriate course of action based on its strategy choice.

Figure 3: Sequence of Barrier strategy rules

A model run lasts 4160 seconds (16 sessions of 260
seconds). The model was run 40 times, following the same
experimental design as in the Cañas et al. (2005) study. The
data generated by the model provides a complete protocol of
interaction with FireChief, as for each human participant, as
well as a detailed trace of the operations being executed
inside its various modules.

Data Fitting
During initial development, the simplest natural model

was implemented based on a GOMS (Card, Moran, and
Newell, 1983) analysis of the task and then fitted to the
human study data. This initial model was highly efficient:

all units were used all the time so time wasted was
negligible. This initial model also followed a rigid strategy
specification; however, the data reveals that participants do
not use time as efficiently as in the initial model nor do they
repeatedly execute the same strategy, making the
importance of achieving flexibility in behavior evident. The
approach adopted was to provide the model with complete
knowledge about all the available strategies (cf. Gray &
Boehm-Davis, 2000) but to allow them to compete freely
based on their perceived utility.

Various reward schemes were tried, the most successful
being the one that focuses on individual commands. In the
‘single reward’ scheme a reward (based on final
performance) is given at the end of the trial. In the ‘reward
sub-task’ scheme the completion of salient tasks is
rewarded. For example, in the Barrier strategy stages are
completion of a barrier, refilling a unit, or extinction of the
fire. The problem with both these schemes is that, because
several hundreds of rules may fire between rewards, the
utility values of the most recent rules are changed only. This
affects the model’s behavior because the rules responsible
for achieving good performance may not receive the proper
reward and hence appropriate learning is deterred. In the
scheme selected for use here positive rewards are awarded
for successfully completing individual commands and
negative rewards for executing unsuccessful commands and
wasting time. Executing Move and CF commands generates
a fixed amount of reward but the reward of a DW command
is a function of the intensity of the fire that is extinguished.

In fitting the model there was no attempt to obtain the
exact behavior of any individual; rather, data fitting centered
on identifying decision points, encoding rules for executing
actions and assigning rewards.

Results
Three metrics are used here to compare behaviour: task
performance (reflecting appropriate strategy use); command
duration (reflecting underlying cognitive and other
processing steps); and interactions between commands
(reflecting performance-related functional relationships
between the Move and the CF and DW commands). There
are other metrics not discussed here.

Figure 4: Comparison of performance between model and

Cañas et al (2005) study participants

46

Figure 4 compares performance in the constant training
condition for participants and the model. As can be seen, the
model is able to replicate performance levels and also
capture the incremental improvement in performance
(R=.538). A significant performance increment was
obtained by comparing the first and last four trials for both
participants and the model. (F(1,33)=4.417, p<.05 and
F(1,33)=5.17 p<.05 respectively).

 Performance Frequency(%)

Strategy Data Model Data Model

Barrier 81.59 81.05 0.65 0.66

NonBarrier 72.38 71.74 0.17 0.18

Stop 91.98 71.3 0.02 0.11

Follow 57.69 66.42 0.16 0.06

Table 1: Strategy use during constant training trials

Table 1 shows that Barrier is the most frequently used
strategy during constant training1. Due to the high wind
strength in the constant training scenario it is very difficult
to stop the fire using DW commands only.

Figure 5: Increase in production utilities during
consolidation of the Barrier strategy

A typical run of the model involves around 200 decisions,
and the execution of each decision requires between 1 to 6
rules. On average the model executes 103 commands and
participants execute 110 commands per trial. The model
improves performance due to the tuning of its production
utilities to the constant training trial scenario. Figure 5
shows how the utility of productions related to the creation
of the barrier steadily increases as trials are completed. This
continuous increment of utility values implies that FireChief
commands are being completed with success with more
frequency over trial runs.

1 The good performance shown in the human data for the Stop

strategy is based solely on two participants who used it extremely
successfully from the outset whilst other less proficient participants
rapidly abandoned it in favour of more reliable strategies.

Good vs. Bad Performers
A comparison of the best and worst performers in the
constant training condition is presented with the aim of
showing how utility values can be used for understanding
more about participant behavior. Performance metrics for
the top four participants in the constant training group are
compared with the worst four participants and the same is
done with model data. The best performers use the Barrier
strategy twice as often as the worst performers (50 vs. 27
times) and performers/model-runs have an average
performance per trial of 86.80/87.41 while the worst
performers have an average performance of 70.91/71.80
when using this strategy.
 All participants and model-runs, take a similar amount of
time to issue a CF command that forms part of a fire-break
barrier (F(78,1)=.637, p=.427) and (F(81,1)=1.792, p=.185),
so the performance differences do not lie here. However,
there is a functional dependence between moving a unit and
issuing a CF command. Before executing a CF command
the truck must be moved to the right place. The model
embodies the assumption that the decision about where to
move the truck is taken when the execution of the
movement is initiated. There is a significant difference
between the best and worst participants in the time it takes
to execute a movement prior to issuing a CF command
when forming a barrier (F(1260,1)=67.980, p<.001). The
model captures latency times for the best performers only;
worst performers spend much less time on this activity than
the model. The best approximation to worst performance
provided by the model is to execute only a single perceptual
action to ascertain the fire location without checking
whether the target fire-break cell is on fire. The model uses
the fire-front for selecting where in a particular row the next
fire-break cell should be, and poor performers often get this
wrong (see next section). Even so, the model remains slower
than participants by 800ms. on average. Even if all
perceptual and cognitive processing could be removed from
the model it cannot reduce the time taken by a sufficient
amount to match human latencies. An explanation for this
could be connected to the duration of motor commands: a
Move command requires two key-presses and two mouse
pointer moves. Perhaps poor performers execute these
actions with more hastiness. Evidence to support or refute
this explanation is subject to ongoing research

Utility profile
With the aim of gaining insight into what differentiates best
and worst performers, two profiles were created based on
utility values for each group from the model run. To obtain
the profiles, the utility of relevant productions for each
group is queried at the end of the training phase and
averaged. In doing this, the comparison is focused only on
the rules relating to the creation of a barrier: the way trucks
are used, how they are moved, and how the barrier is
created.

The comparison shows that the most striking difference
between good and bad performers is that good performers

47

successfully combine top-down and bottom-up processes to
create a barrier, while the worst performers apply only top-
down processes successfully, failing to combine them well
with bottom-up processes so that cells selected for the fire-
break prove less effective. The key differences are that the
best performers pay more attention to the fire-front, and also
that they wait for the trucks to finish their (short)
movements before executing a CF command, thereby
completing the sequence of commands successfully. These
differences can be identified by looking at the utility values
of the productions that compete at the relevant decision
points (as in Figure 5).

Discussion
This paper is focused on the adaptive selection of strategies
for fire fighting with the aim of demonstrating how
cognitive modeling can improve our understanding of
problem solving behavior when interacting with dynamic
microworlds, with implications for real-world complex
problem solving. The model continuously interleaves
cognitive with perceptual-motor operations, selects different
strategies and implements them according to the reward
structure of the task. A particular implementation of a
strategy depends on the fine-tuning of ACT-R production
rule utilities as a consequence of environmental rewards and
thus is a product of both the configuration of the trial (in this
case the constant training trial) and the history of
interactions between problem solver and task (which is
stored in the collection of utility values). As noted by Cañas
et al. (2005) the constant training condition allows
participants to consolidate strategies (see Figure 5).

The most important learning mechanism for the model is
the one that updates utility. The main objective during the
fitting of the model was to allow rules to be rewarded (or
punished) by their effects in the environment, however the
set of available strategies was not altered. In other words,
fitting the model was restricted to affecting the competition
between strategies.

This work highlights the role of size and location of
rewards for strategy selection. As pointed out by Janssen,
Gray & Schoelles (2008) the definition of reward has an
important influence on model behavior. Due to the large
number of rules being fired in each trial, it is necessary to
arrive to an appropriate reward frequency to enable
appropriate learning. Rewarding productions for their
effectiveness in successfully completing individual
commands seems a good criterion; however, in doing this it
is important to identify where cognitive effort is made. In
the case of FireChief relevant cognitive effort for e.g.,
placing a new section of barrier, is traced to the time a
sequence of actions is initiated prior to the final successful
movement being executed, and not just when that final CF
command is issued (that is, there is a causal link between
the CF command and those actions previously taken).

The process by which a barrier is created is only one
amongst many others that occur during a model run. A
similar analysis based on utility comparisons can be carried

out for other strategies by identifying the rules that govern
them. Understanding strategy selection as a consequence of
previously learned utility also offers a means to understand
more about performance differences. Worst performers
reflect a different pattern of utility values in rules used for
the creation of the fire barrier, owing to impoverished
attention to the dynamic problem solving state and apparent
lack of care in issuing commands. Overall the work
presented demonstrates that complex dynamic tasks can be
fruitfully explored through a cognitive modeling approach.
By providing a loose strategy definition the model is able to
implement complex patterns of behaviour which in turn are
able to successfully stop the fire while replicating many
other aspects of the human study data.

Acknowledgments
This research is funded by CONACYT.

References
Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An integrated theory of the
mind. Psychological Review, 111, (4), 1036-1060.

Brehmer, B., Dörner, D.B. (1993) Experiments with
computer-simulated microworlds: Escaping both the
narrow straits of the laboratory and the deep blue sea of
the field study. Comp. in Human Behavior, 9, 171-184.

Cañas, J.J., Antolí, A., Fajardo, I., Salmerón, L. (2005)
Cognitive inflexibility and the development and use of
strategies for solving complex dynamic problems: effects
of different types of training. Theoretical Issues in
Ergonomic Science, 6 (1) 95-108.

Card, S., Moran, T., Newell, A. (1983) The Psychology of
Human-Computer Interaction. Hillsdale, NJ: Lawrence
Erlbaum.

Frensch, P.A., Funke, J. (Eds.) (1995) Complex problem
solving: The European Perspective, Hillsdale, NJ:
Lawrence Erlbaum.

Gonzalez, C., Vanyukov, P., Martin, M. (2005) The use of
microworlds to study dynamic decision-making.
Computers in Human Behavior, 21, 273–286

Gray, W.D., Boehm-Davis, D.A. (2000) Milliseconds
matter: an introduction to microstrategies and to their use
in describing and predicting interactive behavior. Journal
of Experimental Psychology: Applied, 6(4), 322-335.

Janssen, C.P., Gray, W.D., Schoelles, M.J. (2008). How a
modeler’s conception of rewards influences a model’s
behavior: Investigating ACT-R 6’s Utility Learning
Mechanism. Proceedings of the 15th Annual ACT-R
Workshop, Pittsburgh, PA, p42.

Omodei, M.M., Wearing, A.J. (1995). The FireChief
microworld generating program: An illustration of
computer simulated microworlds as an experimental
paradigm for studying complex decision-making
behavior. Behav. Res. Meth. Instr.& Comp., 27, 303–316.

Taatgen, N.A. (2005). Modeling parallelization and speed
improvement in skill acquisition: from dual tasks to
complex dynamic skills. Cognitive Science, 29, 421-455.

48

Towards Efficiently Supporting Large Symbolic Declarative Memories

Nate Derbinsky (nlderbin@umich.edu)
John E. Laird (laird@umich.edu)

University of Michigan, 2260 Hayward Street
Ann Arbor, MI 48109-2121

Bryan Smith (bryanesmith@gmail.com)

Ann Arbor, MI

Abstract
Efficient access to large declarative memories is one
challenge in the development of large-scale cognitive models.
Prior work has provided an initial demonstration of
declarative retrievals using ACT-R and a relational database.
In this paper, we provide extended analysis of the
computational challenges involved. We detail data structures
and algorithms for an efficient mechanism over a large set of
retrievals, as well as for a class of activation bias. We have
implemented this work in Soar, and present detailed
evaluation on synthetic data as well as the WordNet 3 lexicon.

Keywords: large-scale cognitive modeling; declarative
memory; cognitive architecture; Soar.

Introduction
Typical cognitive models have very modest declarative
memory (DM) requirements. In these cases, naïve data
structures and algorithms, despite inefficiencies, suffice for
declarative retrievals. However, prior work (Douglass et al.,
2009) has shown that cognitive models of complex tasks
require more substantial DMs, such as a large subset of the
WordNet lexicon (Miller, 1995), and that existing retrieval
mechanisms, such as the ACT-R implementation, do not
scale to large DMs. If we are ever going to study human
behavior in knowledge-rich, temporally extended tasks,
additional research is required on the underlying
computational data structures and algorithms that support
declarative memory storage and retrieval.

In an effort to efficiently support large declarative
memories in ACT-R (Anderson et al., 2004), Douglass et al.
developed a DM using the PostgreSQL relational database
management system. While their work produced an ACT-R
module supporting persistent declarative access to large
declarative knowledge stores, there are significant
opportunities for extension and improvement. First, while
achieving significant empirical performance improvements
over the ACT-R retrieval mechanism, the authors do not
address the analytical computational profile of the DM
retrieval problem, thereby missing, for instance, situations
in which even DBMS query optimizers will not support
efficient performance. Additionally, their presented
evaluation is limited to their target application and DM, and
does not include any calculation of chunk activation.

In this paper, we extend that work along many
dimensions. First, we contribute an extended analysis of the
computational challenges of efficient declarative retrievals.

To address many of these problems, we describe system-
independent methods for efficient retrieval functionality.
Also, while not achieving the full functionality of ACT-R
activation, we move towards that goal by formulating and
efficiently supporting a simpler class of activation bias.

To evaluate this work, we have implemented a semantic
memory system in the Soar cognitive architecture (Laird,
2008). We evaluate the system on a scalable, synthetic data
set, as well as the entire WordNet 3 lexicon. For successful
retrievals on data sets scaling to millions of declarative
chunks, we achieve retrieval times that are two orders of
magnitude faster than previously reported results.

A forewarning: much of the presented work delves into
the details of data structures, algorithms, and complexity
analysis, which are critical for communicating the results of
our work to developers of cognitive architectures. However,
these details may be of less interest to model developers.
We recommend that modelers focus on the problem
formulation sections and the empirical evaluation.

Symbolic DM Retrieval Problem
To begin, we develop an abstract problem formulation of
symbolic declarative retrievals. To exemplify this
formulation, we then map it onto the ACT-R DM.

Problem Formulation
We define a declarative memory (DM) as a set of elements.
A DM element is decomposed into a set of symbolic
augmentations. For example, consider the following
example DM, in which the letters A-D identify elements and
lower-case Greek letters represent augmentations:

A: {α, β, ε, φ}
B: {α, ε}
C: {γ}
D: {γ, φ}
We define a DM symbolic retrieval cue as having a

required positive component and an optional negative
component, each of which is expressed as a set of symbols
(corresponding to the augmentations of a DM). For instance,
consider the following retrieval cue, corresponding to the
example DM above, consisting of both positive (+) and
negative (–) components: +{α, ε}, –{γ}. Semantically, the
positive set specifies augmentations that an element must
contain, and the negative set those that it must not contain.

49

Given a DM and a cue, we define the result of a
declarative retrieval to be a single element from the DM,
including all augmentations, that satisfies the constraints
represented semantically by the cue. Thus, the result of the
example cue and the example DM would either be element
A or B (with respective augmentation set {α, β, ε, φ} or {α,
ε}). A retrieval is considered a success if there exists a result
(as with our example) and a failure otherwise.

ACT-R DM
We now compare our symbolic declarative retrieval
problem formulation to ACT-R’s declarative memory
module retrieval interface. We begin with a review of the
ACT-R DM and then map it onto our definitions above.

In ACT-R, declarative knowledge is encoded as a set of
chunks, which are collections of labeled slots that have
values. For example, consider this chunk, representing one
of the noun senses of the word “roach” from the WN-
LEXICAL interface to WordNet (Emond, 2006):

(S-105261088-1 ISA S
SYNSET-ID 105261088
W-NUM 1
WORD "roach"
SS-TYPE "n"
SENSE-NUMBER 1
TAG-COUNT 0)

To retrieve declarative knowledge, a production rule issues
a request to the declarative module by populating the
declarative buffer with positive and negative slot-value
pairs. These pairs are interpreted as hard constraints that
either must be met (positive tests) or must not be met
(negative tests). The DM module also supports non-
symbolic tests (<=, >, etc), but we do not consider them.

For example, consider a cue that requests a sense chunk
(“ISA S”) where the value of the WORD slot is equal to
“roach” and the SS-TYPE is not equal to “v” (verb):

+retrieval>
 ISA S
 WORD “roach”
 - SS-TYPE “v”

Given this request, the ACT-R DM module searches the
store for matching chunks. If any are found, the module,
given default module parameter settings, indicates a
successful retrieval and selects randomly amongst the
candidates chunks and reconstructs it in the appropriate
buffer. The module also supports the use of non-symbolic
activation to bias selection amongst candidate chunks,
functionality that is used in many cognitive models. We
comment on this functionality later in this paper. If no
perfect match is found, the default behavior of the DM is to
report a retrieval failure. The module also supports the use
of customizable partial matching. While some modelers
may use this functionality, it makes the retrieval problem
strictly harder computationally, and we leave research on an
efficient implementation of it to future work.

We now map the ACT-R DM to our abstract formulation.
First, without loss of generality, we interpret the chunk type
(above, “ISA S”) as a slot-value pair (slot label “ISA” and
value “S”). Next, since we are considering qualitative
matching (equality is defined as symbolic equivalence),
each distinct slot-value pair can be equivalently represented
as a single, composite symbol (by concatenating the slot
label and value with a unique separating character, such as
“ISA:S”). Since slot-value pair order is arbitrary, a chunk
instance can be equivalently represented as a set of
[composite] symbols. In ACT-R, all chunks of a given type
must contain values for the same set of slots and a chunk
type can only have one slot of a given label; without loss of
generality, we eliminate both of these constraints. Given the
analysis above, a chunk maps to a declarative memory
element, and slot-value pairs to augmentations.

We apply a similar analysis to DM retrieval requests, with
distinct slot-value pairs compressed to a single composite
symbol. If we require that equivalent slot-value pairs in
chunks and retrieval requests resolve to the same composite
symbols, then the set of positive tests form the positive cue
component and the negative tests the negative component.

With this analysis, we claim that the symbolic ACT-R
DM retrieval interface is an instance of our problem
formulation. Thus, results from our work, though
implemented in Soar, extend to ACT-R models, and any
other system that can be similarly mapped.

Supporting Efficient Retrievals
In this section, we discuss indexing structures and processes
to efficiently support a large class of symbolic DM
retrievals, accompanied by a brief computational complexity
analysis. We decompose our description into the required
positive cue component, followed by the negative. Prior to
getting lost in the weeds of data structures and algorithms,
however, let us first consider what is meant by efficient
support with respect to our problem formulation.

Contextual Meaning of Efficient Support
As a baseline, consider a naïve retrieval mechanism that
iterates through the DM, comparing each element to the cue,
and returning the first valid result, if one exists. To
understand the costs, we define E as the set of elements in a
DM, and a as the average number of augmentations per
element. Given a cue C, we define P as the positive cue
component and N as the negative cue component. Sets
surrounded with vertical bars, such as |E|, refer to the
cardinality, or number of items contained in the set.

Assuming no specialized indexing, the memory cost of
the baseline mechanism grows with the product of the
number of elements and the average augmentation
cardinality (a|E|). In the worst case, the baseline mechanism
must traverse all of this memory for each cue element, and
thus the time cost multiplies by the size of the cue (a|E||C|).
In context of large declarative memories, it is likely that |E|
will dominate a and |C|, and thus memory and retrieval costs
will scale linearly with the number of elements in the DM.

50

Memory, though not unlimited, is generally considered
cheap and plentiful, while time is expensive and limited, and
thus our goal is to minimize retrieval time, possibly at the
cost of memory. Thus we pose efficient support for
declarative retrievals as sub-linear in the number of
elements in the DM, |E|, while remaining linear in memory.
We further require that these computational bounds hold in
the general case of our problem formulation, supporting a
broad variety of DMs and retrieval cues, as opposed to an
optimized mechanism for a specific knowledge-base and/or
query load. We now present our mechanism, revisiting these
requirements for theoretical evaluation.

Positive Cue Component
To review, the positive cue component for symbolic
declarative retrievals is a non-empty set of augmentations
that a declarative element must contain. To assist in our
analysis, we define Rp as the elements that contain an
augmentation p and, accumulated over all p in P, R to be the
bag of candidate elements (which may contain duplicates, if
an element contains more than one augmentation, p, in P).

Before presenting our mechanism, we note that this
component of the retrieval problem is a constrained form of
a subset query on set-values, which has been widely studied
in database and information retrieval (IR) communities
(Terrovitis et al., 2006). In its general form, the worst-case
time cost is known to be linear in the sum of the number of
candidate elements for each positive cue augmentation, |R|,
though clever indexing methods have shown massive
average-case improvements in real-world data.

Indexing Building on this prior work, the primary indexing
structure for our mechanism is an inverted table of DM
elements, combined with cached frequency statistics. The
structure contains a sorted list of each augmentation, p, in
the DM, each paired with a sorted list of elements in which
they are contained as well as the size of this list, Rp. We note
that this structure roughly doubles the size of the store and
can be updated very efficiently as the DM changes.
Consider the following index over the example DM above:
α (2): [A, B]
β (1): [A]
γ (2): [C, D]
ε (2): [A, B]
φ (2): [A, D]

Algorithm To retrieve based only on the positive cue
component, we first generate a sorted list, Q, of all
augmentations p in P, keyed ascending on Rp, which
requires |P| queries on the inverted index. Q represents a
specialized query plan, sorted in ascending order of
candidate element list size. With the example positive
component above, Q is either [α,β] or [β,α] (as Rα = Rβ),
and we use the former for the remainder of this analysis.

Next, we pop the first augmentation from Q (α) and
retrieve a pointer, w, to the head of the element list in the
inverted index (initially referring to the first element, A).
Note that since this list is updated incrementally with

changes to the DM, we do not have to compute this list in
response to the query. Iterating over the remaining
augmentations in Q ([β]), we verify, using the original DM,
that w satisfies all remaining positive constraints. If so,
return w and success. Otherwise, increment w to point to the
next element in the inverted index and retry verification. If
no element successfully verifies, the retrieval is a failure.

Analysis In the worst case, this retrieval mechanism grows
linearly with |E| (as demonstrated later). However, the small
amount of indexing and query optimization bounds element
iteration to min(Rp), the set of elements containing the most
selective positive query augmentation. Furthermore, we
only need to fully examine this list in the failure case,
which, as we see in the later empirical evaluation, can be
achieved in near constant-time queries in many cases.

Negative Cue Component
The negative cue component for symbolic declarative
retrievals is an optional set of augmentations that a
declarative retrieval must not contain.

We have struggled with how to efficiently support this
type of constraint given our problem formulation. What
makes this component difficult is that given a large DM
with a sparse distribution of augmentations, it can be
prohibitively expensive to maintain an index of the elements
not containing an augmentation, analogous to issues
surrounding the closed-world assumption and negated
conditions in production matching (Doorenbos, 1995).

Initial Integration Currently, we integrate this functionality
with the positive cue component above by special-casing
negative augmentations. First, |R’n|, the number of candidate
elements that do not contain a particular augmentation n,
equals (|E| - |Rn|), the total number of elements less the
number of elements that do contain the augmentation. This
quantity can be computed efficiently and used to order Q
with negative augmentations. Second, because we cannot
efficiently enumerate R’n, w is initialized as the head of the
list of the first positive augmentation in Q. Finally, when
verifying a candidate element, we simply invert the result of
the set-inclusion query on E.

Analysis Using this approach, our mechanism loses a major
performance benefit. This forfeiture arises when there exists
an augmentation in the negative component that is more
selective than any positive component augmentation, which
is probably not uncommon. While we are theoretically able
to integrate this functionality, we have neither implemented
nor evaluated this work empirically in Soar, and plan to
address this deficiency in the future.

Supporting Efficient Activation Bias
A major contribution of the ACT-R DM module to
cognitive modeling is the sub-symbolic influence of the
current context and prior retrievals as a form of activation
bias for declarative retrievals (Anderson et al., 2004). This
functionality, however, has been shown to come at a

51

significant computational cost that does not scale to large
declarative memories (Douglass et al., 2009).

While we have not achieved the functionality of all
aspects of ACT-R’s activation scheme, we have made
progress by formulating and efficiently supporting a simpler
class of activation bias. In this section, we first extend our
problem formulation to include retrieval bias, then define
the class of activation update processes we can efficiently
support, and discuss how we achieve this functionality.

Problem Formulation Extension
To integrate activation bias in our problem formulation, we
extend our definition of a declarative memory element to
include a numerical activation value, as exemplified below
by the numbers in square brackets:

A [1.41]: {α, β, ε, φ}
B [1.73]: {α, ε}
C [3.14]: {γ}
D [2.72]: {γ, φ}

We refine our previous definition of a retrieval result as an
element from the DM, including all augmentations, that
satisfies the constraints represented semantically by the cue
and has the maximal activation value. Given the example
cue (+{α, ε}, –{γ}) and this expanded DM, the result is now
unambiguously B (and its associated augmentations), as it
has a greater activation value than A.

Efficient Activation Bias Updates
The expanded retrieval mechanism described in the next
section efficiently incorporates activation. However, just as
the DM must support efficient updates to elements and
augmentations, so too must it support efficient updates to
activation values. In this context, for large DMs, we propose
that an activation value update process must be locally
efficient. An activation update process is locally efficient if
it satisfies two properties: (1) the update can affect the
activation value of at most a constant number of elements
and (2) updating the activation value of an element takes
time strictly sub-linear in the number of DM elements.

The locally efficient activation update process we
implement in Soar is a straightforward mechanism to bias
retrievals towards recency. After each successful retrieval,
the activation value of the retrieved element is updated to be
one greater than the previously largest activation value. This
update process is local, as it only changes a single element
per retrieval, and it is efficient, as the largest activation
value can be cached to avoid any search over E.

In ACT-R, chunk activation includes retrieval history
(base-level), current context (spreading), partial matching,
and noise. Both the base-level approximation and permanent
noise computations appear to be local, so it should be
possible to extend our approach to cover those components.
However, transient noise, partial matching, and spreading
activation appear to be global to the elements of the DM,
which suggests significant further theoretical and
engineering research are necessary to develop locally
efficient mechanisms. For reference, the mechanism in

Douglass et al. does not efficiently compute any portion of
ACT-R chunk activation, and those components were not
included in their empirical evaluations.

Efficient Support
The most direct method of integrating activation values in
our efficient algorithm is to sort the candidate list (w) by
activation values on demand. This approach, henceforth
referred to as Scheme I, suffers from retrieval times that are
always dependent upon augmentation selectivity, as the
candidate list must be fully computed to be sorted.

Another method of integrating activation values, Scheme
II, is to maintain, for each augmentation, an element list
sorted by activation value. Thus, w is sorted in order of
activation, independent of augmentation selectivity.
However, the time required for updating activation values is
dependent upon the number of different augmentations an
element can have (its augmentation cardinality), and for
large cardinalities, this cost can be prohibitive.

Our approach to integrating activation values combines
these schemes by exploiting an assumption that most
elements will have “small” augmentation cardinality. Given
this information, we explain how we can extend our
implementation to yield efficient retrievals and then we
validate our assumption empirically by studying three large,
commonly used knowledge bases.

Our Approach. If an element has small augmentation
cardinality, Scheme II is efficient, independent of DM size.
If few elements must be sorted per retrieval, Scheme I is
efficient, independent of element augmentation cardinality.
To resolve this tension between augmentation cardinality
and element selectivity, we apply these schemes on a per-
element basis: we apply Scheme II when an element has
small augmentation cardinality, and otherwise apply
Scheme I. What we describe here are the data structure
modifications and additional processing necessary to
efficiently implement this split strategy.

First, we introduce a threshold parameter, t, which
represents a small value of augmentation cardinality. By
default, we integrate activation bias as described in Scheme
II above. However, if the augmentation cardinality of a
particular element is greater than t, we associate a one-time
special “infinity” (∞) activation value with all its
augmentations and maintain a separate list associating the
element with its activation value, per Scheme I. For
instance, if t=3, we would have a list wherein [A=1] and our
inverted index would contain the following information:
α (2): [A=∞, B=2]
β (1): [A=∞]
γ (2): [D=4, C=3]
ε (2): [A=∞, B=2]
φ (2): [A=∞, D=4]

By default, an update to an element’s activation value will
involve updating a small number of references (≤t)
throughout the inverted index. For elements with
augmentation cardinality greater than t, such as A, we need

52

only update this value once, thereby bounding the update to
constant time and addressing the weakness of Scheme II.

During retrieval, as we are populating the list of
augmentations, Q, which is sorted by activation level, we
may now encounter one or more infinite activations at the
head of the list. If so, we perform a lookup for its true
activation level and execute insertion sort into a second,
special list, Q’. We then merge Q and Q’ to form our query
plan. Notice that if the size of Q’ is small (i.e. few elements
have augmentation cardinality greater than t), this process is
cheap and independent of augmentation selectivity, the
weakness of Scheme I. Thus, if we can select an appropriate
value of t, we will achieve efficient activation bias support.

Validation. To validate that our split strategy works well on
real data sets, we studied three large, commonly used
knowledge bases (KBs): SUMO (Niles et al., 2001),
OpenCyc (Lenat, 1995), and WordNet (Miller, 1995). For
each KB, we extracted the number of features of each
named entity. Each distribution was unimodal and exhibited
strong right skew, suggesting that while most elements had
a similar feature size, there were rare cases with
exceptionally large cardinalities. Then, we sampled from
these distributions to form synthetic data sets that were
reasonably large (5040 elements) and empirically valid in
augmentation cardinality. We then collected empirical
retrieval data, summarized in Table 1, showing that for each
KB there was a range over the value of t that optimally
balanced the performance effects of cue selectivity and
augmentation cardinality. For two of the KBs, we could
efficiently employ Scheme II above for more than 99% of
elements, versus only about 93% for the SUMO data set.

Important components of this analysis for future
examination are (1) automatically selecting a value of t for a
given DM and (2) tuning this value online for changing DM
contents. As to the former, we see in Table 1 that the
optimal threshold typically covers greater than 90% of the
elements using augmentation cardinality, but that value is
not constant across data sets. Further analysis of the KBs
may uncover why this is the case and suggest better factors
for prediction. As for the latter, we expect that caching t in
indexing structures will allow the algorithm to adapt in real
time, while maintaining efficient retrievals.

Table 1: Optimal Thresholds.
Data Set Optimal t Range Element Coverage

SUMO 50 – 70 92.78 – 93.86%
OpenCyc 40 – 60 99.17 – 99.74%
WordNet 20 – 40 99.50 – 99.90%

Evaluation
To evaluate our work, we implemented our data structures
and algorithms as the Semantic Memory long-term,
symbolic memory system in the Soar cognitive architecture
(Laird, 2008). We used version 3 of the SQLite in-process
relational database engine to manage the semantic store and
all experimental results were run on a 2.8GHz Core 2
Extreme processor with 4GB of RAM.

Our final evaluation spans two data sets: (1) the WordNet
3 lexicon and (2) a scalable synthetic benchmark of our
design. WordNet offers a large, ecologically valid
knowledge base with which we can compare to previous
results in this space (Douglass et al., 2009). Our synthetic
dataset offers us the ability to exhaustively benchmark our
retrieval mechanism on arbitrarily large DMs.

WordNet
As with Douglass et al., we used the WN-LEXICAL
WordNet 3 data conversion (Emond, 2006). The data set has
over 820K chunks, which includes over 212K word/sense
combinations. Once imported, Soar’s semantic store,
including all indexing structures, is about 400MB.

Our first experiment was to verify (a) that retrieval time
was independent of augmentation selectivity and (b) that the
activation bias was processed efficiently in under-specified
cues. We performed DM retrievals on 100 randomly chosen,
single-augmentation cues, averaged over 10 trials. Retrieval
time was 0.1887 msec. each (0.0216 std. deviation).

Our next experiment focused on larger cues. We
randomly chose 10 nouns and formed a cue from their full
sense description (such as the “roach” example above).
Retrieval time was an average of 0.2973 msec. over 10 trials
each (0.0108 std. deviation).

Douglass et al. used a derived subset of the WN-
LEXICAL dataset, so direct replication of their work is
difficult. They reported retrievals of about 40 msec. with
cues of 1-4 augmentations on a DM with about 232.5k
chunks. Our results show 100x faster retrievals on a
comparable set of cues scaling to a 3x larger DM.

Synthetic Data
In addition to running on a known data set, we tested our
implementation more exhaustively to measure how it scales
with much larger DMs. We developed a scalable, synthetic
DM generator and, in Table 2, we list statistics of the data
sets we used as they scale with k, the size control parameter:

Table 2: Synthetic Statistics.

k Elements Store Size (MB)
7 5,040 3.00
8 40,320 27.81
9 362,880 291.95

10 3,628,800 2048.00

While we have a DM generator, we do not have a model of
what are typical cues used to access a DM and how those
cues could interact with the performance profile of the DM
retrieval mechanism. For instance, we do not know how
selective the cues are likely to be, meaning how many
elements, termed candidates, could possibly satisfy any part
of the cue. Furthermore, we do not know the proportion of
cues that will have no perfect matches. To allow us to test
these different interactions, we constructed the DMs so that
we can generate cues with independently controlled
selectivity. In each KB, there are k! elements and each

53

element has augmentation cardinality of (k+1). For i = 2 …
k, the ith augmentation of an element has selectivity (k!/i).
The 0th augmentation of each element is shared by all
elements and the 1st augmentation is unique.

Selectivity Sweep. Our first question is whether the DM
mechanism provides bounded retrievals for under-specified
cues, independent of the number of candidate elements. For
each distinct augmentation in the DM, we constructed a cue
and measured retrieval time. We found nearly constant-time
retrievals within each data set, independent of augmentation
selectivity, measuring just under 0.4 msec. for k=10.

Cue Sweep. Our next question is whether combinations of
augmentations result in complex cues that adversely affect
retrieval time. We constructed all possible lengths of cues
using all combinations of augmentation selectivity and
measured retrieval time. As shown in Figure 1, the only
factor affecting retrieval time within a data set was the
number of augmentations in the cue (R2≈1), achieving a
maximum of about 0.5 msec. for k=10.

Failure Sweep. For our mechanism, retrieval failure is the
algorithmic worst-case, as it must examine and fail to verify
all candidate elements. We constructed our last experiment
to measure retrieval time for cues that fail only after
examining significant proportions of the elements in the
KB. While our mechanism minimizes the chance of this
situation, these results are useful to set an expectation for
the unlikely worst-case retrieval time in any given DM. As
shown in Figure 2, the number of inspected candidate
elements was the only factor affecting retrieval time,
independent of the data set. Because the time is linear in the
number of candidates, and not the total number of KB
elements, our mechanism, for even worst worst-case cues,
scales to arbitrarily large data sets when cue augmentations
are sufficiently selective.

Conclusions
In this work, we formulate and address the computational
challenges involved with supporting efficient symbolic
retrievals for the core functionality required in representing
and accessing large DMs. We extend the research of

Douglass et al., demonstrating two orders of magnitude
improvement in retrieval times for comparable functionality
on significantly larger data sets. There are still challenges
ahead to efficiently support partial match, spreading
activation, and other non-local biases for retrieval for large
data sets, for which it may be necessary to explore algorithm
approximations or massively parallel computation.

Acknowledgments
The authors acknowledge the funding support of the Office
of Naval Research under grant number N00014-08-1-0099.

References
Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An Integrated Theory of
the Mind. Psychological Review 111, (4). 1036-1060.

Doorenbos, R.B. (1995) Production Matching for Large
Learning Systems. PhD Thesis, Carnegie Mellon.

Douglass, S., Ball, J., & Rodgers, S. (2009). Large
Declarative Memories in ACT-R. Proc. of the 9th
International Conference on Cognitive Modeling.

Emond, B. (2006). WN-LEXICAL: An ACT-R Module
Built from the WordNet Lexical Database. Proc. of the
7th International Conference on Cognitive Modeling.

Laird, J.E. (2008). Extending the Soar Cognitive
Architecture. Proc. of the First Conference on Artificial
General Intelligence (AGI).

Lenat, D. (1995). CYC: A Large-Scale Investment in
Knowledge Infrastructure. Communications of the ACM
38, (11). 33-38.

Miller, G.A. (1995). WordNet: A Lexical Database for
English. Communications of the ACM 38, (11). 39-41.

Niles, I., Pease, A. (2001). Towards a Standard Upper
Ontology. Proc. of the Second Conference on Formal
Ontology in Information Systems (FOIS).

Terrovitis, M., Passas, S., Vassiliadis, P., Sellis, T. (2006).
A Combination of Trie-trees and Inverted Files for the
Indexing of Set-valued Attributes. Proc. of the 15th
Conference on Information and Knowledge Management
(CIKM).

Figure 2: Synthetic failure sweep results.

Figure 1: Synthetic cue sweep results.

54

Concurrent Knowledge Activation Calculation in Large Declarative Memories

Scott A. Douglass (scott.douglass@mesa.afmc.af.mil)

Christopher W. Myers (christopher.myers2@wpafb.af.mil)
Air Force Research Laboratory, 6030 S. Kent St.

Mesa, AZ 85206 USA

Abstract

To behave effectively and flexibly in complex situations,

models specified in cognitive architectures must be able to

store and access large amounts of declarative knowledge.

However, as research efforts employing cognitive modeling

grow in scope and complexity, currently available modeling

tools, languages and cognitive architectures are being pushed

to their practical limits. This paper describes research looking

specifically at how a large declarative memories challenge the

current implementation of ACT-R and describes an applied

effort to develop an alternative implementation of ACT-R’s

retrieval process. The alternative exploits concurrency

features of the Erlang programming language to extend the

practicality of ACT-R’s retrieval mechanisms to new levels of

scale. The ideas and methods underlying the alternative

implementation are general and illustrate how concurrency

can accelerate calculation in other architectures struggling to

support large associative declarative memories.

Keywords: declarative memory; concurrent activation

calculation; semantic networks; ACT-R; Erlang.

Introduction

As research efforts employing cognitive modeling grow in

scope and complexity, available modeling tools and

languages are being pushed to their practical limits. For

example, the implementation of ACT-R within the Lisp

programming language may hinder the development of

large-scale models due to limitations in declarative storage

capacities (Douglass, 2009). If cognitive modeling is to

grow in scope and complexity, we must meet the challenges

underlying these limits.

An AFRL large-scale cognitive modeling (LSCM)

initiative is currently exploring potential solutions to these

challenges. The LSCM initiative is committed to integrating

well understood mechanisms from cognitive architecture

research into new modeling approaches that facilitate model

scaling. For example, the empirical strength of ACT-R’s

declarative system (Anderson, 2007) has motivated us to

ensure that the LSCM initiative’s solutions preserve ACT-

R’s declarative memory mechanisms.

LSCM initiative efforts to develop domain-specific

modeling languages (DSML-s) supporting increased model

scale and persistence involve efforts to increase the scale

and persistence of a declarative memory system that mimics

ACT-R’s. This paper describes recent efforts to retain and

scale ACT-R's memory mechanisms in a modeling and

simulation framework supporting RML1 (research modeling

language), the first DSML developed in the LSCM

initiative. RML1 is a generic DSML tailored to the needs of

cognitive modeling. RML1 has a hybrid (graphical and

textual) syntax, and executes in a runtime environment

implemented in the Erlang programming language

(Armstrong, 2007).

Modeling with Large Declarative Memories

In the following sections we provide a brief overview of

ACT-R and describe how to extend ACT-R’s declarative

retrieval process by ―carving it up at the joints.‖ We

conclude this section with a discussion of replicating top-

down (i.e., endogenous) and bottom-up (i.e., exogenous)

constraints on ACT-R’s memory retrieval process.

Brief Overview of ACT-R

ACT-R is a cognitive architecture for developing

computational cognitive process models (Anderson, 2007).

In ACT-R, cognition revolves around the interaction

between a central production system and several modules.

There are modules for vision, motor capabilities, memory,

storing the model’s intentions for completing the task (i.e.,

the control state), information retrieved from memory, and a

module for storing the mental representation of the task at

hand (i.e., the problem state). Each module contains one or

more buffers that can store one piece of information, or

chunk, at a time. Modules are capable of massively parallel

computation to obtain chunks. For example, the memory

module can retrieve a single chunk from long-term memory

and place it into the module’s buffer.

Chunks are defined by the modeler to have a particular

type, or chunk-type, and a set of key-value pairs. Retrieval

in ACT-R is based on a combination of: (1) endogenous

influences expressed in retrieval constraints; and (2)

exogenous influences originating from chunks in the slots of

buffers assigned activation weights by the modeler. When

retrieving a chunk, the modeler must specify the type of

chunk to retrieve, and all chunks of that chunk-type are

candidates for retrieval. All candidates’ activations are

computed, and the one with the highest activation is

retrieved. Chunk activation can be exogenously influenced

(i.e., primed) by spreading activation from other modules—

any module that contains a chunk as the value in a key-value

pair spreads activation to related chunks. As the number of

chunks in declarative memory increases, the number of

candidates during retrieval also increases. As retrieval

candidates increase, retrievals may become slow, and in

some instances too slow to support large-scale models that

must interact with other system components in real-time.

55

Increasing Scale by Externalizing Chunk Storage

Our initial efforts to extend the viability of ACT-R’s

retrieval system to large-scale modeling contexts focused on

the storage of chunks outside of ACT-R and Lisp. Database

management systems (DBMS) such as PostgreSQL can be

effectively used to store a large and persistent set of ACT-R

declarative memories (Douglass, et al, 2009). This research

determined that services provided by the PostgreSQL

DBMS can be integrated into ACT-R via a custom

―persistent-DM‖ module. We found that the persistent-DM

module greatly reduced ACT-R’s storage burden and

significantly increased the practical size of declarative

memory sets that could be accessed by cognitive models.

The effectiveness of the persistent-DM module was based

on the fact that ACT-R’s application of retrieval constraints

mimics the behavior of a DBMS executing a SQL query.

When the persistent-DM module is employed, requests for

instances of a particular chunk-type possessing specific sets

of key-value properties are translated into SQL queries and

then executed to recover matching chunk instances from an

external database. ―Outsourcing‖ the storage and recovery

of matching chunks through SQL queries in this way is

beneficial because of the capacity of PostgreSQL databases

and the effectiveness of indexing in relational databases.

Unfortunately, while persistent-DM assumed some of the

retrieval burden by efficiently isolating the subset of chunks

that had to have their activations re-calculated, the module

simply relayed them to ACT-R’s default serial activation

calculation mechanism.

Carving the Retrieval Process at the Joints

We started the development of RML1’s memory system by

asking ourselves three questions:

Q1. How do the equations that explain activation and

associative strengths in ACT-R define the fundamental

nature of the ACT-R retrieval process?

Q2. How does the current ACT-R implementation

computationally realize the retrieval process?

Q3. Can the fundamentals of the retrieval process be

computationally realized in other ways?

Q1 Human memory is more than an information storage and

retrieval system. Likewise, declarative memory in ACT-R is

more than just a mechanistic account of information storage

and retrieval (Anderson, 2007). Human memory is a part of

a system that learns and acts in the world. Human behavior

is as flexible as it is because we know lots of things and can

use what we know to craft contextually appropriate and

effective actions in many different circumstances. It is not

enough to know a lot; we also have to be able to quickly cull

through all that we know in order to retrieve and apply the

right knowledge given our circumstances. The crown jewels

of ACT-R’s memory system are a set of equations

explaining how sub-symbolic calculation, learning, and the

utilization of activations and associative strengths enable

these critical properties of human memory (see Anderson, et

al., 2004 and Anderson, 2007 for detailed descriptions). The

equations are presented in Table 1 below so that their

details—specifically their indexing of chunks i and j—can

be used to confirm a claim that they describe how sub-

symbolic properties related to the activations and associative

strengths of individual chunks influence the probabilities

and time costs of their retrievals. That is, the equations

precisely explain how activation is calculated for individual

chunks in what can be considered independent calculations.

Table 1: Equations describing chunk activation. The key

components of the equations are a single focal chunk

indexed as i and chunks in context indexed as j.

Common Name Equation

Activation 𝐴𝑖 = 𝐵𝑖 + 𝑊𝑗𝑆𝑗𝑖
𝑗 ∈𝐶

Base-Level Learning
𝐵𝑖 = ln 𝑡𝑘

−𝑑

𝑛

𝑘=1

Attention Weighting 𝑊𝑗 = 𝑊
𝑛

Associative Strength 𝑆𝑗𝑖 = ln 𝑝𝑟𝑜𝑏 𝑖 𝑗 /𝑝𝑟𝑜𝑏 𝑖

Retrieval Time 𝑇𝑖𝑚𝑒 = 𝐹𝑒−𝐴𝑖
Retrieval Probability 𝑃𝑟𝑜𝑏 = 1/ 1 + 𝑒− 𝐴𝑖−𝑡 /𝑠

Any declarative memory system adhering to ACT-R’s

theory of human associative memory must minimally

calculate each chunk’s activation according to these

equations. The equations define a fundamental unit of

computation scoped around each chunk in declarative

memory and abstract away from how the process of retrieval

executes all the chunk activation calculations underlying a

single retrieval.

Q2 The current ACT-R implementation (ACT-R 6)

sequentially realizes all the chunk activation calculations

underlying a single retrieval. Hence, chunk activation

calculations occur one after the other as a process, not

described in the equations above, searches for and retrieves

the chunk with the highest activation. To ensure that this

point is clear, the retrieval process in ACT-R will now be

summarized.

Retrieval in ACT-R is influenced by bottom-up

contextual cues and the application of top-down constraints.

Retrievals based on top-down constraints generally proceeds

in the following way. An ―ISA‖ property in a retrieval

request is used to isolate type-compatible chunks in

declarative memory into a candidate set. Slot value

constraints representing additional properties required of a

chunk contained in retrieval requests are then used to further

reduce the candidate set. The activations of chunks

surviving all these top-down constraints are then computed

in accordance with the equations above. The chunk meeting

all top-down retrieval constraints with the highest activation

is returned in the retrieval buffer.

The impact of the serial calculation of activation is

illustrated in Figure 1 below. The top and bottom diagrams

56

in the figure represent two extreme situations. When

activation calculations are computed sequentially, the total

time cost is roughly equivalent to a per-activation

computation time, t, multiplied by the number of chunks.

When activation calculations are computed concurrently, the

total time cost will be slightly more than t. Given that the

ACT-R activation equations function in the scope of single

chunks and in so doing ―modularize‖ the calculation of

chunk activations, we argue that the challenge to extend the

scale of ACT-R’s memory system is really a challenge to

maximize the concurrency of chunk activation calculation

during retrieval events.

Figure 1: Costs of serial & concurrent activation calculation.

Q3 To find a way to incorporate concurrent activation

calculation into the persistent-DM module, we set out to: (1)

extend persistent-DM with the ability to compute

activations; and (2) develop ways of partitioning databases

across multiple PostgreSQL DBMS instances. The first of

these challenges was low-hanging fruit; queries to an

extended persistent-DM can now include a query capturing

top-down retrieval constraints and a representation of

context capturing bottom-up sources of activation.

Retrievals executed by this version of persistent-DM isolate

a sub-set of chunks meeting the top-down constraints, re-

compute their activations, and then return the set sorted by

activation. Stymied by the second of these challenges, we

turned away from trying to find ways of improving query-

based retrieval with concurrency and started researching

more radical alternatives for realizing massively concurrent

retrieval processes. We quickly realized that two problems

oppose the development of a memory system utilizing

concurrent activation calculation:

P1. To parallelize activation calculation, one needs a

language supporting concurrent computation. What

language can do this for us?

P2. To continue allowing retrievals to be based on top-

down retrieval constraints, we have to integrate the

processing of top-down information with the process of

concurrently computing chunk activations. How can a

retrieval process utilizing concurrent activation

calculation use top-down information and constraints?

Concurrently Computing Activations in Erlang The

semantic anchoring of RML1 is currently realized in a

modeling and simulation framework developed using the

Erlang programming language (Armstrong, 2007; Cesarini

& Thompson, 2009). Erlang is an open-source general-

purpose functional programming language developed by

Ericsson. Erlang is chiefly used to develop persistent, fault-

tolerant, dynamically re-configurable, soft real-time

constrained control systems that use large databases.

Furthermore, it supports multiple process threads and

automatically exploits multi-core and networked computing

resources. In Erlang, program components are represented

as sets of separate parallel threads. Erlang manages threads

through a middleware framework called the Open Telecom

Platform (OTP) which simplifies the development and

execution of programs consisting of large numbers of

concurrent processes. Programs written in Erlang can

contain millions of concurrent processes (Armstrong, 2007).

RML1’s Erlang-based semantic anchoring represents

declarative knowledge in OWL-compatible ontologies

(Smith, Welty, & McGuiness, 2008) that describe the

classes, class properties, object properties, data properties,

and instances constituting a domain. Each node in a

semantic network is realized as a separate OTP process

thread in Erlang. These process threads maintain

information about: (a) retrieval parameters; (b) reference

histories; (c) last activation level; (d) lists of class, object,

and data relations constituting the defining properties of the

individual; and (e) lists of object relations the individual

serves a range role in. Process threads also receive and

respond to messages sent to them by OTP supervisor

processes. Each individual process thread is capable of

responding to requests to re-compute and report their

activation. Activity spreads in RML1 semantic networks as

messages are asynchronously exchanged between the

process threads constituting their nodes. Since process

threads in Erlang execute concurrently, spreading activation

achieved through asynchronous message passing and

activation re-computing are massively parallel. The retrieval

of declarative knowledge from a RML1 semantic network

involves all concurrent multi-core computation available.

In order to maximize the parallelization of the activation

computation, retrieval in the RML1 declarative memory

system is based solely on the spread of activation in

semantic networks. At first blush, it is not obvious how

something functionally equivalent to an ACT-R top-down

―isa‖ constraint can be obtained through bottom-up

spreading activation. The following discussion explains how

this is accomplished.

Replicating Top-Down Constraints with Message

Filters and Endogenous/Exogenous Message Sources
Table A1 (in Appendix) shows how the behavior of top-

down retrieval request patterns in ACT-R can be replicated

in RML1. Deliberate retrieval constraints introduce top-

down network activity into semantic networks as

endogenous messages. Endogenous messages introduce

network activity into semantic networks but do not convey

weighted activation to nodes and therefore do not influence

a receiving node’s calculation of its activation. Contexts

t

t

t

t

t

t

S F

t t t t t tS F

S Start
F Finish
t Time to compute activation of a chunk

57

introduce bottom-up network activity into semantic

networks as exogenous messages. Exogenous messages

function just like spreading activation in ACT-R; network

activity introduced into semantic networks by exogenous

sources convey weight and fan and therefore do influence a

receiving node’s calculation and reporting of its activation.

Message filters prevent network activity from being sent to

nodes lacking defining properties corresponding to the

properties in them. For example, the ―k1,v1‖ message filter

in example 3 of Table A1, prevents the endogenous message

―type,c1‖ from passing network activity into nodes lacking

the ―k1,v1‖ property.

Retrieval in RML1 proceeds in the following way:

1) An OTP supervisor process sends, in parallel, “spread

network activation” endogenous and/or exogenous

messages to nodes serving domain roles in the relations

expressed in the messages that pass any present message

filters. For example, in example 1 of Table A1, the OTP

supervisor process will send a message to c1. Since

―type,c1‖ is an endogenous message in this circumstance,

the message will convey a weight of 0.

2) Nodes receiving ―spread network activation‖ messages

relay them, in parallel, to instances serving domain roles in

relations with them. In example 1 of Table A1, any node

serving a domain role in the ―type,c1‖ relation will receive

network activation. As mentioned earlier, individuals

maintain lists of the relations they participate in with other

individuals. Instances receiving these messages store the

weighted activation increments they contain and notify the

OTP supervisor that their activation has been influenced by

network activity. Because ―weights of activation spread‖

incorporated into endogenous supervisor messages are 0,

stored activation increments from endogenous sources force

the individual to re-compute their activation but do not

increase spreading activation. If, as is the case in example 2

of Table A1, context produced an exogenous message

―k2,v2‖, the ―weight of activation spread‖ incorporated into

exogenous supervisor messages would reflect attentional

weight and fan.

3) The OTP supervisor process sends, in parallel, “report

your re-computed activation” messages to nodes that

reported contributions to their activations. Individual

processes receiving these messages concurrently re-compute

their activation. Individuals that received only messages

containing 0 weights of activation spread report activation

values based solely on changes to their base level

activations.

4) Finally, the OTP supervisor posts the defining properties

of the node reporting the highest activation to RML1’s

working memory.

Retrieval in a Large Declarative Memory

To determine the impact of concurrency in RML’s retrieval

process, a basic comparison study was conducted. In this

comparison study, the wall-clock retrieval times of ACT-R

and RML1 executing retrievals in large declarative

memories were compared. To stress test the declarative

systems of ACT-R and RML1, portions of the Moby

Thesaurus II synonym database were transcribed into ACT-

R’s declarative memory and RML1’s semantic network.

The Moby Thesaurus II contains 30,260 root words that are

related to each other by 2,520,264 synonyms. Compound

root words were excluded from the comparison study. This

exclusion process reduced the number of root words to

24,890. Five different declarative memory sets were created

using this reduced set. Sets consisted of proportions of the

reduced set of root words and the synonyms relating them.

Table 2 below summarizes the properties of these sub-sets,

and Figure 2 represents a portion of the smallest of these

sub-sets.

Table 2: Properties of the synonym sets used in the

comparison study.

Proportion 20% 25% 33% 50% 100%

Synonyms 53,560 77,313 145,073 318,435 1,281,763

Figure 2: Portion of the Moby II semantic network showing

a subset of the root words and synonyms related to the root

words ―coquettish‖, ―mazy‖, and ―whimsical‖. 29, 52, and

67 word/syn relations involving coquettish, mazy and

whimsical are not shown.

To create a declarative memory in ACT-R, instances of a

root_word chunk-type were used to represent root words

and instances of a synonym chunk-type were used to

represent word/synonym relationships between root words.

Figure 3 shows chunk types and chunk instances that would

allow an ACT-R model to represent and process some of the

root words and relations displayed in Figure 2. To create an

ontology-based semantic network in RML1, root_word and

synonym classes were defined. Object properties necessary

to relate words to syn in synonym instances were also

defined. Figure 3 shows the definitions of the root_word

and synonym classes and definitions of employed object and

58

data properties. Representing these in an ontology allows

RML1’s runtime environment to search the semantic

network and make inferences about arbitrary descriptions or

entities lacking class identifiers.

Figure 3: ACT-R (top) and RML1 (bottom) root_words and

synonyms matching some of the Figure 2 information. Note

the object and data property specifications in RML1 .

Equipment

A Dell Precision T7500 was used in the comparison study.

The Dell’s physical configuration included 2 quad core Intel

3.33Ghz Xeon (W5590) CPUs and 48 GiB of RAM. The

computer’s software configuration included the openSUSE

11.2 Linux-based OS, SBCL 1.0.35 running ACT-R6 r845,

and Erlang R13B04.

Procedures

Context-sensitive retrievals of chunks from the sub-sets of

the Moby Thesaurus II were carried out in ACT-R and

RML1 using the request patterns and context representation

shown in Table A2. Real-time costs of executing retrievals

in ACT-R were measured by: (1) placing three chunks

corresponding to root word chunks into slots of a goal

chunk representing retrieval context; (2) initiating a retrieval

request corresponding to the ―+retrieval> isa synomym‖

request pattern; and (3) measuring elapsed system time until

the retrieval process returned a chunk. The real-time costs of

executing retrievals in RML1 were measured by: (1)

distributing messages from endogenous and exogenous

message sources that passed through message filters into the

semantic network; and (2) measuring elapsed time until the

OTP supervisor process managing the retrieval determined

the network node with the highest activation.

Results

The same retrieval parameters were used in both systems:

maximum associative strength was set to 5.0, the base-level

constant was set to 0, and the base-level learning rate was

set to 0.5. All chunks were initialized with 7 references.

Retrievals executed through ACT-R and RML1 returned

the same synonym chunks, computed equivalent chunk

activations, and retrieval latencies. The use of the ―isa

synonym‖ constraint in the ACT-R retrieval pattern required

that the activations of all synonym chunks be calculated

before the retrieval process could finish. Treating ―type,

synonym‖ as if it were from an endogenous message in the

RML1 retrieval process correspondingly lead to all

synonym instances re-computing and reporting their

activations. Table 3 summarizes the results of the

comparison study.

Table 3: ACT-R and RML1 performance. Times (seconds)

represent average wall-clock time to execute 10 retrievals.

20% 25% 33% 50% 100%

Synonyms 53,560 77,313 145,073 318,435 1,281,763

ACT-R 3.22 6.00 18.63 86.39 NA

RML1 0.44 0.64 1.21 2.65 10.90

The most important thing to notice in Table 3 is that while

ACT-R (SBCL) performance time is increasing at a rate

faster than the increase in chunks, RML1 (Erlang) is

essentially scaling linearly. Added concurrency from

additional processor cores will further improve the relative

performance of RML1.

Conclusion

The declarative system underneath RML1 discussed in this

paper is interesting because it: (1) does not depend on a top-

(chunk-type root_word name)

(chunk-type synonym word syn)

(add-dm
...

(coquettish ISA root_word name "coquettish")

(inconstant ISA root_word name "inconstant")

(flighty ISA root_word name "flighty")

(mazy ISA root_word name "mazy")

(whimsical ISA root_word name "whimsical")

...

(syn1 ISA synonym

word coquettish

syn flighty)

(syn2 ISA synonym
word coquettish

syn inconstant)

(syn3 ISA synonym

word flighty

syn mazy)

...

)

(set-all-base-levels 7 0)

{class, {root_word, [{subclass_of, thing}]}}.

{class, {synonym, [{subclass_of, relation}]}}.

{object_property,

{word, [{sub_property_of, base_object_property},

{domain, synonym}, {range, root_word}]}}.

{object_property,

{syn, [{sub_property_of, base_object_property},

{domain, synonym}, {range, root_word}]}}.

{data_property,

{name, [{sub_property_of, base_data_property},

{domain, root_word}, {range, string}]}}.

{individual,

{coquettish, [{type, root_word}], [],

[{name, "coquettish"}], 7}}.

{individual,

{inconstant, [{type, root_word}], [],

[{name, "inconstant"}], 7}}.

{individual,

{mazy, [{type, root_word}], [],

[{name, "mazy"}], 7}}.

{individual,

{whimsical, [{type, root_word}], [],

[{name, "whimsical"}], 7}}.

{individual,

{s1, [{type, synonym}],

[{word, coquettish}, {syn, inconstant}], [], 7}}.

{individual,

{s2, [{type, synonym}],

[{word, inconstant}, {syn, coquettish}], [], 7}}.

{individual,

{s3, [{type, synonym}],

[{word, mazy}, {syn, whimsical}], [], 7}}.

{individual,

{s4, [{type, synonym}],

[{word, whimsical}, {syn, mazy}], [], 7}}.

59

down retrieval process that functions like a query against a

relational database followed by activation calculation; (2) is

capable of producing behavior that is functionally

indistinguishable from ACT-R; (3) exploits concurrency in

Erlang and therefore scales nearly linearly; (4) is part of the

runtime environment supporting RML1, the first DSML

researched and developed by the LSCM initiative. If

cognitive modeling is to successfully grow in scope and

complexity, it must find effective ways of meeting the

challenges associated with maintaining and using large

declarative memories. RML1’s declarative system illustrates

how concurrent knowledge activation calculation in large

declarative memories can be technically realized and is

therefore progress towards meeting LSCM challenges

associated with modeling human memory on a large scale.

Acknowledgements

This research was funded through a seedling grant from the Chief

Scientist of the 711th Human Performance Wing of the Air Force

Research Laboratory awarded to Drs. Douglass & Myers, and

through AFOSR grant #10RH05COR awarded to Dr. Douglass.

References

Anderson, J. R. (2007). How Can the Human Mind Occur in the

Physical Universe? Oxford: OUP

Anderson, J. R., Bothell, D., Douglass, S. A., Byrne, M. D.,

Lebiere, C., Qin, Y., et al. (2004). An integrated theory of the

mind. Psychological review, 111(4), 1036–1060.

Armstrong, J. (2007). Programming Erlang: Software for a

Concurrent World. Raleigh: The Pragmatic Bookshelf.

Cesarini, F., & Thompson, S. (2009). Erlang Programming.

O'Reilly Media, Inc.

Douglass, S. A., Ball, J., T., & Rogers, S. (2009). Large declarative

memories in ACT-R. In A. Howes, D. Peebles, R. Cooper

(Eds.), 9th International Conference on Cognitive Modeling –

ICCM2009, Manchester, UK.

Smith, M. K., Welty, C., & McGuiness, D. L. (2008). OWL Web

Ontology Language Guide. W3C.

Appendix

Table A1. Examples of how query-based retrieval behavior in ACT-R can be replicated using message passing in RML1

semantic networks. The character ―*‖ is used in messages to represent a wildcard that is free to match against any relation.

The ―*‖ is necessary because contextual priming in ACT-R is insensitive to the key component of the key/value pairs in

context chunks. Notice that examples 3 and 4 yield the same retrieval behavior while using the ―type,c1‖ and ―k1,v1‖

messages in different ways. Since it is likely to be the case that the fan of v1 is less than the fan of c1, treating the ―k1,v1‖

message as endogenous will greatly reduce the spread of network activity and therefore expedite retrieval.

Table A2. ACT-R retrieval requests and contexts & RML1 message filters and message sources employed in the declarative

memory system comparison study. To ensure the fairness of the comparison, all exogenous messages conveying activation

due to contextual priming had to be insensitive to relation (they all had to use ―*‖). Parenthesized numbers indicate fan.

Example
ACT-R RML1

Retrieval Request Context Message Filters

Message Sources

Exogenous Endogenous

1
 +retrieval>
 isa c1

 type,c1

2
 +retrieval>
 isa c1

 isa c2
 k2 v2

 k2|*,v2 type,c1

3
 +retrieval>
 isa c1
 k1 v1

 k1,v1 type,c1

4
 +retrieval>
 isa c1
 k1 v1

 type,c1 k1,v1

5
 +retrieval>
 isa c1
 k1 v1

 isa c2
 k2 v2

 type,c1 k2|*,v2 k1,v1

Example
ACT-R RML1

Retrieval Request Context Message Filters

Message Sources

Exogenous Endogenous

1
+retrieval>
 ISA synonym

=goal>
 c1 whimsical(73)
 c2 mazy (60)
 c3 coquettis(31)

type,synonym
*,whimsical
*,mazy
*,coquettish

 type,synonym

2
+retrieval>
 ISA synonym

=goal>
 c1 vexing (20)
 c2 heavy (249)
 c3 operose (42)

type,synonym
*,vexing
*,heavy
*,operose

 type,synonym

3
+retrieval>
 ISA synonym

=goal>
 c1 entangle (63)
 c2 stare (65)
 c3 woo (33)

type,synonym
*,entangle
*,stare
*,woo

 type,synonym

60

Dimensions of Leader-in-Context Models

Ceyhun Eksin (ceksin@seas.upenn.edu), Barry G. Silverman (BaSil@seas.upenn.edu),

David Pietrocola (dpiet@seas.upenn.edu), Rui Kang (ruikang@seas.upenn.edu)
Ackoff Collaboratory for Advancement of the Systems Approach (ACASA),

Department of Electrical and Systems Engineering,

University of Pennsylvania, Philadelphia, PA 19107 USA

Abstract

In this study, we explore dimensions of comparison
amongst complex agent-based models. Specifically, we
look at holistic models of leaders-in-context. We focus our
analysis on alternative models of the same phenomenon,
that of the rise and fall of two corporations, respectively.
The models were built by students with introductory
training on the methodology and modeling framework. We
extract dimensions and examine good vs. bad modeling
behavior. We divide these dimensions into ones that are
related to modeling leader context and ones that are related
to leader profiling. We use these dimensions to address
how to facilitate modeling alternative theories across a
broad range of topics and how to compare resulting
models.

Introduction

Studying the “traits of the great man” sitting atop a

traditional organizational hierarchy is no longer sufficient

to understand leadership. This approach like other schools

of leadership study (e.g, cognitive, networks, cultural,

etc.) tends to be singularly focused. Lichtenstein et al.
(2006) and Avolio (2007) argue that leadership research

today must be holistic and synthetic (see Silverman et al.,

2007). Synthetic leadership theory underlines the

necessity to integrate various theories on cognition, traits,

and situational contingencies (e.g. context, culture, social

networks, etc.) to provide a picture of the whole. This is

what a leader encounters in the real world in the contexts

he or she must manage. Hazy (2007) highlights the

importance of hybrid computer modeling techniques to

support experimentation on the holistic perspective. Hazy

(2007) claims that hybrid models that include various
techniques are likely to become abundant with increasing

adoption of a holistic look at leadership. We feel that the

most suitable approaches to a holistic perspective are

socio-cognitive agent-based models where leader traits

and affective reasoning in context are richly defined as

endogenous parts of a complex system.

The reasons to model leaders are 1) to try and

understand mechanisms that cause them to think under

varying circumstances, and 2) once that is known and

validated, to use these models to explore what-if
possibilities, alternative courses of actions, and how to

influence them.

In the social sciences, there are no set principles, no

one-theory-fits-all situations. So ideally one wants to try

different theories and factors. The modeling architecture

must support this testing of theories allowing users to

shift in different ideas and see if they better explain what

is making leaders function as they do.

As a result, we want greater ability to plug theories and

sub-models in and out of the framework. The holistic
leader-in-context movement means that modelers must

use a framework that covers many dimensions (cognitive,

personality, cultural, socio-economic, etc.). How to model

this breadth of topics while simultaneously permitting

ease of trying different models is one question we explore

here. In particular, this study examines how novice

modelers (student trainees) can use a socio-cognitive

architecture to plug in differing models of a leader-in-
context.

The second author has developed a socio-cognitive

modeling framework called PMFserv (Silverman et al.,

2007) that provides a model of an agent’s cognitive-

affective state and reasoning abilities that is applied to

profile the traits, cognitions, and social reasoning of

agents alone and in groups. PMFServ utilizes cognitive

appraisal theory where each agent goes through an
observe, orient, decide, and act (OODA) loop (Boyd,

1995). For each agent, PMFserv operates its perception

and runs its personality/value system to determine

individual action decisions to carry out the resulting and

emergent behaviors. The PMFserv framework also

permits the modeling of groups, economic behavior, and

socio-cultural factors. Hence, the framework is a

reasonable candidate for analyzing leader behavior within
varying contexts.

It is possible to build different versions of

computational models when systems are complex. Yet,

when these computational models are built, there are no

existing common dimensions on which to evaluate them.

A second question of interest is, “How can we compare

models that claim to model the same phenomenon?”

Recently, comparison amongst cognitive models has been
studied by Lebiere et al. (2009) and John (2010). Lebiere

et al. take on the task to compare cognitive models built

by different individuals or teams that use different

approaches. The hardest part of their approach is to come

up with common grounds for comparison amongst

different approaches. John explores the reduction in

variation between novice modelers via guidance of

CogTool (John, 2009). John first identifies common
mistakes of modelers and then compares the variation

between modelers with and without the tool support.

In this study, we take a different approach. We establish

dimensions for comparison of a certain type of holistic

leader models built by novice modelers (students) using a

61

common framework, i.e. PMFserv’s existing socio-

cognitive appraisal framework. Specifically, the

framework allows modelers to define: 1) Context, i.e.

how leaders perceive the world; 2) Decision making
behavior, i.e. how leaders process information flowing in

and determine actions accordingly; and 3) World

behavior, i.e. how the world gets affected by these

individual actions. In this study, we define world behavior

beforehand and restrict modelers to focus on the first two

parts to replicate a given scenario. Next, we specify

dimensions of comparison in leader-in-context models by

identifying the differences amongst models. Unlike John
(2010), there are no errors in modeling but there is good

or bad modeling. Finally, we use these dimensions to

specify desired features for models of leader-in-context.

The next section summarizes the PMFserv framework

focusing on cognitive appraisal theory. The methodology

section describes the dimensions of comparison and

outlines the good and bad practices of leader-in-context

modeling. The subsequent section describes the specifics
of the scenario and task given to modelers. The results

section analyzes the differences amongst the models

based on the dimensions explored. The last section

concludes with discussion and related future work.

Cognitive Appraisal within PMFServ

The Performance Moderator Function Server (PMFserv)

was designed by Silverman et al. (2006) as a modular
system and socio-cognitive modeling framework for

implementing and evaluating performance moderator

functions (PMFs). PMFserv operates what is sometimes

known as an observe, orient, decide, and act (OODA)

loop. PMFserv agents utilize cognitive appraisal theory to

help them cope with these contexts. This involves a

perception system, a values system, an emotion model

and a decision module.

Perception Module

Perception of agents and objects around each agent

determine the context. The perception is based on
“affordances” (Cornwell, 2003) which is a form of

distributing perceptions so that an agent's knowledge of

the world is marked up onto the perceived objects, instead

of the perceiving agents. Each entity in the world, agents,

objects, groups, organizations etc., applies perception

rules to determine how it should be perceived by each

perceiving agent. Hence, each agent can perceive the

same entity differently based on these rules. For example,
a bike might afford the actions ‘ride’, or ‘walk alongside’

to an agent if it knows how to ride a bike but it might only

afford the ‘walk alongside’ action to another agent that

does not know how to ride a bike. In this case, the mark-

up rules that reveal actions depend on properties of the

perceiving agent. An example of a company that is

marked up for such perceptions is given in Figure 1. Each

gray box represents one way the company can be

perceived. Each element of the grid is called a perceptual

type (p-type). These p-types are not mutually exclusive.

Figure 1: Company P-types

Modelers establish appropriate context via rules on a p-

type. For example, a CEO might see that ‘Not Enough

Budget for Customer Service’ is active and be afforded
actions ‘Decrease Customer Service’ or ‘Fire employees’

whereas this context is not valid for a customer agent.

Hence, p-type rules might require that the perceiving

agent works at the company or that it is the CEO of the

particular company. The set of active p-types determine

the actions afforded to perceiving agents. We define the

parameters that affect the p-type rules as input parameters.

Activations and Value System

An afforded action provides activations to those taking

that action. These activations are fixed and irrespective of

the agent that is afforded the action. Agents assess the

activations of each action against their values system to

compute the utility of taking that action. By comparing

utility of all alternative actions, agents complete the

primary appraisal, i.e. how alternative contexts affect their

personal well-being, emotions etc. They then select the

action that maximizes their utility.

For this to work, PMFserv requires every agent to have
goals, standards, and preferences (GSP) trees filled out.

GSP trees are multi-attribute value structures where each

tree node is weighted with Bayesian importance weights.

Within a simulation, each agent has the same tree

structure, i.e. nodes are the same but the weights differ

among agents. The assignment of node weights

determines the traits of a certain agent. Figure 2 provides

an example of a simple GSP tree structure for a company
CEO.

In order to determine a specific agent’s importance

weights, modelers utilize differential diagnosis (Bharathy,

2006) and analytical hierarchy process (AHP). This

provides a systematic and valid methodology for

assessing the weight of each node to effectively

Figure 2: An example GSP tree

62

profile the agents and settings of interest. Using

differential diagnosis, modelers collect and assess

relevant evidence to attribute behavior. In this process,

each hypothesis corresponds to a node in the GSP tree,
i.e. behavior or traits. The output is organized in tabular

form called an ‘evidence table’ with additional attributes

such as reliability, frequency of occurrence, and

relevance. Evidence tables allow one to consider all

competing hypotheses at once and rank them accordingly

by assigning confirmation scores to each hypothesis.

Figure 3 provides a shortened example of an evidence

table. The table shows that the first evidence relates to the
nodes ‘Risk Aversion’ and ‘Risk Seeking’. From the

evidence table, the weights are estimated through the

AHP process by pair-wise comparison of their confidence

index.

Figure 3: Evidence Table

Emotion model

This is the module that calculates how each agent is likely

to feel from taking an action based on arousals, i.e.
combining activations and values system (GSP tree). Each

afforded action has an activation mapping on the GSP

trees. The activation mapping is a collection of

success/failure levels on a set of GSP nodes. For a simple

example, an activation mapping on the values system (in

Figure 2) of the action ‘Decrease Customer Service’ is

given in Figure 4. It shows that the result activates two

nodes positively, ‘personal well-being’ and ‘neglect

human resource’, and one node negatively, ‘company

well-being’. The set of emotions that each agent generates

from taking an action is determined by the sum of their

activations weighted by node weights. Thus an
importance-weighted values system results in differing

emotions being generated within the same context by

different personalities. For mathematical underpinnings of

the implemented model, see Silverman et al. (2006).

Figure 4: Activation mapping for action ‘Decrease

Customer Service’

Decision Module

The decision model receives information from the value-
driven emotion model and implements utility theory to

select actions. A decision in PMFserv is a choice made by

an agent when choosing between alternative afforded

actions. A decision-making algorithm runs to select the

decision with the highest subjective expected utility.
Subjective expected utility (SEU) for each decision is

determined by appraising all possible emotions that will

be generated if the decision is taken by that agent. The

decision taken is called an action. An action may generate

effects on the environment – actor, target and other

entities – based on its result. These result effects are

called action bindings. We will refer to parameters that

these action bindings affect as output parameters. Figure 5
gives an example of an action binding for the action

‘Decrease customer service’. The output parameters are

‘capital’ and ‘customerServiceQuality’ of the target of the

action.

Figure 5: Action Binding rule table

Methodology

In this section, we introduce the dimensions of

comparison amongst the models. These dimensions also

highlight good versus bad modeling behavior. We divide

the dimensions of comparison into two major clusters: 1)

Dimensions related to modeling leader-context

interactions, i.e. how context, afforded actions, leader

responses and its effects on the world are modeled, and 2)

Dimensions related to modeling leader personality, i.e.

how agent value systems are constructed.

Dimensions Related to Modeling Leader-Context

Interactions

These are the dimensions that provide feedback on how

conditions that lead to leader actions (p-types and

afforded actions) and effects of leaders actions on the

world are modeled. It is possible to further divide these

dimensions into two: context richness and action-result

balance.

Context Richness It refers to the depth of the model with

respect to leader perception. Within the PMFserv
framework, context is determined by p-types. If one wants

to have finer levels of granularity in perception modeling,

it is necessary to increase the number of p-types. This will

enable one to pin down the reasons for events in finer

detail. However, increasing only the number of p-types is

not always sufficient. Number of input parameters that

affect the perception rules often needs to be correlated

with number of p-types. If number of affecting parameters
is much smaller than number of p-types then there is a

strong indication of overloading parameters with multiple

meanings which in return means p-types are not clearly

defined. This will often require accurate estimation of

these parameters. In short, the context which affords

63

actions to agents should be clearly defined so that agents

consider the correct set of actions at the right set of

circumstances.

Action-Result balance It refers to the relations between
actions and parameters that are affected by the results of

those actions. One must consider all aspects of taking that

action when one is defining an action’s effects on the

world. Often, results of actions come with trade-offs. The

modeler has to reflect these trade-offs via output

parameters.

Dimensions Related to Modeling Leader Traits

While the previous cluster of dimensions may reflect on
how leaders perceive and how their actions affect the

world, it is really the personality that determines how

leaders vary from one another within the same context.

The dimensions in this section refer to assessment of

leader personality models.

Quality and Quantity of Evidence Organizing

information from otherwise diverse or amalgamated

sources is critical to the success of the modeling activities.

Although differential diagnosis and AHP process

minimizes subjectivity and biases within the process, the
validity of results depend on the quality and number of

pieces of evidence. Quality of evidence refers to the

relevance and reliability of evidence. A modeler should

try to obtain reliable evidence that is relevant to the story.

Additionally, one would want to increase the number of

pieces of quality evidence attributed to each node.

Coverage in Tree to Activation Mapping Activation

mappings on GSP trees are used for emotion calculations

which in return get used in decision-making. If a node

does not get covered by an activation mapping from any
of the actions then that node will be idle throughout the

simulation. In other words, it will not have any effect on

the decision-making calculations. Modelers need to make

sure that each node gets mapped to an activation by at

least one action.

Sensitivity Analysis If change in a parameter value

causes significant changes to the main outcome of the

model then it means that the model is sensitive to that
parameter. This would require that parameter to be

estimated with higher precision. The behavior of a

validated cognitive model should ideally be fairly robust

with respect to tweaking changes on a single personality

trait. Within the PMFserv framework, sensitivity to a

node indicates that for certain key actions, activation

mappings affect mainly that node. The modeler has to be

aware of this sensitivity and carefully use techniques
discussed in the previous section and try to find additional

evidence for more accurate determination of node

weights.

Task and Scenario

After approximately 25 hours of framework and

methodology training, students were given strict
guidelines to come up with a working model that

replicates a given scenario as one part of their coursework

requirement. The class consisted of junior and senior

Systems Science and Engineering (SSE) students with the

exception of one Economics major. Most students are also
completing a double major or a minor degree in our

business school. Students were given two weeks to

complete their assignment and they had support from

experienced model builders. The students worked in

groups of four or five. They were given a benchmark

model that required certain tasks to be completed to fully

function. Each individual had to model an agent by

picking a theory of behavior and reflect this theory onto a
values system for their agent. The set of agents to model

were given to them. Team members had to decide on

which agent each student would model. Each group had to

come up with important parameters, contexts, afforded

actions, activations and results of taking those actions for

the set of agents. The benchmark model contained a set of

rules that govern the dynamics of the world and groups

were fully aware of how the world would function.
Lastly, they were required to replicate scenario outputs

within their model.

Specifically, students were given the story of Circuit

City (CC) going bankrupt and Best Buy (BB) excelling.

They were given a news article that overviews the story.

Additionally, they were encouraged to do their own

research on the story and their specific agents. The

minimum required set of agents included Circuit City
CEO, Best Buy CEO, and two or three (depending on

group size) types of consumers. Further, two companies

were modeled and placed under the control of the

respective CEO. Each student focused on profiling a

single agent. The decisions of consumers were predefined

within the world dynamics as ‘Shop from Best Buy’ or

‘Shop from Circuit City’. The teams were required to

maintain these two actions and were not allowed to add
new actions for the consumers. CEO agents did not have

any predefined actions, thus the teams had to work on all

parts of the OODA loop for those agents.

Results

This section provides examples of dimensions discussed

in the methodology section from student models. We

provide a summary of the models in Table 1. Out of the
eight teams, six teams were able to create a model that

replicated the desired output behavior, i.e. CC’s fall and

BB’s rise. Two teams (Model_5 and Model_8) were not

able to complete their model within the given time frame.

In Table 1, we provide a collection of p-types from each

model (except Model_3) that afford actions only to CEOs

(BB CEO or CC CEO). P-type rules, action binding code,

and a portion of the p-types have been omitted due to
space restrictions.

The first set of examples relate to context richness.

Teams had a hard time balancing affordances, actions and

activations to create meaningful context. In Model_4,

CEO gets afforded actions such as ‘Acquire New

64

Business’ and ‘Expand to Prime Locations’ via the p-type

‘Business Expansion Possible’. These actions have no

clear context because they get afforded to the CEO all the

time. In fact, in Model_4, CEO gets afforded all the
actions (listed in Table 1) at all times, i.e. the only

requirement is for the agent to be CEO of that company.

In Model_6, CEO agents are afforded the actions

‘Increase customer service’ and ‘Increase number of new

products’ as long as companies have positive capital.

Similarly in Model_2, p-types ‘BB Customer Service

Savings Available’, ‘BB Improvement’, ‘BB Price’ are all

active if parameter ‘customerServiceQuality’ is greater
than zero. In other words, the CEO does not distinguish

between these p-types. Additionally, Model_3 uses the

parameter set ‘Inventory’ and ‘capital’ to define five

different p-types indicating possible overloading.

However, this group used different values of ‘Inventory’

and ‘Capital’ as thresholds to trigger these five p-types.

Unlike the previous examples this kind of rule format is

acceptable to define varying context but not desired as it
relies on fine tuning of these parameters. Finally, we refer

to Model_7 as an example model that defines context

appropriately. Model_7 uses differing combinations of

input parameters to define various contexts.

A majority of the modelers were able to capture the

trade-offs of actions inside the action bindings. One

obvious violation was in Model_6. ‘Decrease number of

new products’ only has an effect on the parameter
‘amount of products’. One would imagine that this action

would have direct and immediate positive effect on the

‘capital’ of the company. As an example, in Model_4 the

action ‘Expand to Prime Locations’ increases

‘Accessibility Rating’ but at the same time it hurts

company’s ‘capital’.

In order to construct the GSP structure for their agents

of interest, students were asked to collect evidence that
could help to profile their agents. The number of evidence

that students organized ranged from 8 to 25. Students

were encouraged but not required to use reliability or

relevance scores for their evidence tables. Most of the

students utilized a low-medium-high scale and rated their

evidence as medium or highly reliable. On the average, a

team had 11 nodes for Goals, Standards, and Preferences.

Hence, there was an average of 33 nodes in total on
average. This meant that roughly 33 hypotheses existed

within an evidence table. Students cross-compare these

hypotheses with each piece of evidence. Furthermore,

students were able to provide evidence for each node.

Given the limited time the modelers had, we consider this

an acceptable effort.

Each individual had to incorporate a theory and justify

how their theory reflects on the values system (GSP
structure and node weights) of their agents. Students

utilized theories such as individual theory, marketing

theory, Maslow’s theory on the hierarchy of needs,

economic buyer theory, utility theory, agency theory,

consumer behavior theory, etc. GSP node names

(hypotheses) were formed by these theories. Each team

came up with a common GSP structure but each

individual had to incorporate a different theory for their

agent. The key here was to look at whether that theory
was confirmed for their individual agent via pieces of

evidence. The majority were able to justify that their

individual theory applied to their agent.

As a final requirement for their coursework, students

were required to come up with an if-then hypothesis

based on a change in personality trait of the agents that

each person was responsible for modeling. An example if-

then hypothesis is: “If ‘Save Money’ node weight of CC
CEO is reduced then CC would remain in business for a

longer time.” In short, students related a macro-level

metric to a change in micro-level values. Out of the 12

students who modeled either CC or BB CEO for their

teams, only four (only one of them was BB CEO)

reported that their model was sensitive to the changes that

were made on the GSP trait they analyzed. All reported

that the change in behavior was in parallel with their
initial expectations, i.e. their if-then statement. The rest

reported that their model is relatively insensitive to their

parameter changes and the hypothesis is disconfirmed.

Concluding Remarks

This study placed a benchmark model of two firms, CC

and BB, in the hands of student trainees and challenged

them to research and build alternative models of leaders
in context. The leaders they built had to account for the

cognitive and personality variables that may have caused

the decline of CC and the success of BB. Further, these

leader models had to operate in a holistic environment

and cope with many types of networks and social

dynamics that are spawned at run time: ego-networks,

economic networks, transaction networks, and so on.

Six teams successfully completed the assignment. They
researched alternative theories and built differing models

of leaders-in-context. Thus they illustrate answers to

question number one – can users build and plug-in

alternative models covering the breadth of socio-cognitive

dimensions dictated by the modern leader-in-context

theory. Their results also address the answer to the second

question and give us ample fodder to begin to understand

how to compare different models of the same
phenomenon.

 We explored dimensions for comparison of leader-in-

context models. The first set of dimensions concentrated

desired features on modeling parts of the OODA loop and

the second set concentrated on leader personality

modeling and its effects on the model. We extracted these

dimensions from working student models by focusing on

differences between models. We realize that this
variability between models is likely to reduce when

models are built by experienced modelers. A future

research direction is to analyze whether these dimensions

remain salient and sufficient for assessment of expert

models.

65

Table 1: Summary of student models (Input parameters, p-types, afforded actions, and output parameters)

Model comparison is fairly straightforward in

traditional mathematical models that are tractable.

However, cognitive agent-based models are hard to

compare because each model includes a diverse library of

models that have different assumptions and perspectives.
This is the main reason why knowledge produced by

different complex social models does not accumulate. In

fact, every modeler prefers to start from scratch to build

their own model which they can build confidence in.

Furthermore, even under strict guidelines, modelers still

come up with a whole variety of models.

Throughout the paper, we use dimensions instead of

metrics of comparison to distinguish the fact that these
dimensions of comparison are not quantified. In the

future, we hope to be able to quantify these dimensions

into metrics for assessment of socio-cognitive leader

models.

References

Avolio, B. J. (2007). Promoting More Integrative

Strategies for LeadershipTheory-Building. American

Psychologist, 62, 25-33.

Bharathy, G. (2006). Agent based Human Behavior

Modeling: A Knowledge Engineering based Systems

Methodology for Integrating Social Science

Frameworks for Modeling agents with Cognition,

Personality & Culture. dissertation, U. of Pennsylvania.

Boyd, J. (1995). The Essence of Winning and Losing.

Cornwell, J., O’Brien, K., Silverman, B.G., Toth,

J.(2003). Affordance Theory for Improving the Rapid

Generation, Composability, and Reusability of

Synthetic Agents and Objects. 12th Conf on BRIMS,

SISO.

Hazy, J. K. (2007). Computer models of leadership:

Foundation for a new discipline or meaningless diver-

sion? The Leadership Quarterly, 18, 391-410.

Lebiere, C., Gonzalez, C., Dutt, V., & Warwick W.

(2009) Predicting cognitive performance in openended
dynamic tasks a modeling comparison challenge. In A.

Howes, D. Peebles, R. Cooper (Eds.), 9th ICCM,

Manchester, UK.

John, B. E. (2009). CogTool user guide version 1.1.,

Carnegie Mellon University, Pittsburgh, PA.

John, B. E. (2010). Reducing the Variability between

Novice Modelers: Results of a Tool for Human

Performance Modeling Produced through Human-

Centered Design, BRIMS, Charleston, SC

Lichtenstein, B. B., & Uhl-Bien, M., & Marion, R.

(2006). Complexity Leadership Theory: An interactive
perspective on leading in complex adaptive systems.

Emergence: Complexity and Organization, 8, 2–12.

Silverman, B., G., Johns, M., Cornwell, J., & O’Brien, K.

(2006). Human Behavior Models for Agents in

Simulators and Games: Part I – Enabling Science with

PMFserv, Presence, 15, 139-162.

Silverman, B. G., Bharathy, G., K., Nye, B.,Eidelson, R.

(2007). Modeling Factions for ‘Effects Based

Operations’: Part I – Leader and Follower Behaviors.

Journal of Computational & Mathematical

Organization Theory, 13, 379-406.

Models Input Parameters P-Types that afford actions to CEOs Afforded Actions Output Parameters

customerServiceQuality BB Customer Service Savings Available 1. Decrease customer service capital, customerServiceQuality

customerServiceQuality BB Improvement 1. Increase customer service capital, customerServiceQuality Model_2

customerServiceQuality BB Price 1. Reduce Price Price

 Business Expansion Possible 1. Acquire New Business

2. Expand to Prime Locations

capital, product Range

capital, accessibilityRating

 Employee Quality 1. Allow Flexible Scheduling

2. Train Employees

capital, customerServiceQuality

capital, customerServiceQuality

 Marketing Improvements Possible 1. Implement Centrizing capital, customerServiceQuality,

brandImage

 Payroll Increases Possible 1. Increase Top Management

Salaries

capital, productRange, brandImage

Model_4

 Payroll Savings Possible 1. Decrease Salesman Salaries

capital, customerServiceQuality,

brandImage, accessibilityRating

Capital Improvements available 1. Increase customer service capital, customerServiceQuality

amountOfProducts Not spending money on new products 1. Decrease number of new

products

amountOfProducts
Model_6

Capital Products available 1. Increase number of new

products

amountOfProducts

location Liquidate Stores 1. Close 100 Stores capital, location

location, capital Locations Available 1. Open 100 New Stores capital, location

newTechnology, capital New Technology Available 1. Invest in New Technology capital, newTechnology

promotions, capital Promotion Available 1. Hold Promotion capital, promotions

brandNames Savings Available by Canceling

Partnership

1. Cancel Partnership capital, brandNames

promotions Savings Available by Cancelling

Promotion

1. Cancel Promotion capital, promotions

websiteQuality Web Savings Available 1. Decrease Online Presence capital, websiteQuality

Model_7

websiteQuality, capital Website Improvement Available 1. Improve Online Presence capital, websiteQuality

66

Improving the Reading Rate of Double-R-Language

Mary Freiman
1
 and Jerry Ball

2

L3 Communications
1

Air Force Research Laboratory
2

Mary.Freiman@mesa.afmc.af.mil, Jerry.Ball@mesa.afmc.af.mil

Abstract

This paper describes changes to a model of reading
comprehension to improve its reading rate and bring it into
closer alignment with human reading rates. The broader
context of the research is development of language capable
synthetic teammates that can be integrated into team training
simulations. To use synthetic teammates in team training
without detriment, we believe the synthetic teammates must
be both functional and cognitively plausible. By functional,
we mean that the synthetic teammate operates in real time,
performs the task, and handles the range of linguistic inputs
that are encountered. By cognitively plausible, we mean that
the synthetic teammate adheres to well established cognitive
constraints on human language processing—including the
incremental and interactive processing of language at human
reading rates. Achieving human reading rates in a cognitively
plausible and functional model of reading comprehension is a
research challenge that has not been met to date.

Keywords: human language processing, reading rate,
synthetic teammate, functional, cognitively plausible

Introduction

We are developing a model of reading comprehension

called Double-R-Language (Ball, 2007; Ball, Heiberg &

Silber, 2007). Double-R stands for Referential and

Relational—two key dimensions of meaning that get

grammatically encoded in English. The initial application of

the reading model is development of a synthetic pilot for use

in a three-person UAV simulation. The synthetic pilot flies

the simulated UAV from a ground control station and will

eventually communicate with a human navigator and

photographer in the completion of reconnaissance missions.

A prototype system has been developed (Ball, et al., 2009)

using the ACT-R Cognitive Architecture (Anderson, 2007).

The synthetic pilot prototype communicates with

lightweight agent versions of the navigator and

photographer developed outside ACT-R.

The prototype communicates with the navigator and

photographer using text chat and must be capable of reading

and comprehending the messages it receives from them. The

reading comprehension model is capable of incrementally

processing linguistic inputs and generating linguistic

representations of referential and relational meaning. These

linguistic representations are interactively mapped into a

non-linguistic representation of the objects and situations

referred to in the linguistic input. The non-linguistic

representation—called the situation model (cf. Zwann &

Radvansky, 1998)—drives the task behavior of the synthetic

pilot and determines when to communicate with the other

teammates to acquire needed information.

A significant challenge for the reading comprehension

abilities of the model is input variability. A corpus of text

chat communications that was collected in an experiment

involving human subjects and the UAV simulation is full of

variability in the form of linguistic input (see Table 1). For

competent readers, misspelled words activate the intended

lexical items because they contain many of the same letters

and trigrams (Perea & Lupker, 2003). Hence, key

requirements of the reading model include the ability to

handle misspellings in input; the ability to separate

perceptually conjoined units (e.g. separating punctuation

from words as in ―He went.‖, but not ―etc.‖; separating

words lacking spaces as in ―yougo‖ for ―you go‖); and the

ability to recognize multi-word expressions (e.g. ―speed

up‖) and multi-unit words (e.g. ―a priori‖, ―h-area‖).

Table 1. Messages seen during a UAV simulation

To satisfy these requirements, the model includes a word

recognition subcomponent that uses ACT-R’s spreading

activation mechanism to influence lexical item retrieval.

The subcomponent maps orthographic input directly into

DM representations without recourse to phonetic

processing, although a phonetic mapping is not precluded.

The model uses the spreading activation mechanism of

ACT-R to retrieve words from the lexicon that are not an

exact match to the input. Letters and trigrams in the input

spread activation to the words containing those letters and

trigrams in the mental lexicon. These processes and

encodings are based on the Interactive Activation model of

word recognition (McClelland & Rumelhart, 1981), with the

addition of trigrams based on ―letter triples‖ (Seidenberg &

McClelland, 1989). The subcomponent is embedded in the

reading comprehension model as a whole; the effects of

context and previous activation levels are taken into

consideration when encoding each individual word

(Freiman & Ball, 2008). The reading model also includes a

verification stage to check the retrieved lexical item against

the perceptual input. The verification stage aligns with the

Activation-Verification model of Paap et al. (1982). It splits

concatenated words in the input (e.g. ―yougo‖) to match the

MESSAGE: VARIANT:

i need to be beloe 3000 for f area i; beloe; f area

effective radiu

any requirements for altitde/speed?

can yougo faster yet or is it stll 200

radiu

altitde

yougo; stll

67

retrieved word (e.g. ―you‖), leaving a residual (e.g. ―go‖)

for subsequent processing. If the retrieved lexical item is not

a sufficiently close match to the input, the model treats the

input as an unknown word.

Even without considering the mapping of the linguistic

representations into the situation model, the previous

version of the reading model was much slower than humans

in both cognitive processing time and real time

performance. Adult readers read at a rate of 200-300 words

per minute (Taylor, 1965; Carver 1973a; Carver 1973b).

The average reading rate of the model—prior to the

introduction of the changes described in this paper—was 96

words per minute (cognitive processing time), making it

impossible to match the model’s performance against

human performance. Since we are interested in building a

model of reading comprehension that is cognitively

plausible as well as functional, this presents a real challenge.

The prior reading model read slowly for several reasons: 1)

it required multiple declarative memory (DM) retrieval

requests per word; 2) it lacked the ability to read units of

language larger than the word; and, 3) it built complex

linguistic representations necessitating the execution of

multiple productions. In addition, the model relied on

parallel spreading activation to retrieve lexical items, which

is computationally expensive for large DMs on serial

hardware.

It is important to distinguish between reading rate as

measured by the real time functional performance of the

model and the rate as measured by the cognitive processing

time. ACT-R provides support for measuring cognitive

processing time—how long it would take a human to

perform some cognitive process. Execution of a single

production in ACT-R takes 50ms of cognitive processing

time; plus, the time it takes to retrieve a chunk from DM

depends on the activation of the chunk and can be measured.

Typical ACT-R models with small DMs are capable of

executing much faster than real time while measuring

cognitive processing time. However, large DMs tax the

computational resources of serial hardware and can lead to

models that run slower than real time or not at all (cf.

Douglass, Ball & Rodgers, 2009). Although it is important

to distinguish cognitive processing considerations from real

time considerations, these considerations are intertwined.

For example, reducing cognitive processing time by

eliminating retrievals also reduces the computation of

parallel spreading activation, speeding up the real time

performance of the model. For each of the shortcomings

listed above, one or more remedies is described below and

its impact on cognitive and real time processing is

considered.

Reducing retrievals

When the model retrieves chunks from DM, the ACT-R

Declarative Memory module calculates the activation across

all chunks that match the retrieval template, selecting the

most highly activated chunk for retrieval. The retrieval

template provides hard constraints on memory retrieval—

which are difficult to justify from the perspective of

cognitive plausibility. Only chunks exactly matching the

retrieval template are eligible for retrieval. The spreading

activation mechanism provides more cognitively plausible

soft constraints on retrieval. Chunks may be activated which

are not an exact match to current input or context. For

cognitive plausibility, we prefer ACT-R’s spreading

activation based soft constraint retrieval mechanism,

minimizing the use of hard constraints in the retrieval

template. For example, we do not want to use a hard

constraint exact match to the input which would preclude

retrieval of a word which is not an exact match (e.g.

―altitde‖ should retrieve ―altitude‖). However, use of hard

constraints reduces the amount of computation significantly

by eliminating non-matching DM elements from the

spreading activation computation.

Instead of relying on hard constraint retrievals to reduce

the amount of computation, we have pursued the more

cognitively plausible alternative of reducing the number of

retrievals. An example of this is discussed next.

Combining Word Form and Part of Speech Chunks

In the previous version of the model, there was a word-form

chunk for each word that encoded the graphical form of the

word, including the letters and trigrams in the word (e.g.

speed-wf), and part of speech chunks that encoded the

various parts of speech of the word (e.g. speed-noun and

speed-verb). The performance of the reading model has

been improved significantly by collapsing the word form

and part of speech chunks into a single word-form-pos

chunk (e.g. speed-wf-noun, speed-wf-verb). Now, a single

retrieval is required to determine the part of speech of a

linguistic input. Since the production which initiates a

retrieval takes 50ms to execute, by combining the word

form and part of speech chunks for each lexical item, 50ms

plus the retrieval time were saved per word.

From a representational perspective, combining the word

form and part of speech chunks is not ideal. The word-form-

pos chunks combine two distinct types of information (i.e.

graphical vs. grammatical) which are better kept separate. A

better solution would retain separate chunks, but support

retrieval of part of speech chunks given the linguistic input.

This could be achieved via multi-level activation spread if

the linguistic input activated a word form chunk which in

turn activated related part of speech chunks. Unfortunately,

ACT-R does not support multi-level activation spread,

although its predecessor ACT* (Anderson, 1983) did. It

should be noted that single level parallel spreading

activation is already computationally expensive for large

DMs. Supporting multi-level spreading activation would

add an additional multiple to the computation for each level.

Expanding the Perceptual Span

By default, ACT-R’s vision module splits input text into

perceptual spans at spaces and punctuation. The module

even splits at word internal punctuation, so ―ACT-R”

becomes “ACT” “-“ “R”, requiring three movements of

68

attention to read. This behavior was changed to a more

plausible splitting of the input text, thereby reducing the

number of retrievals per input. Words with internal

punctuation are no longer split up and retrieved separately.

The width of the perceptual span is now determined

dynamically, based on the length of the first word (wordn) in

the perceptual span. The boundary of wordn is determined

by the first space. If wordn is greater than twelve letters in

length, it takes up the entire length of the perceptual span. If

wordn is fewer than twelve letters in length, up to six letters

of the next word (wordn+1) can also be seen in the perceptual

span. No more than twelve letters are contained in the

perceptual span.

The size of the revised perceptual span is deliberately

conservative, so that even though three very short words

(e.g. ―out of the‖) could be perceived at a single attention

fixation, the model never retrieves information for more

than two words. There is a great deal of evidence that the

perceptual span of adult readers is about 14-15 letters to the

right of fixation (DenBuurman et al., 1981; McConkie &

Rayner, 1975; Rayner, 1986). We implemented a span of up

to twelve letters, with the greatest amount of activation

spreading from the first few letters of the span and

decreasing toward the end of the span. As a result, incorrect

letters at the beginning of words are more detrimental to

correct retrieval than misplaced letters later in the word.

Activation spreads from the letters, trigrams, and length of

the first word (wordn). If there is more than one word in the

perceptual span, wordn+1 spreads activation from its

trigrams. The section of the perceptual span containing

wordn is roughly equivalent to the fovea; the perceptual span

at wordn+1 is roughly equivalent to the parafovea.

The revised perceptual span is generally larger than ACT-

R’s default span. Just as for adult readers, information to the

right of fixation is obtained when the next word is

predictable from the preceding text (Balota, Pollatsek, &

Rayner 1985). Again, we were deliberately conservative in

determining how much information could be perceived from

wordn+1. Our intent was not to model in high fidelity the

perceptual span in reading, or movements of attention in

reading; movement of attention is not our primary focus.

We merely wanted to make the vision module more

serviceable to our language comprehension model, and

more faithful to human perceptual spans in the process.

An example of the reduction in reading time can be seen

in the phrase ―take us to h-area‖. Previously, ACT-R’s

vision module would chop the input into seven parts:

―take‖ ―us‖ ―to‖ ―h‖ ―-― ―area‖

The model would retrieve each part from DM, integrate it

into a linguistic construction, and then move on to the next

word. The last three sections of the input would need to go

through additional processing for the model to recombine

them into a single word. Reading the entire sentence took

2.8 seconds. If ACT-R does not chop up the input at spaces

and punctuation, the same phrase takes only 1.74 seconds to

read. In the next section, the advantage of the expanded

perceptual span for processing multi-word expressions is

described.

Multi-Word Expressions

To facilitate reading and word recognition we have

modified the ACT-R architecture and the reading model to

better interpret multi-word expression (i.e. lexical units

containing spaces). By not splitting the perceptual input at

all spaces, multi-word expressions and multi-unit words can

be retrieved as a single chunk (e.g., "of course" and "a

priori"). To accommodate multi-word expressions we

modified our lexical chunks in DM to reduce the number of

retrievals necessary per word. Multi-word expressions are

treated in much the same way as singleton words. Many

multi-word expressions are not syntactically alterable units

and need not be parsed (Sag et al. 2002), so the model treats

them as ―words-with-spaces‖.

An important side effect of the new perceptual span

mechanism is that it also increases the reading rate of the

model in the process. Since the perceptual span can cross

spaces as well as punctuation, multi-word units like ―to go‖,

―want to‖, and ―believe in‖ can be recognized as a single

unit and processed in a single attention fixation. This

capability is really the key to getting Double R-Language to

approach adult human reading speed.

Before the multi-word expression capability was

implemented, the phrase ―we need to go‖ took 1.99 seconds

for the model to process. After the perceptual span was

expanded, the model reads the same phrase in 1.79 seconds.

In this phrase ―to go‖ is treated as a single unit, since it is an

infinitive verb. There is one fewer retrieval, and the

infinitive can be integrated into the phrase as a whole

without having to recombine ―to‖ and ―go‖. Whenever there

are multi-word units, the model now saves time in retrievals

and processing. There is no difference in the time it takes to

process other sorts of words. In addition, multi-word

expressions are less ambiguous than individual words. ―To‖

in isolation is very ambiguous, whereas ―to go‖ is much less

ambiguous.

Linguistic Representations

The reading model incrementally processes the linguistic

input and builds a representation of referential and relational

meaning that is mapped into the situation model. The

building of linguistic representations is driven by the

execution of productions which retrieve or construct

linguistic elements and integrate them into the evolving

representation. It takes more productions and retrievals to

build complicated linguistic structures. In an effort to reduce

the number of productions and retrievals that are required,

we investigated how linguistic representations could be

simplified or reduced. Our current approach attempts to

build the minimal structure needed to represent the

linguistic input, but must support more complex structures

when they are needed.

69

Retrieving object referring expressions

Determiners are words that project definiteness and

(sometimes) number information to nominals (Ball, 2010).

In the reading model, nominals are called object referring

expressions (ORE) to emphasize their referential (referring

expression) and relational (object) functions. Determiners

include the articles ―a‖, ―an‖, and ―the‖, as well as the

negative ―no‖, demonstrative pronouns ―this‖, ―those‖, etc.

Linguists have long known that the determiner ―the‖ is the

most commonly used word in the English language (cf.,

Zipf, 1932); other determiners are nearly as common. As the

most commonly used words, determiners are likely to be

highly proceduralized or simplified in their use (Zipf, 1949).

Therefore we concentrated on consolidating the processes

associated with determiners.

Previously, the model identified a word as a determiner,

then executed a production which projected an ORE. The

determiner was integrated as the specifier of the ORE.

Given that determiners are used so regularly and frequently,

it seems likely that there is an ORE in DM associated with

each determiner that can be retrieved without first

identifying the part of speech of the word. By retrieving the

associated ORE rather than first identifying the word as a

determiner, the processing of determiners becomes more

proceduralized, faster, and more cognitively plausible.

Where separate, general productions were required to

retrieve the part of speech, followed by projection of an

ORE if it’s a determiner, now a single specialized

production projects an ORE directly from determiners.

Although we manually created this specialized production,

we would prefer that the model learn how to compile such

productions automatically.

Reducing structure in nominal heads

Retrieval or projection of an ORE by a determiner

establishes the expectation for a head to occur. In the

previous version of the model, when a word following the

determiner was identified as a noun, a subsequent

production projected an object head and integrated the

object head as the head of the ORE (Figure 1). Projection of

the object head from the noun supported the integration of

pre- and post-head modifiers (e.g. the post-head modifier

―on the runway‖ in ―the airplane on the runway‖). When a

post-head modifier occurred, it could be integrated into the

object head in the post-head modifier slot. However, in the

absence of a post-head modifier, projection of an object

head is unnecessary and the noun could be integrated as the

head of the ORE. The current version of the model adopts

the simpler approach, integrating the noun as the head of the

ORE (Figure 2). The tree diagrams below were generated by

the previous and current versions of the model and show the

contrast between the two approaches for the linguistic input

―the restriction‖ (the pre- and post-head modifier slots in the

object head are not displayed):

Figure 1. Original nominal structure (including a

determiner, projected ORE and object head)

Figure 2. Reduced nominal structure (the retrieved

determiner ORE and no object head)

But what happens when a post-head modifier occurs, or

when the pre-head modifier slot turns out to be needed? In

the processing of the input ―the altitude restriction‖, when

―altitude‖ is processed it is integrated as the head of the

nominal projected from ―the‖. When ―restriction‖ is

subsequently processed there is no expectation for its

occurrence. The previous version of the model projected an

object head, so ―restriction‖ was accommodated by shifting

―altitude‖ into the pre-head modifier slot so that

―restriction‖ could be integrated as the head. In the current

version, we have adopted a similar strategy. In parallel with

the integration of ―altitude‖ as the head of the ORE, an

object head is constructed in which ―altitude‖ is the head.

This object head is available if needed to support subsequent

processing. When ―restriction‖ is processed, the object head

overrides ―altitude‖ as the head of the ORE and ―altitude‖ is

shifted into the pre-head modifier slot so that ―restriction‖

can be integrated as the head (Figure 3). Note that the object

head is projected in parallel to facilitate processing. A single

production integrates the object head as the head of the

ORE, shifts ―altitude‖ to the pre-head modifier slot and

integrates ―restriction‖ as the head. It takes no more time to

process ―restriction‖ than in the previous version of the

model, but it does require parallel projection of the object

head.

Figure 3. Accommodating ―restriction‖

70

Real Time Processing & Spreading Activation

Cognitive time is the time it takes the productions and

retrievals in ACT-R to happen, with each production taking

a fixed amount of time. When a production fires, 50ms of

cognitive time elapses, so having many productions firing

for the processing of each word takes up a great deal of

cognitive time. Retrievals also take cognitive time—chunks

with high activation are retrieved more quickly than

chunks with low activation.

Retrievals take real time to calculate the activation of all

eligible chunks. Real time is the wall clock time that

passes while the computer executes the model. When a

retrieval request is not very specific, for example,

specifying only the chunk-type, then the activation for all

chunks of that type must be calculated before the most

highly activated chunk can be selected. There are

thousands of chunks of type WORD, so when the chunk-

type WORD is the only retrieval specification, thousands of

activation calculations must be performed before a chunk is

retrieved. While this is a parallel process in the brain, it is a

serial process for a microprocessor. Since the language

model specifies only the chunk type, and relies on spreading

activation to retrieve words, thousands of calculations bring

the real time reading rate down to 53words per minute

(wpm).

Disjunctive Retrieval

One way to retrieve chunks faster in real time is to impose

stronger hard constraints on the retrieval. Instead of a weak

chunk-type specification that matches thousands of chunks,

a strong constraint that matches only a limited set of chunks

can be specified. For example, the model could try to

retrieve an exact match to input text form, which might only

match a single chunk in DM. However, imposing such

constraints makes the model less flexible and less

cognitively plausible. If the model relies on a hard

constraint to match the input form against words in DM,

variants cannot be read. Even a hard constraint on just the

first letter means that words where the first letter is

transposed with the second, or in any other way misplaced,

cannot be read by the model.

The model needs the flexibility of a soft-constraint

retrieval with the real time speed of a strong hard-constraint

retrieval. In order to achieve this affect, we implemented a

disjunctive retrieval mechanism. Using an ACT-R function

called get-chunk, the model checks DM for the largest

constituent of the perceptual span. If it does not find that

constituent, it chops the perceptual span at the last

punctuation mark or space. If that constituent is not found, it

chops at the second to last punctuation mark or space, and

so on. If an entire word does not match at any point, a

simple soft constraint is attempted.

For example, if the input sentence is ―og to h-area‖, we

want the model to be able to retrieve GO for ―og‖ (see Table

2). The get-chunk function is used to try to find chunks that

correspond to smaller and smaller parts of the visual input.

If at any point the function finds what it is looking for, the

model uses that specification to make the retrieval. Get-

chunk is a simple search function into a hash table—it is not

computationally expensive, and it functions outside of the

cognitive processes of ACT-R, so it does not take any

cognitive time.

Table 2. Perceptual span contains ―og to h-area‖

Using the disjunctive retrieval, the average reading rate

for the model is 249wpm in real time. The cognitive time is

unaffected, and the model runs with disjunctive retrieval are

identical to the model runs using a pure soft-constraint. The

results of retrieval requests are identical. Since the two

retrieval methods are equivalent in ACT-R, the disjunctive

retrieval is acceptable as a way to make our model fast

enough to be functional in real time while we try to catch up

in cognitive time.

Conclusions

Although we have not yet succeeded in achieving human

reading rates, we have improved the reading rate of the

Double-R-Language significantly. The initial version of the

model read at a rate of about 96wpm, far from our goal of

200-300wpm, the average reading rate of adults. The model

now reads at an average rate of 143wpm in cognitive time,

and 249wpm in real time. This rate is the average, achieved

while reading a text of just under 2,100 words, without

counting punctuation as separate words.

The perceptual span is closer in size to that of human

readers than previously. The expanded perceptual span

allows for the expansion of the model’s lexicon to include

multi-word units, as well as speeding up the reading rate.

An additional advantage of multi-word units is that they are

less ambiguous than words in compositional phrases.

The model was improved by simplifying various

linguistic constructions. Parallel constructions allow for

simplified nominal heads, and object referring expressions

in declarative memory allow the model to avoid

constructing object referring expressions whenever

determiners are encountered. We posit that the simplified

representations are not only more expedient, but more

cognitively plausible as well. Avoiding unnecessary

constructions in the model is more likely to track the

efficiency of human language use.

Ultimately, we believe that achieving human level reading

rates will require a capability to recognize multi-word units

that exceed a single perceptual span. Recognition of a

linguistic unit as forming a part of a larger linguistic unit

SEARCH

FOR:

RESULT: RETRIEVAL

REQUEST:

RESULT:

og to h-area NIL -- --

og to h- NIL -- --

og to h NIL -- --

og to

og

--

NIL

NIL

--

--

--

chunk-type WORD

--

--

GO-word

71

across perceptual spans should minimize the amount of

higher level processing required to integrate the recognized

unit into the evolving representation and speed up the

reading rate, allowing the model to approach adult human

reading rates.

Although reading rate is important, the language

comprehension model is being developed to model the full

range of linguistic processes of a competent adult reader,

rather than just modeling the reading rate. It is our hope that

any improvements we make in the reading rate of our model

will be accompanied by improvements in the models

accuracy and cognitive plausibility.

References

Anderson, J. R. (1983). The Architecture of Cognition. NY:

Harvard.

Anderson, J. R. (2007). How Can the Human Mind occur in

the Physical Universe? NY: Oxford.

Ball, J. (2007a). Construction-driven language processing.

Proceedings of the 2nd European Cognitive Science

Conference, 722-727. NY: LEA

Ball, J. (2007b). A Bi-Polar Theory of Nominal and Clause

Structure and Function. Annual Review of Cognitive

Linguistics, 27-54. Amsterdam: John Benjamins

Ball, J. (2010). Projecting grammatical feature in nominals:

cognitive processing theory & computational

implementation. Proceedings of the 19
th

 Behavior

Representation in Modeling & Simulation Conference.

Ball, J., Heiberg, A. & Silber, R. (2007). Toward a large-

scale model of language comprehension in ACT-R 6.

Proceedings of the 8
th

 International Conference on

Cognitive Modeling, pp. 163-168.

Ball, J., Myers, C. W., Heiberg, A., Cooke, N. J., Matessa,

M., & Freiman, M. (2009). The Synthetic Teammate

Project. Proceedings of the 18
th

 Annual Conference on

Behavior Representation in Modeling and Simulation.

Sundance, UT.

Balota, D. A., Pollatsek, A., & Rayner, K. (1985). The

interaction of contextual constraints and parafoveal visual

information in reading. Cognitive Psychology, 17, 364-

390.

Carver, R.P. (1973a). Understanding, information

processing and learning from prose materials. Journal of

Educational Psychology, 64, 76-84.

Carver, R. P. (1973b). Effect of increasing the rate of speech

presentation upon comprehension. Journal of Educational

Psychology, 65, 118-126.

Cook, V. J, & Newson, M. (1996). Chomsky’s Universal

Grammar. Malden, MA: Blackwell Publishers.
Douglass, S., Ball, J. & Rodgers, S. (2009). Large

declarative memories in ACT-R. Proceedings of the 9th
International Conference on Cognitive Modeling.

DenBuurman, R., Boersma, T., & Gerrissen, J. F. (1981).

Eye movements and the perceptual span in reading.

Reading Research Quarterly, 16, 227-235.

Freiman, M. & Ball, J. (2008). Computational cognitive

modeling of reading comprehension at the word level.

Proceedings of the 38
th
 Western Conference on

Linguistics, 34-45. Davis, CA: University of California,

Davis.

McClelland, J. L., & Rumelhart, D. E. (1981). An

interactive activation model of context effects in letter

perception. Part I. An account of basic findings.

Psychological Review, 88, 375–407.

McConkie, G. W., & Rayner, K. (1975). The span of the

effective stimulus during a fixation in reading. Perception

& Psychophysics, 17. 578-586.

Paap, K., Newsome, S., McDonald, J., & Schvaneveldt, R.

(1982). An activation-verification model of letter and

word recognition: The Word-Superiority Effect.

Psychological Review, 89, 573-594.

Perea, M., & Lupker, S. J. (2003). Does jugde activate

COURT? Transposed-letter similarity effects in masked

associative priming. Memory and Cognition, 31, 829–

841.

Rayner, K. (1986). Eye movements and the perceptual span

in beginning and skilled readers. Journal of Experimental

Child Psychology, 41, 211-236.

Sag, I., Baldwin, T., Bond, F., Copestake, A., & Flickinger,

D. (2002). Multiword expressions: A pain in the neck for

NLP. Proceedings of the Third International Conference

on Intelligent Text Processing and Computational

Linguistics.

Seidenberg, M. S., & McClelland, J. L. (1989). A

distributed, developmental model of word recognition and

naming. Psychological Review, 96, No. 4, 523-568.

Taylor, S. E. (1965). Eye movements while reading: Facts

and fallacies. American Educational Research Journal, 2,

187-202.

Zipf, George Kingsley (1932). Selected Studies of the

Principle of Relative Frequency in Language. Cambridge,

MA: Harvard University Press.

Zipf, G. K. (1949). Human behavior and the principle of

least effort: An introduction to human ecology.

Cambridge, MA: Addison-Wesley, 1949..

Zwann, R. and Radvansky, G. (1998). Situation models in

language comprehension and memory. Psychological

Bulletin, 123(2), 162-185.

72

An Algorithm for Self-Motivated Hierarchical Sequence Learning

Olivier L. Georgeon (olg1@psu.edu)
Jonathan H. Morgan (jhm5001@psu.edu)

Frank E. Ritter (frank.ritter@psu.edu)

The College of Information Sciences and Technology
The Pennsylvania State University, University Park, PA 16802

Abstract
This work demonstrates a mechanism that autonomously
organizes an agent’s sequential behavior. The behavior
organization is driven by pre-defined values associated with
primitive behavioral patterns. The agent learns increasingly
elaborated behaviors through its interactions with its
environment. These learned behaviors are gradually organized
in a hierarchy that reflects how the agent exploits the
hierarchical regularities afforded by the environment. To an
observer, the agent thus appears to exhibit basic self-
motivated, sensible, and learning behavior to fulfill its inborn
predilections. As such, this work illustrates Piaget’s theories
of early-stage developmental learning.

Keywords: Developmental learning; cognitive architectures;
situated cognition; computer simulation.

Introduction
We report the implementation of an agent that
autonomously engages in a process of hierarchical
organization of behavioral schemes as it interacts with its
environment. This mechanism moves towards taking on
developmental constraints as Newell (1990, p. 459+) called
for, and generates high-level and long-term individual
differences in representation and behavior that arise from
lower level behavior.

This implementation also refers to an “emergentist” and a
constructivist hypothesis of cognition. According to these
hypotheses, an observer can attribute cognitive phenomena
(such as knowing, feeling, or having motivations) to the
agent while observing its activity, provided that the agent’s
behavior can appropriately organize itself. These hypotheses
have often been related to Heidegger’s philosophy of mind,
e.g., cited by Sun (2004). Additionally, these hypotheses
correspond to work featuring constructivist epistemologies
(Le Moigne, 1995; Piaget, 1937), situated cognition
(Suchman, 1987), and embodied cognition (Wilson, 2002).

We describe the agent as self-motivated because it does
not seek to solve a problem pre-defined by the modeler, nor
does it learns from a reward that is given when reaching a
pre-defined goal. Rather, the agent learns to efficiently enact
its inborn predilections by exploiting regularities it finds
through its activity. As such, the implementation constitutes
a model of agents exhibiting intrinsic motivation, pragmatic
and evolutionist learning, as well as sensible behavior.

To situate the technical approach in the field of artificial
intelligence, we can refer to Newell and Simon’s (1975)
physical symbol hypothesis. We subscribe to the

hypothesis’s weak sense. We are using computation to
generate intelligent behavior. We, however, do not
subscribe to the hypothesis’s strong sense, in that we are not
implementing symbolic computation based on symbols to
which we would pre-attribute a denotation. Instead, we will
discuss how knowledge appears to emerge (to an external
observer) from the agent’s activity, and how the agent
seems to make sense of the knowledge because it is
grounded in the agent’s activity (Harnad, 1990).

Although we did not follow a symbolic computational
modeling approach, we have, nevertheless, implemented
this model in a cognitive architecture, namely Soar 9. We
chose Soar because it has proven efficient for implementing
mechanisms for behavior organization. In particular, we
found Soar 9’s mechanisms for graph querying and operator
selection based on valued preferences very helpful.

Knowledge representation
The agent’s behavioral patterns are represented using two
kinds of objects: schemas and acts. We use the term schema
in its Piagetian (1937) sense, meaning a behavioral pattern
or sensorimotor pattern. An act is a notion specific to our
work that refers to a schema’s enaction. By schema’s
enaction, we mean the association of a schema with the
feedback the agent receives when enacting the schema.
Concretely, an act associates a schema with a binary
feedback status: succeed (S) or fail (F). Hence, each schema
is associated with at most two acts: its failing act and its
succeeding act. Schemas and acts are organized in a
hierarchy as shown in Figure 1.

Figure 1: Example schema and act hierarchy.

73

At its lowest level, Figure 1 shows primitive schemas S1,
S2, and S3. Primitive schemas define the agent’s primitive
possibilities of behavior within a given environment. For
example, as further detailed in the experiment section, S1
may correspond to turn right, S2 touch ahead, and S3
attempt to move forward. Primitive acts are represented
above primitive schemas. For example, act [S3, S, 5]
corresponds to succeeding in moving forward, while [S3, F,
-5] corresponds to bumping into a wall. Each act has a value
associated with it, in this case: 5 and -5 (in parentheses in
the figure). These values inform the selection of the next
schema to enact, as explained later. For now, we can
understand these values as the agent’s satisfaction for
performing the act.

Primitive satisfaction values are chosen and hard-coded
by the modeler according to the behavior she intends to
generate. In our example, act [S3, S, 5] means that the agent
enjoys moving forward, while act [S3, F, -5] means that the
agent dislikes bumping into walls. Similarly, act [S2, S, -1]
means that the agent touches a wall in front of him, which
he slightly dislikes; while [S2, F, 0] means that the agent
touches an empty square, which leaves him indifferent.
Therefore, primitive satisfaction values are also a way for
the modeler to define the agent’s intrinsic motivations.

Higher-level schemas are learned through experience, by
combining lower level schemas. Schema learning consists
of adding the new-learned schema to the agent’s memory as
a node and two arcs pointing to the schema’s sub-acts. For
example, schema S5 is learned when the agent has turned to
the right and then touched an empty square. Schemas have a
context act (dashed line in the figures throughout this
paper), an intention act (doted line), and a weight (w). So,
S5 means that, when the agent has successfully turned right,
the agent can expect to touch an empty square. Similarly, S4
is learned when the agent has successfully turned right and
touched a wall. S4 thus generates the opposite expectation
from S5. A schema’s weight corresponds to the number of
times the schema has been enacted. Over the course of the
agent’s interactions, the relative schema weights thus
balance the agent’s expectations in specific contexts.

When a higher-level schema is learned, its succeeding act
is also learned with a satisfaction value set equal to the sum
of the satisfaction values of its sub-acts, e.g., [S4, S, -2] (-1-
1) and [S5, S, -1] (-1+0). When a higher-level schema gains
enough weight, it can be selected for enaction. Enacting a
higher-level schema consists of sequentially enacting its
sub-acts. For example, enacting S5 consists of enacting S1
with a succeeding status, then enacting S2 with a failing
status. Hence, the satisfaction for enacting a high-level act is
equal to the satisfaction for individually enacting its sub-
acts.

When a high-level schema fails during enaction, it is
interrupted. This happens if a status returned by the
environment does not match the expected status of a sub-
act. In this case, the failing act of the schema is learned or
reinforced, as well as the actually enacted act. The
satisfaction value of the failing act is set equal to the

satisfaction value of the actually enacted act. For example, if
schema S6 fails because S2 succeeds, then [S6, F, -1] is
learned. Because high-level schemas can potentially fail at
any step of their sequence, their failing act’s satisfaction
values are averaged over their different failures.

When a high-level schema is enacted, it generates the
learning of higher schemas. For example, when S5 is
successfully enacted and followed by succeeding S3, then
S7 is learned. In this example, S7 consists of turning right,
touching an empty square, and then successfully moving
forward. [S7, S]’s satisfaction is set equal to 4 (-1 + 5).
Similarly, S8 (learned after S7) consists of touching a wall,
turning right, touching an empty square, and moving
forward.

Algorithm
The algorithm follows two overlapping cyclical loops. The
control loop consists of: 1: selecting a schema for enaction,
2: trying to enact the selected schema, 3: learning what can
be learned from this trial, 4: computing the resulting
situation, and finally looping to step 1. We call this loop the
control loop because it is at this level that the agent decides
what schema to try to enact.

Step 2: (trying to enact a schema) constitutes a nested
loop that goes through the selected schema’s hierarchical
structure and tries to enact each of its primitive acts
sequentially. We call this loop the automatic loop because
this loop enacts sub-schemas below the agent’s decision
process. Figure 2 illustrates this procedure.

Figure 2: Algorithm procedure.

In Figure 2, the large white circle represents the control

loop while the small white circle represents the automatic
loop. The gray circle represents the environment’s loop.
Each revolution of the automatic loop corresponds to a
revolution of the environment’s loop that returns the status
of the enacted primitive schema. From the viewpoint of the
control loop, the schema’s enaction constitutes only one
step, whatever the schema level is in the hierarchy.
Therefore, at the control loop level, any schema is handled
similarly as a primitive schema, which makes possible the
recursive learning of higher-level schemas.

74

The four steps of the control loop are:
Step 1: All schemas whose context act matches the

previously assessed situation propose their intention act.
The weight of this proposition is computed as the proposing
schema’s weight multiplied by the intention act’s
satisfaction. The schema with the highest proposition is
selected (if several schemas are equal, one is randomly
picked among them). In essence, this mechanism selects the
schema that will result in the expected act having the
highest satisfaction, balanced by the probability to obtain
this expected act. This probability is based on what the
agent has learned thus far concerning the current context.
Due to this mechanism, the agent appears (to an observer) as
though he was seeking to enact the act associated with the
highest believed expected satisfaction and avoiding the acts
with the lowest ones. Figure 3 illustrates this mechanism.

Figure 3: Enaction mechanism.

Figure 3 details the 84th iteration of the control loop in the

experiment reported in Figure 5. On the 83rd iteration,
schema S6 was successfully enacted (touch empty square,
move forward), which resulted in a base situation of [S6, S],
[S3, S], and [S11, S] (and other acts on top of [S6, S] not
reported in the figure). In this context, S9 and S10 were
activated and proposed to enact S8 with a proposition
weight of 4x3+4x3 (sum of the proposing schema’s weight
multiplied by [S8, S]’s satisfaction) (the agent never
experienced S8 failing). This proposition happened to be the
highest of all the propositions, which resulted in S8 being
selected for enaction.

Step 2: The algorithm next enacts all the selected
schema’s sub-acts. If all the sub-acts meet their
expectations, the control loop proceeds to step 3. If the
enaction of one of the sub-acts is incorrect, then the
automatic loop is interrupted; the schema’s enaction status
is set to fail; and control is returned to the control loop. In
Figure 3’s example, the enaction of schema S8 consists of
the enaction of acts [S2, S], [S5, S] (made of [S1, S] and
[S2, F], as shown in Figure 1), and [S3, S] in a sequence. In
this case, S8 was successfully enacted, resulting in the
enacted act [S8, S].

Step 3: New schemas are learned or reinforced by
combining the base situation and the current situation. In
Figure 3’s example, S9’s weight is incremented from 6 to 7,
and S10’s weight is incremented form 4 to 5. In addition,
new schemas are learned based on the penultimate situation
and on [S10, S] (e.g., S12 and S13 are created with a weight
of 1, as well as other schemas not represented in the figure).

Step 4: The base situation becomes the penultimate
situation and the current situation becomes the base
situation for the next cycle. A situation is made of the acts
that surround the enacted act (i.e., the enacted act, the acts
directly below it, and the acts directly above it). In Figure
3’s example, the situation is made of [S8, S], [S7, S], [S9,
S], and [S10, S]. The situation can be understood as the
agent’s situation awareness, that is, a representation of the
agent’s situation in terms of affordances (Gibson, 1979)
capable of activating behavior. Limiting the situation to the
acts directly surrounding the enacted act prevents the agent
from being overwhelmed by a combinatorial explosion as
the agent creates new schemas. In essence, the agent
focuses on the current level of abstraction for representing
his situation, for making his choices, and for finding and
learning higher-level regularities. When a high-level schema
fails during enaction, the agent constructs the actually
enacted schema and falls back to a lower abstraction level.

Experiment
To test the algorithm, we developed an environment that
afforded the agent hierarchical sequential regularities to
learn and organize. Although the interaction’s structure—
resulting from the coupling of the environment with the
agent’s primitive schemas—is fundamentally sequential, the
environment appears to external observers as a two-
dimensional grid represented in Figure 4, implemented from
Cohen’s (2005) Vacuum environment.

Figure 4: Experimental environment.

In Figure 4, white squares represent empty squares where
the agent can go, and filled squares represent walls. The
agent’s primitive schemas and acts are defined as described
above (S1=turn 90° right (-1/NA), S2=touch the square
ahead (-1/0), S3=attempt to move one square forward (5/-
5)). Additionally, we have primitive schema S0 consisting
of turning to the left (-1/NA) (turning schemas S0 and S1
always succeed in this environment). These settings offer a
first notable regularity, namely that the agent can increase
his average satisfaction by touching ahead before trying to
move forward, and not moving forward if he touches a wall.

75

Next, the agent can increase his satisfaction by repeating the
sequence consisting of moving forward twice and turning
once. Higher-level regularities consist of repeating this later
sequence. The effects of this learning mechanism are shown
in detail in Figure 5 that reports an example run. Videos of
other runs can be seen online1.

In Figure 5, an attempt to move forward is represented as
an arrow to the right, a turn-left as an upward arrow, a turn-
right as a downward arrow, a touch as a O. Succeeding
primitive schemas use a black font, while failing primitive
schemas use a white font, i.e., white rightward arrows mean
that the agent bumped into a wall, and white Os mean that
the agent touched an empty square in front of him. Enacted
schemas are represented at the lowest level in each line with
a black outline. Learned schemas are represented on top of
the enacted schemas. Failing higher-level schemas are
represented as white boxes with gray outlines (steps 68 and
72). The numbers from 1 to 91 indicate the control-loop
iterations (steps).

At the beginning, the agent acts randomly because he has
not yet learned appropriate schemas that could propose their
associated intention sub-schema. However, every cycle, the
agent constructs or reinforces several schemas. For clarity,
Figure 5 only reports the construction and the reinforcement
of the schemas that matter for the purpose of explanation,
and references these schemas when they are mentioned in

1 http://e-ernest.blogspot.com/2009/07/ernest-64.html

the text. Schema S4 is constructed on step 8. S4 is then
reinforced on step 28, 34, and 49. The agent attempts to
enact S4 for the first time on step 68 but fails and enacts S5
instead.

Notably, a schema turn right-turn right (not named in this
paper) is constructed on step 19. This schema is reinforced
on steps 33, 42, and 43. It is then enacted twice on steps 44
and 45. It is, however, not used any further because other
options prove more satisfying (its satisfaction value is -2).

On step 46, the agent constructs the schema S5 (using act
[S1, S] that is the schema turn right-turn right’s intention
act). Then, on step 47, the agent finds the schema S6 (touch
empty, move forward), and also constructs the schema S7
on top of S5. After step 47, the schema S6 always prompts
the agent to try to move forward after touching an empty
square; therefore, from then on, S6 is quickly reinforced in
steps 55, 59, 63, and 71. The agent tries to enact S6 for the
first time on step 72, but unsuccessfully, which results in
falling back to [S2, S]. This experience instructed the agent
that schema S6’s failing act has a satisfaction of -1, which is
still better than trying to move forward without touching
first and bumping into a wall (satisfaction -5). Therefore,
from then on, the agent learned to touch before moving
forward. S6 is then successfully enacted on steps 74, 77, 80,
83, and 85.

As said previously, on step 68, the agent intended to enact
S4 but actually enacted S5. Because S7 is directly above
enacted schema S5, S7 is included in the agent’s situation

Figure 5: An example run among the 18 reported in row 6 of Table 1.

76

awareness, which results in the learning of the fourth-order
schema S8 on step 69. Then, on step 73, the enaction of
schema S7 generated the learning of schema S10. As
detailed in Figure 3, S8 is enacted for the first time on step
84, which generated the learning of S12. S10 starts to be
enacted on step 87.

After step 87, the agent keeps on performing the sequence
touch empty, move forward, touch wall, turn right, touch
empty, move forward. This regularity introduces repeated
circuits that lead to higher-level repetitions of this sequence.
With this sequence, the agent obtains a satisfaction of 8
within 6 primary steps, i.e., 1.33 per primary step.

In this example, the agent did not learn the optimum
sequence in the environment. In fact, the agent has no way
to know whether the stabilized sequence is optimum or not.
The agent only repeats a sequence when other actions
appear less likely to bring satisfaction, based on what he has
learned before. In most instances, the agent first learns to
touch before moving, after which he begins to build other
regularities based on this initial pattern.

The experiment was run 100 times, stopping each run
when the agent has reached a stable sequence, and clearing
the agent’s memory between each run. The results are
summarized in Table 1.

Table 1: Summary of hundred runs.

Row Runs Satisfaction/step Cycles

1 22 3.00 50
2 22 2.25 79
3 4 1.80 75
4 4 2.00 69
5 16 1.60 62
6 18 1.33 84
7 1 1.40 76
8 1 1.17 109
9 1 1.00 108

10 2 0.75 116
11 3 1.00 61
12 1 0.80 95
13 3 1.00 71
14 2 0.40 96

 100 1.92 72

In Table 1, the runs are aggregated by average satisfaction
per step obtained when the agent has reached a stable
sequence. The column Cycles reports the average number of
control loop cycles before reaching this sequence. Rows 1
through 6 report 86 runs where the agent learned to go
around his environment and got a satisfaction per step
greater than or equal to 1.33. Rows 7 to 14 report 14 runs
where the agent has stabilized on a sequence that results in
staying on one edge of the environment, and reached a
satisfaction per step that ranged between 0.40 and 1.40.

The summary row shows that the average reached
satisfaction per step was of 1.92. It was reached in an
average of 72 cycles. In comparison, other experiments
yielded an average satisfaction values per step of -0.93
without any learning and -0.38 with only the first-level

schema learning. This data demonstrates that, in all the runs,
the hierarchical learning mechanism has substantially
increased the agent’s satisfaction, compared to no or non-
hierarchical learning.

Related work
To our knowledge, this work constitutes the first
implementation of an intrinsically motivated agent who
recursively learns to exploit hierarchical sequential
regularities to fulfill drives. The closest related work is
probably Drescher’s (1991) attempt to implement Piagetian
constructivist learning through what he called the
constructivist schema mechanism. Like our implementation,
Drescher’s work constructed hierarchical schemas that
associated context, actions, and expectations. In Drescher’s
implementation, however, schemas were neither associated
with satisfaction values nor did the agents exhibit self-
driven behavior. The agent’s exploration was rather random
and resulted in a combinatorial explosion as the agent
encountered increasingly complex environments.

Chaput (2004) proposed the Constructivist Learning
Architecture (CLA) to address Drescher’s scalability issues.
The CLA implemented a scheme harvesting mechanism at
each hierarchical level. This harvesting, however, depended
on goals defined by the modeler. Chaput’s solution,
therefore, relies upon a problem-solving approach that in
fact differs from our self-driven mechanism of interest.

In developmental robotics (Weng et al., 2001), the
literature often refers to Brooks’s (1991) pioneering work.
For example, Blank, Kumar, Meeden, and Marshall (2005)
describe the principles for a self-motivated/self-organizing
robot. They use the robot’s anticipation reliability as a
motivational regulator for the robot. As opposed to our
work, these implementations do not make explicit the
robot’s driving satisfaction values. They also rely on a
limited number of predefined hard-coded hierarchical
layers, which restricts the agent’s learning possibilities.

As for the testbed environment and self-driven learning
paradigm, our approach appears to be rather unique. We
must note that our learning paradigm substantially differs
from maze solving experiments (e.g., Sun & Sessions, 2000)
or from hierarchical sequence learning as depicted in the
classical taxi cab experiment (Dietterich, 2000). In these
experiments, the learning occurs over multiple runs (often
thousands), and comes from a reward value that is given
when the goal is reached and then backward propagated
during subsequent runs. On the contrary, in our paradigm,
there is no final goal that would provide a reward; the
learning occurs through each run; and all the agent’s
memory is reinitialized between each run (including all
forms of reinforcement).

Discussion and conclusion
Besides the quantitative results of the agent’s measured
satisfaction and that it learns at a nice pace (neither one shot
nor thousands shots learning), this work offers qualitative
results in the form of the agent’s exhibited behavior. When

77

observing the agent, an observer can infer that the agent
seems to enjoy certain behaviors (such as moving forward)
and dislike others (such as bumping into walls). Moreover,
the agent appears to learn to endure unpleasant behaviors
(such as turning or touching) to have more opportunities to
move forward. The agent thus appears to be self-motivated
and appears to learn knowledge about his environment that
he uses to satisfy his predilections. More elaborated
behaviors can be watched in videos online2.

In addition, the agent appears to learn to use certain
schemas as perceptions (e.g., schema S2 to sense the square
forward), and to determine subsequent actions based upon
these schema’s outcomes. Therefore, the agent seems to
simultaneously learn to perceive his environment and to
make sense of his perception. This result is original in that
the agent’s perception was not pre-defined by the modeler in
the form of a perceptual buffer, as it is in many cognitive
models. In our case, perception emerges from the agent’s
behavior, which grounds the meanings of the agent’s
perceptions in his activity.

Moreover, the agent constructs an internal data structure
made of elaborated behavioral patterns, and uses this data
structure to deal with his environment. The behavioral
patterns used in this data structure are only those confirmed
through experience, which helps the agent deal with the
environment’s complexity. These data structures can be
seen as the agent’s situation awareness that is constructed
through his interactions, and that activates subsequent
behavioral patterns based on expected enjoyment. At each
point in time, the current agent’s knowledge frames how the
agent sees the world, which makes possible the recursive
learning of higher-level regularities and which accounts for
the agent’s individualization through his development.

Preliminary experiments in more complex environments
show that this algorithm faces two notable limitations. One
limitation is that the algorithm may represent the same
primitive sequence by different schemas that have different
hierarchical structures. These different schemas are useful to
find appropriate hierarchical regularities but they impede the
agent’s performance in more complex environments. Future
studies should find a way to merge these schemas. The
second limitation is that the algorithm is not good at finding
spatial regularities. For example, if we replace the central
wall square with an empty square, the agent becomes less
likely to find the most satisfying regularity, that of making a
continuous circuit around his environment.

We, nevertheless, believe that these limitations are not
insurmountable, and we plan to gradually increase the
complexity of the agent and of the environment in future
studies. We will add new drives to the agent, for example
homeostatic drives (similar to hunger) or boredom-
avoidance based on top-level regularity detection. We will
also add other primitive schemas, especially schemas
associated with distal perception. These schemas should,
we believe, help the agent deal with open spatial
environments.

2 http://e-ernest.blogspot.com/2009/10/enrest-72.html

Acknowledgments
Support was provided by ONR (N00014-06-1-0164 and
N00014-08-1-0481) and DTRA (HDTRA 1-09-1-0054).

References
Blank, D. S., Kumar, D., Meeden, L., & Marshall, J. (2005).

Bringing up robot: Fundamental mechanisms for
creating a self-motivated, self-organizing architecture.
Cybernetics and Systems, 32(2).

Brooks, R. (1991). Intelligence without representation.
Artificial Intelligence Journal, 47, 139–159.

Chaput, H. H. (2004). The Constructivist Learning
Architecture: A model of cognitive development for
robust autonomous robots. Unpublished doctoral
dissertation, The University of Texas, Austin.

Dietterich, T. G. (2000). An Overview of MAXQ
Hierarchical Reinforcement Learning. Paper presented
at the SARA02 4th International Symposium on
Abstraction, Reformulation, and Approximation.

Drescher, G. L. (1991). Made-up minds, a constructivist
approach to artificial intelligence. Cambridge, MA:
MIT Press.

Gibson, J. J. (1979). The ecological approach to visual
perception. Boston: Houghton-Mifflin.

Harnad, S. (1990). The symbol grounding problem. Physica,
D(42), 335-346.

Le Moigne, J.-L. (1995). Les épistémologies
constructivistes. Paris: Presse Universitaire de France.

Newell, A. (1990). Unified Theories of Cognition.
Cambridge, MA: Harvard University Press.

Newell, A., & Simon, H. (1975). Computer science as
empirical inquiry: symbols and search.
Communications of the ACM, 19(3), 113-126.

Piaget, J. (1937). The construction of reality in the child.
New York: Basic Books.

Suchman, L. A. (1987). Plans and situated actions.
Cambridge: Cambridge University Press.

Sun, R. (2004). Desiderata for cognitive architectures.
Philosophical Psychology, 17(3), 341-373.

Sun, R., & Sessions, C. (2000). Automatic segmentation of
sequences through hierarchical reinforcement learning.
In R. Sun & C. L. Giles (Eds.), Sequence Learning (pp.
241–263). Berlin Heidelberg: Springer-Verlag.

Weng, J., McClelland, J., Pentland, A., Sporns, O.,
Stockman, I., Sur, M., et al. (2001). Artificial
intelligence - Autonomous mental development by
robots and animals. Science, 291(5504), 599-600.

Wilson, M. (2002). Six views of embodied cognition.
Psychonomic Bulletin & Review, 9(4), 625-636.

78

Modeling the Effects of Work Shift on Learning in a Mental Orientation
and Rotation Task

Tim Halverson (thalverson@gmail.com)
Oak Ridge Institute for Science and Education

Air Force Research Laboratory
Mesa, AZ 85212 USA

Glenn Gunzelmann (glenn.gunzelmann@mesa.afmc.af.mil)

Air Force Research Laboratory
Mesa, AZ 85212 USA

L. Richard Moore Jr. (larry.moore@mesa.afmc.af.mil)

Lockheed Martin
Air Force Research Laboratory

Mesa, AZ 85212 USA

Hans P.A. Van Dongen (hvd@wsu.edu)
Sleep and Performance Research Center, Washington State University

Spokane, WA 99210 USA

Abstract
Circadian rhythms cause alertness declines at night,
producing performance decrements across cognitive domains
and tasks. Building on the learning mechanisms for
declarative knowledge instantiated in the ACT-R cognitive
architecture, this research seeks to explain the effects of
circadian rhythms on performance of an orientation task
performed repeatedly across two weeks by participants
working either day or night shifts. The differences in
performance between the two groups are best explained by
varying the decay rate in declarative knowledge as a function
of the time of day the task was performed. The model
accounts well for task learning reflected in decreases in
response times across days, as well as differences in learning
between the day and night shift conditions.

Keywords: sleep; circadian rhythm; fatigue; learning; shift
work; declarative memory; spatial; ACT-R

Introduction
Variations in alertness due to circadian rhythms and sleep
loss have been shown to affect various components of
cognitive functioning (e.g. Jackson & Van Dongen, in
press). For example, vigilant attention (Lim & Dinges,
2008), perceptual learning (Mednick, Nakayama &
Stickgold, 2003), and motor learning (Walker, Brakefield,
Morgan, Hobson & Stickgold, 2003) are all affected by
fluctuations in alertness associated with time awake and
circadian rhythms.

Despite well-documented behavioral changes, it is not
well understood how nighttime operations affect learning in
different contexts. Most research on night and shift work
has focused on how shift differences affect sleep and
frequency of accidents (e.g. Åkerstedt, 1988). The affect of
changes in alertness (e.g., as associated with work shift
differences) on learning is one area of research where a

better understanding of the mechanisms involved is needed.
More detailed explanations hold the promise of enabling
predictions about how learning experiences at different
times of the day may differ, and how this may impact
eventual task performance.

Previous cognitive modeling efforts have explored some
effects of moderators on cognitive processes. In fact, several
studies have examined such effects in the context of
declarative knowledge. For instance, the effects of caffeine
on memory retrieval have been modeled by increasing the
activation of declarative knowledge (Kase, Ritter &
Schoelles, 2009). Conversely, the effects of sleep loss on
memory retrieval have been explained using decreases in
declarative activation (Gunzelmann, Gluck, Kershner, Van
Dongen & Dinges, 2007). The negative effect of time-on-
task on response accuracy has been explained by increasing
noise, making misretrievals more common (Fu, Gonzalez,
Healy, Kole & Bourne Jr, 2006).

These research efforts focused on processes associated
with retrieving declarative knowledge by impacting the
availability or confusability of chunks when they are
requested. In contrast, the effects of alertness on the learning
and retention of declarative knowledge have not been
addressed.

In the research presented here, we investigate how long-
term learning may be affected by fluctuations in alertness
resulting from circadian rhythms during laboratory-
simulated shift work. This is accomplished within the
context of a spatial direction task based on Gunzelmann,
Anderson, and Douglass (2004), which was performed
repeatedly by participants over two weeks. A computational
cognitive model is presented that accounts for changes in
observed response times across successive days of the
study, including differences in learning rates as a function of

79

simulated work shift. Differences in performance between
shift conditions are explained by manipulating the decay
rate parameter in ACT-R’s declarative knowledge activation
function. Increased decay (reduced learning) in the night
shift condition leads to performance decrements that match
the human data. The details of the task, the human
performance data, and the model are described in the
following sections.

Orientation Task
This experiment was conducted as part of a larger study to
understand how circadian rhythms and sleep disruption
affect performance in a variety of domains. The participants
were screened to be healthy and without sleep disorders,
with no evidence of brain damage or learning disabilities,
and free of drugs of abuse. Participants gave written
informed consent, and were paid for their participation.

Figure 1 shows the orientation task used in this study.
There are 8 possible target locations (left) and 8 possible
misalignments (right; 45 degree intervals). Twenty-five
randomly ordered trials were presented per session — 5
target locations (bottom, near, middle, far, and top) crossed
with 5 misalignments (0, 45, 90, 135, and 180 degrees).
Because performance is roughly equivalent for right-left
mirrored stimuli for both target location and misalignment
(see Gunzelmann, Anderson & Douglass, 2004), the
location was selected at random from the left or right
positions.

Participants received instructions that encouraged them to
mentally rotate the relative positions of the viewpoint
(indicated by the “You” arrow) and the target on the
overhead view (left side filled circle) to align them with the

viewpoint indicated on the map view (right side arrow).
Specifically, they were taught to imagine an angle that
connects the viewpoint to the target on the overhead view,
with the vertex at the center of the field (a 90 degree angle
in Figure 1). They were then told to mentally shift to the
map view, and to rotate the angle so that the arrow in the
overhead view was aligned with the arrow in the map view
(a rotation of 90 degrees clockwise in the trial shown in
Figure 1). At this point, the answer could be determined by
finding the target end of the angle.

Participants responded using the numeric keypad portion
of a computer keyboard, which was spatially mapped to the
possible response locations on the map view. So, if the
target was in the bottom position on the map (as it is in the
sample trial shown in Figure 1), participants responded by
pressing the “2” on the numeric keypad.

Method Thirteen participants, ranging in age from 22 to
39 years old (mean = 28), were in the laboratory for
fourteen consecutive days. The first day was a baseline day
with 10 hours in bed for sleep (22:00–08:00). Subsequently,
some of the participants (n = 6) changed to a simulated
night shift. Night shift participants were given five hours in
bed (15:00–20:00) on the second baseline day, before
starting five consecutive work days with 10 hours in bed
during the daytime (10:00–20:00) on each day. On the
seventh and eighth day, night shift participants had a
simulated “day off” during which they had 5 hours in bed
(10:00–15:00), 7 hours awake, 10 hours in bed during the
night (22:00–08:00), 7 hours awake, and then 5 hours in bed
(15:00–20:00), before resuming their night shift schedule
for the next 5 days. This schedule represented a common

schedule for individuals working a
night shift, who frequently switch
back to a nighttime sleep schedule
during weekends. After the last night
shift day, night shift participants
received 5 hours in bed (10:00–
15:00), 7 hours awake, and then, on
the final day of the study, were given
10 hours in bed at night (22:00–
08:00) for recovery.

Participants on the day shift (n = 7)
were subjected to the same pattern of
two baseline days, five consecutive
work days, a “day off”, another five
consecutive work days, and a
recovery day. They maintained the
same sleep schedule throughout the
study, however, with 10 hours in bed
(22:00–08:00) each night. Note that
participants on the day shift and night
shift schedules were given the same
amount of time in bed over the
course of the experiment; it was
merely distributed differently.

Figure 1: An example trial. The target on the overhead ego-oriented view (left side),
indicated by the filled circle, is at middle distance to the right of center. The

perspective on the map view (right side), indicated by the arrow, is misaligned by
90° clockwise. The correct response in this example trial is “2.”

80

Over the course of the study, participants completed fifty-
one test sessions of the spatial direction task, with 2 to 4
sessions per day. Before the first session, participants were
presented with instructions for the task.

Eight to sixteen days prior to the first session (mean = 14
days), participants were given baseline training on the
spatial direction task. This included a set of instructions for
the task and four training sessions (these data are not
modeled here).

Observed Data
Average response times for each day of the study are
presented in Figure 2 for both the day and night shift
conditions. Performance during the baseline days of the
study (days 1 and 2) was similar for the two groups, and
there was no significant difference in mean RT at that point.
However, when the conditions diverged, so did performance
on the spatial direction task. The performance of the night
shift group did not recover during the simulated “day off”,
and differences in mean response time remained at the end
of the experiment.

To evaluate the differences between shift conditions, we
compared response times on the days when they were awake
for different shifts (ten days; excluding the baseline, day off,
and recovery day) using a linear mixed-effect model with
subject as a repeated-measure grouping factor. This was
planned a priori to most effectively evaluate the impact of
shift on performance. However, for the model comparisons
later in the paper, all of the observed data was used. See
Halverson, Gunzelmann, Moore, and Van Dongen (in press)
for more complete analyses of the human data.

Figure 2 shows the mean participant response times (solid
lines) as a function of day in study and simulated work shift.
There was a steady decrease of response time between days
1 and 14, as corroborated by a main effect of day, F(9,
7769) = 112.2, p < .001. While there was no evidence of an
overall effect of shift, F(1, 11) = 0.8, p = .37, there was an
interaction between shift and day, F(9, 7769) = 2.1, p = .03.
Response times did not improve as quickly when a
participant was on the night shift. Observed error rates were
low (M = 4%, SD = 3%) and are not addressed in this work.

Mental Rotation Model
A computational cognitive model of the orientation task was
developed using the ACT-R 6.0 cognitive architecture
(Anderson et al., 2004). The model behavior is primarily
driven by mental rotations and learning. The mental rotation
operation is implemented using ACT-R’s imaginal module
and the imaginal-action buffer. Learning in the model
occurs both in the declarative module and through the
compilation mechanisms in procedural knowledge. The task
procedure implemented in the model was based on the
instructions given to the participants in the empirical study.

Model Overview
The model executes the task as follows: In the overhead

view, the model encodes the angle defined by the target
(blue circle), the center of the overhead view, and the
viewpoint (circle nearest the “You” arrow) by visually
attending those locations and encoding their coordinates in
the imaginal buffer. The model then switches to the map
view, encoding the vector defined by the viewpoint (circle

Figure 2: Observed and predicted mean response times as a function of day and simulated work shift (night or day). The
shaded regions indicate simulated “days off” in which night shift participants (and the model) performed the task during the

day at the same time as day shift participants. Shaded days are not included in the human data analysis.
Error bars indicate ±1 standard error.

81

nearest the arrow) and center of the map view by attending
those locations and encoding their coordinates.

The angle that was encoded in the overhead view is then
translated to center it on the map view (an imaginal action;
200 ms) and rotated to align the viewpoints of the overhead
and map views. The model visually attends the response
location closest to the transformed location of the target,
encodes the response digit, and presses the corresponding
keyboard key.

Mental rotations were implemented using the ACT-R
imaginal module. The time to perform the rotation was
based on previous mental rotation research (e.g. Bethell-Fox
& Shepard, 1988) and was a linear function of the angle of
rotation. The slope of the linear function was a free
parameter, as the slope can vary by task depending on the
relative complexity of the object to be rotated.

Learning
The model’s performance improves over time by learning

in three ways. First, the angle from the overhead view is
encoded in declarative memory when the first subtask is
completed. In subsequent trials, the model attempts to
retrieve an existing chunk based on the target’s location. If a
chunk exists and gets retrieved before the model completes
the process of visually encoding the angle, then the
information from the chunk that was retrieved from
declarative knowledge is used. Over time, retrievals become
more likely and faster than explicitly encoding the angle
using perceptual and imaginal actions. This leads to a speed-
up in the model’s execution of the task.

In addition to an increasing reliance on declarative
representations for target location information, the second
step of the solution process is also stored in declarative
knowledge once the response is made. These chunks contain
information about the target location from the overhead
view as well as the perspective on the map view (i.e., the
misalignment). Consequently, with experience the model
can attempt to retrieve the response based on the target
location and map view perspective location. Like encoding
the target location on the overhead view, if a chunk is
retrieved before the model completes the mental
transformations on the map view, the response is based
upon the chunk retrieved from declarative knowledge.

The final learning process in the model involves ACT-R’s
production compilation (i.e. proceduralization). Production
compilation is a process by which new productions are
created dynamically to represent in one step the
consequences of two productions that execute
consecutively. With experience, it becomes increasingly
likely that the new production will be used, as the model
learns that the utility of the new production is greater than
the utility of the original, separate productions. However,
due to the many constraints imposed on production
compilation by the architecture and the structure of this
model, the only compilation that occurs in the current model
involves encoding the mental rotation into productions
specific to each pair of overhead target and map view

perspective locations. Therefore, the only savings
introduced by production compilation were the infrequent,
but substantial, time savings from the mental rotation of trial
layouts that were only seen once per session.

Explaining Night Shift Performance Decrements
Several alternatives were explored to explain the

decrement in performance observed for participants on the
night shift. The solution that resulted in the best explanation
of the data was a variation of the decay rate of declarative
chunks activation as a function of simulated work shift.
Alternative solutions that did not explain the observed
trends as well are described in the Results and Discussion
section.

By default, the decay rate parameter is not allowed to
vary in the implementation of ACT-R. That is, the decay
rate can be set, but it assumes the same value for the
duration of a model run. There have been various efforts to
implement more dynamic mechanisms for decay in ACT-R.
Most of these have been related to accounting for the
spacing effect (Anderson, Fincham & Douglass, 1999;
Jastrzembski & Gluck, 2009; Pavlik & Anderson, 2005).

In our case, we utilize the decay rate to represent
differences in the effectiveness of learning as a function of
when during the day the task was performed. To implement
the mechanisms, the equation to calculate the base-level
activation of declarative chunks was modified (Equation 1).
The only change to the standard ACT-R base-level learning
equation is that the value of the decay rate parameter can
vary according to the time when a chunk was added to
declarative memory or when the chunk was rehearsed (dj),
as opposed to a constant decay rate across all rehearsals (d)
in the original equation. This modification does not change
the effect of decay for current ACT-R models.

 (1)

The current model was implemented with the simplifying
assumption that the level of alertness, and thus the value of
dj, is constant across all hours of a work shift (day or night).
It is well known that alertness due to circadian rhythms
varies throughout the day and night (Van Dongen & Dinges,
2005). However, while the model executed the task the
same number of times as the participants did through a
simulated workday, we aggregated the data across each day
to reduce noise. We have not yet evaluated the capacity of
the mechanism to account for finer grained circadian rhythm
fluctuations or varying inter-session intervals.

The model was fit to the day shift data using the retrieval
threshold (best fit = 1.2), retrieval latency factor (8.0), and
rotation slope (0.009 sec/degree) parameters. The rotation
slope is similar to the slope found in previous research for
simple rotations (Bethell-Fox & Shepard, 1988). The base
level learning, which controls the rate of activation decay
(dj), was left at the ACT-R default (0.5) during sessions
when participants were on the day shift. For predicting the
night shift data, the declarative chunk decay rate was

82

allowed to vary. The best fitting decay parameter for the
night shift sessions was 0.6.

Results and Discussion
Figure 2 shows observed (solid lines) and best fitting model
(dashed lines) mean reaction times as a function of day in
the study and simulated work shift (night or day). For both
shifts, the observed behavior is well predicted (RMSD = 65
ms, r2 = .98 for day shift; RMSD = 79 ms, r2 = .98 for night
shift). The night shift predictions are particularly
noteworthy, as only one parameter was varied relative to the
day shift model.

The model is able to predict the observed response times
well across fourteen days, including differences across work
shifts (i.e. the interaction of day and shift). The model is
able to predict the effects of work shift changes well with
variations in declarative memory decay rates based on the
time at which the tasks are performed. While the declarative
decay mechanism explains the observed decrements well,
several alternative mechanisms for explaining the trends
were considered.

One alternative mechanism involves manipulating overall
declarative chunk activation at the time of retrieval, as was
done in Gunzelmann et al. (2007). This model did fit the
observed data on most days, but did not correctly predict the
effect on the overall learning rate when the participants in
the night shift condition temporarily switched to the day
shift on days 8 and 14. On these days, the model predicts
that the performance of participants in the night shift group
is nearly equivalent to that of participants in the day shift
group. This is because the model assumes that the
participants’ alertness recovers when performing the task
during the day. There is some evidence in associated data
(not reported here) to support this, although we do not have
conclusive evidence. Regardless, if the impact of degraded
alertness were only on activation levels, then the knowledge
should be more available during the day. As the human data
illustrate, however, the deficits associated with performing
the task on the night shift persisted.

Another alternative mechanism for explaining the
decrements of alertness is a decrement to utility values
associated with production selection and execution. This
mechanism has been used to predict performance
decrements due to decreased alertness in vigilance tasks
(e.g. Gunzelmann, Moore Jr, Salvucci & Gluck, 2009).
However, such a mechanism in the model presented here
does not explain the observed data for the current task. The
same issue is encountered as with the previous alternative
— the model recovers to day shift levels of performance on
the “day off” and “recovery” days. This is likely a result of
the current task requiring constant engagement, over short
periods, and thus mechanisms employed for sustaining
attention throughout the task would not be stressed.

A third alternative mechanism that was explored is a
variation in procedural learning as a function of shift. The
model presented in this paper has both procedural and
declarative learning enabled. It may be that the observed

night shift decrement resulted from a slowing of procedural
learning rather than a slowing of declarative learning. To
test this, the rate of learning for productions rule utilities
was varied. This made little difference in the predicted
results. This lack of predictive power may result from either
the way in which the model was constructed, with an
emphasis on declarative knowledge, or a result of the study
design, with most of the procedural learning occurring early
in the protocol when all participants performed the task
during the day.

Thus, the model presented here provides support for the
hypothesis that variations in alertness have an impact on
learning that may persist beyond immediate task
performance. This is consistent with previous research that
has indicated that sleep loss causes deficits in encoding
declarative knowledge (see Jackson & Van Dongen, in
press, for a review). In the ACT-R theory of memory, decay
rate is arguably the parameter that most closely corresponds
to encoding and rehearsal, as this parameter determines how
much the previous exposures to knowledge will affect future
retrievals. While there is no conclusive evidence in the
literature to attribute either encoding or retrieval deficits to
the observations, the current modeling helps support the
claim that decreased alertness affects encoding.

A useful future extension to the proposed mechanism for
predicting the effects of alertness on learning would be to
account for the inter-session intervals. Currently the model
does not specifically take into account the 2 to 26 hour
intervals between consecutive sessions, which is
problematic if we want to generalize the model to tasks in
which the time between sessions varies. Incorporating
mechanisms proposed in previous modeling to account for
inter-session intervals (Anderson, et al., 1999) or practice
spacing effects (Jastrzembski & Gluck, 2009) may allow the
current model to predict these inter-session intervals.

Conclusion
Performance variations based on alertness have both
theoretical and real-world importance. The present results
illustrate how specific cognitive processes may be affected
by circadian rhythms, and have implications for task
training and performance in real-world contexts.

The cognitive modeling presented here illustrates how
learning rates may be impaired at night, during the nadir of
circadian rhythms. Because degraded learning has potential
consequences that extend beyond the immediate situation,
brief transitions to day shift may not result in immediate
recovery. While the benefit in response time was fairly
small in this study (300 ms), the modeling suggests that the
effects of learning under conditions of lower alertness may
accumulate over time and thus the benefit of training during
the day will grow. Moreover, tasks in which exposures to
declarative facts are less frequent, as seen in many real
world tasks, are expected to encounter an even greater effect
of decreased alertness due to a greater time between
rehearsals and a greater (exponential) decay rate.

83

Several mechanisms were explored to explain the
observed night shift response time decrement. Some
mechanisms that have been used previously to explain
observed decrements of alertness could not explain the
results found in this research. We do not find this outcome
particularly troublesome, or even surprising. Rather, in the
current study and others, the tasks were specifically selected
to ascertain the various ways in which reduced alertness
may affect performance on particular mechanisms within
the ACT-R architecture.

Our goal is to identify a general set of mechanisms to
account for the ways in which variations in alertness impact
various components of cognitive functioning. Focusing on
laboratory tasks allows us to better isolate various
components and evaluate particular computational
mechanisms. Such an understanding is necessary in order to
predict performance in more complex tasks where various
cognitive functions, and mechanisms, interact in complex
ways. This represents the focus of this research in the long
term (e.g. Gunzelmann & Gluck, 2009; Gunzelmann,
Moore, Salvucci, & Gluck, 2009; Tucker et al., 2010).

Acknowledgments
The views expressed in this paper are those of the authors
and do not reflect the official policy or position of the
Department of Defense or the U.S. Government. The
research was supported in part by the Air Force Research
Laboratory’s Warfighter Readiness Research Division and
grants 07HE01COR, 09RH06COR, and 10RH04COR from
the Air Force Office of Scientific Research (AFOSR). The
first author was supported by an appointment to the
Postgraduate Research Participation Program at the U.S. Air
Force Research Laboratory administered by the Oak Ridge
Institute for Science and Education through an interagency
agreement between the U.S. Department of Energy and
USAFRL. The experimental research was supported by
FMCSA grant DMC75-07-D-0006. The fourth author was
supported by AFOSR grant FA9550-09-1-0136.

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An integrated theory of the
mind. Psychological Review, 111(4), 1036-1060.

Anderson, J. R., Fincham, J. M., & Douglass, S. (1999).
Practice and retention: A unifying analysis. Journal of
Experimental Psychology. Learning, Memory, and
Cognition, 25(5), 1120-1136.

Åkerstedt, T. (1988). Sleepiness as a consequence of shift
work. Sleep, 11(1), 17-34.

Bethell-Fox, C. E. & Shepard, R. N. (1988). Mental
rotation: Effects of stimulus complexity and familiarity.
Journal of Experimental Psychology: Human Perception
& Performance, 14(1), 12-23.

Fu, W. T., Gonzalez, C., Healy, A. F., Kole, J. A., & Bourne
Jr, L. E. (2006). Building predictive human performance
models of skill acquisition in a data entry task.

Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, 1122-1126.

Gunzelmann, G., Anderson, J. R., & Douglass, S. (2004).
Orientation tasks with multiple views of space: Strategies
and performance. Spatial Cognition and Computation,
4(3), 207-253.

Gunzelmann, G. & Gluck, K. A. (2009). An integrative
approach to understanding and predicting the
consequences of fatigue on cognitive performance.
Cognitive Technology, 14(1), 14-25.

Gunzelmann, G., Gluck, K. A., Kershner, J., Van Dongen,
H. P. A., & Dinges, D. F. (2007). Understanding
decrements in knowledge access resulting from increased
fatigue. Proceedings of the Annual Meeting of the
Cognitive Science Society, Austin, TX, 329-334.

Gunzelmann, G., Moore Jr, L. R., Salvucci, D. D., & Gluck,
K. A. (2009). Fluctuations in alertness and sustained
attention: Prediction driver performance. Proceedings of
the International Conference of Cognitive Modeling,
Manchester, UK.

Halverson, T., Gunzelmann, G., Moore Jr, L. R., & Van
Dongen, H. P. A. (in press). The effects of work shift and
strategy on an orientation task. Proceedings of the Annual
Meeting of the Cognitive Science Society.

Jackson, M. L. & Van Dongen, H. P. A. (in press).
Cognitive effects of sleepiness. In M. Thorpy & M.
Billiard (Eds.), Sleepiness. Cambridge University Press.

Jastrzembski, T. S. & Gluck, K. A. (2009). A formal
comparison of model variants for performance prediction.
Proceedings of the International Conference of Cognitive
Modeling, Manchester, England.

Kase, S. E., Ritter, F. E., & Schoelles, M. (2009). Caffeine's
effect on appraisal and mental arithmetic performance: A
cognitive modeling approach tells us more. Proceedings
of the International Conference on Cognitive Modeling,
Manchester, England, 174-179.

Lim, J. & Dinges, D. F. (2008). Sleep deprivation and
vigilant attention. Annals of the New York Academy of
Science, 1129, 305-322.

Mednick, S., Nakayama, K., & Stickgold, R. (2003). Sleep-
Dependent learning: A nap is as good as a night. Nature
Neuroscience, 6(7), 697-698.

Pavlik, P. I. & Anderson, J. R. (2005). Practice and
forgetting effects on vocabulary memory: An activation-
based model of the spacing effect. Cognitive Science,
29(4), 559-586.

Tucker, A. M., Whitney, P., Belenky, G., Hinson, J. M., and
van Dongen, H. P. A. (2010). Effects of sleep deprivation
on dissociated components of executive functioning.
Sleep, 33(1), 47-57.

Van Dongen, H. P. A. & Dinges, D. F. (2005). Sleep,
circadian rhythms, and psychomotor vigilance. Clinics in
Sports Medicine, 24(2), 237-249.

Walker, M. P., Brakefield, T., Morgan, A., Hobson, J. A., &
Stickgold, R. (2003). Practice with sleep makes perfect:
Sleep-Dependent motor skill learning. Neuron, 35(1),
205-211.

84

Guidelines for Developing Explainable Cognitive Models1

Maaike Harbers1,3, Joost Broekens2, Karel van den Bosch3, John-Jules Meyer1

1Utrecht University, The Netherlands; 2TU Delft, The Netherlands; 3TNO Human Factors, The Netherlands
{maaike,jj}@cs.uu.nl, joost.broekens@gmail.com, karel.vandenbosch@tno.nl

Abstract

Cognitive models can be used to generate the behavior of vir-
tual players in simulation-based training systems. To learn
from such training, the virtual players must display realistic
human behavior, and trainees need to understand why the other
players behave the way they do. This understanding can be
achieved by explaining the underlying reasons for the virtual
players’ behavior. In this paper, it is discussed how to design
cognitive models in such a way that they are able to explain the
behavior they generate. Three users studies were carried out to
assess what type of explanations are useful for training, and
how that relates to cognitive model design. Several guidelines
for developing explainable cognitive models are proposed.
Keywords: Explanation, Cognitive modeling, Task analysis,
Virtual training.

Introduction
Virtual training systems are increasingly used for training of
complex tasks such as fire-fighting, crisis management, ne-
gotiation and social skills. To create valuable learning ex-
periences, the virtual characters in the training scenario, e.g.
the trainee’s colleagues, opponents or team members, must
display realistic behavior. Realistic behavior can be ensured
by letting humans play these roles. However, the characters
in virtual training systems often have specialist tasks which
can only be played by experts, and human experts are of-
ten scarcely available. Alternatively, required human be-
havior can be represented in cognitive models, which gives
trainees the opportunity to train whenever and wherever they
like (Heuvelink, 2009).

A valuable learning experience requires more than inter-
action with virtual players displaying realistic behavior. To
learn from training, trainees must (eventually) understand the
behavior of the other players. Instructors can explain the mo-
tives behind other players’ behavior, but that would reintro-
duce the availability problems with experts just mentioned.
Preferably, cognitive models representing human behavior
also have the ability to explain that behavior.

There are several systems providing explanations about
non-human player behavior in virtual training systems, e.g.
Debrief (Johnson, 1994), XAI I (Van Lent, Fisher, & Man-
cuso, 2004) and XAI II (Gomboc, Solomon, Core, Lane,
& Lent, 2005; Core et al., 2006). However, none of these
systems obtain their explanations directly from the cognitive
models of virtual players. The XAI I system only provides
explanations about the physical states of virtual players, e.g.

1This research has been supported by the GATE project, funded
by the Netherlands Organization for Scientific Research (NWO)
and the Netherlands ICT Research and Innovation Authority (ICT
Regie).

their location and health. Debrief determines what must have
been the beliefs of a virtual player, but does not have access
to its actual beliefs. XAI II gives explanations in terms the
underlying motivations of virtual players if those are repre-
sented in simulation, but this is often not the case. Moreover,
as far as we know, the explanations of these systems are not
empirically evaluated.

We advocate an approach that connects behavior genera-
tion and explanation. In other words, the cognitive mod-
els used to generate behavior can also be used to explain
that behavior. The models are not necessarily similar to hu-
man reasoning, as long as they generate useful explanations.
In this paper, we discuss three explorative studies in which
users evaluate explanations generated by explainable cogni-
tive models on their usefulness for learning. Based on the
results, we present guidelines for designing explainable cog-
nitive models.

The paper is organized as follows. First, we discuss what is
known about how people explain behavior. Second, we intro-
duce an approach for explainable cognitive models. Then, we
describe three user studies evaluating explanations of these
models, and discuss the results. From this discussion, we ab-
stract guidelines for modeling and explaining virtual player
behavior. We end the paper with a conclusion and sugges-
tions for future research.

Explaining behavior
Keil provides an extensive overview of explanation in gen-
eral, in which he categorizes explanations according to the
causal patterns they employ, the explanatory stances they
invoke, the domains of phenomena being explained, and
whether they are value or emotion laden (Keil, 2006). Hu-
mans usually understand and explain their own and others’
behavior by adopting the intentional stance.

Dennett distinguishes three explanatory stances: the me-
chanical, the design, and the intentional stance (Dennett,
1987). The mechanical stance considers simple physical ob-
jects and their interactions, the design stance considers en-
tities as having purposes and functions, and the intentional
stance considers entities as having beliefs, desires, and other
mental contents that govern their behavior. The intentional
stance is closely related to the notion of folk psychology. Folk
psychology refers to the way people think that they think, and
determines the language they use to describe their reasoning
about actions in everyday conversation (Norling, 2004).

Attribution theory is one of the most important theories
on people’s behavior explanations, and focuses on the vari-

85

ous causes that people assign to events and behavior (Heider,
1958; Kelley, 1967). External attribution assigns causality to
factors outside of the person, e.g. the weather. Internal attri-
bution assigns causality to factors within the person, e.g. own
level of competence. Related to attribution theory is the con-
cept of explanatory style, i.e. people’s tendency to explain
causes of events in particular ways (Buchanan & Seligman,
1995). People with a negative explanatory style believe that
positive events are caused by things outside their control and
that negative events are caused by them. People with a posi-
tive explanatory style, in contrast, believe that positive events
happened because of them and that negative events were not
their fault. Explanatory style is part of someone’s personality.

Attribution theory is criticized for not making a distinction
between the explanation of intentional and unintentional be-
havior (Malle, 1999). In reaction, Malle provided a frame-
work with different explanation modes. One explanation
mode considers explanations about unintentional behavior,
and three explanation modes consider explanations about in-
tentional behavior: reason, causal history, and enabling fac-
tors explanations. Reason explanations are most often used
and consist of beliefs and goals, causal history explanations
explain the origin of beliefs and goals, and enabling factors
explanations consider the capabilities of the actor.

A lot of research on explaining computer program behav-
ior has been done in the field of expert systems (Swartout &
Moore, 1993). Usually, outcomes like diagnoses or advices
are explained by the steps that lead to it, e.g. the rules that
were applied. It was found that the purpose of explanation
has to be taken into account during system design. The infor-
mation needed in explanations must be present, even though
not necessary for the generation of behavior.

Putting these findings into the perspective of cognitive
modeling and virtual training: trainees should get to under-
stand the intentional behavior of virtual players. Different
explanation theories use different terms for people’s expla-
nations of (intentional) human behavior. But whether called
intentional, folk or reason explanations, they all refer to ex-
planations in terms of mental concepts like beliefs, intentions
and goals. Furthermore, when a cognitive model has to deter-
mine the behavior of a virtual player, it must be executable,
e.g. by implementing the model in a cognitive architecture.
From explanation research on expert systems we learned that
the concepts needed for explanation must be present in the
design. Consequently, to develop explainable cognitive mod-
els, concepts like motivations, beliefs, and goals need to be
explicitly represented in the model.

An explainable cognitive model
Virtual players in training systems usually perform relatively
well defined tasks. We therefore represent their behavior
in the form of task hierarchies. Hierarchical task analy-
sis is a well established technique in cognitive task analy-
sis, and connects internal reasoning processes to external ac-
tions (Schraagen, Chipman, & Shalin, 2000). A task hierar-

chy has one main task, which is divided into subtasks, which
are divided into subtasks, etc. Subtasks that are not divided
are actions that can directly be executed in the environment.
Adoption conditions are connected to each subtask, specify-
ing the conditions under which a subtask can be adopted. Sar-
dina et al pointed out the similarities between task hierarchies
and BDI (Belief Desire Intention) models (Sardina, De Silva,
& Padgham, 2006). The tasks and adoption conditions in a
task hierarchy can be seen as goals and beliefs, respectively
(see Figure 1). In earlier work we have elaborated the use of
goal hierarchies for the representation virtual player behavior,
and shown how these models can be implemented in a BDI
(Beliefs Desire Intention) architecture, and thus be made ex-
ecutable (Harbers, Bosch, & Meyer, 2009a).

Figure 1: Example of a goal hierarchy.

There are four goal-subgoal relations: an all relation means
that all subgoals must be achieved to achieve a goal, one
means that exactly one subgoal must be achieved to achieve
a goal, seq means that all subgoals must be achieved in a par-
ticular order to achieve a goal, and if means that a subgoal
must only be achieved under certain conditions, i.e. when
the player has certain beliefs. These relations yield different
action types, i.e. the relation of an action to its parent goal.

An action can be explained by the goals and beliefs respon-
sible for that action. However, providing the whole trace of
beliefs and goals delivers long explanations with irrelevant
information (Keil, 2006), in particular, with big goal hierar-
chies. Instead, a selection of ’explaining elements’ can be
provided to the trainee. For example, Action C in Figure 1
could be explained by Goal B, Goal A, belief 3, belief 1 or
Action E (provided that E must follow C). More general, an
action can be explained by different explanation types, re-
spectively, the goal directly above an action (G+1), the goal
two levels above an action (G+2), the beliefs one level above
an action (B+1), the beliefs two levels above an action (B+2),
and the goal or action that will be achieved after an action
(Gnext).

Theories on human behavior explanation do not describe
which explaining mental concepts should be part of an ex-
planation. Malle’s framework, for instance, does distinguish
beliefs and goals in reason explanations, but does not (yet)
describe in which situations which type is used more of-
ten (Malle, 1999). We performed three user studies to in-
vestigate which explanation types are considered useful to in-
crease understanding of the training task. In particular, we
investigated which explanation type is preferred for which ac-
tion type. Our hypotheses are related to explanation stance,

86

length and type: 1) explanations in terms of beliefs and goals
are appropriate for explaining virtual player behavior, 2) pre-
ferred explanations are relatively short and contain a selection
among explaining beliefs and goals, and 3) preferred expla-
nation type depends on the type of the action to be explained.

Three user studies

In this section we will give overviews of Study 1 (Harbers,
Bosch, & Meyer, 2009b), 2 (Harbers, Bosch, & Meyer, 2010)
and 3 (Broekens et al., 2010), and then discuss the results to-
gether. Only the results that are relevant for the discussion
in this paper are presented. In all studies, the subjects were
provided with a training scenario, and then asked to provide,
select or judge explanations for several of the actions of the
player(s) in the scenario. The independent variable in the
studies is action type (actions with an all, seq, one or if re-
lation to their parent) and the dependent variable is preferred
explanation type (G+1, G+2, B+1, B+2, or Gnext). The ex-
planations presented to the subjects were generated by imple-
mented cognitive models of the virtual players.

Study 1: Onboard firefighting

Domain and task. The domain was onboard firefighting.
The role to be trained was that of Officer of the Watch (OW),
the person in command when there is a fire aboard a ship.

Subjects. The subjects (n=8) were instructors of the Royal
Netherlands Navy and all expert on the training task.

Material. We used the CARIM system, a virtual training
system for onboard firefighting (Bosch, Harbers, Heuvelink,
& Van Doesburg, 2009). Three of the characters in the train-
ing scenario were modeled and implemented. The implemen-
tation was done in the programming language 2APL (Dastani,
2008). Questionnaires were administered to the subjects.

Procedure. Subjects played one scenario (approx 20 min-
utes), using the CARIM system, in which they were con-
fronted with a fire aboard a Navy ship. Subsequently, they
received a list with 12 actions of players in the scenario, and
were asked to explain them in a way they considered useful
for increasing trainees’ understanding. Then, they received
the same list of 12 actions, this time with four explanation
alternatives (G+1, G+2, B+1, B+2) for each action. The sub-
jects were asked to indicate which of the alternatives they
considered most useful for increasing trainees’ understand-
ing.

Results. Regarding the first part of the questionnaire, we
counted the number of elements in each of the subjects’ own
explanations, where an element is a goal, a fact, etc. Of the
88 explanations in total, 62 contained 1 element and 26 con-
tained 2 elements. Furthermore, we categorized the elements
in the subjects’ explanations in different mental concepts. We
were able to categorize all elements as either a belief or a
goal: 52 beliefs and 62 goals. Table 1 shows the results of the
second part of the questionnaire, the multiple choice ques-

Action type Explanation type
G+1 G+2 B+1 B+2

All (3 actions) 33% 50% 13% 4%
Seq (9 actions) 51% 21% 28% 0%

Table 1: Percentages of preferred explanation types per action
type (n=8).

tions. The agreement among the subjects for these results
differed per action: for 5 actions at least 75% of the subjects
preferred the same explanation, for 6 actions at least 50%,
and for 1 action there was no explanation which at least 50%
of the subjects preferred.

Study 2: Firefighting
Domain and task. The domain of this study was civil fire-
fighting, and the role of the trainee was leading firefighter.

Subjects. The subjects (n=20) in Study 2 were unfamiliar to
the training task. An advantage of non-expert subjects is that
they do not have to imagine how useful the provided expla-
nations are for understanding the training task. Instead, they
can introspect to determine which explanations they consider
useful. A disadvantage, on the other hand, is that non-experts
cannot be expected to provide useful explanations for expert
task actions themselves.

Material. A cognitive model of a leading firefighter was
developed and implemented, again in 2APL. Questionnaires
were used for the evaluation.

Procedure. The subjects were briefed about the training
scenario, which involved a fire in a house. Subsequently, they
received a list of 16 actions of the leading fire-fighter in the
scenario with each four explanation alternatives (G+1, G+2,
B+1, and Gnext). They were asked to indicate which expla-
nation they considered most useful for understanding the task
of leading fire-fighter.

Action type Explanation type
G+1 G+2 B+1 Gnext

All (5 actions) 25% 16% 50% 9%
One (4 actions) 8% 8% 85% 0%
Seq (4 actions) 43% 14% 34% 10%
If (3 actions) 2% 2% 97% 0%

Table 2: Percentages of preferred explanation types per action
type (n=20).

Results. Table 2 gives an overview of the results. For 7 of
the actions at least 75% of the subjects preferred the same
explanation, for 8 actions at least 50%, and for 1 action there
was less than 50% agreement.

Study 3: Cooking
Domain and task. The domain of this study was cooking,
and the training task was making pancakes. We purposely se-
lected a simple training task, so that it was easy to find people

87

that could be considered experts.

Subjects. The subjects (n=30) were all familiar to this task.

Material. A cognitive model of a cook able to make pan-
cakes was developed. The model was implemented in the
programming language GOAL (Hindriks, 2009). Again, ques-
tionnaires were used for the evaluation.

Procedure. First, the subjects were briefed about the train-
ing scenario. Subsequently, they were asked to explain 11 of
the cook’s actions as they would to a student cook. Next, the
subjects had to rate given explanations for all the 11 actions
on their naturalness and usefulness on a scale of 1 to 5. The
subjects were divided over condition 1, 2 and 3 in which they
had to rate explanations of type G+1, B+1 and Gnext, respec-
tively. In the last part of the questionnaire the subjects were
shown the underlying goal hierarchy of the virtual player, and
they were asked to indicate in the hierarchy by which beliefs
and/or goals they would use to explain each of the 11 actions.

Results. The results of the subjects rating the usefulness of
given explanations are shown in Table 3 (one of the actions
was excluded from the analysis). The numbers are the av-
erage ratings of 10 subjects on 3 or 4 actions. The average

Action type Explanation type
G+1 B+1 Gnext

All (3 actions) 3.2 2.5 3.4
One (3 actions) 3.0 2.4 2.0
Seq (4 actions) 2.9 2.8 1.8

Table 3: Average usefulness scores (scale 1-5) of action type
per explanation type (n=30, n=10 per condition).

number of goals and/or beliefs that the subjects selected in
the goal hierarchy for using in an explanation themselves was
1.7. One of the 30 subjects scored very high, and without this
subject the average number of selected elements was 1.5.

Discussion

In this section we discuss the results of the user studies aiming
to extract guidelines for developing and explaining cognitive
models. The discussion is organized according to the three
hypotheses concerning explanation stance, length and type.

From literature we learned that people adopt the intentional
explanatory stance when they explain (intentional) human
behavior. In other words, human(-like) behavior is explained
by mental concepts such as beliefs and goals. The results of
Study 1 show that it is possible to categorize the subjects’ ex-
planations in beliefs and goals, i.e. they are compatible with
the intentional stance (we do not claim that this is the only
way to categorize these explanations). In Study 3, the sub-
jects’ explanations were not categorized systematically, but
an examination of the explanations provides a similar picture.
Thus, the results confirm that people explain human-like vir-
tual player behavior by the underlying beliefs and goals.

The results confirm our hypothesis that preferred explana-

tions are relatively short. We expressed explanation length
by the number of elements in an explanation, where an ele-
ment is a fact, a goal, etc. In Study 1, the subjects’ expla-
nations had an average length of 1.3 elements, and in Study
3 the subjects selected an average of 1.7 elements from the
goal hierarchy (1.5 if one outlier is eliminated from the data).
The lower average in Study 1 might be due to the fact that the
subjects had to write down complete explanations, whereas
in Study 3 they only had to mark numbers of elements. So as
expected, people’s explanations about virtual player behavior
usually only contain one or two elements.

As the results discussed so far confirm that explanations
contain a selection of beliefs and goals, it makes sense to ex-
amine people’s preferred explanation type. In Study 1, ex-
cept for explanations of type B+2, all explanation types (G+1,
G+2, B+1) were sometimes considered most useful by more
than 50% of the subjects. In Study 2, for actions of type one
and if, explanations containing a belief (B+1) were clearly
preferred, and for actions of type all and seq, also explana-
tions of other types (G+1 and G+2) were sometimes preferred
by more than 50% of the subjects. These results are consis-
tent with Study 1, in which only all and seq actions were
examined. In Study 3, unlike Study 2, for all action types,
explanations of type G+1 were on average rated higher than
those of type B+1. Like in Study 2, for action types one and
seq, Gnext explanations received relatively low ratings, and
for actions of type all, they were highly rated. The usefulness
of type Gnext explanations is closely related to the underlying
cognitive model, which will be discussed in the next section.
Interestingly, in the last part of Study 3, subjects often se-
lected both a belief and a goal as their preferred explanation.

A remarkable difference between Study 1 and 3 on the one
hand, and Study 2 on the other hand is that goal-based ex-
planations were generally stronger preferred in the former,
and belief-based explanations in the latter. A possible reason
is that the subjects in Study 2 were unfamiliar, and those in
Study 1 and 3 familiar with the training task. Data suggest
that, on average, beliefs carry more idiosyncratic information
and are harder to infer than goals (Malle, 1999). For subjects
unfamiliar with a training task, belief-based explanations may
provide more information underivable from the context than
goal-based explanations. And expert subjects may not realize
that goal-based explanations are easier to infer for trainees.
Another explanation is that experts, more than non-experts,
focus on the bigger picture of a virtual character’s behavior.
The subjects in Study 1 may be expected to know what would
help trainees as they were instructors and had, besides being
expert on the training task, didactical knowledge.

To conclude, action type is sometimes, but not always pre-
dictive for preferred explanation type. Of all studies, only
Study 3 indicates to what extend explanations are preferred.
The highest usefulness scores on action type all, one and seq
are 3.4, 3.0 and 2.9, respectively. The scores are not low (all
above the average of 2.5), but not very high either. In the ex-
periments, we only provided subjects with explanations con-

88

taining one element, but the results seem to indicate that both
beliefs and goals carry important information.

Modeling and explanation guidelines
Though the results of the three studies give no conclusive ev-
idence, they provide directions for modeling and explaining
virtual player behavior. In this section we present a set of
guidelines for designing and explaining cognitive models.

The design and explanation of cognitive models are closely
related in our approach. Though a virtual player’s beliefs and
goals remain unknown for users when a cognitive model is
executed, they become visible when its behavior is explained.
Thus, the elements in a cognitive model determine the content
of its explanations. Guideline: the goals and beliefs in a goal
hierarchy should be meaningful. Furthermore, two cognitive
models with different underlying structures may display the
same behavior, but generate different explanations. Figure
2, for instance, shows two possible positions of action E in
a goal hierarchy. When both relations in this hierarchy are
of the type seq, the position of action E does not effect the
model’s observable behavior, but it may influence they way
it is explained, e.g. when explanations of the type G+1 are
generated. Of course, developing a cognitive model always

Figure 2: Same behavior, different explanations.

should be done with care, but as illustrated, this holds for ex-
plainable cognitive models in particular. Guideline: careful
attention should be paid to the internal structure of the goal
hierarchy. Though obvious, these two guidelines are crucial
for developing useful explainable cognitive models.

In the previous section, we concluded that both beliefs and
goals carry important information for explanations. The re-
sults showed that beliefs directly above an action (B+1) were
considered most useful for explaining that action. Regard-
ing goal-based explanations, the studies are less conclusive;
several goal-based explanation types were considered useful
(G+1, G+2 and Gnext) for different actions. But all together,
goal-based explanations of type G+1 were most often pre-
ferred and highest rated. Moreover, people tend to use expla-
nation types B+1 and G+1 together. Guideline: explanations
should contain the belief(s) B+1 and the goal G+1.

The guidelines presented so far are general for all action
types and supported by the results of all three studies. More
specific guidelines that take action type into account can im-
prove the default explanations. In the remainder of this sec-
tion we will propose two additional, more specific guidelines.

In some cases an explanation of type Gnext can be added
to the default explanation of G+1 and B+1. In contrast to
G+1 and G+2 explanations, Gnext explanations do not con-

tain goals from a particular level above the action. The level
of the Gnext goal depends on the relations in the goal hi-
erarchy. Here again, the usefulness of a Gnext explanation
strongly depends on the underlying cognitive model. Con-
sider, for instance, the two goal hierarchies in Figure 3. Goal
B and C can be modeled as two neighboring goals or as goal
and subgoal, e.g. when goal A, B and C represent Report to
head officer, Go to the head officer and Report new informa-
tion, respectively. In the first case, achieving goal B enables
the achievement of goal C, and in the latter, goal C is achieved
by achieving B. In Study 3, Gnext explanations were consid-

Figure 3: Neighbors or parent and sub-goal.

ered useful for actions of type all, where for all these all type
actions it holds that their parents had a seq relation to their
parents. Guideline: for actions of type all, when their par-
ent goal has a seq relation, the explanation should contain the
goal Gnext besides B+1 and G+1. Addition of a Gnext goal
to the explanation may also be useful for other action types,
but we have no evidence for that.

Another exception to the default rule concerns actions of
the type one. The left side of Figure 4 represents a situation
where action B is followed by action C or D, for example, the
action Take money is followed by either Cycle to the shop or
Drive to the shop. Action C and D are explained by goal A
(G+1), e.g. Buy ingredients. However, a goal can only have
one relation to its subgoal/actions, so the goal hierarchy in the
left side is not allowed. The right side of Figure 4 shows how
this situation should be represented. Goal A has a relation seq
to its children, and a new goal X is introduced, e.g. Go to the
shop, with a relation one to its children. Now, when action C
and D are explained by their parent goal X, the explanation is
not informative (I cycle to the shop because I want to go to
the shop). In this case, it would be better to provide goal A as
an explanation (I cycle to the shop because I want to buy in-
gredients). Although it may result in redundant goal-subgoal

Figure 4: Explanation of actions with a one relation.

relations, we believe that from an explanation point of view
a goal should have only one relation to its subgoals, as this
simplifies interpretation of the cognitive model. Guideline:
to explain actions of type one, instead of goal G+1, goal G+2
should be provided (i.e. B+1 and G+2).

89

Conclusion
In this paper we analyzed the results of three user studies in-
vestigating people’s preferred explanations of virtual player
behavior. From the analysis, we extracted a set of guidelines
for developing and explaining cognitive models. In general,
modeling should be done carefully, and by default, an ac-
tion should be explained by the goal and belief directly above
the action, i.e. explanation types G+1 and B+1. In addition,
we introduced two guidelines for specific action types, which
show how default explanations can be improved by providing
extra or other elements in the goal hierarchy. More exper-
imentation is needed for introducing more of these specific
guidelines.

Another way to improve the explanations is by extending
the cognitive model, for instance, by adding beliefs. Be-
liefs can contain information about the environment, e.g. re-
sources that are available or events that just occured. Such
beliefs are useful in particular and most often connected to
if and one type actions. Beliefs can also contain information
about internal reasoning processes, e.g. the given action is
not yet executed, or a preceding action is executed. Such be-
liefs are more often connected to all and seq type actions. In
these cases, it can be useful to add extra beliefs containing
background information as adoption conditions. These back-
ground beliefs are always believed by the virtual player, so
they do not effect the player’s observable behavior, but they
do add useful information to explanations.

There are many other directions in which this work can be
extended. For instance, the cognitive models can be extended
with emotions, a user model in which the trainee’s knowledge
is modeled can be used to select explanations, and the success
of the approach in other domains can be examined. In future
work we will first validate the present approach by comparing
understanding of played training scenarios of trainees who
did and did not receive explanations about virtual player be-
havior.

References
Bosch, K. Van den, Harbers, M., Heuvelink, A., & Van Does-

burg, W. (2009). Intelligent agents for training on-board
fire fighting. In Proc. of the 2nd internat. conf. on digital
human modeling (p. 463-472). San Diago, CA: Springer
Berlin/Heidelberg.

Broekens, J., Harbers, M., Hindriks, K., Bosch, K. Van den,
Jonker, C., & Meyer, J.-J. (2010). Do you get it? User
evaluated explainable AI. To appear.

Buchanan, G., & Seligman, M. (1995). Explanatory style.
Erlbaum.

Core, M., Traum, T., Lane, H., Swartout, W., Gratch, J., &
Van Lent, M. (2006). Teaching negotiation skills through
practice and reflection with virtual humans. Simulation,
82(11), 685-701.

Dastani, M. (2008). 2APL: a practical agent programming
language. Autonomous Agents and Multi-agent Systems,
16(3), 214-248.

Dennett, D. (1987). The intentional stance. MIT Press.
Gomboc, D., Solomon, S., Core, M. G., Lane, H. C., & Lent,

M. van. (2005). Design recommendations to support auto-
mated explanation and tutoring. In Proc. of BRIMS 2005.
Universal City, CA..

Harbers, M., Bosch, K. Van den, & Meyer, J.-J. (2009a).
A methodology for developing self-explaining agents for
virtual training. In Decker, Sichman, Sierra, & Castel-
franchi (Eds.), Proc. of 8th int. conf. on autonomous agents
and multiagent systems (aamas 2009) (p. 1129-1130). Bu-
dapest, Hungary.

Harbers, M., Bosch, K. Van den, & Meyer, J.-J. (2009b).
A study into preferred explanations of virtual agent behav-
ior. In Z. Ruttkay, M. Kipp, A. Nijholt, & H. Vilhjlms-
son (Eds.), Proc. of IVA 2009 (p. 132-145). Amsterdam,
Netherlands: Springer Berlin/Heidelberg.

Harbers, M., Bosch, K. Van den, & Meyer, J.-J. (2010). De-
sign and evaluation of explainable agents. To appear.

Heider, F. (1958). The psychology of interpersonal relations.
New York: John Wiley Sons.

Heuvelink, A. (2009). Cognitive models for training simula-
tions. Unpublished doctoral dissertation, Vrije Universiteit
Amsterdam, The Netherlands.

Hindriks, K. (2009). Multi-agent programming: Languages,
tools and applications. In (p. 119-157). Springer.

Johnson, L. (1994). Agents that learn to explain them-
selves. In Proc. of the 12th nat. conf. on artificial intel-
ligence (p. 1257-1263).

Keil, F. (2006). Explanation and understanding. Annual
Reviews Psychology, 57, 227-254.

Kelley, H. (1967). Attribution theory in social psychology.
In D. Levine (Ed.), Nebraska symposium on motivation
(Vol. 15, p. 192-240). Lincoln: University of Nebraska
Press.

Malle, B. (1999). How people explain behavior: A new theo-
retical framework. Personality and Social Psychology Re-
view, 3(1), 23-48.

Norling, E. (2004). Folk psychology for human modelling:
Extending the BDI paradigm. In Third internat. joint conf.
on autonomous agents and multi agent systems (p. 202-
209). New York, USA.

Sardina, S., De Silva, L., & Padgham, L. (2006). Hierarchical
planning in BDI agent programming languages: A formal
approach. In Proceedings of aamas 2006. ACM Press.

Schraagen, J., Chipman, S., & Shalin, V. (Eds.). (2000). Cog-
nitive task analysis. Mahway, New Jersey: Lawrence Erl-
baum Associates.

Swartout, W., & Moore, J. (1993). Second-generation expert
systems. In (p. 543-585). New York: Springer-Verlag.

Van Lent, M., Fisher, W., & Mancuso, M. (2004). An ex-
plainable artificial intelligence system for small-unit tacti-
cal behavior. In Proc. of IAAA 2004. Menlo Park, CA:
AAAI Press.

90

A Cognitive Model of Theory of Mind
Laura M. Hiatt (laura.hiatt.ctr@nrl.navy.mil)

J. Gregory Trafton (greg.trafton@nrl.navy.mil)
Naval Research Laboratory

Washington, DC 20375 USA

Abstract

It is generally well acknowledged that humans are capable of
having a theory of mind (ToM) of others. We present here a
model which borrows mechanisms from three dissenting ex-
planations of how ToM develops and functions, and show that
our model behaves in accordance with various ToM experi-
ments (Wellman, Cross, & Watson, 2001; Leslie, German, &
Polizzi, 2005).
Keywords: cognitive architectures; theory of mind

Introduction
The concept of “theory of mind” (ToM) refers to one’s ability
to infer and understand the beliefs, desires and intentions of
others, given the knowledge that one has available; without
it, people can be severely impaired in their ability to interact
with others (Baron-Cohen, Leslie, & Frith, 1985). A large
body of research has tried to explain how this critical ability
functions by studying its development in children (Wellman
et al., 2001), but has led to many contradictory accounts.

We have built a model that borrows ideas from various ex-
planations of how ToM develops and functions to form a co-
hesive theory of ToM, and show that it produces behavior in
accordance with various ToM experiments (Wellman et al.,
2001; Leslie et al., 2005). While the similarities between a
model’s behavior and data is not a certain indicator of cogni-
tive plausibility (Cassimatis, Bello, & Langley, 2008), it can
distinguish between models that show performance and data
fit (which, to us, are preferred) and models that do not.

Theories of the Theory of Mind
There are, in general, three competing views for how ToM
takes place at a cognitive level. They are typically described
in the context of “belief and desire” reasoning: ToM is the
understanding that different people can have different beliefs,
not all of which may be actually true; people also have in-
ternal desires that cause them to act in certain ways, physi-
cally, in the world. There is also a distinction between “true-
beliefs,” or beliefs that are true in the physical world, and
“false-beliefs,” which others may have but which are not ac-
tually true. The ability to understand a false-belief task, then,
indicates evidence that a person can appreciate the distinction
between the mind and the world (Wellman et al., 2001).

Conceptual change (commonly called theory-theory) is
one possible explanation for ToM (Wellman et al., 2001).
Theory-theorists believe that children learn a set of causal
laws, or theories, about the beliefs and desires of people in
general (Gopnik, 1993). Children then use these causal laws
to explain behavior observed in others, to predict desires and
behaviors, and to perform other related ToM tasks.

Simulation theory is a second view (Gallese & Goldman,
1998). It posits that when a person (“A”) tries to understand
another (“B”), A simulates what he/she would do in B’s place,
and attributes the result to B. More specifically, the theory
states that humans perform ToM by representing the mental
states of others, and then using their own decision-making
systems to operate on these foreign mental states to predict
others’ behavior; similar processes can be used to explain ob-
served behavior, making backward inferences. Gallese and
Goldman (1998) describe the distinction between this and
theory-theory as, while theory-theory is performed as a “‘de-
tached’ theoretical activity,” simulation theory involves at-
tempting to mimic or impersonate the mental state of another.

A third body of literature posits that the mind has two sep-
arate mechanisms that work together to provide ToM (Leslie,
Friedman, & German, 2004). The theory of mind mecha-
nism (ToMM) allows people to generate and represent multi-
ple possible beliefs. It is argued that this mechanism is fully
functional in even very young children. The second mecha-
nism provides a selection process (SP) that uses inhibition to
reason about others’ beliefs, such as inhibiting a true-belief
to select a false-belief answer; this processing ability, it is ar-
gued, develops in children during the pre-school years. To
describe how the mechanisms work together as “ToMM-SP”
to provide ToM, the authors break it down into four steps:
(1) identify candidate belief possibilities; (2) provide a priori
weights to the candidates, with true-belief receiving the high-
est weight; (3) adjust the weights given the belief inquiry; and
(4) select the highest-weighted candidate as the answer.

A variety of experiments, primarily in developing children,
have led to a range of results that supports each of these the-
ories. We describe next some of these experiments, followed
by our interpretation of the data and our overall view of ToM.

Experiments in Developing Children
The majority of experiments in this area concerns false-belief
tasks. Arguably, the most well-known false-belief task (and
the one on which we focus in this paper) is the Sally-Anne
task (Baron-Cohen et al., 1985), in which a child is shown
a play with two characters, Sally and Anne (Figure 1). The
true-belief answer (to where Sally believes the marble is) is
that the marble is in Anne’s box (the “TB box”), since that is
where the marble actually is. In contrast, the correct answer
is the false-belief answer, Sally’s box (the “FB box”).

Variations on the Sally-Anne task have also been explored.
One is the avoidance false-belief task (which we shorten to
“avoidance task”). In a sample set-up, the marble is replaced
by a kitten that crawls between boxes while Sally is out of

91

!" #"
!"

#"

$" %"

#"

&"

!" #"

'"

Figure 1: A diagram of the Sally-Anne task. A child watches
while: (1) Sally puts a marble in her box; (2) Sally leaves the
room; (3) Anne moves the marble to Anne’s box; (4) Sally
returns to the room. The child is then asked where Sally be-
lieves the marble is.

the room; when Sally returns, she wants to put a piece of
fish under the unoccupied box so that the kitten will not eat
the food and get sick. Therefore, the correct answer to the
question “where will Sally try to put the fish” is the TB box.
This task involves not only identifying Sally’s false belief,
but also taking into account her avoidance desire to predict
her behavior, presumably making the task more difficult.

To individually consider all the experiments in this area is
nearly impossible. Instead, we focus on a meta-analysis that
compiled a broad range of false-belief experiments (Wellman
et al., 2001), and a more detailed experiment performed after
the meta-analysis was compiled (Leslie et al., 2005). These
two studies involve two developmental shifts that are believed
to occur in children. The first is at about 3-4.5 years of age,
when children go from being mostly incorrect to mostly cor-
rect on the standard false-belief task; this seems to corre-
late with the ability to recognize and identify beliefs of oth-
ers. The second developmental shift is at around 4.5-6 years,
when children go from having difficulty with the avoidance
task to performing it mostly correctly; this seems to correlate
with a child’s ability to account for both beliefs and desires,
and to use them to predict the behavior of others.

The meta-analysis performed by Wellman et al. (2001) pro-
vides three results pertinent to this paper. First, it identified
several task components that were statistically insignificant,
including the exact type of task being performed as well as
the phrasing of the false-belief question (e.g., whether it asks
where Sally will look, what Sally believes, or what she will
say). Other factors such as whether the characters in the task
are dolls, photographs, etc., are also inconsequential. Our fo-
cus on the Sally-Anne task, then, and the exact experimental
set-up we chose should not affect the validity of the results.

Secondly, several task components were identified as main
effects, which improve performance but do not interact with
age, including whether the child participated in the experi-
ment (e.g., helped to set up props), whether Sally’s absence
was explicitly emphasized, and in which country the experi-
ment took place. We do not model such task variations.

Thirdly, the compiled results show a significant, if noisy,
effect between age and the proportion of children that an-
swered the false-belief query correctly (p < 0.001). Figure
2 shows the findings; it plots the results from each individ-

662 Child Development

only what we termed primary conditions. These were
conditions in which (1) subjects were within 14
months of each other in age, (2) less than 20% of the
initially tested subjects were dropped from the re-
ported data analyses (due to inattention, experimen-
tal error, or failing control tasks), and (3) more than
80% of the subjects passed memory and/or reality
control questions (e.g., “Where did Maxi put the
chocolate?” or “Where is the chocolate now?”). Our
reasoning was that age trends are best interpretable if
each condition’s mean age represents a relatively nar-
row band of ages; interpretation of answers to the tar-
get false-belief question is unclear if a child cannot re-
member key information, does not know where the
object really is, or cannot demonstrate the verbal facil-
ity needed to answer parallel control questions. In
most of the studies, few subjects were dropped, very
high proportions passed the control questions, and
ages spanned a year or less, so primary conditions in-
cluded 479 (81%) of the total 591 conditions available.
The primary conditions are enumerated in Table 1;
they were compiled from 68 articles that contained
128 separately reported studies. Of the 479 primary
conditions, 362 asked the child to judge someone
else’s false belief; we began our analyses by concen-
trating on these conditions. On average in the pri-
mary conditions, 3% of children were dropped from a
condition, children were 98% correct on control ques-
tions, and ages ranged 10 months around their mean
values.

In an initial analysis only age was considered as a
factor. As shown in Figure 2, false-belief performance
dramatically improves with age. Figure 2A shows
each primary condition and the curve that best fits the
data. The curve plotted represents the probability of
being correct at any age. At 30 months, the youngest
age at which data were obtained, children are more
than 80% incorrect. At 44 months, children are 50%
correct, and after that, children become increasingly
correct. Figure 2B shows the same data, but in this
case the dependent variable, proportion correct, is
transformed via a logit transformation. The formula
for the logit is:

,

where “ln” is the natural logarithm, and “

p

” is the
proportion correct. With this transformation, 0 rep-
resents random responding, or even odds of predict-
ing the correct answer versus the incorrect answer.
(When the odds are even, or 1, the log of 1 is 0, so the
logit is 0.) Use of this transformation has three major
benefits. First, as is evident in Figure 2B, the curvilin-
ear relation between age and proportion correct is

logit ! ln p
1 p–
------------ 

 

straightened, yielding a linear relation that allows
systematic examination of the data via linear regres-
sion; second, the restricted range inherent to propor-
tion data is eliminated, for logits can range from
negative infinity to positive infinity; and third, the
transformation yields a dependent variable and a
measure of effect size that is easily interpretable in
terms of odds and odds ratios (see, e.g., Hosmer &
Lemeshow, 1989).

The top line of Table 2 summarizes the initial anal-
ysis of age alone in relation to correct performance

Figure 2 Scatterplot of conditions with increasing age show-
ing best-fit line. (A) raw scatterplot with log fit; (B) proportion
correct versus age with linear fit. In (A), each condition is rep-
resented by its mean proportion correct. In (B), those scores are
transformed as indicated in the text.

Figure 2: Results from (Wellman et al., 2001) showing a scat-
terplot of the results and best-fit curve.

ual study considered, as well as the curve that best fits it.
They found that at an age of about 44 months, the odds of
answering correctly are even, or 1.0; then, the odds of being
correct increase 2.94 times for every year. The linear regres-
sion model which considers only age is y = −3.96+ 0.09 ·
[age in months], with r2 = 0.391. Their best statistical model,
which had six variables (including age, the country in which
the experiment took place, and child participation), yielded an
R2 of 0.55. The results clearly document the developmental
shift that seems to happen between roughly 3 to 4.5 years of
age where children go from being mostly incorrect to mostly
correct on the standard false-belief task.

We also consider an experiment involving the avoidance
task (Leslie et al., 2005). The experiment, performed with
4.75-year-olds on average, supports the belief that this task is
more difficult than the standard task, and provides evidence
for the second developmental shift. After several children
were eliminated for failing the false-belief task, only 25%
of 16 children correctly answered the query of “Where will
Sally try to put the fish.” The experiment showed, however,
that by asking the question in terms of where the first place
Sally will try to put the fish is, almost three times as many
children (71%) passed the task; we refer to this as “look-first
avoidance.” Overall, the results suggest that children gain the
ability to understand others’ desires and their implications af-
ter they gain the capability to understand their beliefs.

Discussion of Experiments
The area of how children develop theory of mind remains
controversial. One of the pressing questions that emerges
from the literature is whether the various developmental shifts
are due to learning concepts and causal laws (for clarity, we
refer to this as “learning”), as the theory-theorists strongly
posit, or due to increasing capabilities/functionality of mech-
anisms of the brain (we refer to this as “maturation”), as oth-
ers argue. There is certainly evidence for both.

1This model transformed the proportion correct, p, via a logit
transformation, ln(p/(1− p)) where “ln” is the natural logarithm.

92

Leslie et al. (2004) argues that maturation of processing ca-
pabilities and resources, alone, can account for all ToM devel-
opments, and have designed reasonable process models (e.g.,
ToMM-SP) demonstrating the idea’s plausibility. Further ev-
idence shows that the capabilities of specific mechanisms in
the brain (such as selection processing and inhibition of be-
liefs) play a crucial role in ToM (German & Hehman, 2006;
Carlson, Moses, & Claxton, 2004).

Wellman et al. (2001), however, makes several arguments
for learning over maturation based on the results of the meta-
analysis; specifically, the strong presence of task manipula-
tions that act as main effects (e.g., child participation). If
maturation were true, presumably many task manipulations
would interact with age since they should help younger chil-
dren’s processing competence more than older children’s;
however, they do not. The presence of such manipulations
does, however, support conceptual change accounts. Over-
all, the authors argue that there is a potential interrelation of
learning and maturation: children improve as they grow and
acquire conceptual understanding of ToM but, within an age
group, processing capabilities could be highly correlated with
performance and could account for much of the variance.

Many of the above papers argue against simulation the-
ory based on these results; however, much of the arguments
are neither substantive nor well supported. Wellman et al.
(2001) argues that, since children do not systematically err
about their own false beliefs, simulation theory is not as plau-
sible; however, this could easily be explained by children re-
membering their own past mental states. Leslie et al. (2004)
simply says about simulation theory, “it is also hard to see a
role for ‘simulation’ in accounting for this data... the mech-
anisms of theory of mind might simply figure out what one
would do... there is currently no evidence that it is the first-
person singular.” The opposite argument could just as eas-
ily be made. Unfortunately, there are few developmental ac-
counts available for simulation theory; (Harris, 1992) is an
exception, and states that a child’s inability to perform simu-
lation early on may be due to memory limitations. In general,
simulation theorists support their arguments as in (Gallese &
Goldman, 1998), with the presence of mirror neurons that fire
both when one views an action and when one performs it.

Overall, we agree in part with Wellman et al. (2001), who
say that the ability of children to recognize false-beliefs in
others is due to both learning and maturation, accounting for
the first developmental shift we discussed where children gain
the ability to recognize and predict beliefs in others. We ar-
gue, however, that the second developmental shift that oc-
curs, which results in children being able to account for both
beliefs and desires to predict another’s behavior, is due to
children gaining the ability to perform simulation. This ac-
counts for 4.75-year-olds’ inabilities to reliably answer the
avoidance query: they are still in the middle of learning and
maturing this ability. Note that this view is not necessarily
incompatible, at the process level, with some of the others;
e.g., in highly complex situations, there is not much differ-
ence between Leslie et al. (2004)’s SP mechanism inhibiting

everything that should not be used and operating only on what
is left, and identifying pertinent beliefs and decision-making
processes and subsequently using them in simulation.

Some recent experiments also suggest that very young chil-
dren (15 months of age) can perform implicit (non-verbal)
false-belief tasks (Onishi & Baillargeon, 2005). This sup-
ports the theory of processing mechanisms in the brain that
work with false-beliefs and, further, suggests that the ability
to recognize situations involving false-beliefs develops before
the ability to explicitly reason about them. We anticipate fur-
ther modeling work concerning this would be compelling.

Core Cognitive Architecture
As our core cognitive architecture we use ACT-R, a hybrid
symbolic/sub-symbolic production-based system (Anderson,
2007). ACT-R consists of a number of modules, buffers and a
central pattern matcher. Modules contain a relatively specific
cognitive faculty typically associated with a specific region
of the brain. For each module, there are one or more buffers
that communicate directly with that module as an interface to
the rest of ACT-R. At any point in time, there may be at most
one symbolic item, or “chunk,” in any individual buffer; the
module’s job is to decide when to put chunks into a buffer.
Chunks are used to represent knowledge or memories related
to any of the modules/buffers, and, in addition to symbolic in-
formation, contain subsymbolic information (e.g., activation).
The pattern matcher uses the contents of the buffers, if any,
to match specific productions which, when fired, can modify
the current contents of the buffers. Ties between competing
productions are broken based on the productions’ expected
utilities, which can be initially set and adjusted via a rein-
forcement learning process; random noise can also be added
in during execution to affect production selection.

The relevant modules of ACT-R to this paper are the in-
tentional and declarative modules. In addition, ACT-R in-
terfaces with the world through the visual, vocal, motor and
aural modules. The open-source, robotic simulation environ-
ment Stage (Collett, MacDonald, & Gerkey, 2005) was used
as the “world” of the model in order to enable fast model de-
velopment and data collection.

ACT-R is able not only to learn new facts and rules, but
also to learn which rule should fire (called utility learning in
ACT-R). It accomplishes this by learning which rule or set
of rules lead to the highest reward. ACT-R uses an elabora-
tion of the Rescorla-Wagner learning rule and the temporal-
difference algorithm (Fu & Anderson, 2006). This algorithm
has been shown to be related to animal and human learning
theory.

Any time a reward is given (e.g., children being told they
responded with the correct answer), a reward is propagated
back in time through the rules that had an impact on the model
getting that reward. Punishments are performed similarly.

Model Description
As stated above, our model is based on the conjecture that,
as children grow, they learn and mature simultaneously; i.e.,

93

as they develop, they learn to take advantage of their matur-
ing ability to select between competing beliefs. Further, we
believe that being able to select between beliefs acts as a pre-
curser for simulation, which allows people to use the beliefs
and desires of others to predict and understand their behavior,
and is ultimately what provides full-fledged ToM.

In our model, the Sally-Anne task takes place in the Stage
simulator, which feeds the model visual information; i.e., it
passes the model visual locations to fixate on and, when at-
tended to, what is at that location. This allows the model to
“watch” the Sally-Anne play unfold. As the story unfolds,
the model explicitly notes what happened (e.g., Sally moved
the marble into her box), and who saw it happen (e.g., only
Anne saw herself move the marble into her box). After the
play completes, the model is asked several false-belief ques-
tions. If the model answers a question correctly, the model is
rewarded; otherwise, it is punished.

We first describe the core mechanisms that enable ToM.
Then, we describe how the model learns to effectively use
these mechanisms (as well as develops the ability to use
them). Although much of the description is in the context
of the Sally-Anne task, as are our experiments, recall that this
acts as a proxy for false-belief tasks in general and our results
are not specific to this task (Wellman et al., 2001).

Theory of Mind Mechanisms
When its goal is to answer a query about someone’s belief,
a fully-developed model will answer the question similar to
Leslie et al. (2004)’s ToMM-SP. As the story unfolds, the
model generates possible beliefs for the marble’s location;
for the standard Sally-Anne task, then, this set is {sallys-box,
annes-box}. The model first retrieves the TB answer because
it has the highest activation. It realizes, however, that the an-
swer is not correct since Sally does not know about it. To
address this, it considers the various possible beliefs of the
marble’s location and, from these, it selects the most salient
belief that Sally was known to be privy to, the FB box.

When faced with an avoidance task, a fully-developed
model will first use the above process to select knowledge
to use as input to its simulation. For the Sally-Anne avoid-
ance task variant, the simulation’s input would be the differ-
ent boxes, as well as Sally’s belief of the location of the kitten.
All subsymbolic information of the knowledge, including ac-
tivation levels, is preserved. The model next performs simu-
lation by spawning a sub-model with: this input; access to the
model’s productions and cognitive resources; and the goal of
deciding where to put the kitten (Kennedy, Bugajska, Harri-
son, & Trafton, 2009). Then, the sub-model can infer that, if
Sally wants to put the fish under a box without the kitten, she
will put it under the TB box.

Developmental Mechanisms
As stated, our model both learns and matures as it develops
ToM. The learning mechanism is similar to standard ACT-
R learning. The model begins with a production that answers
false-belief queries simply by retrieving the belief chunk with

the highest activation, and returning it. It can learn, however,
to consider an alternate competing production that, upon the
retrieval of the belief, considers whether the person the query
is about knows about the belief. This production acts as the
gateway to the selection process. Learning over time can
teach the model to exclusively favor this production, as it ul-
timately leads to the correct answer. A similar process occurs
when learning to perform simulation.

ACT-R does not normally model increasing functionality
in the brain. In order to model maturation, therefore, we in-
troduce the notion of a “maturation parameter.” This parame-
ter determines whether a model has the ability to fire certain
sets of productions (i.e., whether the model is mature enough
to have that functionality). Since maturation is not an “all
or nothing” concept, and happens gradually, the parameter
acts as a guideline for how strong the model’s abilities are at
that moment. Any time the model attempts to fire a matur-
ing set of productions, their availability is random according
to the parameter (e.g., if a randomly selected number is less
than the parameter, the productions will be able to fire). Intu-
itively, maturation parameters should be correlated with age:
the older the child, the higher the parameter.

In the case of selecting between different beliefs, the matu-
ration parameter is called the “selection parameter” and deter-
mines the availability of the productions that select between
beliefs. A model with a selection parameter of 0 would never
be able to correctly select a false-belief as the involved pro-
ductions would be unable to fire; a model with a selection pa-
rameter of 0.5 would be able to do so on half of its attempts;
and a model would a selection parameter of 1 will always be
able to fire the involved productions.

In the case of simulation, the model should be able to per-
form larger and larger simulations as it ages. This is in accor-
dance with Harris (1992)’s view that children have difficulty
performing simulation early on due to memory limitations.
The “simulation parameter” determines the availability of the
productions that perform simulation, given the size of sim-
ulation that is being attempted; for low sizes, the model is
more likely to be able to do it, but at high sizes the model be-
comes overwhelmed and cannot process all the data, and so
simulation is less likely. Specifically, any time a simulation
is attempted, the probability that the simulation productions
will be available is min(1,sp/s), where sp is the simulation
parameter and s is the size of the attempted simulation. The
size of the simulation is discussed in the subsequent section.

Modeling Developmental Progress
The model begins at approximately 2 years of age with the
ability to generate multiple possible beliefs (Leslie et al.,
2004). Model development mirrored the two ToM develop-
mental phases. With respect to the first phase and the stan-
dard false-belief task, the model has a selection parameter of
0.5, but does not yet know to do the selection; i.e., when it
initially retrieves the most salient belief, it does not know to
check whether Sally saw it and simply returns the belief. Of
course, the most salient belief is likely the true-belief, and so

94

the model will be incorrect, leading to a punishment. This
causes the model to begin to explore using the selection pro-
cess. If the model is able to access that functionality (i.e., if
a number randomly selected at the time of the attempt is less
than the selection parameter), it will attain the correct answer
and receive reward; otherwise, it will default to returning the
initially-retrieved belief, likely leading to punishment. Note
that if this occurs, the productions leading to the selection at-
tempt will incur lower expected utility, making it less likely
that the model will attempt selection during the next trial.

Experience is simulated by engaging the model in false-
belief trials and by slowly increasing the selection parameter.
Therefore, as the model grows more experienced, it concur-
rently learns to utilize its selection mechanism and is able
to more reliably perform selection: by the age of about 44
months (3.7 yrs), the selection parameter is up to 0.8, and
by the age of 68 months (5.7 yrs) that parameter equals 0.95.
Note that, as the selection parameter increases, so does the ef-
ficacy of learning, since more trials that attempt to select the
false-belief do so successfully and receive positive reward.
Learning was concentrated such that about 2 trials approxi-
mates 12 months of experience; the function relating learning
trials to age was determined post hoc after comparing our re-
sults with those of (Wellman et al., 2001).

The second developmental component (concerning the
avoidance task) occurs in an analogous way. Whenever the
child successfully answers the standard false-belief task, it is
queried about the look-first avoidance task (and, upon suc-
cessfully answering that, is further queried on the standard
avoidance task). The model first tries to calculate Sally’s be-
lief exactly as in the standard false-belief task; note that, es-
pecially at early ages, it may or may not be able to do so and
may end up thinking about either the TB or FB box. Once a
belief is in hand, the model initially does not know what to do
with it; so it defaults to where it would put the kitten, the FB
box, resulting in punishment. Over time, the model will start
using the initial belief as input to simulation. If the model is
able to simulate, it will return the box other than the belief;
otherwise, it will again default to returning the FB box.

As mentioned, the model’s ability to perform simulation
is dependent on a simulation parameter, which in turn is de-
pendent on the “size” of the simulation. For the look-first
avoidance query, the simulation size is 1, as the child is being
asked to predict Sally’s actions only one step in the future.
For the standard avoidance query, the simulation size is set to
32. When the model begins at age 2, the simulation parameter
is 0 and so no simulation is possible; by age 56 months (4.7
yrs), it is 1, and by age 72 months (6 yrs), it is 5.

For all models, we kept most of the ACT-R parameter de-
faults. We did change the utility noise parameter (set at a
moderate 1.0) to allow low-use productions to occasionally
fire. Because the rate of learning is dependent entirely on the
utility learning rate parameter (set at the default of 0.2), learn-

2Although this is ad hoc, with such limited data to match, a more
pleasing parameter choice and justification is not possible.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 30 40 50 60 70 80 90 100

Pr
op

or
tio

n
C

or
re

ct

Age (Months)

Figure 3: Model results showing a scatterplot of the standard
false-belief results and best-fit curve.

ing occurred quite quickly in this model. Utility learning rate
could be scaled down substantially to match actual develop-
ment and learning time. In order to do this correctly, it would
be important to know approximately how often children en-
counter false-belief and avoidance tasks, and learn from them.

Model Results
In our first experiment, corresponding to the first phase of
model development, we started testing the model at age 32
months (2.7 yrs), and test roughly every 7 months until the
model reaches around age 92 months (7.7 yrs), for a to-
tal of 10 tests. Each test period consisted of 8 repetitions
of the Sally-Anne task, including all three queries. During
these tests, learning is turned off in order to reliably test the
model’s abilities at that age. To simulate the variability of
children’s development, we randomly perturbed the models’
starting ages around their a priori value of 2 years, selecting
uniformly in the range [17, 31] months. This made the age of
the models in our experiment comparable to the ages of the
children in the meta-analysis (Wellman et al., 2001).

Figure 3 shows the results for the false-belief task, and
plots each model’s age during a test period against the propor-
tion of correct answers the model gave during the test. The
graph appears very similar, visually, to that of Figure 2, and
shows a clear learning trend as well as noise which presum-
ably stems from different maturation levels. Using Wellman
et al. (2001)’s linear regression model (which considers only
age) on this data, r2 = 0.51 with a residual standard error of
1.73. This is considerably higher than their r2 = 0.39. It also
approaches the R2 of their multi-variate model, 0.55. We ar-
gue, then, that our model is stronger since it is both a process
model that learns to perform this task, as compared to a sta-
tistical model, and depends on fewer parameters.

Note that this curve is due to an interaction between the
selection parameter increasing, and the model learning that
attempting to select between beliefs often leads to the correct
answer. We expect, therefore, that if the selection parameter
increased more slowly, learning would be impeded and mod-
els’ performance would not improve as quickly.

95

Our avoidance false-belief results were also compared to
those of (Leslie et al., 2005), which showed that 71% of chil-
dren around the age of 4.75 years could answer the look-
first avoidance query but only 25% could answer the stan-
dard avoidance query. We were able to match these results,
but further experimental data is needed in order to distinguish
our parameterization from other valid possibilities.

Discussion
We have shown in this paper a cognitive model for theory of
mind. Our model borrows ideas from all three main postu-
lates of ToM to develop a cohesive explanation for how ToM
functions. The model uses a selection process to identify the
beliefs and knowledge others may have; then, to predict the
desires and behaviors of others, it uses the identified concepts
as input to its own decision-making mechanisms, simulating
what the model would do in the other’s place. This ToM func-
tionality develops by concurrent learning and maturation of
the required functional capabilities. The model was found to
be a good match to existing data from developing children.

One of the strengths of this model is that it generalizes to
many other types of false-belief and ToM tasks. The matu-
ration parameters are very general, and can be applied with
little change to other tasks. The same holds true for simu-
lation; the cognitive mechanism which enables it can accept,
and work with, any input. The learning of ToM in this paper is
not as general, as it chooses between productions which are
relatively task-specific; however, if the model were to have
experience on a variety of ToM tasks, we expect that it would
generalize what it learns into a broader concept.

Our work is also distinguished from previous work in cog-
nitive architectures. Laird (2001)’s QuakeBot performs men-
tal simulation of opponents to predict their behavior, for ex-
ample, but to our knowledge their approach has not been
matched against human cognitive data.

A future step is to explicitly address other observed ToM
phenomena. One experiment added a third “neutral” box to
the avoidance task, introducing a second correct answer, and
had both children and adults as subjects (Leslie et al., 2004).
The study showed that children have a bias towards the TB
box, whereas adults have a bias towards the new neutral box.
Our model does predict this phenomena for children, since
the TB box is the correct box with the highest activation (it is
the last box to receive a kitten, and it is identified as the true-
belief of the kitten’s location before the selection of beliefs
begins), and so it is the answer that simulation will select.
As far as the results for adults, we believe that with further
learning, simple simulations can be avoided in favor of gen-
eral, learned inference rules. In this case, therefore, adults
are simply returning an answer that is true from anyone’s per-
spective. The paper describes further experiments that our
model can predict, but that is outside the scope of this paper.

Acknowledgements
This work was supported by the Office of Naval Research
under funding document N0001409WX20173 to JGT. The

views and conclusions contained in this document should not
be interpreted as necessarily representing the official policies
of the U. S. Navy.

References
Anderson, J. R. (2007). How can the human mind occur in

the physical universe? Oxford University Press.
Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the

autistic child have a “theory of mind”? Cognition, 21.
Carlson, S. M., Moses, L. J., & Claxton, L. J. (2004). Individ-

ual differences in executive functioning and theory of mind:
An investigation of inhibitory control and planning ability.
Journal of Experimental Child Psychology, 87, 299-319.

Cassimatis, N. L., Bello, P., & Langley, P. (2008). Ability,
breadth, and parsimony in computational models of higher-
order cognition. Cognitive Science, 32(8), 1304-1322.

Collett, T. H. J., MacDonald, B. A., & Gerkey, B. P. (2005).
Player 2.0: Toward a practical robot programming frame-
work. In Proceedings of the Australasian Conference on
Robotics and Automation (ACRA ‘05).

Fu, W., & Anderson, J. (2006). From recurrent choice to skill
learning: A model of reinforcement learning. Journal of
Experimental Psychology: General.

Gallese, V., & Goldman, A. (1998). Mirror neurons and
the simulation theory of mind-reading. Trends in Cognitive
Sciences, 2(12).

German, T. P., & Hehman, J. A. (2006). Representational and
executive selection resources in ‘theory of mind’: Evidence
from compromised belief-desire reasoning in old age. Cog-
nition, 101, 129-152.

Gopnik, A. (1993). How we know our minds: The illusions
of first person knowledge of intentionality. Behavioral and
Brain Sciences, 16, 1-14.

Harris, P. L. (1992). From simulation to folk psychology:
The case for development. Mind and Language, 7.

Kennedy, W. G., Bugajska, M. D., Harrison, A. M., &
Trafton, J. G. (2009). “Like-me” simulation as an effective
and cognitively plausible basis for social robotics. Interna-
tional Journal of Social Robotics, 1(2), 181-194.

Laird, J. E. (2001). It knows what you’re going to do: Adding
anticipation to a quakebot. In Proceedings of the Interna-
tional Conference on Automomous Agents.

Leslie, A. M., Friedman, O., & German, T. P. (2004). Core
mechanisms in ‘theory of mind’. Trends in Cognitive Sci-
ences, 8(12), 528-533.

Leslie, A. M., German, T. P., & Polizzi, P. (2005). Belief-
desire reasoning as a process of selection. Cognitive Psy-
chology, 50, 45-85.

Onishi, K. E., & Baillargeon, R. (2005). Do 15-month-old
infants understand false beliefs? Science, 308.

Wellman, H. W., Cross, D., & Watson, J. (2001). Meta-
analysis of theory-of-mind development: The truth about
false belief. Child Development, 72(3), 655-684.

96

Task-Constrained Interleaving of Perceptual and Motor Processes
in a Time-Critical Dual Task as Revealed Through Eye Tracking

Anthony J. Hornof (hornof@cs.uoregon.edu)
Yunfeng Zhang (zywind@cs.uoregon.edu)

Computer and Information Science, University of Oregon
Eugene, OR 97403 USA

Abstract
A multimodal dual task experiment that contributed to the
original development and tuning of the EPIC cognitive
architecture is revised and revisited with the collection of new
high fidelity human performance data, most notably detailed
eye movement data, that reveal the complex overlapping of
perceptual and motor processes within and between the two
competing tasks. The data permit a new detailed evaluation
of assumptions made in previous models of the task, and
contribute to the development of new models that explore
opportunities for overlapping visual-perceptual, auditory-
perceptual, ocular-motor, and manual-motor activities. Three
models are presented: (a) A hierarchical task-switching
model in which each task locks out the other; the model
explains reaction time but does not account for eye movement
data. (b) A maximum-perceptual-overlap model that
maximizes parallel processing and predicts the trends in the
eye movement data, but performs too quickly. (c) A
moderately-overlapped model that introduces task-motivated
constraints and predicts both reaction time and eye movement
data. The best-fitting model demonstrates the complex task-
constrained interleaving of perceptual and motor processes in
a time-pressured dual task.

Keywords: Cognitive strategies, EPIC cognitive architecture,
eye tracking, multimodal dual task, multitasking.

Introduction
A critical task domain for the research enterprise of
cognitive modeling is that of multimodal (auditory and
visual) multitasking. Psychologists and cognitive modelers
puzzle over the question of how people engage in two or
more time-pressured tasks that compete for perceptual,
cognitive, and motor processes, such as for air-traffic
control or in-car navigation (Byrne & Anderson, 2001;
Howes, Lewis, & Vera, 2009; Meyer & Kieras, 1997;
Salvucci & Taatgen, 2008). Gaining an understanding and
ability to predict aspects of multimodal multitasking is of
critical scientific and practical importance. This paper
advances an understanding of such tasks by presenting
cognitive models of time-critical multimodal multitasking
and evaluates these models in detail using eye tracking data.

The Time-Critical Multimodal Dual Task
An earlier version of the experiment that forms the basis of
this theoretical exploration was conducted in the early 1990s
at the Naval Research Laboratory (NRL) (Ballas,
Heitmeyer, & Perez, 1992). The experiment produced
human speed and accuracy data that proved useful for
developing detailed computational cognitive models of dual

task performance (Kieras, Ballas, & Meyer, 2001). In the
NRL dual task, participants use a joystick to track a moving
target on one display and, in parallel, key-in responses to
objects that appear on a secondary “radar” display. This
paper presents an experiment that extends the original NRL
dual task in numerous important ways, including that (a) eye
movements are recorded, (b) eye tracking is used in some
conditions to hide objects on the not-currently-looked-at
display, (c) auditory cues relate more directly to required
responses, and (d) participants are rigorously trained,
financially motivated, and given extensive feedback so that
performance approaches that of an expert.

Figure 1 shows an overview of the two displays used in
the multimodal dual task modeled in this paper. Two tasks
(or subtasks) were performed in parallel: a tracking task and
a tactical classification task. The tracking task consisted of
keeping a small circle on a moving target using a joystick.
When the circle was positioned as such, it turned green, and
the participant was financially rewarded at a constant rate.
The tactical classification task consisted of monitoring
groups of icons or “blips” (fifty-seven in a nine-minute
scenario) that moved down a radar display, and keying-in
the blip number and “hostile” or “neutral” as soon as the
blip changed from black to red, green, or yellow, indicating
that it was “ready to classify”. When a blip became ready to
classify, a financial bonus was awarded though it diminished
at a constant rate until the blip was keyed-in, or classified.
Red blips were hostile; green were neutral; yellow blips
were classified based on their shape, speed, and direction,
following practiced rules.

Two important factors were manipulated in the
experiment: (a) peripheral visibility on or off and

Figure 1: An overview of the visual and auditory displays
and input devices used in the multimodal dual task.

21 3

4 5 6

7 8 9

H

N
chproducts.com

Classification Task
Tactical Radar Display

Tracking Task

97

(b) auditory cues present or absent. Peripheral Visibility
manipulated whether participants could see the contents of
the other display—radar or tracking—that they were not
currently looking at. This simulates a task environment in
which visual displays are separated by enough distance such
that they cannot be monitored with peripheral vision.
Auditory Cues (Sound On) indicates that a blip’s initial
appearance (as black) and color change (to red, green, or
yellow) were indicated with spatialized auditory cues. Each
nine-minute scenario maintained a constant setting of
peripheral visible or not-visible and sound on or off.

Figure 2 summarizes the most important eye and hand
movement data from the experiment, which is described in
more detail in Hornof, Zhang, Halverson (2010). Figure 2
shows the time required for the four consecutive stages of
classifying a blip: (a) Initiate the eye movement from the
tracking display to the tactical display; (b) once on the
tactical, find the target and move the eyes to it; (c) keep the
eyes on the blip long enough to identify it and then move
the eyes back to tracking; and (d) after the eyes are back on
tracking, key-in the blip (keying-in was consistently
performed after the eyes were back on tracking). These data
serve to reveal the complex interleaving of perceptual,
cognitive, and motor processing, and provide a basis for the
current modeling endeavor.

The EPIC Cognitive Architecture
The EPIC cognitive architecture (Executive Process-
Interactive Control; Kieras & Meyer, 1997) was used to
model the multimodal dual task, as it was used previously to
model the earlier version of the same task (ibid.; Kieras,

Ballas, & Meyer, 2001). EPIC is particularly well-suited for
exploring a range of explanations of multitasking
performance because of its specific commitment, at the
architectural level, to only enforcing sequential processing
for motor activities, such as to constrain the eyes to rotate to
only one point at a time, and the hands to only execute one
sequence of movements at a time. Perceptual information
can flow into the auditory and visual processors in parallel,
and multiple production rules—IF-THEN statements that
represent the strategy used to do a task—can fire in a single
50 ms cycle. Strategies can be written to permit only one
rule to fire at a time (as in our initial model) or to explore
the full potential of overlapping (as in our second model).

Extensions to the EPIC Cognitive Architecture
Initial sets of production rules that were constructed to put
the eyes and hands through the tasks revealed two
extensions to the EPIC cognitive architecture that would be
needed to model this task: (a) a computational solution to
the binding problem, which is the question of how people
assemble perceptual stimuli to maintain a seamless
conscious experience, and (b) a temporal processor to
determine, entirely from within the simulated organism,
when a certain amount of time has elapsed.

To address the binding problem, the visual processor in
the EPIC cognitive architecture was updated (by EPIC’s
creator David Kieras) so that psychological objects in
EPIC’s visual working memory maintain their identity even
as they disappear and reappear in the physical environment.
In other words, if the simulated human moves its eyes so
that a blip disappears (as in the peripheral-not-visible
conditions), and then moves its eyes so that the same blip
reappears, EPIC would previously have created a new
psychological object for the reappeared blip. Now, provided
that the initial psychological object associated with the blip
did not fully decay, the reappeared blip is reconnected to the
already-existing psychological object.

The second extension to EPIC was to add a temporal
processor that replicates the temporal processor added to the
ACT-R cognitive architecture (Taatgen, van Rijn, &
Anderson, 2007). This gives the models a way to make self-
motivated periodic checks of the tactical display when there
was no peripheral visibility or auditory cuing.

Modeling Overview
Each of the models below were presented with the exact
same auditory and visual stimuli in identical nine-minute
scenarios that were presented to our human participants.

The following parameters were used in the models: The
time required to determine the classification of a yellow blip
based on its speed and direction was set to 800 ms. Alarm
sounds are identified 300 ms after their onset in auditory
perception rather than with their onset, to give enough time
to distinguish the alarm from the blip appearance sound.

A common element within all strategies include that
tracking adjustments (by moving the joystick with a Ply)
were made only when the tracking circle was not green,
consistent with a strategy that maximizes payoff.

Figure 2. Time preceding eye movements across the
lifetime of a colored blip. Each panel shows a unique
combination of the factors of peripheral visibility and
sound on/off. The x-axis shows a sort of timeline of

the stages involved in classifying a blip.

Movements to Classify a Blip

T
im

e
 P

re
c
e

d
in

g
 M

o
v
e

m
e

n
t

(s
e

c
o

n
d

s
)

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Sound Off

E
ye

s
To

R
ad

ar

E
ye

s
To

Tar
ge

t

Tim
e

O
n

B
lip

Tra
ck

in
g

To
K
ey

pr
es

s

Sound On

E
ye

s
To

R
ad

ar

E
ye

s
To

Tar
ge

t

Tim
e

O
n

B
lip

Tra
ck

in
g

To
K
ey

pr
es

s

P
e
rip

h
e
ra

l N
o
t V

is
ib

le
P

e
rip

h
e
ra

l V
is

ib
le

98

The model development presented here follows the
“bracketing” approach advocated by Kieras & Meyer (2000)
in which the analyst attempts to “bracket” the human data
with a slowest-reasonable and fastest-reasonable strategies.
Three corresponding task strategies are developed:
(a) Hierarchical task-switching (the slowest-reasonable
model); (b) Maximum-perceptual-overlap (the fastest-
reasonable model); and (c) Moderately-overlapped (the
fastest-reasonable model slowed down based on task
constraints). Models based on these three strategies, and
comparisons of each model’s predictions with the human
data, are presented next.

Hierarchical Task-Switching Model
The hierarchical task-switching (the slowest-reasonable)
model represents a straightforward translation of the
multimodal dual task into a hierarchical task with strict
serial processing of each subtask. Figure 3 shows the
corresponding hierarchical task analysis. The production
rules were generated by first creating a GOMS model (John
& Kieras, 1996) of the task, and then translating that model
into the corresponding production rules. Parallelism existed
in the model primarily in terms of auditory and visual
information getting deposited in EPIC’s perceptual stores.

A key characteristic of the model includes that, once it
determines that a blip is ready to classify, it holds the eyes
on that blip until the keystrokes for that blip are initiated.
During this period, the cognitive processor is dedicated to
just classifying the blip. Tracking is completely locked out.
This aspect of the model resembles the original EPIC
models of the task, in which “the dual-task executive
enforces mutual exclusion between the tracking task and the
tactical task.” (Kieras, Ballas, & Meyer, 2001, p.10)

Figure 4 shows the mean blip classification times across
the four combinations of peripheral-visibility and sound-on-
or-off, and for red/green versus yellow blips. The model
explains the overall reaction time data very well across all
eight conditions, with an average absolute error (AAE) of
4.6%. (Note that all AAEs presented in this paper are
calculated using the overall observed mean as the
denominator for each percentage calculation, to reduce the
distortion that would otherwise result from observed and
predicted values that are very close to zero.)

If an analyst were primarily interested in the classification
task and hence did not proceed to model the tracking task
with any degree of fidelity, and if the analyst did not have
any eye movement data to work with, the modeling project
would likely be done at this point, and we might declare
victory—we modeled the primary data of interest with good

accuracy. But a deeper look at the data that are available in
this modeling exercise reveal a dark truth—the model is not
accounting for the complex overlapping of visual and motor
processes that participants are exhibiting with their eye
movements. As well, a look at the tracking task data show
that the model is performing far worse than skilled
participants, predicting an overall mean tracking error of 42
pixels compared to the observed tracking error of 29 pixels.

Figure 5 shows the same observed data presented in
Figure 2, along with the eye movement times predicted by
the hierarchical task-switching model. As can be seen in
Figure 5, the model is spending far too long looking at each
blip. The tracking-to-keypress is negative (and hence a
value of zero is used) because the model returns the eyes to
tracking after the classification. Participants spent far less
time on each blip, and spent substantial time with the eyes
back on tracking before keying-in a classification.

 The hierarchical task-switching model, though intended
as a slowest-reasonable bracket, does a good job of
predicting the mean classification times. But the model
does not capture the interleaving of perceptual and motor
processes that people clearly exhibited. The next model
attempts to capture and maximize such an interleaving.

Do dual task

Determine if a blip
is ready to classify

If a blip is ready to
classify, do tactical.

If no blips are ready to
classify, do tracking.

Check for auditory
alarm or visible
change in blip.

Select blip
to classify

Look at
blip

Get blip
features

Key-in
response

Move eyes
to tracking
cursor

If tracking
cursor is not
green, move
joystick.

If no peripheral
visibility or sound, and
time has passed,
move eyes to tactical.

Figure 3: The hierarchical task analysis used to generate the hierarchical task-switching model.

Figure 4: The mean classification time of blips as a function
of blip color, observed (dark bars) and predicted (light bars)

by the hierarchical task-switching model. The average
absolute error (AAE) of the prediction is 4.6%.

C
la

s
s
if
ic

a
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sound Off

Red/Green Yellow

Sound On

Red/Green Yellow

P
e
rip

h
e
ra

l N
o
t V

is
ib

le
P

e
rip

h
e
ra

l V
is

ib
le

99

Maximum-Perceptual-Overlap Model
The maximum-perceptual-overlap (fastest-reasonable)
model is written to maximize all aspects of parallel
processing that are built into the EPIC cognitive
architecture. The production rules are written such that
ocular-motor and manual-motor processing proceed entirely
independently of each other, with manual-motor processing
resulting from visual-perceptual features that become
available based on ocular-motor activity.

Figure 6 shows two state transition diagrams that
represent how one set of production rules moves the eyes
between tracking and tactical to acquire visual information,
and another set of rules independently shifts manual motor
activity between tracking and tactical. When the model
runs, both sets of rules—ocular-motor and manual-motor—
spend most of their time on tracking. When a blip appears,
the ocular-motor rules shift to tactical just long enough to
perceive blip features, which become available to the
manual-motor rules, which switch briefly to tactical to key-
in a response. Each set of rules returns to tracking as soon
as its tactical subtask is completed.

Figure 7 shows the classification time predictions of the
maximum-perceptual-overlap model. As can be seen, the
model is too fast, as would be expected for a fastest-
reasonable model. Looking at the predicted eye movement
times in Figure 8, however, reveals that the model does a
good job predicting the overall trends in how long the eyes
took to move through the stages involved in classifying a
blip, especially in the peripheral-visible conditions. The
comparably good fit of the eye movement data, especially
when compared to the first model’s poor fit with the same
data, suggest that participants may truly have developed

expert strategies that include independent parallelism
between ocular-motor and manual-motor decision making.
But, as might be expected, the fastest-reasonable model is
overall too fast. The predicted mean tracking error is also
substantially better (20 pixels) than the observed (29 pixels).

Figure 6: State transition diagrams that represent the
independent ocular-motor and manual-motor processing

in the maximum-perceptual-overlap model.

Movements to Classify a Blip

T
im

e
 P

re
c
e

d
in

g
 M

o
v
e

m
e

n
t

(s
e

c
o

n
d

s
)

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Sound Off

E
ye

s
To

R
ad

ar

E
ye

s
To

Tar
ge

t

Tim
e

O
n

B
lip

Tra
ck

in
g

To
K
ey

pr
es

s

Sound On

E
ye

s
To

R
ad

ar

E
ye

s
To

Tar
ge

t

Tim
e

O
n

B
lip

Tra
ck

in
g

To
K
ey

pr
es

s

P
e
rip

h
e
ra

l N
o
t V

is
ib

le
P

e
rip

h
e
ra

l V
is

ib
le

Figure 5: The time preceding eye movements observed
(solid lines) and predicted (dashed lines) by the

hierarchical task-switching model. (AAE = 91.4%)

Figure 7: Classification times observed (dark bars)
and predicted (light bars) by the maximum-
perceptual-overlap model. (AAE = 29.2%)

C
la

s
s
if
ic

a
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sound Off

Red/Green Yellow

Sound On

Red/Green Yellow

P
e

rip
h

e
ra

l N
o

t V
is

ib
le

P
e

rip
h

e
ra

l V
is

ib
le

Ocular Motor

Tracking Tactical

Interrupt: Blip
ready to look at.

Resume: No new
blips to look at.

Look at
tracking
target

Foveate
tactical

blip

*

Manual Motor

Tracking Tactical

Interrupt: Blip
ready to key-in.

Resume: No new
blips to key-in.

If tracking
cursor is not
green, move

joystick.

Punch
keys

blip features

tr
a
c
k
in

g
 t
a
rg

e
t
c
o
lo

r

or periodic glances when no
peripheral visibility and no sound

*

Key

Subtask delegation Perceptual informationTask switching

100

The final strategy explores constraints that can be
introduced to the fastest-reasonable model.

Moderately-Overlapped Model
The moderately-overlapped model was constructed by
starting with the maximum-perceptual-overlap (fastest-
reasonable) model, presented in the previous section. Three
analyses were conducted. First, the model traces and
observed data were studied side-by-side to reveal subtle
differences between the predicted and observed eye and
hand movements. Second, opportunities were explored to
adjust strategies to maximize payout (see Howes et al.,
2009). Third, the manual-motor devices were examined to
improve the fidelity of their simulation.

These analyses led to the following five adjustments to
the model, all of which are represented by the bold italic
additions in Figure 9: (a) Eye-to-radar time is delayed by
having the tracking task finish any joystick Ply underway,
waiting for the tracking circle to turn green, to leave that
task in a money-making mode. (b) The time on yellow blips
is extended to permit identification of speed and direction
(set to 250 ms). (c) Tracking-to-keypress time is extended
by assuming that, when moving the eyes from tactical back
to tracking, people make one joystick adjustment before
keying-in the blip classification; this increases tracking
payment while further considering the classification.
(d) The timing for a Ply was increased (to a coefficient of
300 and minimum time of 400 ms) assuming that the Ply
effectively requires separate joystick movements to start and
then stop the tracking circle. (e) The Punch was replaced
with a Keypress to represent how the fingers are not
positioned directly above the keys, but need to travel.

Figures 10 and 11 show how the moderately-overlapped
model does a good job of predicting both classification and
eye-movement timings. The model also accurately predicts
tracking error, predicting 26 pixels compared to the
observed 29 pixels. Table 1 shows how this model provides
the best overall fit with the observed data.

Ocular Motor

Tracking Tactical

Interrupt: Blip
ready to look at.

Resume: No new
blips to look at.

Look at
tracking
target

Foveate
tactical

blip

*

Manual Motor

Tracking Tactical
Resume: No new

blips to key-in.

Keypress
keys

blip features

tr
a
c
k
in

g
 t
a
rg

e
t
c
o
lo

r
Key

Subtask delegation Perceptual informationTask switching

if yellow,
wait for

speed and
direction

wait for
green

tracking
target

If tracking cursor
is not green, move

joystick with a
slower Ply, until
target is green.

Interrupt: Blip
ready to key-in and not

resuming tracking.

or periodic glances when no
peripheral visibility and no sound

*

Figure 9: The moderately-overlapped model, with
additions to the previous model shown in bold italics.

Figure 8: The time preceding eye movements observed
(solid lines) and predicted (dashed lines) by the maximum-

perceptual-overlap model. (AAE = 32.6%)

Movements to Classify a Blip

T
im

e
 P

re
c
e

d
in

g
 M

o
v
e

m
e

n
t

(s
e

c
o

n
d

s
)

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Sound Off

E
ye

s
To

R
ad

ar

E
ye

s
To

Tar
ge

t

Tim
e

O
n

B
lip

Tra
ck

in
g

To
K
ey

pr
es

s

Sound On

E
ye

s
To

R
ad

ar

E
ye

s
To

Tar
ge

t

Tim
e

O
n

B
lip

Tra
ck

in
g

To
K
ey

pr
es

s

P
e
rip

h
e
ra

l N
o
t V

is
ib

le
P

e
rip

h
e
ra

l V
is

ib
le

Figure 10: Times observed (dark bars) and predicted (light
bars) by the moderately-overlapped model. (AAE = 7.1%)

C
la

s
s
if
ic

a
ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sound Off

Red/Green Yellow

Sound On

Red/Green Yellow

P
e

rip
h

e
ra

l N
o

t V
is

ib
le

P
e

rip
h

e
ra

l V
is

ib
le

101

Conclusion
The models presented here demonstrate the difficulty in
accurately modeling complex multitasking behavior. First,
there is the challenge of collecting enough data to evaluate
the accuracy of a model; the initial hierarchical task-
switching model accurately predicted the classification time,
but not eye movements. Then, there is the challenge of
correctly identifying opportunities for expert, overlapped
behavior; the maximum-perceptual-overlap model presented
here relied on the massive parallelism of the EPIC
architecture’s cognitive processor to demonstrate that expert
strategies might manage ocular-motor and manual-motor
processes largely independently. Lastly, there is the
challenge of determining which task-based constraints
should be introduced to govern the use of perceptual
information that passes within and between two tasks that
compete for motor processing; those presented for the
moderately-overlapped model may or may not accurately
capture the true constraints that governed behavior.

The models presented here do not clearly subscribe to the
notion of an independent process that actively coordinates
between two task strategies, whether that process be an
executive process, as in the original models for a similar
task (Kieras, Ballas, & Meyer, 2001) or an independent
mechanism, as in Salvucci and Taatgen (2008). This paper
explores the possibility that a dual task strategy is perhaps
an altogether new, carefully interleaved strategy.

Acknowledgments
This research was funded in part by the Office of Naval
Research under Grant No. N00014-06-1-0054. Tim
Halverson assisted in creating the EPIC temporal processor.

References
Ballas, J. A., Heitmeyer, C. L., & Perez, M. A. (1992). Evaluating

two aspects of direct manipulation in advanced cockpits.
Proceedings of ACM CHI '92: Conference on Human Factors in
Computing Systems, 127-134.

Byrne, M. D., & Anderson, J. R. (2001). Serial modules in parallel:
The psychological refractory period and perfect time-sharing.
Psychological Review, 108, 847-869.

Hornof, A. J., Zhang, Y., Halverson, T. (2010). Knowing where and
when to look in a time-critical multimodal dual task.
Proceedings of ACM CHI 2010: Conference on Human Factors
in Computing Systems, New York: ACM, 2103-2112.

Howes, A., Lewis, R. L., & Vera, A. (2009). Rational adaptation
under task and processing constraints: Implications for testing
theories of cognition and action. Psychological Review, 116(4),
717-751.

John, B. E., & Kieras, D. E. (1996). Using GOMS for user
interface design and evaluation: Which technique? ACM
Transactions on Computer-Human Interaction, 3(4), 287-319.

Kieras, D. E., Ballas, J., & Meyer, D. E. (2001). Computational
Models for the Effects of Localized Sound Cuing in a Complex
Dual Task (No. EPIC Report No. 13). Ann Arbor, Michigan:
University of Michigan, Department of Electrical Engineering
and Computer Science.

Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC
architecture for cognition and performance with application to
human-computer interaction. Human-Computer Interaction,
12(4), 391-438.

Kieras, D. E., & Meyer, D. E. (2000). The role of cognitive task
analysis in the application of predictive models of human
performance. In J. M. C. Schraagen, S. E. Chipman & V. L.
Shalin (Eds.), Cognitive Task Analysis (pp. 237-260). Mahwah,
NJ: Lawrence Erlbaum.

Meyer, D. E., & Kieras, D. E. (1997). A computational theory of
executive cognitive processes and multiple-task performance:
Part 1. Basic mechanisms. Psychological Review, 104(1), 3-65.

Salvucci, D. D., & Taatgen, N. A. (2008). Threaded cognition: An
integrated theory of concurrent multitasking. Psychological
Review 115, 101-130.

Taatgen, N. A., van Rijn, H., & Anderson, J. R. (2007). An
integrated theory of prospective time interval estimation: The
role of cognition, attention, and learning. Psychological Review,
114(3), 577-598.

Figure 11: The time preceding movements observed
(solid lines) and predicted (dashed lines) by the
moderately-overlapped model. (AAE = 10.1%)

Movements to Classify a Blip

T
im

e
 P

re
c
e

d
in

g
 M

o
v
e

m
e

n
t

(s
e

c
o

n
d

s
)

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Sound Off

E
ye

s
To

R
ad

ar

E
ye

s
To

Tar
ge

t

Tim
e

O
n

B
lip

Tra
ck

in
g

To
K
ey

pr
es

s

Sound On

E
ye

s
To

R
ad

ar

E
ye

s
To

Tar
ge

t

Tim
e

O
n

B
lip

Tra
ck

in
g

To
K
ey

pr
es

s

P
e
rip

h
e
ra

l N
o
t V

is
ib

le
P

e
rip

h
e
ra

l V
is

ib
le

Table 1. Average absolute error of each model’s predictions.

Model Classification
Time

Time Preceding
Movements

Tracking
Error

Hierarchical
Task-Switching
Maximum-
Overlap
Moderately-
Overlapped

4.6% 43.6%

29.2% 32.6% 31.2%

7.1% 10.1% 13.9%

91.4%

102

A Cognitively Bounded Rational Analysis Model of
Dual-Task Performance Trade-Offs

Christian P. Janssen, Duncan P. Brumby, John Dowell, and Nick Chater

c.janssen@ucl.ac.uk, brumby@cs.ucl.ac.uk, j.dowell@cs.ucl.ac.uk, n.chater@ucl.ac.uk
University College London, Gower Street, London WC1E 6BT, UK

Abstract
The process of interleaving two tasks can be described as
making trade-offs between performance on each of the tasks.
This can be captured in performance operating characteristic
curves. However, these curves do not describe what, given the
specific task circumstances, the optimal strategy is. In this
paper we describe the results of a dual-task study in which
participants performed a tracking and typing task under
various experimental conditions. An objective payoff function
was used to describe how participants should trade-off
performance between the tasks. Results show that
participants’ dual-task interleaving strategy was sensitive to
changes in the difficulty of the tracking task, and resulted in
differences in overall task performance. To explain the
observed behavior, a cognitively bounded rational analysis
model was developed to understand participants’ strategy
selection. This analysis evaluated a variety of dual-task
interleaving strategies against the same payoff function that
participants were exposed to. The model demonstrated that in
three out of four conditions human performance was optimal;
that is, participants adopted dual-task strategies that
maximized the payoff that was achieved.

Keywords: multitasking; performance operating
characteristic; cognitively bounded rational analysis

Introduction
Multitasking behavior often involves trade-offs in

performance (e.g., time, errors, extension, etc.) between the
tasks. Such trade-offs can be described graphically with
Performance Operating Characteristics, which show how the
performance of separate tasks vary together systematically
(Navon & Gopher, 1979; Norman & Bobrow, 1975). Trade-
offs reflect strategic choices and can be modified, for
example, in response to instructions to prioritize one task
over another (e.g., Brumby, Salvucci, & Howes, 2009;
Janssen & Brumby, in press).

Consideration of the strategic choices made in
multitasking (i.e., of why a specific way of performing the
tasks is chosen) naturally supposes some optimal trade-off.
Why time is allocated differentially to the tasks, and why
particular patterns of interleaving are adopted, must
reference the relative success of those different strategies. In
this paper we use an objective payoff function to integrate
into a single score the performance rewards in a tracking-
while-typing dual-task situation. Such payoff functions have
been used before in multitask studies, but only to show that
performance is sensitive to isolated factors such as changes
in reward structure (e.g.,Wang, Proctor, & Pick, 2007).
Objective payoff functions have not previously been used to

support explanations of multitasking strategy choices, or to
assess the optimality of strategies.

Combined with a cognitive model that can perform
alternative multitasking strategies (i.e., alternatives for when
to interleave and execute multiple tasks), a payoff function
enables an evaluation of the success of each of the strategies
(Howes, Lewis, & Vera, 2009). Strategies with the highest
payoff can be determined and compared with human
performance in experimental settings. This can be used to
explain the strategic choices participants make.

We developed a tracking-while-typing dual-task to test
the hypothesis that people can hone their dual-task behavior
to maximize the payoff that is achieved. The task required
participants to keep a randomly moving cursor inside a
circular area and to type a string of digits. Tracking tasks
have been used in several multitasking studies (e.g., Gopher,
1993; Hornof, Zhang, & Halverson, 2010; Kieras, Meyer,
Ballas, & Lauber, 2000; Lallement & John, 1998; Salvucci
& Taatgen, 2008). For example, Gopher (1993) showed that
performance trade-offs in a tracking-while-typing task can
be influenced by instructions to spend more time on one of
the tasks. Within the cognitive modeling literature, the work
by Lallement and John (1998) is interesting as it compares
performance of models developed in several cognitive
architectures on a tracking and choice task. We attempt to
extend this work by showing how a payoff function enables
us to bind normative cognitive models with experimental
observations of multitasking behavior, and specifically, to
show how multitasking strategy choice can be better
explained by seeing it in relation to optimal performance.

Experiment

Method
Participants Eight participants (4 female) between 20 and
35 years of age (M = 23 years) from the subject pool at UCL
participated for monetary compensation. Payment was based
on performance (details are provided in the Materials
section). The total payment achieved by participants ranged
between £7.13 and £11.45 (M = £9.14).
Materials The dual-task setup required participants to
perform a continuous tracking task and a discrete typing
task, presented on a single monitor. Figure 1 shows the
layout of the tasks on the display. The typing task was
presented on the left side and the tracking task on the right.
Each task was presented within a 450 x 450 pixels area,
with a vertical separation of 127 pixels between the tasks.

103

The tracking task required participants to keep a square
cursor that drifted about the display in a random fashion
inside a target circle (see Figure 1). The cursor was 10 x 10
pixels and the target had a radius of either 80 (small target)
or 120 pixels (large target). A random walk function was
used to vary the position of the cursor in the display every
20 milliseconds. The rate at which the cursor drifted about
the display was varied between different experimental
conditions. In a low noise condition the random walk had a
mean of zero and standard deviation of 3 pixels per update,
while in a high noise condition the random walk had a mean
of zero and standard deviation of 5 pixels per update.

Participants used a Logitech Extreme 3D Pro joystick
with their right-hand to control the position of the cursor in
the tracking display. The drift function of the cursor was
suspended whenever the joystick angle was greater than
0.08 (the maximum angle was 1). The speed was scaled by
the angle, with a maximum of 5 pixels per 20 milliseconds.

The typing task required participants to enter a string of
twenty digits using a numeric keypad with their left-hand.
The string was made up of the digits 1 to 3, where each digit
occurred at least six times in a given sequence. Digits were
presented in a random order with the constraint that no
single digit was presented more than three times in a row in
the sequence (e.g., “11233322132123132123” as in Figure
1). When a digit was entered correctly it was removed from
the to-be-entered sequence. In this way, the left-most digit
on the display was always the next one to be entered.

The study used a forced interleaving paradigm, in which
only one of the two tasks was visible and could be worked
on at any moment. By default the typing task was visible
and the tracking task was covered by a gray square. In order
to see and control the tracking task, participants had to hold
down the trigger of the joystick. When the trigger was
released, the tracking task was covered by a gray square and
the typing task revealed.
Design The study manipulated aspects of the tracking task
using a 2 (cursor noise: low vs. high) x 2 (target size: small
vs. large) within-subjects design. The main dependent
variables were the time required to complete the typing task
and maximum distance of the cursor from the center of the
target circle.

Participants were remunerated based on performance, as
determined by an objective payoff function that was
calculated for each dual-task trial. The function was
designed to encourage fast completion of the typing task,
while keeping the cursor inside the target. The payoff (in
pounds) for a given trial was defined as:

Payoff = Gain + Digit Penalty + Tracking Penalty

The minimum payoff for a given trial was limited to £-0.20.
The gain component was based on the total time required to
complete a dual-task trial (in seconds):

Gain = 0.15 * e
-1*TotalTrialTimeInSec/20 + 0.25

This function was determined using pilot studies, to make
sure participants mostly gained money. To encourage
accurate typing, a digit penalty deduced £0.01 from the total
payoff whenever an incorrect digit was entered. To
encourage participants to keep the cursor inside the target
circle of the tracking task, a tracking penalty was applied:

Tracking Penalty = - 0.1*eSecOutside/1.386 - 0.6931

This penalty was crafted such that £0.10 was lost when

the cursor was outside of the radius for 0.5s, and £0.20 was
lost when it was outside of the radius for 1s. In the
remainder of this paper we will not look at the effect of digit
penalty on payoff.
Procedure Participants were informed that they would be
required to perform a series of dual-task trials and that they
would be paid based on their performance. A participant’s
payment was based on the cumulative payoff over the
course of the study, in addition to their base payment of £3.
Participants were told that they would gain more points by
completing the typing task as quickly as possible, but that
they would lose points if they made a typing error or if the
cursor drifted outside of the target area in the tracking task.
We chose not to give participants a formal description of the
payoff function, but instead provided explicit feedback after
every dual-task trial with the payoff score achieved.

After explaining how to perform each of the tasks
participants performed two single-task training trials for
each task and two dual-task practice trials. Participants were
instructed that for dual-task trials only one of the two tasks
would be visible and controllable at any moment in time,
and they were instructed how to switch between tasks.

Participants then completed four blocks of experimental
trials (one for each experimental condition). The order of
conditions was randomized and counter-balanced across
participants, with the exception that blocks of the same
noise level were grouped together. The order of radius sizes
was repeated across the first two blocks and the second two
blocks. For each block, participants completed five single-
task tracking trials, five single-task typing trials, and twenty
dual-task trials. The dual-task trials were further grouped
into sets of five trials, with a short pause between each set.
The total procedure took about one hour to complete.

Figure 1: Position of the two tasks in the interface

104

Results
We focus on performance during the last five dual-task

trials of each experimental condition, as these reflect a
period during which the participant has had time to adapt
behavior to the objective payoff function. A 2 (cursor noise)
x 2 (target size) analysis of variance (ANOVA) was used for
all statistical analysis with a significance level of .05.
Overall performance We first consider the effect of
varying aspects of the tracking task on the time required to
complete the typing task and the maximum distance of the
cursor from the center of the target circle in the tracking
task. It was found that trial time was significantly longer
when there was greater noise in the tracking task (M =
11.17s, SD = 4.32s) than when there was a lower level of
noise in the tracking task (M = 7.51s, SD = 2.00s), F(1, 7) =
15.07, p < .01. Trials were also longer when the target in the
tracking task was smaller (M = 10.59s, SD = 4.01s) than
when it was larger (M = 8.09s, SD = 3.22s), F(1, 7) =11.84,
p = .01. There was no significant interaction, F(1, 7) = 0.22.

In the tracking task we consider the maximum distance of
the cursor from the center of the target over the course of a
trial. It was found that the cursor drifted more when there
was a higher level of noise (M = 95 pixels, SD = 15 pixels)
than when there was a lower level of noise (M = 61 pixels,
SD = 8 pixels), F(1,7)=33.42, p < .001. There was no effect
of target size on the maximum distance that the cursor
drifted over a trial (F(1,7) = 1.19, p = .31), nor was the
interaction effect significant (F(1,7) = 0.07).

These differences in overall task performance between
conditions are somewhat expected and unsurprising because
they partly reflect differences in the difficulty of the
tracking task. We were far more interested in how this
performance was achieved. We next consider the dual-task
interleaving strategy that was adopted in each condition.
Strategies Two aspects determine a strategy: (1) the number
of digits typed during each visit to the typing window and
(2) the amount of time spent in the tracking window per

visit to this window. Figure 2 shows these two basic
strategy dimensions for each of the four conditions. It can be
seen that for each experimental condition there is a unique
point in this strategy space – strategies differ between
conditions. The number of digits entered per visit increased
with an increase in target size (F(1, 7) = 17.4, p < .01), and
it also increased with a decrease in cursor noise (that is,
more digits were typed when it took longer for the cursor to
cross the boundary; F(1, 7) = 15.18, p < .01). There was no
significant interaction (F(1, 7) = 3.24, p = .12).

It can also be seen in Figure 2 that the time spent in the
tracker window per visit increased with an increase in the
noise associated with the cursors movement (F(1,7)=14.98,
p = .01). An interaction effect was present as visit time was
particularly short in the low noise, large radius condition
(F(1,7)=11.55, p = .01). There was no significant effect of
radius (F(1,7)=0.54).

A CBRA Model of Tracking-while-Typing
The results show that participants adapted their dual-task

behavior to changes in the difficulty of the tracking task.
However, what these results do not show is whether
participants were adopting a strategy that is optimal in terms
of maximizing the expected payoff that could be achieved in
each condition. To answer this question we developed a
cognitively bounded rational analysis model (Howes, et al.,
2009). This framework is particularly useful for comparing
the performance of alternative strategies, allowing strategies
to be discriminated based on the payoff achieved. The
model developed here is inspired by our previous work in
developing models of a dialing-while-driving dual-task set-
up (e.g., Brumby, Salvucci, & Howes, 2007; Brumby, et al.,
2009; Janssen & Brumby, in press). Both dual-task
environments share core characteristics, but the current
work differs in that it incorporates an explicit payoff
function against which various dual-task interleaving
strategies can be evaluated. In the next section, we use a
model to determine whether people were selecting strategies
that would maximize the financial payout that could be
achieved in each condition.

Model Development
Tracking Model The crucial question for developing a
model of the tracking task was at what angle participants
held the joystick given their current distance from the center
of the target. Figure 3 shows the mean values for discrete
bins of 5 pixels for the horizontal axes (vertical data is
similar). We fitted a linear function (shown as a dotted line):

Angle = -0.01 * current distance from target

The joystick had a maximum angle of (-)1. As in the

experiment, the speed of the cursor is calculated by
multiplying the angle of the joystick with a value of 5
pixels. Speed is calculated once every 250 milliseconds of
tracking, and the cursor position is updated every 20
milliseconds based on this speed value. As in the

☐ low noise, small target
Ο low noise, big target
Δ high noise, small target
 high noise, big target

Figure 2: Number of digits typed and tracking time,
both per visit. Error bars depict standard errors.

105

experiment, the cursor could only be controlled when the
tracking window was open. The total time spent tracking in
dual-task was varied as part of the strategy (see below).
Typing Model To model the typing task we fitted model
performance to human single-task typing performance data.
The time taken to type a digit (260 milliseconds) is identical
to the mean inter-keypress interval measured in single-task.
Dual-Task Model The dual-task model works as followed.
The model starts of with typing a series of digits (the length
of which is varied as a strategy). For switching between
typing and tracking a switch cost of 250 milliseconds is
incurred, based on experimental data (time between last key
press and pressing the trigger on the joystick: 247
milliseconds). The model then tracks the cursor for a
designated amount of time (varied between runs as a
strategy aspect). When it switches back to typing, a switch
cost of 180 milliseconds is incurred (time between releasing

the trigger and pressing the first key press minus single task
inter-keypress interval: 185 milliseconds). Noteworthy,
switch cost values are close to those in ACT-R models (e.g.,
Borst, Taatgen, & Van Rijn, 2010) and in the Cognitively
Bounded Rational Analysis driving models.
Strategies We used this basic model to explore performance
of a variety of strategies. A strategy is determined by the
number of digits that are typed in sequence during a visit to
the target window. We consider only a subset of twenty
simple strategies that placed a consistent number of digits
during each visit (between 1 and 20), with the exception of
the last visit during which the remaining digits were placed
(e.g., strategy 6-track-6-track-6-track-2, but not 6-track-4-
track-6-track-4). In addition, for each visit to the tracking
task, more or less time can be spent on tracking. We
systematically explored performance for models that spent
between 250 to 3000 milliseconds on tracking during each
visit to the tracking window, using steps of 250 milliseconds
(i.e., 12 alternatives). This gave a total of 229 (20 x 12 – 11)
strategy alternatives.

The objective function for rating performance is similar as
in the experiment with the exception that the model does not
make typing errors. For each strategy alternative 100 runs
were performed. Mean performance is reported.

Model Results
The first question of interest was whether the model

would fit the experimental data. In particular, if we
hardcode a strategy that types the same number of digits per
visit and spends about the same amount of time tracking as
participants did in each condition (with both measures lying
within two standard errors of human means), does this then

Figure 3: Angle of the joystick as a function of distance
from the target. The dashed line shows a fitted function.

Figure 4: Maximum deviation versus predicted payoff per trial for the ten best (black crosses), and other strategies (gray
crosses) per condition. Human results are shown as circles with standard error. The dotted line shows the target boundary.

Low Noise, Small Target Low Noise, Large Target

High Noise, Small Target High Noise, Large Target

106

result in similar total trial time and maximum deviation in
each experimental condition (again with performance within
two standard errors of the mean)? This is important so as to
know that we have a reasonable calibration of the model’s
performance relative to the human data. This was the case.

Given that we can be confident that the model is
reasonably calibrated to the human data on the observed
strategy, we can now use the model to evaluate the payoff
achieved by different (unobserved) dual-task interleaving
strategies. Figure 4 shows a plot of the average maximum
deviation versus payoff. We plotted the ten highest scoring
strategies with black crosses, and the other strategies with
gray crosses. In each condition there is a strong peak,
though the shape of the distribution of scores differs
between experimental conditions. In three out of four
conditions the human data (black circles) lies in the region
of maximum deviations that can achieve the highest
performance. In each figure a vertical line shows the
boundary of the target. Note that in the low noise, large
radius condition participants could have let the cursor drift
more to improve their score slightly (they would never cross
the target boundary). Due to space limitations, we omitted a
plot of total time data versus score; the pattern is similar.

Traditionally, differences in dual-task performance are
plotted in Performance Operating Characteristics (POCs), in
which performance on one measure or task is shown against
performance on the other measure or task (Navon &
Gopher, 1979; Norman & Bobrow, 1975). In Figure 5 we
show the POC of total time and maximum deviation for the
model and human data. The ten best performing strategy
alternatives are again plotted with black crosses. There are a
couple of interesting aspects to these graphs. First, the best

performing models lie on the outer edge (left side, and
bottom side) of the strategy space: the trade-off curve. That
is, the best strategies make an optimal trade-off between
performance on the two tasks. Furthermore, the position of
the optimum strategies is at a different section (e.g., top left,
or bottom right) of this curve for each condition. The model
is essential for this assessment, as traditional POCs cannot
predict optimal regions by themselves.

Human data again lies in the region of optimum payoff
for three out of four conditions. Only in the low noise large
target condition could participants have scored better by
spending less time on the tracking task (increasing
maximum deviation, but decreasing trial time). In all other
conditions, the model illustrates that participants made good
performance trade-offs to optimize their payoff.

General Discussion
In this paper we have presented an experiment and a

model of a tracking-while-typing dual-task setup. A good
feature of the task environment, in which participants need
to track a cursor and type in digits, is that it translates
performance on both tasks into a single performance score.
Due to this feature, we were able to move beyond
observations that participants trade-off performance in tasks,
as done in classical dual-task research (Navon & Gopher,
1979; Norman & Bobrow, 1975) and in research on dual-
task driving behavior (e.g., Janssen & Brumby, in press).
Here, we were able to demonstrate that participants mostly
made performance trade-offs in an optimal manner, so as to
maximize pay-off (cf. Howes et al., 2009).

These claims are possible because of the use of a payoff

Figure 5: POCs of model performances for the ten best (black crosses), and other strategies (gray crosses) per condition.
Human results are shown as circles with standard error. The dotted line shows the target boundary.

Low Noise, Small Target Low Noise, Large Target

High Noise, Small Target High Noise, Large Target

107

function that explicitly describes how participants ought to
trade performance on each task to gain payment. The goal of
this paper is not to argue that objective functions are the
most prevalent aspect of performance in the real world.
However, they make it possible to quantify how good
performance is. This contrasts with previous work where
verbal instructions on how to trade performance on each
task is given (e.g., Gopher, 1993; Horrey, Wickens, &
Consalus, 2006; Levy & Pashler, 2008), or where
performance is sensitive to a change in payment (e.g.,
Wang, et al., 2007). In contrast, we can define optimal
performance in terms of maximizing payoff.

There was however one condition (the low noise, large
target condition) in which participants did not maximize the
payoff that was achieved. In this condition, participants
could have typed all of the digits in one sequence (i.e.,
without multitasking) to receive a slightly higher payoff
than was actually observed. Two possible explanations for
suboptimal performance are that participants overestimated
the danger of the cursor crossing the boundary (which
would give a severe penalty), or they were biased to switch
between the two tasks (which is necessary in the other
conditions). In this sense, participants not always adapt their
behavior to maximize the payoff function. Further research
is required to investigate such biases.

The model was developed with a minimal set of
assumptions. This was already enough to demonstrate that
people mostly adapt performance to an objective function.
Further research can investigate how people adapt their
behavior to different payoff functions, which, for instance,
give greater weight to performance on one of the two tasks.
Also, the model of the typing task might be refined to
predict typing errors, and to predict the effect of the
different times needed to type repeating digits versus non-
repeating digits (cf. Janssen, Brumby, & Garnett, 2010). At
a different level of analysis, the role of eye-movements can
be considered to explore a wider variety of strategies (cf.
Hornof, et al., 2010), such as strategies in which some visits
to the typing task window are only spent on studying, and
not typing digits.

Acknowledgments

This work was supported by EPSRC grant EP/G043507/1.
We thank Julian Marewski and two anonymous reviewers
for their valuable comments on this paper.

References
Borst, J. P., Taatgen, N. A., & Van Rijn, H. (2010). The

problem state: A cognitive bottleneck in multitasking.
Journal of Experimental Psychology: Learning, memory,
and cognition, 36, 363-382.

Brumby, D. P., Salvucci, D. D., & Howes, A. (2007).
Dialing while driving? A bounded rational analysis of
concurrent multi-task behavior. In Proceedings of the 8th
International Conference on Cognitive Modeling

Brumby, D. P., Salvucci, D. D., & Howes, A. (2009). Focus
on driving: How cognitive constraints shape the
adaptation of strategy when dialing while driving. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (pp. 1629-1638).

Gopher, D. (1993). The skill of attention control:
Acquisition and execution of attention strategies. In
Attention and performance XIV (pp. 299–322).
Cambridge, MA: MIT Press.

Hornof, A. J., Zhang, Y., & Halverson, T. (2010). Knowing
where and when to look in a time-critical multimodel dual
task. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems.

Horrey, W. J., Wickens, C. D., & Consalus, K. P. (2006).
Modeling drivers' visual attention allocation while
interacting with in-vehicle technologies. Journal of
Experimental Psychology: Applied, 12, 67-78.

Howes, A., Lewis, R. L., & Vera, A. (2009). Rational
adaptation under task and processing constraints:
Implications for testing theories of cognition and action.
Psychological Review, 116, 717-751

Janssen, C. P., & Brumby, D. P. (in press). Strategic
adaptation to performance objectives in a dual-task
setting. Cognitive Science.

Janssen, C. P., Brumby, D. P., & Garnett, R. (2010). Natural
break points: Utilizing motor cues when multitasking. In
Proceedings of the 54th annual meeting of the Human
Factors and Ergonomics Society. San Francisco, CA,
USA: Human Factors and Ergonomics Society.

Kieras, D. E., Meyer, D. E., Ballas, J. A., & Lauber, E. J.
(2000). Modern computational perspectives on executive
mental processes and cognitive control: Where to from
here? In Attention and performance XVIII (pp. 681-712).
Cambridge, MA: MIT Press.

Lallement, Y., & John, B. (1998). Cognitive architecture
and modeling idiom: An examination of three models of
the wickens task. Proceedings of the twentieth annual
conference of the Cognitive Science Society, 597-602.

Levy, J., & Pashler, H. (2008). Task prioritisation in
multitasking during driving: Opportunity to abort a
concurrent task does not insulate braking responses from
dual-task slowing. Applied Cognitive Psychology, 22,
507-525.

Navon, D., & Gopher, D. (1979). On the economy of the
human-processing system. Psychological Review, 86,
214-255.

Norman, D. A., & Bobrow, D. G. (1975). On data-limited
and resource-limited processes. Cognitive Psychology, 7,
44-64.

Salvucci, D. D., & Taatgen, N. A. (2008). Threaded
cognition: An integrated theory of concurrent
multitasking. Psychological Review, 115, 101-130.

Wang, D. D., Proctor, R. W., & Pick, D. F. (2007).
Acquisition and transfer of attention allocation strategies
in a multiple-task work environment. Human Factors, 49,
995-1004.

108

Prediction Intervals for Performance Prediction

Tiffany S. Jastrzembski (tiffany.jastrzembski@us.af.mil)

Kelly Addis (kelly.addis@mesa.afmc.af.mil)

Michael Krusmark (michael.krusmark@mesa.afmc.af.mil)

Kevin A. Gluck (kevin.gluck@us.af.mil)
Warfighter Readiness Research Division, Air Force Research Laboratory

6030 S Kent Street, Mesa, AZ 85206 USA

Stuart Rodgers (stu@agstechnet.com)
AGS TechNet, 10887 Miriam Lane

Dayton, OH 45458 USA

Abstract

The Predictive Performance Equation (PPE) is a
mathematical model of learning and forgetting developed
to capture performance effectiveness across training
histories, and to generate precise, quantitative point
predictions of performance by extrapolating the unique
mathematical regularities indicative of the learner. This
equation is implemented in the Predictive Performance
Optimizer (PPO) cognitive tool, designed to help learners
and instructors make principled training decisions through
examination of the learning and retention tradespace.
Because the point predictive nature of the model implies a
high degree of certainty, decision-makers could be misled
into making less than optimal decisions in applied settings;
and with regards to basic science, the model lacks
prediction error and uncertainty which would more
accurately represent the predicted range of human
performance. Implementation of prediction intervals into a
point predictive model of human performance is
unprecedented in the psychological literature. We must
balance the competing factors of reduced performance
variation as practice accumulates, and greater prediction
uncertainty as time spans increase. In this paper, we
explore new methodologies for incorporating prediction
intervals into quantitative predictions of future
performance.

Keywords: point prediction; mathematical model;
prediction interval; knowledge retention; skill retention

Introduction

The Predictive Performance Equation (PPE) is a

mathematical model of learning and forgetting developed

to capture performance effectiveness across training

histories, and to generate precise, quantitative point

predictions of performance. This is accomplished by

extrapolating unique mathematical regularities indicative

of the learner from training history, while additionally

accounting for the spacing at which knowledge and skills

were trained to estimate the stability of performance

across time. This equation is based upon robust findings

in the psychological literature, and designed with the

intent to be relevant in applied learning domains. As such,

the PPE is implemented in the Predictive Performance

Optimizer (PPO)–a cognitive tool designed to help

learners and instructors make principled training decisions

through examination of the learning and retention

tradespace.

What the PPE currently lacks is a measure of

uncertainty, because it contains no noise or error

parameter in its current form. If the model is run 100

times, it will produce the same answer again and again.

We know that if a human performs a task 100 times a

range of performance values will be produced due to the

usual suspects (e.g., distractions, fatigue, fluctuating

motivation, random noise) coming into play. Thus, the

point predictive nature of the model could be misleading

due to the high degree of accuracy implied in its

predictions. Therefore, it is necessary to incorporate

principled measures of uncertainty, or prediction intervals

(PIs), around model point predictions. This provides the

likely range of performance that is expected, and equips

decision-makers with a more thorough picture.

Unfortunately, implementation of PIs into a hybrid

point predictive model of human performance (to be

detailed in the next section) is unprecedented in the

psychological literature. By hybrid, we are referring to the

notion that one step of the model functions by calibrating

parameters to available historical data, while the other

step extrapolates mathematical regularities beyond known

data, to make true a priori predictions of performance for

practical applications and purposes (e.g., Kahrs &

Marquardt, 2007; Psichogios & Ungar, 1992).

Figure 1: Example of prediction uncertainty in the

meteorological domain.

Other disciplines, including meteorology,

econometrics, and the physical natural sciences, have

well-established methods for incorporating uncertainty

into time-series model predictions, such that in general,

prediction uncertainty increases as time increases (see

Figure 1). We may think of this trend as an expanding

cone of uncertainty as lead time increases.

In the human performance domain, this is also a fair

assumption to make. As the length of time between

known data and a prediction increases, uncertainty would

be expected to increase (see Figure 2).

109

Figure 2: Notional training historical data and predicted

refreshers to maintain performance from 1-10 months out.

 What meteorological and econometric disciplines do

not have to contend with is the fact that as practice

accumulates, variability in human performance decreases

(e.g., Ericsson, 1996; Rabbitt & Banjeri, 1989). Thus,

model uncertainty should decrease as practice amasses

(see Figure 3).

Figure 3: Expected levels of uncertainty for 3 regimens

immediately following a 45-day lag and within a 2-4 day

training block.

Furthermore, if multiple predictions are made, as

shown in Figure 3, uncertainty is conditionally dependent

on all previous model predictions. Thus, prediction

uncertainty n-steps ahead of known empirical training

history should generally grow incrementally larger-and

prediction uncertainty should additionally be greater after

a 12-month lag compared to a 1-month lag.

Thus, we are in the unique predicament of requiring a

PI calculation method that balances the competing factors

of reduced performance variation as practice amasses, and

greater prediction uncertainty as lead time increases.

Furthermore, to adhere to both basic and applied science

demands, we need to ensure our methods are based on

principle, while concurrently providing useful and

relevant guidance for decision-making purposes. Before

we turn our attention towards the new methodologies we

are exploring to achieve alignment with these trends, we

must first detail the nature of the hybrid point predictive

human performance model.

The Performance Prediction Equation

The PPE is built upon the strengths of the General

Performance Equation (GPE) (Anderson & Schunn,

2000), which handles effects of recency and frequency

very well, but is ill-equipped to handle effects of massed

versus distributed practice. As such, the PPE formally

extends the GPE by capturing effects of spacing, while

providing the additional capability to predict performance

at later points in time in an a priori fashion. The PPE is

expressed as:

 Performance =
 (Equation 1a)

where free parameters include S, a scalar to accommodate

any variable of interest, c, the learning rate, and d, the

decay rate. Fixed parameters include T, the true time

passed since the onset of training, and N, the discrete

number of training events that occurred over the training

period. The term St, defined in Equation 1b, is short for

Stability Term and is responsible for capturing effects of

spacing by calculating experience amassed as a function

of temporal training distribution and true time passed.

St = ;

(Equation 1b)

Lag is computed as the amount of wall clock time passed

between training events and P is computed as the true

amount of time amassed in practice. As such, experience

and training distribution attenuate performance by

affecting knowledge and skill stability at the macro-level

of analysis.

Descriptive Adequacy across Data

We have validated the descriptive adequacy and

predictive validity of this mathematical model across

multiple types of previously published datasets available

in the cognitive/experimental psychology literature,

including empirical studies spanning knowledge

acquisition, knowledge retention, skill acquisition, and

skill retention. Goodness-of-fit measures across those

domains have achieved an average R
2
 of 0.98 (see

Jastrzembski & Gluck, 2009, for additional information).

These results are encouraging. However, the datasets

available in the psychological literature are from simple

laboratory tasks, possessing few data points over an

extensive retention period (e.g., Bahrick et al., 1993,

study measured performance at seven points over the

course of eight years), or measuring performance at short

timescales (e.g., Glenberg, 1976, examined monotonic

versus non-monotonic effects within one paired-associate

training session). These datasets are useful to include in a

larger test harness of empirical data to thoroughly validate

model mechanisms, but their ecological validity is

questionable.

Thus, it is necessary to validate against empirical data

from more applied realms - where the interplay of

knowledge and skill are often inextricably linked,

extended lags between practice opportunities are on the

110

order of several weeks to multiple months, and

knowledge and skill decay across extended lags can have

a real impact on mission success. These features often

characterize the nature of military training, where

resources are both costly and scarce. As such, we

validated PPE in a team coordination Unmanned Air

Systems (UAS) reconnaissance task (Cooke, 2005), and

with F-16 simulator air-to-air combat data collected in the

Distributed Missions Operations testbed at the Air Force

Research Laboratory (see Jastrzembski, et al., 2009).

These highly complex datasets possess significantly

longer inter-stimulus intervals than those found in the

literature, and provide excellent opportunities to evaluate

the incorporation of uncertainty within training blocks

and across extended lags, where the need to provide

estimates of uncertainty have very clear ramifications.

Predictive Performance Equation Methodology

We will now explain the two distinct, non-stochastic

sequential steps in our performance prediction

methodology. The first step in using PPE deals with

calibrating, or optimizing (using maximum likelihood

estimation), the learning and decay parameters to the

unique mathematical regularities of the learner, identified

by tracking training history. The second step is

extrapolating the mathematical regularities to make true a

priori predictions of performance at specified future

times. We make this distinction because it is

commonplace for modelers in the cognitive science

community to use the term prediction when fitting

empirical datasets, often in a post-hoc manner; whereas

we use the term calibration to refer to that fitting process,

and prediction for out of sample calculations.

With regard to the UAS reconnaissance study

(Cooke, 2005), teams of three individuals were required

to coordinate to fly a UAS and attain pictures of targets.

They completed five 40-minute missions on the first day

of training (the training baseline used for model

calibration), and returned either one or three months later

to complete an additional three missions (used to validate

model a priori predictions) (see Figure 4).

The design of the DMO study was similar in nature,

but required teams of four F-16 pilots to fly air-to-air

combat missions over a more extensive training baseline

(one to two hour-long missions trained each day over for

five days), allowing us to examine skill acquisition and

decay patterns both within days (where prediction

uncertainty should decrease) and across days (where

prediction uncertainty should increase). Teams were

reassessed either three or six months later and completed

three hour-long missions over the course of two training

days (see Figure 5 for individual team level analysis).

The need to incorporate valid PIs around model point

predictions becomes extremely evident in the following

potential use cases, as PPO is indeed intended to help

decision-makers make informed training decisions. As

shown in Figure 6, PPO may be used to help determine

how many additional practice opportunities unique

learners (an F-16 pilot team in this case) need to achieve a

desired level of performance (denoted as achievement of a

wing standard of 0.015 in this particular case).

Figure 4: Aggregate team performance in a UAS task,

with a three month lag.

Figure 5: Number of times enemy airspace was violated

by an individual F-16 team, with a lag of three months.

PPO takes in the historical data for each unique team,

optimizes the learning and decay parameters to the

mathematical regularities inherent in the training history,

and makes customized team performance predictions by

extrapolating those learning trends into the future. Thus,

Team 115 (shown in Figure 6, Panel A) is predicted to

require six additional training events to achieve the

desired performance level, while Team 112 (shown in

Figure 6, Panel B) is predicted to require 20 more events.

Panel A:

Panel B:

Figure 6: Model predictions for two unique F-16 pilot

teams to achieve the same criterion.

Calibration (R2 = 0.95) Prediction
(R2 = 0.98)

Within

Day

Between

Day

Calibration
(R2 = 0.98)

Prediction
(R2 = 0.98)

111

In line with statistical principles, as PPO makes

multiple time-series dependent predictions, significant

uncertainty will build for predictions made farther and

farther ahead in time from actual historical data. Thus, in

the example above, Team 115’s predicted attainment of

criterion is actually more certain than Team 112’s, simply

due to the fact that criterion is reached with fewer

timesteps ahead from the historically calibrated data.

Another potential use case that nicely demonstrates

the need to incorporate “risk” into model point predictions

is revealed by PPO’s capability to examine performance

implications across a multitude of potential future training

regimens.

Figure 7: Future training regimen comparisons to identify

which training routine best meets desired goals.

The graph revealed in Figure 7 is calibrated upon the

historical F-16 pilot team performance data shown in

Figure 6, Panel A, and depicts predicted levels of

performance under three distinct training regimens. The

green line depicts two training opportunities given in each

training block (occurring every 45 days), while the red

line reveals three, and the black line reveals four. Noting

that a desired performance effectiveness level of 0.015 is

to be reached by the intended deployment date, the learner

or instructor may easily inspect and assess the efficiency

and effectiveness each potential future training regimen

will likely provide.

As shown in Figure 7, the red and black lines both

achieve the desired performance level by deployment,

while the green line does not. However, PIs for the black

line should theoretically be smaller than those in the red

line - because more training opportunities are provided

meaning performance variability should be reduced. Thus,

less risk would be involved in deploying trainees who

completed the black training regimen.

Given the potential ramifications these types of

prospective use case decisions entail, it becomes very

clear why the incorporation of prediction uncertainty

measures is needed. Further, equipping PPE with these

measures will better aid decision-makers’ understanding

both learning and training needs, as well as the risks.

Prediction Interval Calculation Methodology

As previously expressed, there is no precedent for

incorporating PIs into a human performance point

prediction model of this nature. As such, we have

developed and are investigating new methods to achieve

our goals of both reducing variability as practice amasses,

and increasing variability at longer lead times.

Extrapolation of Residuals

The first method we are investigating involves

extrapolating residuals from calibrated model predictions

and human empirical data to model point predictions.

Residuals are often used to add uncertainty to models in

other disciplines, like econometrics (see Chatfield, 2001,

for a review); but as previously mentioned, other

disciplines do not have the added phenomenological

complexity of uncertainty decreasing as practice

increases, nor do they have good solutions for estimating

how much larger PIs should be after lags of increased

length. Thus, in order to base a PI method on residuals in

the human performance domain, a good deal of

innovation will be required to ensure estimates stay true

to expected human performance trends.

 As such, we have modified the residuals by the

stability term (see Expression 1) and will illustrate PI

incorporation based on this method later in this paper.

 ;

 (Expression 1)

The Coefficient of Variation

The second method we have developed and are

continuing to investigate deals with adding variability into

the learning and decay parameters themselves. The

amount we have chosen to vary parameters by is the

coefficient of variation (CV), selected because it is a

unitless measure of deviation between model predictions

and human empirical data, generally ranging between

zero and one (Schweickert, et al., 2003), and it has

previously been used to incorporate stochasticity into

other types of cognitive and task performance models

(Patton, et al., 2009; Patton & Gray, submitted;

Schweickert, et al., 2003). It is calculated across historical

training calibration data using Equation 2:

 CV = RMSD/model mean;

 (Equation 2)

and integrated into PPE in the following way (see

Expression 2):

 ;

 (Expression 2)

thus producing upper and lower PI bounds.

 Desirable qualities of this measure include a readily

available mapping to the learning and decay rates, which

also range from zero to one; and greater variability being

added into models that produce lower quality calibrated

fits to empirical data, producing larger PIs as a result.

)*(* *** CVddCVcc TNStS 

 )**(*** 2 hi
dc StRMSDEzTNStS 

  

112

Prediction Interval Utility in the Applied Domain
We now illustrate the PI incorporation across four unique

F-16 pilot teams, possessing differences in learning

regularities and quality of calibration fit – leading to

differences in PI spans as a result (see Figures 8 and 9).

Panel A:

Panel B:

Panel C:

Panel D:

Figure 8: CV PI incorporation for F-16 pilot teams.

 As revealed by Figures 8 and 9 (Figure 9 displays

identical empirical data displayed in Figure 8, Panels A

and D), each method produces larger PIs between training

days and smaller PIs within training days – thus, mapping

nicely onto human empirical findings showing that

performance variation decreases as practice amasses.

They also reveal wider PI bands following the three or six

month lag relative to other predicted points; thereby

aligning with the notion that longer lead time predictions

are more uncertain than predictions at shorter lead times.

 An added unexpected, but very desirable effect, of

the CV method was that the PI bands are asymmetrical in

nature – thereby diverging from standard symmetrical

estimates of confidence or error (as revealed by the

residual-based method). This is pleasing in cases where

human performance is bounded by a floor or ceiling,

(ceiling performance was zero on the y-axis in Figures 8

and 9). Thus, there is more room to err (the higher end of

the y-axis) and less room to gain (performing closer to

zero), mapping nicely to CV-based error bars having

longer upper than lower whiskers.

Panel A:

Panel B:

Figure 9: Residual-based PIs across unique F-16 teams.

 Comparison of these PI methods to empirical data

reveal that utilization of residuals, compared to the CV-

based method, tends to produce larger error bars in

general (it is more liberal, but covers more of the data),

produces error bands outside the bounds of possible

performance (below zero in this case), and is more

sensitive to noisy data (see Figure 9, Panel B – the same

empirical data as Figure 8, Panel D). This raises concerns

for how useful a residual-based approach will be as a

decision-making guide. As such, additional modifications

are being examined.

Resolution of Data In our last set of analyses, we will

limit our discussion to the CV PI methodology, due to

limitations of the residual-based method described above.

Using data collected in the UAS reconnaisance task

(Cooke, 2005), we applied PIs to models aggregated at

different grains of analysis. Given the intended utility of

the PPO as a principled training decision guide, it is

important to understand the implications of using a

predictive model at the aggregate, team, and individual

learner levels of performance (see Jastrzembski, et al.,

2006), as aggregate data, by definition, reduces noise

through averaging procedures that smooth out the shape

of human performance curves. Thus, data will always be

noisier at finer and finer grains of resolution, implying PIs

should be wider and wider as aggregation decreases. We

inspect the ability of the CV PI method to align with this

phenomenon as shown in Figures 10-12 below.

R2 = 0.99
RMSD = 0.002

CV = 0.205

R2 = 0.99

RMSD = 0.012
CV = 0.271

R2 = 0.71

RMSD = 0.033

CV = 0.522

Between

Day

Within

Day

R2 = 0.97

RMSD = 0.015

CV = 0.339

R2 = 0.99

RMSD = 0.002

MRes = 0.028

R2 = 0.71
RMSD = 0.033

MRes = 0.115

Within

Day

Between

Day

113

 As we might expect, PIs for the first point prediction

after the lag are indeed larger after the long delay (PIrange

= 146) compared to the short delay (PIrange = 129),

revealed in Figure 9, showcasing the fact that predictions

at longer lead times will be less certain than predictions at

shorter lead times. This effect is generated in PPE because

the upper and lower CV bounds are placed in the learning

and decay exponents, which interact with the number of

training opportunities accumulated, as well as the actual

amount of time passed.

Figure 10: Aggregate performance across all teams in the

UAS reconnaissance task, with lags of 30 or 91 days.

Figure 11: Individual UAS team performance.

Figure 12: Individual UAS team member performance.

 Finally, we note that the CV increases as we move

from aggregate to team to individual levels of

performance, as expected (see Figures 10-12). This is a

useful property to note because it shows that decisions

may be riskier at finer grains of resolution. One way to

help circumvent this problem at finer grains of analysis is

to in fact accumulate larger training histories to calibrate

PPE upon, allowing variability and noise to be smoothed.

 These illustrative exercises help lend credence to the

notion that use of this newly developed CV PI calculation

method may have merit as being a useful way to help

guide training decisions in a way that nicely accounts for

the competing trends of reduced performance variability

expected with increases in practice, and increased

prediction uncertainty expected for longer lead times.

Conclusions

The incorporation of estimates of uncertainty into model

point predictions is a necessary extension to our point

predictive model in order to provide learners and

instructors with relevant and useful guidance concerning

the amount of predictive uncertainty that should be

expected at specific future points in time and under

competing future training regimens. Because there are no

precedented existing methodologies to apply to this

problem, we plan to further the validation effort across the

two potential solutions we proposed in this paper against

human empirical data, and we are hopeful this new

capability will apply not only to our modeling effort, but

also for others who are working on the optimization of

training (e.g., Lindsey, et al., 2009; Pavlik, & Anderson,

2008; van Rijn et al., 2009).

References
Bahrick, H., & Phelps, E. (1987). Retention of spanish vocabulary over

8 years. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 13, 344-349.
Chatfield, C. (2001). Prediction intervals for time series. In J.S.

Armstrong (Ed.), Principles of Forecasting: A Handbook for

Practitioners and Researchers. Norwall, MA: Kluwer.
Ericsson, K. A. (Ed.) (1996). The Road to Excellence: The Acquisition of

Expert Performance in the Arts and Sciences, Sports, and Games.

Mahweh, NJ: Erlbaum.
Glenberg, A. M. (1976). Monotonic and nonmonotonic lag effects in

paired-associate and recognition memory paradigms. Journal of

Verbal Learning & Verbal Behavior, 15, 1-16.
Jastrzembski, T. S., & Gluck, K. A. (2009). A formal comparison of

model variants for performance prediction. Proceedings of the

International Conference on Cognitive Modeling (ICCM),
Manchester, England.

Jastrzembski, T. S., Rodgers, S., & Gluck, K. A. (2009). Improving

military readiness: A state-of-the-art cognitive tool to predict
performance and optimize training effectiveness. Proceedings of the

I/ITSEC annual meetings, Orlando, Florida.

Kahrs, O., & Marquardt, W. (2007). The validity domain of hybrid
models and its application in process optimization. Chemical

Engineering and Processing, 46, 1054-1066.

Lindsey, R. Mozer, M., Cepeda, N., & Pashler, H. (2009). Optimizing
memory retention with cognitive models. Proceedings of the ICCM

annual meeting, Manchester, England.

Patton, E. W., & Gray, W. D. (submitted). SANLab-CM: A tool for
incorporating stochastic operations into activity network modeling.

Behavior Research Methods.

Patton, E. W., Gray, W. D., & Schoelles, M. J. (2009). SANLab-CM –
The stochastic activity networking laboratory for cognitive modeling.

Proceedings of the 53rd HFES Annual Meetinge, San Antonio, Texas.
Pavlik, P. I., & Anderson, J. R. (2008). Using a model to compute the

optimal schedule of practice. Journal of Experimental Psychology:

Applied, 14, 101-117.

Psichogios, D. C., & Ungar, L. H. (1992). A hybrid neural network –

first principles approach to process modeling. AIChE Journal, 38(10),

1499-1511.
Rabbitt, P., & Banjeri, N. (1989). How does very prolonged practice

improve decision speed? Journal of Experimental Psychology:

General, 118, 338-345.
Schweickert, R., Fisher, D. L., & Proctor, R. W. (2003). Steps toward

building mathematical and computer models from cognitive task

analyses. Human Factors, 45(1), 77-103.
van Rijn, H., van Maanen, L., & van Woudenberg, M. (2009). Passing

the test: Improving learning gains by balancing spacing and testing

effects. Proceedings of the ICCM annual meeting, Manchester,
England.

R2 = 0.98
RMSD = 22

CV = 0.036

R2 = 0.83
RMSD = 47

CV = 0.192

R2 = 0.60

RMSD = 68
CV = 0.205

114

Exploration of Costs and Benefits of
Predictive Human Performance Modeling for Design

Bonnie E. John (bej@cs.cmu.edu)

Human-Computer Interaction Institute, Carnegie Mellon University
5000 Forbes Ave. Pittsburgh, PA 15213

Tiffany S. Jastrzembski (tiffany.jastrzembski@wpafb.af.mil)

Air Force Research Laboratory
2698 G Street, Building 190

Wright-Patterson AFB, OH 45433-7604

Abstract
Human performance modeling promises to be a valuable tool
for early evaluation of user interface designs, predicting
different performance for different design alternatives and,
recently, different performance on a single design between
younger and older adults (Jastrzembski & Charness, 2007;
Jastrzembski, et al., 2010). When using modeling in the
development process, the costs of creating models must be
traded-off against the accuracy needed to guide design
choices. It is therefore a meaningful exercise to examine and
weigh the costs and benefits of different modeling
approaches, to provide practitioners information to help them
choose the modeling approach best suited for their needs. We
compare younger and older adult human performance data
captured from dialing and text-messaging tasks, across two
mobile phones, against age-specific GOMS (Card, Moran &
Newell, 1983) and various CogTool models (John, et. al.
2004), and examine the trade-offs between time and effort
required to build those models and the predictive validity each
model produces.

Keywords: predictive human performance modeling, design.

Introduction
Research in computational cognitive process modeling
continues to progress by creating models able to account for
human data on more tasks across more domains, often
through years of effort by PhD students, post-docs and/or
senior researchers. However, when practitioners wish to use
cognitive modeling approaches in user interface (UI) design,
issues of costs and benefits become a stark reality. It is
therefore often necessary for the practitioner to base the
selection of a modeling approach by trading off the costs of
producing the human performance models against the
desired accuracy of the predictions of those models.

The costs of producing models for design include how
much knowledge the practitioner must have to develop an
appropriate cognitive model in the task domain of interest
for the intended user group, learning and understanding the
modeling theory that underlies a modeling tool, learning
how to use the modeling tool itself, and the time it takes to
accurately implement the models after learning the
modeling theory and associated tools. Benefits include the
ability of a modeling approach to detect differences between
design alternatives and the ability to make accurate
predictions of quantitative measures of performance (e.g.,
time for a skilled user to execute a task or number of errors).

As the consumers of interactive systems age it is
becoming economically important to evaluate designs
specifically for the older adult. Thus, an additional concern
we address in this paper, are costs related to modifying
existing modeling approaches and tools to account for the
human processing capabilities of the older adult. Given the
range of knowledge, time, and effort required to make these
model modifications, this paper compares the quality of
predictions against the efficiency of each approach.

To put these issues into context, consider a practitioner
who is under a tight deadline to choose a final design that is
efficient for both younger and older adults from among
several design alternatives. A less time-intensive modeling
approach may be required to fit into the development life
cycle, even if use of that modeling approach comes at the
cost of producing less accurate predictions. This paper
begins to address cost-benefit concerns by assessing the
accuracy of a variety of modeling approach predictions
against empirical data, and examining the costs incurred to
produce those predictions.

The Designs, Tasks & Empirical Results
We chose to examine two tasks on two mobile phones
because Jastrzembski and Charness (2007) provides pre-
existing empirical data for younger and older adults. The
tasks are dialing a 10-digit phone number (dialing) and
sending a text message to a person in the contact list
(texting). Participant groups included a sample of younger
adults (Mage = 20) and older adults between the ages of 60-
75 (Mage = 69). The purpose of their study was to validate
elemental model human processing parameters updated to
account for the older adult, which had been estimated
through a comprehensive literature review. These parameter
values were then used to build age-specific GOMS (Goals,
Operators, Methods, and Selection rules) models (Card, et
al., 1983) to predict skilled performance of younger and
older “average” adults in the mobile phone tasks.

Figure 1. Mobile phones
studied by Jastrzembski and
Charness (2007) and used in
this analysis: the Nokia 3595
(left) and the Motorola C155
(right).

115

Predictions were compared to empirical data at each button
press required by the task.1

Since GOMS models are designed to predict performance
of skilled users on routine tasks, the participants were
required to complete extensive practice sessions to ensure
that they were skilled in the performance of these tasks on
these devices. “Skill” was operationally defined as
completing three consecutive trials with less than a 1s
deviation from each other. Upon successfully achieving
criterion in the practice sessions, participants were then
given new stimuli to complete three repeated blocks of five
different trials for each task. This allowed the authors to
average the human performance data for a single stimulus
over three trials – thus producing the empirical findings
displayed in Figure 2.

The following results were revealed (Figure 2, Table 1).
• Older adults took significantly longer than younger

adults to complete both tasks on both phones.
• Dialing completion times were not significantly

different across phones for either age group.
• Text-messaging completion times were significantly

longer using the Motorola compared to the Nokia phone
for both age groups.

These findings give us an interesting spread of results to
assess the evaluation of the designs across modeling
approaches from a cost-benefit perspective. In order for a
model to be useful in practice, it must account for all three
results, i.e., detecting a difference between devices and age
groups where this is one in the empirical data and detecting
no difference where there isn’t.

The Modeling Approaches & Their Results
Seven modeling approaches were implemented for the
dialing task and four for the texting task, as described below
(Table 1 displays completion time results).

GOMS-MHP. A pre-existing model by Jastrzembski &
Charness (2007), this approach updated Model Human
Processor (MHP) parameters through extensive literature
review, to allow GOMS models to predict older adult
performance. These models most closely match the “K2”
models put forth by Card, et al., (1983, p. 166), where
operators are at the level of hundreds of milliseconds, and
map closely to MHP cycle times. The cognitive task
analysis that underlies these models was informed by
observing pilot participants using an eye-tracker while
performing the tasks. Eye-fixation operators and subsequent
decisions operators were placed in the models guided by
these data. These models achieved excellent fits to the
human data for tasks, phones, and age groups.

CogTool-OotB. The next modeling approach we examine
is CogTool (John, et al., 2004), a tool for prototyping UI
designs and automatically producing Keystroke-Level
Models (KLM, Card, et al., 1983) through demonstration.

1 The original GOMS parameters were set with data from younger
adults, therefore we will use the original GOMS parameters for
younger adults unless otherwise noted in this paper.

KLM is a simplified form of GOMS that sums each key
press, K (including typing on a keyboard and mouse clicks);
pointing movement, P; homing movement between devices,
H; system response time, R; and “mental operator”, M (an
averaged amalgamation of visual search, perception and
cognitive operations like deciding, recalling commands,
etc.), required to do a task.

CogTool automates KLM model construction through a
demonstration of a task on a storyboard of a UI, adding
perceptual operations in line with Salvucci (2001), and
cognitive operations similar to Card, Moran And Newell’s
Ms2, called “Think operators.” The resulting script
approximate a KLM produced by an expert modeler. The
storyboard and script together compile into an ACT-R
model (Anderson & Lebiere, 1998), which runs to produce
quantitative predictions of skilled performance time.
CogTool allows people with no cognitive psychology or
modeling background to make accurate predictions with
little variance (John et al., 2004; John, 2010).

This approach used CogTool “out of the box” examining
its default predictions without modifications of the script it
produced or to any of its parameters. This approach resulted
in far better predictions for the texting task than for the
dialing task. The remaining approaches progressively add
information to this “out of the box” approach.

2 Card, et. al. (1983) set the duration of M to 1.35s, but CogTool
uses 1.2s because it has separate processes for eye movement and
visual perception, which require about 0.15s processing time.

Panel A: Dialing Task

Panel B: Texting Task

Figure 2. Empirical data for younger and older adults
completing tasks on the Nokia and Motorola phones.

116

CogTool+KLM. To improve predictions for the dialing
task, our third modeling approach brought knowledge of the
KLM to bear, editing out Think operators where they
violated Card, Moran & Newell’s M-placement rule
concerning cognitive units. We deemed this approach
reasonable because people separate US telephone numbers
into cognitive units consisting of a 3-digit area code, a 3-
digit exchange, and a 4-digit station number. Because
CogTool-OotB does not automatically identify these units,
analysts must use their knowledge to delete unnecessary
Think operators from the scripts. (Such modification was
reasonable for the dialing task, but not for the texting task
where CogTool-OotB = CogTool+KLM.)

CogTool+KLM+RatioThink. Since CogTool generates
predictions specific to younger adults, it cannot make
predictions for older adults without modifications.
Therefore, our fourth modeling approach augments
CogTool+KLM by applying Hale and Myerson’s (1995)
findings that older adults take 1.5 times as long as younger
adults to process linguistic information. This means that the
analyst simply copies the original CogTool+KLM script for
a task and edits each Think to be 1.5 times as long as the
standard younger adult time (i.e., 1.8s v 1.2s). This resulted
in an average absolute percent error of less than 10% for the
texting task, but 36% for the dialing task – vastly over
predicting the time it takes both young and old to dial a
phone number (see Table 1).

CogTool+KLM+RatioThink+ExtremePractice.
Reflecting on the previous method’s poor fit to the dialing

task data, we realized that participants in 2005 would have
had almost a lifetime of experience dialing touch-tone
phones and substantially less practice sending text messages
on mobile devices. Prior research in extreme practice has
shown that pauses indicating mental operations almost
disappear. Thinking is both getting shorter with practice and
also presumably happens in parallel with the perceptual and
motor actions necessary to do the task (e.g., Card, et al.,
1983, pp. 279-286). Simulating extreme practice is an easy
process in CogTool; the analyst simply deletes every Think
step in the script except the first (which is still required
because the digits must be visually acquired from a sheet of
paper). This resulted in predictions that better fit the
younger and older adult data. However, these predictions
were within 10% of each other, meaning that these models
no longer detected the main effect of age.

CogTool+KLM+RatioThink+ExtremePractice+Older
WMcapacity. Our next approach examines the accuracy of a
CogTool model created by analysts possessing additional
information about older adult performance, as was
uncovered by Jastrzembski & Charness’ (2007) literature
review. That review revealed that the working memory
(WM) capacity of older adults is smaller than that of
younger adults. This may cause a strategy change in older
adults; they may spend more time with written instructions
than younger adults, trading off time for accuracy. With this
insight, we put the Think steps associated with looking at
the paper for the area code, exchange and station digits,
back into the older adult dialing task models. This reduced

Table 1. Modeling approach predictions for the mobile phone dialing task with percent deviations from empirical data.

Abs Avg
Source of data or predictions %diff Time (s) %diff Time (s) %diff Time (s) %diff Time (s) %diff
Dialing Task

Human Data 6.606 9.442 6.268 8.812
GOMS-MHP 0.6% 6.559 -0.7% 9.369 -0.8% 6.228 -0.6% 8.804 -0.1%
CogTool-OotB 169.9% 16.451 149.0% n/a n/a 18.227 190.8% n/a n/a
CogTool+KLM 44.1% 9.171 38.8% n/a n/a 9.359 49.3% n/a n/a
CogTool+KLM+RatioThink 36.0% 9.171 38.8% 11.571 22.6% 9.359 49.3% 11.759 33.4%
CogTool+KLM+RatioThink
+ExtremePractice 15.5% 5.976 -9.5% 6.576 -30.4% 6.302 0.5% 6.902 -21.7%
CogTool+KLM+RatioThink
+ExtremePractice
+OlderWMcapacity 5.0% 5.976 -9.5% 8.092 -14.3% 6.302 0.5% 8.387 -4.8%
CogTool+KLM+RatioThink
+ExtremePractice
+OlderWMcapacity
+LitReviewACT-Rparameters 6.4% 5.830 -11.8% 9.505 0.7% 6.205 -1.0% 9.520 8.0%

Texting Task
Human Data 24.905 35.127 32.186 44.991
GOMS-MHP 0.0% 24.901 0.0% 35.126 0.0% 32.153 0.1% 44.989 0.0%
CogTool-OotB (=CogTool+KLM) 13.9% 27.582 10.7% n/a n/a 37.664 -17.0% n/a n/a
CogTool+KLM+RatioThink 9.4% 27.582 10.7% 35.382 0.7% 37.664 -17.0% 49.064 9.1%
CogTool-KLM+RatioThink
+LitReviewACT-Rparameters 11.7% 27.148 9.0% 37.442 6.6% 37.118 -15.3% 52.177 16.0%

Nokia Motorola
Younger Older Younger Older

117

the average absolute percent error to 5% for the dialing task.
CogTool+KLM+RatioThink+ExtremePractice+Older

WMcapacity+LitReviewACTRparameters. The last
modeling approach modifies the ACT-R models running
under the hood of CogTool. This approach requires both
more cognitive psychology knowledge and programming
skill. It leverages the aforementioned literature review as
well as Jastrzembski, et al.’s (2010) translation and
extension of age-specific parameters to ACT-R. We ran
CogTool in a development environment rather than as an
executable, and edited four specific underlying ACT-R
parameters identified by Jastrzembski, et. al. (2010), in
order to account for age. We modified the best of the
CogTool approaches previously mentioned
(CogTool+KLM+RatioThink+ExtremePractice+OlderWM
capacity for dialing and CogTool-OotB for texting), but
results produced overall goodness-of-fit values slightly less
than other approaches, for both dialing and texting tasks.

Cost and Benefit Metrics
We now assess the costs each modeling approach would
incur, based upon the estimated amounts of knowledge,
time, and effort required to produce predictions using each
method. Benefits are assessed relative to the empirical data
collected by Jastrzembski and Charness (2007), which will
be considered “the gold standard” - that is, the “truth”
against which the models will be compared. Costs are
assigned a value pertaining to the length of time required to
attain the appropriate knowledge base and perform the
modeling itself. A large cost entails months of experience to
learn and/or use the method; a medium cost requires weeks
of training and use; a small cost requires days.

Of course, actual costs to an organization depend on both
workforce and resources. For instance, empirical collection
of human data is characterized as having a large cost in this
analysis because many practitioners are not trained in
experiment design, they lack data collection laboratories,
and they often do not possess statistical packages or analytic
know-how to properly interpret the empirical data. These
costs may be much smaller for organizations like Google or
Microsoft, which already have highly equipped labs, PhD-
level experimentalists and statisticians, and a network for
recruiting appropriate participants.

In addition, the costs are estimated for moving into a new
domain or user group where parameters are not already
routinely used in models or built into tools. Many of these
estimates would reduce as modeling knowledge increases
and tool functionality is enhanced to embody that
knowledge. Given these caveats, we identified the following
costs for the analyses described in this paper.

Collect Human Data. Cost = Large because of expertise
and resource issues discussed above, and because
participants must be trained to a skilled level of performance
on the tasks and devices studied.

Literature Review. Cost = Large for a full review and
meta-analysis (it took Jastrzembski approximately nine
months to complete the parameter estimation alone). Cost =

Small if only a rule-of-thumb 50% increase (as reported by
Hale & Myerson (1995)) is used.

Program a running prototype. Cost = Large due to
required programming skill expertise (UI designers often
possess graphic design backgrounds rather than a computer
science backgrounds to compound the problem).

Measure for Fitts's Law. Cost = Small because estimates
of size and distance between all keys are required for
movement times to be integrated into models. (Although it
does not take days to learn or accomplish this, the sheer
tedium bumps this, in our estimation, into a real cost).

Build a Storyboard. Cost = Low because building a
storyboard in CogTool (John, et. al., 2004) involves only
creating a frame using a picture of what the device looks
like, placing button widgets on that frame, and drawing
transitions to represent user actions required to accomplish
the task. Storyboards for the two phones used in this
investigation took the first author about 15 minutes to build.

Know GOMS/MHP. Cost = Large. In the first author’s 25
years of experience teaching GOMS, it takes engineers
several sessions to learn the typical version of GOMS but
requires feedback on multiple exercises and often an
apprenticeship with an expert GOMS model builder to be
able to produce high-quality models. The GOMS-MHP
models assessed here were built with PhD-level knowledge
of cognitive psychology guided by eye-tracking
observations (Jastrzembski, 2006).

Know KLM. Cost = Small. In the first author’s 25 years
of experience teaching GOMS, KLM can be taught in a
single class session but requires feedback on several
exercises to be able to remove mental operators
appropriately to account for “cognitive units” (John, 1994).
The cost increases to Medium when knowledge of different
strategies due to older adults’ smaller WM span and the
effects of extreme practice are required in the model.

Know CogTool. Cost = Small. Recent research has shown
that CogTool can be taught in one class session and novice
modelers building their first model produced predictions
within 4% of an expert’s model prediction, with a CV of
only 7% (John, 2010).

Edit ACT-R. Cost = Large. In the final approach we
studied, the practitioner must edit an ACT-R file to modify
specific parameters to those established for younger and
older adults (Jastrzembski, et al., 2010). This requires
accessing CogTool’s open source code, editing the code in
the Eclipse programming environment, and knowing how
and where to change the parameters. Although it is only four
lines of Lisp code, the knowledge necessary to perform this
procedure is, in our estimation, daunting, and would be
required until CogTool could be enhanced to provide a GUI
to switch between user groups.

There are two types of benefits possible in our analysis:
the ability to correctly detect a difference between devices
or user populations, and the numeric accuracy of its
predictions. An approach is assigned a large thumbs-up
when it correctly detects a statistically-significant difference
present in the human data and, just as important for design,

118

does not claim a difference when there is no statistically-
significant difference in the human data; a large thumbs-
down is assigned when this is not the case. With respect to
numeric accuracy, we assigned each prediction to one of
four categories as shown in the key in Table 2.

Discussion of Costs & Benefits
The results of our assessments appear in Table 2. As
mentioned before, collecting human data is considered the
gold standard in UI design practice, but its cost is high,
particularly for organizations with little staff or resources
for experiment design, collection and analysis. Jastrzembski
and Charness’s GOMS-MHP modeling produced excellent
predictions, but required eye-tracking and PhD-level

understanding of the psychology literature and the Model
Human Processor in order to attain those levels of predictive
accuracy.

CogTool-OotB is less costly to learn and use, even for
people with no psychology background. It correctly detected
the difference between the devices when there was one in
the data (for texting), but it was not designed to detect age-
related performance differences, as it applies only to the
performance of younger adults. Only by augmenting that
tool with levels of knowledge of KLM and age-related
literature, do models constructed within CogTool approach
the level of accuracy useful for UI design if age is a factor.
In fact, when only consideration of extreme practice is taken
into account, the CogTool models produced fail to detect the

Table 2. Assessment of costs and benefits of empirical data collection and seven modeling approaches.

119

age-related differences in the dialing task. Only when the
combination of extreme practice and WM capacity for older
adults were incorporated, did the predictions fall into
alignment with the empirical results. This requires
substantial knowledge of the psychology literature that
many practitioners would likely not possess.

Finally, the addition of specialized ACT-R parameters for
younger and older adults in fact increased the average
absolute percent error, demonstrating that utilization of
substantially increased requirements of knowledge and skill
(ACT-R, Eclipse & Lisp) does not always improve
predictions sufficiently to warrant the increased effort.

Conclusions & Future Work
This research compares the efficiency and effectiveness of a
variety of modeling approaches across tasks, designs, and
user populations. There is no “right answer” for any
particular development project, as each will vary in their
need for accuracy, the current knowledge and skill of their
team, and the value placed on acquiring modeling skill for
future use. For example, if a design project must have
predictions for all tasks within 5% of the “gold standard”,
the only approaches we examined achieving that criterion
are empirical data collection3 or GOMS-MHP modeling,
with their associated high costs. However, if slightly less
accurate predictions are acceptable, CogTool models
augmented with some knowledge of KLM and psychology
may be useful. Table 2 should be considered a guide when
considering modeling, not a table of definitive
recommendations.

Furthermore, advocates of using models in the
development process always suggest that modeling can be
used in conjunction with empirical testing, i.e., quick and
easy CogTool modeling could be used as a means of
weeding out detectibly poor designs from an assortment of
design options in a tractable amount of time, so that
empirical data collection may then be used to evaluate the
few remaining candidates where accuracy is of high value.
No one method need stand alone.

Several areas of future tool development are suggested by
this investigation, pending, of course, repeatability of these
results. First, if age-specific Think values detect age-related
differences on other tasks on other devices, it would be a
simple matter to put a radio button in the CogTool UI to
allow analysts to select younger or older adults and attain
appropriate predictions without editing scripts. Likewise, if
future research showed that age-specific ACT-R parameters
increased accuracy in the majority of cases, they also could
be brought into play without analysts touching the
underlying ACT-R Lisp code. Thus, it is beneficial to
examine the costs and benefits of modeling approaches
periodically, because such examinations may be used to
improve model tool development, and allow us, as a field, to
change the costs associated with the most useful approaches.

Acknowledgments
This research was supported in part by funds from IBM,
NASA, NEC, PARC, and ONR N00014-03-1-0086. The
views and conclusions in this paper are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of IBM, NASA, NEC,
PARC, ONR, AFRL, or the U.S. Government.

References
Anderson, J. R., & Lebiere, C. (1998). The Atomic

Components of Thought. Mahwah, NJ: Erlbaum.
Card, S. K., Moran, T.P. and Newell, A. (1983) The

Psychology of Human-Computer Interaction. Lawrence
Erlbaum Associates, Hillsdale, NJ.

Fitts, P. M. (1954). The information capacity of the human
motor system in controlling the amplitude of movement.
Journal of Experimental Psychology, xlvii, 381–391.

Hale, S., & Myerson, J. (1995). Fifty years older, fifty
percent slower? Meta-analytic regression models and
semantic context effects. Aging and Cognition, 2, 132–
145.

Jastrzembski, T. S. (2006). The Model Human Processor
and the Older Adult: Validation and Error Extension to
GOMS in a Mobile Phone Task. Unpublished doctoral
dissertation. Psychology Department, Florida State
University, Tallahassee, FL.

Jastrzembski, T. S., & Charness, N. (2007). The Model
Human Processor and the older adult: validation in a
mobile phone task. Journal of Experimental Psychology:
Applied, 13, 224-248.

Jastrzembski, T. S., Myers, C., & Charness, N. (2010) A
principled account of the older adult in ACT-R: Age-
specific model human processor extensions in a mobile
phone task. To appear in Proceedings of the Human
Factors and Ergonomics Society 54nd Annual Meeting,
(San Francisco, CA, September 27-October 1, 2010).

John, B. E. (1994) Toward a deeper comparison of methods:
A reaction to Nielsen & Phillips and new data. In
Proceedings Companion of CHI, 1994 (Boston, MA,
April 24-28, 1994) ACM, New York, NY. 285-286.

John, B. E., (2010) Reducing the Variability between
Novice Modelers: Results of a Tool for Human
Performance Modeling Produced through Human-
Centered Design. Proceedings of the 19th Annual
Conference on Behavior Representation in Modeling and
Simulation (Charleston, SC, March 22-25, 2010).

John, B. E., Prevas, K., Salvucci, D. D., & Koedinger, K.
(2004). Predictive human performance modeling made
easy. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. CHI '04. ACM,
New York, NY, 455-462.

Salvucci, D. D. (2001). An integrated model of eye
movements and visual encoding. Cognitive Systems
Research, 1, 201-220.

120

Integrating Fast and Slow Cognitive Processes

William G. Kennedy (wkennedy@GMU.Edu)
George Mason University, 4400 University Drive

Fairfax, VA 22032 USA

Magdalena Bugajska (Magda.Bugajska@NRL.Navy.Mil)
Naval Research Laboratory, Code 5515, 4555 Overlook Ave. SW

Washington, DC 20585 USA

Abstract
Human reactions appear to be controlled by two separate
types of mental processes: one fast, automatic, and
unconscious and the other slow, deliberate, and conscious.
With the attention in the literature focused on the taxonomy
of the two processes, there is little discussion of how they
interact. In this paper, we focus on modeling the slower
process’s ability to inhibit the fast process. We present
computational cognitive models in which different strategies
allow a human to consciously inhibit an undesirable fast
response. These general strategies include (a) blocking
sensory input, (b), blocking or interrupting the fast process’s
response, and (c) slowing down or delaying processing by
introducing additional task. Furthermore, we discuss an
approach to learning such strategies based on the inference of
the causes and effects of the fast process.

Keywords: dual-processes, impulse control, inhibition, social
behavior

Introduction
People appear to have two processes or systems controlling
their actions: one fast, unconscious, or automatic and one
slow, conscious, and deliberative (Kahneman 2003). Thus
far the focus in the literature has been on discussing the
differences in the processes in support of developing dual
process theories of cognition (Evans 2008).

Evans (2008) provides an excellent review of the dual
process theories of reasoning and decision-making.
Although researchers use different terms for the two
systems, almost all distinguish one system as “unconscious,
rapid, automatic, and high capacity” while the other as
“conscious, slow, and deliberative” (Evans, 2008).
Researchers also differentiate between the systems saying
the faster process is implicit and automatic and the slower is
explicit and controlled. Many researchers also include the
point that the faster process’s control of behavior occurs
without our being aware of the fact. The faster processing
was described as “associative” and the slower process as
“rule-based”. Another theme reported was that the faster
process was more concrete and situation specific and the
slower, rational process more abstract and general. The key
concept here is the characterization of the two systems by
awareness and volition.

Our focus is on building a computational model of the
interaction of these processes; specifically, we look at the
ability of the slow, conscious process to inhibit the faster,
automatic process. Blinking, for example, is one such fast,

automatic action that with some effort can be inhibited.
Under normal circumstance, blinking is an unconscious
process occurring periodically whose rate is influenced by
environmental conditions as well as internal, emotional
state. But it is also well known that we can resist blinking.
However, it is best described as “resisting” because it takes
cognitive effort to not blink. The maintenance of our
concentration is an example of the slow, cognitive process’s
inhibition on the blinking behavior. But when the
concentration is broken, the fast, unconscious, and
automatic process is back in control.

We propose that there are general strategies that humans
use to inhibit the undesirable fast processes based on our
ability to infer the causes and to detect the effects of those
processes. We propose that a learned conscious process can
effectively control the execution of the faster process
through the control of the focus of attention and the
deliberate common-resource management.

With this introduction, we will first discuss how the slow
process can perceive the fast process and how the slow
process can inhibit the fast process. We will then propose a
general model integrating the fast and slow cognitive
processes, present three instantiations of that general model,
and discuss learning in these models before concluding.

Perception of a Fast Process
As Evans reported, many researchers noted that the faster
process occurs without our awareness. Even though we may
not be cognitively aware of the faster process while it is in
progress, we can note its effect and infer its cause. When
physical motion is involved, we have ability to attend to our
own movement. In other words, we can sometimes sense the
resulting action as soon as after it has been initiated, and
definitely sense it after it has been completed. This is
subject to the speed and the extent of the response as well as
our focus of attention. Furthermore, Gladwell (2005)
provided evidence that such fast, unexplainable processes
can be the result of deep expertise we cannot easily
articulate, but have ability to control including using them to
our benefit as well as to inhibit them.

Humans are also capable of inferring a cause of a
response. Whether it is attending to an environmental
stimulus resulting in a movement, or an association between
a memory and our emotional state resulting in an expression
change, we can make the association.

121

For example, consider those nearly thoughtless responses
to what we see, such as ducking a fast moving object, to
what we hear, such as jumping at an unexpected sound, or
even what we feel, such as uttering expletives or grimacing
when we stub our toe, or smiling at a pleasant memory.

The ability to detect such effects and to infer the causes of
the fast processes allows us to learn strategies to inhibit
these fast processes. These general strategies for inhibiting
them include (a) blocking the sensory input, (b) blocking (or
interrupting) the response, and (c) running an additional
process concurrently with the fast process. A general model
of interaction of the two processes is shown in Figure 1. The
undesirable fast process is represented as a direct Sense-Act
thread while the desirable but slow process is shown below
as a Sense-Think-Act thread. In the figure, the radar circle
indicates the extent of changes to the focus of attention and
the vertical lines are the boundaries between the cognitive
model and the outside world. Attending to our own actions
including vocalizations or facial expressions (indicated by
the question mark icon in the figure), supports a deliberate
choice or development of a control strategy.

Control of a Fast Process
To present how we envision a slow process can control a
fast process, we begin by grounding both processes within a
cognitive architecture. We will present three
implementations of the general model as computational
models within the ACT-R cognitive architecture (Anderson,
2007; Anderson et all, 2004). ACT-R is a symbolic and sub-
symbolic, production-based cognitive architecture. The
internal modules of ACT-R represent relatively specific
cognitive functions (and regions of the brain) including
declarative and procedural memory, auditory and visual
perception, vocalization, and motor functions (based on the
hand).

During each cycle, modules representing sensors fill
buffers with representations of the environment. Like many
production systems, ACT-R repeatedly matches production
conditions with the contents of the buffers, but only selects
a single production to fire, and then executes that production
resulting in changes to internal buffers and module requests.

ACT-R, and more recently, jACT-R (Harrison & Trafton,
2010), have been embodied on a robotic platform which
necessitated extension of motor functionality to control face
muscles, head and limbs movements. For this project, we
also added a rudimentary “emotional module” to allow us to
keep track of the internal state of the robot. The emotions
are based on appraisals according to the Appraisal Theory
(Scherer, 2001; Marinier, et al, 2009), which are provided
during the execution of the model. For example, unexpected
stimulus is recorded automatically as it is being attended to,
but the modeler could also issue an appraisal within a
production to signify a successful completion of a goal or a
failure. The intensity of the emotion is based on the number
and recency of the appraisals along the dimensions
indicative of the specific emotion. Unless the emotion is
fueled after the initial event, it will decay over time; we

modeled the activation of the emotion on the base-level
activation equation used in the recall of declarative memory
(Anderson, 2004).

Figure 1. A General Model of Fast and Slow Process

Integration.

Our theory of control of the fast process centers on the
points at which its execution can be foiled. The alternative
strategies leading to inhibition of the fast process are: (1) to
block the perception of or attending to the relevant stimulus,
and (2) to block the reaction to the stimulus, as indicated by
the traffic cones graphic in Figure 1, and (3) running an
additional process concurrently with the fast process, as
indicated by the light bulb. It is also possible to interrupt or
override, to certain degree, actions in progress, such as most
large motions including face expressions.

Recall in the discussion of blinking, a slow, cognitive
process could inhibit the fast, automatic blinking, but it took
cognitive effort. We propose that, in general, it takes
sustained cognitive effort to block fast responses. The
blocking may not be completely effective in that there is
evidence that like interrupting the non-blinking
concentration, fleeting micro-expressions of emotion will
still occur (Ekman & Friesen, 1969). An extreme example
of blocking involves the patellar reflex test (the knee-jerk
reaction). A patient can inhibit the normal knee jerk reaction
but interrupting the patient’s concentration allows the
normal reaction to be observed. The common technique to
break this concentration is the Jendrassik’s Maneuver
initially described in 1883 (Zehr & Stein 1999).

We propose that the slow process can both inhibit the
faster process through the following alternative strategies:
 (1) Intentionally blocking the stimulus by physically
removing the stimulus, for example: by closing eyes or
covering the ears, or by shifting the perceptual attention.
 (2) Intentionally blocking the response by keeping the
efferent processor busy, for example: performing another
movement or subvocalizing to render the processor
unavailable for other processes, or
 (3) Intentionally performing another task at the same time.
ACT-R supports this model of process interaction through:

(a) Allowing productions of various specificities.
(b) Buffer status queries including buffer contents and

status at various phases of motor processing.
(c) Serialization of processing.

122

Below is a sample ACT-R production implementing a fast
movement in response to an unexpected sound, which could
be undesirable in context of many office tasks:

(p fast-response-to-sound ;production name
 =aural-location> ;aural module detects
 isa audio-event ; a sound
 ?aural-location> ;the sound was
 buffer unrequested ; not expected
 ?manual> ;the motor controller
 state free ; is free, (not busy)
==> ;THEN
 +manual> ;initiate a manual
 isa press-key ; action, press
 key "return" ; ”return” key
)

For this production, the strategy to block the sensory input
would be any action that would block the detection of an
auditory event, such as covering one’s ears with one’s
hands. To block the reaction part of this production, one
needs to engage and keep the motor module unavailable
because it is busy. Furthermore, due to ACT-R’s adherence
to serial processing, any other production whose utility is
greater than this production would decrease the probability
of the undesirable response.

Note that these strategies are temporary and require
continuous attention, i.e., cognitive effort, to maintain the
strategy. If the cognitive focus is interrupted and the sensory
input is still present, the original fast response production
will be able to fire.

Model Implementation
We will demonstrate the applicability of the general model
by discussing its instantiation in three different models,
specifically: (1) inhibiting the Stroop Effect through
deliberate shift of visual attention, (2) inhibiting the startle
reflex with respect to eye blinking, and (3) inhibiting
socially unacceptable response in an emotional situation.
Due to space constraints, we will present the model of only
one of the alternate control strategies for each of these tasks,
but other strategies are applicable as well.

Task: Inhibiting Stroop effect by blocking stimulus
Stroop (1935) identified a large increase in the time taken

by participants to complete the color reading in the
experiment that presented the participant with incongruent
ink color and text, as compared to the naming of the colors
of basic shapes. Original experiment has been extended and
thoroughly studied over the years to determine in excess of
18 other effects (MacLeod, 1991). In this work we focus on
the interpretation of the behavior within the dual processes
presented earlier.

Our ACT-R model only captures relative speed difference
between the color naming and word reading. Other
researchers (Lovett 2002; van Maanen, van Rijn, & Porst,
2008) provide better models of an actual response times in
the task, but ability to detect one’s errors and to improve the
performance at the cost of the response time is a focus of
our model’s implementation of the dual process theory.

When the fast word-reading process generates an incorrect
response and it is detected due to a disparity between fast
verbal response and the result of the intentional, but slower
color naming process. As the response is being vocalized or
as it was heard depending on the duration of the color
vocalization process, an alternative strategy can be initiated.
The easiest strategy simply calls for delaying, or in essence
blocking the response, by pausing before giving the verbal
response allowing time to reevaluate the color of the text.

As another strategy, Besner (2001) provides evidence that
priming a location of a letter within the word eliminates the
Stroop Effect. It stands to reason that a good, and in fact
optimal, strategy would be for the participant to adjust
visual attention accordingly hence blocking the word
reading entirely. An easy way to achieve this is to upon or
even prior to presentation of the stimulus, to shift attention
to the right-most character of the text. With no competing
response there is no need to confirm the answer and
response can be given immediately.

To block the stimulus in our model, the automatic left-to-
right visual search production competes with an intentional
visual search production for the right-most symbol from the
current location. As long as the expected location is
attended to, the word reading (fast process) will not have a
chance to happen resulting in a single and correct response.

Figure 2. Inhibiting Stroop Effect by shifting gaze.

Task: Inhibiting startle reflex by blocking response
The startle reaction, also startle reflex, is the response to a
sudden unexpected stimulus, such as a flash of light, a loud
noise, or a quick movement near the face. These reactions
include movement away from the stimulus, a contraction of
arm and leg muscles, a verbal response, and often blinking.
It also includes blood pressure, respiration, and breathing
changes that are often described as being startled or scared.
 In this section, we focus on the acoustic startle reflex, a
response to an unexpected, loud, and near sound on the
order of 40ms in duration. Specifically, we present an
ACT-R model in which intentionally keeping eyes open
inhibits blink-response to the acoustic event. Like other
strategies described in this paper, muscle contraction is only
a temporary strategy since it requires constant focus to
maintain; any lapse in attention will result in muscle
relaxing and ability for any process including the startle or
routine physical maintenance reflex to control the muscle.
Our ability to control blinking is often tested in a staring

123

contest. Due to the speed of the response, which on average,
takes between 300 and 400 milliseconds to complete, this
strategy works best when initiated before the stimulus is
heard to act to prevent rather than override the reflex or fast
response.

Our ACT-R system is capable of perceiving and attending
to a sound. The general model strategy to engage the muscle
in expectation of the stimulus translates in ACT-R to
keeping motor module busy. Assuming the concentration
can be maintained and the muscle stays engaged, the fast
process’s impulse to blink will be blocked. To capture the
cognitive effort involved in this strategy, we allow the goal
to be removed from focus of attention and the motion to be
no longer than 350 ms. The model detects the unintentional
motion, based on lack of the intention to move the muscle
and presence of the motion.

Figure 3. Preventing blinking.

This is definitely not the only strategy that can be used.
Interestingly, Fillon, et al. (1993) presented an experiment
which showed that an attended pre-pulse, a weaker pre-
stimulus, produced greater blink inhibition at the 120 ms
lead interval than an ignored pre-pulse. Obviously, covering
your ears (or closing your eyes in the case of visual
stimulus) is an effortless strategy and guarantees better
performance, but is only feasible when task allows for it.

Both of these instantiations of the general model involve
blocking the fast process. The next instantiation of the
general model develops an acceptable alternative to an
emotional response.

Task: Inhibiting emotional response by distraction
Thomas Jefferson is credited with having said "When angry,
count to ten before you speak. If very angry, to a hundred,"
which even nowadays is considered a sound advice since
time and distraction are key to anger management. An
emotional response is a fast process behavior that rarely
leads to positive result, especially in social interactions.
However, given time to calm down, most people can get a
handle on their initial impulses.

Evans reported that although some researchers ignore
emotions in their discussions of the two systems, others
place emotions within the faster process and some
contemporary work includes an emotional influence in the
slower, more deliberative process. Due to this lack of

consistency, Evans considered emotions outside the scope
of his review of dual systems theory, but we will regard the
basic, spontaneous emotional responses as the fast
processes.

Ekman identified basic emotions including joy and anger,
as being universally recognized from facial expressions
(Ekman, 1992; Ekman, 1999). The automatic nature of his
basic emotions included specification that the processing
was very fast, between 150 and 250 ms. Another researcher,
Griffiths (1997), suggested some emotions are higher-level
introspective processes, i.e., belonging to the slower, more
deliberative process. Others have suggested classifying
emotions based on the part of the brain that is activated by
the emotion, either the amygdala or prefrontal cortex
(Evans, 2001; Frank, 2009). This later differentiation is
useful here because although both classifications involve the
brain in the response to emotions, the separation of the high-
level cognitive function from the low-level processes based
on the region of the brain involved, serves our purposes.

While an emotion can be treated as either a stimulus or as
a response, for the sake of our argument, we will consider
an emotion state as a perceivable stimulus. The emotional
responses vary widely and include changes in vocalization
characteristics and content, flailing arms or legs, and
obviously as facial expressions. For ease of explanation, in
the current instantiation of the model, we assume that
emotions can be perceived as form of an internal state akin
to perception of time (Taatgen, Van Rijn, & Anderson,
2007).

In this instantiation of the general model, we simulate the
behavior of an individual that is impatiently waiting for a
stimulus to appear (e.g. imagine waiting for a bus or a friend
while time is wasting). Since we will be focusing on
blocking the undesirable response, the actual stimulus that is
cause of the anger is not relevant. Upon stimulus
presentation, specifically, the bus or friend’s arrival, the
subject vocalizes the response based on the emotional state
of the model. (See Figure 4.) The model monitors its
emotional state as well as the response. A negative reward is
associated with the undesirable response (or positive reward
is associated with the socially acceptable response).

Figure 4. Preventing an emotional response.

As the passage of time is attended to, a negative appraisal is
recorded and the model becomes angry. When the stimulus
is detected, a fast response process is initiated. At first, the

124

process does not include the counting to ten and results in a
negative, unacceptable response. The counting process
triggered by intention to speak while angry, has the property
of delaying the response to allow the emotion to decay, and
it also distracts the perception of time process from “adding
fuel to the fire.”

A similar delay tactic can be employed during Stroop task
to reinforce the color-naming process. Before giving the
answer, the participant could confirm that the response is
indicative of the task, which would force the color
information of the stimulus to be processed independently.
Detecting the conflict is resolved by the conduct (repeat) of
a deliberate process to produce the correct answer. Our
model of this strategy rewards the response from the
deliberate process and may explain the observed brain
activity associated with conflict detection and cognitive
control (Egner & Hirsch, 2005).

Role of Learning
The feasibility of the strategies discussed in the previous
section relies on two forms of learning. First, the alternative,
slow process has to be crafted based on the input and output
characteristics of the fast process. Second, the model has to
learn that the alternative process is useful.

Our general model calls for learning of a control strategy
upon detection of an unexpected and undesirable condition.
The strategies presented in the task models were hand-
crafted. We expect that a problem-solving process focused
on addressing the causes of the undesired behavior can
develop these strategies. Based on the realization that the
causes involve both a stimulus and a response, we expect to
be able to learn strategies that involve blocking both the
stimulus as in the model of the first task and the response as
in the model of the second task. Additionally, introducing a
delay or distraction process can be learned if it can be
inferred that the causes are time sensitive. This is, of course,
subject for future research.

Once the control strategy, i.e., the slow, conscious
process, has been crafted, it will eventually become
procedurelized and compete with the fast, unconscious
process productions. ACT-R utility learning provides the
necessary mechanism. In accordance with the ACT-R
theory, the utility of a production is determined based on its
presence and position in the sequence leading to the reward;
specifically, a negative reward issued upon detection of an
unexpected and undesirable model behavior leads to relative
increase of alternate processes. Since, in the tasks presented
here, the fast process is the cause of the unexpected events,
this reward mechanism results in the reinforcement of the
slower processing path. For example, by punishing the
sequence of productions leading up to undesirable response,
we lower their utility allowing the counting process to have
the higher utility and be included in execution on
subsequent runs. Due to this approach, our task models
make testable predictions that human error rates in
experiments like the Stroop Effect should decrease over

time and the response times should be representative of the
shift between the two processes.

Essential to both forms of learning is detection of an
incorrect or undesirable response. We define an error as an
inconsistency between the fast and slow processes’
responses indicating a need to decide which is the intended
response. Within an ACT-R model, such inconsistencies are
described by contents of the relevant buffers. For example,
as we have described in the startle reflex task, the detection
of a movement when none is expected indicated that a fast,
unconscious process was being executed. It should be noted
that attending to these cues requires additional processing
and given the dynamics of the processing, such cues can be
easily missed. Due to this approach, our task models make
testable predictions that learning can be part of repeated
tests of the Stroop Effect and that learning will not occur if
the task dynamics preclude detection and adaptation.

Discussion
In the tasks modeled here, the fast process provided the
wrong or undesirable response; this is not true in general.
Humans have long depended on these impulses or reflexes
to keep us safe as well as to provide the fast responses
required in many tasks. Essentially, while slow, rational
thinking has its role in our behavior, so does actually
allowing the fast, irrational process guide us in a controlled
manner. We have described how the slow process can
control the fast process. However, this is only a beginning.

However, we have not yet presented evidence that our
integration of the two processes matches experimental data.
Several experiments are suggested by this work including
re-visiting the Stroop Effect looking for learned strategies
and performance over time.

Conclusions
We have shown that what has been widely discussed as a
dual processes, one fast, automatic, and unconscious and the
other slow, deliberate, and conscious, can be implemented
within a single cognitive architecture and we provided a
general model of their integration. We instantiated this
general model using the ACT-R architecture and showed the
slow process’s control of the fast process in three different
tasks. The general model’s fast-process-control strategies
we implemented and demonstrated included: (a) blocking
the sensory input for the fast process, (b) blocking (or
interrupting) the response from the fast process, and (c)
substituting a slow process for the fast process. Finally, we
discussed the architectural ability to reinforce the slow
process’s control of the fast process and an approach to
learning the alternate processes.

Acknowledgments
This work is supported by the Center for Social Complexity
of George Mason University and by the Office of Naval
Research (ONR) under a Multi-disciplinary University
Research Initiative (MURI) grant N00014-08-1-0921 and

125

grants N0001407WX20452 and N0001408WX30007 to J.
Gregory Trafton at Naval Research Laboratory. The
opinions, findings, and conclusions or recommendations
expressed in this work are those of the authors and do not
necessarily reflect the views of the sponsors or the
institutions.

References
Anderson, J. R. (2007). How Can the Human Mind Occur in

the Physical Universe? Oxford University Press.
Anderson, J. R., Bothell, D., Byrne, M. D., Douglas, S.,

Lebiere, C., and Qin, Y. (2004). An integrated theory of
mind. Psychological Review 111(4): 1036-1060.

Berger, A. J. (2008). What causes muscle atonia in REM?
Sleep, 31. 1477-1478.

Besner, D. (2001). "The myth of ballistic processing:
Evidence from Stroop’s paradigm." Psychonomic Bulletin
& Review, 8(2), 324-330.

Chase M. H. & Morales, F. R. (2005). Control of
motoneurons during sleep. In M. H. Kryger, T. Roth and
W. C. Dement (Eds.) Principles and practice of sleep
medicine. 4th ed. Philadelphia: WB Saunders. 154-68.

Egner, T. & Hirsch, J. (2005). The neural correlates and
functional integration of cognitive control in the Stroop
task. NeuroImage, 24, 539-547.

Evans, D. (2001). Emotion: The science of sentiment.
Oxford, U.K.: Oxford University Press.

Evans, J. S. B. T. (2008). Dual-processing accounts of
reasoning, judgment and social cognition. Annual Review
of Psychology, 59, 255-278.

Ekman, P. (1992). An argument for basic emotions.
Cognition and Emotion, 6, 169-200.

Ekman, P. (1999). Basic emotions. In T. Dalgleish and M.
Power (Eds.) Handbook of Cognition and Emotion.
Sussex, U.K.: John Wiley & Sons, Ltd.

Ekman, P. (2003). Darwin, Deception, and Facial
Expression. Annals N. Y. Academy of Science, 1000, 205-
221.

Ekman, P. & Friesen, W. V. (1969). Nonverbal leakage and
clues to deception. Psychiatry, 32, 88-105.

Frank, M. J., Cohen, M. X., & Sanfey, A. G. (2009).
Multiple systems in decision making: A
neurocomputational perspective. Current Directions in
Psychological Science, 18, 73-77.

Gladwell, M. (2005). Blink: The power of thinking without
thinking. New York, NY: Little, Brown and Company.

Griffiths, P. E. (1997). What emotions really are: the
problem of psychological categories. Chicago: The
University of Chicago Press.

Harrison, A.M., & Trafton, J.G. (2010). Cognition for
action: an architectural account for “grounded interaction”
Proceedings of the Annual Conference on Cognitive
Science. Aug. 11-14, 2010.

Kahneman D. (2003). A perspective on judgment and
choice. American Psychologist, 58, 697-720.

Lovett, M. C. (2002) Modeling selective attention: Not just
another model of Stroop (NJAMOS). Journal of
Cognitive Systems Research, 3, 67-76.

MacLeod, C. M. (1991). "Half a century of research on the
Stroop effect: an integrative review". Psychological
Bulletin, 109 (2), 163–203.

Marinier, R., Laird, J. & Lewis, R. (2009). A
Computational Unification of Cognitive Behavior and
Emotion. Journal of Cognitive Systems Research, 10, 48-
68.

Salo, R., Henik, A., & Robertson, L. C. (2001) Interpreting
Stroop interference: An analysis of differences between
task versions. Neuropsychology, 15(4), 462-471.

Scherer, K. (2001). Appraisal considered as a process of
multilevel sequential checking. In K. Scherer, A. Schorr,
& T. Johnstone (Eds.), Appraisal processes in emotion:
Theory, methods, research. New York: Oxford University
Press.

Stroop, J. R. (1935). Studies of Interference in Serial Verbal
Reactions. Journal of Experimental Psychology, 18, 643-
662.

Taatgen, N., Van Rijn, H., Anderson, J. R. (2007). An
integrated theory of prospective time interval estimation:
The role of cognition, attention, and learning.
Psychological Review, 114 (3), 577-59

Van Maanen, L., Van Rijn, D. H., & Porst, J. P. (2008).
Stroop and picture-word interference are two sides of the
same coin. Psychonomic Bulletin & Review, 18, 987-999.

Zehr, E. P., & Stein, R. B., Interaction of the Jendrassik
maneuver with segmental presnaptic inhibitation.
Experimental Brain Research, 124 (4), 474-480.

126

Modeling Visual Search of Displays of Many Objects:
The Role of Differential Acuity and Fixation Memory

David Kieras (kieras@umich.edu)
Electrical Engineering & Computer Science Department, University of Michigan

2260 Hayward Street, Ann Arbor, Michigan 48109 USA

Abstract

This paper describes a classic data set on visual search of
100-object displays that differ in size, shape, and color and
presents a cognitive architecture model based on the active
vision concept that accounts for the effects using differential
visual acuity and fixation memory provided by a persistent
visual store. The results provide an approximate upper bound
on the duration of fixation memory, and some approximate
acuity functions for modeling visual search.
Keywords: visual search; cognitive modeling; eye
movements.

Introduction
Many everyday and work activities involve visual search,

the process of visually scanning or inspecting the
environment to locate an object of interest that will then be
the target of further activity. An especially tractable form of
visual search takes place in many human-computer
interaction tasks in which a particular icon coded by color,
shape, and other attributes must be located on a screen and
then clicked on using a mouse. Such visual search takes
place in a visual environment that is much simpler than
natural scenes, and so is a both a good theoretical and
practical domain to model visual search processes: it
combines relative simplicity of the visual characteristics of
the searched-for objects with practical relevance: the task is
a natural one in the sense that such activities are very
common in current technology; an example is current radar
displays in military applications, which can contain a large
number of icons and other objects (cf. Kieras & Marshall,
2006). Thus understanding in detail how visual search
works in such domains can lead to better system designs.

This paper presents a model for the results of a classic
study on visual search of large and dense displays of
multiple items that can be searched by multiple attributes.
This paper follows Kieras (2009), who presented a model
for the Peterson et al. (2001) results demonstrating memory
for fixations in a visual search task. In the Peterson et al.
task, a single object, identified by shape, had to be located
in field of a dozen objects which were very small and
widely separated, meaning that each object had to be
fixated before it could be identified. This paper presents a
model for a task at the other extremes: A large number of
objects, differing in several attributes had to be searched,
but they were large enough and closely spaced enough that
the properties of several objects could be considered in a
single fixation. Memory for fixations still plays a role, but a
critical role is also played by the differential availabilities
of visual properties in extra-foveal vision, termed
differential acuity in what follows.

Visual Search and Active Vision
In a laboratory visual search task, a display of objects is

presented, and the participant must locate a particular
object specified by perceptual properties and make a
response based on whether such an object is present or
exactly which properties it has (e.g. the specific shape). In
most experiments, the display is static and contains some
number of objects, only one of which is the target that must
be responded to; the others are distractors. The properties
of the display or the displayed objects are manipulated, and
reaction time (RT) and/or eye movements are measured.

The empirical literature on visual search was dominated
for a long time by studies that measured only RT, and often
for tachistoscopically presented displays that ruled out eye
movements. But more recently the cost of eye movement
data collection has decreased to the point that it has become
much more common, and deservedly so. While any
behavioral measurement only indirectly reflects the mental
processes that produce it, RT is clearly much less
diagnostic of what goes on during visual search than eye
movements. Furthermore, tasks in which the eye is free to
move about a static display in a naturalistic manner, typical
of eye movement studies of visual search, will be more
representative of the normal operation of the visual system
and the role of attention in visual activity. This point was
argued eloquently by Findlay & Gilchrist (2003) in
presenting an active vision framework for understanding
visual activity; it is markedly different from traditional
approaches to visual attention which have ignored both the
role of eye movements and extra-foveal information.

In active vision, a key process is choosing the next object
for inspection. A variety of studies (see Findlay & Gilchrist,
2003, for a review) have shown that this choice is not at all
random; rather the color, shape, size, orientation, or other
visual properties of objects influences which object is
chosen for the next fixation; the phenomenon is called
visual guidance. In the active vision framework, these
properties are available in extra-foveal or peripheral vision
to some extent, meaning that visual attention, which in the
context of normal visual activity is almost synonymous
with where the eye is fixated, is a process of selecting for
detailed examination one of a large number of objects
currently perceived to be in the visual scene, and doing this
selection on the basis of the visual properties available in
extra-foveal vision.

The availability of a perceptual property in extra-foveal
vision depends heavily on the eccentricity (the distance in
degrees of visual angle from the center of gaze) of the
object, normally referred to in degrees of visual angle, and
on the size of the object (also measured in degrees of visual
angle), and on the specific property involved. For example,

127

the color of an object of a given size in the periphery is
usually more likely to be visible than its shape.

The EPIC Cognitive Architecture
The EPIC architecture for human cognition and

performance directly supports an active vision approach to
visual search and provides a general framework for
simulating a human interacting with an environment to
accomplish a task. Due to lack of space, the reader is
referred to Kieras (2004), Kieras & Meyer (1997), Meyer &
Kieras (1997) for a more complete description of EPIC.

The EPIC architecture consists of software modules for
the simulated task environment, or device, that interacts
with a simulated human, which consists of perceptual and
motor processor peripherals surrounding a cognitive
processor. The device and all of the processors run in
parallel with each other. To model human performance of a
task, the cognitive processor is programmed with
production rules that implement a strategy for performing
the task. When the simulation is run, the architecture
generates the specific sequence of perceptual, cognitive,
and motor events required to perform the task, within the
constraints determined by the architecture components and
the task environment.

Figure 1 shows the visual system of EPIC. The eye
processor explicitly represents differential retinal
availability in terms of acuity functions that specify
whether each visual property of each object is currently
visible as a function of the size of the object and its
eccentricity. The currently available visual properties for
each object are represented in the sensory store; the
perceptual processor then encodes the properties of each
object, possibly in relation to other objects, and passes the
encoded representation on to the perceptual store where
they are available to the cognitive processor to match the
conditions of production rules. The perceptual store thus
contains the current representation of the visual world that
cognition can reason and make decisions about, including
decisions about where to move the eyes next by
commanding the ocular motor processor. The perceptual
store retains the representations for all objects currently

visible, with more information and detail about those that
have been fixated.
Persistence of the visual perceptual store

When the eyes move away from an object, the properties
of the object persist for a short time (e.g. 200 ms) in the
sensory store, and when lost, the perceptual processor notes
that the corresponding property in the perceptual store no
longer has sensory support. After a relatively long time, the
property will then be lost from the perceptual store. But if
the object disappears completely, it and all of its properties
will be removed from the perceptual store fairly quickly.

The concept is that as the eyes move around the visual
scene, a complete and continuous representation of the
objects currently present in the visual situation will be built
up and maintained in the perceptual store, allowing the
cognitive processor to make decisions based on far more
than the properties of the currently fixated object. The
notion that this information persists for a considerable time
as long as the scene is present is supported by studies
summarized by Henderson & Castelhano (2005): a
naturalistic visual scene is continuously present, but using a
gaze-contingent forced-choice paradigm, subjects are tested
for their memory of a previously fixated object; retention
times at least several seconds long were observed. The
model for the Peterson task (Kieras, 2009) provided a good
fit to the repeat-fixation data with a retention time of at
least 4 sec.

The Williams Study
A classic study using early eye-movement recording

methodology was done by Williams (1966, 1967), who
ventured into experimental territory commonly avoided
even today. This study manipulated the size of the objects
along with their color and shape, an unusual combination in
the visual search literature, and used a very large number of
objects, which provides an upper bound on the difficulty of
search tasks of this sort.

The task required visual search of 100 objects varying in
size, color, and shape, each with a unique two-digit label.
The 100 objects represented all combinations of 4 sizes, 5
colors, and 5 shapes. The search task was to locate the
object with the matching label. Depending on the
experimental condition, additional attributes of the target
object were cued; all combinations of size, color, and shape
cues were tested in addition to the Number-only cue, which
was only the object label. The hypothesis was that if a
specification is an effective cue for visual guidance, more
fixations should be on objects matching the cue than
expected by chance.

The entire display is 39° X 39° (all degrees are degrees
of visual angle), and the search objects range from 0.8° to
2.8° in size and distributed at random into the 13 X 13 grid
of 3° X 3° cells. The cue specifications were shown in the
center of the display. To convey an overall impression of
the task, Figure 2 provides an example display produced by
the model to be described later. Due to space restrictions
this figure is too small for the details to be visible in a
paper printing, especially in monochrome, but the details
can be seen easily by zooming in with the original pdf file.
In this example, the specified target is the medium-size

Involuntary

Ocular Processor

Physical Store

External Environment

Eye Processor

Sensory Store

Perceptual Store

Perceptual Processor

Cognitive Processor

Voluntary

Ocular Processor

Retinal availability,
transduction times

Similar to iconic storage

Physical stimulus

Recognition, recoding

Visual working memory,
contents available to cognition

Can match contents of
perceptual store,
controls ocular processors

the skin

Figure 1. EPIC's visual system.

128

yellow cross labeled 38, which is in the upper-left of the
display. The concentric circles at center left show the
current location of EPIC's eyes; the small inner circle has a
1° diameter corresponding to the conventional fovea size;
the outer circle is a calibration ring with 10° diameter. The
display is shown to scale, except that to maintain legibility,
the numeric labels are shown as magnified and left-justified
in the object bounding boxes; in the actual stimuli and
model representation, they are only 0.3° high, which would
require foveation to recognize, and centered in the object.

The specification names for color and shape were the
obvious names, but the four sizes were described as small,
medium, large, and very large. The specifications appeared
first in the center of the display; when a button is pressed,
the search objects were added to the display. The
participant pressed another button when he or she had
located the specified object.

Eye movements were recorded with a corneal-reflection
film camera system and scored by hand. The total number
of fixations were counted, and classified by whether they
fell on objects whose size, color, and shape matched the
specifications. While 61% of the fixations were attributed
to a specific object, 29% were deemed unclassifiable, a
relatively large number by current methodological
standards.

Unlike modern practice, Williams obtained approximate
reaction times (RT) indirectly by counting the number of
fixations and dividing by 3.25, the observed average
number of fixations per second. Because the observed
number of fixations and the reported RTs are perfectly
correlated, the RTs will only be mentioned occasionally.

The Data
This being an early and basically descriptive study,

Williams did not report confidence intervals or information
sufficient for their calculation, and conventional statistical
tests were not relevant. However, the data set consisted of
many thousands of fixations collected from 30 participants
who performed 200 trials spread over 8 conditions. Based
on the original reports, it appears that a typical sample size
for the statistics for any one condition as reported below is
in the neighborhood of about 1000. The proportions of
fixations on objects of various types are the most important
results; for an observed proportion of 0.5, the 95% binomial
confidence interval for a sample size of 1000 is about
0.47-0.53; this ±0.03 range can be used as an approximate
confidence interval for this important subset of the data.

Figure 3 shows the observed proportion of fixations on
objects that matched the cued properties (the predicted
values will be discussed below). E.g., if the color was the
only specified cue, about 60% of the fixations were on
objects with the specified color. Figure 4 shows the number
of fixations for each cue type.

0.00!

0.10!

0.20!

0.30!

0.40!

0.50!

0.60!

0.70!

C
olo

r!

Siz
e!

Shap
e!

C
olo

r+
Siz

e!

C
olo

r+
Shap

e!

Siz
e+

Shap
e!

C
olo

r+
Siz

e+
Shap

e!

N
um

ber
 O

nly
!

Obs Color!

Prd Color!

Obs Size!

Prd Size!

Obs Shape!

Prd Shape!

Figure 3. Observed (solid bars) and predicted (shaded bars)
proportion of fixations on objects that matched each cue type. The
95% confidence intervals would be roughly ±0.03 for each
observed proportion.

0!

10!

20!

30!

40!

50!

60!

70!

80!

C
olo

r!

C
olo

r+
Siz

e!

C
olo

r +
 S

hap
e!

C
olo

r+
Siz

e+
Shap

e!

Siz
e!

Siz
e+

Shap
e!

Shap
e!

N
um

ber
 o

nly
!

N
u

m
b

e
r

o
f

F
ix

a
ti

o
n

s
!

Search Specification!

Observed and Predicted Fixations!

ObsNFix!

PredNFix!

Figure 4. Observed and predicted number of fixations for each
cue type.

Figure 2. An example of the physical display in a Williams (1966)
task trial after several fixations as depicted in EPIC's
automatically-generated display. Zoom in on this figure in the pdf
file to see the detail.

129

Visual guidance produced by color, size, and shape
It is clear from the results that color is the strongest cue

for visual guidance, resulting in the highest proportion of
fixations on matching objects (0.61), the fewest fixations
(25) and the fastest RTs (not shown, 7.6 s). Size comes
next, and shape is a distant third. There is a tendency for
each cue to have little or no effect if a stronger cue is also
present. If only the label is provided (the Number-only cue),
the fixations on objects that match the target properties is at
chance level, the number of fixations is large (74), and the
RT is quite long (23 s).

The importance of color in visual search is consistent
with many results ranging from classic human factors
studies (e.g. Sanders & McCormick, 1987) to recent HCI-
oriented studies (e.g. Fleetwood & Byrne, 2006). But in the
active vision framework, color is not specially privileged in
some way, but rather, various direct measurements show
that the color of an object is visible over a wide range of
eccentricity and object sizes (e.g. Gordon & Abramov,
1977), and so can often serve as an effective cue about
where to look next. The relative ineffectiveness of shape is
likewise not due to a fundamental problem with shape, but
rather that in many cases, recognizing the shape requires
resolving detailed features that can only be seen close to the
fovea. As an extreme of shape recognition, recognizing the
text label involves detecting small features, and so requires
foveation unless the text is quite large (Anstis, 1974).
Repeat fixations and memory failures

One overall feature of these results is that many more
fixations are required than should be necessary if each
object only received one fixation; for example, it should
require no more than 50 fixations on average in the
Number-only condition to find the labeled object. Williams
reports a small number (3%) of immediate repeat fixations,
but does not report how many repeat fixations appeared
over longer time periods. Apparently objects are frequently
looked at repeatedly; e.g. the 74 fixations in the Number-
only condition implies a repeat rate of about 33%!

In contrast, recent observation and modeling of repeat
fixations (see Peterson et al. 2001, Kieras & Marshall,
2006, Kieras, 2009) suggests that repeat fixations are
relatively rare, around 5%, implying a good memory for
previous fixations, and almost all are performed
immediately, being due to recognition (encoding) failures
rather than failures of the memory for previous fixations.
The 3% immediate repeat rate reported by Williams is
consistent with this, but not the much higher overall repeat
rate implied by the total number of fixations.

However, the low-rate results were obtained in search
tasks involving many fewer objects and that took much less
time than Williams' task. Perhaps the much higher repeat
rate in Williams' results is due to time decay of the fixation
memory. In fact, in Peterson's task, repeat fixations at long
lags become more frequent if the trial has gone on for an
unusually long time (Peterson, personal communication).
This issue will be important in modeling the Williams data.

Model for the Williams Task
Constructing an EPIC model for the Williams task

required a choice of (1) visual acuity parameters, (2) a

parameter for the decay time of visual properties in the
perceptual store that are no longer sensorily supported, and
(3) a set of production rules that implemented the visual
search strategy. Each of these will be described briefly.
Acuity functions

Despite the many decades of research on vision, the
literature does not contain a comprehensive set of
parametric data on acuity for different visual properties as a
function of their eccentricity and size, especially for the
properties and values typical of computer displays. Space
limitations do not allow even a cursory review of the
available data (but see Findlay & Gilchrist, 2003). To deal
with this non-definitive picture, a simple family of acuity
functions were proposed, and their parameters determined
by a combination of general constraints set by the literature
and iterative maximization of fit in the models. A separate
function was specified for each property: encoded size
(small, medium, etc.), color, shape, and text label. The text
acuity function was specified as text being available within
1° of the current eye position, corresponding to the
conventional definition of foveal vision and the small size
of text used. A psychophysical acuity function was used for
the other properties: For the property to be available, its
size s must exceed a threshold which increases
quadratically with eccentricity e and includes a Gaussian
noise component X whose variability increases with the
object size and coefficient of variation v:

threshold = ae2 + be + c
P(available) = P(s + X > threshold)
X ~ N(0, vs)

Such a function produces a wide area of highly probable
availability, with a sharp tapering-off towards the periphery.
The quadratic form was selected for simplicity: the
parameters can be easily set to reflect a minimum size,
general trend, and degree of curvilinearity, and were set to
be consistent with models for other tasks not described
here, and to have as much uniformity in the parameter
values as possible. The function for color availability used
in the model had parameter values of v=0.7, a=0.035,
b=0.1, c=0.1. The acuity functions for encoded size and
shape had the same values except for larger quadratic
coefficients a of 0.2 and 0.3 respectively. Thus, consistent
with the literature, the availability of the size and shape
properties drops off with eccentricity much more rapidly
than for color.

The availability for each property at the retinal and
sensory store level is independently resampled for all
objects whenever the eye is moved. Figure 5 shows an
example of EPIC's visual sensory store after several
fixations, corresponding to Figure 2, showing what is
currently available around the fixation point. In EPIC's
display, objects whose location, but no other properties, are
known are represented as light gray open circles. Objects
which are close enough to the current fixation point to have
their color available, but not their shape, are represented as
colored open circles. In Figure 5, the shape, color, encoded
size, and label are available for the currently fixated object.
The colors of several extrafoveal objects are also available,
and even the shape for a nearby large object. As the eye
moves around, the available properties of the same object

130

can fluctuate, and will not be reliably available from one
fixation to the next.
Perceptual store persistence time

Once a property of an object is visible, that property is
attached to the object representation in the visual perceptual
store where it can serve to match conditions of production
rules. The visual perceptual store is persistent, in that as
long as an object is within the visual field, its properties,
once acquired, will persist for a long time and thus can
serve as a memory for previous fixations, as described in
Kieras (2009). Figure 6 shows a sample of EPIC's visual
perceptual store, corresponding to Figures 2 and 5, several
seconds into the visual search, showing the information
persisting from previous fixations. Previously fixated
objects have all properties including the label, but will
eventually lose this information until fixated again. But in
the meantime, their color, size, or shape can be used to
guide the choice of which object to fixate next.

The duration parameter was estimated iteratively by
fitting the model, starting with the 4 sec lower bound
determined in Kieras (2009); a good fit was found with a
duration of 9 seconds.
Task strategy

The visual search strategy in the model is an application
of a basic strategy, shown in Figure 8, that has been used in
several EPIC visual search models. There are two threads
of execution. Nomination rules in the first thread propose
objects to fixate based on available visual properties, and
also nominate a random choice. Choice rules then pick a
single candidate from the nominated objects according to a
priority scheme, and launch an eye movement to the chosen
candidate. The rules in the second thread wait for all
relevant properties of the fixated candidate to be fully
visible and either respond if it is a target, or discard the
candidate if not. Given the typical 100 ms transduction and
encoding times for visual properties and the 50 ms
production rule cycle time, the overlapped processing
provided by the two threads enables the time between
successive eye movement initiations to be short, in the
range of 250 to 300 ms, which is commonly observed in
high-speed visual search tasks.

For the Williams model, the strategy nominates candidate
objects that have the cued properties, such as the cued color
or cued shape. The fixation memory effect is implemented
by only nominating objects whose text label property is
currently unknown; either because the object was never
fixated, or it was fixated a long time ago and has been lost
from the perceptual store. The priority scheme for choosing
a fixation target favors the more available information, and
so chooses an object with a matching color over one with a
matching size over one with a matching shape. For
simplicity, given the apparent very high repeat fixation
rates in the data, the mechanism for the relatively rare

Figure 6. An example of the contents of the perceptual store after
several fixations, showing the accumulated object information.
Zoom in on this figure in the pdf file to see the detail.

Prepare for

trial start

Wait for search

objects to appear

Nominate

candidates by

visible properties

and by a random

guess

If no candidate

choose candidate

by priority

Move eyes to

candidate

Wait for

candidate to be

present and its

response

properties to be

visible

Is candidate

a target?

Discard

candidate
Respond to

candidate

More trials?

Clean up

Continue?

yesno

no

yes

Clean up

Figure 8. Flowchart for the search task strategy.

Figure 5. An example of the contents of the sensory store
corresponding to the lower left corner of Figure 2, showing
available properties of objects near the current fixation point.

131

encoding failures used in previous models (e.g. Kieras,
2009; Kieras & Marshall, 2006) to trigger repeat fixations
was not implemented in this model, corresponding to an
assumption that most of the revisits are due to memory
failure in this task.

Model Results
The model was run for 500 trials in each experimental

condition, and the simulated eye movements and response
time data were collected and tabulated analogously to the
original experiment. Figure 3 above shows the observed
and predicted proportion of fixations of each type. Clearly
the fit is very good using the acuity function and perceptual
store persistence parameters listed above (R2 = .99; average
absolute error (AAE) = 3%).

The observed and predicted number of fixations is shown
in Figure 4 above. Again there is a very good fit (R2 = 0.98,
AAE = 12%). The observed and predicted RTs (not shown)
also fit well (R2 = 0.98 and AAE = 9%), although there is a
general tendency for the model RTs to run longer than
William's results. Given the unusual methodology used to
determine the RTs, it is not clear that attempting to improve
the fit to the absolute value would be worthwhile.

In an analysis of the model output, the proportion of
repeat fixations was found to increase substantially as the
perceptual store duration was decreased, and the number of
fixations (or RT) increased. The persistence parameter was
adjusted to produce the overall good fit on the number of
fixations shown in Figure 4, and the proportion of repeat
fixations on search objects was then determined with the
final parameter value. The range was 11% repeats in the
best condition to 33% in the Number-only condition. This
proportion was highly linear with the predicted number of
fixations (R2 = 0.95). This suggests that the loss of fixation
memory over time is a good account for the excess number
of fixations in the data.

Conclusion
This model, along with the one in Kieras (2009),

represents a realization of the active vision concept in terms
of a computational cognitive architecture that incorporates
differential acuity and a persistent visual store that
represents the current visual situation and provides a
memory of previous fixations. Two more specific points
emerge: (1) Simplistic statements about which properties
can guide visual search must be replaced by statements
about which properties are available in a specific visual
situation. For example, color should not be very effective if
the objects were very small, and shape should be more
effective if the objects were larger. (2) Repeat fixations
have two causes: the persistent visual store is capacious and
reliable at short durations, meaning that repeat fixations are
due just to encoding errors, but if the search takes a very
long time, information from previous fixations is lost, and
more repeat fixations are the result.

This general model appears to be ready for practical
application in situations where the to-be-searched display
contains uniform-color objects with simple geometric
shapes and very small distinguishing features such as text

labels. The specific acuity functions determined here
should be useful approximations in modeling such displays.

At the theoretical level, this type of model appears to be a
simple and sound approach to representing visual activity,
and is ready to use either as a component in models of more
complex tasks that involve visual search as a subtask, or as
a basis for models of more advanced visual processing.

Acknowledgment
This work was supported by the Office of Naval

Research, under Grant No. N00014-06-1-0034.
References

Anstis, S.M. (1974). A chart demonstrating variations in
acuity with retinal position. Vision research, 14, 589-592.

Findlay, J.M., & Gilchrist, I.D. (2003). Active Vision.
Oxford: Oxford University Press.

Fleetwood, M. D. & Byrne, M. D. (2006). Modeling the
Visual Search of Displays: A Revised ACT-R Model of
Icon Search Based on Eye Tracking Data. Human
Computer Interaction, 21, 153-197.

Gordon, J., & Abramov, I. (1977). Color vision in the
peripheral retina. II. Hue and saturation. Journal of the
Optical Society of America, 67(2), 202-207.

Henderson, J.M. & Castelhano, M.S. (2005). Eye
movements and visual memory for scenes. In G.
Underwood (Ed.), Cognitive processes in eye guidance.
New York: Oxford University Press. 213-235.

Kieras, D.E. (2004). EPIC Architecture Principles of
Operation. Web publication available at ftp://
w w w. e e c s . u m i c h . e d u / p e o p l e / k i e r a s / E P I C /
EPICPrinOp.pdf

Kieras, D. (2009). The persistent visual store as the locus of
fixation memory in visual search tasks. In A. Howes, D.
Peebles, R. Cooper (Eds.), 9th International Conference
on Cognitive Modeling – ICCM2009, Manchester, UK

Kieras, D.E, & Marshall, S.P. (2006). Visual Availability
and Fixation Memory in Modeling Visual Search using
the EPIC Architecture. Proceedings of the 28th Annual
Conference of the Cognitive Science Society, 423-428.

Kieras, D. & Meyer, D.E. (1997). An overview of the EPIC
architecture for cognition and performance with
application to human-computer interaction. Human-
Computer Interaction, 12, 391-438.

Meyer, D. E., & Kieras, D. E. (1997). A computational
theory of executive cognitive processes and multiple-task
performance: Part 1. Basic mechanisms. Psychological
Review, 104, 3-65.

Peterson, M.S., Kramer, A.F., Ranxiao, F.W., Irwin, D.E., &
McCarley, J.S. (2001). Visual search has memory.
Psychological Science, 12, 287-292).

Sanders, M. S., & McCormick, E. J. (1987). Human factors
in engineering and design (6th ed.). New York: McGraw-
Hill.

Williams, L.G. (1966). A study of visual search using eye
movement recordings. Technical Report, Honeywell Inc.,
Feb. 28, 1966. NTIS AD629624.

Williams, L.G. (1967). The effects of target specification on
objects fixated during visual search. In A.F. Sanders (Ed.)
Attention and Performance, North-Holland. 355-360.

132

Using Diverse Cognitive Mechanisms for Action Modeling

John E. Laird (laird@umich.edu)
Joseph Z. Xu (jzxu@umich.edu)

Samuel Wintermute (swinterm@umich.edu)
University of Michigan, 2260 Hayward Street

Ann Arbor, MI 48109-2121 USA

Abstract
Predicting the results of one’s own actions is a powerful
cognitive capability that can aid in determining which action to
take in a given situation. In this paper, we describe a task-
independent framework based on the Soar cognitive architecture
in which rules, episodic memory, semantic memory, mental
imagery, and task decomposition are available for predicting an
action’s consequences. We include results from two domains
and make predictions for human behavior based on these results.

Keywords: Action modeling; prediction; cognitive architecture

Introduction
When faced with a decision between alternative actions, an
intelligent agent may have sufficient knowledge to
immediately determine which choice is best. However, in
situations where directly available knowledge is insufficient
or in conflict, an agent can often use predictions of how its
actions will change the environment to make its decision.
We call the knowledge used to make such a prediction an
action model. Using this approach to make a decision
typically involves the following steps:
1. Choose one of the alternative actions to evaluate.
2. Create an internal representation of the situation.
3. Apply the action model to the internal representation to

generate a prediction.
4. Repeat for all other actions.
5. Choose the action that leads to the best predicted state.
This approach to decision making is ubiquitous in humans
(de Groot, 1965; Newell & Simon, 1972) and has been used
throughout artificial intelligence (AI) systems, where the
agent internally simulates multiple steps into the future. A
critical ingredient in this process is the action model: the
means by which the results of actions are predicted. Action
modeling is important because it allows an agent to move
beyond reactive behavior – an agent can plan and deliberate
about the implications of its actions before choosing one.

Historically, AI systems have used rule-like structures as
action models, such as STRIPS operators (Fikes & Nilsson,
1972). Cognitive science research has addressed action
modeling, but it has typically been isolated within specific
cognitive processes, such as mental imagery (Johnson,
2000; Wintermute & Laird, 2009) or episodic memory
(Atance & O’Neill 2005, Schacter & Addis 2007).

Rather than focus on one particular approach to action
modeling, we investigate the problem in general. We
propose that different combinations of memory and
processing systems can be used for action modeling, and
that domain characteristics and the agent’s knowledge

determine which mechanisms are used for a specific task.
The mechanisms we propose include rule-based procedural
knowledge, episodic knowledge, semantic knowledge,
mental imagery, action decomposition, and arbitrary
combinations thereof. These mechanisms vary along many
dimensions including generality, reportability, learnability,
computational expense, and the types of problems where
they are appropriate. Forbus & Gentner (1997) have
previously posited a similar diversity of processing to
support mental models, although they did not focus on
detailed architectural mechanisms as we do here.

Included in our work is task-independent knowledge that
dynamically combines these mechanisms, implemented
within Soar (Laird, 2008). Soar has the requisite
representational capabilities to support the diverse forms of
memories, processing units and knowledge required for
action modeling. In the next section, we give an overview of
Soar and our approach to using action models in support of
decision making. This is followed by descriptions of the
different forms of action modeling, with demonstration of
them on a simple blocks world task. We then demonstrate
them together on a simple board game, and analyze their
relationship to human behavior.

Framework for Action Modeling in Soar
Figure 1 shows the structure of Soar, including its long-term
and short-term memories and processing components.
Working memory is a shared, symbolic memory that
maintains the agent’s primary representation of the current
situation. Long-term symbolic memories hold procedural,
semantic, and episodic knowledge, which are retrieved
based on either the total contents of working memory (for

+

Figure 1: Structure of Soar

Semantic

Visual LT Memory

Body

Symbolic Long-Term Memories
Procedural

Symbolic Short-Term Memory D
ecision

Procedure

Chunking

Episodic

A
pp

ra
isa

l
D

et
ec

to
r

Reinforcement
Learning

Perception Action Mental Imagery

Perceptual STM

Semantic
Learning

Episodic
Learning

133

procedural) or cue structures created in working memory
(for episodic and semantic). Soar has a non-symbolic,
spatially-based perceptual short-term memory (STM) from
which symbolic information can be extracted into working
memory. This memory is the medium of mental imagery.

Behavior in Soar is driven by rules stored in procedural
memory. Rules that successfully match the contents of
working memory fire in parallel. Operators are the locus of
sequential behavior in Soar and only a single operator can
be selected at a time.1

If there is insufficient knowledge to select or apply an
operator, an impasse arises, and a substate is created. Within
the substate, operators can be proposed, selected, and
applied to resolve the impasse. A side effect of resolving an
impasse in a substate is that Soar builds a rule that
summarizes the processing in the substate. This process is
called chunking. The learned rule fires in similar situations
so that the same impasse is avoided in the future.

 Operators are implemented via rules
that propose, evaluate, and apply them. Rules that propose
and evaluate an operator create preferences, while rules that
apply an operator modify elements in working memory
when that operator is selected.

Conceptually, operators are either external, in that they
initiate action in the environment, or internal, in that they
change the internal state of an agent. Throughout this paper,
we call external operators actions, so that an action model
refers to an internal model of the changes that result from
the application of an external operator.

Figure 2 shows how action modeling arises in Soar. When
an agent is unable to make a decision using its directly
available knowledge, it internally simulates the effects of
proposed actions to aid in decision making. In this example,
the agent is attempting to create a stack of blocks, with A on
B, B on C, and C on the table. In the upper left corner of the
figure, the agent’s state is shown, with the lower half
corresponding to a representation of the problem state as it
might be in the agent’s perceptual short-term memory. The
top half of the state shows the symbolic relations that the
agent extracts from perception, and it is these relations that

1 Operators in Soar correspond most closely to rules in ACT-R
(Anderson, 2007); however, operators in Soar provide a richer
representation for organizing action than do rules in ACT-R because of the
independent representations of knowledge (as rules) for proposing,
selecting, and executing the actions associated with an operator.

are available in working memory.
We assume the agent has sufficient knowledge to propose

the three legal actions for this state: move B onto C, move C
onto B, and move C onto the table. However, there are no
rules to create preferences, so an impasse arises (1), and
Soar automatically creates a substate (2).

To resolve this impasse, the agent tries out each proposed
action on a copy of the state and then evaluates the quality
of the result. Task-independent knowledge (TIK), encoded
as rules, carries out this strategy. The only additional task-
dependent knowledge required in this processing are action
models and state evaluations, both of which can use the
various forms of knowledge presented below.

As shown in Figure 2, following the impasse, operators
are selected (at random) to evaluate the actions. In the
example, move C to the table is evaluated first (3). In this
case, the agent does not have rules to evaluate this action
directly, and thus, another impasse arises. In the resulting
substate (4), the TIK copies the contents of the original task
state and uses a model of the action being evaluated to
predict the resulting state. Once this state is computed (5),
the agent must also have some knowledge (usually encoded
as rules) for evaluating it. In this case, we use an evaluation
that counts the number of blocks in their desired positions,
which assigns the state an evaluation of 1. The creation of
this evaluation terminates the evaluate operator, which is
followed by the selection of operators to evaluate the
remaining actions (6, 7). When all the evaluations are
computed, preferences are created for the actions, leading to
the selection of the action to move C to the table, and
resolving the first impasse. The action is then performed.
Chunking learns rules for evaluating each of the actions
(from the substates where the action modeling occurs), and
for creating the preferences based on those evaluations.

Different Forms of Action Modeling
In this section, we describe how action modeling can be
implemented using different processing and memory
systems, with the blocks world serving as an example.

Procedural Knowledge
The most direct way to encode an action model in Soar is as
rules. These rules test features of the state, features of the
selected action, and that the state is an internal copy of the
task state. They modify the internal copy in the same way
the external action would modify the real state. For complex
actions, the model can be implemented with multiple rules
that fire in parallel and/or in sequence.

Episodic Memory
Soar has an episodic memory that automatically stores
“snapshots” of working memory over time (Nuxoll & Laird,
2007). Soar’s episodic memory is an idealization of human
episodic memory, and emphasizes basic functionality, such
as efficient storage and associative retrieval of temporally
organized episodes. For action modeling, episodic memory
requires that the agent has a previous experience when the
action being considered was applied in the environment.

evaluate(move(B, C))

(on A Table)
(on B Table)

(on C A)

(on A Table)
(on B Table)

(on C A)

(on A Table)
(on B Table)
(on C Table)

prefer move(C, Table) move(C, Table)
move(C, B)
move(B, C)

evaluate(move(C, Table)) evaluate(move(C, B))

move(C, Table)

evaluation = 1

C
B A

2

1

3

4

Figure 2: Soar processing using an action model.

5

6 7

134

The agent can then use its memory of that experience to
make a prediction as to what will happen when the operator
is applied to a similar situation (Xu & Laird, 2010).

When episodic memory is used, the behavior of the agent
is as follows. The first time the agent gets to the point where
the action is selected in Figure 2, an impasse would arise
because there is no rule to apply the action. In the resulting
substate (not shown in Figure 2), the TIK for using episodic
memory selects an operator which creates a cue consisting
of the task state with the action selected, in an attempt to
retrieve a similar previous episode. Once the cue is created,
the episodic memory system retrieves the most recent, best
match to the cue and reconstructs it in working memory. If
no match is found, then this approach to action modeling
fails, and the agent must either try other methods, or assign
a default evaluation value to the action being evaluated.
Chunking does not create rules to summarize processing in
substates where episodic memory retrieval failed.

If the retrieval is successful, the agent then retrieves the
following episode. The agent continues retrieving
subsequent episodes until it finds one where the action is no
longer selected, which indicates the action has terminated.
The agent then compares the task state in that episode to the
current task state and modifies the internal copy of the task
state to reflect any changes. Chunking creates a rule that
summarizes the processing, so that in the future, the
retrievals are not required.

Figures 3 and 4 compare results for using the rule-based
versus the episode-based approaches to action modeling.
Both figures show the progression of performance across
four identical trials of the blocks world problem described
above, and both use log scales for the y-axis. Figure 3
shows the number of external actions that the agent takes to
solve the problem, while Figure 4 shows the number of
decisions (processing cycles in Soar). These results are not
intended to precisely model human behavior (for example,
we are not including time for perception or motor actions);
however the comparisons should be meaningful in
predicting qualitative differences across methods and trials.

In Figure 3, the top line shows the average performance
of an agent using episode-based action modeling where
episodes are not learned, so that a random selection is
always made. The next line shows the performance when

episodes are being learned. Initially there are no relevant
episodes, so the selections are random, but with experience,
the episodes accumulate and the agent’s performance
improves as it is able to correctly predict future states and
select the correct action, until finally it achieves optimal
performance. Even the first trial gets some improvement
from learned episodes. The bottom line shows the
performance with the rule-based action model, which
always makes the correct predictions.

Figure 4 shows the performance in terms of decisions, not
just external actions. The top line corresponds to the steps
required when episodes are not learned. The next line shows
the performance as episodes are learned. The dashed line
that starts at the same point for trial 1 shows that when
chunking is used with episodic memory, it eliminates the
need for episodic retrievals over time as the agent learns
action models based on rules that replace those based on
episodic memory. The agent eventually learns rules that
choose actions directly, eliminating the need for action
models. Thus, there is a combined gain with episodic
memory improving solution quality, and chunking
improving the efficiency of the problem solving process.
Note that external actions take orders of magnitude more
time to execute than internal reasoning steps, so the
differences are more pronounced in real environments.

The next line shows the performance for the rule-based
action model without chunking, which serves as the optimal
base line for action modeling. The final line shows the
impact of using chunking with the rule-based action model,
where after one trial, rules are learned that eliminate the
need for the action model. As these figures show, in only a
few trials, the combination of episodic memory and
chunking converts an agent with little task knowledge into
one that solves the problem in few actions (due to episodic
memory-based action modeling), while eliminating the need
for purely internal decisions (due to chunking).

Semantic Knowledge
Whereas episodic memory is based on specific experiences,
semantic memory consists of decontextualized facts – such
as knowledge about objects and their structure, independent
of when they were experienced. This makes semantic
knowledge more difficult to learn than episodic knowledge,

1

10

100

1000

10000

1 2 3 4

Episodic Memory Action Model

Rule-based Action Model

Episodic Retrieval Failure

1

10

100

1000

10000

1 2 3 4

Episodic Memory Action Model

Episodic Retrieval Failure

Episodic Mem. w/ chunking

Rule-based Action Model

Rule-based w/ chunking

Figure 3: External actions taken across multiple trials. Figure 4: Total decisions taken across multiple trials.

135

but more useful across a variety of tasks. Soar as yet does
not have a theory of how semantic memories are
automatically learned, and instead Soar agents must
deliberately store semantic data they encounter.

The use of semantic memory for action modeling is
analogous to the use of episodic memory – when there is no
action model encoded as rules, an impasse arises, and in the
resulting substate, an operator is selected which queries
semantic memory to retrieve knowledge that can aid in
predicting the result of applying that action. Semantic
memory covers a broad range of knowledge, and one can
imagine many ways it can aid in action modeling. For
example, the fact boiling kettles are hot can be useful when
predicting the consequence of touching one. Here, we use
declarative instructions that specify how to modify the
internal task state to model the action.

To use semantic memory, the agent selects an internal
operator that initiates a retrieval for instructions related to
the action being evaluated. If the relevant instructions are
retrieved, TIK selects the “interpret” operator, whose
purpose is to apply the instructions to the copy of the task
state. The interpret operator is not implemented directly in
rules, but leads to a substate where operators are selected
and applied for each of the instructions. The processing in
the substate allows for arbitrarily complex implementations
of instructions, and is similar in spirit to how declarative
instructions are used in ACT-R (Anderson 2007; Best &
Lebiere 2003); however, in those cases the instructions are
interpreted to control the execution of a task, while here
they are used to model the execution of an action.

The format of declarative instructions is like that of an
imperative programming language or a recipe. We have
developed task-independent declarative representations for
common control flow instructions and state modifications.
In the blocks world example, instructions specify additions
and deletions of predicates. The rules that interpret those
instructions assume a specific representation of predicates in
working memory. Figure 5 shows the instructions for
moving a block. When using semantic memory, the number
of decisions decreases after one trial, as chunking creates
action model and action selection rules.

Mental Imagery
Mental imagery involves the maintenance of a separate
memory structure grounded in perception, which represents
objects and their spatial properties. While the contents of the
memory is mostly created bottom-up from perception, an
agent can create new “imagined” structures and manipulate
them by operations such as translation, rotation, and scaling,
as well as simulate complex motions, such as the path of a
car (Wintermute, 2009). The agent can extract spatial
predicates from perceptual memory, such as the relative
positions of objects and whether they collide. When applied

to perceived structures, this can be used to create the initial
symbolic representation of the problem. When applied to
imagined structures, symbolic consequences of actions can
be predicted. The use of mental imagery for action modeling
is restricted to actions that involve spatial motion, or actions
that can be mapped onto such motion.

As in the use of episodic and semantic memory, mental
imagery is employed when there are no rules for an action
model, and an impasse arises. Mental imagery takes
advantage of the spatial representation and maps the action
to be modeled onto imagery operations. Making the
connection between the action and mental imagery
operations can involve accessing knowledge in semantic
memory, or such knowledge can be encoded in rules. In our
example, the agent knows that to move a block, it should
imagine it centered on top of the destination block. Once the
perceptual memory has changed, relevant predicates can be
extracted, creating a symbolic description of the situation
that serves as the resulting state.

Mental imagery involves processing that cannot be
analyzed by chunking because the results of the processing
are not uniquely determined by the symbolic structures
available in working memory. Therefore, chunking does not
create rules that summarize mental imagery processing. This
is similar to ACT-R avoiding rule compilation for
processing over external interactions (Anderson, 2007).

Although not as general as the other methods, mental
imagery has wide applicability because of the ubiquity of
spatial problems. Imagery-based action models are effective
in a range of problems, from simple tasks in the blocks
world (Wintermute & Laird, 2009) to complex tasks such as
path planning for cars (Wintermute, 2009).

Action Decomposition
The final alternative approach is to model an action by
decomposing it into simpler actions that can be modeled
using any of the approaches described above. In Soar,
hierarchical operator decomposition is ubiquitous, and arises
when complex operators are selected, and then implemented
in substates by simpler operators. In the blocks world
example, when move-block is selected, it can be
decomposed into pickup-block and put-down-block actions.
When these actions are selected, any of the previous
methods can be used as models for them, including further
decomposition. One typical use of action decomposition is
to take an action that involves complex spatial interactions
and decompose it into simpler parts until those parts can be
mapped onto imagery operations. Chunking will create rules
for the action model of a complex operator as long as mental
imagery was not used in any substate processing.

A Policy for Controlling Action Modeling Approaches
We have presented these action modeling approaches as
alternatives, with no attention to when each would be used
in an integrated agent. Inherent to Soar is that it uses rules
for action modeling if they are available. That is the default
behavior and it is not under control of the agent. When rules
are not available, an impasse arises, and in the ensuing

Figure 5: Instructions encoded in semantic memory.

Move-block(blk, dest):
 1. Del-predicate ontop(blk, x) ∀ x ≠ dest
 2. Add-predicate ontop(blk, dest)

136

substate, operators are proposed for the alternative methods,
as well as any operators that decompose the selected action.
This structure introduces an extra level of deliberation,
which adds flexibility at minimal cost to the agent (the
results in Figure 4 are without this additional layer).
Although it may be possible for an agent to learn when best
to use each method, that could be a difficult learning
problem and we leave it to future research. As an
alternative, we encoded a simple ordering preference for
these approaches in the TIK and use this method in the
board game demonstration below.

Integrated Demonstration
To provide additional illustration of how these approaches
work, both independently and in unison, we present an agent
that plays a simple board game, shown in Figure 5. In this
game, the agent must slide the hexagonal marker on the left
along the directional paths to numbered nodes until it gets to
the end (node 10). As the marker slides along a path, it may
touch one of three different objects, labeled X, Y, and $. If
the marker hits an object, the agent gets points. The agent
has semantic knowledge that the $ is worth 20 points, but
does not initially know the values of the other objects (X is
worth 10 points and Y is worth 5). The goal is to get to the
end with the highest possible score, which is achieved via
path A, C, F, H, I, K. We assume that the agent can sense
the marker position, the paths, and the objects, but it does
not a priori know whether the marker will hit a nearby
object as it slides along a path.

To perform the task, the marker starts at position 1, and
the agent is faced with making a decision to take path A or
B. To make this decision, the agent will attempt to predict
the result of each move. At this point, the agent does not
have any action model rules, nor does it have any episodes
or relevant information in semantic memory. However, it
can use mental imagery to imagine moving the marker along
each of the paths. Mental imagery predicts that if it moves
along A, it will intersect with object X, while for B, it will
intersect with Y. In both cases, it does not know how
encountering those objects will affect its score, so it chooses
at random. We assume it picks path B. It executes that
action, encountering Y and getting 5 points.

Once at 3, the agent picks path D to get to 4. Here, the
decision is between going along path E or F. This time, after
it uses mental imagery to detect that it will encounter object
Y, it then uses episodic memory to recall that the last time it
encountered object Y it received 5 points. When it considers

path F, it uses imagery to predict it will encounter object $,
and then semantic memory to predict that it will receive 20
points. Based on these evaluations, it chooses path F. It
receives 20 points, moves to 6 and then 7. At this point, it
uses a combination of mental imagery and episodic memory
to predict the result of moving to 8 (10 points). In imagining
moving to 9, imagery shows that it will not encounter Y, so
it will get a score of 0. It selects moving to 8, and then
finishing by moving to 10, getting a total score of 35.

The next time the agent plays the game, it uses episodic
memory to predict the results of the paths it took the first
time (B, F, I). Since it has no episodic memories of moving
on paths A, E, and J, and cannot chunk over imagery action
models, it must continue to use imagery for those paths.2

Figure 7 shows the progression of how the agent’s
decisions are distributed across using imagery versus
episodic memory over multiple trials. The highest line
shows the total number of internal reasoning steps. The
bottom two lines are the number of decisions that involve
imagery and episodic memory operations. In the first trial,
imagery dominates as the agent has no prior experiences it
can draw on. In the second run, the agent must still use
imagery for those cases where it has not taken a path, but it
uses episodic memory for those cases where it had prior
experiences. Although not evident in the graph, chunking
replaces the use of semantic memory with a rule. For the
third run, chunking decreases the total number of steps by
eliminating the use of episodic memory. In the final trial,
some imagery is still required for those paths the agent
never actually tried, and episodic memory is no longer used
as it has been replaced by rules learned through chunking.

Thus, in its second attempt, it will use imagery and episodic
memory to predict a 10 score for A, while it will use only
episodic to predict a score of 5 for B. Similar use of imagery
and episodic memory will be used at nodes 4 and 7. As a
result, the optimal path is taken, resulting in a score of 40.

Predictions
From these examples and an understanding of the

approach, we can make some predictions about the behavior

2 Soar’s episodic memory does not capture subgoal processing, so the
agent has no episodic memories of previous predictions. Otherwise, these
steps could also be removed.

0

50

100

150

200

250

1 2 3 4

total decisions

imagery decisions

epmem decisions

1

3

5

6 9

8 2

4 7 10

A

B

C

D

E

F H

G I

J

K

L

X X Y

Y

Y

$

Figure 6: Board game task performed by agent.

Figure 7: Agent performance over multiple trials.

137

of an agent with the capabilities we described.
In a spatial environment, an agent initially relies on

mental imagery for action modeling (and semantic
knowledge if it is available). As the agent gains experience,
it switches to using episodic memory when possible. With
further experience, rules learned via chunking replace
episodic memory, and eventually rules are learned that
choose actions directly, eliminating action modeling.

Concurrent with learning, the agent’s ability to report on
its internal reasoning should change, as different structures
become available in working memory (which is the basis for
our predictions about reporting). Initially, for spatial
problems, the agent can report imagining spatial situations,
which then transitions to reports of using episodic memory
(things it “remembers”). When using semantic memory, it
can report on the instructions and facts it is using (things it
“knows”). With practice, the agent loses the ability to report
on its reasoning as intermediate structures are no longer
generated in working memory and processing is done purely
with rules. The rules produce behavior without the creation
of a declarative trace that the agent can report.

As shown in Figure 7, our model predicts there are also
changes over time in terms of which mechanisms are used
in action modeling, and thus decision making. The obvious
prediction is that in humans the brain areas used for action
modeling, and thus decision making, will change based on
characteristics of the task (whether it is spatial or symbolic)
and a subject’s experience (whether it has access to relevant
semantic, episodic, or procedural knowledge).

Conclusions
The major claim of this paper is that intelligent agents,
including humans, have a variety of available mechanisms
that can be used to predict the results of their actions in
service of decision making. A related claim is that internal
prediction does not occur in any specific architectural
module, but results from a combination of characteristics of
the domain, the agent’s background knowledge, prior
experience, and the agent’s available memories and
processing elements. We have demonstrated two agents in
two domains using rules, episodic memory, semantic
memory, mental imagery, and action decomposition for
action modeling. Although the domains are simple, the
results predict significant changes in behavior as knowledge
accumulates in episodic memory and is compiled into rules.

Central to achieving these results are the various
memories and processing units in Soar as presented in
Figure 1, as well as the task-independent knowledge that
controls the use of these knowledge sources. A critical
component of Soar’s ability to support these methods is its
employment of impasses when knowledge is incomplete.
Impasses are critical for identifying when action modeling is
necessary (a tie among competing actions) and for invoking
alternative approaches when rule-based action modeling
knowledge is missing. In addition, substates provide the
representational structure needed to support retrieving and
combining knowledge without disrupting the state of the

problem being attempted. These components appear to be
missing, or at least difficult to achieve, in other
architectures, and it would be informative to attempt to
duplicate the qualitative structure achieved here in other
cognitive architectures.

Acknowledgment
The authors acknowledge the funding support of the Office
of Naval Research under grant number N00014-08-1-0099.

References
Anderson, J. R. (2007). How Can the Human Mind Occur in

the Physical Universe? Oxford University Press.
Atance, C. M., and O'Neill, D. K. (2005). The emergence of

episodic future thinking in humans. Learning and
Motivation 36(2): 126-144.

Best, B. J. and Lebiere, C. (2003). Teamwork,
Communication, and Planning in ACT-R Agents
Engaging in Urban Combat in Virtual Environments,
International Joint Conference on Artificial Intelligence.

de Groot, A. D. (1965). Thought and choice in chess. The
Hague: Mouton Publishers.

Fikes, R., and Nilsson, N. (1971). STRIPS: A new approach
in the application of theorem proving to problem solving.
Artificial Intelligence 2, 189-208.

Forbus, K. and Gentner, D. (1997). Qualitative mental
models: Simulations or memories? Proceedings of the
Eleventh International Workshop on Qualitative
Reasoning. Cortona, Italy.

Johnson, S. H. (2000). Thinking ahead: the case for motor
imagery in prospective judgements of prehension.
Cognition, 74(1), 33-70.

Laird, J. E. (2008). Extending the Soar Cognitive
Architecture. Proceedings of the First Conference on
Artificial General Intelligence.

Newell, A., and Simon, H. A. (1972). Human problem
solving. Englewood Cliffs, NJ: Prentice-Hall.

Nuxoll, A. M. and Laird, J. E. (2007). Extending Cognitive
Architecture with Episodic Memory. Proceedings of the
22nd National Conference on Artificial Intelligence.

Schacter, D. L, and Addis, D. R. (2007). The cognitive
neuroscience of constructive memory: remembering the
past and imagining the future. Philosophical Transactions
of the Royal Society of London. Series B, Biological
Sciences 362, no. 1481 (May 29): 773-786.

Wintermute, S. (2009). Integrating Reasoning and Action
through Simulation. Proceedings of the Second
Conference on Artificial General Intelligence.

Wintermute, S., and Laird, J. E. (2009). Imagery as
Compensation for an Imperfect Abstract Problem
Representation. Proceedings of the 31st Annual
Conference of the Cognitive Science Society.

Xu, J. Z. & Laird, J. E. (2010). Instance-Based Online
Learning of Deterministic Relational Action Models,
Proceedings of the Twenty-Fifth Conference on Artificial
Intelligence.

138

Using A* Graph Traversal to Model Conflict Resolution in Air Traffic Control

Stefan Lehmann (Stefan.Lehmann@nicta.com.au)
National ICT Australia, Queensland Research Laboratory, Level 1, McElwain Building (24A), The University of Queensland

Brisbane QLD 4072 Australia

Scott Bolland (scottb@itee.uq.edu.au)
School of ITEE, General Purpose South Building (78), The University of Queensland

Brisbane QLD 4072 Australia

Roger Remington (r.remington@psy.uq.edu.au)
School of Psychology and NICTA QRL, McElwain Building (24A), The University of Queensland

Brisbane QLD 4072 Australia

Michael S. Humphreys (mh@psy.uq.edu.au)
School of Psychology and NICTA QRL, McElwain Building (24A), The University of Queensland

Brisbane QLD 4072 Australia

Andrew Neal (Andrew@psy.uq.edu.au)
School of Psychology and NICTA QRL, McElwain Building (24A), The University of Queensland

Brisbane QLD 4072 Australia

Abstract

The efficient detection and resolution of conflicts represent
the key tasks of Air Traffic Controllers in enroute
environments. The complexity of these tasks imposes
significant challenges on the design of cognitive models that
are capable of adequately simulating them. Yet, the
availability of such models is crucial for a number of
applications, including the evaluation of current and future
Air Traffic Control concepts. In this paper, we will propose a
novel modeling approach which adopts the principles of the
A* graph search scheme from Artificial Intelligence to
represent the cognitive decision making process of the human
operator. Results of an initial version of this model will be
presented, showing that the proposed approach has promise.

Keywords: Cognitive Modeling; Cognitive Systems
Engineering; Artifical Intelligence; Decision Making; Air
Traffic Control.

Introduction

In most western economies, the volume of air traffic is

currently growing at a rate of 4 to 6 percent per annum.

According to its 2006 annual report, the US Federal

Aviation Administration (FAA) acknowledges that air

traffic controllers will not be able to handle traffic at

25 percent above today’s level, and that traffic may increase

this much by 2016 (ICAO, 2004). In response to this

problem, the United States Federal Aviation Administration

and Eurocontrol are currently pursuing programs to greatly

increase airspace capacity (FAA, 2010; Eurocontrol, 2008),

without raising either the workload or number of air traffic

controllers.

Cognitive modeling could provide an important vehicle

for the evaluation of new operational concepts if it is

possible to simulate performance on challenging air traffic

control operations. For example, models making reasonable

estimates of sector workload could inform evaluations of

safety and staffing. One of the more cognitively complex

tasks of controllers is the detection and resolution of

conflicts (Lehmann, Bolland, Remington, Humphreys,

Fothergill, Hasenbosch, & Neal, 2010). The n-aircraft

conflict resolution problem is highly combinatorial and

cannot be optimally solved using classical mathematical

optimization techniques. This inherent complexity imposes

significant challenges on the design of corresponding

models.

This paper will propose a new method that simplifies the

task of modeling expert decision making in Air Traffic

Control (ATC) environments by relying on domain-specific

simple heuristics that humans deploy to produce accurate

decisions (Todd & Gigerenzer, 2007). The conflict

resolution mechanism adopts the principles of the A* search

algorithm (Felner, Stern, Ben-Yair, Kraus, & Netanyahu,

2004; Lee, Osman, & Sabudin, 2009; Leigh, Louis, &

Miles, 2007). The resulting scheme implements a search

through a space of conflict solutions. System states are

evaluated using optimization criteria encapsulating the

controller’s goals. Each optimization criterion is associated

with a number of individual cost functions that penalize

deviations of the system states from the goal states. The

focus on psychologically plausible strategies, rather than

representative psychological processing mechanisms, was in

part a response to the complexity of decision making in

ATC and the large number of unobservable factors that

would need to be incorporated (e.g., memories for previous

or typical solutions). Moreover, the strategies we use were

elicited from highly experienced controllers and thus

encapsulate experts' insights and knowledge. Our working

hypothesis is that the use of psychologically plausible

139

solution heuristics and optimization criteria in conjunction

with the constraints imposed by the environment will

produce human like behavior.

We first describe the conflict detection mechanism, then

detail the manner in which the model selects solutions using

the optimization criteria to find a path in the search tree.

Finally, we present empirical tests of an initial

implementation of the model showing good but not perfect

fits to data from human controllers.

Conflict Detection Scheme

The current implementation of the conflict detection scheme

is based on the model proposed in Loft et al. (2009). It

detects pairs of conflicting aircraft in a hierarchical fashion.

Its decomposition into three operational stages allows for a

run-time efficient implementation. Potential conflicts are

verified by extrapolating the flight paths of all aircraft that

are present in the given scenario, and by subsequently

identifying violations of separation standards between the

flight paths. Positional aircraft uncertainty is accounted for

in this process. The three stages proceed as follows:

Stage 1: Coarse check of vertical separation

A coarse check is performed to verify the vertical separation

between aircraft. This stage checks if the vertical corridors

of any two aircraft of interest are separated by more than

1000 ft, where the vertical corridors are defined by the

aircraft’s target altitude and cleared altitude respectively.

Stage 2: Lateral separation check

If the first stage (coarse check) reveals the existence of a

possible vertical conflict between two aircraft, the model

deploys the so-called Trajectory Modeller to check for a

lateral conflict. At any given time t, the Trajectory Modeller

extrapolates the flight paths up to time t + 10 min in discrete

∆T = 5 sec steps. The aircraft positions at each time step are

subject to positional uncertainty, where the uncertainty

increases successively over time based on a step function.

More specifically, the extrapolated aircraft position at a

discrete time step tk=k∆T, k=0, 1, 2, 3,… is associated with

a discrete uncertainty interval [ak∆T, bk∆T], where the

coefficients ak and bk associated with the lower and upper

limits of the interval are:

)98.0(trunc kak ⋅= Equation 1

])1[02.1(trunc +⋅= kbk Equation 2

Stage 3: Final vertical separation check

If the second stage (lateral separation check) verifies a

potential lateral conflict between two aircraft of interest, a

third stage will be deployed to check for vertical conflicts.

For this purpose, the respective flight paths are vertically

extrapolated based on the maximum and minimum climb or

descent rates of the aircraft. Response times of the aircraft

are currently not considered. That is, the aircraft are

assumed to instantaneously initiate the actions associated

with the controller’s interventions.

Decision Making Model

The proposed decision making model adopts the principles

of the A* graph search algorithm (Felner, Stern, Ben-Yair,

Kraus, & Netanyahu, 2004; Lee, Osman, & Sabudin, 2009;

Leigh, Louis, & Miles, 2007). This algorithm relies on a

state-space search engine to evaluate the decision

alternatives in a hierarchical fashion. Hierarchical search

has been shown to produce good modeling solutions to

complex aeronautical problems in the past (Nason & Laird,

2005; Rosbe, Chong & Kieras, 2001).

A* finds the minimum cost path in a decision tree through

a partial search in the solution space. The avoidance of an

exhaustive search presents a significant advantage for its

application in the ATC domain, where the decision making

process poses a complex problem that typically leads to an

extensive search tree in general traffic scenarios. That is, the

topology of the search structure does not need to be known

a-priori. In our model, the search space consists of solution

types, each representing an action that could be taken to

resolve the conflict. The solution types are based on simple

heuristics that have been obtained from experts (using

interviews and controlled experiments), and from data

mining (using radar track data).

Solution Types

The current implementation of the conflict resolution model

provides a set of three different solution types which may be

applied to the aircraft involved in potential conflicts. Before

a solution can be considered for exploration, one or more

conditions of applicability must be satisfied. Each solution

has a particular weight. A smaller weight corresponds to a

more favourable solution. The effective weight of a solution

is the sum of a base weight and a penalty value. The purpose

of the penalty values is to impede the selection of solutions

that would severely disturb an aircraft’s intended flight path.

The individual solution types and their weights are:

A. Assign closest level below or above conflict zone

The principle of this solution type is to ensure sufficient

vertical separation by assigning one of the two aircraft of

the conflict pair a safe altitude either beneath (low solution)

or above (high solution) the other aircraft whilst they are in

the region of the airspace where a loss of lateral separation

is possible. More specifically, assuming two conflicting

aircraft A and B, the low solution is applicable if A is not

already descending through the low solution. Alternatively,

the high solution is applicable if A is not already climbing

through the high solution. This avoids direct transitions

from a descent into a climb or from a climb into descent

respectively.

Figure 1 illustrates an example where both aircraft A

and B are on climb from Flight Level (FL) 110 to FL150

and from FL120 to FL160 respectively.

140

Figure 1: Assign closest level below

The climb of aircraft A is halted below aircraft B by

assigning FL130 to aircraft A.

The base weight of this solution type is (-0.5). Penalty

values in the amount of +0.1 are additionally applied if the

solution applied to A falls outside the transitional altitude

band defined by A’s current and cleared altitudes.

B. Assign separated levels

The second solution type involves modifying the levels of

both aircraft, assuming a pair of conflicting aircraft where

one aircraft is climbing and the other aircraft is descending.

Figure 2 illustrates the basic concept of this solution, once

again using a conflict pair of aircraft A and B. In this

example, aircraft A is climbing from FL110 to FL150, while

aircraft B is descending from FL150 to FL110.

Figure 2: Assign separated levels

In this case, the applicable solution is to interrupt both the

climb of aircraft A and the descent of aircraft B by assigning

FL130 to aircraft A and FL140 to aircraft B, thereby

ensuring that sufficient vertical separation between the

aircraft is maintained.

The base weight of this solution type is (-0.5). Penalty

values in the amount of +0.1 are added to the weight for any

reverse climb or reverse descent intervention.

C. Vector behind solution

The vector behind solution proceeds as follows: A circle

with a radius of 6nm (nautical miles) is placed around

aircraft B at its current position. Aircraft A is pointed behind

aircraft B by vectoring it to the heading that establishes a

tangent to this circle, thereby ensuring sufficient lateral

separation between the two aircraft.

This solution is generally applicable to all conflicting

aircraft. Its base weight is (-0.5). There are no additional

penalties.

Adaptation of A* to the ATC decision making task

The search space of the A* algorithm can be graphically

represented by a decision tree. An example graph is shown

in Figure 3. Each node in the decision tree represents a

system state that, with the exception of the start node (S),

results from the path of previous actions leading to it. The

edges between the nodes represent the path of actions. Each

edge has a value (shown as an integer in Figure 3)

representing the cost incurred by traversing that edge. It is

worthwhile to note that apart from the goal node (G), each

node has at least one decision alternative associated with it,

leading to a so-called child node.

Figure 3: A* example graph

The decision making process is effectively driven by the

cost function f(x). That is, A* ranks each path currently

under consideration based on f(x) to find the path with the

lowest traversal cost. f(x) is decomposed into a so-called

path-cost function g(x) reflecting the cost from the starting

node to the node of interest, and a “heuristic estimate” h(x)

of the distance to the goal node.

,)()()(xhxgxf += Equation 3

where x denotes some partial path. In other words, f(x)

represents the estimated final cost of the path leading to the

goal and including x. Under the right conditions, A*

guarantees to find the path with the lowest traversal cost

(Leigh, Louis, & Miles, 2007). The performance of A*

relies heavily upon the heuristic estimate h(x). A necessary

condition for A* to find the shortest path is that the heuristic

must underestimate the remaining distance.

One of the key aims in adopting the A* search scheme to

the ATC conflict resolution task consists in achieving a

model behavior that is closely aligned to the behavior of

human controllers. For this purpose, the concept of

optimization criteria was introduced. Each optimization

criterion Cn encapsulates the n
th

 goal of the controller.

Table 1 shows three examples for possible optimization

criteria:

Table 1: Three exemplary optimization criteria

n Optimization criterion Cn

1 Minimization of total number of aircraft interventions

2 Minimization of disruption to aircraft flow

3 Minimization of the controller’s workload

141

Each optimization criterion Cn is associated with a set of

descriptive attributes, Ank. These attributes are represented

by corresponding cost functions

.nknknk hgf += Equation 4

Summing up all the cost contributions across the

individual attributes yields the final cost function for the

individual criterion Cn:

()∑ +=

k

nknkn hgf Equation 5

Our initial version mainly aims at the implementation of

optimization criterion C1 from Table 1. That is, it tries to

resolve all conflicts given in the scenario with the fewest

aircraft interventions. However, the second criterion listed

in Table 1, C2, was additionally integrated into the model, to

account for the attempts of controllers to minimize

unfavorable flight maneuvers. Table 2 shows the individual

attributes for C1 and C2.

Table 2: Attributes of the optimization criteria as per the

current model implementation

Cn k Attribute Ank

C1 1 Preference of graph nodes of lower depth level

C1 2 Preference of nodes showing fewer remaining conflicts

C1 3 Number of conflicts of the aircraft subject to intervention

C1 4 Number of occurrences of the solution of interest

C2 1 Obstruction of unfavorable flight maneuvers

As Table 2 shows, C1 is represented by four attributes

and C2 by one attribute respectively. The aim of the

attribute A11 in Table 2 is to prioritize the selection of

solutions that belong to graph nodes at low depth levels.

The depth level of a node is determined by the number of

subsequent nodes lying in the decision path, that is, by the

number of actions leading to it. Therefore, the node depth

defining the corresponding cost function g11(x) represents

the number of interventions that have already occurred in

the path of interest x, and that have consequently already

imposed a penalty on the achievement of optimization

criterion C1.

Generally, the number of remaining conflicts in a given

node establishes a good indicator for the expected number

of remaining interventions. Consequently, this measure was

taken to define the cost component h12(x) for the

corresponding attribute A12 in Table 2. The metric was

encapsulated in the heuristic component h of the cost

function f as it represents a predictive cost estimate. The

number of conflicts that the aircraft the solution acts upon is

involved in represents an additional indicator for the

efficiency of the solution with respect to achieving

criterion C1 in the remaining path to the goal. The number of

remaining conflicts therefore forms the cost component

h12(x) corresponding to attribute A12. The underlying idea is

that in comparison to solutions that are applied to aircraft

that are involved in a single conflict only, solutions applied

to an aircraft involved in multiple conflicts have a greater

than zero probability of resolving multiple conflicts this

aircraft is subject to in one go. This likelihood of efficiently

minimizing the intervention count is further increased if in

addition to acting on aircraft involved in multiple conflicts,

the particular solution is suggested multiple times by the

solution logics for resolving different conflicts. The number

of total occurrences of the solution under consideration was

therefore taken to define cost component h13(x)

corresponding to attribute A13.

The cost function for attribute A21 is simply the sum of the

base weights of the solutions and the respective penalties as

described in the subsection entitled Solution Types. While

the base weights for the individual solutions are identical for

all solution types in the current implementation, the

additional penalties depend on the situational context. Their

purpose is to prevent the selection of solutions yielding

unfavorable aircraft maneuvers, such as reverse climbs and

reverse descents.

Based on this set of individual cost components, the cost

functions f0(x) and f1(x) are computed using Equation 5. The

final cost function f(x) is then just formed by adding f0(x),

f1(x), and a Gaussian noise term that accounts for the

probabilistic nature of the human decision maker. This noise

term is characterized by a relatively small variance and

therefore predominantly influences the selection of solutions

belonging to the same search tree level. Impacts of this

noise on solutions belonging to different tree levels are very

unlikely. All parameters required for the formulation of the

cost functions, including the variance of the noise, were

empirically chosen in the current implementation. The

effective cost f(x) establishes the basis for the decision

making process in the ATC search tree. This process will be

discussed in the following subsection.

ATC Search Tree

An example of the resulting ATC search tree is depicted in

Figure 4.

Figure 4: ATC search tree

142

In this example, the conflict detection model initially detects

four potential conflicts between aircraft pairs in the

scenario, as depicted in the root node within Figure 4. A set

of potential solutions is then constructed for each of the

potential conflicts present in this node. The entire set of

potential solutions is then evaluated by assigning individual

cost values fi,j to the solutions, where i (i = 0 for root node)

and j denote the indices of the current node and the solution

under consideration respectively. The solution having the

smallest cost value will finally be selected and applied,

creating a new child node with an associated set of conflicts.

In the example in Figure 4, the solution selected in the root

node resolves one of the four problems, leaving the

respective child node with three remaining problem pairs.

The process applied to the root node is then repeated for the

child node in a recursive fashion. Figure 4 also demonstrates

that solutions selected via a-priori evaluation may be

deemed to be inefficient via a-posteriori evaluation. For

example, the solution entitled ‘Give XXS new level’ creates

a new conflict, which leads to back-tracking behavior in the

search process. That is, the subsequent search evaluation

step may select a solution associated with the parent node,

rather than propagating further down from the child node

produced by the previous, inefficient solution. The overall

optimization scheme effectively leads to a downhill search

which is driven by the available set of solution types

(heuristics) and shaped by the situational context

(constraints).

Experiments

Aim and Methodology

To compare the model’s behavior against the behavior of

controllers, we simulated performance on a set of four

different scenarios of varying complexity that were also

presented to 14 En-Route, radar endorsed air traffic

controllers from Brisbane Centre. Figure 5 shows the

scenario with the highest complexity.

Figure 5: Scenario of highest complexity

The time participants had been endorsed as a controller

ranged from 10 to 20 years. Controllers were asked to

resolve the scenario by issuing restrictions to one or more of

the aircraft. They were instructed to work through the

scenario step by step, and to explain their actions in detail,

including the evaluation of potential problems, and the

processes of considering options and deciding on actions or

priorities. The interviews were based on the critical decision

method (Klein, Calderwood & MacGregor, 1989).

The simulation consisted of 100 runs of our decision

making model for each scenario. Our interest centers on the

degree to which the model used the same intervention rates

and types as the human controllers. Table 3 shows the

intervention types.

Table 3: Intervention types

Type Description

H0 Intervention other than H1, H2,…, H8

H1 Vector aircraft to the left

H2 Vector aircraft to the right

H3 Issue climbing instruction

H4 Issue descent instruction

H5 Extend an existing climb

H6 Extend an existing descent

H7 Interrupt an existing climb

H8 Interrupt an existing descent

Results

The results for the scenario with the highest complexity are

presented in Figures 6 and 7. Figure 6 shows the total

average intervention rates for the individual aircraft for both

controllers and model runs. Figure 7 shows the selection

rates of the individual intervention types.

It can be seen from Figure 6 that there is a reasonable

agreement between controllers and the model in selecting

the aircraft that are subject to intervention. However,

controllers appear to intervene with a wider range of aircraft

than the model, at more variable intervention rates: Aircraft

‘VHETR’ is excluded by the model in Figure 6.

BAW12 MUA177 UAL66 VHETR VHIDE VHSSE VHTTO VHXXS
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e
ra

g
e
 i
n
te

rv
e
n
ti
o
n
 r

a
te

Controllers

Model output

Figure 6: Total average intervention rates for the aircraft

143

Figure 7 demonstrates a reasonable agreement between

controllers and the model in the selection of the intervention

types. However, a reduced variability of the model can be

observed: In contrast to controllers, the model essentially

excludes the generation of intervention types H0

(‘Intervention other than H1, H2,…, H8’) and H5 (‘Extend

an existing climb’).

H0 H1 H2 H3 H4 H5 H6 H7 H8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

A
v
e
ra

g
e

 s
e
le

c
ti
o
n
 r

a
te

Controllers

Model output

Figure 7: Average selection rates of the intervention types

Conclusions and Outlook

This paper describes a novel approach for modeling the Air

Traffic Control (ATC) task using intelligent graph search.

The A* algorithm was adopted to model human decision

making under uncertainty and environmental constraints.

This model relies on the definition of optimization criteria

and associated attributes, where the attributes are

represented by corresponding components of the overall

cost function. The optimization criteria encapsulate

properties of the situational context that influence the

decision strategies of a human controller. They can

consequently enable the model to alter its behavior

accordingly. An initial implementation of this model is

proposed that aims at minimizing the total aircraft

intervention count under preservation of the realism of the

generated solutions. Empirical tests demonstrate good but

not perfect fits to data from human controllers. A reduced

variability of the model over controllers was observed, in

the selection of both the aircraft for intervention and the

actual types of intervention. This variability might be

induced by psychological processes that the model does not

capture, such as human attention and perception.

The results suggest that the modeling concept has promise

for its application to decision making in complex, dynamic

task environments. We therefore plan to extend the

approach in our future work by incorporating additional

optimization criteria; by advancing the current decision

making mechanisms; and by integrating adaptive behavior

into the model.

Acknowledgments

This research project is supported by Airservices Australia.

The authors acknowledge their contribution to this research

in providing access to subject matter experts and facilities.

The authors additionally thank Ms Selina Fothergill for

providing access to the data that was generated as part of her

PhD program in the School of Psychology, The University

of Queensland.

NICTA is funded by the Australian Government as

represented by the Department of Broadband,

Communications and the Digital Economy and the

Australian Research Council through the ICT Centre of

Excellence program.

References

Eurocontrol (2008). Introducing the next generation of air

traffic control. Available online:

http://www.eurocontrol.int/muac/gallery/content/public/d

ocs/Introducing%20the%20next%20generation%20of%2

0ATC.pdf

[Last accessed: 19-April-2010]

FAA (2010). FAA’s NextGen Implementation Plan.

Available online:

http://www.faa.gov/about/initiatives/nextgen/media/NGIP

_3-2010.pdf

[Last accessed: 19-April-2010]

ICAO (2004). Outlook for Air Transport to the Year 2015.

(Circular 304). Montreal, Canada: ICAO.

Lee, W. P., Osma, M.A., & Maziani, S. (2009). Design of

an Intelligent Route Planning System using an Enhanced

A*-search Algorithm. Third Asia International

Conference on Modelling & Simulation (pp. 40-44).

Lehmann, S., Bolland, S., Remington, R., Humphreys, M.S.,

Fothergill, S., Hasenbosch, S., & Neal, A. (2010).

Evaluation of a Model of Expert Decision Making in Air

Traffic Control. Proceedings of the 9
th

 Conference of the

Australasian Society for Cognitive Science (pp. 204-209).

Leigh, R., Louis, S.J., & Miles, C. (2007). Using a Genetic

Algorithm to Explore A*-like Pathfinding Algorithms.

Proceedings of the 2007 IEEE Symposium on

Computational Intelligence and Games (CIG 2007) (pp.

72-79).

Loft, S., Bolland, S., Humphreys, M., & Neal, A. (2009). A

Theory and Model of Conflict Detection in Air Traffic

Control: Incorporating environmental constraints. Journal

of Experimental Psychology: Applied, 15(2), 106-124.

Rosbe, J., Kieras, D., & Chong, R. (2001). Modeling with

perceptual and memory constraints: an EPIC-Soar model

of a simplified enroute air traffic control task (Tech. Rep.

AFRL-HE-WP-TR-2002-0231). Ann Arbor, MI: Soar

Technology Inc.

Todd, P. M., & Gigerenzer, G. (2007). Environments that

make us smart: Ecological rationality. Current Directions

in Psychological Science, 16(3), 167-171.

144

Computational Models of Perceptual Learning Across Multiple Auditory Tasks:

Modeling Daily Learning Limits as Memory Decay

David Little (d-little@u.northwestern.edu)
Department of Electrical Engineering and Computer Science

Northwestern University, Evanston, IL 60208, USA

Bryan Pardo (pardo@northwestern.edu)
Department of Electrical Engineering and Computer Science

Northwestern University, Evanston, IL 60208, USA

Abstract

Humans have a remarkable ability to adapt their perceptual
acuity to the task at hand, commonly referred to in the liter-
ature as perceptual learning. Understanding this ability at a
computational level may have important implications across
a wide variety of different psychological phenomena. There
is evidence suggesting this ability plays an important role in
speech comprehension, mathematics, and perceptual expertise,
for instance. Computational models of perceptual learning
have largely focused on hypothesizing how one or more mech-
anisms might explain the observed perceptual learning for a
single task. Here we explore how a single model might ex-
plain the learning curves across two auditory perceptual learn-
ing tasks. Our results suggest that an ideal observer model
with noisy input can predict learning when daily limits are not
reached, and that daily limits on learning can be modeled by
a decay of memory for trials observed on the current day of
practice.

Keywords: perceptual learning; ideal observer; plasticity vs.

stability; frequency discrimination; duration discrimination;

temporal interval discrimination

Introduction

Humans have a remarkable ability to adapt their perceptual

acuity to the task at hand, commonly referred to in the liter-

ature as perceptual learning (Fahle and Poggio, 2002). Per-

ceptual learning has been demonstrated in many different ex-

periments. In vision for instance, there are studies of vernier

hyper-acuity (Poggio et al., 1992), orientation discrimination,

and spatial frequency discrimination (Fiorentini and Berardi,

1980). Examples in the auditory domain include results for

frequency discrimination (Demany, 1985), and temporal in-

terval discrimination (Wright et al., 1997). Perceptual learn-

ing is often characterized as being highly specific both to the

task (Fiorentini and Berardi, 1980), and to the specific loca-

tion or range within a dimension (Wright and Zhang, 2009;

Poggio et al., 1992).

There is evidence that perceptual learning is important for

a great variety of real world tasks humans face (Kellman and

Garrigan, 2008). There is data suggesting that perceptual

learning helps us during speech comprehension (Norris et al.,

2003), that it can help children with dyslexia (Hayes et al.,

2003) and that it has an important role to play in the compre-

hension of mathematical formulae (Kellman et al., 2008).

Computational models of perceptual learning have the po-

tential to enable better predictions and to help us better under-

stand human data. Past computational work studying percep-

tual learning has largely focused on how specific mechanisms

might explain the particular properties of perceptual learn-

ing for a single task (e.g. Poggio et al., 1992; Petrov et al.,

2005; Jacobs, 2009). Such studies focus on the question of

how and/or where perceptual learning occurs within the hu-

man brain for a single perceptual task. Our goal here is to

develop a model of multiple perceptual learning tasks. By

looking across several tasks we can ultimately constrain our

model by requiring that a single parameter explain qualita-

tively different results across several tasks. Our research also

differs from past work in that, to the best of our knowledge,

there are no computational studies of perceptual learning for

auditory tasks.

Here we model auditory perceptual learning across two

tasks: temporal interval discrimination and frequency dis-

crimination, as discussed in Wright and Sabin (2007). By

modeling learning across several tasks our goal is to gain a

better understanding of why learning does or does not occur

under various training conditions. Our focus here is on mod-

eling the daily limits of learning: it was observed in Wright

and Sabin (2007) that training beyond some point in a sin-

gle day does not yield extra learning. Our results suggest

that limits on daily learning can be modeled by a decay of

the memory of trials observed on the current day of practice.

This decay is consistent with numerous studies of consolida-

tion suggesting newly acquired information in a day begins

in a volatile state, and is not made permanent until memories

are consolidated (e.g. McGaugh, 2000).

Human Data

This section reviews the human data and results originally

described in Wright and Sabin (2007). In this paper, they ex-

amined how varying the number of training trials practiced

per day affected learning over multiple days on two auditory

discrimination tasks: frequency discrimination and temporal-

interval discrimination. The basic question asked in the paper

was “how much daily training is sufficient for learning to oc-

cur?” The set of relevant findings we model here is that extra

trials practiced per day, past a certain point, do not appear to

lead to any further learning.

During the experiments, subjects practiced either a tempo-

ral interval discrimination task or a frequency discrimination

task for a single session each day of practice, for six days

over no more than two weeks. Each task was a two inter-

145

val forced choice: on each trial participants must pick which

of two stimuli is longer (higher) for the interval (frequency)

discrimination task. The stimuli were adjusted adaptively as

practice continues. As subjects do better, the difference be-

tween the standard (shorter) and comparison (longer) stimu-

lus gets smaller. This is a common procedure used in psy-

chophysics to find a performance threshold. The experiments

consisted of a two-by-two design over number of trials in a

day (360 or 900) and task type (frequency or interval). Each

of the four conditions used a different set of participants. Fur-

ther details of the training procedure can be found in Wright

and Sabin (2007).

The data suggest there are important within-day limitations

on human perceptual learning: extra practice past some point

does not improve learning any further and insufficient prac-

tice in a day yields little to no learning across days. Further,

the number of trials needed for learning is task dependent.

Specifically, if a subject practiced the temporal interval task

for 360 trials per day this yielded the same amount of learn-

ing as 900 trials per day. During the practice of frequency

discrimination, 900 trials of practice produced significantly

more learning than 360 trials. All the above observations

were statistically verified. Details can be found in Wright

and Sabin (2007).

Here our focus will be on modeling this first observed limit

within a day: past a certain point no further trials within a day

appear to yield further learning.

Method

This section describes and justifies the basic principles of our

model (which is evaluated in our Results section).

In terms of Marr’s (1982) levels of analysis, we restrict

ourselves largely to the informational level. When operating

at this level we make no claims about what algorithm is used

internally or how that algorithm is implemented in the human

brain. Since the informational constraints are not yet fully

understood for the modeled experiments, we believe this is

an appropriate level of analysis for the time being.

Specifically, we utilize an ideal observer analysis (Geisler,

2003). The idea is to consider human performance in refer-

ence to an ideal observer, which processes information in a

way that is ‘optimal’ in some sense. This can help to avoid

conflation between two distinct types of limitations on human

behavior. These are, respectively, informational and psycho-

logical limits. Informational limits are those limits that are

inherent to the task: even if an observer were to be perfect

they would still be subject to informational limits. An ex-

ample of an informational limit would be noise in the input:

any learner, no matter how smart, would have to deal with

the problems introduced by noise. Psychological limits on

the other hand are a product of resource limitations on the

part of the observer: if the observer was ‘smarter’ they might

be able to improve their behavior. An example of a psycho-

logical limit would be memory: with limited memory only so

many units of information can be stored, but a smarter learner

would be able to store more, and so improve behavior.

Since any observer is subject to informational limits, we al-

ways assume these are present. Psychological limits are then

only hypothesized as necessary: if a behavior could be ex-

plained solely in terms of informational limits, then no addi-

tional psychological limits would be hypothesized. Through-

out our discussion we make a distinction between the ideal

observer and the proposed psychological limits.

Based upon this principle we designed a system capable of

modeling the observed limits on the amount of useful daily

practice, as observed in Wright and Sabin (2007). We begin

by describing the commitments we made regarding what in-

formation is available to humans when performing this task.

We then describe an ideal observer model, and then identify

the ways in which our model of human performance differs

from the ideal observer.

Input

The input to our model is consistent with the following prop-

erties, which are explained in more detail below. These

choices represented a number of educated guesses as to

the form of the information humans receive, based on psy-

chophysical and physiological findings.

1. Differentiation along task relevant dimensions: e.g. 1 kHz

is represented differently than 2 kHz.

2. Corruption by noise.

3. Range specificity: e.g. energy near 1 kHz is encoded sepa-

rately from energy near 2 kHz.

4. Weber’s law.

Each of these properties is based on many observations.

Clearly the input is differentiated along task relevant dimen-

sions: if there was no differentiation at all along a task rele-

vant dimension, different stimuli of a task would appear the

same to us. Second, there are many evident sources of noise

to perceptual data, from noise in the world, noise during the

transduction of sound to neural impulses, and noise in the

nervous system itself. Range specificity is consistent with

the narrow generalization patterns observed during percep-

tual learning tasks (e.g. Poggio et al., 1992; Fiorentini and

Berardi, 1980; Wright and Zhang, 2009) and with the great

multitude of physiological data suggesting that neurons are

responsive to specific, limited ranges of stimuli (e.g. Brugge,

1992; De Valois and De Valois, 1980). Range specificity is

distinct from differentiation: for instance a single source of

information can differentiate between 1000 Hz and 200 Hz

by using a single number, 1000 or 200, which would not be

specific to a particular range; range specificity means that the

sources of information (e.g. neurons) representing 1000 Hz

and 200 Hz would be at least somewhat disjoint.

Weber’s law—which states that the minimum discernible

difference (or just noticeable difference) between stimuli

along a particular dimension is proportional to the magnitude

146

of the stimuli along that dimension—has long been estab-

lished as a useful rule of thumb for perceptual data (Moore,

2006).

In addition we make a number of simplifying assumptions.

We assume that, prior to perceptual learning, the input has

been correctly broken down into the various experimentally

relevant units (i.e. each input to our model represents a single

stimulus). How this happens in humans is not the focus of

this modeling experiment. Our second assumption is that the

dimensions of the stimulus are independent cues for the tasks

in question, which is correct for the two tasks we consider.

Frequency and temporal interval are represented on a log

scale. The frequency representation is found directly from the

model described in (Wang and Shamma, 1994)1. Our interval

representation is found based on a windowed autocorrelation

of the stimulus onsets. Both of these choices yield a repre-

sentation consistent with our above assumptions. The input

to the observer is a vector x of 228 terms: 128 features rep-

resenting frequency and 100 features representing temporal

interval. There are 128 bins for frequency because this is the

resolution of the model from (Wang and Shamma, 1994). The

number 100 for the interval representation was chosen arib-

trarially. The observations made in the Results section did not

change when this number was changed to 50 or 200.

We permute the input by an experimentally determined

amount of noise specific to each dimension of the stimulus

(σ2
t for the interval noise and σ

2
f for the frequency noise).

Note that since the representation is deterministic, when it is

applied directly to an ideal observer it would always respond

correctly. Choosing to represent all error in the system as in-

put noise is conservative in the sense that the ideal observer

will do more poorly under these conditions than if some of

the error was modeled as output noise, for instance.

Ideal Observer

We implement the ideal observer using a Bayesian approach

to learning: a probabilistic model which is learned during the

course of practice is used to determine the correct response on

each practice trial. This model is not meant to be a psycho-

logically plausible model of perceptual discrimination. It is

an optimal decision maker for this task, whose performance

can thus be used to identify in what ways humans are different

from an optimal choice.

For a single trial, there are two stimuli, and each stimulus

is encoded as a vector, x, of 228 terms: 128 features for the

frequency representation and 100 for the interval representa-

tion. Since we know that this input is permuted by Gaussian

noise the likelihood of each stimulus type—the standard (or

longer) and the comparison (or shorter)—can be modeled us-

ing a Normal distribution. We calculate the posterior model

analytically by assuming a conjugate prior (Gelman, 2004).

Learning and use of this model then follows a straightforward

application of Bayes rule and conjugate priors, described be-

1An implementation of this model can be found at
http://www.isr.umd.edu/Labs/NSL/Register.htm.

low.

Specifically the ideal observer learns a model of the stan-

dard (e.g. shorter) stimulus, S, and one for the comparison

(e.g. longer) stimulus, C for each task. Each model is a

multivariate Normal distribution, describing the probability

of observing a given input vector x. This distribution is spec-

ified by the mean vector µS for the standard model and µC

for the comparison. Each mean has 228 terms (one for each

frequency and interval value) and covariance matrix ΣS,or ΣC

with 228 rows and columns. Hence, the probability of ob-

serving a given input vector, assuming it is the standard is as

follows.

p(x|µS,ΣS) ∝ exp
[

(x−µS)
T

Σ
−1
S (x−µS)

]

(1)

To learn the model of S and C the observer must be pro-

vided with examples of the standard and the comparison.

These can be used to determine the probability of a given

µs and ΣS, using Bayes rule. Below xt represents the exam-

ple of the standard (shorter) stimulus observed at time t. On

each practice trial, feedback is given to the observer after it

responds, so on each trial the observer is provided with an-

other example of both the standard and the comparison.

p(µS,ΣS|x1) ∝ p(x1|µS,ΣS)p(µS,ΣS) (2)

p(µS,ΣS|x1,x2) ∝ p(x2|µS,ΣS)p(µS,ΣS|x1) (3)

...

p(µS,ΣS|xt , · · · ,x1) ∝ p(xt |µS,ΣS)p(µS,ΣS|xt−1, · · · ,x1)
(4)

Equation 2 requires that the prior probability p(µS,ΣS) be

known, which we will discuss shortly. Subsequent equations

show how an example xt updates the distribution of parame-

ters for S. Given a set of training examples, the probability of

x for model S is defined as follows:

p(x|S) =
ZZ

p(x|µS,ΣS)p(µS,ΣS|xt , · · · ,x1)dµS dΣS (5)

Equation 5 can be calculated given that conjugate priors are

used. Once p(x|S) and p(x|C) are known, Bayes rule can be

used to find the probability that the model should indicate that

the first (or second) stimulus is the longer of the two stimuli

presented on a trial.

To use this Bayesian learner we must define the prior of the

model (p(µ,Σ)), representing what people know before they

practice the task. There are many deep questions that might

be asked about what humans know about task before practice

and how they know it. Here we choose a simple approach

to selecting a prior: starting with a naive model (with mean

vector 0, and an identity matrix for covariance) the learner is

presented an experimentally determined number of trials of

each task (Nt trials of the interval task, and N f trials of the

frequency task).

147

Psychological Limits

We consider two modifications of the ideal observer de-

scribed in the previous section to model psychological lim-

its. The first is a direct result of the observation in (Wright

and Sabin, 2007) that for these tasks people do not appear

to learn within a day but only across days, hence our ‘daily’

model. The ‘daily’ model learns as per the ideal observer, but

responds based only on data from previous days of practice,

and not from the current day. This is used as a baseline model

during our evaluation in the next section. Our second mod-

ification models the hypothesis that there is a daily limit on

training: it does this by introducing a decay on the knowledge

obtained from trials on the current day. The ‘decay’ model

incorporates this limit, in addition to the limits of the ‘daily’

model. This proposed decay is a novel contribution of this

paper in that it has not been considered as an explanation for

the observed daily limit in these tasks before.

The decay in the model is implemented as follows. Given

a new example, xt+1 at trial t + 1, normally the model of

the standard (or comparison) stimulus is updated according

to Bayes rule in the following manner.

ft,d(µ,Σ | Dt+1,C) ∝

p(xt+1 | µ,Σ) ft,d(µ,Σ | Dt) fT,d−1(µ,Σ |C) (6)

In Equation 6, the function ft,d is the distribution over stimu-

lus parameters µ and Σ, on trial t of day d. Dt represents all

training examples observed for the current day, and C repre-

sents all examples observed on previous days (i.e. the con-

solidated information). T is the maximum number of trials

observed in a day. This expresses the same relation expressed

in Equation 4. However, with memory decay, this optimal

update is changed to the following rule.

ft,d(µ,Σ | Dt+1,C) ∝

p(xt+1 | µ,Σ) ft,d(µ,Σ | Dt)
1−L fT,d−1(µ,Σ |C) (7)

Equation 7 means that memory decay occurs for trials ob-

served on the current day. The distribution learned from a

previous day of practice remains in the same state it was at

the end of that day of practice (as determined by fT,d−1), in-

cluding any decay that occurred on that day. This decay is a

reasonable representation of loss of information within a day.

If L = 0 then the model is equivalent to the ‘daily’ model. If

L = 1 the daily practice has no effect on the model. Values

between 1 and 0 represent a continuum between these two

extreme conditions.

Note that it’s possible the decay should be over some

shorter period of time, rather than including all trials within a

day. For instance, it has been suggested that if a short nap is

taken this has the same benefit as a night of sleep for purposes

of perceptual learning (Mednick et al., 2003). This could eas-

ily be explained by our model by having Dt contain only those

trials that occur after the last period of sleep, and C contain

all other trials. However, this is beyond the scope of the ex-

periments modeled in this paper.

Results

Our hypothesis is that the observed daily limits on learning

can be modeld as a decay of the memory of trials on the cur-

rent day (while leaving memory of previous days’ trials un-

touched). We compared a computational model that had this

hypothesized limit (the ‘decay’ model) to one that did not (the

‘daily’ model). To compare these models to human data we

ran the same adaptive track blocks used in (Wright and Sabin,

2007) to determine thresholds. On each trial the original au-

dio input was represented to the model and a response was

given, and then feedback about the correct answer was used

by the model to learn. This procedure was repeated 30 times,

to simulate 30 different experimental subjects. This number

was chosen to yield satisfactory statistical power for our anal-

ysis.

Results for the two models are discussed below. Figure 1

displays the results of these two models alongside human per-

formance, as observed in (Wright and Sabin, 2007). From the

graphs it appears that both models appear to fit the results well

for the 360 trials/day interval discrimination condition and the

900 trials/day frequency discrimination condition. The decay

model appears to also fit the data for the 900 trials/day inter-

val discrimination condition better than the daily model.

Our statistical tests supported this observation. For each

iteration, condition and day of a model we found the squared

error to the mean human performance on that day. Table 1

shows the mean squared errors across conditions and models.

Because the human and model data were qualitatively dif-

ferent in the 360 trial/day frequency condition we excluded

it from the below analysis, since any differences between the

two models in this condition will not be meaningful. A 3x2x6

ANOVA across conditions and models and within days of

these squared errors showed a main effect across condition

and model (p < 0.028). A Tukey’s HSD test suggested that

the decay model’s mean squared error was significantly less

than the daily model’s mean square error (p < 0.014).

Interval Frequency

360 900 360 900

daily 2.68(0.32) 3.40(0.37) 18.09(1.1) 1.24(0.11)

decay 2.77(0.29) 2.03(0.19) 24.60(1.2) 1.19(0.14)

Table 1: Mean squared errors for the daily and decay model.

Errors are the difference between a model threshold and the

mean for the human data on a given day and condition. Num-

bers in parenthesis indicated standard errors.

Model parameters (which determined noise and prior

knowledge) were adjusted so that the daily model matched

human performance on day 1 and day 6 of all conditions ex-

cept the 360 trials/day frequency condition, using the opti-

mization algorithm described in Huyer and Neumaier (2008).

These conditions were chosen because this was where learn-

ing appeared to occur. Since the noise of the model strongly

influences the final performance of our model on day 6 (after

learning), it should be fit to those conditions where learning

148

1 2 3 4 5 6

8
1
0

1
4

1
8

Interval Discrimination: 360 trials/day

days

∆∆
t

1 2 3 4 5 6

8
1
0

1
4

1
8

Interval Discrimination: 900 trials/day

days

human

daily

decay

∆∆
t

1 2 3 4 5 6

8
1
0

1
4

1
8

Frequency Discrimination: 360 trials/day

days

∆∆
f

1 2 3 4 5 6
8

1
0

1
4

1
8

Frequency Discrimination: 900 trials/day

days

∆∆
f

Figure 1: Results for ‘daily’ and ’decay’ models compared to human performance. Results are averaged across 30 runs of

each model. ∆ f represents the difference between the standard (lower) and comparison (higher) frequency stimuli for the

frequency task, and ∆t the difference between the standard (shorter) and comparison (longer) stimuli for the interval task. The

adaptive track method used finds the 79% accuracy of a subject or model. Lower delta’s indicate that the human participants

are performing better. A model is accurately predicting the human data if its curve is closer to the human curves. Bars indicate

standard errors.

appears to occur. The parameters for prior knowledge are de-

pendent on this noise and so we fit it jointly and under the

same conditions as the noise. For reasons that will become

clear below we also matched this data to human performance

on day 2 of the 900 trials/day interval discrimination task.

An analogous procedure was used for the decay model ex-

cept that the decay parameter (L) was also adjusted, and fit

to the same days as above. The data was fit to day 2 for the

900 trials/day interval. This single day was chosen so as to

be minimal (to avoid overfitting) and such that it was a place

where L might cause an observable change in the results. This

same day was used for the daily model above so that both

procedures had access to the same information. All parame-

ters were selected so as to maximize the posterior probability

of the selected days given the human thresholds (assuming

thresholds on a day are Normally distributed, which is con-

sistent with the analysis in Wright and Sabin (2007)).

Discussion & Conclusions

In this paper we evaluated a model of learning across two

simple auditory tasks. Our goals differed from that of pre-

vious work (e.g. Poggio et al., 1992; Petrov et al., 2005; Ja-

cobs, 2009) in that we considered auditory tasks rather than

visual tasks, and in that we considered a single model that

could explain results across several tasks. To the best of our

knowledge, ours is the first computational model of auditory

perpetual learning.

Our contributions in this paper were to show that our

‘daily’ model could accurately model two of the four con-

sidered experimental conditions and that our ’decay’ model

(which included a decay of memory for the trials observed on

current days) could model an additional condition (900 tri-

als/day of interval discrimination). This result suggests that

the minimal difference in learning for this condition and the

360 trials/day of interval discrimination could be caused by

memory loss.

Modeling this condition using memory decay is consistent

with numerous studies of consolidation suggesting newly ac-

quired information begins in a volatile state, and is not made

permanent until consolidation occurs after practice is com-

plete (McGaugh, 2000). In cases where consolidation is in-

terfered with, perhaps what happens is that the memory of

observed trials on a task decays before it can be stored in long

term memory. The 900 trial/day interval discrimination con-

dition would then represent an intermediate case where con-

solidation has yet to occur (perhaps because practice is still

149

ongoing), and hence memory decay degrades part of what

has been learned. Once practice is complete consolidation

can commence given that no other interfering effects occur.

The model presented here does not explain one of the ex-

perimental conditions we considered (the condition with 360

a trials of frequency discrimination a day). In this condition

people did not appear to learn but our model did, suggest-

ing that the human results cannot be explained simply by

the fact that fewer trials were observed, which is consistent

with the observations made in Wright and Sabin (2007). We

have considered several possible factors that might explain

this condition, but as of yet, no factor we have considered

can explain both the 360 trial interval discrimination task and

the 360 trial frequency discrimination task using a single pa-

rameter. Any model using a different parameter per condition

would be meaningless in that any such model would fit the

data. This suggests to us that more perceptual learning tasks

must be considered before a meaningful model for this condi-

tion and others like it can be proposed, and is a goal of future

work. In the future, it is also our plan to consider conditions

where people practice several tasks at once, to help us under-

stand why learning does or does not occur, such as in (Banai

et al., 2009).

This paper thus represents a first step toward developing a

model that can explain learning across a number of percep-

tual learning tasks, rather than modeling behavior on a single

task. Such a model must consider more constraints than one

that doesn’t, which can help provide a better understanding

of how and when perceptual learning occurs and why.

Acknowledgements

We’d especially like to give thanks to Beverly Wright for

her helpful comments, and to Andy Sabin for his help pro-

viding access to the data from Wright and Sabin (2007).

This research was supported, in part by Northwestern Univer-

sity’s Cognitive Science program and by US National Science

Foundation grant 0643752.

References

K. Banai, JA Ortiz, JD Oppenheimer, and BA Wright. Learn-

ing two things at once: differential constraints on the ac-

quisition and consolidation of perceptual learning. Neuro-

science, 2009.

J Brugge. The Mammalian Auditory Pathway: Neu-

roanatomy, volume I, chapter An overview of central audi-

tory processing., pages 1–22. Springer Verlag, Wiesbaden,

Germany, 1992.

RL De Valois and KK De Valois. Spatial vision. Annual

Review of Psychology, 31(1):309–341, 1980.

Laurent Demany. Perceptual learning in frequency discrim-

ination. The Journal of the Acoustical Society of Amer-

ica, 78(3):1118–1120, 1985. doi: 10.1121/1.393034. URL

http://link.aip.org/link/?JAS/78/1118/1.

M. Fahle and T. Poggio. Perceptual learning. MIT Press

Cambridge, MA:, Cambridge, MA, USA, 2002.

A. Fiorentini and N. Berardi. Perceptual learning specific

for orientation and spatial frequency. Nature, 287:43–44,

1980.

A. Gelman. Bayesian data analysis. CRC press, 2004.

E.A. Hayes, C.M. Warrier, T.G. Nicol, S.G. Zecker, and

N. Kraus. Neural plasticity following auditory training in

children with learning problems. Clinical Neurophysiol-

ogy, 114(4):673–684, 2003.

W. Huyer and A. Neumaier. SNOBFIT–Stable Noisy Opti-

mization by Branch and Fit. ACM Transactions on Mathe-

matical Software (TOMS), 35(2):9, 2008.

RA Jacobs. Adaptive precision pooling of model neuron ac-

tivities predicts the efficiency of human visual learning.

Journal of Vision, 9(4):22, 2009.

P.J. Kellman and P. Garrigan. Perceptual learning and human

expertise. Physics of Life Reviews, 2008.

P.J. Kellman, C. Massey, Z. Roth, T. Burke, J. Zucker,

A. Sawa, K.E. Aguero, and J.A. Wise. Perceptual learning

and the technology of expertise Studies in fraction learn-

ing and algebra. Pragmatics & Cognition, 16(2):356–405,

2008.

D. Marr. Vision: A Computational Approach. Freeman &

Co., San Francisco, 1982.

James L. McGaugh. Memory–a century of consolidation. Sci-

ence, 287(5451):248–251, 1 2000.

S. Mednick, K. Nakayama, and R. Stickgold. Sleep-

dependent learning: a nap is as good as a night. Nature

Neuroscience, 6(7):697–698, 2003.

Brian C. J. Moore. An Introduction to the Psychology of

Hearing. Elsevier, London, UK, 5th edition, 2006.

D. Norris, J.M. McQueen, and A. Cutler. Perceptual learning

in speech. Cognitive Psychology, 47(2):204–238, 2003.

A.A. Petrov, B.A. Dosher, and Z. Lu. The Dynamics of

Perceptual Learning: An Incremental Reweighting Model.

Psychological Review, 112(4):715, 2005.

Tomaso Poggio, Manfred Fahle, and Shimon Edel-

man. Fast perceptual learning in visual hyperacu-

ity. Science, 256(5059):1018–1021, 1992. URL

http://www.jstor.org/stable/2877128.

Kusan Wang and Shihab Shamma. Self-normalization and

noise-robustness in early auditory reprersentations. IEEE

Trans. On Speech and Audio Processing, 2(3):421–435,

1994.

B.A. Wright and Y. Zhang. A review of the generalization of

auditory learning. Philosophical Transactions of the Royal

Society B: Biological Sciences, 364(1515):301, 2009.

B.A. Wright, D.V. Buonomano, H.W. Mahncke, and M.M.

Merzenich. Learning and generalization of auditory

temporal-interval discrimination in humans. Journal of

Neuroscience, 17(10):3956–3963, 1997.

Beverly Wright and Andrew Sabin. Perceptual learning: how

much daily training is enough? Experimental Brain Re-

search, 180(4):727–736, 07 2007.

150

A Human-Markov Chain Monte Carlo Method For Investigating Facial
Expression Categorization

Daniel McDuff (djmcduff@mit.edu)
MIT Media Laboratory

Cambridge, MA 02139 USA

Abstract
This paper demonstrates how a human-Markov Chain Monte
Carlo (MCMC) method can be used to investigate models of
facial expression categorization. Data were collected from four
participants. At each step participants were asked to select a
representation from a pair, that most resembled a particular
emotional state; this was repeated iteratively. As such, they
formed a component in the MCMC process. The representa-
tions were line drawn facial images with 10 nodes and four
degrees of freedom. The judgements formed samples for a set
of interleaved Markov Chains. These were mapped to a two-
dimensional plane using Generalized Discriminant Analysis.
We contrast the results of the MCMC task with those of a sec-
ond discrimination task.
Estimates of the distributions along each of the four dimen-
sions showed that for the outer eyebrow and lip corner vari-
ables one of the categories could be discriminated with confi-
dence.
The average examples from both MCMC and discrimination
tasks were both plausible. However, the MCMC method al-
lowed for greater sampling from areas of high interest. Finally,
we show that a naive Bayes classifier trained on the MCMC
data can be used to successfully predict human classification
in a discrimination task.
Keywords: MCMC; categorization; representations; facial ex-
pressions; emotion.

Introduction
The face provides an important channel for communicating
affect. Much emotional information is encoded in people’s
facial expressions (Darwin, Ekman, & Prodger, 2002). How-
ever, affect label mapping from facial expressions is often dif-
ficult to define. In this paper we apply a Markov Chain Monte
Carlo (MCMC) method (Neal, 1993) to investigate facial ex-
pression categorization. Using humans as components in a
MCMC process we demonstrate how we can sample from
cognitive representations of facial expressions.

MCMC is a sampling method that can be used to estimate
probability density functions. A parameter space is searched
via Markov Chains. The sampling procedure forms a chain
that can be shown to tend to the correct distribution (Neal,
1993). In an environment where the distributions of interest
are likely to occupy a small subspace only, MCMC can be an
efficient sampling method.

Emotions are controversially defined. However, Ekman
and Friesen’s (Ekman & Friesen, 1978) set of six basic emo-
tions are an accepted set of simple examples. These six are
used as a starting point for our study: anger, disgust, fear,
happiness, sadness and surprise.

This paper investigates how people map observed facial ex-
pressions to affect labels. Griesser et al. (Griesser, Cunning-
ham, Wallraven, & Bulthoff, 2007) consider a psychophysi-
cal investigation of facial expressions. Scene parameters were

systematically manipulated in order to investigate the impor-
tance of particular facial regions in expression recognition.
Padgett (Padgett & Cottrell, 1997; Padgett, 1998) investigates
representations of facial images for emotion classification.
However, only 97 images are included in the data set. As a
result there are a limited number of examples in a high dimen-
sional space from which participants were forced choose one.
Both these studies consider a pre-scripted set of stimuli and
do not allow efficient exploration of each participant’s psy-
chological representations by allowing them to accept and re-
ject samples based on how they fit with the category. Padgett
represents human face judgements under multi-dimensional
scaling (MDS). Such a method allows for a quantitative mea-
sure of similarity in the relationships between facial expres-
sions.

This work considers human labels for expressions rather
than the subjects state when displaying the emotion. It is im-
portant to consider that a persons evaluation of another affect
given their facial expression may not be representative of their
actual internal state.

Reasonable facial expressions for a particular emotion la-
bel are likely to occupy only a small subspace of the total
space of possible expressions. This motivates the use of an
MCMC method. MCMC allows regions within a facial action
feature space to be populated with labels more efficiently that
a discrimination task.

In particular, we investigate the significance of each feature
dimension in the categories found. We estimate the density
distributions for each category along each dimension. For a
simple three category case considered, certain dimensions al-
low a particular category to be discriminated with confidence.

This is the first work I am aware of that models the relation-
ship between emotional states and facial expressions drawn
from continuous values within a multi-dimensional feature
space. We allow the participants to navigate to an area of high
association with the particular label and sample from this re-
gion more frequently (Neal, 1993). Representations are not
limited by the number of examples in a data set but only by
the ranges placed on the variables.

Related Work

Nosofsky’s Generalized Context Model (GCM) of classifica-
tion proposes that people represent categories by storing ex-
emplars in memory (Nosofsky, 1986). The prototype theory
assumes a category’s mental representation is based on a pro-
totypic exemplar (Dopkins & Gleason, 1997). In contrast,
the exemplar theory assumes a set of exemplars are encoded

151

Figure 1: Face representation used in the tests. There are
four degrees of freedom. 1. Position of outer eyebrows, 2.
Position of inner eyebrows, 3. Position of lip corners and
4. Lip center separation. Center of the eyebrows was fixed
(black node). Point about which lip center separation was
measured was fixed (black node).

in the category’s mental representation (Nosofsky & Palmeri,
1997). A new entity is compared to the exemplars in order to
establish whether it belongs to the category.

Sanbourn et al. (Sanborn & Griffiths, 2008; Sanborn, Grif-
fiths, & Shiffrin, 2009) were the first to demonstrate the use
of people as components in an MCMC algorithm, in order
to explore psychological categories. A method was verified
and used to demonstrate that human-MCMC can be used to
estimate the structures of real-world animal shape categories.

Padgett (Padgett & Cottrell, 1997) considered representa-
tion of facial images for emotional classification. However
this study is constrained by the fact that the facial image data
set used was limited to a small number of images. The train-
ing data relied upon is limited in many cases as the images
must be subject to agreement by expert labelers.

Methodology
This is the first investigation, to my knowledge, using cartoon
representations of faces in order to investigate categorization
of affect by facial expressions. As such it was necessary to
begin with a facial representation having a small number of
degrees of freedom. A cartoon representation was created
with four degrees of freedom that allowed variation of eye-
brows, lip corners and lip separation. These are demonstrated
in Figure 1.

The limits placed on the displacement of each node are
shown in Figure 2. The representation was symmetrical
(eyebrows mirrored one another as did the left and right
sides of the mouth). A restriction was applied in all tests that
prevented the center of the eyebrows being the lowest point.
This was the only restriction on the movement other than
parameter range limits described. The degrees of freedom

Figure 2: Continuous ranges of four free parameters on the
face. Representations of the extreme cases are shown at either
end of the scales.

loosely correspond to the following action units which
are identified in Ekman’s (Ekman & Friesen, 1978) Facial
Action-unit Coding System (FACS).

Outer Eyebrows - Outer Brow Raiser (AU2).
Inner Eyebrows - Inner Brow Raiser (AU1), Brow Lowerer
(AU4).
Lip Corners - Lip Corner Puller (AU12), Lip Corner Depres-
sor (AU15).
Lip Separation - Lips Part (AU25), Jaw Drop (AU26), Mouth
Stretch (AU27).

In a set of initial tests two participants performed discrim-
ination tasks with three facial representations. The first pre-
sented a mouth, nose and eyebrows where the nodes were
joined by straight lines. The second added an outline of the
face to the image. The third joined the nodes with smooth
curves and also contained the outline of the face, as in Fig-
ure 1. The participants more consistently labeled the expres-
sions given the third representation. As a result, this was used
for the subsequent tests. This was a male face. Investigation
into the effects of gender and ethnicity in this domain are not
considered here.

All tests described in this paper were performed on a 15”
MacBook Pro. Processing of the data and all GUI interfaces
were created in MATLAB. None of the participants in the
study were given rewards for completing the tasks. This study
was approved by the Massachusetts Institute of Technology
Committee On the Use of Humans as Experimental Subjects
(COUHES).

Experiments
Three experiments were designed. The preliminary experi-
ment was carried out to identify appropriate categories for the

152

Figure 3: Histogram of results from the preliminary experi-
ment, showing the frequency with which each category was
chosen. Four participants labeled 40 different faces each.

human-MCMC tests. The human-MCMC experiment was
then conducted to collect samples from these categories. The
discrimination experiment was carried out to validate the dis-
tributions formed by the MCMC tests.

Preliminary Experiment

In a preliminary experiment four participants were separately
shown a series of 40 cartoon faces and were asked to visu-
ally categorize them as angy, disgusted, fearful, happy, sad,
surprised or other. The visual stimuli were generated from a
uniform distribution over the parameter ranges shown in Fig-
ure 2. Representations outside these ranges were not consid-
ered as they were significantly different from natural move-
ments, as judged by two participants in the initial tests.

Figure 3 shows a histogram of results from the preliminary
discrimination experiment. Surprised, disgusted and fearful
were each identified as the expression label in less than 5%
of cases.

The results demonstrate that the four degree of freedom
faces were not versatile enough to clearly represent all of the
states. For instance the widening of the eyes that might be
expected in a fearful expression was not represented.

There are likely to be many other indicators that influence
our judgement of a person’s affect that are not captured here.
Ekman’s facial action coding system (FACS) contains over
60 facial actions and movements many of which have been
shown to discriminate between affective state (El Kaliouby &
Robinson, 2005). These include skin texture changes, more
subtle facial actions and movements. Examples are: nose
wrinkles, head nods, shakes and tilts. Contextual information
is also absent in our stimuli.

As a result, the affect categories were restricted to happy,
sad and angry, which were the 3 most commonly identified
categories in the preliminary experiment.

Human-Markov Chain Monte Carlo Experiment

Markov chain Monte Carlo (MCMC) is a sampling technique.
At each step of the algorithm a proposed state is compared
to the current state and one is rejected. The accepted state
becomes the current state for the next step. The desired dis-
tribution is approximated using the Markov chain formed by
the accepted samples. In this experiment, the MCMC analy-
sis was performed by presenting two representations, one the
current state in the chain and the other a proposed represen-
tation. The participants were asked: ‘Which one is the more
happy face?’ for chain one, ‘Which is the more sad face?’
for chain two and ‘Which is the more angry face?’ for chain
three. They selected the appropriate choice using a mouse
click on a button below the appropriate picture.

Sanborn et al. identified in their human-MCMC analy-
sis of animal representations that decision rule biases could
form towards the current state or proposal (Sanborn et al.,
2009). This led to unfavorable effects on the outcomes. In or-
der to reduce the effect of such problems the MCMC chains
for happy, sad and angry were interleaved. The decision to
sample from a particular chain at any point was random and
occurred with equal probability for all chains. As such, over
many trials an approximately equal number of samples were
taken from each category. The current and proposed states
were displayed side by side on the screen during the tests.

Each of the MCMC chains was initialized by drawing a set
of values from a uniform distribution over the lower 20% of
the ranges in Figure 2. The proposed states were drawn from
a multivariate Gaussian distribution with the current state as
the mean and a diagonal covariance matrix. The standard de-
viation of the variables was set to 8% of their total range. In
preliminary tests this was found to give a proposal acceptance
rate from 30-50%. The ranges of the variables for the MCMC
test are shown in Figure 2. If a proposal was outside the range
then it was rejected and another set of samples taken.

Many studies fail to carefully consider the the impact of
the experimental design on the data collected. To mitigate the
effect of biases due to the participants not moving the cursor
an unbiased coin flip was used to decide whether the current
state would appear on the right or the left hand side of the
screen. The select buttons were placed close together in order
to minimize the effort required to change between the two.

Four participants performed the task. Participants 1, 2 and
3 evaluated 750 pairs over three chains and participant 4 eval-
uated 350 pairs over three chains, they all took between 30
and 60 minutes to complete the task. Table 1 shows the statis-
tics from the MCMC experiment. The acceptance rate aver-
aged over the whole participant pool was 36.5%.

In carrying out these tests we must be aware of assump-
tions made that may affect the results. Firstly, the MCMC
method assumes that participants accept proposals by a rule
that accepts less likely proposals with a certain probability.
Secondly, the Markov assumption is that decisions are based
on the current pair of stimuli. In such an experiment where
the participants were each asked to evaluate a large number of

153

No. of Samples Acceptance %
Happy Sad Angry Happy Sad Angry

P1 241 267 242 38 43 34
P2 231 271 248 53 41 37
P3 237 244 274 33 38 41
P4 113 114 123 30 20 30

Table 1: Participant’s statistics. Number of samples per chain.
Acceptance % per chain.

images they may make judgements based on previous images
or may become bored with a particular image.

Discrimination Experiment
In this task the participants were presented with a single rep-
resentation and asked to categorize it as happy, sad or an-
gry. The representations were drawn from uniform distribu-
tions over the ranges shown in Figure 2. 750 different stimuli
were categorized. The human-MCMC method allows sam-
pling from the probability from the distribution in the the pa-
rameter space associated with each category. Thus even in
the same context discrimination and MCMC would produce
different information (Sanborn et al., 2009).

Results and Discussion
Human-MCMC is a sampling method. The data collected
was in four dimensions (outer eyebrow, inner eyebrow, lip
separation and lip corner dimensions). The samples obtained
from the MCMC tests were mapped to a two dimensional
plane that best discriminated between the expression distri-
butions. This was carried out in order to create a visual struc-
ture of the expression categories (Olman & Kersten, 2004).
The dimensionality reduction was performed using General-
ized Discriminant Analysis (GDA) with a Gaussian kernel.
GDA is a method of combining features so as to separate
classes within the data. Figure 4 shows the resulting chains
for all four participants. Using this visualization a judgement
was made on how many samples should be rejected in order
that the distributions were stationary. The number of sam-
ples burned (samples removed from the start of a chain) per
chain was 40, leaving the average chain length 213 samples.
The GDA was then performed on the samples in four dimen-
sional space that remained after burn-in. Figure 5 shows the
resulting samples for the four participants. The average faces
for each participant and each category are shown in Figure 6.
A mean face for each category, aggregated across the whole
participant pool is shown in Figure 5. These faces appear to
be reasonable examples of the three categories. This result in
part supports the use of the MCMC method.

In these tasks, with only three categories in a limited di-
mensional space the categories can be separated effectively.
However, if there were a great number of categories a Multi-
Dimensional Scaling (MDS) representation could be created.
We can calculate the similarity of categories by counting the
confusions between pairs of stimuli (Rothkopf, 1957; Nosof-

Figure 4: MCMC chains from all participants, before burn-in
samples were removed, mapped to the plane that best dis-
criminates between the categories. The dotted lines show
the burn-in lengths chosen visually, the first 40 samples from
each chain. Chain one - happy (green), chain two - sad (blue),
chain three - angry (red).

sky, 1987). A potential downside of MDS is that it does not
find an explicit mapping function from the parameter space.
Sanborn et al. (Sanborn et al., 2009) use Dimensionality Re-
duction by Learning an Invariant Mapping (DrLIM) (Hadsell,
Chopra, & LeCun, 2006) that does provide an explicit func-
tion. This was not tried here but would be worth considering
in future work.

Within a large parameter space the categories are likely
to occupy small subspaces only. As a result a method such
as MCMC that allows sampling from the whole parameter
space but enables navigation to a particular region is useful
compared to a discriminative test that samples from the space
randomly.

However, in Figure 6 we compare the mean faces from the
MCMC task and the discrimination task for one participant.
In both cases the mean representations are reasonable exam-
ples. This suggests that the advantage of the MCMC method
is not seen in this four dimensional space with the ranges de-
scribed. As we increase the ranges and the number of de-
grees of freedom the space will increase greatly in size and it
is likely that the benefit of the MCMC method will become
apparent.

The discrimination experiment stimuli were categorized
using the distributions found from the MCMC results. A
naive Bayes classifier with Gaussian kernal was fitted to the
four dimensional human-MCMC samples. Using this model
the most likely label for each of the discrimination stimuli
was chosen. These labels were then compared to the human
responses.

The model matched the human identification of the stimuli
in 70.1% of cases. This is much better than chance at 33%.
The error is likely to be due to the fact that the discrimination

154

Figure 5: Scatter plot of samples from the four participants,
after burn-in, mapped to the plane that best discriminates be-
tween the categories. The average face for each category is
shown. Samples from: chain one - happy (green), chain two
- sad (blue), chain three - angry (red).

stimuli were generated from uniform distributions over the
ranges. As such, many were far from the samples generated
by the MCMC method. It is likely that many of the discrim-
ination stimuli would not have been classified as any of the
three categories if there had been other alternatives. Testing
on results of a discrimination task with an ‘other’ option may
produce even stronger performance.

For each of the dimensions the probability distributions for
each category were estimated from the human-MCMC sam-
ples. The samples were separated into 25 equal size bins.
Gaussian Process Regression (GPR)1 was then used to ap-
proximate the distributions. A squared exponential (SE) co-
variance summed with an independent noise function was
used. This does not make the assumption of an underlying
structure but rather assumes the function is infinitely smooth.
The characteristic noise scale and signal variance were set to
one and the noise variance also to one. The hyper-parameters
could be adjusted further. However, for a qualitative repre-
sentation of the distributions given by the data these were
reasonable choices.

Figure 7 shows the estimated density plots for each dimen-
sion after aggregating the data from all participants. It shows
that in some dimensions (lip separation, inner eyebrow) none
of the categories are significantly distinguished from the other
two. However in the cases of the outer eyebrow and lip corner
dimensions one of the categories was distinct. For the outer
eyebrow dimension the distribution for anger is significantly
different from the distributions for happy and sad. For the lip
corner it is happy that is more distinguishable. The sad cat-
egory distributions were not significantly different from both
of the other two in any of the cases.

There are certain assumptions and limitations within the

1Rasmussen and William’s GPML toolbox was used for this task.

Figure 6: Comparison of mean faces for one participant in the
discrimination task and MCMC task.

experiment that must be noted. As described above, when a
proposal was outside the range set it was automatically re-
jected. In certain cases this rule was enforced and the dis-
tribution met one of the boundaries. This is not necessarily
a negative point as the ranges restricted the participants to
move within a space of reasonably natural expressions. We
see from Figure 7 that for the inner eyebrows and lip corners
the distributions did push up against the boundaries to a cer-
tain extent. This is something to consider in future work.

We should also note some general comments about aspects
of the experimental set up. We must consider the impact
of participants becoming bored during the experiment and
selecting their response arbitrarily. Many samples were re-
quired in order to generate stationary distributions. Ways of
minimizing the effects of boredom should be considered in
future.

Conclusions
This paper demonstrates that human-MCMC methods can be
used to gain insight into facial expression categorization us-
ing simple cartoon representations. We demonstrated that
from 750 samples over three categories the method provides
reasonable mean representations for each of the categories
and reasonable distributions. By using GDA we were able
to map the four dimensional points to a plane and after burn-
in reveal three categories. The sad and angry chain samples
were not separable in two dimensions. The happy chain sam-
ples were separable.

We also show estimates of the distributions for each of the
categories along each of the four dimensions. This reveals
that for the features tested the lip corner is the best discrimina-
tor for happy expressions and the outer eyebrow the strongest
for angry expressions. The sad distributions were not distin-
guishable from both happy and angry distributions in any of
the cases.

The mean faces generated by the human-MCMC and dis-
crimination tasks were both reasonable and neither signifi-

155

Figure 7: Density estimates for each of the four parameters aggregated over all the participants. The parameter dimensions
correspond to the ranges shown in Figure 2. Chain one - happy (green), chain two - sad (blue), chain three - angry (red).

cantly more realistic than the other.
A naive Bayes classifier trained on the aggregated samples

generated from the MCMC task performed strongly predict-
ing over 70% of the human labels in the discrimination task
correctly.

Further Work

This paper describes the first investigation evaluating hu-
man facial expression categorization using a human-MCMC
method. It justifies a basis for applying a human-MCMC
method for exploring people’s representations of facial ex-
pressions. Griesser et al. (Griesser et al., 2007) demonstrate
the use of detailed computer avatars that can realistically
demonstrate skin texture changes as well as facial actions.
This type of stimuli could be used in order to seriously inves-
tigate a wider range of categories. It would also allow more
detailed investigation of the degree to which specific dimen-
sions allow discrimination in terms of affect.

Sanborn et al. (Sanborn et al., 2009) suggest that the
human-MCMC method may be used to test models of cate-
gorization. Prototype models produce unimodal distributions.
Exemplar models are more flexible. As such it is difficult to
establish whether a category distribution more closely resem-
bles a prototype or exemplar model in many cases but rather
we can test whether a distribution has properties that rule out
a prototype model (Sanborn & Griffiths, 2008; Sanborn et al.,
2009).

Acknowledgments

This work was funded by the MIT Media Lab Consortium.

References
Darwin, C., Ekman, P., & Prodger, P. (2002).The expression

of the emotions in man and animals. Oxford University
Press, USA.

Dopkins, S., & Gleason, T. (1997). Comparing exemplar and
prototype models of categorization.Canadian Journal of
Experimental Psychology,51(3), 212–230.

Ekman, P., & Friesen, W. V. (1978).Facial Action Coding
System: A Technique for the Measurement of Facial Move-
ment. Consulting Psychologists.

El Kaliouby, R., & Robinson, P. (2005). Generalization
of a vision-based computational model of mind-reading.
Proceedings of First International Conference on Affective
Computing and Intelligent Interaction, 582–589.

Griesser, R., Cunningham, D., Wallraven, C., & Bulthoff, H.
(2007). Psychophysical investigation of facial expressions
using computer animated faces. InProceedings of the 4th
symposium on applied perception in graphics and visual-
ization(p. 18).

Hadsell, R., Chopra, S., & LeCun, Y. (2006). Dimensionality
reduction by learning an invariant mapping. InProc. com-
puter vision and pattern recognition conference (cvpr06).

Neal, R. (1993).Probabilistic inference using Markov chain
Monte Carlo methods. Citeseer.

Nosofsky, R. (1986). Attention, similarity, and the
identification-categorization relationship.Journal of Ex-
perimental Psychology: General, 115(1), 39–57.

Nosofsky, R. (1987). Attention and learning processes in the
identification and categorization of integral stimuli.Jour-
nal of Experimental Psychology: Learning, Memory, and
Cognition, 13(1), 87–108.

Nosofsky, R., & Palmeri, T. (1997). An exemplar-based ran-
dom walk model of speeded classification.Psychological
Review, 104(2), 266–299.

Olman, C., & Kersten, D. (2004). Classification objects, ideal
observers & generative models.Cognitive Science,28(2),
227–239.

Padgett, C. (1998).A neural network model for facial affect
classification(Tech. Rep.).

Padgett, C., & Cottrell, G. (1997). Representing face images
for emotion classification.Advances in neural information
processing systems, 894–900.

Rothkopf, E. (1957). A measure of stimulus similarity and
errors in some paired-associate learning tasks.Journal of
Experimental Psychology,53(2), 94–101.

Sanborn, A., & Griffiths, T. (2008). Markov chain Monte
Carlo with people. Advances in neural information pro-
cessing systems, 20.

Sanborn, A., Griffiths, T., & Shiffrin, R. (2009). Uncovering
mental representations with Markov chain Monte Carlo.
Cognitive Psychology.

156

Developing a Model of Cognitive Lockup for User Interface Engineering

Tina Mioch (Tina.Mioch@tno.nl)

1

Rosemarijn Looije (Rosemarijn.Looije@tno.nl)
1

Mark Neerincx (Mark.Neerincx@tno.nl)
1,2

1
TNO Human Factors, P.O. Box 23

3769 ZG Soesterberg, The Netherlands

2
Delft University of Technology Man–Machine Interaction Group,

 Mekelweg 4, 2628 CD, Delft, The Netherlands

Abstract

This paper presents the development of a cognitive model of
cognitive lockup: the tendency of humans to deal with
disturbances sequentially, possibly overseeing crucial data
from unattended resources so that serious task failures can
appear—e.g., in a cockpit or control centre. The proposed
model should support the design and evaluation of user
interfaces that prevent such failures, being used outside the
academic community. Based on the practical cognitive task
load theory of Neerincx (2003), this model distinguishes time
pressure and number of tasks-to-do as two factors that
increase task switch costs and the corresponding risk of
cognitive lock-up. The CASCaS architecture proved to fit best
with the requirements to incorporate these factors and to
support the UI engineering process.

Keywords: cognitive lockup; cognitive modeling; cognitive
task load model; cognitive architectures; user interface
engineering.

Introduction

Aircraft pilots are faced with a complex traffic environment.

Cockpit automation and support systems help to reduce this

complexity. Currently, a lot of research is done to improve

the onboard management of flight trajectories and the

negotiation of trajectory changes with Air Traffic Control.

During the flight, many factors may induce changes to the

original flight plan, e.g. bad weather, traffic conflicts, or

runway changes. Safe operation of aircrafts is based on

normative flight procedures (standard operating procedures)

and rules of good airmanship, which we will refer to as

normative activities. We define pilot errors as deviations

from normative activities.

In the past, several cognitive explanations and theories

have been proposed to understand why pilots deviate from

normative activities (e.g. Dekker (2003)). The European

project HUMAN, in which the research described in this

paper is done, strives to pave a way of making this

knowledge readily available to designers of new cockpit

systems. We intend to achieve this by means of a valid

executable flight crew model which incorporates cognitive

error-producing mechanisms leading to deviations from

normative activities. The model interacts with models of

cockpit systems in a virtual simulation environment to

predict deviations and its potential consequences on the

safety of flight. The ultimate objective of HUMAN is to

apply this model to analyze human errors and support error

prediction in ways that are usable and practical for human-

centered design of systems operating in complex cockpit

environments.

At the initial stage of HUMAN we performed

questionnaire interviews with pilots and human factor

experts based on a literature survey of error-producing

mechanisms. We identified cognitive lockup to be among

the most relevant mechanisms for modern and future

cockpit human machine interfaces. We take the definition of

cognitive lockup from Moray and Rotenberg (1989) who

define the term ‘cognitive lockup’ as the tendency of

operators to deal with disturbances sequentially. This has as

a result that operators focus on a subpart of a system and

ignore the rest of it (Meij, 2004).

In this paper, we discuss factors that can cause cognitive

lockup and an architecture of a cognitive model that can be

used to help prevent lockup failures during User Interface

engineering.

Cognitive Lockup

Previous Research

As the definition from Moray and Rotenberg (1989) shows,

cognitive lockup does not occur when people can perform

all their tasks consecutively. Therefore they designed a task

where this was not possible. Participants were asked to

supervise a simulated thermal hydraulic system that

consisted of four subsystems. In one scenario they needed

only to focus on one fault in one of the subsystems. In

another scenario a first fault was followed by a second fault

in a different subsystem, which occurred before the

participant could have handled the first fault. It was shown

that participants shifted attention much later to the second

fault then they did to the first fault. Moray and Rotenberg

attributed this to limited information processing capacities.

In another study that demonstrated cognitive lockup

(Kerstholt et al, 1996), participants had to supervise four

dynamic subsystems and deal with disturbances. The system

included the option to stabilize a subsystem in which

additional faults occurred, with which participants

acknowledged their understanding of the development of a

157

disturbance over time. Most participants did not use this

option and handled the disturbances sequentially.

Cognitive lockup as a phenomenon is related to the rise of

automation, but the tendency to proceed with the current

task is not new. Meij (2004) investigated cognitive lockup

in relation to planning, task-switching and decision making.

He found that both prior investments into a task as the time

that is needed to complete the task increases the probability

of cognitive lockup. No support was found for refrainment

of monitoring (a second fire was detected, but not tended to

before the first fire was solved), too optimistic scenarios,

and lack of resources (the complexity of the first task did

not influence the degree of cognitive lockup).

Cognitive Task Load Model

A model that specifies core aspects of cognitive lockup is

the cognitive task load (CTL) model of Neerincx (2003).

The development of this model is driven by the need for

limited and practical theories and models on human

cognition to take validation of the theories and models out

the laboratory and into the real world, where the

environment is more dynamic.

The CTL-model describes load in terms of three

behavioral factors: time pressure, level of information

processing and number of task set switches (see Figure 1).

Time Pressure The time pressure is dependent on the

scenario and the actions of tasks. The scenario provides

information on the number of tasks due to events and the

actions that are called upon by the tasks can take a long or a

short time to handle. A standard measure for the time

pressure is:

Time pressure = time required for tasks

time available for tasks

Humans reach overload when the time pressure is more

than 70-80% (Beevis et al., 1994).

Figure 1: CTL model, with the three dimensions task set

switches, level of information processing, and time occupied

(time pressure).

Level of Information Processing The level of information

processing factor is measured as the percentage of

knowledge-based actions using the Skill-Rule-Knowledge

framework from Rasmussen (1986). Input information that

can be processed at skill level (e.g. when you touch

something hot with your hand, you immediately react by

removing your hand from the heat source) is not cognitively

demanding. When input information triggers a routine

consisting of rules (i.e. procedures with rules of the type "if

<event/state> then <actions>") it takes some cognitive

capacities to resolve the if/then, but the rest of the procedure

is quite automatic. Cognitive demanding are the situations

where there is problem analysis needed on the input

information and knowledge to reason about it, this can have

a large influence on the working memory.

Rasmussen’s framework corresponds to the cognitive

theory of skill acquisition of Anderson (1982) that

distinguishes three memory representations: cognitive,

associative and autonomous. These three levels are linked to

different memory representations; declarative, procedural

and implicit.

Task Set Switches To take into account situations where

people have to perform different tasks that appeal to

different sources of human knowledge and different objects

in the environment, the CTL-model comprises the task set

switches factor. A task set contains both the human

resources and environmental objects with momentary states,

which are involved in the task performance. A switch occurs

when the applicable task knowledge on the operating and

environment level change. A task set can thus be seen as a

goal that is comprised of several (sub-)tasks.

Rubinstein, Meyer and Evans (2001) distinguish two

types of task switching: task switching in successive tasks

and task switching in concurrent tasks. With successive

tasks the first task is responded to and finished before the

second task is presented. Concurrent tasks on the other hand

are tasks where the second task is presented before the first

task has been finished. We are only interested in concurrent

tasks, because a pilot usually has multiple concurrent tasks

that can be executed, e.g. monitoring different interfaces in

the cockpit. Successive task switching studies show that

task switching takes time (Jersild, 1927, Rogers & Monsell,

1995). In concurrent task switching studies (De Jong, 1995;

Schumacher et al., 1999), it is observed that people are

unable to deal with multiple tasks. They postpone the

second task until the first task is completed. In these

experiments the second task is not of such importance that it

should be handled immediately, but in real life situations not

handling the second task before finishing the first can cause

life threatening situations (e.g. the crash of flight 401 of

Eastern Air Lines in 1972 (NTSB, 1973)). Tasks can be

interrupted, but with every switch time and effort is needed

to do context acquisition to bring the environment

information up-to-date (Olsen & Goodrich, 2003).

In the CTL-model, the task set switches can be seen as the

number of task set switches possible at a particular moment

158

in time. This number comes thus forth from the environment

and the situation a person is in.

Cognitive Lockup in the CTL Model The three factors of

the CTL model are interrelated (Figure 1). Cognitive lockup

is independent of information processing level, but does

occur when both time pressure and number of task set

switches is high. That the information of processing level is

not of importance seems counterintuitive, but in an

experiment of Meij (2004) (experiment 2) this is supported.

In the experiment of Meij, participants were asked to

monitor for fires on a ship. When a fire was detected it had

to be diagnosed on both priority and treatment. Two fires

could exist simultaneously and the participant had to decide

which fire to fight. The complexity of this task was varied

by making the diagnosis of priority and treatment harder

and by varying the moment of introduction of the second

fire (e.g. after diagnosis of the first fire or during diagnosis).

The data showed that an increasing level of complexity had

no influence on when the second fire was detected.

Pilots and Cognitive Lockup

The most famous example of cognitive lockup comes from

the aviation domain. In 1972 a plane from Eastern Air

Lines, flight 401, crashes. During the landing the pilot is

warned about a problem with the landing gear. He cancels

the landing and sets the plane in autopilot so that he can

solve the problem. Unfortunately, due to his occupancy with

the landing gear, the pilot missed the warning signals

(alarms and air-traffic control) about decreasing altitude,

and the plane crashed (NTSB, 1973).

Modeling of Cognitive Lockup

Cognitive Architecture

Cognitive architectures were established in the early eighties

as research tools to unify psychological models of particular

cognitive processes (Newell, 1994). These early models

only dealt with laboratory tasks in non-dynamic

environments (Anderson, 1993; Newell, Rosenbloom, &

Laird, 1989). Furthermore, they neglected processes such as

multitasking, perception and motor control that are essential

for predicting human interaction with complex systems in

highly dynamic environments like the air traffic

environment addressed in HUMAN with the AFMS target

system. Models such as ACT-R and SOAR have been

extended in this direction (Anderson et al., 2004; Wray &

Jones, 2005) but still have their main focus on processes

suitable for static, non-interruptive environments. Below we

provide a short overview of the requirements we have for

the cognitive model and how these requirements are met by

ACT-R 6.1.4, SOAR 9.3.0 and EPIC. Note that we evaluate

the requirements only for these versions. ACT-R and SOAR

are under constant development and requirements that are

not met at the moment might be met in future versions.

The first requirement is that the cognitive model should

support multitasking. The three best known cognitive

architectures all support a form of multitasking; ACT-R

with threading (e.g. Salvucci & Taatgen, 2008), to SOAR

(Newell, Rosenbloom, & Laird, 1989) and EPIC (Meyer &

Kieras, 1997) it is inherent to the architecture. Secondly,

because we want to test interfaces there is a need for

perception and motor action abilities. This is inherent to

EPIC (Meyer & Kieras, 1997), ACT-R is able to do this

since ACT-R/PM (Byrne, 2001), and SOAR cannot do this

without coupling with EPIC, although since SOAR 9 there

is a vision module (Laird, 2008). All three need interface

coupling with a model of the interface (e.g. developed with

SegMan (Amant et al., 2005)). Thirdly, the model should be

able to learn, SOAR and ACT-R are able to learn, but EPIC

is not. Fourthly, we want an explicit Skills-Rules-

Knowledge separation (Rasmussen, 1983) to make it easier

for users to choose a level on which they want to work and

to make it more clear for end users where errors came from.

When it is from rules (procedures), adapting procedures can

be a solution, when it comes from the knowledge level the

solution can be more difficult, because the problems that

arise from this level are inherent to people. Finally, it is very

important that non-expert users can use the cognitive model

in the design and testing process of interfaces. With none of

the three discussed cognitive architectures this is possible,

because they all require a high level of knowledge of the

model, in addition to programming skills, before being able

to adapt them to a certain domain or interface.

In the following, we describe shortly the architecture used

in the HUMAN project. We choose to describe the

architecture to show that our theory of cognitive lockup is

embedded in a broader concept. However, this description

will only be short and will not go into (implementation)

details, as for the theory of cognitive lockup, these details

are not necessary.

The cognitive architecture CASCaS (Cognitive

Architecture for Safety Critical Task Simulation) is used to

model the cognitive process described in the previous

section. For a more detailed description of the CASCaS

architecture see Lüdtke et al. (2009). CASCaS has

multitasking abilities, has a perception and motor module, is

able to learn (e.g. production compilation), has a skills, a

rules (associative layer) and a knowledge (cognitive layer)

based level. Finally, only when you really want to change

something of the architecture programming skills are

necessary. Otherwise there are editors for the procedures

(domain knowledge) and for the interface description. The

procedure editor (Frische et al., 2009) can be used by any

domain expert, which has been shown by an informal

review that was performed by one of the end user partners in

the HUMAN project. And UsiXML (Limbourg et al., 2005)

which describes the interface in a way that it can be used by

the model can automatically transfer HTML pages into the

right format, has a graphical editor so that interface

designers can use tools that are similar to what they know

and XML programming is also possible. UsiXML is

developed by human factor experts at the Belgian

Laboratory of Computer-Human Interaction (BCHI).

159

The core of CASCaS is formed by the layered knowledge

processing component that contains the associative and the

cognitive layer.

A task that is encountered for the first time is processed

on the cognitive level with maximal cognitive effort. This

processing is goal driven; alternative plans to reach a goal

are evaluated usually through mental simulation, and finally

one plan is selected to be executed. With some experience,

the associative level is used, where solutions are stored that

proved to be successful; the pilot has for example learned

how to handle the cockpit systems in specific flight

scenarios. According to Rasmussen (1983), processing is

controlled by a set of rules that have to be retrieved and then

executed in the appropriate context. On the autonomous

level routine behavior emerges that is applied without

conscious thought, e.g. manually maneuvering an aircraft.

When solving a task, people tend to apply a solution on the

lower levels first, and only revert to solutions on higher

levels when lower-level ones are not available (Rasmussen,

1983) or when the situation requires very careful handling

due to unusual and safety relevant conditions.

The associative layer selects and executes rules from

long-term memory. It is modeled as a production system.

Characteristic for such systems is a serial cognitive cycle for

processing rules: A goal is selected from the set of active

goals (Phase 1), all rules containing the selected goal in their

goal-part are collected and a short-term memory retrieval of

all state variables in the Boolean conditions of the collected

rules is performed (Phase 2). If a variable is absent in

memory, a dedicated percept action is fired and sent to the

percept component to perceive the value from the

environment and to write it into the short-term memory.

After all variables have been retrieved, one of the collected

rules is selected by evaluating the conditions (Phase 3).

Finally the selected rule is fired (Phase 4), which means that

the motor and percept actions are sent to the motor and

percept component respectively and the sub-goals are added

to the set of active goals. This cycle is started when a

Boolean condition of a reactive rule is true. In Phase 2

reactive rules may be added to the set of collected rules if

new values for the variables contained in the State-Part have

been added to the memory component (by the percept

component). In Phase 3, reactive rules are always preferred

to non-reactive rules. The cognitive cycle is iterated until no

more rules are applicable.

The cognitive layer reasons about the current situation

and makes decisions based on this reasoning. Consequently,

we differentiate between a decision-making module, a

module for task execution and a module for interpreting

perceived knowledge (sign-symbol translator). In the

following, we will describe the decision-making module in

more detail, as it is relevant to modeling cognitive lockup.

For more information on the cognitive layer see Lüdtke et

al. (2009).

The decision-making module determines which goal is

executed. Goals have priorities, which depend on several

factors: goals have a static priority value that is set by a

domain expert. In addition, priorities of goals increase over

time if not executed. Implicitly, temporal deadlines are

modeled in this way. If, while executing a goal, another goal

has a distinctively higher priority than the current one, the

execution of the current goal is stopped and the new goal is

attended to. This decision depends on the priorities of the

goals and is extended by the parameter Task Switching

Costs (TSC), which determines the difference the priorities

need to have to halt the execution of a goal to select a

different goal to be executed. TSCs are described

extensively in literature (e.g. Jersild, (1927); Rogers &

Monsell (1995)). The higher the TSC is, the higher the

priority of another goal needs to be to switch to that goal. To

determine whether a goal should be interrupted and a

different goal should be executed, the TSC is added to the

current task priority. Only if a priority of another active goal

is above this threshold, this other goal is chosen to be

executed. For a visualization of the goals see Figure 2.

Figure 2: Visualization of the goals on the cognitive layer.

Dark gray and green goals are active. The framed goal is

currently executed. The yellow staff represents the

additional task switch costs.

Cognitive Lockup Model

In this section we describe how cognitive lockup is modeled

in the cognitive architecture described above. We model

cognitive lockup on the cognitive layer. The main reason for

this is that, as described above, on the cognitive layer we

have an explicit goal decision mechanism in which

cognitive lockup can easily be integrated. However, this can

be extended to the associative layer, as the principles

explained below are generally applicable to the goals of the

associative layer as well.

Time Pressure As described in Neerincx (2003), the time

pressure for a person plays an important role for cognitive

lockup. If a person has a value for the time pressure of more

than 0.75 (Neerincx, 2007), the task switch cost increases.

In general, this factor depends both on the time pressure of

the associative and cognitive layer. However, to simplify

matters, we will model this temporarily only related to the

cognitive layer, but will extend the concept later to the

associative layer. As written above, the formula that we use

is the following:

Time pressure = time required for tasks

time available for tasks

160

For example, if we have a task that can be done in 25

seconds and we have 100 seconds before it needs to be

finished, the predicted time pressure is 0.25.

The time required for a task is the time needed for

cognitively processing the task. This knowledge comes both

from the analysis of normative behavior, i.e. discussions

with experts that give an indication of the time a task takes,

in addition to cognitive theories on which the cognitive

architecture is based (e.g. (Anderson, 1993; Kieras &

Meyer, 1997)).

Modeling the time that is available for a task is quite

complex. For some tasks this knowledge is given in the

normative behavior. For example, a pilot needs to have set

the flaps before reaching the final approach phase. The time

that is available for a task can thus be calculated by the

knowledge of the current task, and a prediction of when the

approach phase begins, which can be gained from the

environment. For other tasks, it is not that easy to know the

time that is available to execute it. For example, for a

monitoring task, there is no standard deadline at which

monitoring has to be finished. However, the time pressure

will slowly increase, without having a clear deadline of the

task, as there is no unlimited time to execute any task.

Thus, for each task, it has to be evaluated whether the

time pressure can be based on a calculation of elements of

task knowledge and the environmental input, or whether it

has to be given a general estimate.

The time pressure is inherent to each goal as it only takes

aspects of the individual goal into account, but is dynamic

as the time until it needs to be finished is constantly

diminishing. We decided that this calculation is done each

50 ms, which is the cycle time of our architecture.

Level of Information Processing As described above, the

level of information processing does not play a relevant role

for cognitive lockup. This factor is not taken into account in

the model of task switching costs.

Task Set Switches As described above, task set switches

are defined as possible goal switches at a given moment.

The number of task sets is modeled as the number of goals

that are active at the moment. Temporarily, we only look at

goals in the cognitive layer.

The value of the task set switches is thus the number of

active goals in the environment. We assume that the model

always has activated all possible tasks that play a role at the

moment in the environment and are needed to handle the

current situation.

The Model

Above, we have described different aspects that increase the

probability of cognitive lockup. In our model, this is

simulated by increasing the task switch costs (TSCs) of the

goal that at that moment is processed. The TSC determines

the difference that the priorities need to have to halt the

execution of a goal to select a different goal to be executed.

The TSC depends on the number of goals that at that

moment is also active and could be selected to be processed,

and on the time to spare to execute the current goal. The

TSC is higher when there is high time pressure.

Furthermore, the higher the number of active goals is (i.e.

the possible task set switches) the higher are the costs to

switch to another goal. The following formula determines

the TSC:

TSC = StartTSC * (Time pressure + Task set switches),

with Time pressure = 0 if Time pressure < 0.75.

This means that the task switch costs depend on a start

value, which is a constant, and the sum of the two factors of

the time pressure and the task set switches.

As at each moment if there are active goals, at least one

goal is selected and executed, the task set switches

parameter is always at least 1. If there is only one goal, and

the task pressure is not high, the TSC is equal to the

constant start value. The moment there are several active

goals or the time pressure for the currently selected goal is

above the threshold of 0.75, the TSC is increased.

Conclusion

This paper presented the development of a cognitive model

of cognitive lockup: the tendency of humans to deal with

disturbances sequentially, possibly overseeing crucial data

from unattended resources so that serious task failures can

appear—e.g., in a cockpit or control centre. The model is

based on real life examples of cognitive lockup and the

psychological theories that are derived from these examples,

and laboratory experiments. It distinguishes time pressure

and number of tasks-to-do as two factors that increase task

switch costs and the corresponding risk of cognitive lockup.

A heightened task switch cost leads to less task switching,

even when another task has a higher priority, as the

difference between the priorities needs to be higher.

The proposed model should support the design and

evaluation of user interfaces that prevent such failures,

being used outside the academic community. The CASCaS

architecture proved to best fit with the requirements to

incorporate these factors and to support the UI engineering

process.

At the moment, we calculate the time pressure as a value

inherent to the individual goal. The interdependencies

between the timing of several goals will be taken into

account in the next version of the cognitive model (i.e.,

several tasks might in themselves not have a high time

pressure, but might together be time-critical, as all of them

might need to be finished before all of them can be

executed).

The values for the parameters we have chosen for our

cognitive model are mainly based on literature, and are

currently being evaluated in both laboratory experiments

and realistic simulator experiments. In this way, we refine

and validate the model, improving its plausibility and

predictions about the behavior of pilots. Application of the

model will provide user interfaces and procedures that

reduce the risks for lockup errors. Due to the cognitive

plausibility, we predict that the model can also be used in

other domains without substantial changes.

161

Acknowledgments

The work described in this paper is funded by the European

Commission in the 7th Framework Programme,

Transportation under the number FP7 – 211988.

References

Amant, R.S. and Riedl, M.O. and Ritter, F.E. and Reifers,

A. (2005). Image processing in cognitive models with

SegMan. Proceedings of HCI International 2005.

Anderson, J. (1982). Acquisition of cognitive skill.

Psychological review, 89(4), 369–406.

Anderson, J. (1993). Rules of mind. Hillsdale, NJ: Lawrence

Erlbaum Associates.

Anderson, J., Bothell, D., Byrne, M., Douglass, S., Lebiere,

C., & Qin, Y. (2004). An integrated theory of the mind.

Psychological Review, 111(4), 1036–1060.

Beevis, D., Bost, R., Döring, B., Nordø, E., Oberman, F.,

Papin, J., et al. (1994). Analysis techniques for man-

machine system design. AC/243(Panel 8) TR/7 Vol, 2.

Byrne, M.D. (2001). ACT-R/PM and menu selection:

Applying a cognitive architecture to HCI. International

Journal of Human Computer Studies, 55(1), 41-84.

De Jong, R. (1995). The role of preparation in overlapping

task performance. The Quarterly journal of experimental

psychology. A, Human experimental psychology, 48(1), 2.

Dekker, S. (2003). Failure to adapt or adaptions that fail.

Applied Ergonomics, 34(3), 233–238.

Frische, F. and Mistrzyk, T. and Lüdtke, A. (2009).

Detection of Pilot Errors in Data by Combining Task

Modeling and Model Checking. Human-Computer

Interaction--INTERACT 2009, 528-531.

Jersild, A. (1927). Mental set and shift. Archives of

Psychology. Vol, 14(89), 81.

Kerstholt, J., Passenier, P., Houttuin, K., & Schuffel, H.

(1996). The effect of a priori probability and complexity

on decision making in a supervisory control task. Human

Factors, 38(1), 65–78.

Kieras, D. E., & Meyer, D. E. (1997). An overview of the

epic architecture for cognition and performance with

application to human-computer interaction. Hum.-

Comput. Interact., 12(4), 391–438.

Laird, J.E. (2008). Extending the Soar cognitive

architecture, Artificial General Intelligence 2008:

Proceedings of the First AGI Conference.

Limbourg, Q. and Vanderdonckt, J. and Michotte, B. and

Bouillon, L. and López-Jaquero, V., (2005). Engineering

Human Computer Interaction and Interactive Systems,

200-220.

Lüdtke, A., Osterloh, J.-P., Mioch, T., Rister, F., & Looije,

R. (2009, September 23–25). Cognitive modelling of pilot

errors and error recovery in flight management tasks. In

P. Palanque, J. Vanderdonckt, & M. Winckler (Eds.),

Human error, safety and systems development, 7th ifip wg

13.5 working conference, hessd 2009 (Vol. 5962).

Brussels, Belgium: Springer.

Meij, G. (2004). Sticking to plans: capacity limitation or

decision-making bias? Doctoral dissertation, Department

of Psychology, University of Amsterdam, Amsterdam.

Meyer, D.E. and Kieras, D.E. (1997). A computational

theory of executive cognitive processes and multiple-task

performance: I. Basic mechanisms. Psychological Review,

104 (1), 3-65.

Moray, N., & Rotenberg, I. (1989). Fault management in

process control: eye movements and action. Ergonomics,

32(11), 1319–1342.

NTSB (1973). Eastern Airlines l-1011, Miami, Florida,

December, 29, 1972 (Tech. Rep. No. NTSB-AAR-73-14).

Washington, DC: National Transportation Safety Board

(NTSB).

Neerincx, M. (2003). Cognitive modelling of pilot errors

and error recovery in flight management tasks. In E.

Hollnagel (Ed.), Handbook of cognitive task design (pp.

283–306). CRC.

Neerincx, M. (2007). Modelling cognitive and affective load

for the design of human-machine collaboration. Lecture

Notes in Computer Science, 4562, 568.

Newell, A. (1994). Unified theories of cognition. Harvard

Univ Pr.

Newell, A., Rosenbloom, P., & Laird, J. (1989). Symbolic

architectures for cognition. In M. Posner (Eds.),

Foundations of cognitive science (pp. 93–131).

Cambridge, MA: MIT Press.

Olsen, D., & Goodrich, M. (2003). Metrics for evaluating

human-robot interactions. In Proceedings of permis (Vol.

2003).

Rasmussen, J. (1983). Skills, rules, knowledge: Signals,

signs and symbols and other distinctions in human

performance models. IEEE Transactions: Systems, Man

and Cybernetics, SMC-13(3), 257–266.

Rasmussen, J. (1986). Information processing and human

machine interaction: An approach to cognitive

engineering. Elsevier Science Inc. New York, NY, USA.

Rogers, R., & Monsell, S. (1995). Costs of a predictable

switch between simple cognitive tasks. Journal of

Experimental Psychology-General, 124(2), 207–230.

Rubinstein, J., Meyer, D., & Evans, J. (2001). Executive

control of cognitive processes in task switching. Journal

of Experimental Psychology Human Perception and

Performance, 27(4), 763–797.

Salvucci, D.D. and Taatgen, N.A. (2008). Threaded

cognition: An integrated theory of concurrent

multitasking. Psychological Review, 115(1), 101-130.

Schumacher, E., Lauber, E., Glas, J., Zurbriggen, E.,

Gmeindl, L., Kieras, D., et al. (1999). Concurrent

response-selection processes in dual-task performance:

Evidence for adaptive executive control of task

scheduling. Journal of Experimental Psychology: Human

Perception and Performance, 25, 791–814.

Wray, R., & Jones, R. (2005). An introduction to soar as an

agent architecture. In R. Sun (Ed.), Cognition and

multiagent interaction: From cognitive modeling to social

simulation (pp. 53–78). Cambridge University Press.

162

Checking the Brain Mapping Hypothesis:

Predicting and Validating BOLD Curves for a Complex Task Using ACT-R

Claus Möbus (claus.moebus@uni-oldenburg.de)

Jan Charles Lenk (jan.lenk@uni-oldenburg.de)

Arno Claassen (arno.claassen@ uni-oldenburg.de)
Department of Computing Science, University of Oldenburg

D-26121 Oldenburg, Germany

Jale Özyurt (jale.oezyurt@uni-oldenburg.de)

Christiane M. Thiel (christiane.thiel@uni-oldenburg.de)
Department of Psychology, University of Oldenburg

D-26121 Oldenburg, Germany

Abstract

John R. Anderson proposed a correspondence between ACT-
R modules and brain regions (Brain Mapping Hypothesis).
Using a paradigm requiring rule-based matching of chemical
structures (pseudo formulae) with their respective names, we
compared ACT-R-generated blood-oxygen-level dependent
(BOLD) signal curves with BOLD curves obtained from
functional Magnetic Resonance Imaging (fMRI) scans. We
found significant correlations between ACT-R generated and
human BOLD curves for sensory and motor modules and
regions in particular, whereas a lack of significant results was
observed for mappings between internal modules and regions.
This result was ascribed to the fact that in contrast to
Anderson’s studies, our subjects were not urged to follow a
single strategy. Instead the task allowed them to construct
their personal strategy within a constraint-based strategy
space. Accordingly, the mapping hypothesis was tested
strategy-specific. As subjects are generally not able to reliably
identify their own in a retrospective manner, we used
Response-Time (RT) data in combination with a Bayesian
Belief Net to identify personal problem solving strategies.

Keywords: ACT-R; BOLD signal prediction, brain-mapping
hypothesis

Introduction

The ACT-R architecture (Anderson, 2004) provides a set of

modules with sensory, motor, and internal functions.

Anderson (2007a; Anderson, et al., 2008b) proposes a

neurophysiologic analogy and postulates a mapping

between these modules and brain regions (Table 1). For

instance, the Procedural module is mapped onto the basal

ganglia, while the Declarative module is mapped around the

inferior frontal sulcus. The ACT-R 6.0 implementation

provides a set of tools which directly predict BOLD signals

for these brain regions. Indeed, Anderson has “[..] defined

these regions once and for all and use them over and over

again in predicting different experiments” (2007b).

Several studies were conducted by Anderson et al. in

order to empirically validate the mapping hypothesis. These

included experiments from various domains, like algebraic

problem solving (Danker & Anderson, 2007; Stocco &

Anderson, 2008), associative learning (Anderson et al.,

2008a) or insight problems (Anderson et al., 2009). One

particular feature in common of all these experiments was

the fact that participants had to employ the same problem

solving strategy on all tasks.

The empirical validation of the mapping hypothesis is

among the research goals of our multidisciplinary research

project (see Section Acknowledgements). While also the

effects of affective and informative feedback on learning are

being studied (Özyurt, Rietze, & Thiel, 2008) an

accompanying fMRI study offers us the possibility to

compare BOLD signal predictions generated from strategy-

specific ACT-R models with BOLD signals obtained from

actual fMRI scans.

Table 1: ACT-R module/regions mappings according to

Anderson (2007a) with positions in Talairach coordinate

and dimensions (D, W, H) in voxels

Results of the present study suggest a further refinement

of our modeling methods. In contrast to the experiments

described by Anderson et. al. (2008a; Danker & Anderson,

2007; Stocco & Anderson, 2008), the tasks in our

experimental setting were far more complex; because in

order to solve these tasks, participants were free to choose

their personal strategies. Because different strategies lead to

different predictions of brain region activation, we had to

model these different strategies and identify the chosen

subject-specific strategy without using fMRI data (Möbus &

Lenk, 2009). We would work unduly in favor of the

mapping hypothesis if we would assign subjects to

strategies according to similarity of their BOLD curves with

the strategy-specific ACT-R-BOLD curves.

Module Region X Y Z D W H

Declarative Prefrontal ±40 21 21 5 5 4

Imaginal Parietal ±23 -64 34 5 5 4

Manual Motor ±41 -20 50 5 5 4

Goal ACC ±5 10 38 5 3 4

Procedural Caudate ±15 9 2 4 4 4

Visual Fusiform ±42 -61 -9 5 5 4

Aural Auditory ±46 -22 9 5 5 4

Vocal Motor ±43 -14 33 5 5 4

163

Experiment

All participants were lower-grade schoolchildren with ages

ranging from 11 to 13. The exercises which the children had

to solve came from the domain of the chemical formula

language (Heuer & Parchmann, 2008), which is generally

unknown to children of that age. However, instead of real-

world chemical elements, pseudo-elements (like Pekir or

Nukem) were used to ensure that the children exclusively

applied the rules of the artificial formula language. The

children were asked to answer 80 trials in two sessions

during fMRI scans. A single trial consisted of the auditive

and visual presentation of a chemical compound name and

the visual presentation of a pair of structural formulae

(Figure 1). The subjects were asked to decide which of the

two structural formulae (one on the left, the other on the

right matches the compound name. The total presentation of

a structural formula lasted for 4.5 seconds. An additional

time of 1 second for the answer has been granted, so that the

maximum response time amounted to 5.5 seconds.

Figure 1: A typical experimental trial: The compound

name is at the top, structural formulae left and right below.

If the response had occurred in time, a feedback was

given after a jitter time of 2-18 seconds. The feedback

consisted of two parts: one part informed about the

participant's performance; a second, affective part informed

about the performance of a fictional peer group. The total

feedback presentation lasted for 2.5 seconds.

In order to find the correct structural formula for a

compound name, six rules, which were part of the

instruction given to all participants, had to be applied and

checked for violations:

1. The abbreviation for an element is defined by two

letters

2. The first letter of the abbreviation is the same as

the first letter in the name of the element

3. Both letters appear in the element’s name

4. An element may have a multiplicity from 1 to 4 in

the compound. Distinct numerals are used to

denote the multiplicity:

 -/one

 pli/two

 pla/three

 plo/four

5. The position of a numeral is always in front the

element in the compound name

6. The central or inner element of the structural

formula is always the first in the compound name

In Figure 1, the left structural formula actually matches

the compound, while the right formula’s cardinalities

mismatch. These rules define the constraints of a strategy

space from which correct personal strategies can be

constructed by the subjects. There is no explicit order in

which the rules should be applied. Either the left or the right

formula violates at least one of the rules. The trials are thus

classified by the position of the faulty formula (left/right)

and by the number of the violating rule.

The rules were well known by the children because they

went through an extensive instruction phase in multiple

sessions. They familiarized themselves with the rules using

age-based material and games especially designed for that

purpose. They also passed 20 trials on a computer and

another 40 in an fMRI simulator prior to entering the actual

fMRI experiment.

Overall, 33 participants were included in our study

concerning the brain-mapping hypothesis. They were

distributed among five experimental groups defined by

design matrices, which described the sequential order of

trials and jitter times. These 33 participants scored an

average 54.64 correct answers from a whole of 80 problems

with a standard deviation of 11.9. On the average, they were

able to signal the correct solution to the problem in a trial

within 3.78 seconds with a standard deviation of 0.8s.

A SONATA MRI system (Siemens, Erlangen, Germany)

operating at 1.5T was used with a standard whole-head coil

to obtain T2*-weighted echoplanar (EPI) images with

BOLD contrast (matrix size: 64x64, pixel size: 3x3 mm
2
).

Participants completed two experimental runs consisting of

40 trials each. During each functional run 408 volumes of

30 three mm-thick axial slices were acquired sequentially

with a 0.6 mm gap (TR = 2 sec, TE = 50 msec). Data were

preprocessed with the Statistical Parametric Mapping

software SPM5
1
. Following rigid body motion correction,

the time series of each voxel was realigned temporally to the

middle slice to correct for differences in slice acquisition

time. Structural and functional volumes were coregistered

and spatially normalised to a standard T1 template based on

the Montreal Neurological Institute (MNI) reference brain

(resampled to 2x2x2mm
3
 voxel). The data were then

smoothed with a Gaussian kernel of 8 mm full-width-half-

maximum to accommodate intersubject anatomical

variability.

Models

Two input channels are available to the problem solver. The

visual input channel is mandatory, while the auditory input

channel is auxiliary. This fact adds to the complexity of the

problem, especially as both channels may be perceived in

parallel or consecutively. Either the left or the right formula

1 http://www.fil.ion.ucl.ac.uk/spm/software/spm5 6/16/2010

164

or both have to be evaluated visually. This results in a

variability of conceivable strategies, which differ in

efficiency as well as module activation. A set of basic tasks

is derived from the rules. These tasks are shared by all

strategies, though not necessarily in the order presented

here:

1. Visually and/or auditorially perceive and encode

the different parts of the compound name

(mandatory for any successful strategy)

2. Count the outer elements of a structural formula

and compare them with the second numeral in the

compound name

3. Count the inner elements of a structural formula

and compare them with the first numeral

4. Compare the inner element with the first element

of the compound name

5. Compare the outer element with the second

element of the compound name

6. Indicate the correct formula

Tasks 2-5 may be applied to both formulae, or, more

efficiently, to either the left or the right formula. It should be

noted that some concurrency can take place if the compound

name is encoded using only auditory input. Tasks 4 and 5

may be split into two different tasks as the abbreviation of

an element always consists of two letters. Since the first

letter is easier to compare with the name, it may be more

appropriate to prioritize the first comparison and leave the

second letter for later. A second open question which is not

reflected within the above list of tasks is the position of the

retrieval for the numerals. It can take place very early when

encoding the compound name, but there is also the

possibility to retrieve the numeral later on between the

counting and comparison stages.

A strategy is defined by the order of task processing and

the formulae Tasks 2-5 are applied to. While all the

strategies share the same basic set of tasks, they all perform

differently on each trial. Some trials may only be solved by

counting the elements as in Figure 1, others by name-

element comparisons, still others by both. A strategy shows

higher performance (shorter response time) if it concentrates

on a single structural formula to decide whether it matches

or not. Each trial class (the violated rule and location of the

violating formula) may have an impact on the performance

of the strategy.

Several, though so far not all possible, strategies were

modeled, at first on an abstract layer as UML activity

diagrams, and subsequently within the ACT-R environment

as a set of production rules. As only expert participants were

modeled, all modeled strategies find the correct answer but

with a large variation in performance. So far, four different

strategies, S1 to S4, have been modeled (Table 2). They

differ in that they either process the structural formula and

the compound name simultaneously using the different

input channels, or by processing the compound name first

and then proceed to the structural formulae. Thus they either

process the trial single- or multithreaded, or single-formula

or both formulae.

Table 2: Characteristics of strategies/models

 Multi-Thread Single-Thread

Single Formula S1 S3

Both Formulae S2 S4

Apart from these single- vs. multi-tasking and single vs.

both formulae considerations, even more design options are

available to the modeler yet. For instance, the exact time

when certain tests are carried out may be varied. Thus, the

model could compare the element's abbreviations with their

respective names before comparing the cardinalities. Also,

the costly checking of the second letter of the abbreviation

may be postponed by the strategy in order to save time. A

heuristic approach could leave the second letter out of

consideration completely.

The models perform quite differently on the various trials,

which is reflected in the ACT-R module traces. This affects

the BOLD prediction. Any realization of Task 1, perceiving

and encoding the compound name, would surely engage

ACT-R's Visual or Aural module, if not both, and the

Imaginal module. Tasks 2 and 3, which encompass

encoding and counting the structural formulae, would

involve the Imaginal, the Visual and the Declarative

module. Tasks 4 and 5 would also require at least the

Imaginal module, but it could involve the Visual module if

the second letter of the symbol has to be checked for

occurrence in the compound name. As Tasks 2-5 can be

arranged in any arbitrary order, or even be split into

subtasks which could run in parallel, quite different patterns

of module activation would emerge. This implies that even

models which produce similar behaviors may predict

distinct BOLD signals, if the productions involved activate

different modules.

Data Analysis

It is doubtful whether the participants are able to remember

their problem solving strategy for each trial. It is also

possible that they applied varying strategies to trials. The

choice of strategy may be related to the trial class. However,

we assume that the participants already settled for a single

strategy after the extensive instruction and training phases.

In order to determine which of our models is suitable to

explain the performance of the actual strategy used by the

participant, we devised a Bayesian Classifier with a

Bayesian Belief Network (BBN) (Jensen, 2007) as

diagnostic tool. The BBN (Figure 2) is trained with data

from ACT-R model runs. Subsequently, behavioral data

from the actual experiment is entered as evidence for

identifying the personal trial-independent strategy of the

subject. Strategies are thus classified by response times

(RT).

The main idea is that all models produce distinct response

times for each trial. We assume that response times for a

strategy are dependent on the trial. This is reflected in the

BBN in Figure 2. The probability tables of the BBN are

165

P1 P2 P3

fMRI scans

ACT-R module activations

Strategy Classifier

Individual BOLD
curves in selected ROI

Provides weights for BOLD
curves aggregation for a
strategy S

Prediction
according to
Brain Mapping
Hypothesis

C
o

rr
el

at
io

n
te

st

M
ap

p
in

g

1 3 5 7 9 11 13 15

B
O

LD
 a

ct
iv

at
io

n

Time Aural S3 left

T13

T14 T15

590

600

610

620

630

640

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

G
ra

yv
al

u
es

Time

Avg

P1

P2

P3

P4

P5

P6

P7

T1 T14 T15

being learned by running all of the strategy-specific ACT-R

models to generate cases. This results in a data matrix

whose columns correspond to the nodes from the BBN and

whose rows correspond to trials. During model runs, the

default values of ACT-R’s parameters were used.

Figure 2: BBN for strategy classification

The trial is entered as evidence into the “Trial”, “Matrix”,

and “Session” nodes. The response time of the participant is

entered as evidence into the “RT” node. It is then possible to

infer on the strategy most likely used by the participant in

the “Strategy” node. In Figure 2, the trial in question is the

14
th

 trial from the second session of the experimental group

defined by design matrix 1407. In this particular case, for

participant with a response time between 4 and 4.5 seconds,

S2 and S3 are equally probable.

The collected fMRI data is analyzed by using the Regions

of Interest (ROI) approach (Jäncke, 2005). The regions are

specified by the module positions and dimensions given by

Anderson’s Brain Mapping Hypothesis in Table 1. The

Talairach coordinates were transformed into MNI

coordinates. The raw values of each voxel lying in the ROI

are extracted from the images and averaged per region,

resulting in an activation timeline for each person and

region (Figure 3).

An averaged BOLD curve for each region is obtained by

applying a strategy-specific weighted means function to and

subsequent aggregation of the individual BOLD curves. For

each trial 𝑡 of the 80 trials, a probability 𝑝𝑠,𝑡 for a particular

strategy 𝑠 is inferred with the BBN from Figure 2. In order

to neutralize the effects of varying base levels of individual

BOLD signals, we employed ipsative measures: the

deviations from the individual’s BOLD curve averages are

aggregated as weighted averages using trial- and strategy-

specific weights and compared with the deviations from the

predictions.

For each ROI/Module pair, the averaged BOLD curve

deviations are tested for correlation with the respective

BOLD prediction computed from the ACT-R module

activation (Anderson et al., 2008). The default parameters of

the ACT-R BOLD module were used for this computation.

Each time series consists of 400 data points.

As the Pearson’s correlation coefficients were calculated

independently for each experimental group, the resulting

values were averaged among the experimental groups by

using the Fisher-z transformation. Table 3 shows the final

correlation results for each strategy separately for left and

right brain hemispheres. If the correlation coefficient is

higher than 0.098, the null hypothesis is rejected with

𝛼 = 0.05. In this case, nearly all correlations between the

BOLD signal in the ROI and the ACT-R module’s

prediction can be considered statistically significant. This is

due to the large 𝑁. The practical significance depends on the

percentage of explained variance 𝑟2 ∙ 100. This is the basis

of our discussions.

Figure 3: Aggregation of BOLD curve per ROI and correlation test with ACT-R prediction

166

Table 3: Correlations between ACT-R predictions and ROI activities. Each module’s prediction has been tested for

correlation with any of the regions from Table 1. Correlations marked with an asterisk are highest for the postulated mapping

Discussion

Correlations between the Aural Module’s predictions and

left and right ROIs alike are high for every strategy. This

might be expected, as the aural input is only available to

each model for a short time, and thus the productions which

perceive and encode that information fire at approximately

the same time for all models.

The same applies to the Visual Module. The visual

presentation lasts 4.5 seconds. During this time span, any

model will perceive and encode visual information. Models

S2 (multi-threaded, both formulae) and S3 (single threaded,

single formula) perform with the highest correlation here.

Both models show the same behavior regarding response

times. However, the visual module is more engaged in the

S2 model, which examines both formulae. Correlation is

also the highest for this model.

The Manual Module’s predictions are higher for the left

than for the right hemisphere. This was expected as all

subjects responded with their right hand. All strategies

except S4 (single-threaded, both formulae) have a moderate

correlation coefficient. The moderate correlation is

surprising, as models were matched to the participants’

BOLD signals according to their response time, which

would suggest a higher correlation coefficient.

The Procedural Module offers fair correlations for both

hemispheres and all strategies, even if the correlations for

S1 are somewhat lower than those for the other strategies.

The correlations of the Declarative Module’s predictions are

moderate for the left hemisphere and low for the right

hemisphere. The higher prediction for the left Retrieval

Module is in line with previous research showing a left

hemispheric dominance for the retrieval of verbal

information (Petrides Alivisatos, & Evans, 1995;

McDermott, Buckner, Petersen, Kelley, and Sanders, 1999).

The opposite is the case for the Imaginal Module’s

prediction: These correlate better with the right than with

the left hemisphere. The Goal Module’s correlation is

negative in all cases.

In general, the correlations are higher for the sensor

modules, the Visual and Aural Modules. The internal

modules, Procedural, Declarative, and Imaginal, show lower

correlations alike. However, this cannot be ascribed to

faulty assumptions in the modeling process, as they are still

high when tested for significance. Rather, they suggest that

participants may be occupied with other processes which the

models do not account for. This could especially be the case

as the experimental design provided large jitter times or

delays, during which the participant remained inactive. This

has also been observed by Danker and Anderson (2007).

All of our models assume a single goal which is created at

the beginning of a trial. The negative correlation

coefficients suggest that this assumption is wrong. Thus, the

creation of sub-goals for individual tasks should be

considered an alternative. A model using sub-goals would

have a decreased performance and higher response times

due to goal chunk creation costs. Using the Competing

Strategies paradigm (Taatgen, Lebiere, & Anderson, 2006),

the model would optimize performance by production rule

learning.

The models’ deficiencies are also evident from the scatter

plots in Figure 4. These show predictions versus

experimental evidence. Ideally, experimental evidence

would increase with model predictions with little variance to

the regression line, which would indicate similar peaks and

depressions for both curves. This is clearly not the case for

the Goal module on the right. Instead, both scatter plots

show clustering on the prediction axis. This indicates

monotonous activity patterns in the respective modules,

which is due to the chunk loading and manipulation actions

as implemented by the model.

Figure 4: Scatter plots of predictions vs. evidence for S2

Conclusion

The correlations presented here are generally lower than in

previous studies (Danker and Anderson, 2007). However,

the experimental design, which does not account for

functional separation, might contribute to that fact. For a

Hemisphere Strategy Production Declarative Imaginal Visual Goal Manual Aural

Left

S1 0.458 0.365 0.258 0.525 -0.262 0.389 *0.691

S2 0.489 0.402 0.259 *0.647 -0.267 0.403 *0.691

S3 0.495 0.408 0.258 *0.617 -0.264 0.414 *0.692

S4 0.489 0.414 0.246 *0.367 -0.265 0.194 *0.693

Right

S1 0.428 0.191 0.389 0.556 -0.218 -0.052 *0.659

S2 0.438 0.220 0.397 *0.606 -0.218 -0.049 *0.660

S3 0.450 0.216 0.389 *0.596 -0.218 -0.044 *0.659

S4 0.432 0.231 0.397 0.295 -0.218 -0.065 *0.660

167

complex task which allows for a multitude of strategies to

be pursued, many models may reproduce similar human

behavior but do not predict the same BOLD curves.

The ACT-R architecture features many free parameters

which may be altered in order to fit the model to

experimental data, even if this may seem contrary to the

intention of a cognitive architecture (Taatgen & Anderson,

2008). Also, many different modeling paradigms exist

which may be more or less appropriate to the task.

Thus, three options arise for the continuation of our

research. First, we could redesign our experiment in order to

separate functionalities, which is the approach currently

done by other research groups. Second, we could refine our

models by using a modified internal representation such as

sub-goal chunks. Third, we could define other ROIs and

look for correlations there.

So far, the second and third choices are being pursued by

us. The second choice would also include the calibration of

the modified model to the individual participant’s behavior

by adjusting ACT-R’s parameters. This should have positive

effect on BOLD prediction and signal correlations.

Especially the third choice of defining alternative ROIs is

of great importance. As can be seen in Table 1, Anderson’s

brain mapping hypothesis covers only a very small portion

of the brain. However, a review of imaging research

attributes the functions of ACT-R’s modules to a much

wider range of areas (Kaspera, 2010). Also, many of these

regions seem to interact when performing a certain function,

a phenomenon which the one-to-one mapping presented by

Anderson cannot account for.

Acknowledgments

Cognitive Modeling and Bayesian Identification Analysis

(CoMBIAn), work package within project Impact of

affective and informative feedback on learning in children

before and after a reattribution training: An integrated

approach using neuroimaging, educational research and

modeling, Möbus, Moschner, Parchmann & Thiel (main

applicant), BMBF-Program for the Promotion of Scientific

Collaboration between the Neurosciences and Research on

Learning and Instruction, 03/01/2008 - 02/28/2011.

We wish to thank Mrs. P. Arndt, Mrs. B. Moschner,

Mrs. I. Parchmann, Mrs. A. Anschütz, and Mr. S. Bernholt

for the experimental design and support by discussing our

results.

References

Anderson, J. R. (2007a). How can the human mind occur in

the physical universe? Oxford University Press

Anderson, J. R. (2007b). Using Brain Imaging to Guide the

Development of a Cognitive Architecture, in: Gray, W. D.

(ed.), Integrated Models of Cognitive Systems, Oxford

University Press

Anderson, J. R., Anderson, J. F., Ferris, J. L., Fincham, J., &

Jung, K. J. (2009). The lateral inferior prefrontal cortex

and anterior cingulate cortex are engaged at different

stages in the solution of insight problems, Proceedings of

the National Academy of Sciences, 106, 10799-10804

Anderson, J. R., Bothell, D., Byrne, M., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An integrated theory of the

mind, Psychological Review, 111, 1036-1060

Anderson, J. R., Byrne, D., Fincham, J., & Gunn, P.

(2008a). Role of prefrontal cortices in associative

learning, Cerebral Cortex, 18, 904-914

Anderson, J. R., Fincham, J., Qin, Y., & Stocco, A. (2008b).

A central circuit of the mind, Trends in Cognitive Science,

12, 136-143

Danker, J. & Anderson, J. R. (2007). The roles of prefrontal

and posterior parietal cortex in algebra problem solving,

Neuroimage, 35, 1365-1377

Heuer, S. & Parchmann, I. (2008). Son2e oder Fus2bal2 –

wie Sechstklässler die chemische Formelsprache

interpretieren, Naturwissenschaften im Unterricht,

106/107, 20-24

Jänke, L. (2005). Methoden der Bildgebung in der

Psychologie und den kognitiven Neurowissenschaften,

Kohlhammer

Jensen, F. V. & Nielsen, T. (2007). Bayesian Networks and

Decision Graphs, Springer

Stocco, A., & Anderson, J.R. (2008), Endogenous control

and task representation: An fMRI study in algebraic

problem solving, Journal of Cognitive Neuroscience, 20,

1300-1314

Taatgen, N., & Anderson, J. R. (2008). Constraints in

Cognitive Architectures, in: Sun, R. (ed.) Handbook of

Computational Psychology, Cambridge University Press

Taatgen, N., Lebiere, C., & Anderson, J. (2006). Modeling

Paradigms in ACT-R, in: Sun, R. (ed.), Cognition and

Multi-Agent Interaction: From Cognitive Modeling to

Social Simulation, Cambridge University Press

Kaspera, R. (2010). ACT-R: Zur Überprüfung der Brain

Mapping Hypothese (On Validation of the Brain Mapping

Hypothesis), Technical Report, University of Oldenburg

McDermott, K. B., Buckner, R. L., Petersen, S. E., Kelley,

W. M., & Sanders, A. L. (1999). Set- and code-specific

activation in frontal cortex: an fMRI study of encoding

and retrieval of faces and words, Journal of Cognitive

Neuroscience, 11, 631-640.

Möbus, C. & Lenk, J. C. (2009). Bayesian Identification of

Problem-Solving Strategies for Checking the ACT-

R/Brain-Mapping Hypothesis, in: Schmid, U., Ragni, M.,

& Knauff, M. (eds.), Proceedings of the KI 2009

Workshop Complex Cognition, Paderborn, Germany,

Bamberger Beiträge zur Wirtschaftsinformatik und

Angewandten Informatik, 82, 37-47

Özyurt, J., Rietze, M. & Thiel, C. (2008). fMRI of feedback

processing in children and adults, Frontiers in Human

Neuroscience

Petrides, M.,Alivisatos, B., and Evans, A. C. (1995).

Functional activation of the human ventrolateral frontal

cortex during mnemonic retrieval of verbal information,

Proceedings of the National Academy of Sciences, 92,

5803-5807.

168

Modeling Statistical Learning and Response Inhibition
with the Change Signal Task

L. Richard Moore Jr. (larry.moore@mesa.afmc.af.mil)

Lockheed Martin
Air Force Research Laboratory

Mesa, AZ 85212 USA

Glenn Gunzelmann (glenn.gunzelmann@mesa.afmc.af.mil)
Air Force Research Laboratory

Mesa, AZ 85212 USA

Joshua W. Brown (jwmbrown@indiana.edu)
Dept. of Psychological & Brain Sciences, Indiana University

Bloomington, IN 47405 USA

Abstract
The change signal task is a two alternative forced choice task
with the addition of a change signal presented on 1/3 of the
trials at some delay relative to the initial stimulus. The change
signal indicates to participants that they should inhibit their
initial choice and respond with the other alternative. It
provides an opportunity to examine the cognitive mechanisms
involved in statistical learning and response inhibition. Within
the task, change signal delays are associated with stimulus
color, and are adjusted independently with a step function to
produce high and low error conditions. Observed data show a
significant difference in reaction times between these two
conditions. In this paper we propose a model for the change
signal task that leverages existing declarative memory
mechanisms in ACT-R as a surrogate for the implicit
contextual learning observed in human trials. We compare the
mechanisms in this model briefly to an existing neural
account, and use the model to predict the consequences of
cue-conditional reversal.

Keywords: response inhibition; statistical learning;
declarative memory; ACT-R.

Introduction
Executive control of behavior is a defining component of
high-level cognition. One aspect of executive control,
response inhibition, has been explored extensively using the
stop signal paradigm. The classic task from Logan and
Cowan (1984) visually presented subjects with one of four
letters, which the subjects then classified into groups by
pressing one of two buttons. On 25% of the trials an audible
tone signaled that they should inhibit their response. The
probability of responding was related to the timing of the
stop signal (with a greater chance of inhibition with shorter
delays) and so the authors proposed a “horse race” model
for resolving executive conflict.

Brown and Braver (2005) extended the stop signal
paradigm to assess error-likelihood effects. In their change
signal task, a two alternative forced choice task is presented.
On one third of the trials, however, a second stimulus is
presented at some delay following the original stimulus. The

second stimulus – the change signal – indicates to subjects
that they should inhibit their response to the original
stimulus and respond with the other alternative instead. To
ensure a particular error rate in the task, the delay between
the initial stimulus and the change signal is manipulated.

In Brown and Braver (2005), two colors were used for the
stimuli, each of which was associated with a different target
error rate. They collected fMRI data from participants
across the four stimulus conditions (i.e., Change versus No
Change trials crossed with High versus Low error
probability) to evaluate two alternative models of anterior
cingulate cortex (ACC) function. The successful model,
known as the error-likelihood model, correctly predicted a
learned response in the ACC that was sensitive to the
stimulus color (error rate condition), for both the “go” and
“change” trials.

The model presented in Brown and Braver (2005) was
focused on understanding the role of the ACC in learning to
recognize situations in which the risks of errors are high.
Previous work suggested that the ACC detected actual
errors (Dehaene et al., 1994) as well as conditions of
response conflict (Botvinick et al., 2001). The error
likelihood model further suggested that the ACC activity
warns of an impending error as a basis for implementing
proactive control.

There are other interesting aspects to the empirical data
that are not addressed directly by Brown and Braver (2005).
For instance, the model does not address the sequential
behavior of participants in terms of their reaction times. In
addition, the model does not explicitly account for
differences in reaction times for the two different error
conditions. These effects in the empirical data provide
further evidence regarding the cognitive mechanisms
involved in human performance on this task that will be
explored in the current research.

To better understand the mechanisms influencing human
performance on the change signal task, we have created a
complementary model that focuses on the detailed behavior

169

of participants. For instance, the data illustrate that the
conditional learning predicted by the error-likelihood model
(i.e., differences in ACC activation for High versus Low
error conditions) has an impact on reactions times that
unfolds over the course of many trials. We used the ACT-R
(Anderson, 2007) computational cognitive architecture to
model these results from Brown and Braver (2005) study.
After we describe the model and results in detail, we discuss
the distinct and complementary insights afforded by the
modeling approach used here versus Brown and Braver
(2005).

The Task
We reimplemented the original Brown and Braver change
signal task in Lisp to accommodate integration with ACT-R.
The only known differences include color choices, symbols
presented, and response keys. Although these items were
altered for implementation convenience, they have no
bearing on model behavior or performance. The remaining
description will focus on the task as presented to human
subjects. Additional details regarding the task and
instructions can be found in the supplementary materials
from Brown and Braver (2005).

A schematic of the change signal task is shown in Figure
1. After a .5s blank inter-trial delay, subjects were presented
with a cue stimulus in one of two colors. Unbeknownst to
the subjects, the cue color represented either a high error
rate condition or a low error rate condition. After one
second, the cue was replaced with a similarly colored go
signal—an arrow pointing either right or left. The subjects
were instructed to respond to the go signal by pressing the
corresponding right or left arrow key on the keyboard.

On one third of the trials, a larger arrow pointing in the
opposite direction of the go signal appeared after a change
stimulus delay (CSD). (Again, the coloring was consistent
with the error rate condition.) In this case, subjects were
instructed to inhibit their initial response to the go signal,
and instead respond to the “change signal.” A response
ended the trial, which progressed directly to a blank screen
and the inter-trial delay. No feedback was presented. If the
subject failed to respond within one second after the go
signal appeared, the trial timed out.

The high and low error rate conditions were bound to
unique CSDs, which were adjusted independently using a
step function to maintain a consistent error rate defined for
each condition. In both error rate conditions, CSDs were
constrained to a range of 20 to 800ms and incorrect
responses reduced the CSD by 50ms. In the low error rate
condition, correct responses led to a 2ms increase in the
CSD, while in the high error rate condition the CSD
increased by 50ms when a correct response was made.
These adjustments were made to motivate a 4% error rate,
and a 50% error rate, respectively. Responses made prior to
the presentation of the change stimulus were considered
errors.

The original experiment used five blocks with
approximately 107 trials each, although the trial count

varied slightly across subjects. Our task fixed this number to
107, and the direction of the go signals and error rate
conditions was randomized and counterbalanced within
each block as best as possible. Stimulus colors were
consistent with the error rate condition in all blocks except
the last. For the final block, the relationship between stimuli
colors and error rate conditions was reversed.

Figure 1: Task schematic. A cue signal is presented in one

of two colors, followed by a go signal 1 second later. There
is a 33% chance that a subsequent change signal will be

presented, the timing of which is determined by a change
stimulus delay bound to the signal color.

Human Performance
Figure 2 shows aggregate reaction times across trials
collapsed across subjects and conditions. The solid line
represents the central tendency as predicted by a simple
linear regression of a logarithmic model, although the
regression is intentionally discontinuous at the start of the
reversal block, indicated by the grey area. The subjects
performed more slowly across trials until they reach an
asymptote. The regression model coefficient affecting the
rise and asymptote of the curve is significantly greater than
zero for the normal trials (p < .001), and not significant for
the reversal block. This suggests that there are not enough
reversal block trials to reveal an effect, if there is one.

Time on task effects may account for some of the
performance decline (e.g., Gunzelmann, G., Moore, L. R.,
Gluck, K. A., Van Dongen, H. P. A., & Dinges, D. F.,
2010), but we believe that the more influential factor is that
subjects were strategically hedging their responses to
improve their odds of successfully responding to change
signals. (Of course, such a strategy is futile in this
experiment because the CSDs were adjusted to encourage a
consistent error rate.) Evidence for strategic hedging
becomes apparent when we examine reaction times for each
condition, also shown in Figure 2. The dashed line shows
the central tendency for the high error rate condition, and
the dotted line shows the central tendency for the low error

170

rate condition. Again, the regression is intentionally
discontinuous at the start of the reversal block.

Not surprisingly, the statistics for the two error rate
conditions match those of the collapsed data, with highly
significant coefficients for the normal blocks (p < .001) and
insignificant coefficients for the reversal block. The
confidence intervals for the normal block coefficients,
however, are more interesting because they do not overlap.
(17.8 < Ahigh < 27.7, and 3.0 < Alow < 11.2) The significant
difference between these coefficients suggests a relationship
between stimulus color and reaction time. In other words,
over the duration of the experiment, subjects learn to delay
their response more for the high error rate condition than for
the low error rate condition. A simple time on task effect
would not produce a disparate hedge times across error rate
conditions.

Figure 2: Reaction times collapsed across conditions are

shown in the grey scatterplot, with the central tendency
shown as a solid black line. Central tendencies for the high
and low error conditions are shown as dashed and dotted

lines, respectively. The central tendencies, generated
through regressions, are discontinuous at the start of the

reversal block, shown in grey.

The Model
The ACT-R 6 (Anderson, 2007) cognitive architecture
provides the computational framework for our model. It
integrates perceptual, cognitive, and motor processing
mechanisms from the psychological literature. At its core, it
is a symbolic production system with a semantic network
memory and simulated subsymbolic effects. Specifically,
our model leverages the procedural and declarative
capabilities, the intentional module, and a timing capability
derived from a temporal module (Taatgen, Van Rijn, &
Anderson, 2007).

The empirical data from Brown and Braver (2005)
demonstrate that subjects implicitly learned the association
of stimulus color to error rate condition. In this paper, we
show that this learning measurably influenced subject
performance—their response times were strategically

mediated by stimulus color. Out of several possible
approaches to model this in ACT-R, we chose to use the
declarative module to emulate the statistical learning
attributed to the ACC.

From the perspective of the ACT-R theory, the
declarative module is not intended to represent the
functional properties of the ACC (see Anderson, 2007), but
it does provide the appropriate Bayesian dynamics to
represent the learning we hypothesize may be involved.
Thus, we treat the declarative module as a surrogate for the
ACC functionality that is not represented by existing
mechanisms in ACT-R. This absent functionality would
appear to appropriately reside within ACT-R’s intentional
module, which is associated, in part, with ACC function
(Anderson, 2007).

The model employs a simple hedging strategy to
accomplish the task. Upon attending to a cue, it attempts to
retrieve a similar trial from declarative memory based on the
cue color. When the subsequent go signal is attended, the
model does not respond immediately. Instead, it waits
according to a remembered “hedge time” from the trial that
was retrieved from declarative memory. If no similar trial
exists (i.e., nothing was retrieved), a default initial hedge
time is used, which is a free parameter discussed below. If a
change signal is seen prior to the expiration of the hedge
time, a response is made accordingly. If no change signal is
seen and the hedge time expires, the model responds to the
go signal.

Even when the model responds to the go signal, the key
press does not occur immediately. Instead, the ACT-R
motor module initiates a 3-phase motor movement that can
take well over 100 milliseconds before the actual key press
is registered by the task (Byrne & Anderson, 2001). During
this time, the model can detect a change signal, although it
is too late to cancel the requested motor action. The model
learns from its failure by associating the CSD with the color
for that trial in its goal buffer of the intentional module.
This timing information is based upon estimates from the
temporal module (Taatgen et al., 2007).

At the start of the next trial, the contents of the goal
buffer, which includes the association between the stimulus
color and hedge time, is stored in declarative memory to
serve as an exemplar for future trials. Because detected
errors typically associated a longer hedge time than what
was originally retrieved, they have the effect of increasing
future hedge times (Rabbitt, 1966). As currently written, the
model has no specific mechanism to reduce hedge times.

Without a mechanism to reduce hedge times, it might
seem that model response times would always increase and
never asymptote. Indeed, sharp increases in hedge times do
occur in early trials. However, because each stimulus color
/ hedge time pairing is stored as an independent chunk (i.e.
there is no merging) the likelihood of retrieving a particular
hedge time increases the more often it is used, in part due to
the influence of stochasticity in declarative memory. After
a large number of trials, the declarative memory becomes so
saturated with hedge times associated with each stimulus

171

color, that the model’s hedging essentially reaches a steady
state.

Three parameters were involved with fitting the model to
observed data. The first is the initial hedge time, which we
believe was established either through practice trials or as a
side effect of instructions that informed subjects of delayed
change signals. This has the simple effect of moving the y-
intercept in Figure 3.

The second free parameter was activation noise, which
reflects the effect of subsymbolic processes in the
declarative memory system. Noise influences the likelihood
that recent and correct declarative information will be
retrieved. In terms of the curve in Figure 2, noise affects the
overall shape—higher noise flattens it out. In ACT-R,
activation noise is set with the ans parameter, for which we
settled on a value of .53. This produces a standard deviation
of .96 in the distribution of noise that is sampled to add
stochasticity to the activation of declarative memories.

Lastly, the ACT-R declarative memory system allows for
errors of commition through a mechanism called partial
matching. We used this mechanism so that the model would
be indifferent to stimulus colors in early trials and develop a
differentiation in later trials. The mechanism requires us to
specify a degree of similarity between stimulus colors,
which we set to 50%. We did not use this as a free
parameter in the fitting processes because the other
parameters provided the necessary degrees of freedom.

Results
Using the parameter values described above, we

aggregated the results from 100 model runs to obtain
reliable measures of central tendency. A comparison of
reaction times between model and human data are shown in
Figure 3. Because a large amount of stochasticity still
remains even after aggregation, the model results are
represented using linear regressions of a logarithmic model
in the same way the human data is shown. (The standard
deviation is considered as a separate measure of fitness
below.)

Figure 3: ACT-R model results are shown as dashed lines

on top of the human data shown as black lines.

The RMSD values calculated from the model and human
reaction time data are shown in Table 1. The overall mean
RMSD was 58.5ms, which seems reasonable given that
some of the deviation is a result of remaining stochasticity
in the model and human data.

Table 1: RMSD values between model and human data.

Condition / Block RMSD (ms)
High Error / Normal 51.6
High Error / Reverse 48.8
Low Error / Normal 74.3
Low Error /Reverse 59.1

The high stochasticity suggests that the standard deviation

of the reaction time is another important measure of fitness
(non-responses were removed for this analysis). Figure 4
overlays model performance on top of a box plot of the
subject data. The model’s standard deviation was in the
middle of the 1st quartile for the subject data. This could be
improved by increasing noise in other areas of ACT-R, but
we opted against doing so in the interest of parsimony.

Figure 4: ACT-R model standard deviation, error

proportion, and non-responses overlaid on subject data. The
hollow diamonds indicate ACT-R values.

The proportion of incorrect responses made was also a

consideration. For purposes of this analysis, an incorrect
response occurs when the subject presses the wrong arrow
key, regardless of condition. Since a response is actually
made, this does not included non-responses, which are
analyzed separately below. Also shown in Figure 4, the
results were within the range of humans, although on the
high side.

The remaining measure of fitness is the proportion of
non-responses. A non-response occurs when the model fails
to respond to a go signal within 1 second. The temporal
module in ACT-R adds some stochasticity to the timing so
this can occur even if the intended hedge time is within the
trial period. Again, the non-responses were well within the
human range (see Figure 4), but on the low side of the
second quartile. As was the case with standard deviation,
this could be improved if we allowed the model another
degree of freedom.

Finally, fMRI studies, including the Brown and Braver
(2005) work, often use a blood oxygenation level-dependent
(BOLD) contrast mechanism. With this technique, regions

172

of the brain with higher blood oxygenation appear more
intensely on images, which indicates greater neural activity.
ACT-R uses buffer activity to make BOLD predictions
(Anderson, Bothell, Byrne, Douglass, Lebiere, & Qin,
2004), as shown in Figure 5. In this figure, ACT-R makes
BOLD predictions for the ACC region based on activity in
the goal buffer of the intentional module. To produce this
graph, the inter-trial delay was extended to 10 seconds to
isolate responses. Data was aggregated from 12 normal
blocks of 107 trials.

Figure 5: ACT-R BOLD predictions for the ACC region

in each of the four conditions.

Discussion
As modelers, we often confront (and perhaps carry our

own) biases related to specific modeling approaches,
whether it be production level architectures like ACT-R,
connectionist approaches like the error likelihood model,
diffusion models, dynamic systems, or others (Anderson &
Lebiere, 2003). This is unfortunate, because as this research
demonstrates, each methodology maintains distinct
advantages as well as disadvantages that may be overcome
using a variety of techniques. Specifically, the error
likelihood model makes detailed predictions about
neurological processes in the ACC beyond the current scope
of ACT-R. However, ACT-R brings to the table a
generalized account of end-to-end perceptual-cognitive
activity, which can reproduce observed behavior.

If we accept that both models contain elements of truth,
there must be some functional overlap despite the differing
levels of abstraction. Recent work on the theory of ACT-R
has focused on mapping functionality to specific brain
regions (e.g., Anderson, Bothell, Byrne, Douglass, Lebiere,
& Qin, 2004). Specifically, the ACC is attributed to the
ACT-R intentional module, which includes the goal buffer
(Anderson, 2007). The goal buffer typically maintains the
internal and relevant external information required to make
decisions. This is intended to include the conflict resolution

typically attributed to the ACC, but it is a functionally
broader interpretation.

In our change signal model, the goal buffer contains the
stimulus color and hedge time, among other state
information. The current implementation of ACT-R
provides no functional computation in the intentional
module, so the statistical learning demonstrated by the error
likelihood model involves knowledge maintained in the
declarative module, which acts as a surrogate. Our position
that the declarative memory acts as a surrogate is largely
based on that fact that many subjects were unable to
explicitly distinguish the difference between stimulus colors
in terms of their pairing with error likelihood even after the
experiment.

This is not a firm position, and we are planning a follow-
up study to guide our modeling direction. A more detailed
participant debriefing will help determine the degree of
declarative learning and influence on behavior. The results
may suggest that the declarative component is more than
just a surrogate—perhaps the ACC activity is
epiphenomenal to declarative function. On the other hand, it
may be confirmed that there is little relation between
declarative knowledge and subject behavior with respect to
high and low error conditions. In this case, the model may
evolve towards a bottom-up learning approach, perhaps
though augmenting the intentional module in ACT-R or
focusing on a procedural learning approach.

In the mean time, the declarative module provides a
reasonable proxy for ACC function because it employs a
similar statistical learning process. Because the information
managed in declarative memory relates stimulus color and
hedge times, greater activity occurs when change signal
errors are detected. This is reflected in the goal buffer,
which results in higher predicted BOLD responses in ACT-
R. Furthermore, because errors are detected 3x more often
in the high error rate change condition, its mean BOLD
response will rise above all other conditions. This is
supported in Figure 5.

The ACC BOLD responses recorded in the Brown and
Braver (2005) study aligns with some, but not all, of the
ACT-R predictions. Specifically, the high error change
condition shows the highest activation, followed by low
error change and high error go conditions which are
essentially tied.

The low error rate go condition is a significant
divergence, as the BOLD response show that the activation
is clearly lower than the other conditions in that region.
Unfortunately this was one of the key findings that
distinguished the error likelihood model from the alternative
“conflict” model. The current ACT-R model does not
produce a similar prediction because extra goal
manipulation only occurs when errors are detected in
change conditions. One could argue that this is a response to
the statistical learning that was delegated to the declarative
memory system in our model. In this regard, the ACT-R
model stands in contrast with the Brown and Braver (2005)
model, which predicted greater fMRI activity in ACC for

173

high vs. low error likelihood trials, even when restricted to
correct trials with no change signal. Nevertheless, if the
hedge time in the declarative memory were to increase the
simulated fMRI activity, then our model might be able to
simulate an error likelihood effect in ACC activity.

Finally, with an ACT-R model of the change signal task
performing reasonably well, we have an opportunity to
make a prediction. The reversal block in the observed
human data had surprisingly little effect, and the ACT-R
model produced similar results. By extending the number of
reversal blocks, we can predict how many trials will be
required to see an effect, and what that effect might be.

The predicted results of 24 reversal blocks are shown in
Figure 6. As mentioned previously, the model does not
currently have a mechanism to reduce hedge times. Both
conditions achieve a steady state at their asymptotes through
a combination of accumulated statistical evidence and
retrieval noise. Even when failures to respond to change
signals are detected and increased hedge times remembered,
noise in the declarative retrieval process makes it unlikely
that the latest trial information will be retrieved over the
large number of older, lower trial hedge times available.

Without this statistical influence, the low error rate
condition would never achieve an asymptote below the high
error condition without a mechanism to hedge downward.
This also provides an explanation for the predictions in
Figure 6, which continue on the same trajectory as the
normal block. In contrast, the error likelihood model of
Brown and Braver (2005) would predict that over time, the
ACC will learn the reversed error likelihood pairings,
leading to a reversal of error likelihood effects on reaction
time. Although our current data is insufficient to make
concrete statements about which prediction is correct, our
follow-up study will extend the number of reversal blocks
with hopes to allow such a test. Once again, this will help
inform future model development.

Figure 6: ACT-R model prediction of color reversal over

24 blocks, shown in the grey region.

Acknowledgments
The views expressed in this paper are those of the author
and do not reflect the official policy or position of the
Department of Defense, the U.S. Government, or Lockheed
Martin Corporation. This research was sponsored by grants
07HE01COR and 10RH04COR from the Air Force Office
of Scientific Research. We would like to thank Tim
Halverson for his contributions to this research.

References
Anderson, J. R. (2007). How can the human mind occur in

the physical universe? Oxford, UK: Oxford University
Press.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y . (2004). An integrated theory of
the mind. Psychological Review 111, (4). 1036-1060.

Anderson, J. R. & Lebiere, C. L. (2003). The Newell test for
a theory of cognition. Behavioral & Brain Science 26,
587-637.

Botvinick, M. M., Braver, T. S. , Barch, D. M., Carter, C.
S., Cohen, J. C. (2001). Conflict monitoring and cognitive
control. Psychological Review, 108, 624-652.

Brown J. W, & Braver T. S. (2005). Learned predictions of
error likelihood in the anterior cingulate cortex. Science
307, 1118–1121 doi: 10.1126/science.1105783.

Byrne, M. D., & Anderson, J. R. (2001). Serial modules in
parallel: The psychological refractory period and perfect
time-sharing. Psychological Review, 108, 847-869.

Dehaene, S., Posner, M.I., & Tucker, D. M. (1994).
Localization of a neural system for error detection and
compensation. Psychological Science, 5, 303-306.

Gunzelmann, G., Moore, L. R., Gluck, K. A., Van Dongen,
H. P. A., & Dinges, D. F. (in press - 2010). Fatigue in
sustained attention: Generalizing mechanisms for time
awake to time on task. In P. L. Ackerman (Ed.), Cognitive
Fatigue: Multidisciplinary Perspectives on Current
Research and Future Application. Washington, DC:
American Psychological Association.

Logan, G. D. & Cowan, W. B. (1984). On the ability to
inhibit thought and action: A theory of an act of control.
Psychological Review, 91, 295-327.

Rabbitt, P. M. A. (1966). Errors and Error Correction in
Choice-Response Tasks. Journal of Experimental
Psychology, 71, 2, 264-272.

Taatgen, N., Van Rijn, H., Anderson, J. R. (2007). An
integrated theory of prospective time interval estimation:
The role of cognition, attention, and learning.
Psychological Review, 114(3), 577-598.

174

Rewards and Punishments in Iterated Decision Making:
An Explanation for the Frequency of the Contingent Event Effect

Antonio Napoli (antonio.napoli@phd.units.it)
Danilo Fum (fum@units.it)

Dipartimento di Psicologia, Università degli Studi di Trieste
via S. Anastasio, 12, I-34134 Trieste, Italy

Abstract

Iterated decision making can be studied in laboratory using sit-
uations, like the Iowa Gambling Task (IGT), in which partici-
pants face repeatedly the same decision problem getting feed-
back after each choice. In the paper we focus on a recurring
finding in experiments carried out with the IGT, the frequency
of the contingent event effect—i.e., the fact that people consis-
tently prefer options associated with rare losses, independently
of their attractiveness, expected value and loss magnitude—
that has not yet received a satisfactory explanation. An ex-
periment reveals that the effect relies on simply experiencing
rewards and punishments, not being influenced by the net out-
come (loss or win) to which they are associated, and a compu-
tational model, implemented in the ACT-R cognitive architec-
ture, corroborates the idea that punishments and losses on one
hand, and rewards and wins on the other, play the same func-
tional role in determining the participants’ behavior in IGT.
Keywords: Iterated decision making; Reinforcement learning;
Iowa Gambling Task; ACT-R; Feedback.

Introduction
Iterated decision making relies on the regulation of behav-
ior according to its consequences. This process is character-
ized by three steps (Ahn, Busemeyer, Wagenmakers, & Stout,
2008): (1) the choice of a possible option and the execution
of the associated action, (2) the encoding of the action conse-
quences, (3) the integration of the consequences in a format
that allows options comparison. Iterated decision making can
be simulated in laboratory using the so-called multi-armed
bandit tasks (Sutton & Barto, 1998) in which participants
face repeatedly the same decision problem and get a numeri-
cal reward after each choice. Behavior in multi-armed bandit
tasks is usually modeled by Reinforcement Learning models
in which agents, requested to maximize their expected total
reward over a given number of trials, learn about the struc-
ture of the environment by taking into account the reward as-
sociated with each choice. In the paper we will adopt Rein-
forcement Learning to explain the results obtained in a par-
ticular multi-armed bandit task, the Iowa Gambling Task—
henceforth, IGT (Bechara, Damasio, Damasio, & Anderson,
1994). Our models will be based on the ACT-R cognitive ar-
chitecture (Anderson, 2007) which provides the resources for
the steps (1) and (3) of the decision making process described
above, and we try to figure out how step (2) is carried out.

The IGT has been proposed as a simulation of real life de-
cision making in the way it factors reward, punishment and
outcome uncertainty (Bechara et al., 1994). The IGT in-
volves four decks of cards. Participants repeatedly choose
a card at a time from one of the decks. Each time a card is
turned, it allows participants to gain a given amount of money,

but sometimes the card forces them to give up some money,
too; therefore, while all cards contain a reward, only some
cards contain a punishment. Two card decks (let’s call them
A and B) feature high wins per card ($100) but they yield
also higher losses so that, by choosing them, participants lose
more money than they win. These decks are referred to as
“bad decks”. The remaining decks (C and D) give rise to
small gains ($50) but even smaller losses, so that it is prof-
itable to choose cards from them. These decks are referred to
as “good decks”. Generally participants, after being initially
attracted by the dangerous bad decks featuring high wins and
higher losses, gradually shift their preferences toward the
good ones, a result which has been replicated by most IGT
studies (Dunn, Dalgleish, & Lawrence, 2006). So, accord-
ing to the standard interpretation, participants’ behavior can
be explained by a conflict between two deck features: their
attractiveness, i. e., the amount of money each cards allows
immediately to win—which drives the participants choices in
the first trials—and the long term expected value, i. e., the net
amount of money gained or lost— which drives them in the
subsequent trials.

In recent years a growing number of researchers have been
suggesting that this interpretation of the IGT is unsatisfac-
tory (see Dunn et al. (2006) for a critical review of the lit-
erature). In the present paper we will focus on a recurring
finding in the experiments carried out with the IGT which has
not yet received a satisfactory explanation. This finding has
been termed the “frequency of the contingent event effect”
by Fum, Napoli, and Stocco (2008) and the “prominent deck
B phenomenon” by Chiu et al. (2008) and refers to the fact
that people consistently prefer the decks associated with rare
losses—to the point that the bad-but-rare-loss deck B which
gives raise to a small number of losses is consistently pre-
ferred to the good-but-frequent-loss deck C—independently
of their attractiveness, expected value and loss magnitude.
Even if the theoretical interpretations of the phenomenon put
forward by the two research groups are similar, they differ in
some important details.

Frequency of the contingent event

Traditionally, the performance in the IGT has been recorded
by subtracting the number of bad deck selections from the
good ones (the so-called Good−Bad index). In the original
version of the IGT (see Table 1), for every block of ten cards,
decks A and C originate five money losses while decks B and
D give rise to only one.

175

Table 1: Deck matrices of the original Iowa Gambling Task

Card A B C D
Rew Pun Rew Pun Rew Pun Rew Pun
1 +100 0 +100 0 +50 0 +50 0
2 +100 0 +100 0 +50 0 +50 0
3 +100 -150 +100 0 +50 -25 +50 0
4 +100 0 +100 0 +50 0 +50 0
5 +100 -300 +100 0 +50 -75 +50 0
6 +100 0 +100 0 +50 0 +50 0
7 +100 -200 +100 0 +50 -25 +50 0
8 +100 0 +100 0 +50 0 +50 0
9 +100 -250 +100 -1250 +50 -75 +50 -250
10 +100 -350 +100 0 +50 -50 +50 0
EV Bad Bad Good Good

Rew: Reward. Pun: Punishment. EV: Expected Value. Pun-
ishments which do not result in a net loss are evidenced in
gray.

Because A and B are the bad decks and C and D are the
good ones, any possible effect of the number of losses is con-
founded with that of the deck quality, as expressed by their
expected value. In recent years researchers have started to
present the analytical data for each deck and evidence has
been growing about the “frequency effect”, i.e. the functional
role that the frequency of money losses could play in addic-
tion (or in opposition) to the effects of decks’ attractiveness
and expected value.

To understand which deck features exert the most impor-
tant effect on IGT, Fum et al. (2008) manipulated the decks
pay-off matrices in three different experimental conditions.
In all the conditions the decks attractiveness and the loss fre-
quency were kept the same as in the original IGT, while their
expected values were manipulated. The first condition repli-
cated the setting of the original IGT. In the second condi-
tion the expected value of the decks was zeroed, so that the
amount of money participants were expected to win in the
long run for each deck was identical to that they were ex-
pected to lose. In the third condition the two decks with fre-
quent punishments (A and C) were good while the decks with
less frequent punishments (B and D) were the bad ones; in
this case loss frequency and expected value were put in oppo-
sition for each deck.

Two findings were particularly significant: (1) the num-
ber of selections from each deck was almost the same in all
the conditions, and (2) participants showed a strong prefer-
ence for the low frequency loss decks, even in the condi-
tion in which these decks were bad. In the same study, the
IGT task was carried out in a scenario in which participants
always lost money when they turned a card while the con-
tingent event was represented by a win, a variant originally
developed by Bechara, Tranel, and Damasio (2000). Simi-
lar results were obtained with the same pattern of choices in
all the conditions and a strong preference for the decks orig-
inating a higher number of wins. The fact that participants

chose the same number of cards from all decks despite the
change in their expected value means that this feature plays a
small or no functional role in determining their choices. The
fact that participants preferred the decks with a small num-
ber of losses (or those with a high number of wins) means
that the frequency effect is both independent from and much
stronger than the effect of the other two features. This effect
was termed “the contingent event effect”.

An important empirical finding remains, however, unex-
plained by the contingent event effect and it is constituted by
the fact that, when this effect is confounded with that of the
expected value, a preference for the economically advanta-
geous decks (a “goodness” effect) is normally found which
indicates that the frequency of the contingent event cannot
cover the whole story in the IGT. Stocco, Fum, and Napoli
(2009) hold the idea that participants’ behavior in this task
is guided by a dual process. The first one is a low-level
emotion-based mechanism which is sensitive to punishment
(or reward) frequency, while the second one, high-level and
based on the analysis of the monetary outcomes, is sensitive
to the decks’ expected value. Even if the former is normally
the most important factor in guiding participants’ choices, the
latter may sometimes enter into play being responsible for the
goodness effect.

A different explanation for the goodness effect which de-
valuates the deck’s expected value has been put forward by
Chiu et al. (2008). In order to understand their proposal it
is necessary, however, to introduce some terminological dis-
tinctions.

From now on, we will discriminate between a punishment
and a loss, on one hand, and between a reward and a gain, on
the other. A punishment is an event that happens every time
participants turn a card that makes them give away money.
So, for example (see Table 1), in card #3 of deck C, after
having earned $50 you are forced to give $25 back, and this
is a punishment. A loss is a particular kind of punishment in
which the amount of money lost is higher than that won; so, in
card #3 of deck A, you win $100 but you are forced to refund
$150, and this constitues a loss. All losses are therefore pun-
ishments, but not vice versa. In the same vein, in the variant
IGT in which every card turn makes you lose some money, a
reward is a contingent event in which you earn some money
while a gain is a reward in which the amount of money gained
is higher than that lost.

Chiu et al. (2008) argue that the process driving partici-
pants’ behavior in the IGT is sensitive to loss (in the sense
we have just defined) frequency. Some cards in deck C (evi-
denced in gray in Table 1) present a punishment which is not a
loss, as for example the card (+$50, -$25), whose outcome is
a net gain of $25. Every block of 10 cards, deck C contains on
average 6.25 gains, 2.5 standoffs and 1.25 losses, deck D con-
tains 9 gains and 1 loss, deck A contains 5 gains and 5 losses,
and deck B contains 9 gains and 1 loss. Therefore, taken
together, the good decks (C and D) present a total of 15.25
gains, 2.5 standoffs and 2.25 losses, whereas the bad decks

176

(A and B) present 14 gains and 6 losses. According to Chiu
et al. (2008), the lower number of losses in the good decks
explains the participants’ preference for them. These authors
also propose their own version of the IGT, the Soochow Gam-
bling Task (henceforth, SGT), in which every punishment is
always a loss, thus eliminating the “ambiguous” Deck C. In
SGT the bad decks have a high number of wins, while the
good decks have a high number of losses. Results show that
participants choose more cards from the former than from the
latter type of decks, and this corroborates the idea that their
behavior is more sensitive to losses than to expected value.

The proposals of the two research groups differ in two re-
spects: the first one is that Fum et al. (2008) assume that par-
ticipants avoid all kind of punishments, while according to
Chiu et al. (2008) they avoid only punishments which result
in a net loss. The second, which is strictly tied to the first, is
that according to Stocco et al. (2009), the goodness effect is
due to an understanding of the decks’ expected value, while
according to Chiu et al. (2008) the goodness effect is due to
the lower number of losses in the deck C. In this paper we
present an experiment which tries to distinguish between the
two proposals by addressing the (possible) different effects of
punishments and losses.

The Experiment
A first idea for discriminating between the above mentioned
positions is to compare the choices made from two different
kind of decks that, while sharing the same expected value,
provide the same number of punishments but a different num-
ber of losses. So, the first deck should give rise to a given
number of losses (which are all punishments) while the sec-
ond should originate the same number of punishments of
which, however, only some are losses. According to Chiu et
al. (2008), participants should prefer the latter kind of deck
while, according to Fum et al. (2008), participants should
choose the same number of cards from the two decks.

A second way of discriminating between the hypotheses
would take into account the specific format of the information
provided during the experiment, i.e., the feedback received
after each choice. In the original IGT, participants received
a “double feedback” stating separately the amount of money
provided by the default and the contingent event (which could
be possibly null). In a “single feedback” task (such as the
SGT) each card turn informs only about the net amount of
money lost or gained. According to Chiu et al. (2008), par-
ticipants should exhibit the same pattern of choices both in
a Single and in a Double feedback task, while, according to
Fum et al. (2008), participants should modify their behavior
whenever the manipulation changes the number of punish-
ments in one or more decks.

In the experiment we contrasted the participants’ behavior
in a variant of the IGT featuring both a Double feedback and
a Single feedback condition. In the Double condition all the
decks (A, B, C and D) provided the same punishment fre-
quency (5 every 10 cards), but for two of the decks (A and C)

all the punishments were losses (giving thus 5 losses every 5
punishments) while the remaining decks (B and D) provided
only 1 loss every 5 punishments (see Table 2).

Table 2: Deck matrices of the Double Feedback - Standard
Frame condition.

Card A B C D
Rew Pun Rew Pun Rew Pun Rew Pun
1 +90 0 +90 0 +90 0 +90 0
2 +110 -300 +110 -25 +110 -125 +110 -25
3 +120 -250 +120 -1050 +120 -175 +120 -550
4 +90 0 +90 0 +90 0 +90 0
5 +100 -250 +100 -50 +100 -150 +100 -50
6 +110 0 +110 0 +110 0 +110 0
7 +120 -150 +120 -50 +120 -150 +120 -50
8 +100 0 +100 0 +100 0 +100 0
9 +80 0 +80 0 +80 0 +80 0
10 +80 -300 +80 -75 +80 -150 +80 -75
EV Bad Bad Good Good

Rew: Reward. Pun: Punishment. EV: Expected Value. Pun-
ishments which do not result in a loss are evidenced in gray.

In the Single condition we used the same pay-off matrices
of the Double condition but we presented participants only
the net amount of money won or lost. This resulted in a dif-
ferent effect for the punishment cards which were losses and
those which were not. In fact, a card such as (+$100, -$75)
in the Double condition would become a (+$25) card in the
Single one, thus resulting in a non-loss card. On the other
hand, a card such as (+$100, -$300) would become a (-$200)
card in the Single condition, giving thus rise to a net loss. As
a result, decks B and D, which presented 1 loss every 5 pun-
ishments in the Double condition, had 1 loss every 10 cards
in the Single condition, while the decks C and D, which had
5 losses every 5 punishments in the Double condition, pre-
sented 5 losses every 10 cards in the Single condition (see
Table 3).

To control for the other features, all decks had the same
attractiveness, so participants gained on average $100 every
time they turned a card. The expected value was balanced
instead: there was one good deck and one bad deck among
the ones with high loss frequency, and one good deck and
one bad deck among the ones with low loss frequency.

We ran both feedback conditions in two different frames:
a Standard condition, which we just described and in which
each card turn originated as default event a win and the con-
tingent event was represented by punishments as in the orig-
inal IGT scenario presented in Bechara et al. (1994), and a
Reversed condition, in which participants always got a pun-
ishment when they turned a card and the contingent event was
represented by rewards, as in Bechara et al. (2000). In the Re-
versed condition all the decks had the same reward frequency
but differed in the number of gains; the effect of attractive-
ness and expected value was controlled in the same way as in
the Standard condition.

177

Table 3: Deck matrices of the Single Feedback - Standard
Frame condition.

Card A B C D
Payoff Payoff Payoff Payoff
1 +90 +90 +90 +90
2 -190 +85 -15 +85
3 -130 -930 -55 -430
4 +90 +90 +90 +90
5 -150 +50 -50 +50
6 +110 +110 +110 +110
7 -30 +70 -30 +70
8 +100 +100 +100 +100
9 +80 +80 +80 +80

10 -220 +5 -70 +5
EV Bad Bad Good Good

Please note that the “Payoff” column results from the sum of
“Reward” and “Punishment” columns of Table 2.

Method

Participants. Eighty-eight participants (40 males) were re-
cruited from students enrolled at the University of Trieste,
in Italy. They were aged between 19 and 28 years (M= 19.9,
SD= 3.7). The participants were randomly assigned to the ex-
perimental conditions. We excluded from the analyses those
participants who, in some condition, turned a number of cards
from a deck that differed by 3 SDs, or more, from the aver-
age number of choices made for that deck. Eight participants
satisfied this criterion and were discarded.

Experimental Design. The experiment followed a 2x2 be-
tween subjects design with Feedback (Single vs. Double) and
Frame (Standard vs. Reversed) as main factors.

Materials. Deck features are summarized in Table 2 and Ta-
ble 3. Note that in all the conditions A and B were the bad
decks while C and D were the good ones, and that B and D
were those decks in which a possible frequency effect should
show up since they provided low-frequency losses in the Stan-
dard condition and high-frequency gains in the Reversed con-
dition.

Procedure. Experimental sessions were held individually.
Participants played a computer-based implementation of the
IGT. Decks were visually presented in the lower part of a
15 in LCD screen, and participants used a mouse to point
and select the deck they had chosen. Immediately after each
card selection, the amount of money obtained through the de-
fault event (and possibly through the contingent one) was dis-
played in the upper half of the screen. The running total of
money was coarsely indicated by a colored bar in the upper-
most part of the screen that was updated after each selection.
In each experimental condition participants had to perform
100 card selections.

Results and Discussion
Table 4 reports the average number of choices made from
each deck in the different experimental conditions.

Table 4: Means (and Standard Deviations) of deck choices in
the four experimental conditions.

Deck
Condition A B C D

Double-Reversed 21.06 22.94 26.71 29.29
(7.99) (5.03) (9.3) (9.48)

Double-Standard 22.45 23.65 23.35 28.55
(8.18) (9.33) (9.68) (12.56)

Single-Reversed 19.59 25.86 24.18 30.36
(5.82) (8.08) (10.03) 10.57)

Single-Standard 17.62 28.95 19.57 33.86
(6.4) (12.24) (6.87) (13.24)

We analyzed the participant’s performance on two syn-
thetic indices: P, which measures the tendency to choose
according to the expected value and is calculated by
(C+D)−(A+B), and Q, which measures the tendency to
choose according to the frequency of the contingent event.
Q is calculated by (B+D)−(A+C) and it measures the prefer-
ence for decks with low loss frequency in the Standard con-
dition and decks with high gain frequency in the Reversed
condition (see: Stocco et al. (2009)). We monitored the par-
ticipants’ behavior throughout the experiment by analyzing
the two indices in successive blocks of 20 choices each. We
ran a mixed design ANOVA both on P and Q, using Feedback
(Single vs. Double) and Frame (Standard vs. Reversed) as
between factors, and Blocks (from 1-20 to 81-100) as within
factors.

As for P, the ANOVA didn’t reveal any significant differ-
ence for the two factors nor for the blocks. The interaction
between Blocks and Feedback resulted marginally significant
(F(4,304)=2.39, p=0.51) and was caused by the low number
of selections from good decks in the first block made by par-
ticipants in the Single condition in comparison to those in the
Double one. Since there was no main effect of any factor, we
collapsed the value of P at the end of the experiment across
all conditions. A t-test on this value revealed that participants
chose more cards from the good decks than from the bad ones
(M=8.8, t(79)=3.44, p<.001).

As for Q, the effect of Feedback (F(1,76)=8.15, p<.01), of
Blocks (F(4,304)=4.72, p<.01) and the Blocks x Frame inter-
action (F(4,304)=3.6, p<.01) resulted statistically significant,
while the Blocks x Feedback interaction was only marginally
significant (F(4,304)=2.1, p =.081). We also performed two t-
tests on the value of Q at the end of the experiment separately
for the Single and Double Feedback conditions collapsing the
Standard and Reversed Frame. The results were significant
for the Single condition (M=18.89, t(42)=5.32, p<.0001) but

178

not for the Double condition (M=4.43, t(36)=1.19, p=.24).
The analyses show thus that there was a frequency effect

only in the Single condition but not in the Double one. As
explained in the previous section, according to Chiu et al.
(2008), participants were expected to be influenced by the
frequency of the contingent event in both cases, while accord-
ing to Fum et al. (2008) the effect should only be present in
the Single feedback. The results support our hypothesis that
participants try to avoid all kind of punishments and not just
the ones which result in a net loss (and are sensible to any re-
ward and not only to wins). Because the matrices of the decks
in the Single feedback condition were obtained directly from
those used in the Double one, this result cannot be attributed
to possible different values employed in the two conditions.
On the other hand, because the SGT did not directly contrast
Single vs. Double feedback, the results obtained by Chiu et
al. (2008) could depend critically on the specific values used
in their matrices. This experiment also suggests that partic-
ipants, being sensible to the difference between Single and
Double feedback, take separately into account the value of
both the default and contingent event and do not rely only on
the net value of each trial.

The analyses, by highlighting a goodness effect in all the
conditions, show that participants are somehow sensible to
the expected value of the decks, too. However, if they had re-
ally understood which decks were the good ones, they would
have consistently chosen them. This did not happen because
in no condition the (good) deck C was chosen more frequently
than the (bad) deck B, a result that is compatible with the
“prominent deck B phenomenon” normally found in tradi-
tional IGT.

The difference between the results of our experiment and
those obtained with the SGT by Chiu et al. (2008) demon-
strate that participants’ behavior cannot be easily ascribed to
the effect of a single feature. Participants could behave differ-
ently when dealing with decks which have similar qualitative
features but that vary in their numerical values. Therefore,
an understanding of their performance would require the use
of cognitive models capable of making any feature effect an
emergent property of their parameters providing thus an ex-
planation for the influence of the qualitative features.

Modeling the results
In discussing the models of the IGT used by previous re-
searchers, Ahn et al. (2008) identified three general assump-
tions: “First, an individual’s evaluation of the positive and
negative payoffs can be represented by a unidimensional util-
ity function. Second, expectations about payoffs for each
deck are learned on the basis of the experienced utilities on
each trial. Third, these expectancies determine the choice
probabilities for selecting each deck on each trial” (p. 1393).
As a consequence, any model for this task, and similar it-
erated decision making problems, will employ at least three
different functions: (1) an evaluation function to assess the
payoff associated with each choice, (2) a learning function to

upgrade the expectancies concerning the expected payoff of
each option, (3) a selection function to choose on each trial a
particular option on the basis of its expected payoff.

By adopting an architectural approach to modeling, the
problem of identifying the functions necessary to replicate
human performance in the task of interest is facilitated be-
cause some of these are considered as resources provided di-
rectly by the architecture. In particular, ACT-R (Anderson,
2007) makes available, by default, both a learning and a se-
lection function. The former is given by the linear equation
proposed by Bush and Mosteller (1955):

Ui(n) = Ui(n−1)+α[Ri(n)−Ui(n−1)] (1)

where:
Ui is the utility associated with option i
n is the current time step, with n− 1 indicating the previous
one
Ri is the reward associated with option i,
and α is a parameter regulating the learning rate.

The second equation is given by:

Pi =
eU

j /s

∑i eU
j /s

(2)

and determines the probability P that a given option i will
be selected among the j possible options. This probability
is a function of the value U (the utility, in ACT-R parlance)
of the particular option compared to the sum of all the pos-
sible option values, while s is a noise parameter, analogous
to the temperature of Boltzmann machines, that introduces
some kind of nondeterminism in the selection process.

By having two of the three main modeling problems solved
by the architecture, we concentrated on the evaluation func-
tion used to assess the outcome of each card choice. Tradi-
tionally (Ahn et al., 2008; Yechiam & Busemeyer, 2005) two
different kind of functions have been employed.

The first one, called the expectancy function by Ahn et al.
(2008), computes a weighted average of the rewards and pun-
ishment associated with the chosen option in each trial. This
function can be expressed as following:

v(t) = (1−W) · rew(t)γ−W · pun(t)γ (3)

with rew(t) and pun(t) indicating the value of the reward and
punishment at time t, respectively, while γ is a parameter that
determines the curvature of the evaluation function, and W
denotes the differential weight participants place on losses
over gains.

An alternative evaluation rule is provided by the so called
prospect function (Ahn et al., 2008) expressed by:

v(t) =
{

net(t)γ : if net(t)≥ 0
−λ|net(t)|γ : if net(t) < 0 (4)

with net(t) indicating the net outcome, i.e. the difference be-
tween the default and contingent event, and λ representing a
loss aversion parameter.

179

The two functions are similar according to several features:
they both assume a nonlinear evaluation of the monetary out-
come and both weight losses differently from gains. The most
important difference between them is constituted by how they
take into account the default and contingent event. The ex-
pectancy function assess them separately before combining
them into a scalar value; the prospect function, on the other
hand, assumes that decision makers process directly the net
outcome. The two functions can thus be considered as imple-
menting the different assumptions held by Fum et al. (2008)
and Chiu et al. (2008), respectively, and we used them to im-
plement two different computational models through which
we tried to replicate the empirical results. We ran a series of
500-run simulation trials with a large range of parameters and
the results we obtained were quite straightforward.

Both functions are able to capture the frequency of the con-
tingent event effect as revealed in the Single feedback condi-
tion but the prospect function, taking into account only gains
and losses, is not sensitive to the effect of rewards and pun-
ishments, which also play a critical role in determining the
participants’ behavior in IGT, and therefore gives raise in the
Double feedback condition to an effect that is absent in the ex-
perimental data. Table 5 reports the best performing models
employing the expectancy (with parameters W=0.05 and γ =
0.15) and the prospect functions (with parameters λ = 0.1 and
γ = 0.1) respectively. While these models have grossly sim-
ilar synthetic measures of fit (for instance, RMSE= 2.35 for
the expectancy and RMSE= 3.23 for prospect; chi-squared=
3.56 (p = .99) for the expectancy and chi-squared= 6.87 (p =
.96) for the prospect) the prospect model fails to replicate the
participants’ performance by providing predictions that fall
out of the 95% confidence intervals in four data points.

Table 5: Means of deck choices by the two models. The
predictions which fall out of the confidence intervals are evi-
denced in grey.

Deck
Condition Model A B C D

DR Expectancy Function 25.01 24.63 24.79 25.58
Prospect function 20.86 28.4 21.00 29.74

DS Expectancy Function 24.55 25.03 24.93 25.5
Prospect function 21.23 29.21 20.31 28.76

SR Expectancy Function 20.35 28.1 20.79 30.77
Prospect function 20.82 28.49 20.99 29.7

SS Expectancy Function 20.22 29.59 19.84 30.36
Prospect function 20.31 29.43 20.71 29.56

DR: Double-Reversed. DS: Double-Standard. SR: Single-
Reversed. SS: Single-Standard.

Conclusions
In the paper we proposed an explanation for the frequency
of the contingent event phenomenon which lies beneath the
fact that people are attracted by options that are associated

with the most frequent positive, and the less frequent nega-
tive, outcomes. A fundamental problem, deriving from the
fact that the IGT is grounded on a conflict between the value
of the default event (which codes the immediate attractive-
ness of an option) and the contingent one (which represents
the options’ long term expected value) is to establish whether
this phenomenon is caused by any positive or negative out-
come independently of its magnitude or, on the contrary, it is
triggered by the net result deriving from the two events. The
findings of our experiment corroborate the former hypothesis
and the simulation results indicate that only a model sensible
to rewards and punishments, and capable of analyzing them
separately, can replicate the empirical data.

References
Ahn, W.-Y., Busemeyer, J. R., Wagenmakers, E.-J., & Stout,

J. (2008). Comparison of decision learning models us-
ing the generalization criterion method. Cognitive Science,
32(8), 1376–1402.

Anderson, J. R. (2007). How can the human mind occur
in the physical universe? New York: Oxford University
Press.

Bechara, A., Damasio, A., Damasio, H., & Anderson, S.
(1994). Insensitivity to future consequences following
damage to human prefrontal cortex. Cognition, 50, 7–15.

Bechara, A., Tranel, D., & Damasio, H. (2000). Characteriza-
tion of the decision-making deficit of patients with ventro-
medial prefrontal cortex lesions. Brain, 123, 2189–2202.

Bush, R. R., & Mosteller, F. (1955). Stochastic models for
learning. New York: Wiley.

Chiu, Y.-C., Lin, C.-H., Huang, J.-T., Lin, S., Lee, P.-L., &
Hsieh, J.-C. (2008). Immediate gain is long-term loss:
Are there foresighted decision makers in the Iowa Gam-
bling Task? Behavioral and Brain Functions, 4, 13.

Dunn, B. D., Dalgleish, T., & Lawrence, A. D. (2006). The
somatic marker hypothesis: a critical evaluation. Neuro-
science and Biobehavioral Reviews, 30(2), 239–71.

Fum, D., Napoli, A., & Stocco, A. (2008). Somatic markers
and frequency effects: Does emotion really play a role on
decision making in the Iowa Gambling Task? In Proceed-
ings of 30th Annual Conference of the Cognitive Science
Society (pp. 1203–1208).

Stocco, A., Fum, D., & Napoli, A. (2009). Dissociable pro-
cesses underlying decisions in the Iowa Gambling Task: a
new integrative framework. Behavioral and Brain Func-
tions, 5, 1.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learn-
ing: An introduction. Cambridge, MA: Oxford University
Press.

Yechiam, E., & Busemeyer, J. R. (2005). Comparison
of basic assumptions embedded in learning models for
experience-based decision making. Psychonomic Bulletin
& Review, 12, 387–402.

180

Cognitive Modeling of the Acquisition of a Highly Inflected Verbal System

Jeśus Oliva (joliva@iai.csic.es)
Jośe Ignacio Serrano (nachosm@iai.csic.es)
Mar ı́a Dolores del Castillo (lola@iai.csic.es)

Ángel Iglesias (iglesias@iai.csic.es)
Bioengineering Group. Consejo Superior de Investigaciones Cientı́ficas - CSIC.

Carretera de Campo Real, km. 0,200. La Poveda, Arganda del Rey. CP: 28500. Madrid, Spain.

Abstract

How do children cope with the general regularities that govern
language while keeping track of the exceptions to them? This
question has been the subject of debate for many years and it is
still an open question. In particular, learning the English past
tense has been studied in depth given that it is a simple prob-
lem that combines a rulelike process with many irregularities.
In this paper we try to extend these studies to a quite more
complex problem: the Spanish verb inflectional system. This
paper presents an ACT-R model that shows the well-known
U-shaped learning and mimics in many aspects the process
of learning exhibited by children. Thus, our approach shows
how a highly inflected morphology system can be acquired in
terms of dual-mechanism theories and sheds light on the posi-
ble structures involved in general language acquisition.

Keywords: Cognitive Modelling; Cognitive Linguistics; Lan-
guage Acquisition; Spanish Morphology; ACT-R

Introduction
Language acquisition has been one of the central topics in
Cognitive Science. However, it is still an open question how
children manage to discover the general patterns present in
language while maintaining knowledge of the exceptions to
them. Verb inflection has been studied not only because it is
an inherently interesting task but also because is an isolable
subsystem in which grammatical mechanisms can be studied
in detail, without complex interactions with the rest of lan-
guage. Verb inflection is independent of syntax, semantics
or phonology given that no aspect of these three other sub-
systems works differently with regular and irregular verbs.
Furthermore, the particular phenomenon of U-shaped learn-
ing that presents the irregular inflection acquisition proccess
lead us to the interesting question of what are the causes for
that U-shaped learning and, going beyond, how we humans
deal with the general regularities that govern language while
keeping track of the exceptions to them. There are two main
accounts to these questions. On the one hand, the so-called
dual-mechanism theories posit that knowledge is somehow
dissociated. Irregular forms are stored in memory as entries
in the mental lexicon while regular forms are computed by
rules. On the other hand, single-mechanism theories argue
that a single representational system, usually an associative
memory, is enough to explain verb inflection. Both theories
present some problems and thus, the controversial debate is
far from settled.

English past tense inflection has been the focus of atten-
tion of many studies in the last years. However, not much
work has been done to widen these studies to other languages
with a much richer inflectional system. Spanish is one of

these highly inflected languages. Spanish verbs can have
about forty possible different suffixes (Alcoba, 1999) depend-
ing on mood, time, aspect, number or person. Moreover, this
great amount of possible endings is not the only difficulty
the Spanish inflectional system presents. Also its regularity
is very striking compared to simpler verb systems (like that
of English). In Spanish verbs, inflectional affixes are typi-
cally combined with stems and both parts of the final inflected
word can be irregular. These particular features in combina-
tion with the pattern of errors presented by children suggest
that the cognitive processes involved in Spanish verb inflec-
tion are more complicated than the English ones. This fact
turns the modeling of Spanish verb inflections into a quite
more challenging task.

In this paper we present a cognitive model of Spanish verb
morphology acquisition based on dual-mechanism theories
and implemented under the largely used cognitive architec-
ture ACT-R (Anderson, 2007).

Single vs. Dual mechanism theories
Two competing classes of theories try to explain how in-
flected word forms are mentally represented, processed and
acquired. The dual-mechanism theories (Pinker & Prince,
1988; Marcus et al., 1992; Ullman, 2001) argue that knowl-
edge is somehow dissociated. Regular forms are built by a
rule that appends an affix to the stem. Irregular forms are as-
sociatively listed in memory as entries in the mental lexicon.
Within this representational framework, the three stages of U-
shaped learning of irregular inflections are easily explained.
In the first stage, when the regular rules are not yet avail-
able, the lexical entries of irregular forms that have been fre-
quently heard can be retrieved. On a second stage, the regu-
lar rules are acquired and overregularization errors appear in
cases in which the lexical entry for an irregular verb is not
available (note that the memory retrieval process is noisy and
depends on the frequency of the lexical item that is looked
for). Finally, on the third stage, the overregularization errors
slowly disappear as more correct examples of irregular verbs
are learned. Many empirical studies have been performed
that support dual-mechanism theories in many inflectional
processes and some languages (Marcus et al., 1992; Clah-
sen, Rotweiler, Woest, & Marcus, 1992; Clahsen, Aveledo, &
Roca, 2002). However, the dual-mechanism theories are still
not widely accepted.

Alternative accounts are the single-mechanism theories
(Rumelhart & McClelland, 1986), also called association-

181

ism. These approaches propose that both regular and irregu-
lar forms are computed by the same representational system,
an associative memory usually modeled by a neural network.
Following these theories, U-shaped learning is due to changes
in vocabulary. The overregularizations occur because chil-
dren have heard the regular pattern with many different verbs.
So, before the first overregularization occurs, the children
have to be familiar with many regular verbs. However, there
is little evidence for these assumptions in empirical experi-
ments with children. Another problem of single-mechanism
models is that many of them need external feedback to ad-
just their weights. But actually, negative evidence (corrective
feedback) plays little to no role in the process of recovery
(Brown & Hanlon, 1970; Marcus, 1993), so this assumption
does not seem to be adequate.

How do Spanish children inflect?
From middle 80’s the acquisition of verb morphology by
Spanish children has been largely investigated by many au-
thors (Hernández-Pina, 1984; Radford & Ploennig-Pacheco,
1995; Serrat & Aparici, 1999). However, a systematic and de-
tailed study of the development of overregularization, similar
to the one carried out by (Marcus et al., 1992) for the English
past tense, was not carried out until 2002 by (Clahsen et al.,
2002). In this study the authors try to shed light on the ques-
tion of whether or not the dual-mechanism model extends to
Spanish child language. The study consisted of 64 samples of
spontaneous speech from 15 children covering the age period
of 1;07 to 4;07 (see (Clahsen et al., 2002) for a detailed break-
down of the data). There are longitudinal data from 4 children
in the relevant age range and cross-sectional samples from 11
children.

Table 1 (extracted from (Clahsen et al., 2002)) shows the
types of errors present in the children’s speech and their fre-
quency distribution.

Table 1: Distribution of error types in the study of (Clahsen
et al., 2002)

A. Stem Errors B. Suffixation Erros

I. Overregularizations 116 I. Overregularizations (132)

a. 1st conj. Overapplications 8

b. Conj.-internal regularizations 124

II. Irregularizations 1 II. Irregularizations 0

III. Other errors 3 III. Other errors 1

Totals 120 Totals 133

The first error type is overregularization. In such cases, an
irregular stem or suffix is substituted by a regular one. As pre-
dicted by dual-mechanism theories, overregularizations are
the main kind of errors that children present. Suffix overreg-
ularization errors are divided into two subtypes: overappli-
cations of 1st conjugation suffixes to verbs pertaining to the
other conjugations (for example, the second conjugation verb
tra-er1 (to bring) is sometimes conjugated in past astraj-é*

1Stemand suffix are shown separated in Spanish verb forms.

instead oftraj-e, due to the 1st conjugation suffix-é is overap-
plied). The other suffix overregularization error is produced
by substituting an irregular suffix by the regular suffix corre-
sponding to its conjugation.

Also as predicted by dual-mechanism theories, irregular-
ization errors are almost inexistent. Irregularization errors in
the stem occur always with verbs that present irregular forms
in the verbal paradigms for this same tense. No verb with a
completely regular paradigm was irregularized. For example
a child saidcay-́ı* (I fell) instead ofca-́ı. This is atributed to
an overapplication of the third person stem (the third person
inflection is:cay-́o) to the first person.

Making a deeper analysis of the errors, it is also important
to note that the stem formation and inflectional processes are
dissociated in Spanish children language. There exist mixed
errors in which children combine correct irregular stems with
incorrect inflectional endings (for example, to conjugate the
third person singular of the immediate past of the verbven-ir
(to come), some children sayvin-ió* (he came) instead ofvin-
o) which is accepted to support that different processes come
into play to form the two different parts of the final inflected
word. This dissociation supposes a great difference with the
English inflectional system. This fact significantly increases
the complexity of the task and consequently, the complexity
of the model compared to other similar models of the English
past tense (Taatgen & Anderson, 2002).

U-shaped learning
The study of (Clahsen et al., 2002) clearly extends to Spanish
the results obtained by (Marcus et al., 1992) for English. The
development of irregular verb acquisition is not guided by a
linear learning function but by a U-shaped learning function
in which three stages can be clearly distinguished.

In a first stage, the child is able to inflect very little verbs
but the inflected irregular verbs are correct. In a second stage,
the children have acquired some kind of knowledge about the
regular rule and start to overapply it to irregular verbs. In
the third stage, the overregularization errors diminish until
mastery is achieved. The learning of regular verbs is quite
simpler. Children start inflecting correctly a very low number
of regular verbs and their performance steadily grows until
they master the task.

The model
In this paper we propose a dual-mechanism model imple-
mented in the ACT-R cognitive architecture. The core com-
ponents that are used for the model, including the declara-
tive and procedural memory systems, are parts of the ACT-R
architecture, which has been largely validated through exten-
sive separate experiments not only related to language. More-
over, the main processes used, like instance-based learning
and the use of analogy, are part of the ACT-R modeling tradi-
tion. The two basic strategies of memory retrieval and anal-
ogy are neither specific to the task of producing a past tense
nor even specific to language but general domain cognitive
strategies:

182

• Memory retrieval: This strategy simply consists in retriev-
ing a fact from declarative memory.

• Analogy: This strategy forms the required knowledge us-
ing a similar retrieved fact as a template. As stated by
(Salvucci & Anderson, 1998), analogy is probably one of
the dominant human strategies for problem solving and
discovery.

It is important to note that the strategies we suppose that
children have at the moment they start learning a language
are very basic strategies common to many cognitive tasks.
Note that, at the beginning, the proposed model has nothing
similar to a regular rule to inflect regular verbs. The pro-
posed model will learn them later on as a specialization of
the analogy strategy. These initial strategies are similar to the
ones proposed by (MacWhinney, 1978; Taatgen & Anderson,
2002), who claimed that the basis of the learning of the regu-
lar rules is analogy.

Detailed description

The two main components of the model are described as
declarative-memory chunks and production rules. The de-
clarative-memory chunks represent verb forms as follows.

VERB-FORM
ISA
INFIN
CONJ
INFIN-STEM
MTA
NP
STEM
SUFFIX

VERB-TENSE
CANTAR
AR
CANT
IND-PAST-PERF
S3
CANT
Ó

The chunk is of type VERB-TENSE. Its infinitive iscant-
ar (to sing) and the infinitive stem and conjugation arecant-
and -ar respectively. Moreover, given the characteristics of
the Spanish verb inflectional system, it is necessary to store
the mood, time and aspect of the verb form (in the slot MTA,
the value IND-PAST-PERF stands for indicative mood, past
tense, perfective aspect) and the number and person of the
represented verb form (in the slot NP, the value 3S stands for
third person, singular). The verb form corresponding to the
information represented on the precedent slots is represented
by the STEM and SUFFIX slots. Note that when the goal is
to obtain a verb form, these two slots start with a NIL value
and the task of the model is to fill them.

Procedural memory stores the strategies that guide the in-
flection process. As stated before, two basic strategies are the
core of the model. However, given the dissociation between
stem formation and inflectional processes that Spanish verb
inflection presents, these strategies are also dissociated in dif-
ferent rules that try to form the stem or to find the correct
suffix. The main rules of the model are:

• Rule 1 (verb form retrieval): When the model tries to find
the verb form of a given verb with given MTA and NP slots,
this rule simply tries to find a chunk in declarative memory
that shares the INFIN, MTA and NP slots with the given
one.

• Rule 2 (stem retrieval): This rule tries to find the stem of
the goal verb form. To do that, it looks for a chunk in the
declarative memory with the same INFIN and MTA slots.

• Rule 3 (stem analogy): When the model tries to find the
verb form of a given verb, this rule just copies the INFIN-
STEM of the goal verb form on the STEM slot only if the
INFIN-STEM and the STEM slots of an arbitrary retrieved
(i.e. the verb with a highest activation) verb are the same.

• Rule 4 (suffix analogy): This rule tries to find out the cor-
rect suffix of the goal verb form. To do that, it looks for
a chunk in the declarative memory with the same CONJ,
MTA and NP slots and, if the slots INFIN-STEM and
STEM of the retrieved form are the same, it copies the
value of the SUFFIX slot to the SUFFIX slot of the goal
verb form.

These four rules cover the two basic strategies of the model
and the two processes that Spanish speaking people are sup-
posed to use when trying to inflect a verb. Figure 1 shows the
processes that our model uses to inflect a verb. Dashed lines
means that these processes are not available when the model
starts working but they are learnt during the running.

Learning in ACT-R consists in the production of new rules.
New rules are created by collapsing two rules that are applied
in succession into a single rule. The basic idea is to combine
the tests in the two conditions into a single set of tests that
will recognize when the pair of productions can be applied.
Also the actions of both rules are combined into a single ac-
tion that will have the effect of both. The resulting rule is
therefore a specialization of the two parent rules. The spe-
cialization, which is of particular interest, occurs when Rule
3 (stem analogy) fires first and Rule 4 (suffix analogy) fires
secondly. In this case, the corresponding suffix is substituted
into the rule, producing one of the regular rules. For example:

IF

THEN

the goal is to inflect a verb with
CONJ = ’AR’
MTA = ’IND-PAST-PERF’
NP = ’S3’
set the SUFFIX slot to ’́O’
copy the INFIN-STEM slot to the STEM slot

Note that one of these rules has to be learned for each com-
bination of the values of the slots CONJ, MTA and NP, given
that each regular suffix is different. Also it is important to
note that the initial utility of the learned rules is very low.
This means that newly created rules are not used just after be-
ing learned. It is necessary to reinforce the utility of this rule.
This reinforcement occurs every time the rule is recompiled
because its two parents fire consecutively. This way, the most

183

R u l e 1
(R e t . f o r m)

R u l e 2
(R e t . s t e m)

R u l e 3
(A n a l . s t e m)

R u l e 4
(Ana l . su f f i x)

 1 2

 3 4

O m i s s i o n O m i s s i o n

P r o d u c e r e t r i e v e d f o r m

P r o d u c e f o r m

O K

O K

O K O K

Fa i l
Fa i l

Fa i l

Fa i l

R e g u l a r
r u l e s

P r o d u c e f o r m

Figure 1: Processes used by the model. Dashed lines show processes that have to be learnt.

useful rules (the ones that are recompiled many times) are fi-
nally used by the model and those rules created just by chance
are practically forgotten by the model. Moreover, ACT-R pro-
vides a way by which useful rules are reinforced: utility learn-
ing. This process reinforces the rules that have been used to
reach to a specific inflection. When the model cannot inflect
a verb, it propagates a lower reward than the one it propagates
if the verb is inflected. This seems to be natural given that,
when the model could not inflect a verb, it could not “say”
what he wanted to “say”. However, the reward received when
a verb is inflected incorrectly is exactly the same as the one
that is received when a verb is inflected correctly given that
the model cannot know whether his production is correct or
not. Note that one of the most important criticism to many
connectionist models is that they need some kind of external
feedback while, as stated before, it is widely accepted that
children do not receive feedback when talking to their par-
ents. Thus, the unique feedback our model receives comes
from itself.

How does the model inflect?

Data and Procedure

The data we used as the input for the model consists of the
verbs contained in the Spanish Verb Inventory2 (SVI, (Rivera,
Bates, Orozco-Figueroa, & Wicha, 2009)) which is made of
50 of the earliest acquired common Spanish verbs, with con-
jugations across person, number and 4 verb tenses (imperfect,
immediate past, future, and present indicative), for a total of
920 unique verb forms. Future tense forms were discarded
given its low frequency of use on child language and also im-
perfect forms were discarded given that they do not present
almost any irregularity. So the final input for the model con-
sists of the 220 immediate past forms and the 250 present
tense forms of the Spanish Verb Inventory. Each of these
forms has its associated frequency of use on children lan-

2Accesible athttp://crl.ucsd.edu/experiments/svi/

guage.
In order to perform the different experiments we followed

the design given by (Taatgen & Anderson, 2002). Every 200
simulated seconds two words are presented for perception
and one word is selected for generation. These words are
selected based on the frequency distribution given in the SVI.
Also following the design of (Taatgen & Anderson, 2002),
in each simulated month, approximately 1300 past tenses are
produced. This number is chosen somewhat arbitrarily, but
the model is not critically dependent on the exact rate of pro-
duction.

Results

As stated before, the great majority of errors done by children
are overregularization errors while only a few errors were due
to irregularization of regular forms. According to (Clahsen et
al., 2002), more of the 90% (94.7% in the stem and 92.5% in
the suffixes) of the errors done by children are overregulariza-
tion errors. Our model also presents a similar unbalanced dis-
tribution of errors between irregular and regular forms. The
93.3% of errors were overregularizationerrors. Moreover, the
irregularization errors are mainly of the same kind of the ones
done by children. As stated before, no verb with a completely
regular paradigm was irregularized.

Figures 2(a) and 2(b) show the learning curves of the model
and of Marı́a, one of the children from the study of (Clahsen
et al., 2002) (It is important to note that the other children on
that study have similar learning curves). Figure 2 shows the
overregularization rate and the regular mark rate as they are
usually plotted. Overregularization equals the number of cor-
rect responses on irregular verb forms divided by the sum of
correct irregulars and irregulars inflected regularly. The reg-
ular mark rate shows the number of correctly inflected regu-
lars divided by the total number of regulars produced. The
development of the model clearly shows the U-shaped learn-
ing curve typical of children’s learning of irregular verbs. As
such, the results are quite similar to the ones of Marı́a. Our

184

model obtains a global 3.9% of overregularization, which is
in line with children’s performance. Spanish children studied
by (Clahsen et al., 2002) present an average overregulariza-
tion rate of 3.4% in the longitudinal samples and a 13.2% in
the cross-sectional experiments. As pointed by (Clahsen et
al., 2002) this difference could be due to the type of samples
and the semi-structured style of the records.

Not only overregularization errors of our model are similar
to the ones done by children. The percentage of irregulariza-
tion errors done by our model was 0.5% while in children,
overregularizations amount to 0.4% and in both cases no verb
with a completely regular paradigm was irregularized.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

P
ro

po
rt

io
n

co
rr

ec
t

Time (months)

Overregularization
Regular mark rate

(a)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 25 30 35 40 45 50

P
ro

po
rt

io
n

co
rr

ec
t

Time (months)

Overregularization
Regular mark rate

(b)

Figure 2: Overregularization and regular mark rate presented
by the model (a), and by Marı́a (b)

In order to better understand why U-shaped learning is
achieved, we should go through the model’s functioning in
some more detail using some examples of irregular and reg-
ular vebs: a very frequent irregular verb form such aspued-e
(he can) with a frequency in the SVI of 19269, a very frequent
regular verb form such asdeb-e(he should) with a frequency
of 6955, a low frequency irregular verb form such asjueg-
an (they play) with a frequency of 201 and a low frequency
regular form such assalt-a (he jumps) with a frequency of
252.

At the beginning the model has no regular or irregular ex-
amples, so it fails every time it tries to inflect a verb. Grad-
ually, high-frequency irregular verbs increment its activation
on the declarative memory. If the model tries to inflect one of
these high-frequency verbs, the retrieval strategy will find the
correct form on declarative memory. On that first stage anal-
ogy usually fails given that it needs a regular form to work
as a template. Regular forms are not as frequent as irregu-
lar forms (see thatdeb-ehas a frequency of almost a third
of the frequency ofpued-e) and their activation is lower and
so, analogy is not available on a first stage. Thus, verb forms
such asdeb-eor salt-a cannot be inflected. Moreover, there
are no overregularization errors given that the source of over-
regularizations is also analogy. These facts explain the first
stage of the U-shaped learning.

After some examples have been learned the number of reg-
ular verbs with enough activation in memory steadily grows
up. Analogy is now a viable strategy, as there are examples
that can be retrieved as templates. These uses of analogy lead
to eventually learn the regular rules. However, most of the
regular rules are not yet used given that its initial utility is
not sufficiently high. At this stage, if the model has to inflect
the formjueg-an, it is very probable that the retrieval strategy
fails given its low frequency. If analogy finds suitable regular
forms in declarative memory (suppose, for example, that the
regular formcant-an(they sing) has enough activation) the
model will produce the overregularizationjug-an*. Thus, at
this stage overregularizations start to appear. However, they
are still not very frequent because the regular forms that are
used by analogy are not very frequent in memory and the reg-
ular rules do not have enough utility to be fired.

As analogy continues working, the utility of the regular
rules increases to a point in which they start to be used. At this
point, the rate of overregularizations, which start to appear on
the previous stage, reaches a maximum. In the previous stage,
verb forms such asjueg-anare rarely overregularized because
analogy needs to retrieve a regular form from memory (and
usually an irregular form is retrieved given that they are more
frequent). However, regular rules do not need to retrieve a
regular form. Thus overregularizations are much more fre-
quent at this stage in which regular rules have a higher utility.
For the same reason, the rate of correctly inflected regular
forms highly increases. On previous stages, low frequency
regular forms such assalt-a, could not be inflected because
the retrieval strategy failed and it was difficult to find a regu-
lar form to do the analogy with the stem and another regular
form to do the analogy with the suffix. As regular rules do
not need any memory retrieval, the model just has to fire the
corresponding regular rule to correctly inflect the formsalt-a.
From this point on, analogy strategy will be used very rarely,
as it has to compete with the regular rules that become now
the backup strategy given that they are more efficient.

On the last stage, irregular forms are stored in declarative
memory with a sufficient and stable activation. This way,
every time the model has to inflect an irregular form such

185

as pued-e, the retrieval strategy works blocking the regular
rule. Moreover, high-frequency regular forms such asdeb-e
have a high activation at declarative memory and so, when
the model has to inflect one of these forms, retrieval will be
successful again. Regular rules will be used with medium
and low-frequency regulars such assalt-a. Medium and low-
frequency regulars have a lower activation and so, retrieval
usually fails and they have to be inflected by the regular rules.
At this point the utility of the regular rules is also high and
stable, so analogy is hardly used anymore. When this stage is
reached, one may judge that the model has mastered the task.

Conclusions and future work

In this paper we have presented a cognitive model of Spanish
verb morphology acquisition based on dual-mechanism the-
ories. The model we present is based on two basic strategies
that neither are specific to the task of producing a past tense
nor even specific to language. In fact they are general do-
main cognitive strategies such as memory retrieval and anal-
ogy. The core components that are used for the model, among
which are the declarative and procedural memory systems,
are parts of the ACT-R architecture, or part of the ACT-R
modeling tradition, like instance-based learning and the use
of analogy. Starting from these general strategies, the model
learns the regular rules of the Spanish inflectional system
while it takes into account the exceptions that represent ir-
regular verbs. The results show that our model accomplishes
to fit properly the U-shaped learning curve and some other
typical aspects of the process of learning exhibited by Span-
ish children. Thus, our approach shows how a highly in-
flected morphology system can be acquired in terms of dual-
mechanism theories and sheds light on the possible structures
involved in general language acquisition.

Future work includes extending the declarative and pro-
cedural representations to take into account phonetic features
that allow modeling the phonetic analogy processes that seem
to be present in some cases. Moreover, the model could be
extended to other tenses and to a wider range of ages in or-
der to accomplish a general view of the complete process of
Spanish morphology acquisition. Other trends of future work
could be related to language impairments. This model could
be used to model some of these impairments by modifying
some of the parameters of the model. This way we can give
some arguments in favor of the different hypothesis about the
causes of these impairments just as these models can be used
to propose some kind of therapies or methods to improve the
acquisition of verb morphology and general language skills.
Finally, it would be very useful to extend the existing empir-
ical studies with children to have more data from which we
can extract more general conclusions.

Acknowledgments

The authors would like to thank Prof. Harald Clahsen and
Prof. Fraibet Aveledo for making available the full contents
of their study with Spanish children.

References
Alcoba, S. (1999). Gramática descriptiva de la lengua

española. In (pp. 4915 – 4991). Madrid: Espasa-Calpe.
Anderson, J. (2007).How can the human mind occur in the

physical universe?New York: Oxford University Press.
Brown, R., & Hanlon, C. (1970). Derivational complexity

and order of acquisition in child speech. In J. Hayes (Ed.),
Cognition and the development of language.New York.

Clahsen, H., Aveledo, F., & Roca, I. (2002). The development
of regular and irregular verb inflection in spanish child lan-
guage.Journal of Child Language(29), 591 – 622.

Clahsen, H., Rotweiler, M., Woest, A., & Marcus, G. (1992).
Regular and irregular inflection in the acquisition of ger-
man noun plurals.Cognition(45), 225 – 255.

Hernández-Pina, R. (1984).Teoŕıas psicoling̈uı́sticas y su
aplicación a la adquisicíon del espãnol como lengua ma-
terna. Madrid: Siglo XXI.

MacWhinney, B. (1978). The acquisition of morphophonol-
ogy. In Monographs of the society for research in child
development.(Vol. 1, pp. 1–123).

Marcus, G. (1993). Negative evidence in language acquisi-
tion. Cognition(46), 53 – 85.

Marcus, G., Pinker, S., Ullman, M., Hollander, M., Rosen,
T., & Xu, F. (1992). Overregularization in language acqui-
sition. In Monographs of the society for research in child
development.(Vol. 57, pp. 1 – 182).

Pinker, S., & Prince, A. (1988). On language and connection-
ism: analysis of a distributed processing model of language
acquisition.Cognition(28), 73 – 193.

Radford, A., & Ploennig-Pacheco, I. (1995). The morphosyn-
tax of subjetcs and verbs in child spanish: a case study. In
Essex research reports in linguistics(Vol. 5, pp. 23 – 67).

Rivera, S., Bates, E., Orozco-Figueroa, A., & Wicha, N.
(2009). Spoken verb processing in spanish: An analysis
using a new online database.Applied Psycholinguistics,
Accepted.

Rumelhart, D., & McClelland, J. (1986). On learning the past
tense of english verbs. In J. McClelland & D. Rumelhart
(Eds.),Parallel distributed processing: explorations in the
microstructure of cognition(pp. 216 – 271). Cambridge,
MA: MIT Press.

Salvucci, D., & Anderson, J. (1998). Analogy. In J. Anderson
& C. Lebiere (Eds.),The atomic components of thought
(pp. 343 – 383). Mahwah, NJ: Erlbaum.

Serrat, E., & Aparici, M. (1999). Morphological errors
in early language acquisition: evidence from catalan and
spanish. (Unpublished ms., Universities of Girona and
Barcelona)

Taatgen, N., & Anderson, J. (2002). Why do children learn
to say ”broke”? a model of learning the past tense without
feedback.Cognition(86), 123 – 155.

Ullman, M. (2001). A neurocognitive perspective on lan-
guage: the declarative/procedural model.Nature Reviews,
717 – 726.

186

Building Large Learning Models with Herbal

Jaehyon Paik1, Jong W. Kim2, Frank E. Ritter3, Jonathan H. Morgan3, Steven R. Haynes3, Mark A. Cohen4

1Department of Industrial and Manufacturing Engineering

3College of Information Science and Technology
Pennsylvania State University, University Park, PA

2Department of Psychology, University of Central Florida, Orlando, FL
4Business Administration, Computer Science, and Information Technology, Lock Haven University, Lock Haven, PA

<jaehyon.paik, frank.ritter, jhm5001>@psu.edu, jwkim@mail.ucf.edu, shaynes@ist.psu.edu, mcohen@lhup.edu

Abstract

In this paper, we describe a high-level behavior representation
language (Herbal) and report new work regarding Herbal’s
ACT-R compiler. This work suggests that Herbal reduces
model development time by a factor of 10 when compared to
working directly in Soar, ACT-R, or Jess. We then introduce
a large ACT-R model (541 rules) that we generated in
approximately 8 hours. We fit the model to learning data.
The comparison indicates that humans performing
spreadsheet tasks appeared to start with some expertise. The
comparison also suggests that ACT-R, when processing tasks
consisting of hundreds of unique memory elements over times
spans of twenty to forty minutes, may have problems
accurately representing the learning rates of humans. In
addition, our study indicates that the spacing between learning
sessions has significant effects that may impact the modeling
of memory decay in ACT-R.

Introduction
In this paper, we discuss the rapid development of user
models capable of dynamically representing behavioral
constraints. Pew and Mavor (eds., 2007) advise using such
user models as a shared representation meant to identify,
predict, and when possible, mitigate risks. These
representations are of various kinds (qualitative,
quantitative, analytical, computational), and can describe
interactions operating within or across multiple levels of
analysis. These models in their various forms have proven
useful in predicting and preventing significant losses
whether human (e.g., Byrne & Kirlik, 2005; Pew & Mavor,
2007) or monetary (e.g., Gray, John, & Atwood, 1993) or
both (e.g., Booher & Minniger, 2003).

There is a rich literature in user models. Classic user
studies beginning with Card, Moran, and Newell’s (1983)
book have often represented psychological/behavioral
constraints using the GOMS model; analyzing user behavior
in terms of goals, operators available for accomplishing
those goals, routinized sequences of behavior or methods,
and rules for the selection of methods for instances where
multiple methods apply. Grey et al. (1993) extended and
validated the GOMS model through an empirical study of
telephone operators working for the New England
Telephone Company, introducing CPM-GOMS. The
success of later-implemented versions of the GOMS model

(John & Kieras, 1996; Kieras, Wood, Abotel, & Hornof,
1995), TAC-AIR Soar (Jones et al., 1999), and of embodied
cognitive architectures generally (Byrne, 2001; Byrne &
Gray, 2003; e.g., Ritter & Young, 2001; St. Amant, Horton,
& Ritter, 2007) has intensified interest in agent-based user
models for testing interfaces and for working in simulations
as opponents and colleagues.

On the other hand, these efforts have been stymied in part
by the significant integration costs and the detailed level of
specification required by existing cognitive architectures to
create models. While one of cognitive modeling’s great
strengths is its demand for computational entailment, the
low-level abstractions required by mature cognitive
architectures such as Soar and ACT-R have frequently
proven expensive to create, resulting in a fewer models
being created. Furthermore, these models have often proven
difficult to maintain, extend, or merge (Pew & Mavor, 1998;
2007; Ritter et al., 2003).

Recognizing these issues, developers in recent years have
released both re-implemented versions of Soar and ACT-R
in Java that may be easier to integrate into systems, as well
as creating high-level cognitive modeling languages that
seek to provide a common framework and formal language
for a variety of essentially similar cognitive modeling tasks
(a review is available, Ritter et al., 2006). In the next
section, we will briefly review these efforts before
introducing Herbal (High-Level Behavior Representation
Language). We will then discuss recent work on Herbal’s
ACT-R compiler and a large learning model we have
generated and tested before concluding.

Related Work
Cognitive architectures realized as programming languages,
as noted above, have operated at low-levels of abstraction,
and consequently have made developing, implementing, and
comparing cognitive models difficult. Two general
approaches have emerged to address this problem, the
reimplementation of existing languages and the
development of high-level cognitive languages for these
architectures. We will describe both briefly before
discussing Herbal.

187

Re-implementing cognitive modeling languages
Reimplementation of existing cognitive languages into
newer object-oriented languages offers several advantages:
(a) smoother integration into systems created in those
widely used languages, such as Java, supported by extensive
libraries and tools; (b) a perceived and sometimes greater
degree of implementation modularity, and thus the ability to
more easily investigate changes and extensions to existing
cognitive architectures; and (c) the opportunity to make
comparative analyses, and thus discern the effect that
previous implementation choices as opposed to theoretical
commitments have had on the language in question.
jACT-R (Harrison, 2002) and jSoar (Ray, 2009) have both
contributed interesting comparative analyses, offer an array
of GUI based debugging and organizational tools, and can
increasingly support ongoing work in simulations and
agent-based tools.

jACT-R and jSoar both rely heavily upon the syntax of
their parent languages to represent the rules and knowledge,
limiting their accessibility to some extent. Though Python
ACT-R (Stewart & West, 2005) eliminates this syntax issue,
all three languages are at various stages of completeness,
and none to our knowledge has undergone extensive
validation through a computational alignment or docking
study (Axtell et al., 1996) or similar means (e.g., Burton,
1998; Louie, Carley, Haghshenass, Kunz, & Levitt, 2003).
In addition, re-implemented cognitive modeling languages
are neither able to support the comparative analysis of
models across cognitive architectures, nor the fine-tuning of
architectures at a constant high-level of abstraction. Thus,
high-level cognitive modeling languages are attractive.

High-level cognitive modeling languages and
approaches
High-level cognitive languages use abstractions to
generalize common structures and processes found in
existing cognitive architectures. These persistent
commonalities are evident when one considers defining a
high-level knowledge representation, building a structured
task analysis, or implementing a decision cycle
characterized by the perceive-decide-act mechanism
(Newell, Yost, Laird, Rosenbloom, & Altmann, 1991).
Cognitive architectures’ shared dependence upon least
commitment (or the making of control decisions at every
decision point) and associative encoding (or the associative
retrieval of potential courses of action and a conflict
resolution process for choosing between solution paths)
entail a set of core commonalities from which to abstract.
The commonalities include: a declarative memory structure
and retrieval method, goals, procedural memory frequently
used for the achievement of those goals, mechanisms for
responding to external events, and a iterative decision
process (Jones, Crossman, Lebiere, & Best, 2006).

Where these approaches differ is in their representation
structures. We will briefly summarize two existing
candidate approaches for modeling more complex cognitive
models: Jones et al.’s (2006) High Level Symbolic

Representation Language (HLSR), and Herbal, a High-
Level Behavior Representation Language (Cohen, Ritter, &
Haynes, in press; Haynes, Cohen, & Ritter, 2009).

HLSR uses three primitives (relations, transforms, and
activation tables) to derive micro-theories for representing
cognitive architectures (and by extension, cognitive
theories). Herbal characterizes common cognitive modeling
tasks such as task analyses and problem solving using an
ontology based upon the Problem Space Computational
Model (PSCM, Newell et al., 1991). Each of these
approaches is promising; each potentially allows for
comparative analysis across architectures; and each, if fully
developed, could promote model reuse across a diverse
community of users.

Herbal’s user focus, however, is unique in this area.
HLSR supports both Soar and ACT-R, but is not yet
available outside of its developers, and has, to our
knowledge, not undergone either a docking or a usability
study. Herbal, in contrast, is open source; supports three
cognitive architectures across a set of common cognitive
modeling tasks (Soar, ACT-R, and Jess); has undergone two
usability studies (Cohen 2008; Cohen, Ritter, & Haynes
2009); has been used to create several models; and is
currently undergoing a docking study. Next, we will
describe Herbal and work related to Herbal more fully,
focusing on Herbal’s implications for HCI and the more
rapid creation of user models.

Herbal
Herbal is based on the PSCM (Newell et al., 1991).
Herbal’s ontological representation defines behavior as the
movement of operators modifying states, as well as
movement through problem spaces. Within this framework,
behavior is divided into bands of activity operating across
three time scales: the elaboration cycle (10 ms), the decision
cycle (100 ms), and activity occurring within a problem
space (1 s). The elaboration cycle describes the process by
which an agent modifies its state representation through the
associative retrieval of information. The decision cycle in
turn consists of repeated cycles of elaboration that persist
until quiescence, or until no further productions can be fired.
The levels of elaborations are, for the most part, hidden in
and by Herbal.

The agent makes decisions based upon its state
interpretation and preferences, choosing either a unique
operator (actions capable of transforming the state) or
generating an impasse if an operator cannot be selected due
to insufficient knowledge. Agents resolve impasses by
generating sub-states that enable the agent to retrieve the
information necessary to specify the next operator. Problem
spaces are thus representations describing a sequence of
decisions (or a search in the event of limited knowledge)
that can be further defined in terms of goals, states, and
operators.

Herbal’s ontology characterizes behavior in terms of
classes that represent concepts such as states, operators,
elaborations, impasses, conditions, actions, and working

188

memory. These classes furthermore entail basic
relationships for instance—states can contain impasses,
working memory, operators, elaborations, and other states
while operators and elaborations can contain zero or more
conditions and actions. Programming in Herbal thus
involves instantiating objects using these ontological
classes. Herbal also supplies additional attributes that enable
future developers to discern the intent motivating creation of
a given object, supporting models that in essence explain
themselves (Haynes, Cohen, & Ritter, 2009).

The Herbal/ACT-R compiler
We have created an initial version of an ACT-R compiler in
Herbal. Although several easy-to-use frameworks exist to
develop ACT-R models: CogTool (John, Prevas, Salvucci,
& Koedinger, 2004), ACT-Simple (Salvucci & Lee, 2003),
and G2A (St. Amant, Freed, & Ritter, 2005), these tools
cannot represent models of greater complexity than KLM-
GOMS or GOMS models.

To support modeling in ACT-R, we added a declarative
memory component to the Herbal environment because
ACT-R uses declarative memories. With this component,
we were able to also add hierarchical and sequential tasks to
an ACT-R model—the relations among tasks are shown in a
tree form in the user interface. Herbal then makes memories
and production rules based on these relationships.
Furthermore, to explore the flexibility of the high-level
compiler, we added an ACT-R parameter pane. Through
this pane, users can generate either a novice ACT-R model
or eleven kinds of expert ACT-R models with varying
degrees of expertise ranging from 0% to 100%.

The Herbal/ACT-R compiler takes the PSCM
representation in Herbal and creates an ACT-R model from
it. The compiler also uses these parameters to determine
how to compile the model: as a novice, an expert, or
somewhere in between. When implementing a task, we
represented the level of expertise, or degree of
proceduralization, as corresponding to the percentage of
declarative memory retrievals necessary to complete the
task. We then distinguished novice from expert models by
this percentage. Novice models, in this framework, have no
information regarding the next task step in procedural
memory, and thus must retrieve each step from memory,
whereas the expert models have the next task step
incorporated as part of the operation. Novice models thus
provide the maximum anticipated completion time while
normative expert models (described below) provide the
hypothetical minimum time.

Distinguishing novice from expert, we further divided
expert models into two types: (a) normative experts, models
where all the declarative memory elements for the task have
been compiled into procedural knowledge, and
(b) practicing experts, models that exhibit varying degrees
of proceduralization. Models exhibiting 100% expertise
(normative experts) provide a baseline, and do not use
memory elements in declarative memory to perform the task
because we assume that and the model has these elements

fully proceduralized. Models ranging between 0% and 90%
expertise (practicing experts) have a proceduralized task
structure, but the number of declarative memory retrievals
to walk the task structure varies. For example, if a model
should be represented as having 10 declarative memories
(DMs), the 0% expertise model would have 10 DMs while
the 10% expertise model would have 9 DMs and 1 rule, and
so on. Practicing expert models thus provide us a basis for
making useful comparisons with the human data by
providing incremental predictions of performance based
upon expertise, and perhaps enable us to isolate the
participants’ actual average level of expertise at the onset of
the trial.

A test of the Herbal/ACT-R compiler
To explore the Herbal ACT-R compiler, we implemented an
ACT-R model using Herbal and compared the performance
times with practice provided by the model with those of
human participants performing the same series of tasks.

The Dismal spreadsheet task
We next provide a brief description of the participant data
before discussing the model and its implications. For the
purposes of examining variance in retention rates over time,
Kim (2008) devised a sequential spreadsheet task consisting
of 14 subtasks that participants learned using one of two
different modalities (keyboard or vertical mouse). In
addition, Kim examined what if any influence training
intervals have on retention rates by comparing the
performance of participants undergoing training at 6, 12,
and 18-day retention intervals. These results are discussed in
a forthcoming publication.

For this comparative analysis, we used a subset of Kim’s
data, modeling the decline in task completion times for all
14 subtasks over a four training sessions. Over the training
iteration’s time course (about 30-45 min. per session), Kim
found that the average task completion time for participants
(N = 30) using a vertical mouse to perform the spreadsheet
task ranged from 1,366 s (SE = 60.76 s) on day 1 to 655 s
(SE = 22.81 s) by day 4.

The change in performance over the four-day trial is as
anticipated, a relationship between performance and practice
(

€

y =1339.7x−0.5,

€

R2 = 0.99) that follows the power law of
learning. Examining the curve’s progression, one also sees
the final value is similar to the anticipated KLM-GOMS
(Card, Moran, & Newell, 1983) value of 797.14 s for expert
performance.

Modeling the Dismal spreadsheet task
Paik and Kim, working collaboratively, implemented the
spreadsheet task model in ACT-R in four hours using
Herbal. The resulting novice model consists of 9 rules and
542 declarative memory elements; the fully expert model
consists of 541 ACT-R rules and no declarative memory
elements; and the intermediate, practicing expert models
interpolate between these two models. For example, the

189

50% expert model has 271 declarative memory elements
and 541 ACT-R rules, and the 0% expert model has 542
declarative memory elements and 541 ACT-R rules.

The rate of development using Herbal was about 0.9
minutes per rule (240 minutes x 2 programmers/541 rules)
in the expert model. This is approximately 20 times faster
than writing in Soar (assuming that an ACT-R rule is
approximately the size of two Soar rules to propose an
operator and then to implement it), and also about 5 times
faster than rates reported by Yost (1992) using TAQL
(again, assuming that the ACT-R rules are larger).
Unfortunately, we know of no comparative usability studies
for ACT-R, but we suspect that Herbal also accelerates the
rate of developing ACT-R models.

Results
Running the 12 models in ACT-R 6, we confirmed that the
novice, expert, and intermediate models perform the task.
We compared the performance rates over time provided by
the model with those of human participants performing the
same task. (In addition to the ACT-R model’s times, we
added interaction times for mouse moves and key presses).
All the models also learn, with the novice models learning
the most and the expert model the least. The predicted times
are comparable both to the GOMS and KLM models, and to
the data collected by Kim (2008).

Because the data was taken over multiple trials, the
comparison becomes more interesting because we can use
the model to predict the participants’ levels of expertise at
the onset of the first trial. By comparing the learning curves
of the model with that of the 40 participants who performed
the Dismal spreadsheet task (as depicted in Figure 1), we
found that human completion times for the first trial
corresponded with an expertise level of 20%, 60% at trial 2,
80% at trial 3, and a gradual increase up to full expert by the
fourth trial. We thus see that the human performance data
represents a faster learning curve than that displayed by any
of the ACT-R models.

The difference between the two curves indicates that the
model’s learning rate remains too slow, as opposed to the
participants’ expertise being either too high or too low to be
matched. Though the learning displayed by the model is
already surprisingly fast and robust, these results suggest
not only that the model will have to learn faster but also that
it may have to include a new learning mechanism. For
example, the learning rate exhibited by the human data
between the first and second trials shows a sharp decline,
meaning that the participants acquired more knowledge in
the first trial than the model, and that this learned
knowledge was already sufficiently activated to use for
performing the task. The current Herbal/ACT-R models, in
contrast, predict a more gradual learning curve. While the
existing model includes declarative strengthening and
procedural learning, another type of learning or stronger
parameters on the existing learning mechanisms may be
necessary.

Figure 1: The human data shown with respect to the model’s
learning curves.

The results in Figure 1 suggest further, deeper problems

as well. ACT-R does not appear to easily support modeling
declarative memory decay, and the participants’ learning
sessions were separated by at least a day. If, for example,
we attempted to model massed training (concentrated
training blocks), the difference between the model’s
performance and that of the participants is likely to be have
been even greater because no memory decay would have
occurred, and if we modeled the effect of days between
learning trials, the model would learn more slowly,
matching the data less well.

Nevertheless, this model is unique in that we are able to
begin to conduct these comparative analyses, and perhaps
may eventually be better able to ascertain the participants’
actual initial level of expertise for sequential tasks. Future
work includes individual data fits, exploring these deep
problems of decay, and devising ways to achieve faster
learning.

Discussion and conclusions: Implications for
future user models

To conclude, we would like to discuss four implications for
modeling learning. First, the novice model and the expert
models use different approaches to organize the task
knowledge that then results in different task completion
times. Novice models use a tree structure to organize
declarative memories (each declarative knowledge element
has a parent, a next-sibling, and a first-child); to walk this
structure, the model uses a depth-first search approach. All
the expert models, however, use a sequential representation
of the declarative memory structure, in other words each of
the declarative memory elements has its next step, so the
models can walk through the entire structure by following
the next step. This is the difference between the top 2 lines,
novice and 0% expert models, in Figure 1.

Second, our model’s representation of expertise differs
from ACT-R. We represented expertise as a function of
model’s number of declarative memory elements. For
example, the 0% expertise model, our novice, has 542
declarative memory elements while our normative expert
model (100% expertise) has no declarative memory

190

elements. Consequently (at least as presently compiled), the
number of retrieved declarative memory elements gradually
decreases as expertise increases. The normative expert
model, thus, does not retrieve its declarative memory
elements to perform the task. ACT-R, on the other hand,
represents experts with production compilation (the process
of generating a new rule by combining two or more rules).
So, the number of fired rules gradually decreased, but those
rules still need to retrieve declarative memory to perform a
task.

Third, we have presented a high-level cognitive modeling
language that allows for the rapid development of complex
user models. As we noted in the introduction, one reason
why agent-based user models have not been more widely
adopted is because of the relative difficulty associated with
developing them. Cognitive architectures such as ACT-R
and Soar use a low-level knowledge representation language
that makes developing user models appear intractable to
non-experts. Herbal, in contrast, is based on the Eclipse that
is well-known development tool and provides graphical user
interface, so it enables users to make three different kinds of
cognitive models, such as Soar, Jess, and ACT-R, more
easily. In addition, Herbal provides models that explain
themselves by providing answers to questions that users
frequently ask (Haynes, Cohen, & Ritter, 2009).

Nevertheless, we acknowledge that Herbal is far from
mature, and that we will most likely have to refine our
ontology further to fully support ACT-R. We also have to
extend the Herbal/Soar compiler to use the task hierarchy
pane; and we have yet to compare Soar and Jess models
developed in Herbal to human data.

Fourth, the models we have developed with Herbal
suggest new model types and new uses for models. A model
(Herbal/Soar/Diag) includes a large number of strategies
(M. B. Friedrich, 2008; M. B. Friedrich & Ritter, 2009).
Another model (Herbal/ACT-R/Dismal) is perhaps the
largest ACT-R model (as measured by rule count) created
thus far. It is large partially because it performs a non-
repetitive task. Many previous models have performed a
repetitive task taking minutes to do (e.g., processing 100
planes). Doing a long non-repetitive task, however, requires
creating a large knowledge set that has many components
that are only used once.

While Herbal remains in some ways a modest step, it
opens up new modeling approaches where a broad range of
relatively shallow knowledge is needed, but within a
cognitive architecture, and where learning is important.

Acknowledgements
This work was supported by the U.S. Office of Naval
Research (ONR) under contract N00014-06-1-0164,
N00014-09-1-1124 and the Defense Threat Reduction
Agency under contract 1-09-1-0054.

References
Axtell, R., Axelrod, R., Epstein, J. M., & Cohen, M. D.

(1996). Aligning simulation models: A case study and

results. Computational and Mathematical Organization
Theory, 1(2), 123-141.

Burton, R. (1998). Validating and docking: An overview,
summary and challenge. In M. Prietula, K. Carley & L.
Gasser (Eds.), Dynamics of organizations (pp. 215-228).
Menlo Park, CA: AAAI.

Byrne, M. D. (2001). ACT-R/PM and menu selection:
Applying a cognitive architecture to HCI. International
Journal of Human-Computer Studies, 55(1), 41-84.

Byrne, M. D., & Gray, W. D. (2003). Returning Human
Factors to an engineering discipline: Expanding the
science base through a new generation of quantitative
methods. Preface to the Special Section. Human Factors,
45(1), 1-4.

Byrne, M. D., & Kirlik, A. (2005). Using computational
cognitive modeling to diagnose possible sources of
aviation error. International Journal of Aviation
Psychology, 15(2), 135-155.

Card, S. K., Moran, T., & Newell, A. (1983). The
psychology of human-computer interaction. Hillsdale, NJ:
Erlbaum.

Cohen, M. A., Ritter, F. E., & Haynes, S. R. (in press).
Applying software engineering to agent development. AI
Magazine.

Cohen, M. A., Ritter F. E., & Haynes S. R. (2009),
Evaluating design: A formative evaluation of agent
development environments used for teaching rule-based
programming. In proceedings of the Information
Systems Education Conference 2009, 1542-7382,
Washington , DC

Cohen, M. A. 2008. A Theory-Based Environment for
Creating Reusable Cognitive Models. Ph.D. diss., College
of Information Sciences and Technology, The
Pennsylvania State Univ., University Park, PA.

Friedrich, M., Cohen, M. A., & Ritter, F. E. (2007). A gentle
introduction to XML within Herbal. University Park, PA:
ACS Lab, The Pennsylvania State University.

Friedrich, M. B. (2008). Implementierung von
schematischen Denkstrategien in einer höheren
Programmiersprache: Erweitern und Testen der
vorhandenen Resultate durch Erfassen von zusätzlichen
Daten und das Erstellen von weiteren Strategien
(Implementing diagrammatic reasoning strategies in a
high level language: Extending and testing the existing
model results by gathering additional data and creating
additional strategies). Faculty of Information Systems
and Applied Computer Science, University of Bamberg,
Germany.

Friedrich, M. B., & Ritter, F. E. (2009). Reimplementing a
diagrammatic reasoning model in Herbal. In Proceedings
of ICCM - 2009- Ninth International Conference on
Cognitive Modeling. Manchester, England.

Harrison, A. (2002). jACT-R: Beta and beyond. In The 9th
Annual ACT-R Workshop. Pittsburgh, PA.

Haynes, S. R., Cohen, M. A., & Ritter, F. E. (2009).
Designs for explaining intelligent agents. International
Journal of Human-Computer Studies, 67(1), 99-110.

191

John, B. E., & Kieras, D. E. (1996). The GOMS family of
user interface analysis techniques: Comparison and
contrast. ACM Transactions on Computer-Human
Interaction, 3(4), 320-351.

John, B. E., Prevas, K., Salvucci, D. D., & Koedinger, K.
(2004). Predictive human performance modeling made
easy. In Proceedings of CHI 2004 (Vienna, Austria, April
2004), 455-462. ACM: New York, NY.

Jones, R. M., Crossman, J. A. L., Lebiere, C., & Best, B. J.
(2006). An abstract language for cognitive modeling. In
Proceedings of the 7th International Conference on
Cognitive Modeling, 160-165. Erlbaum: Mahwah, NJ.

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J.,
Kenny, P., & Koss, F. V. (1999). Automated intelligent
pilots for combat flight simulation. AI Magazine, 20(1),
27-41.

Kieras, D. E., Wood, S. D., Abotel, K., & Hornof, A.
(1995). GLEAN: A computer-based tool for rapid GOMS
model usability evaluation of user interface designs. In
Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST'95), 91-100. ACM:
New York, NY.

Kim, J. (2008). Procedural skills: From learning to
forgetting. Department of Industrial and Manufacturing
Engineering, The Pennsylvania State University,
University Park, PA.

Louie, M., Carley, K. M., Haghshenass, L., Kunz, J. C., &
Levitt, R. E. (2003). Model comparisons: Docking
OrgAhead and SimVision. In NAACSOS Conference
2003, Day 3, Electronic Publication, Pittsburgh, PA.

Newell, A., Yost, G. R., Laird, J. E., Rosenbloom, P. S., &
Altmann, E. (1991). Formulating the problem space
computational model. In R. F. Rashid (Ed.), Carnegie
Mellon Computer Science: A 25-Year commemorative
(pp. 255-293). Reading, MA: ACM-Press (Addison-
Wesley).

Pew, R. W., & Mavor, A. S. (Eds.). (2007). Human-system
integration in the system development process: A new
look. Washington, DC: National Academy Press.
books.nap.edu/catalog.php?record_id=11893.

Ray, D. (2009). jSoar: A pure Java implementation of
Soar. In The 29th Soar Workshop. Ann Arbor, MI.

Ritter, F. E., Haynes, S. R., Cohen, M., Howes, A., John, B.,
Best, B., et al. (2006). High-level behavior representation
languages revisited. In Proceedings of ICCM - 2006-
Seventh International Conference on Cognitive Modeling,
404-407. Edizioni Goliardiche: Trieste, Italy.

Ritter, F. E., & Young, R. M. (2001). Embodied models as
simulated users: Introduction to this special issue on using
cognitive models to improve interface design.
International Journal of Human-Computer Studies, 55(1),
1-14.

Rosenbloom, P. S. (2009). Towards a new cognitive
hourglass: Uniform implementation of cognitive
architecture via factor graphs. In Proceedings of ICCM -
2009- Ninth International Conference on Cognitive
Modeling, 114-119. Manchester, England.

Salvucci, D. D., & Lee, F. J. (2003). Simple cognitive
modeling in a complex cognitive architecture. In Human
Factors in Computing Systems: CHI 2003 Conference
Proceedings, 265-272. ACM: New York, NY.

St. Amant, R., Freed, A. R., & Ritter, F. E. (2005).
Specifying ACT-R models of user interaction with a
GOMS language. Cognitive Systems Research, 6(1), 71-
88.

St. Amant, R., Horton, T. E., & Ritter, F. E. (2007). Model-
based evaluation of expert cell phone menu interaction.
ACM Transactions on Computer-Human Interaction,
14(1), 24 pages.

Stewart, T. C., & West, R. L. (2005). Python ACT-R: A
new implementation and a new syntax. In 12th Annual
ACT-R Workshop.

192

Deductive Spatial Reasoning:
From Neurological Evidence to a Cognitive Model

Marco Ragni, Thomas Fangmeier, Sven Brüssow
{ragni, fangmeier, sven}@cognition.uni-freiburg.de
Center for Cognitive Science, University of Freiburg

Friedrichstr. 50, D-79098 Freiburg, Germany

Abstract
Cognitive modeling aims more and more to explain, predict
and integrate behavioral data with brain activations found in
fMRI studies. In this article we analyze transitive inferences
(e.g. A is left of B and B is left of C then A is left of C)
during the spatial reasoning processes. Behavioral findings
suggest that reasoners tend to construct a mental model from
the premises, which they in turn use to inspect to draw infer-
ences. A reanalysis of our own previous fMRI-study investi-
gating such examples provided us with brain activations pat-
tern. A cognitive model using the (restricted) Bold-function in
ACT-R 6.0 can partially predict and explain the results. The
findings, limits and potentials of the current representation of
the Bold-function in ACT-R are briefly discussed.
Keywords: Deductive reasoning; fMRI; ACT-R

Introduction
Assume you receive the following information:

The door is to the left of the garage.
The car is to the right of the garage.

Given this set of premises it is easy to draw an inference
like ”the car must be to the right of the door”. But how do
we reason about such so-called three-term problems? Which
role plays working memory in such tasks? There are compet-
ing and different theories in cognitive science to explain the
actual human reasoning process.

The Theory of Mental Logic introduced by (Rips, 1994)
argues syntactically. This theory claims that humans apply
transitivity rules to a given set of premises without construct-
ing spatial representations, e.g. ”If A is left of B and B is
left of C then A is left of C”. Standing in the tradition of
AI-Approaches, there are, however, a number of problems
involved, e.g. with regard to memory burden or the number
of rules necessary to solve tasks (Ragni, 2008).

In contrast, the Theory of Mental Models (MMT) argues
that humans construct mental models which are an inter-
nal representation of objects and relations in spatial working
memory, matching the state of affairs given in the premises.
The semantic theory of mental models is based on the mathe-
matical definition of deduction, i.e. a propositional statement
C is a consequence of a set of premises P, if in each model
A of the premises P, the conclusion C is true. The mental
model theory (MMT) assumes that the human reasoning pro-
cess consists of three distinct phases: (1) the model genera-
tion phase, in which a first model is constructed out of the
premises, (2) the inspection phase, in which the model is in-
spected to check if a putative conclusion is consistent with the
current model. And (3) the validation phase, in which alter-
native models are generated from the premises that refute this

putative conclusion (Johnson-Laird, 2001). A mental model
is constructed incrementally from its premises (Ragni, Fang-
meier, Webber, & Knauff, 2007) following the principle of
economicity (Manktelow, 1999). Such a model construction
process saves working memory capacities because new in-
formation is immediately processed and integrated into the
model (Johnson-Laird & Byrne, 1991; Rauh, Knauff, Kuß,
Schlieder, & Strube, 2005).

Both theories can explain a number of results but MMT is
more widely accepted as the explaining theory in relational
reasoning (e.g., Rauh et al., 2005; Jahn, Knauff, & Johnson-
Laird, 2007; Goodwin & Johnson-Laird, 2005).

A cognitive modeling of this theory has several advantages:
(i) this theory is more formally presented, (ii) it is fully spec-
ified in terms of necessary operations to process such prob-
lems as described above, and with the new Bold-functions in
ACT-R 6.0 (iii) it allows for a prediction and model of the
underlying brain activations. Especially, the last aspect has
become more and more important in recent years. Founda-
tional work has been done by Anderson, Qin, Stenger, and
Carter who conducted and analyzed simple algebra tasks and
developed a first model integrating fMRI-findings in ACT-
R (Anderson, Qin, et al., 2004). More precise, based on
ACT-R 6.0 they developed an information-processing model
to predict the blood oxygenation level-dependent (BOLD)
response of functional MRI in symbol manipulation tasks.
Base-level activation learning in the ACT-R theory can pre-
dict the change of the BOLD response in practice in a left
prefrontal region reflecting retrieval of information. In con-
trast, practice has relatively little effect on the form of BOLD
response in the parietal region reflecting imagined transfor-
mations to the equation or the motor region reflecting manual
programming.

In this article, we present a cognitive model for three-term
series problems of spatial arrangements integrating a previous
fMRI study. It is structured as follows: In the next section,
we briefly introduce the experimental design, settings, and
the fMRI-findings. Then, we proceed outlining our ACT-R
model. Finally we compare the model results with the empir-
ical results.

fMRI During Visual Relational Reasoning
We briefly report a study from our group (Fangmeier, Knauff,
Ruff, & Sloutsky, 2006) in which different neural networks
for three phases of the MMT during spatial relational reason-
ing were supported.

193

Participants. Twelve right-handed male students took part
in the study. All were instructed and trained outside the scan-
ner in order to minimize the learning process while scanning
and to increase their accuracy.

Materials. The presented material in the original study
consists of two conditions, 32 reasoning and 32 maintenance
verification tasks for each subject. Since we just want to
model the reasoning process in ACT-R we report only the
reasoning task in detail. One reasoning task consists of two
premises with three letters (V, X, Z in random order) in a spa-
tial horizontal configuration as well as an offered conclusion.
Each premise and the conclusion consists of two letters with
a spatial relation. The spatial relation between the two let-
ters of each premise or conclusion was coded by placing it
right or left from the center of the screen. A sentential ver-
sion of the given example in Fig. 1 would be: ”X is to the
left of V (premise 1) and ”Z is to the right of V” (premise 2).
For these premises, it follows ”X is to the left of Z” (men-
tal model which was constructed). Participants were asked to
decide if an offered conclusion was correct. One of two alter-
native conclusions were offered: a valid one (as in Fig. 1) ”X
is to the left of Z” or an invalid one ”Z is to the left of X”.

Figure 1: Sequential presentation and timing of the premises
and the conclusion (cp. section Materials).

Procedure and Data Acquisition. The participants were
trained outside the scanner with 12 similar problems and had
to reach at least 75% accuracy for participation. The trials
were presented in an event-related design with four separate
runs. Each run consist of eight reasoning and eight mainte-
nance tasks in a random order. As noted before we report
in this article only the procedure and results of the reasoning
tasks.

The timeline of the complete task was as follows: Each
task was introduced with the letter ”S” in the center of the
screen (”Schliessen” in German) for reasoning followed by a
pause for 1 sec. Each premise and conclusion began with
the presentation of the first letter for 1.5 sec, followed by

the second letter for 1.5 sec and a pause for 1 sec. There-
fore each of the premises, and the conclusion lasted for about
4 sec. Overall the whole trial lasted for about 14 sec. In
half of each premise or conclusion the first letter appeared on
the left position, followed by the letter on the right position.
In the other half of the tasks the first letter appeared on the
right position. The term order variation prevented the par-
ticipants from anticipating the next letter and from drawing
the conclusion during the second premise. Further the vari-
ation of the term order is well established in the reasoning
literature (Knauff, Rauh, Schlieder, & Strube, 1998). Dur-
ing presenting of the conclusion the accuracy was recorded
via a two-button box. Scanning was performed on a 1.5 T
Siemens Vision scanner. Functional images were collected
with a gradient-recalled echo-planar imaging (EPI) sequence,
allowing the sampling of 30 parallel slices covering the whole
brain [TR repetition time): 4000 msec; TA (acquisition time):
3126 msec]. The exact scanning information can be seen in
Fangmeier and colleagues (2006).

Design. Functional and anatomical images were reoriented
so that the anterior commissure corresponded to the origin
of the three-dimensional standard coordinate system used in
the software SPM99 (1999). The four runs for each subject
were separately realigned and corrected for motion, and un-
derwent slice timing correction. Each subject’s anatomical
image was coregistered with a 40-slice EPI and the functional
images of each run. The parameters for spatial normalization
were determined from the anatomical images of each sub-
ject, and were applied to the corresponding functional im-
ages. Images were finally smoothed with an 8-mm full-width
half-maximum Gaussian kernel.

fMRI Statistical Analyses. The hemodynamic response to
the premises and conclusions was modeled with event-related
delta functions, which were convolved with the canonical
hemodynamic response function and its temporal derivative
employed in SPM99. Low-frequency confounds were ex-
cluded from the model with a high-pass filter (192 sec cut-
off), and an autoregression AR(1) model excluded the vari-
ance explained by the previous scan. The six realignment
parameters for each run were included as covariates to avoid
motion artifacts. First-level contrast images for every sub-
ject and contrast were then used for a random effects analy-
sis to draw inferences on brain activation during the exper-
imental problems. Only correctly answered problems were
included in the analysis. All reported clusters within the con-
ditions and the conjunction analysis are significant at the clus-
ter level p .05, corrected for multiple comparisons (threshold t
= 3.0).The contrasts were calculated as follows: premise pro-
cessing phase (Premise 2 minus Premise 1), integration phase
(Premise 2 minus Conclusion), validation phase (Conclusion
minus Premise 2).

Further the beta values from the essential significant clus-
ters were extracted. For each of the three different phases

194

(premise 1, premise 2, conclusion) a cluster with ±12 mm
around the peak voxel was extracted from the beta images of
the SPM statistic. The beta value for each phase represents
the difference between brain activation during this phase and
the overall mean derived from the whole brain, which is the
actual value of the corresponding phase. The value is not a
percent signal change but a difference to overall mean with
an arbitrary unit. If the beta value is positive (or negative)
the activation is higher (or lower, resp.) than the average ac-
tivation as illustrated in the bar charts of the human data in
Fig. 6.

Results. Our findings support the main assumptions of the
MMT with respect to distinct phases.

During the initial premise processing phase1 (see Fig. 2
A, B) for both presented premises occipito-temporal struc-
tures are activated with the following main Brodmann ar-
eas (BA 18, 19, and 37). These areas are active during
tasks which are involved in visual working memory and im-
agery (Kosslyn, Ganis, & Thompson, 2001; Postle, Stern,
Rosen, & Corkin, 2000) and with the ventral ”what”-stream
(Ungerleider, Courtney, & Haxby, 1998).

The following integration phase (see Fig. 2 B) shows an
additional area in the anterior prefrontal cortex which covers
the BA 32 and 10. Tasks in which multiple relations have
to be hold simultaneously activated area 10 (Christoff et al.,
2001; Prabhakaran, Rypma, & Gabrieli, 2001; Waltz et al.,
1999) and a review of functions of the anterior prefrontal cor-
tex assume that this area is responsible for the combination
and coordination of multiple cognitive operations (Ramnani
& Owen, 2004). Especially support for the premise integra-
tion comes from Kroger and colleagues (2002).

In the validation phase (Fig. 2 C) a putative conclusion
has to be verified. The activation switched from the visual
working memory (BAs 18, 19, and 37) to the posterior pari-
etal cortex (BAs 7 and 40). This areas are frequently acti-
vated during spatial processing (Burgess, Maguire, Spiers,
& O’Keefe, 2001) and the integration of sensory informa-
tion from all modalities into an egocentric spatial represen-
tation (Xing & Andersen, 2000; Andersen, Snyder, Bradley,
& Xing, 1997).

Cognitive Model
ACT-R is a cognitive architecture that consists of a num-
ber of modules each associated with certain cortical regions
(Anderson, Bothell, et al., 2004; Anderson, Qin, et al., 2004;
Anderson et al., 2008). When, for example, an ACT-R model
that has been built is pressing some key on a keyboard, the
manual module will be active and this predicts BOLD activ-
ity in the corresponding motor region in the brain. ACT-R’s
central executive—its procedural backbone—is a production
system represented by the procedural module that is associ-
ated with the caudate region. Each time a production fires

1We denote the phases slightly different.

Figure 2: Brain activation during reasoning. Activated re-
gions are contrasts for the three phases calculated with SPM:
premise processing (P1), integration (P2), and validation
phase (C). The activations were significant at the cluster
level calculated with SPM99 (p ≤ .05, corrected, threshold
t = 3.0).

ACT-R predicts the BOLD rate in the caudate region is going
up with a certain time lag as is known from real fMRI studies.

The procedural module controls ACT-R’s strictly serial be-
havior; only one production in a time may fire. The modules,
however, may operate in parallel and communicate over their
buffers, each capable of holding one chunk of information.
Hence, a production can require information from more than
one module’s buffer. Once a module is active, however, it
only can become active again in a subsequent request, when
it is free again.

The ACT-R model operates on three different kinds of
chunks: (1) premise and conclusion chunks, (2) grid chunks,
and (3) mental model chunks.

Premise and conclusion chunks are structurally equivalent
and the corresponding chunk type defines two slots for the
left and right term. Each time a term is presented the ACT-R
model tries to integrate the term into the premise chunk or
conclusion chunk respectively. After completion of P1 the
corresponding chunk is integrated into the center of the sec-
ond kind of chunk, a grid with four vacant positions (cp. Fig-
ure 3, P1). Once the mental model of P1 is complete it is
cleared from the imaginal buffer by placing a new chunk of
the type grid representing the position of the current model
and adjacent free positions around it into the imaginal buffer.
The first term of P2 is presented and if it has not been seen
yet, the current grid is cleared from the the imaginal buffer. A
new premise chunk with only one term is placed in the imag-
inal buffer instead.

This, however, is the first source of an possible error. Each

195

Figure 3: The ACT-R model processing the premises (P1, P2)
and conclusion: the columns represent the different buffers
each holding the respective chunks. While P1 is presented on
the screen, both terms are successively placed into the slots
of a two-model chunk that is generated in the imaginal buffer.
In a subsequent step the information of this two-model chunk
is integrated into a grid-chunk (indicated by 4 cells). After
an analog processing of P2 the corresponding two-model is
merged with the grid chunk. Then the conclusion chunk is
built up. Finally, each occupied cell of the grid chunk is iter-
atively compared with the conclusion chunk.

time a grid chunk is released to declarative memory and an
identical one is detected both get merged to one and its ac-
tivation is boosted. Hence, the more often two chunks have
been merged in the past, the more dominant the result gets
and interferes with the grid chunk that has most recently been
created. Hence, recency is not necessarily a guarantee for
successful retrieval.

The next term is presented and integrated into the premise
chunk in the imaginal buffer. The grid chunk is retrieved
from declarative memory and is now placed into the retrieval
buffer. Now both chunks can be tested on the right hand side
of a production and finally the open position in the grid can
be filled according to the position in the premise chunk (cp.
Figure 3, P2).

In a next step the imaginal buffer holding the current grid
chunk, however, has to be cleared again in order to build
the conclusion chunk. At the moment the first term of C is
presented the model clears the grid chunk from the imaginal
buffer in order to make it free for the creation of the conclu-
sion chunk. The creation of the conclusion chunk is analo-
gous to the creation of the premise chunks as described above.

Each cell of the built model of C is iteratively compared
with the grid chunk in the retrieval buffer (cp. Figure 3, C).
Here, however, a second source of a possible error can oc-
cur. In case of the release of a chunk to declarative memory
and the retrieval from it in a subsequent step, the same prob-

lem occurs as described above. If the time between clearing
a chunk from the imaginal buffer and being retrieved again is
at a minimum, it can be retrieved again in order to be com-
pared with the conclusion chunk. Otherwise the most general
chunk that has repeatedly been merged in the past and that
consequently is most dominant in terms of it strengthened ac-
tivation may get retrieved erroneously. This chunk may cause
an error at the comparison stage, because the cues in its slots
may not match those from the conclusion model.

Empirical Evaluation and General Discussion
In the sense of Anderson and colleagues the presented model
is not an attempt to cover all aspects of deductive reasoning
and mental model theory but to add to a methodology that
has recently attracted the attention of researchers: the eval-
uation of cognitive models with fMRI data and vice versa
(Anderson et al., 2008, 1325). Nevertheless, the accuracy of
the human and the model data fits quite well (human = 93%,
model = 94%).

Table 1 shows the brain regions that are supposed to be
linked to the buffers of ACT-R modules and Figure 6 illus-
trates the predicted BOLD responses of the model.

Table 1: Brain regions and corresponding Brodmann areas as-
sociated with ACT-R modules (Anderson et al., 2008, 1327).

Region Brodmann Module
Motor1 2, 4 Manual
ACC 24, 32 Goal
PPC 7, 39, 40 Imaginal
LIPFC 45, 46 Declarative
Caudate Procedural
Fusiform 37 Visual

BOLD responses have been computed of a model run that
simulates 32 trials of deductive reasoning tasks. Figure 4
shows the overall mean values for each phase P1, P2, and
C. Figure 5 shows the continuous course of the overall mean
BOLD response predictions for selected ACT-R modules.
In all three phases there is almost no change in the rates for
the manual module. The reason is that there is a lag of up to
four seconds until the corresponding BOLD activity reaches
its maximum. This, however, happens in the 12 seconds time
window after an answer key has been pressed and conse-
quently cannot be seen in the presented time frame. When
the next trial starts the BOLD activity has decayed to its nor-
mal rate. This is analogous to the human data and therefore
there is also no prominent BOLD activity for the three phases.

The declarative module, too, shows only low activity,
slightly increasing towards the end. The reason is that model
heavily relies on involving the imaginal module. Only when
there are two chunks that have to be tested in a production
concurrently there is the need to temporarily clear one chunk
from the imaginal buffer because each buffer can only hold

196

B
O

LD
 r

es
po

ns
e

0.00

0.05

0.10

0.15

P1 P2 C

visual
production

goal
retrieval

imaginal
manual

Figure 4: The overall mean BOLD response predictions for
six ACT-R modules for the first premise (P1), the second
premise (P2), and the conclusion (C).

Time (seconds)

B
O

LD
 r

es
po

ns
e

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 2 4 6 8 10 12

● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

●

●
● ● ● ● ● ●

imaginal
retrieval

manual
visual

●

Figure 5: The course of the overall mean BOLD response
predictions for selected ACT-R modules.

one chunk at a time. The model chunk gets retrieved immedi-
ately from declarative memory again via the retrieval buffer.
There is, however, in most cases only one retrieval towards
the end of P2 so that the predicted BOLD response is not
comparable to that of the imaginal buffer. Only when the first
term of the second premise presented on the screen has not
been seen before a second retrieval is required. In addition,
the maximum rate will, similar to that of the motor module,
be in the lag of 12 seconds between two trials.

In the following, we concentrate the empirical evaluation
of the correspondence between model and fMRI data on those
three brain regions that have both been investigated in the
study of Fangmeier et al. (2006) and that are also linked to
the buffers of ACT-R modules. Figure 6 directly compares
human data with model data. The scales for the human data,
however, should be compared with caution, because typically
in fMRI research the ∆-adjusted BOLD function with respect
to mean activation is reported. For the present work this
implied a transformation of the ∆-adjusted BOLD to abso-
lute values in order to get comparable charts with the ACT-R
BOLD response predictions. All predicted values of ACT-R
were within an interval of [0.0-1.0], whereas in fMRI the beta

means are not restricted to a fixed interval (i.e. values can also
be negative or beyond 1.0). However, comparing the results
at a qualitative level shows a similar pattern as is illustrated
in Figure 6. An interesting difference between the predicted

1 Calculated from the ∆-adjusted BOLD (Fangmeier et al., 2006).

Figure 6: The overall mean BOLD responses for three brain
regions (top) and the corresponding predictions of three ACT-
R modules (bottom) for the first premise (P1), the second
premise (P2), and the conclusion (C): the occipito-temporal
cortex (OTC) overlaps with Brodmann area (BA) 37 and is
linked to the visual module; the anterior prefrontal cortex
(APFC) overlaps with the anterior cingulate cortex, BA 32),
that is linked with the goal module; the posterior parietal cor-
tex (PPC) overlaps with BA 7, 40 and is linked to the imaginal
module. Each phase (P1, P2, C) lasts 4 seconds resulting in a
total presentation duration of 12 seconds (cf. Fig. 1 and 5).

BOLD function and the experimental results is within P2: the
difference between the BOLD linked to the visual module
and the corresponding brain region of occipito-temporal cor-
tex (OTC). This remains still an open question.

Taken together, ACT-R 6.0 offers a powerful possibility to
predict behavior and associated brain activations. This allows
to model the different levels from neurological evidence to
symbolic modeling. Integrating neurological findings have a
main advantage for cognitive modeling: The goodness-to-fit
can be extended far beyond the behavioral data, especially
for the domain of complex cognition (Anderson et al., 2008,
1324). Differences in the setting can be traced back to differ-
ent modules (which have different activation patterns). Cer-
tainly, a main problem is to compare results of the fMRI stud-
ies with predictions of the BOLD-function since additional
work is necessary to identify the different scaling and in-
tensity of the activations. So in some sense, the predicted
BOLD function gives a good intuition, especially for qualita-

197

tive comparison. Once a refinement of the modules in ACT-R
is taken into account the fields of fMRI and cognitive model-
ing converge stronger.

Future work will integrate and compare the findings on the
memory tasks to the deductive reasoning tasks.

Acknowledgements
This research was supported by the DFG (German National
Research Foundation) in the Transregional Collaborative Re-
search Center, SFB/TR 8 within project R8-[CSPACE] and
the strategic project ActivationSpace. The authors are grate-
ful to Matthias Frorath for assistance in the implementation
of the ACT-R model.

References
Andersen, R. A., Snyder, L. H., Bradley, D. C., & Xing, J.

(1997). Multimodal representation of space in the posterior
parietal cortex and its use in planning movements. Annual
Review of Neuroscience, 20, 303–30.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y. (2004). An integrated theory of
the mind. Psychological Review, 111(4), 1036-1060.

Anderson, J. R., Carter, C. S., Fincham, J. M., Qin, Y., Rav-
izza, S. M., & Rosenberg-Lee, M. (2008). Using fMRI
to test models of complex cognition. Cognitive Science,
32(8), 1323-1348.

Anderson, J. R., Qin, Y., Stenger, A., & Carter, C. S. (2004).
The relationship of three cortical regions to an information-
processing model. Journal of Cognitive Neuroscience,
16(4), 637-653.

Burgess, N., Maguire, E. A., Spiers, H. J., & O’Keefe, J.
(2001). A temporoparietal and prefrontal network for re-
trieving the spatial context of lifelike events. Neuroimage,
14(2), 439–53.

Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger,
J. K., Holyoak, K. J., et al. (2001). Rostrolateral prefrontal
cortex involvement in relational integration during reason-
ing. Neuroimage, 14(5), 1136–49.

Fangmeier, T., Knauff, M., Ruff, C. C., & Sloutsky, V. (2006).
fMRI evidence for a three-stage model of deductive reason-
ing. Journal of Cognitive Neuroscience, 18(3), 320-334.

Goodwin, G. P., & Johnson-Laird, P. N. (2005). Reasoning
about relations. Psychological Review, 112(2), 468-493.

Jahn, G., Knauff, M., & Johnson-Laird, P. N. (2007). Pre-
ferred mental models in reasoning about spatial relations.
Memory & Cognition, 35(8), 2075–87.

Johnson-Laird, P. N. (2001). Mental models and deduction.
Trends in Cognitive Sciences, 5(10), 434-442.

Johnson-Laird, P. N., & Byrne, R. M. J. (1991). Deduction.
Hillsdale, NJ: Erlbaum.

Knauff, M., Rauh, R., Schlieder, C., & Strube, G. (1998).
Continuity effect and figural bias in spatial relational infer-
ence. In Proceedings of the twentieth annual conference of
the cognitive science society (p. 573-578). Mahwah, NJ:
Erlbaum.

Kosslyn, S. M., Ganis, G., & Thompson, W. L. (2001). Neu-
ral foundations of imagery. Nature Reviews Neuroscience,
2(9), 635–42.

Kroger, J. K., Sabb, F. W., Fales, C. L., Bookheimer, S. Y.,
Cohen, M. S., & Holyoak, K. J. (2002). Recruitment of an-
terior dorsolateral prefrontal cortex in human reasoning: a
parametric study of relational complexity. Cerebral Cortex,
12(5), 477–85.

Manktelow, K. I. (1999). Reasoning and thinking. Hove,
UK: Psychology Press.

Postle, B. R., Stern, C. E., Rosen, B. R., & Corkin, S. (2000).
An fMRI investigation of cortical contributions to spatial
and nonspatial visual working memory. Neuroimage, 11(5
Pt 1), 409–23.

Prabhakaran, V., Rypma, B., & Gabrieli, J. D. (2001). Neural
substrates of mathematical reasoning: a functional mag-
netic resonance imaging study of neocortical activation
during performance of the necessary arithmetic operations
test. Neuropsychology, 15(1), 115–27.

Ragni, M. (2008). Human logic in spatial reasoning. In
B. C. Love, K. McRae, & V. M. Sloutsky (Eds.), Proceed-
ings of the 30th annual conference of the cognitive science
society (pp. 933–939). Austin, TX: Cognitive Science So-
ciety.

Ragni, M., Fangmeier, T., Webber, L., & Knauff, M. (2007).
Preferred mental models: How and why they are so impor-
tant in human reasoning with spatial relations. In C. Freksa,
M. Knauff, B. Krieg-Brückner, B. Nebel, & T. Barkowsky
(Eds.), Spatial cognition v: Reasoning, action, interaction
(pp. 175–190). Berlin: Springer.

Ramnani, N., & Owen, A. M. (2004). Anterior prefrontal cor-
tex: insights into function from anatomy and neuroimag-
ing. Nature Reviews Neuroscience, 5(3), 184–94.

Rauh, R., Knauff, C. H. M., Kuß, T., Schlieder, C., & Strube,
G. (2005). Preferred and alternative mental models in spa-
tial reasoning. Spatial Cognition and Computation, 5, 239-
269.

Rips, L. J. (1994). The psychology of proof: Deductive
reasoning in human thinking. Cambridge, MA: The MIT
Press.

SPM. (1999). London, UK: Wellcome Department of Cogni-
tive Neurology. (computer software)

Ungerleider, L. G., Courtney, S. M., & Haxby, J. V. (1998). A
neural system for human visual working memory. Proceed-
ings of the National Academy of Sciences, U.S.A, 95(3),
883–90.

Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B.,
Mishkin, F. S., de Menezes Santos, M., et al. (1999). A
System for Relational Reasoning in Human Prefrontal Cor-
tex. Psychological Science, 10(2), 119–25.

Xing, J., & Andersen, R. A. (2000). Models of the posterior
parietal cortex which perform multimodal integration and
represent space in several coordinate frames. Journal of
Cognitive Neuroscience, 12(4), 601–14.

198

Accountable Modeling in ACT-UP,
a Scalable, Rapid-Prototyping ACT-R Implementation.

David Reitter (reitter@cmu.edu) and Christian Lebiere (cl@cmu.edu)
Department of Psychology, Carnegie Mellon University,

5000 Forbes Ave, Pittsburgh, PA 15213 USA

Abstract

ACT-UP is a toolbox implementation of the ACT-R cognitive
architecture, aimed at allowing rapid prototyping of complex
models. With ACT-UP, we propose Accountable Modeling,
where the only model components that are specified are those
supported by empirical evidence and part of the model’s theo-
retical claims. ACT-UP is a library providing a programmatic
interface to the classical ACT-R functionality. Implemented
in a functional programming paradigm, models are reusable in
other contexts. The toolbox is demonstrated using five imple-
mented and evaluated cognitive models.
Keywords: Complex Models, Cognitive Architectures,ACT-R

Introduction
Cognitive models have explained a great deal of behavioral
and neurophysiological data. On the road to understanding
the mind, cognitive architectures have specified a core set
of representations and mechanisms common to a variety of
models in order to separate general functional components
and their abilities from domain-specific instantiations, such
as knowledge and strategies. However, the tasks that classi-
cal cognitive models have taken on are mainly those that can
be defined in a controlled environment. Process models of
laboratory behavior are often overly specific and needlessly
complex, while alternative models would yield similar fits.
The model eco-system has diversified rather than converged,
with specific rule sets developed for each given task and very
seldom reused or generalized for other tasks. This leads to
overfitting and lack of robustness. To robustly explain and
predict behavior in complex real-life situations, model com-
plexity has to increase further. Inevitably, humans execute
much more complex tasks as well, drawing from a variety of
knowledge and skills and contextualizing their observations
and thoughts in light of both long-term experience and re-
cently acquired knowledge.

The greater complexity of tasks may have a welcome effect
on cognitive architectures. Current general architectures such
as ACT-R (Anderson, 2007) or SOAR (Laird & Rosenbloom,
1987) are not as restrictive as human memory is. ACT-R, has,
during versions 2 through 4, become more and more restric-
tive: large, very complex rules made way for smaller, gran-
ular ones that could describe less functionality each. Still,
even its latest incarnation can implement a model that pre-
dicts excellent human performance at the most intricate N-
back task, failing to explain the dismal human performance
scalability at this task. This difficult task (Kirchner, 1958)
requires subjects to keep a first-in-first-out queue of N items
in memory. Sufficient architectural contraints may mean that
modelers can no longer design functional models of existing
tasks, let alone the more complex ones we have argued for.
One solution to the dilemma is to constrain models by re-use

of micro-strategies. It is hoped that the resulting convergence
will eventually let us better reflect the architecture of the mind
(Newell, 1973).

As task complexity increases, a careful analysis of the
components of the model is necessary. Every rule, every data
structure, and every knowledge access process can be seen
as a claim that needs to be proved empirically. For anything
but the simplest cognitive models, many of the procedures
and data structures they define are often not evaluated: the
specifics of many of the components of the model may be ir-
relevant to the story a model has to tell. The solution to this
problem is under-specification. In what we call the Account-
able Modeling paradigm, we suggest to apply Occam’s razor
and specify only what is meant to be directly or indirectly
evaluated.

As a consequence, we arrive at models that can be more
complex yet faster and easier to prototype, while still using
the same core representations and mechanisms of the archi-
tecture. Until all portions of the model are fully specified,
such models may fall short of Newellian complete process
models. Yet, they honestly separate claim from conjecture
and provide the same level of comparison to human data.

Accountable Modeling
Recent work has been undertaken to investigate the use of
ACT-R to study the interaction of two, eight, or even thou-
sands of cognitive agents. Scalability in this domain would
make cognitive models applicable to new domains such as
network science, for which a precise computational represen-
tation of human cognitive processes has been desirable but as
to now unavailable. The modeling methodology in this paper
follows accountable modeling within the ACT-R theory.The
“Adaptive Control of Thought–Rational” framework (ACT-
R, Anderson, 2007) defines a component-based architecture,
in which specialized modules work largely in parallel to con-
tribute to thought processes. In recent computational imple-
mentations, it requires end-to-end models, describing thought
processes through a set of production rules controlling the in-
teraction of cognitive (e.g., long-term memory) and percep-
tual components. We distinguish the ACT-R theory from its
canonical implementation (ACT-R 6, Bothell, 2005). In the
following, we assume familiarity with the basics of ACT-R.

Working within the ACT-R theory, we designed a new tool-
box instantiation of the theory called ACT-UP. ACT-UP re-
flects ACT-R, but lets the modeler specify algorithms much
like a programmer would. Functionality is compartmental-
ized in reusable functions (taking arguments and returning a
value) and data is stored and retrieved as in ACT-R in chunks
in declarative memory. ACT-UP is intended as a library for

199

modelers comfortable with basic programming paradigms.
Most of the cognitive functions that ACT-R makes avail-

able correspond to the buffer-based interface of the architec-
tural modules in ACT-R: a learn-chunk function to commit a
chunk to memory or boost its activation; a retrieve function
to request a chunk from declarative memory, taking hard con-
straints, cues (to spread activation), and soft constraints (for
partial matching). (In ACT-R, buffers represent interfaces
between cognitive modules. Chunks are bundles of feature-
value pairs, which can be stored temporarily in buffers, or,
more long-term, in declarative memory.) But ACT-UP also
makes more fine-grained cognitive functions available. Such
micro-functions allow models to go beyond what is available
to ACT-R models.

We intend to address several goals with ACT-UP. Account-
ability suggests to underspecify model components that are
neither motivated by data or theory nor subject to empiri-
cal evaluation. Rapid prototyping allows modelers to quickly
build and modify most parts of the model, even computation-
ally complex ones, while focusing on learning and other cog-
nitive effects predicted by ACT-R’s theoretical assumptions.
Crucially, it produces models that are reconfigurable so that
systematic parameter search can be used to explore the space
of possible models. Reusability results from clear input and
output data structures, turning models into functions that can
be re-used in other contexts: the convergence of models and
cognitive frameworks is a long-term goal. Scalability allows
models to run longer, apply to more complex tasks, and sim-
ulate agents in the context of larger multi-agent systems.

To describe the notion of accountability, let us consider
some design decisions that a modeler has to make: where
to abstract away from subtasks and surrounding tasks, and
where to concentrate on the cognitive properties that ulti-
mately explain variance in the data. Both ACT-R 6 as well as
the ACT-UP toolbox allow for free computation outside the
theory1. Even the more theoretically motivated buffers and
chunks are storage means that are not limited in size. ACT-
UP retains information in local variables, thereby acknowl-
edging the lack of constraints.

Procedures are at the core of ACT-R. They initiate per-
ceptual acquisition, declarative memory retrievals and motor
actions and act as an information broker between all com-
ponents of the architecture. They are implemented as pro-
duction rules, defining a precondition that refers to the state
of buffer contents, and a consequential action affecting the
buffers and their associated modules. While all rules are el-
igible to match at all times in a model, only one of them is
selected to fire.

Such a production rule system is capable of implement-
ing complex algorithms, especially with the addition of state
information in buffers. Thus, the question of whether a so-
lution to the experimental task can be formulated as a set of
production rules is less relevant than the question of whether
the model’s crucial decision-making can be cast as a pattern-
matching task, or whether reinforcement learning of recogni-

1“eval” statements in ACT-R 6, for instance, allow the modeler
to design model components in Lisp.

tion patterns and associated actions (as in ACT-R’s learning
of production rule utility) can explain the observed data. In-
deed, in typical models does the deciding learning effect oc-
cur only in very specific decision-making moments. The large
majority of the model’s production rules are in place to deter-
ministically execute the task. These collections of produc-
tion rules are difficult to develop, inspect, change, maintain
and re-use. Therefore, ACT-UP’s rules may be underspeci-
fied and implemented as a program. This will also often be
the case whenever productions implement deterministic and
static processes. Other productions may still be faithfully de-
scribed: those that reflect the crucial pattern-matching tasks
and reactions to recognized patterns, or the routinization of
initially declaratively memorized processes. This is where the
toolbox approach allows modelers to underspecify the model
by reformulating productions in a more direct, computation-
ally treatable manner. Underspecification may also occur for
many methodological reasons. Data may be lacking to sup-
port an evaluation of the claims, if they were specified, or the
lack of suitable data, or the task complexity, e.g., understand-
ing of complex natural language instructions where it does
not reflect the goals of the modeling work.

ACT-UP provides high-level interfaces to core simulation
components of human cognition (e.g., retrieval of a declara-
tive chunk from a pattern specification). It also gives mod-
elers fine-grained control over such processes, by filtering
chunks from declarative memory or choosing the most ac-
tive chunks from a set. Thus, the functional toolbox approach
integrates well with cognitive mechanisms that do not yet
have a well-specified interface to the remaining buffer- and
productions-based ACT-R architecture.

Wherever constraints are relaxed, cognitive plausibility
comes into question. Traditionally, models have relied on
their within-theory specification to provide constraints pro-
moting cognitive plausibility (usually using ACT-R 6). As
argued in the introduction, such constraints are not exhaus-
tive. In order to constrain the computational resources avail-
able to the model, ACT-UP asks the modeler to focus on
the crucial portion of their model, while using the compu-
tational power of a programming language for other parts.
For those parts, parameters may be fitted that describe their
(human) execution time and reliability. Since production sys-
tems are Turing-equivalent, we know that a production sys-
tem can be defined to accomplish what an ACT-UP model
does. Thus, ACT-UP models do not represent an implausible
gain in power.

ACT-UP architecture
ACT-UP aims to implement a substantial subset of the ACT-
R theory. The striking differences between ACT-UP and im-
plementations such as ACT-R 6 or Stewart & West’s (2007)
Python variant do not lie in the theory: they pertain to the in-
terface that is offered to the modeler. ACT-UP’s interface is
synchronous and does not yet implement parallelism (which
is often not needed). ACT-UP is a toolbox providing ACT-R
functionality in a piecemeal fashion as well as commands at
a higher abstraction level, which would integrate well with
Salvucci & Lee’s (2003) motor, speech and perceptual mod-

200

ule commands. The ACT-UP library is a stand-alone system,
and independent of ACT-R 6. It provides a set of Lisp func-
tions and macros; modelers interact with it on the basis of
source code that follows Common Lisp syntax (see below for
examples). ACT-UP models predict the two major behavioral
outcome types: choice and timing.

Declarative memory system
ACT-UP’s declarative memory (DM) embodies all the core
elements of DM in ACT-R. Memory is accessed in the form
of chunks, which are sets of feature-value pairs. Chunks are
learned (or reinforced) with an explicit command; there is no
automatic learning (buffer clearing in ACTR 6). Retrieval
occurs with a (normally) synchronous command, in which
the model specifies hard constraints (a set of feature value
pairs), soft constraints (subject to partial matching), and a set
of chunks as cues that spread activation. Thus, modelers gain
better control over the context of the retrieval. In ACT-R,
buffer contents that can spread erroneous activation have to
be tightly controlled (or parameterized) in order to prevent
unwanted misretrievals. In ACT-UP, assumptions about con-
text elements for each retrieval are explicitly specified. Thus,
ACT-UP currently forgoes some ACT-R constraints:

• strict harvesting (automatic buffer clearing and learning as
chunks): chunks are learned explicitly

• all-encompassing spreading activation (all buffers may
spread activation): cues are specified during retrieval in
ACT-UP

• unselective partial matching (the full retrieval request is
matched partially): ACT-UP retrieval distinguishes hard
and soft constraints

To see a typical chunk creation, retrieval and learning cycle,
suppose the model knows initially, via declarative memory, a
fact such as the lawyer is in the dungeon:
(learn-chunk (add to DM)

(make-fact :name ’l-d-fact (new chunk)
:person ’lawyer
:location ’dungeon))

We can, at model run-time, retrieve and reinforce this chunk:
(let ((fact (retrieve-chunk (retrieve)

’(:location dungeon)))) (constraints)
(if fact (learn-chunk fact))) (reinforce)

Key memory processes such as base-level learning and de-
cay, cue-based memory retrieval, partial matching and their
parametrization are equivalent to ACT-R 6. Also available
are associative learning as in ACT-R 5 (Anderson, 1993) and
Blending (Wallach & Lebiere, 2003). ACT-UP models may
define a chunk type hierarchy, and they may derive data struc-
tures from chunk types in an object-oriented fashion.

Procedural skills
ACT-R defines procedural rules as fine-grained instructions
of the form If the buffers contain certain values, then change
their values according to another template. ACT-UP is sit-
uated at a higher level of abstraction. Modelers may spec-
ify complex rules that define sequences of actions and pre-
conditions, similar to a Lisp function. Production rules are

not usually evaluated in parallel, unless the modeler relies on
utility learning to model effects through reinforcement learn-
ing. ACT-R’s utility learning boosts the likelihood of success-
ful productions being chosen in cases of ambiguity (multiple
productions match). ACT-UP allows models to define rules
and explicitly group them in competition sets. ACT-UP can
chose a rule from a competition set. Rewards are explicitly
back-propagated as in ACT-R 6 in order to let a model learn
which rules lead to desirable outcomes. Thus, the production
rule conflict sets used in ACT-R are made explicit in ACT-
UP rather than being represented implicitly through overlap
in production conditions. Routinization effects, where re-
trievals from declarative memory are side-stepped through
specialized, acquired rules, can also be modeled in ACT-
UP (the analogous ACT-R mechanism is production compi-
lation). ACT-UP’s rules consume simulation time (50ms by
default), even though the precise predictions that fall out of
an ACT-R model are lost, where the same cycle time is as-
sumed, but where production rules are tightly constrained. In
line with Accountable Modeling, we propose to fit the exe-
cution duration (within plausible bounds) to the data as free
parameters.

(1) Validity: The Siegler Model
An ACT-UP model implementing the core of an ACT-R
model should result in exactly the same performance results.
To test such consistency of ACT-UP and ACT-R 6, we trans-
lated several ACT-R 6 models to ACT-UP. Here, we show
the Siegler model from the ACT-R 6 tutorial. The model ex-
plains data by Siegler & Shrager (1984), who found patterns
in arithmetic problem-solving in 4-year-olds. In making mis-
takes when answering addition problems, the children often
closely under- or overshot the correct result (2+ 3 = 6), and
their erroneous answers were more frequent and strayed fur-
ther from the target for problems involving larger numbers.
The ACT-R 6 model (following Siegler and Shrager’s model)
explains these data using a combination of partial matching
and base-level activations in memory retrieval of arithmetic
facts. Similarity between numbers is proportional to their
absolute difference, so that close answers may be retrieved
(2+3 = 5). Base-level activations for more frequent addition
facts with lower results are higher, leading to more erroneous
retrievals and more often for facts involving larger numbers.

The ACT-R 6 model implements a number of determinis-
tic steps: aural presentation, encoding of the numbers, and
decoding of the result. The ACT-UP model underspecifies
these, as they do not contribute to the variance in the data.
The key processing step of the model, the retrieval of arith-
metic facts from memory, is accomplished by the following
high-level function:
(defrule test-fact (arg1 arg2)

(let ((fact
(retrieve-chunk (retrieve)

’(:chunk-type plus-fact) (hard constraints)
nil (no retrieval cues)
(list :addend1 arg1 (soft

:addend2 arg2)))) constraints)
(if fact (plus-fact-sum fact)))) (extract sum)

Model initialization sets base-levels and similarities (in 24
lines of Lisp code), using function calls largely compatible

201

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

response

p

ACT-R 6.0
ACT-UP
human1+2

3+3
1+1

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

response

p

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

response

p

0 2 4 6 8
0.
0

0.
2

0.
4

0.
6

0.
8

response

p

p
(re

sp
on

se
)

response

Figure 1: The Siegler and Shrager (1984) data, showing the
three distributions of subject’s answers to the arithmetic prob-
lems 1+1, 1+2 and 3+3, and the simulation results of the
model implemented in ACT-R 6 and ACT-UP.

with ACT-R 6. Four architectural parameters are set equally
in both variants (retrieval threshold, transient noise, base-
level learning (off), and mismatch penalty coefficient).

Both model variants achieved the same correlation (0.966
in ACT-R 6 vs. 0.968 in ACT-UP) and mean deviation (0.053
vs. 0.052) with the data (1000 runs). Figure 1 shows the dis-
tribution of the subjects’ answers to three of the six prob-
lems and demonstrates that the predictions of ACT-UP match
closely those of ACT-R 6.

(2) Scalability: A Model of Language Evolution
A multi-agent model was implemented to reflect the emer-
gence of a domain language common to a group of agents
after repeated, goal-oriented interactions (Reitter & Lebiere,
2009). In the Pictionary games of the empirical study pro-
viding data for this modeling exercise, each participant had to
convey given meanings via drawings (without words) to an-
other participant. In this model, a language was defined as a
set of concept-representation pairs, where a concept was one
of 20 target concepts (e.g., hospital), and the representation
consisted of three drawings of concrete objects (e.g., build-
ing, ambulance, syringe). For novel concepts, the model drew
from an ontology (graph with weighted associations) linking
concepts to related drawings; relatedness was inferred from
co-occurrence information in a large text corpus. Known
concept-representation pairs were stored in declarative mem-
ory. Prototyping the model in ACT-R 6 proved difficult for
several reasons. The model was complex, and possible exe-
cution paths through the approximately 40 production rules
were not evident. Further, the model needed many iterations
to show convergence. Parallelization between eight agents
and repeated model execution (without reset) was difficult
to achieve for technical reasons. We estimate the expended
time to be around two person-months. The prototype’s re-
sults never approached an acceptable fit with the data on a
qualitative or quantitate level.

A functional prototype of the model using an initial version
of ACT-UP was developed in less than two weeks with the

benefit of a task well understood. We focused on plausibil-
ity within the ACT-R theory: No data structures were held in
memory beyond what could be stored in a buffer; the domain
language used declarative memory as intended. Production
rules were abstracted using loops, conditionals and ACT-UP
commands, owing to the fact that skill acquisition was not
part of the model. The model was split up into several func-
tions which could be individually inspected and tested (e.g.,
“draw”, “recognize”). ACT-UP functions were used to in-
spect the activation of target chunks at retrieval times (base-
level, spreading activation) and export those to be visualized
along a time-line. With this model, we were able to establish
good qualitative empirical correspondence with data from ex-
periments that compared a small community of eight partic-
ipants interacting in changing pairs, to a set of participants
interacting in four one-on-one dyads.

Recently, the model scaled well to multi-agent simulations
with 1000 agents and 84 million game interactions (two state-
ful agents, one concept per game) in about 36 CPU hours.
Further work is planned to evaluate scalability to memory-
intensive long-term tasks.

(3) Efficiency: A Sentence Production Model
The third case study involves a model that was implemented
in both ACT-R 6 and in ACT-UP. It involves a model of
sentence production (Reitter, 2008), focusing on the syntac-
tic process, and explaining syntactic priming data that show
that subjects are more likely to choose one syntactic variant
over another if that variant was presented as a prime (“The
girl gave the dog a bone” vs. “The girl gave a bone to the
dog.”). The model begins with a simple semantic representa-
tion (Verb: <give>, Agent: <girl>, Theme: <bone>, Goal:
<dog>). Beginning with the verb, it chooses words and their
syntactic forms describing how those words can combine (the
verb has two forms, yielding the two variants above). Base-
level activation of the appropriate syntactic chunks held in
DM and spreading activation from the meaning as described
above determine which form of sentence is produced. Base-
level learning and associative learning (in ACT-UP only) lead
to a range of priming effects.

The ACT-R 6 model consists of 30 productions, 7 chunk
types, and a variable number of chunks that are created for
each word and for several syntactic forms. The ACT-R 6 pro-
duction rules resulted in 720 lines of code. Base-level activa-
tions and associations between words and syntactic forms are
initialized programmatically from a corpus of spoken, tran-
scribed and syntactically parsed English. The model was
evaluated according to its qualitative and quantitative predic-
tions of syntactic priming effects using a small number of
sample sentences. As in the empirical data, syntactic priming
depends on the frequency of syntactic constructions and the
distance between target sentence and prime.

Studies also show that syntactic priming is much increased
when lexical material in the sentence is repeated between
prime and target. The model postulated that this was due
to learning of associations between lexical or semantic and
syntactic chunks–a suggestion that was tested empirically in
terms of its theoretical predictions, but associative learning

202

was not available to the ACT-R 6 model. Consequently, the
sentence production model and various initialization and sim-
ulation functions were formulated in ACT-UP over the course
of about 3 eight-hour workdays. The core function encoding
procedural knowledge (sequences of retrievals, conditionals,
a loop) has 82 lines of code.2 The resulting model explained
the data including the lexical repetition effect.

In head-to-head comparison, the ACT-R 6 model runs at
a speed of 14 sentences per second. The ACT-UP variant
produces 380 sentences per second, despite being more spe-
cific than necessary to explain the data.3 This purely technical
speed-up translates to a substantial advantage for the modeler:
not only is the debugging and experimentation cycle consid-
erably faster, but larger models of more realistic tasks can
be run in larger multi-agent simulations, thereby significantly
extending the applicability of cognitive models.

(4): Extensibility and Rapid Prototyping: the
Dynamic Stocks&Flows Model

The fourth model is another case of rapid prototyping. It illus-
trates how we could quickly implement a well-documented
approach to graded decision-making. Instance-based learn-
ing (IBL, Gonzalez et al., 2003) stores episodes encoding
past decisions and their observed performance in declara-
tive memory. Retrieval then blends those episodes together,
weighing their recency and frequency in line with ACT-R’s
base-level learning and partial matching.

In an entry (Reitter, 2010) to the Dynamic Stocks&Flows
modeling challenge4, IBL was used in two ways. The task in
this challenge had subjects extrapolate the change in a given
quantity from previous observations. Change rates could be
steady (the quantity following a linear function) or harder to
predict, including non-linear changes or discontinuous and
noisy sequences. IBL modeled the participant’s estimates of
the change rate and the future value of the quantity. Care-
ful analysis of empirical data showed an interesting pattern:
variability often suddenly decreased after about 20 iterations
of the task; depending on subject and change function, vari-
ability could be grouped into very low and higher pools: sub-
jects were highly precise, or not precise at all. This led to
the second use of IBL: a metacognitive layer, which allowed
the model to monitor its performance at the task and choose
from one of several strategies. Some of these strategies led to
precise estimates of the quantity through mental arithmetic,
and other strategies used IBL, as described above, to make an
educated guess.

The model used declarative memory for its core trans-
action: declarative chunks store the quantity estimates and
the performance monitoring episodes. Blending of stored
episodes is implemented (and available) at the ACT-UP level.

2The relatively faithful translation means that we do not fully
follow Accountable Modeling: the model is overly specific.

3Both models keep a similar-size declarative memory, require
similar retrievals; ACT-UP adds associative learning. Both mod-
els were run in the same LISP environment, without debug output.
ACT-R 6 tracing and logging were off, decision tree building on.
Optimized learning for ACT-UP and ACT-R 6 at 3 chunks.

4 www.hss.cmu.edu/departments/sds/ddmlab/modeldsf/

One free parameter in the model specified the duration of cal-
culations and the wait time between iterations (an underspec-
ified model component); we fitted the parameter from avail-
able subject data. The results were plausible given the exper-
imental design. Other parameters were held at their ACT-R
defaults; blending parameters were optimized. The model
won the challenge by best predicting transfer performance
to a set of unknown conditions, indicating that accountable
modeling has the potential of increasing generalization of
models by focusing on the key processes underlying perfor-
mance. The same model was later run in an extensive param-
eter exploration exercise, in which selected architectural and
model parameters were systematically varied, with millions
of model runs on a computing cluster (Gluck et al., 2010).
The exploration included a manipulation that switched indi-
vidual strategies on and off.

The DSF model exemplifies Accountable Modeling
through the decision to not describe the visual and motor in-
teraction with the experiment. While a portion of the data
might have been explained by the subject’s use of the graph-
ical user interface, neither timing, eye-tracking or mouse
movement data were available for validation. Thus, the model
underspecifies motor and sensor components.

(5) Reusability: Lemonade Game Agent

The final test case illustrates the re-use of model components.
We used a cognitive model in ACT-UP to explore the perfor-
mance of metacognition in a multi-agent game competition5.
The DSF challenge model (Reitter et al., 2010) provided the
metacognitive layer choosing one of multiple strategies. The
model plays a location game (Lemonade Stand), where the
optimal choice of strategy depends on the strategies played
by the two opponents. We designed a metacognitive model
that chooses from a wide range of elementary prediction and
action strategies based on their track record. The metacogni-
tive model always outperforms all single-strategy models we
implemented in a round-robin tournament. The metacogni-
tive layer only had to be minimally adapted: the core func-
tions for learning and blending retrieval were identical; only
the task-specific objective functions were redefined. ACT-UP
suggests useful compartmentalization: its functions take a set
of arguments and return a value; they are intended to be side-
effect free apart, of course, from changes to the state of the
model. As a consequence, they are reusable in new contexts.

The Lemonade Game agent is not a classical cogni-
tive model, explaining existing empirical data. Instead, its
metacognitive layer generates predictions. Not all individ-
ual strategies are formulated fully within the theory; thus, we
demonstrate a way to combine cognitive and purely algorith-
mic models. Difficulties arose when the model was readied
for submission to a competition, which required Java: in such
cases, we got the best use of ACT-UP as a prototyping tool,
but had to re-implement the model once validated.

5tech.groups.yahoo.com/group/lemonadegame/

203

Discussion

Most importantly, we want to propose a modeling paradigm
that institutionalizes what is often already the case whenever
cognitive models depend on the combination of just a few,
specific properties of the architecture. A series of case stud-
ies provided the basis for our introduction to ACT-UP. We
demonstrated the use of ACT-UP in high-fidelity models with
up to 1000 parallel agents; we showed cases of rapid proto-
typing and of the re-use of model components. Quantitative
predictions of ACT-UP parallel those of ACT-R.

The models are intended to integrate within one architec-
ture. The emergence of more complex, perhaps unexpected
behavior then follows from the reuse and combination of
models that describe behavior in much more complex, per-
haps even realistic environments. ACT-UP models are in-
tended to be underspecified where data cannot account for
the specific claims encoded by the model. Such a modeling
paradigm appears not only sensible (as it is evidence-based):
it also supports scaling up modeling efforts and extending
them to new applications. Architectural flexibility is gained
through liberal combination of components, not unlike what
was proposed by Cassimatis (2002).

Are such models still models of cognitive processes, or are
they merely computer programs? First, the execution direc-
tives (Lisp clauses) specify the model at a higher level than
do production rules: both can be seen as computer programs.
Importantly, production rules can implement any algorithm,
and could, thus, be derived from the ACT-UP model. Thus,
ACT-UP models are not theoretically more powerful. Sec-
ond, temporary storage of variables and even complex data
structures enables the modeler to write implausible ACT-UP
models, just like large buffers provide a way to exceed what
is cognitively believable. Plausibility is not guaranteed unless
modeler discretion is entirely removed, which has not been
accomplished under any implementation of the theory. Third,
ACT-UP’s and ACT-R’s longer-term storage model (chiefly
declarative memory) is an example of strong constraints on
what a modeler can do in these formalisms, as opposed to a
non-cognitively motivated program.

Conclusion

We see the current state of ACT-UP as an experimental step
to scale up cognitive modeling and extend its areas of ap-
plicability. Much work remains to be done. Perceptual and
motor components are not yet completed, and parallelism as
in ACT-R as well as in its multitasking variant Salvucci et
al. (2009) is desirable. The combination of pattern recog-
nition algorithms with ACT-UP may provide for a plausible
implementation of the IF part of production rules, possibly
to automatically bootstrap and optimize models from sample
runs. Larger-scale, long-term simulations will show the lim-
its of the architecture. Still, the wide variety of test cases
presented demonstrates scalability w.r.t. modeling effort and
computations, and has taken a step towards the integration of
high-fidelity cognitive models in complex cognitive systems.

Acknowledgements
The authors acknowledge funding for this work from the Air Force
Office of Scientific Research (MURI 7 - FA95500810356).

References
Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.
Anderson, J. R. (2007). How can the human mind occur in the

physical universe? Oxford, UK: Oxford University Press.
Bothell, D. (2005). ACT-R 6.0 Reference Manual. Re-

trieved 12/2009, from act-r.psy.cmu.edu/actr6/
reference-manual.pdf

Cassimatis, N. L. (2002). Polyscheme: A cognitive architecture for
integrating multiple representation and inference schemes. Un-
published doctoral dissertation, Massachusetts Institute of Tech-
nology.

Gluck, K. A., Stanley, C. T., L. Richard Moore, J., Reitter, D., &
Halbrügge, M. (2010). Exploration for understanding in model
comparisons. Journal of Artificial General Intelligence (to ap-
pear).

Gonzalez, C., Lerch, F., & Lebiere, C. (2003). Instance-based learn-
ing in dynamic decision making. Cognitive Science, 27, 591-635.

Kirchner, W. K. (1958). Age differences in short-term retention of
rapidly changing information. Journal of Experimental Psychol-
ogy, 55(4), 352-358.

Laird, J. E., & Rosenbloom, P. S. (1987). Soar: An architecture for
general intelligence. Artificial Intelligence, 33(1), 1-64.

Newell, A. (1973). You can’t play 20 questions with nature and
win. In W. Chase (Ed.), Visual information processing. New
York, N.Y.: Academic Press.

Reitter, D. (2008). Context effects in language production: Models
of syntactic priming in dialogue corpora. Unpublished doctoral
dissertation, University of Edinburgh.

Reitter, D. (2010). Metacognition and multiple strategies in a cog-
nitive model of online control. Journal of Artificial General In-
telligence (to appear).

Reitter, D., Juvina, I., Stocco, A., & Lebiere, C. (2010). Resistance
is futile: Winning lemonade market share through metacogni-
tive reasoning in a three-agent cooperative game. In Proceedings
of the 19th Behavior Representation in Modeling & Simulation
(BRIMS). Charleston, SC.

Reitter, D., & Lebiere, C. (2009). Towards explaining the evolution
of domain languages with cognitive simulation. In Proceedings of
the 9th International Conference on Cognitive Modeling (ICCM).
Manchester, UK.

Salvucci, D. D., & Lee, F. J. (2003). Simple cognitive modeling in
a complex cognitive architecture. In Chi ’03: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems
(pp. 265–272). New York, NY, USA: ACM.

Salvucci, D. D., Taatgen, N. A., & Borst, J. P. (2009). Toward a uni-
fied theory of the multitasking continuum: from concurrent per-
formance to task switching, interruption, and resumption. In Chi
’09: Proceedings of the 27th International Conference on Human
Factors in computing systems (pp. 1819–1828). New York, NY,
USA: ACM.

Siegler, R. S., & Shrager, J. (1984). Strategy choices in addition and
subtraction: How do children know what to do? In C. Sophian
(Ed.), The origins of cognitive skills (p. 229-293). Hillsdale, NJ:
Erlbaum.

Stewart, T. C., & West, R. L. (2007). Deconstructing and recon-
structing ACT-R: Exploring the architectural space. Cognitive
Systems Research, 8(3), 227-236.

Wallach, D., & Lebiere, C. (2003). Conscious and unconscious
knowledge: Mapping to the symbolic and subsymbolic levels of
a hybrid architecture. In L. Jimenez (Ed.), Attention and implicit
learning. Amsterdam, Netherlands: John Benjamins.

204

 Combining Procedural and Declarative Knowledge in a Graphical Architecture

Paul S. Rosenbloom (Rosenbloom@USC.Edu)
Department of Computer Science and Institute for Creative Technologies, 13274 Fiji Way

Marina del Rey, CA 90292 USA

Abstract

A prototypical cognitive architecture defines a memory
architecture embodying forms of both procedural and
declarative memory, plus their interaction. Reengineering
such a dual architecture on a common foundation of graphical
models enables a better understanding of both the substantial
commonalities between procedural and declarative memory
and the subtle differences that endow each with its own
special character. It also opens the way towards blended
capabilities that go beyond existing architectural memories.

Keywords:

Cognitive architecture; memory; graphical models;
procedural; declarative; semantic; episodic; rules; constraints.

The distinction between procedural and declarative
knowledge plays a central role in many cognitive
architectures. ACT-R has long embodied distinct rule-based
procedural and fact-based declarative long-term memories
(Anderson, 1993). Early work with Soar instead leveraged a
single rule-based long-term memory to support both
procedural and declarative knowledge, with rules directly
encoding procedures while also providing access paths to
facts stored in their actions (Rosenbloom, Newell & Laird,
1991). Yet, Soar 9 has now followed ACT-R’s lead, and in
fact gone beyond it with distinct declarative memories for
semantic and episodic knowledge (Laird, 2008). CLARION
embodies the distinction in two different manners (Sun,
2006). It has a procedural Action Control System for
controlling action and a declarative Non-Action Control
System for general knowledge, but it also has a crosscutting
distinction between explicit and implicit knowledge that
applies to both of these modules and the whole architecture.

As part of an effort to investigate whether the potential of
graphical models (Koller & Friedman, 2009) to unify signal,
probability and symbol processing will enable development
of simpler yet broader architectures than are seen today
(Rosenbloom, 2009a), a new memory architecture with both
procedural and declarative memories – but as yet without
learning – has been implemented via a common graphical
substrate. Guided by the functionality embodied in ACT-
R’s and Soar 9’s long-term memories, the hopes for this
implementation were to (1) achieve a straightforward
mapping of these disparate memories onto the substrate,
resulting in (2) a simpler and more uniform memory
architecture, (3) embodying a blended functionality that can
(4) exceed existing memory capabilities. The goal was not
to model specific results from human memory research, but
to understand the implications of graphical implementation
and unification on such memory architectures.

Results to date have yielded a new blended memory
architecture that is of interest for both the commonality
among these memories that it leverages and the subtle
differences among them that it exposes. The differences get
at some of the most fundamental distinctions between
procedural and declarative knowledge while continuing to
drive research on their further unification. The next three
sections describe the implemented memory architecture
along with the commonalities it leverages; the differences
this architecture reveals between procedural and declarative
memory, as well as, as a bonus, those among different
flavors of declarative memory; and what has been yielded so
far in terms of blended functionality and new capability.
The final section summarizes and looks to the future.

Memory Architecture
ACT-R and Soar 9 each embodies a procedural memory for
rules plus a declarative (semantic) memory for facts. Soar 9
also goes a step further, implementing a second distinct
declarative (episodic) memory for past history. Although
ACT-R does not implement a separate episodic memory,
there is work on how its existing mechanisms can yield
comparable behavior (Sims & Gray, 2004). The focus here
is on uniformly implementing all three of these long-term
memory functionalities – one procedural and two
declarative – via a common graphical substrate.

The memory architecture is built on top of a graph layer
based on factor graphs and the summary product algorithm
(Kschischang, Frey & Loeliger, 2001). Factor graphs are
varieties of graphical models, like Bayesian networks, but
enabling efficient computation with arbitrary multivariate
functions by decomposing them into products of simpler
subfunctions when suitable forms of independence exist;
e.g., F(a,b,c) might decompose to F1(a,b)F2(b,c). The
reduced computation then maps to a bipartite graph in which
there are variable nodes for variables and factor nodes for
subfunctions (Figure 1). A variable node is linked to a factor
node when the former’s variable is used by the latter’s
function. The summary product algorithm passes messages
along these links until quiescence is reached, with each
message providing information about the possible values of
the variable on the link. Each node computes its output
messages by combining its incoming messages, plus its
function if it is a factor node. The result is an inherently
local computational model that can compute global results

Figure 1: Factor graph for F(a,b,c)=F1(a,b)F2(b,c).

205

across the cycles of message passing leading to quiescence,
and that leverages independence for efficiency. It bears a
relationship to neural networks, but combines additional
breadth in some areas with more constraint in others.

The summary product algorithm is most often used to
compute variable marginals, integrating information from
across the graph to determine which values are legal, and
what weights or probabilities are associated with them.
When computing marginals, the algorithm typically uses
sum for summarization, yielding the sum-product variant.
When it is preferable to compute the maximum a posteriori
(MAP) estimation – that is, the single most likely
combination of values over all of the variables – max is used
instead, yielding max-product. The graph layer here
defaults to marginals (and sum), but can also compute MAP
estimations and employ max when appropriate.

This graph layer is a reimplementation of the one
developed in (Rosenbloom, 2009a) for rule match, with
improvements in functionality, generality, and efficiency.
The biggest change generalizes the representation for factor
functions and messages from N dimensional Boolean arrays
to N dimensional continuous functions (approximated as
piecewise linear functions over rectilinear regions, as in
Figure 2). Instead of just supporting symbol processing,
this representation has the potential to support: continuous
information for perception, imagery, and motor control;
discrete distributions for uncertain information; and symbols
for general reasoning. Starting from the continuous base,
discrete distributions require discretizing variable domains;
for example, breaking up the real line into unit segments,
one per integer. Symbols then arise when the ranges of
discrete variables are restricted to 0/1. A symbol table has
also been added to map between unit segments and arbitrary
symbols, but it is only for ease of programming and has no
effect on the workings of the summary product algorithm.

y\x [0,10> [10,25> [25,50>

[0,5> 0 .2y 0

[5,15> .5x 1 .1+.2x+.4y

Figure 2: Example (2D) piecewise linear function.

To implement the memory architecture, a memory layer

was built on top of the graph layer that reifies a distinction
between long-term and working memory, as in both ACT-R
and Soar 9. Long-term memory structures compile into
subgraphs that both store and access the knowledge.
Working memory compiles into functions in peripheral
factor nodes that remain fixed within a single cycle of
memory access – i.e., within a single settling of the graph –
but can be altered between cycles.

Long-term memory structures are specified at the memory
layer as conditionals, generalized rules combining patterns

and a function. Each pattern has a predicate plus one or
more arguments specifiable as constants or variables; e.g.,
Object(s,O1) is a pattern with predicate Object plus
the variable s (for states) and the constant O1 (an object) as
arguments. A pattern compiles into a linear graph structure
that has a working-memory node at one end, a variable node
at the other (for legal values of the pattern’s variables), and
factors that test pattern constants in between. This fragment
corresponds to part of an alpha network in the Rete match
algorithm, with the variable node acting as an alpha memory
(Forgy, 1982). The big difference though is that in Rete
messages always flow from working memory to the alpha
memory. Here, messages can flow in either or both
directions. As in Rete, the flow is away from working
memory for conditions (Figure 3), but the flow is towards
working memory for actions. Condacts – a neologism for
conditions and actions – are patterns for which the flow is
bidirectional. A single conditional can have any
combination of conditions, actions and condacts.

Patterns are combined into conditionals by a network of
factor nodes that test equality of variable binding across
patterns, plus variable nodes that represent combinations of
variables across patterns. This portion of the factor graph
corresponds to Rete’s beta network, in which partial
instantiations are joined to yield full rule matches.
However, here the beta network connects conditions,
actions, and condacts though bidirectional message flow.

Functions, when included, are defined over condact
variables, and lead to new factor nodes that link with these
variables. Functions can represent probability distributions
over the cross products of the domains of condact variables,
as is typical in many graphical models, but they also can
represent other numeric and Boolean functions.

The conditional in Figure 4 uses a condition, a condact,
and a function to define a prior distribution over the concept
associated with object O1 in the current state. Object O1
can be a walker, a table, a dog or a person, each with its own
prior probability. The variable in square brackets (α1) is a
pattern variable. When multiple patterns, possibly across
multiple conditionals, share a pattern variable, they compile
to the same variable node within the graph. This enables
chaining and local bidirectional communication among

Figure 4: Concept prior over object O1.

CONDITIONAL ConditionPrior
 Condition: Object(s,O1)
 Condact: Concept(O1,c) [α1]
Walker Table Dog Human

.1 .3 .5 .1

Figure 3: Alpha network for condition Object(s,O1).

206

conditionals within a single cycle of memory access, for,
among other things, correct probabilistic reasoning. The
factor graph for this conditional can be seen in Figure 5.
Messages spread out from all nodes in this graph, following
the directionality of the arrows. The primary constraint on
this computation stems from local factor node functions, but
as messages propagate, these constraints propagate as well.

If a conditional just has conditions and actions, it is a rule,
and can form the basis for a traditional procedural long-term
memory. Figure 6 shows a conditional defining a simple
rule that performs a transitive computation. As with the
earlier graph
layer, match
time per rule
here has a
worst-case
bound that is
exponential in
the treewidth of
the rule rather than the number of conditions.

If a conditional only has condacts, we have symmetric
flow among all of its patterns, and the basis for a declarative
memory. Figure 7 shows a conditional (including part of
the function) for a distribution over the weight of object O1
given its concept. The Concept condact compiles to the
same graph node created for it in conditional
ConditionPrior (Figure 4). The function partitions the
weight (in pounds) into a finite number of classes and
assigns a linear function to each rectangular region defined
by the cross product of the weight class and the concept.

A rule-based procedural memory consists of condition-
action conditionals, such as the one in Figure 6. Given just
this rule, the graph contains 7 factor nodes and 9 variable
nodes. Match requires 47 messages to complete irrespective
of the number of matching elements, since each message
includes information about all matches. However, more
matches may mean more calculation per message, yielding 5
ms elapsed time for one match and 16 ms for two.

A semantic memory implemented along the lines of
Anderson’s (1990) analysis of categorization and feature
prediction includes conditionals for prior probabilities of
concepts – such as the one in Figure 4 (although possibly
without the condition) – and conditional probabilities of
object attributes given concepts, as in Figure 7. By linking
these conditionals through the concept’s pattern variable, an
object’s cued features can yield a posterior distribution over
its concept – based on conditional probabilities of cued

features plus the prior probability of the concept – and this
posterior concept distribution can then combine with the
conditional probabilities of uncued features to generate
probabilistic predictions of their values, all within a single
memory cycle. In the particular example used, in addition
to the continuous weight feature, there is one discrete
numeric feature (legs) plus three symbolic features (color,
alive, mobile). The graph comprises 47 factor nodes and 47
variable nodes. Given the cue that the color is silver,
quiescence is reached after 634 messages, requiring 100 ms.
It predicts that the concept is walker because almost all
walkers are silver while only a small fraction of dogs and
tables are. It also predicts that the cued object is mobile, not
alive, has four legs and weighs 10 pounds.

In Soar 9, episodic memory retrieves the most recent
episode that best matches the cue, effectively acting as a
temporal instance-based semantic memory. This can be
implemented much like semantic memory, but with
alterations for recency and for retrieving the single best
episode given a cue rather than predicting the most likely
features given the cue. For recency, a discrete temporal
variable replaces the concept variable, with a prior
distribution that tails off exponentially into the past (Figure
8). To retrieve the single best episode, each feature
conditional specifies the conditional probability of its values
over the past history, and shares the Time condact with the
temporal prior (Figure 9). The implemented example uses
the same features as the semantic memory, but stores an
object instance at each time step. The graph has 46 factor
nodes and 46 variable nodes. Given the cue that the concept
is human, it takes 433 messages, over 35 ms, to select the
more recent of the two humans seen (at time step 3).

The straightforward implementation of these three
varieties of long-term memory via the memory layer goes a
long way towards realizing the first hope stated up front. In

Figure 5: Factor graph for conditional in Figure 4, with a condition (Object), a condact (Concept), and a function.

Figure 6: Transitive rule.

CONDITIONAL Transitive
 Condition: Next(a,b)
 Next(b,c)
 Action: Next(a,c)

CONDITIONAL ConceptWeight
 Condact: Concept(O1,c)[α1]
 Weight(O1,w)[α2]

w\c Walker Table …
[1,10> .01w .001w …
[10,20> .2-.01w “ …
[20,50> 0 .025-

.00025w
…

[50,100> “ “ …

Figure 7: Conditional probability of weight given concept.

207

comparison to the earlier implementation of just a rule-
based procedural memory, there is additional complexity
here in extending rules to conditionals, and in moving from
symbolic to continuous values, but then very little more is
needed to implement these particular variants of procedural,
semantic and episodic memories. With respect to the
second hope’s appeal to simplicity and uniformity, there is
indeed much in common across the implementations of
these three memories: they all build on the distinction
between working memory and long-term memory; long-
term memory is uniformly represented as conditionals that
compile into factor graphs, while working memory is
encoded as evidence in peripheral factor nodes; and memory
access is cued by working memory through the application
of the summary product algorithm to the resulting graph.

One difference of note between this implementation and
Soar 9 arises from Soar’s ability to perform multiple cycles
of procedural (rule) access within a single decision cycle,
but only one cycle of declarative (semantic or episodic)
access. The memory architecture here is instead limited to
just one cycle of memory access per decision cycle for both
declarative and procedural knowledge. In (Rosenbloom,
2009b), early experiments with graphical models led to the
hypothesis that global computation in Soar should only
happen over a full decision cycle rather than once per rule
cycle, and that Soar was thus inconsistent in allowing global
access to working memory each rule cycle. The current
implementation abides by this constraint; however, using
pattern variables still allows chaining of rules within a
decision cycle, but now based on local communication
between actions of earlier rules and conditions of later ones.

Differences
The most obvious difference between the implementations
of procedural and declarative memory is the use of
conditions and actions in procedural memory versus

condacts in declarative memory. At the graph level this
reduces simply to the directionality of information flow in
the alpha networks, but it does yield a qualitative difference
at the memory level. With unidirectional information flow,
rules predefine what are to be the cues for retrieval
(conditions) and what is to be retrieved (actions). This is
particularly effective for procedures as it enables directional
if-then programming. In contrast, with bidirectional
information flow, both varieties of declarative memory
dynamically determine at access time what aspects of an
object are cues and therefore what aspects are to be
retrieved (i.e., those aspects not cued). This significantly
enhances the flexibility of access, but eliminates the
directionality that is exploited in procedural programming.

A more subtle difference is whether a closed world or
open world assumption occurs with respect to working
memory. Rule-based systems use the former, assuming that
anything not in working memory is false. The use of
negated conditions depends on this assumption, as does the
ability to keep working memory small and focused. On the
other hand, declarative memories – and most logical and
probabilistic models – use an open world assumption, that
the truth of anything not explicitly in evidence is unknown.
This enables values that are unknown prior to memory
access to be retrieved/predicted by condacts during such
access. With a closed-world assumption, this becomes
impossible because any values not explicitly true prior to
access would be set to false, leading to a conflict with any
attempt to make a positive predication during access. Rules
avoid this problem because their retrievals/predictions occur
non-monotonically at the end of the access cycle, by actions
that don’t examine working memory during the cycle.

This difference is realized in the graph layer by declaring
individual predicates to be closed or open world when they
are defined; an idea adopted, along with the use of
predicates, from earlier experiments with Markov logic
(Domingos & Lowd, 2009) as a general implementation
level for architectures (Rosenbloom, 2009b). Closed-world
predicates are primarily used in conditions and actions and
open-world predicates in condacts.

A third difference concerns whether memory access
retrieves all cued results or only the best result. In Soar 9’s
rule-based procedural memory, all combinations of bindings
of condition variables to working memory constants yield
rule instantiations that fire in parallel. In contrast, cuing of
either semantic or episodic memory should return only the
best result. At the graph layer, this difference is interpreted
in terms of distinct types of variable domains. When only
the best result is desired, the variable’s domain is declared
unique, and messages about it are normalized to sum to 1.
This yields a distribution over the variable’s domain
elements for the probabilities that they are to be retrieved.
When all results are to be returned, the variable domain is
declared to be multiple, and its messages are not normalized.
In such cases, each domain element acts roughly as its own
Boolean variable, with a value of 1 if it is to be retrieved
and 0 otherwise; thus encoding all bindings of the variable

CONDITIONAL TimePrior
 Condact: Time(t) [α3]

0 1 2 3 4
0 .032 .087 .237 .644

Figure 8: Exponentially decaying, discrete, temporal prior.

CONDITIONAL TimeConcept
 Condact: Time(t) [α3]
 Concept(O1,c)

t\c Walker Table Dog Human
1 1 0 0 0
2 0 0 0 1
3 0 0 0 1
4 0 0 1 0

Figure 9: Conditional probability of concept given time.

208

in each message. The summary product implementation
then uses max to summarize over multiple variables, even
when marginalizing, bounding the result above by 1.

These three differences – (1) the directionality of
information flow in alpha networks, (2) a closed-world
versus open-world assumption, and (3) unique versus
multiple variables – jointly distinguish procedural from
declarative memories in this implementation. Of these, the
first appears to be the most fundamental, to the point where
it justifies an explicit hypothesis that such a difference will
always be found in comparing procedural and declarative
memories. The other two are less clear. It may be possible,
for example, to build an effective procedural memory based
on an open-world assumption. If so, the second difference
would not then be essential. Likewise, if an effective
procedural memory can be based on returning only the best
result – more like how rules work in ACT-R than in Soar 9
– the third difference may not be essential.

In addition to the differences just identified between
procedural and declarative memory, three differences of
note also showed up between the two implemented flavors
of declarative memory: semantic and episodic. First,
semantic memory searches for the most likely value for each
attribute of an object individually – by marginalizing via
sum-product – while episodic memory instead computes
MAP estimation via max-product to retrieve the most
appropriate single episode (where all of an episode’s
attributes jointly contribute to determining its
appropriateness). Second, the probabilities of features in
semantic memory are conditional on the concept while in
episodic memory they are conditional on the time. Third,
semantic memory is based on a general probabilistic
representation of the values of attributes (see Figure 7),
while episodic memory is based on the history of specific
instances actually experienced (see Figure 9).

As with the differences between procedural and
declarative memory, the first difference here appears to be
fundamental, at least given this form of semantic memory.
The other two differences appear less fundamental. It is
possible, for example, to implement an instance-based
semantic memory where the concept is just another feature.
Sum-product can then dynamically compute more general
feature distributions by summarizing over these instances.
Interestingly, when max-product is used instead, the
individual object that best matches the cues is retrieved,
yielding something more like the semantic memory
implemented in Soar 9. One intriguing implication is that
the causative difference between generalization and
analogy/CBR/nearest-neighbor may reduce to whether sum-
product or max-product is used over an instance-based
memory. The former generalizes over all instances, while
the latter retrieves the single best instance.

Blended Functionality and New Capabilities
Beyond the three memories implemented above, the
flexibility of the conditional representation enables blending
of functionality across these memories (hope three) plus

new capabilities beyond them (hope four). Blending arises
from the flexibility with which conditions, actions, condacts
and functions can combine within individual conditionals,
plus the flexibility with which multiple conditionals can
interact within long-term memory.

Conditionals by themselves enable combining procedural
and declarative functionality within individual memory
units. Semantic memory provides a good example. In
addition to condacts and a function, each conditional can
also include a condition that matches multiple objects in
working memory. The prior is then represented by a
conditional similar to the one in Figure 4, but with the
constant O1 replaced by a variable. The individual feature
conditionals then resemble Figure 7, but with the condition
added and the variable substituted (Figure 10). Like Soar 9,
there is still a limit of one cycle of semantic memory
retrieval per cycle of memory access – if quiescence of
message passing in summary product is mapped onto
quiescence of rule firing in Soar 9 – but unlike Soar 9,
features of many objects can be predicted in parallel within
this single cycle of memory access.

Other forms of within-conditional blends are also
possible, such as combining conditions, actions and
functions to yield weighted rules. Beyond this, to blend
functionality across conditionals requires communication
across conditionals that nominally belong to different
memories, either via pattern variables within a single cycle
of memory access or through working memory across
cycles. The rule in Figure 11, for example, uses pattern
variables to access the results of Figure 7’s semantic
retrieval, and generates a new ConceptWeight predicate.
This also exploits within-conditional blending, but here in
service of across-memory interaction.

Further work will be required to fully understand the
range of capabilities this memory architecture might yield,
and what the implications might then be for cognitive
modeling. But at least one major new memory capability –
for constraints – has already become apparent. Constraints
are structures that specify restrictions on values assigned to
variables (Dechter, 2003). Given a set of variables with

CONDITIONAL ConceptWeightRule
 Condition: Object(s,o)[α4]
 Condact: Concept(o,c)[α5]
 Weight(o,w)[α6]
 Action: ConceptWeight(c,w)

Figure 11: Accessing semantic memory results in a rule.

CONDITIONAL ConceptWeightGeneral
 Condition: Object(s,o)[α4]
 Condact: Concept(o,c)[α5]
 Weight(o,w)[α6]

Figure 10: Conditional distribution for semantic memory
with condition to match objects (shown without function).

209

well-defined domains, and a set of constraints over these
variables, constraint satisfaction determines which
combinations of domain values are consistent with the
constraints. Constraints are like rules in yielding all
combinations of variable bindings, but like declarative
memory in their flexibility of access, and thus in their use of
condacts and an open world assumption. Figure 12 shows a
constraint for the two-color problem, implemented via
condacts and a Boolean function. The pattern variables for
the two regions are shared with other constraints over those
regions to enable appropriate propagation over the whole
network during message passing. Although not a common
form of long-term memory in cognitive architectures, except
in neural systems based on “soft” constraints (Ackley,
Sejnowski & Hinton, 1985), constraints do play a significant
role in a variety of AI systems and languages.

Summary
Basing a memory architecture on the uniform breadth of
graphical models has enabled straightforward construction
of four distinct memories: a rule-based procedural memory,
semantic and episodic declarative memories, and a
constraint memory that is functionally a hybrid between the
two. These implementations reveal significant commonality
among these memories, but also subtle differences. Of the
differences, unidirectional versus bidirectional message
passing appears to be most fundamental when comparing
procedural and declarative memories, while marginalization
versus MAP estimation appears to be most fundamental
when comparing semantic and episodic memory.

Implementing memories in this manner also enables
blending capabilities across memories and creating new
unanticipated kinds of memories, such as a constraint
memory. This general approach holds the promise of
extending beyond memory architecture to full cognitive
architectures with mechanisms for decisions, learning, and
perceptuomotor behavior. The hopes for this larger effort
would be to derive a better understanding of: the diverse
mechanisms involved, including their commonalities and
differences; how they can and should work together; and
how to go beyond the kinds of combinations currently seen
to simpler yet more comprehensive cognitive architectures.

Acknowledgements
This effort has been sponsored by the USC Institute for
Creative Technologies and the U.S. Army Research,

Development, and Engineering Command (RDECOM).
Statements and opinions expressed do not necessarily reflect
the position or the policy of the United States Government,
and no official endorsement should be inferred. I would like
to thank Bill Swartout for help in restructuring this work for
publication.

References
Ackley, D. H., Hinton, G. E. & Sejnowski, T. J. (1985). A

learning algorithm for Boltzmann machines. Cognitive
Science, 9, 147-169.

Anderson, J. R. (1990). The Adaptive Character of
Thought. Hillsdale, NJ: Erlbaum.

Anderson, J. R. (1993). Rules of the Mind. Erlbaum.
Dechter, R. 2003. Constraint Processing. San Francisco,

CA: Morgan Kaufmann.
Domingos, P. & Lowd, D. (2009). Markov Logic: An

Interface Layer for Artificial Intelligence. Morgan &
Claypool.

Forgy, C. L. (1982). Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem. Artificial
Intelligence, 19, 17-37.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical
Models: Principles and Techniques. Cambridge, MA:
MIT Press.

Kschischang, F. R., Frey, B. J. & Loeliger, H. (2001).
Factor graphs and the sum-product algorithm. IEEE
Transactions on Information Theory, 47, 498-519.

Laird, J. E. (2008). Extending the Soar cognitive
architecture. Artificial General Intelligence 2008:
Proceedings of the First AGI Conference. IOS Press.

Rosenbloom, P. S. (2009a). Towards a new cognitive
hourglass: Uniform implementation of cognitive
architecture via factor graphs. Proceedings of the 9th
International Conference on Cognitive Modeling.

Rosenbloom, P. S. (2009b). A graphical rethinking of the
cognitive inner loop. Proceedings of The IJCAI
International Workshop on Graph Structures for
Knowledge Representation and Reasoning.

Rosenbloom, P. S., Newell, A. & Laird, J. E. (1991).
Towards the knowledge level in Soar: The role of the
architecture in the use of knowledge. In K. VanLehn
(Ed.), Architectures for Intelligence. Hillsdale, NJ:
Erlbaum.

Sims, C. R. & Gray, W. D. (2004). Episodic versus
semantic memory: An exploration of models of memory
decay in the serial attention paradigm. Proceedings of the
6th International Conference on Cognitive Modeling (pp.
279-284).

Sun, R. (2006). The CLARION cognitive architecture:
Extending cognitive modeling to social simulation. In R.
Sun (Ed.), Cognition and Multi-Agent Interaction. New
York, NY: Cambridge University Press.

CONDITIONAL TwoColorConstraint12
 Condact: Color(R1,c1)[α7]
 Color(R2,c2)[α8]

c1\c2 Red Blue
Red 0 1
Blue 1 0

Figure 12: Two-color constraint between regions R1 & R2.

210

Modeling a Three Term Fan Effect

Matthew F. Rutledge-Taylor (mrtaylo2@connect.carleton.ca)
Institute of Cognitive Science, Carleton University, 1125 Colonel By Drive

Ottawa, Ontario, K1S 5B6, Canada

Aryn A. Pyke (apyke@ccs.carleton.ca)
Department of Psychology, Carleton University, 1125 Colonel By Drive

Ottawa, Ontario, K1S 5B6, Canada

Robert L. West (robert_west@carleton.ca)
Institute of Cognitive Science, Department of Psychology, Carleton University, 1125 Colonel By Drive

Ottawa, Ontario, K1S 5B6, Canada

Hana Lang (hlang@connect.carleton.ca)
Institute of Cognitive Science, Carleton University, 1125 Colonel By Drive

Ottawa, Ontario, K1S 5B6, Canada

Abstract

A fan effect experiment where participants perform recall and

recognition tasks on a study set of sentences with three

content words was conducted. The aggregate results confirm

a fan effect (Anderson, 1974). A model of the recall and

recognition tasks was created using Dynamically Structured

Holographic memory (DSHM). A comparison to the human

data is presented. A discussion of the current resonance based

mechanisms in DSHM for generating recognition accuracy

and reaction time data is presented. This is contrasted with a

previously employed retrieval based mechanism.

Keywords: cognitive modeling; the fan effect; holographic

reduced representation.

Introduction

The purpose of this paper is to report the results of a fan

effect style experiment and to demonstrate that these results

can be captured by Dynamically Structured Holographic

memory (DSHM). The experiment conducted was similar

to the classic fan effect paradigm (Anderson, 1974).

In Anderson‟s original experiment, participants studied a

set of sentences that contained two content words: a person

and a place (e.g., “the hippie is in the park”). Each content

word appeared in one, two, or three different sentences. The

number of sentences in which a word appears is the fan of

that word. Each sentence is assigned a fan, which is the

sum of the fans of the content words in the sentence. For

example, if „hippie‟ appeared in three sentences while „park‟

appeared in one sentence, „hippie‟ would have a fan of

three, „park‟ would have a fan of one, and the sentence „the

hippie is in the park‟ would have a fan of four. The results

of a recognition task performed on the sentences (and an

equal number of foils) demonstrated that the time required

to affirm or reject a sentence as a member of the study set

was correlated with the fan of the sentence.

The present work extends prior research on the fan effect,

and models thereof. We explore the generality of the fan

effect by examining memory performance for sentences

with three content terms rather than just two (e.g.,

Anderson, 1974). Additionally, our sentences had a wider

range of fans than have typically been studied (or modeled).

The Three Term Fan Experiment

Method

Twenty seven participants (12 males and 15 females: mean

age 20.0 years, SD = 2.2) were recruited from introductory

psychology courses a Carleton University to take part in the

experiment. Participants received course credit for their

time. Participants took part in the experiment one at a time.

The experiment was divided into three main phases: A study

phase, a recall phase and a recognition phase.

In the study phase each participant was assigned one of

three unique sets of study sentences and was instructed to

memorize the sentences in the list. Once the participant

indicated that he or she was prepared to proceed, the recall

portion of the experiment began.

The study set consisted of sixteen sentences of the form,

“The color thing is in the place”. The color term was one of

ten colors; the thing was one of ten house-hold items; and

the place was one of ten locations in/around a typical home.

Very typical item/locations combinations, such as

„comb‟/„bathroom‟, were omitted when generating the study

set sentences. Eight terms from each category appeared in

one study sentence each, while two terms from each

category appeared in four sentences each. No two terms

appeared together in more than one sentence. For example,

if “The orange comb is in the garage” was a member of the

study set, no other sentence in the study set described an

orange comb, a different colored comb in the garage, or any

other orange object in the garage. However, these

combinations could occur in foil sentences.

The fan of a sentence is the sum of the fans of the terms

in the sentence. Thus, the four possible sentence fans were:

211

3, 6 9, and 12. The fan effect predicts that judgments for

sentences with higher fans should take longer (i.e., have

higher reaction times) than for sentences with lower fans.

Additionally, the truth of sentences with a higher fan should

be recognized with less accuracy than sentences with a

lower fan.

Recall Task Method

Each participant engaged in three iterations of the recall

task. Each iteration began with the participant trading the

study sentences list with the experimenter for a new list of

sentences identical to the study set, but with one term from

each sentence replaced with a blank, and the order of the

sentences randomized. The participant‟s task was to

correctly fill-in each of the blanks with the missing word.

The participant was given as much time as he or she needed

to do so. The experimenter then recorded the number of

correct responses and for each error, provided the correct

missing word to the participant. The participant was then

given the opportunity to review the study set again. The

three iterations were balanced such that each term from each

sentence in the study set was replaced with a blank exactly

once. After the third iteration the recognition phase began.

Recognition Task Method

The recognition task was conducted on a computer using the

Experiment Builder software package from SR Research.

Sentences were presented one at a time, centered on a 17”

CRT monitor (in black font on a white background).

Participants judged whether each presented sentence was a

member of the study set, or not. To respond, participants hit

either the z-key or the /-key, respectively. Accuracy and

reaction time were recorded for each trial. After each trial,

the screen blanked for 1 second, and then the word

“READY” appeared for 1 second to prepare the participant

for the next trial.

The participant was presented with 96 test sentences,

which consisted of three exposures to each of the study set

sentences, and 48 foil sentences which were not from the

study set. Participants were told that they should consider

sentences from the study set to be true, while all others

should be considered false. Each false sentence was

generated by replacing one of the three terms from a true

sentence with another term from the same category (e.g.,

color, thing, or place) and with the same fan. For example,

for a true sentence like “The blue hat is in the garage”, one

false counterpart might be “The green hat is in the garage”.

Each true sentence was used to generate three different false

sentences. Thus, for each exposure of a true sentence there

was a corresponding false test sentence with the identical

fan.

Results

The data from one participant was excluded from the

analysis below. This participant‟s recognition reaction time

was significantly longer than all the other participants by a

large margin (P < .001). The results below reflect the data

collected from the remaining 26 participants.

Human Recall Performance

Performance in the recall task improved, on average, with

each of three iterations. Table 1 presents the mean number

of correct responses (out of 16), the standard deviation, and

the accuracy measured as a percentage for each of the three

iterations of the recall phase.

Table 1: Recall accuracy

 Iteration

 1 2 3

Correct (/16) 10.9 13.4 14.6

SD 3.7 3.1 1.8

Percentage 68.1 83.8 91.4

This result is important because an intended purpose of the

recall task was to confirm that the participants had

memorized the study set before entering the recognition

phase. By the end of the third iteration the participants were

correctly completing the sentences 91.4 percent of the time.

Human Recognition Performance

Overall, participants‟ accuracy and reaction time results

were consistent with the fan effect. For both true and false

sentences, accuracy was negatively correlated with sentence

fan. Also, accuracy was poorer for false sentences than for

true sentences for all sentence fans (ps < .05).

Table 2: Recognition accuracy (%)

 Accuracy

Sentence

fan True False

3 97.5 95.5

6 95.1 91.7

9 92.1 86.3

12 82.7 77.6

Reaction time increased with sentence fan (p < .001) for

both true and false sentences, and true sentences were

judged more quickly than false ones (p = .001).

Table 3: Recognition reaction time (ms/char)

 True False

Sentence

fan

Reaction

time SD

Reaction

time SD

3 59.0 18.5 64.1 19.9

6 63.6 20.0 69.3 22.6

9 74.2 21.8 86.2 31.1

12 91.3 31.5 102.5 43.6

212

Table 3 shows the reaction times (ms/char) for both true

correct (i.e., the test sentence was true and was judged

correctly) and false correct sentences of each fan.

Figure 1: Recognition reaction time by sentence fan

(ms/char) with confidence intervals

Figure 1 shows the mean reaction times, measured in

ms/character, for both true correct and false correct

sentences, for each sentence fan with confidence intervals.

There was no interaction of truth and fan (p = .199). Table

4 presents the pairwise comparisons across fan using the

Bonferonni adjustment.

Table 4: Pairwise comparisons for correct reaction times

Sentence fans P (one-tail)

3 versus 6 0.129

6 versus 9 < 0.001

9 versus 12 < 0.001

In Summary

The results of the experiment confirm the fan effect as a

robust phenomenon that generalizes from sentences with

two content terms (Anderson, 1974) to sentences with three

content terms (present research). Future work will examine

whether statistically significant differences can be found in

the relative contributions of the terms to the fan effect (e.g.,

does the color term contribute differently than the thing or

place terms).

DSHM

The memory modeling system used to model the described

experiment was Dynamically Structured Holographic

Memory (DSHM) (Rutledge-Taylor & West, 2008). DSHM

is based on the BEAGLE model of the lexicon (Jones &

Mewhort, 2007). The details of the DSHM architecture and

the similarities between BEAGLE and DSHM can be found

elsewhere (Rutledge-Taylor & West, 2007).

For an account of the use of DSHM to model the classic

fan effect, and a comparison to ACT-R (Anderson &

Lebiere, 1998), see Rutledge-Taylor and West (2008). For

those unfamiliar with DSHM, a brief introduction follows.

DSHM makes use of holographic reduced representations

(HRR) to encode knowledge in memory. See Plate (1995)

for a discussion of the sort of HRRs used by DSHM (and

BEAGLE). A DSHM system is composed of a collection of

items that are represented internally as two vectors of

numbers: i) the environmental vector is static and uniquely

identifies the item in the system; ii) the memory vector is

dynamic and encodes all of the associations an item

develops with other items. The lengths of these vectors are

fixed for an instance of DSHM, but can be initially set to

any positive integer which is a power of 2.

DSHM takes collections of items as input (called complex

items; collections of items are items themselves). The

structure of a complex item can be expressed using left and

right brackets. For example the sentence “The red hat is in

the garage” can be expressed [red:hat:garage]. The system

can also allow items to have a hierarchical structure. Here,

the context tags used to classify an item as background

knowledge (false) versus experimental knowledge (true)

applies to the sentence as a whole, and so is up a level in the

hierarchy, expressed: [true [red:hat:garage]]. Items can bear

ordered (delimited by colons) or unordered (delimited by

spaces) relationships with one another.

Information is extracted from DSHM by presenting it

with incomplete complex items. For example, a query for

the color of an item might be expressed [true

[?x:hat:garage]. Any missing items are called query items

and in DSHSM syntax are always preceded with a question

mark, (e.g., “?x”). A query item is like a variable that

DSHM is tasked with resolving. DSHM makes use of

information stored in the memory vectors of the provided

items to generate a rank ordered list of candidate items for

replacing the query item. Each candidate completion is

accompanied by a numerical value ranging from 0.0 to 1.0

that indicates the strength of the completion. This strength

is referred to as the confidence (i.e., how confident DSHM

is in the completion being correct, or appropriate). It can

also be thought of a context relative activation value, to use

an ACT-R term.

A DSHM model is constructed by making choices about

how information is represented in complex items, what

vector size should be used, what training regime is used, and

what sorts of queries are presented to the system.

 The Model

Twenty-seven simulated participants were run (to

correspond to the 27 human participants). It was found that

a range of vector lengths allowed the simulated participants

to produce reasonable recognition accuracy and reaction

time results. However, fitting the recall data was more of a

challenge. Uniformly using a vector length of 64 produced

significantly poorer performance than the average for the

human participants, while a vector length of 128 produced

significantly better results. No value in between is possible

(vector length must be powers of 2). In order to produce

good average scores, nine of the simulated participants were

given memory systems that made use of vector lengths of

64, while the other 18 used vector lengths of 128.

213

Study Phase

Prior to learning the study set, each simulated participant

read 1026 background knowledge sentences, each encoded

as a flat ordered list of three content terms associated with a

tag „false‟; “[false [color:thing:place]]”. The false sentences

included either one or two of the content terms appearing in

the study set. The remaining one or two terms were

nonsense terms that did not occur in the study set sentences.

The background knowledge was needed in order to give the

simulated participants some basis for making errors.

Without background knowledge there is nothing for DSHM

to confuse the study set sentences with; DSHM does not

make use of explicitly added noise.

The simulated participants read each sentence in the study

set once or twice (to account for the differences in how well

the human participants prepared themselves for the first

task) prior to beginning the recall phase. Sentences from the

study set were associated with a context tag representing

„true‟; “[true [color:thing:place]]”.

Recall Performance of the Model

Like the human participants, the simulated participants

produced responses to fill-in the blank questions in the

recall phase. For example, “The _____ hat is in the garage”

was submitted to the DSHM participant as “[true

[?x:hat:garage]]”. The system outputs a list of candidate

responses, in rank order. The one with the highest rank was

considered to be the simulated participant‟s response. If the

system‟s response item matched the correct missing term,

the trial was scored as correct.

After each iteration the DSHM participant read each of

the study set sentences once for every three incorrect

responses on the previous iteration. The majority of human

participants took the opportunity to review the study set,

even after scoring perfectly on the previous iteration. Thus,

the DSHM participants re-read the study set a minimum of

once between trials.

Table 5: Model recall accuracy

 Iteration

 1 2 3

Correct 11.1 14.1 14.1

SD 3.2 2.1 1.9

Percentage 69.4 88.2 88.2

Table 5 presents the recall accuracy for the simulated

participants. Although, the accuracy plateaus after the 2
nd

iteration, there is an overall good match for accuracy and

standard deviation, as demonstrated in figure 2 (only the

standard deviations for the human data are shown).

Recognition Performance of the Model

The simulated participants were each tested on the same 96

test sentences as the human participants. In order to

produce a truth judgment the simulated participant was

presented with a query of the form “[?x

[color:thing:place]]”. If the system produced „true‟ as its

highest ranked completion candidate, the simulated

participant was considered to have judged the sentence to be

true, otherwise, the simulated participant was considered to

have judged the sentence to be false.

Figure 2: Recall accuracy (out of 16)

To determine the reaction time for the response, the

model evaluated the degree to which the test sentence as a

whole (without a context tag) (“[color:thing:place]”),

resonated within the system. The sentence‟s resonance is

produced by a built-in DSHM method, which essentially

determines how closely associated the terms in the sentence

are to one another. Here, the resonance value is interpreted

as indicating how familiar the sentence seems to the

simulated participant. Thus, if the sentence is judged to be

true, a high resonance should make this decision easier. If it

is lower, it should make the decision harder. The opposite

is the case for judgments of false. It should be difficult to

reject a sentence that seems familiar, and vice-versa.

The formula used for translating resonance to reaction

time was RT = 32 / R, where R is the value provided by the

memory system of the simulated participant, and RT is

reaction time measured in ms per character. For true

sentences R is the resonance value for the sentence. For

false sentences, R is the resonance value for the sentence

subtracted from an upper limit on resonance values. This

upper limit was estimated to be the maximum resonance

value calculated for any of the true sentences (0.64). Table

6 presents the reaction time data for the model.

Table 6: Model reaction time (ms/char)

 Reaction Time

Sentence

fan True False

3 61.1 67.4

6 69.0 69.5

9 79.6 77.1

12 87.8 94.5

Figure 3 presents a comparison of the human and model

214

data for correct trials. The solid lines correspond to the

human data; the dashed lines correspond to the model data;

the light lines correspond to the true data; and the dark lines

correspond to the false data.

Figure 3: Recognition reaction time

In terms of judgment accuracy, the model outperformed

the human participants. The simulated participants had a

judgment accuracy of 100% for true sentences and 98.5%

for false sentences. It is possible that this discrepancy may

be due to the relatively small body of „interfering‟

background knowledge in the simulated participants relative

to real human participants.

In Summary

In general the model results provide a good match to the

human data, in that 1) the false sentences take longer, on

average, to affirm or deny than do true sentences (77.1

ms/char versus 74.4 ms/char); 2) a fan effect is observed for

both true sentences and false sentences; 3) the model

provided a good fit to recall performance as well as

recognition performance; and 4) the formula used to convert

raw model output to reaction time values is simple and

provides a good fit to the recognition times using a single

scaling parameter.

On-Going Work: Effect Of How Fan Is

Distributed?

Part of the motivation for this experiment and model

construction was to investigate whether each content word

in a sentence contributes equally to the difficulty in

recognizing a sentence as true (i.e., a member of study set).

It was hypothesized that the color term may make a smaller

contribution to the fan effect than the thing or the place.

This is because the color terms are adjectives and more

ubiquitous than the things or places, which are nouns.

However, whether the thing or the place should carry more

weight was not predicted given conflicting intuitions about

why one or the other should be more influential. For

example, the thing term might be the most influential

because an object‟s type (e.g., hat) is a more intrinsic

property than its location (or color). Alternately, place

might be more influential: Grammatically, the color and

thing share a common noun phrase, while the place does not

share its prepositional phrase with any other content word.

The human data were not clear cut with regard to the

influence how fan was distributed among content terms. By

fan distribution, we are referring to the possible pattern of

the fans of the words making up sentences with a particular

fan. There are three different ways to make fan 6 sentences

(color term fan = 1, thing = 1, place = 4; 1,4,1; 4,1,1), and

three ways fan 9 sentences (1,4,4; 4,1,4; 4,4,1), while there

is only one way to make fan 3 sentences (1,1,1) and one

way to make fan 12 sentences (4,4,4).

No significant effects of fan distribution were found

among fan 6 sentences. But, among sentences with a fan of

9, an ANOVA with revealed that fan distribution did have

an impact on RT (p =.002). Specifically, RT was faster

when either the thing or place was unique (i.e., fan 1) and

slower when the color was unique. Put another way, when

trying to judge whether a sentence is true (e.g., “The red hat

is in the garage”), knowledge of other objects with the same

color (red ball) adds less difficulty than knowledge of other

items of the same type (hat) or other items in the same place

(garage). Further, RTs tended to be faster when the thing

type was unique rather than the location, though this trend

did not reach significance.

Note: a simple variation in the representation of sentences

in DSHM would be able to account for this effect because

DSHM is capable of representing facts that have

hierarchical structure. In fact, DSHM already leverages this

capability in the current model. In the representation “[true

[color:thing:place]]”, the three term sentence as a whole

aggregate is the hierarchical sibling of the context tag

(„true‟). In order to represent sentences where the thing term

is dominant, the color and place need only be embedded in a

list of peripheral properties as in the following

representation: “[true [thing:[color:place]]”.

Exploratory simulations confirm that using this type of

representation predicts differences in reaction times among

fan 9 sentences, where the thing fan dominates the fans of

the other two terms. Similarly, for sentences with an overall

fan of six and a thing fan of four are significantly slower

than fan 6 sentences with a color fan of four, or a place fan

of four. Additional human testing is required to gather more

information about the effects of fan distribution. But it is

noteworthy that such hierarchical effects could be naturally

afforded by structural aspects of a DSHM architecture. This

line of research is on-going.

Appendix

Relationship To the Two Term Model

Rutledge-Taylor and West (2008) presented a model of the

fan effect, as described in Anderson (1974). This model

provided a good match to the human data, but used a

different mechanism for calculating recognition accuracy

and reaction time values, than the one presented here. This

mechanism, which we will refer to as the „retrieval‟

215

mechanism operates as described below.

Whether DSHM recognizes a sentence, or not, according

to the retrieval mechanism is based on how strongly the

words in the sentence are associated with one another.

Specifically, if at least one of the words in the sentence

(referred to as a target word) can be recovered using the

other words in the sentence as cues, the sentence as a whole

is recognized (as true), otherwise, it is not.

If the sentence is recognized, the reaction time is based on

strengths (e.g., confidence values) of the recovered target

words, which are high on average, resulting in low reaction

times. If the sentence is not recognized, the reaction time is

based on strengths of the words that were retrieved (but did

not match the target words). On average the strengths of

these retrieved words are lower, resulting in higher reaction

times. Additionally, the fans of the words in the sentences

affect the strengths of the retrieved words and it these

strengths that are the basis for the fan effect in the DSHM

model.

Using The Retrieval Mechanism In The Three

Term Model

The retrieval mechanism for generating recognition and

accuracy results for the DSHM model was initially tested on

the current stimuli and without using background

knowledge sentences, which are not necessary for this

mechanism. The retrieval mechanism produced a 100%

accuracy rate for identifying true sentences, but only a 36%

accuracy rate for rejecting false sentences.

The retrieval mechanism produced a very good fit to the

human true correct reaction times, including the

characteristic exponential curve observed in the human data

(for both trues and falses). However, the model results for

false correct (i.e., correct rejections) reaction times were

drastically different from that of the human data. See figure

4.

Figure 4: Reaction times (ms/char) using the retrieval

mechanism

The explanation for the model‟s false correct data has to do

with the number of true near neighbors the false sentences

have. Here, „near neighbors‟ are defined as two sentences

that differ only by a single word. The number of near true

neighbors a false sentence has is correlated with its fan.

This is the result of the counter-balancing of true and false

sentences. The existence of near neighbors makes little

difference in the recognition results for false fan 3, 6 and 9

sentences. However, for fan 12 sentences there are true near

neighbors that are retrieved (for each target word) with very

high strengths. This results in low reaction times for false

sentences with a fan of 12. For example, when presented

with the false sentence “the black mug is in the garage”, the

true sentence “the grey much is in the garage” is retrieved

with a high confidence value, when internally testing to see

if “[?x:mug:garage]” retrieves „black‟ as a candidate

completion of the query term „?x‟.

Due to the failure of the retrieval mechanism to provide a

satisfactory account of the reaction times for correct

rejections, the new mechanism described above was

developed. It is the authors‟ belief that the retrieval

mechanism ought to work for most DSHM models under

most circumstances. However, in cases such as the one

presented here, the new mechanism can be applied in order

to generate recognition reaction times for correct rejections

that are resistant to the effects of true near neighbors.

References

Anderson, J. R. (1974). Retrieval of propositional
information from long-term memory. Cognitive
Psychology, 6, 451-474.

Anderson, J. R., & Lebiere, C. (1998). The Atomic
Components of Thought. Mahwah, NJ: Lawrence Erlbaum
Associates, Inc.

Jones, M. N., & Mewhort, D. J. K. (2007). Representing
word meaning and Order information in a composite
holographic lexicon. Psychological Review, 114, 1-37.

Plate, T. A. (1995). Holographic reduced representations.
IEEE Transactions on Neural Networks, 6, 623-641.

Rutledge-Taylor, M. F. & West, R. L. (2007) MALTA:
Enhancing ACT-R with a holographic persistent
knowledge store. Proceedings of the XXIV Annual
Conference of the Cognitive Science Society. Nashville,
TN.

Rutledge-Taylor, M. F. & West, R. L. (2008) Modeling The
fan effect using dynamically structured holographic
memory. Proceedings of the XXX Annual Conference of
the Cognitive Science Society. 385-390. Washington, DC

216

A Computational Account of Complex Mental Image Construction
Jan Frederik Sima (sima@sfbtr8.uni-bremen.de)

SFB/TR 8, Universität Bremen, Germany

Abstract
This paper presents a computational cognitive model of the
construction process of complex, i.e., multi-part, visual men-
tal images. The model is integrated into the cognitive archi-
tecture Casimir. The construction process is realized by the
interplay of a spatial working memory structure and a passive
quasi-pictorial visual representation. Both structures are suc-
cessively build up on demand from long-term memory. The
correct placement of new parts is guided by the inspection of
the visual representation. The model has two main advantages:
1) it is an explicitly cognitive computational model that imple-
ments the two-fold structure of a spatial and a visual working
memory representation and 2) it introduces an attention win-
dow structure in such a way that allows for direct predictions
of eye movements during mental imagery processes. We dis-
cuss predictions and explanations offered by model.
Keywords: Cognitive Modeling; Visual Mental Imagery; Vi-
sual and Spatial Representations; Analogical Representations

Introduction
The experience of visual mental imagery is a well-known and
widely studied phenomenon. For example, many people re-
port to actively use mental imagery for common visuo-spatial
tasks, such as planning a route. Additionally, imagery plays
an important role in a number of diverse domains such as
diagrammatic problem solving and creativity (e.g., Hegarty,
2004). Furthermore, the general efficiency and usefulness of
a visual or quasi-pictorial representation compared to a purely
symbolical, i.e., non-analogical, representation for several
reasoning domains has been shown and argued for exten-
sively from an artificial intelligence point of view (e.g., Chan-
drasekaran, Kurup, Banerjee, Josephson, & Winkler, 2004).

Almost all computational accounts of visual mental im-
agery that have emerged since Kosslyn’s computational cog-
nitive model (Kosslyn, 1980) thirty years ago were not de-
signed as cognitively plausible accounts of human imagery
processes, but adopted single findings, e.g., most prominently
the existence and distinction of two, one spatial and one vi-
sual, representations involved in mental imagery (see for ex-
ample Glasgow & Papadias, 1992). There has been work to
extend well-established cognitive architectures, e.g., ACT-R
and Soar, with the functionality of visual mental imagery
and even though these accounts provided valuable insights,
for example regarding the structural integration of imagery
into an architecture, they remained on a conceptual level
(Gunzelmann & Lyon, 2007) or were explicitly not designed
as cognitively plausible models (Lathrop, 2008).

As Kosslyn’s computational model (Kosslyn, 1980) is the
most relevant and also closest in its approach to our model, it
is worthwhile to make the major differences clear. First off,
it is to note, that Kosslyn (1994) himself significantly altered
his theory of mental imagery in the light of new empirical
and neuroscientifc data. His new and very extensive concep-
tual model has, however, never been implemented. In contrast

to his implemented model, we employ two working memory
structures: the visual one roughly corresponds to Kosslyn’s
visual buffer, the other spatial one has no counterpart in his
model. Another important difference is the existence of an
attention window in our model, which implements the selec-
tive attention on the content of a mental images as well as the
multi-scale property of the visual representation.

The aim of the presented model is to offer a plausible
explanation of how complex visual mental images are con-
structed from long-term memory. The computational imple-
mentation allows the identification of open empirical issues
as well as new predictions regarding the involved processes in
mental imagery. By employing two working memory struc-
tures of different abstraction, we offer a straightforward ac-
count for the findings that suggest two distinct kinds of im-
agery (Levine, Warach, & Farah, 1985; Farah & Hammond,
1988) and also shed new light on the question of many im-
agery phenomena such as mental image reinterpretation. The
implemented attention window of the model allows us to di-
rectly link attention shifts in the visual representation to eye
movements made by subjects in imagery experiments and
thus offers a new method of evaluation for models and the-
ories of imagery.

The model is designed within the framework of Casimir
(Barkowsky, 2007), a cognitive architecture for spatial
knowledge processing with analogical representations.

In the following sections, we will describe the design of
the model’s representation structures and processes and how
those are derived from general assumptions of human cogni-
tion as well as from empirical data on several related imagery
phenomena.

The Model of Image Construction
To begin, we define the domain the model is applied to. When
referring to mental images, we always mean consciously ex-
perienced visual mental images. The model is constrained to
mental images that are generated from information that is re-
trieved from long-term memory with the absence of any other
visual input, e.g., visual perception. The mental images we
deal with are labeled “complex” in the sense that the visual-
ized concepts consist of several parts. For example, the con-
cept house consists of a main block, a roof, a door and a win-
dow; further, the parts themselves may have subparts, e.g.,
chimney is a part of the concept roof. The mental images are
constructed so that they are “seen” from an egocentric per-
spective similar to an actual visual percept.

Figure 1 shows the basic components and interactions of
the model. We have modeled the spatial and visual repre-
sentations as well as the processes involved in the construc-
tion of a mental image. The long-term memory component

217

is an existing part of the cognitive architecture Casimir (see
Schultheis, Barkowsky, & Bertel, 2006, for details).

Figure 1: Representations and Processes of the Model. The
visual representation serves as an extension of the spatial rep-
resentation. Shapes are projected into the visual representa-
tion according to the spatial layout stored in the spatial repre-
sentation.

Basic Design Constraints

In this section we will briefly elaborate the theoretical back-
ground upon which the general design decisions of the model
are based. For this purpose, we describe the basic assump-
tions that the model makes about visual mental imagery and
working memory in general.

Parsimony. The model is generally designed to keep the
processes and corresponding representation structures as par-
simonious as possible. The model’s workflow is designed
so that it works strictly on demand. This means, that each
transfer and transformation of information between long-term
memory, the spatial representation and the visual representa-
tion is only triggered when demanded by the current task.
Accordingly, concepts can be visualized at different levels of
granularity and enriched with more details when necessary.

Analogical representation structures. The model is based
on the main assumptions of what is often labeled the quasi-
pictorial theory of mental imagery, see (Kosslyn, 1994) for its
most popular representative. That is, the structure or struc-
tures, which the experience of visual mental images relies on,
at least partly represent/preserve the spatial properties of an
actual image/the actual visual percept in an analogical for-
mat. Given the existing empirical support, there is wide-
spread agreement on this hypothesis (e.g., Finke, 1989). As
the visual representation in the model actually depicts shape
it is apparently analogical, but also the spatial representation
has an analogical format as it preserves the part-of relation of
complex entities in its structure.

Distinction between visual and spatial knowledge process-
ing. Within the model visual and non-visual information is
distinguished on different but interdependent levels: 1) the
model employs two working memory structures, 2) visual
and non-visual information is retrieved separately by separate

subprocesses from long-term memory.
Building upon the findings that the two cortical visual path-

ways first identified by Ungerleider and Mishkin (1982) can
also be distinguished in human visuo-spatial working mem-
ory (Courtney, Ungerleider, Keil, & Haxby, 1996), it has
been argued that two representations involved in imagery
can be functionally and neurologically dissociated (Levine et
al., 1985). This conclusion is based on studies with brain-
damaged patients, who were able to perform normally on
some imagery task but were impaired on other imagery tasks.
These two groups of imagery tasks corresponded to what is
usually considered to be visual imagery tasks and spatial im-
agery tasks respectively (Farah & Hammond, 1988).

As evident in figure 1 we assume two information path-
ways which together give rise to complex images in the vi-
sual representation. On the one hand, processes associated
with the ventral pathway are responsible for the processing
of shape information, i.e., the recognition of shape and the
retrieval and projection of shape information from long-term
memory into the visual representation during imagery. On
the other hand, the spatial representation is associated with
the dorsal pathway which processes the spatial layout of an
entity or scene.

Besides fulfilling all other structural requirements for mod-
els of mental imagery as identified by Bertel, Barkowsky, En-
gel, and Freksa (2006), our model specifically fits into their
category of hybrid models, as two representations of differ-
ent qualitative structure are combined. They proposed that
a computational cognitive model of mental imagery needs to
have a hybrid structure in order to plausibly capture the “hy-
brid, exhibiting both visual and propositional traits” (Bertel
et al., 2006) nature of mental images.

Evidence for a dedicated non-visual working memory
structure involved in visual perception, has led to approaches
(e.g., Nestor & Kokinov, 2004), which, similar our model,
employ a visual and a non-visual working memory structure
in this respective domain.

Components and their Interaction
Following, we will describe the structure of both the spatial
and the visual representation in more detail as well as the in-
teraction between them.

The visual representation is implemented as a graphics
window, in which geometric shapes are drawn. The circu-
lar attention window determines which parts of the represen-
tation are currently attended to and can be processed. The
attention window is defined by its position and by its resolu-
tion. The higher the resolution, the smaller the extent of the
attention window and thus only a smaller part of the visual
representation is accessible for inspection. Furthermore, the
resolution also determines what contents of the visual repre-
sentation are “visible”, i.e., can be processed, depending on
the size of the visualized shape. For example, small parts or
details such as texture are only accessible if the resolution is
high, whereas bigger parts are also visible at a low resolu-

218

tion. The attention window implements two concepts: 1) the
selective processing of visual information and 2) the scale-
resolution trade-off in the inspection of mental images, which
goes along with the multi-scale property of the topographi-
cally organized areas of the visual cortex (Kosslyn, 1994).

The spatial representation contains the minimal neces-
sary spatial layout information of a concept. For the concept
house the minimal layout consists of a location1, orientation
and size of the basic shape of house as it is visualized or to be
visualized in the visual representation. Note that these param-
eters can be set by the task, e.g., “Imagine a small house, that
is tilted 90 degrees clockwise”, but lacking any of those de-
mands, the parameters will be set by associations from long-
term memory. The spatial representation does not include the
shape or any further information about the shape other than
the rough size it is (to be) visualized in. The minimal layout
further includes the direct and most strongly associated parts
of the concept house as identifiers, their spatial relations to
the basic part, e.g., “on the left top of”, as well as their rela-
tive size compared to the basic part of house.

The relative size of a part is important to determine if and
when it is visualized in case an elaborate image of the current
concept is demanded, i.e., the bigger the part is relative to
the basic shape2 of a concept, the earlier it will be visualized.
That is, if a detailed image of house is requested, roof will
be visualized first, followed by door and window. We assume
that this size-depended sequence might change if one partic-
ular part has a very strong association with the super concept,
but as a default the relative size is assumed to determine the
sequence. This is a consequence of the nature of the attention
window and we further elaborate on this aspect below.

If a new part, e.g., the door of the house, should be visu-
alized, the concept door is retrieved from long-term memory
and extends the spatial representation. This means that it now
includes information about door; orientation, size and loca-
tion are in this case determined by the super concept house,
e.g., if we imagine a small 90 degrees tilted house, all its parts
and subparts will by default also have these properties. Parts
of door are now also consciously available. The retrieval of
new information is context-dependent as it is affected by the
current content of the spatial and visual representation, that
is, in particular the super concept, e.g., the model would pro-
duce a different mental image of a window by itself than of a
window as part of a house.

Interaction between components. There is a hierarchical
structure between the long-term memory, the spatial repre-
sentation and the visual representation, that is, information is
retrieved and transformed from long-term memory first into
the spatial representation and parts of these informations are
transferred on demand into the visual representation, where
the resulting shape is visualized. As evident in figure 1, there

1Location within the visual representation.
2Following a similar principle the basic shape or main part of a

concept figures to be the bigger than any of its parts.

is a direct connection between encoded shapes in long-term
memory and the visual representation, but this projection pro-
cess is triggered only if parts of the spatial representation
need to be visually accessed. The represented information
on these three levels differs quantitatively as well as qualita-
tively: 1) there is information available in the spatial repre-
sentation which is not visualized, i.e., not represented, in the
visual representation; similarly the information in the spa-
tial representation is only a fraction of what is available in
long-term memory; 2) furthermore, only the visual represen-
tation explicitly contains visual information, such as shape or
texture, which by themselves lack semantics (which are con-
tained in the spatial representation). Additionally, this hier-
archical structure implies that certain tasks, which do not de-
pend on visual information can be solved solely on the level
of the spatial representation and do not have to use the visual
representation.

The Image Construction Process
In order to describe the construction process of a multi-part
visual mental image in the model, we will go through the
individual steps taken to build an image.

• The model is given the command to imagine the concept
house.

• The spatial representation (SR) queries the long-term
memory (LTM) for the minimal spatial representation of
house. As no further context is specified, a default location
L, orientation O and size S are used for the query.

• The attention window (AW) is shifted to location L and its
resolution adjusted to fit the size S.

• The visual representation (VR) retrieves the basic shape of
house with the given size S and orientation O from LTM
and it is visualized at the center of the AW.

• The SR is queried for direct parts of house that are of the
same relative size as house and finds roof. It will automat-
ically be visualized given the current resolution of the AW.

• The shape of house in the VR is inspected to find the coor-
dinates where to place roof according to the given qualita-
tive spatial relation between roof and house from the SR.

• The AW to the determined location.

• The SR retrieves further spatial information about roof ;
this information includes parts of roof and will allow for
a later visualization of parts of roof.

• The shape of roof is retrieved from LTM with size S and
orientation O, which are both inherited from the parental
concept house. The shape is projected into the center of
the AW.

• The SR does not find any other direct parts of house with
a relative size that would allow visualization given the cur-
rent resolution. Thus the model stops.

The above process sequence builds the minimal image of
the concept house. Further parts such as door or window are

219

not added, even though their existence, relative size and spa-
tial relation are “known”, i.e., are consciously available in the
SR. The model always builds minimal images unless the task
demands further details to be added.

Lets look at an excerpt of the construction process for a
detailed image of house. We assume the state of the model to
be the last described state of the previous process sequence,
i.e., the basic shape of house and roof are visualized.

• When a detailed image is requested all directly related parts
to house are visualized in the order of their relative size.
The SR finds door as a part of house.

• The basic shape of house in the VR is inspected and the ap-
propriate docking coordinates for door are calculated and
the AW is shifted to this position.

• As the relative size of door is smaller than that of house
the resolution of the AW is adjusted, i.e., higher resolution,
lesser extent.

• The SR retrieves spatial information about door.

• The shape of door is retrieved and projected at the position
of the AW in the VR.

• This process goes on similarly for all direct parts of house.

Explanations and Predictions
The model makes some novel assumptions which offer new
and concrete explanations of common imagery phenomena
and also lead to precise predictions about human behavior
during mental imagery. We will briefly look at how the model
is able to account for those common phenomena of mental
imagery. We have not yet started to fit concrete empirical
data, but the structure of the overall model and it’s individ-
ual representations and processes strongly suggests that the
model will at least reproduce the qualitative trends of the fol-
lowing phenomena. In the following, we will not cite single
studies for each phenomenon, but we rather refer the reader
to Kosslyn, Thompson, and Ganis (2006) for an overview of
the mentioned studies.

Image generation. Empirical studies suggest, that the con-
struction time of a mental image of a scene or object directly
depends on the number of parts and the level of detail. The
model offers a trivial and straightforward explanation, as it
generates mental images piece by piece. What is more inter-
esting and novel is the proposed sequence in which parts are
added and we further discuss this point below.

Image scanning. Several different studies suggest that the
time taken to mentally scan from one point of a mental image
to another is proportional to the imagined distance between
these points. The attention window of our model is shifted
gradually over the visual representation to the respective por-
tion of the visual representation that needs to be processed.
Therefore again, the model provides a straightforward ac-
count of this phenomenon.

Figure 2: Example of Zooming. Resolution of the attention
window is low and therefore only big (size==3) and medium
(size==2) sized parts are visualized. Left side: the main shape
of the concept house is imagined in medium size (size==2).
The shape of roof is also visualized as it is of the same rel-
ative size (size of house plus the relative size of roof, i.e.,
2−0 = 2). Door and window have a small size (size of house
plus relative size of door, i.e., size==(2−1= 1) and are there-
fore not visible given the current resolution.
Right side: The size of house was set to big (size==3)
and therefore the size of door and window is now medium
(size==2). Thus, they are now visualized.

Zooming. Zooming in or out of a mental image is realized
by altering the size parameter of a concept or a part of the
concept in the spatial representation. This parameter is used
to determine the extent of the respective shape when it is pro-
jected onto the visual representation. Furthermore, if the size
parameter is altered for a concept in the spatial representation
and it is therefore re-visualized with a now bigger or smaller
shape, this has automatic consequences for the visualization
of the parts of this concept. The spatial representation stores
a concept’s parts with their relative size compared to the ba-
sic shape of the concept. This relative size again determines
whether and when a part is also visualized in the visual repre-
sentation given the current level of resolution of the attention
window (see figure 2 for a visual example). The empirical
findings regarding zooming in mental images express that it
will take subjects more time to find a part of an imagined
object if it is initially imagined at a small size than when it
is imagined at a bigger size. These findings can potentially
be explained in two ways by the model: 1) subjects employ
a zooming process as described above or 2) the resolution
of the attention window is increased which will also make
some smaller parts of the image “visible”.3 Both accounts
would results in increased processing time and thus qualita-
tively match the empirical results.

Image organization and reinterpretation. There is evi-
dence that mental images have an underlying organization. It
has for example been found, that the way presented stimuli
are described, e.g., the star of david as either two overlapping
triangles or as an hexagon with six small triangles, affects the

3For very small parts increasing the resolution will not work and
zooming will be necessary.

220

way subjects later recreate this image mentally. That is, on
the one hand, image generation takes longer when the image
consists of more parts and on the other hand recognition of
patterns that are congruent with the organization of the image
is faster than for other valid patterns. A related phenomenon
is the difficulty of mental image reinterpretation. That is,
it is very difficult for subjects to reinterpret an ambiguous
picture as a mental image, if that picture was preciously
learned realizing only one of its meanings. Whereas, it
is much easier to find the second meaning during normal
visual perception of the same ambiguous picture. Both of
these types of findings point towards the same direction of
mental images being more than just a mental depiction of
visual information but including semantics and depending
on a more abstract structure and organization underlying
the depictive structure. The two-fold structure of our model
provides just that. As the spatial layout held in the spatial
representation is used to build up the mental image in the
visual representation, it is apparent that this consciously
available organization affects how the content of the visual
representation is inspected as well as interpreted. In order to
successfully reinterpret an ambiguous image during mental
imagery, the content of the spatial representation would
have to be discarded, because even though the content of
the visual representation might the be so that it depicts
both meanings, the individual parts would need to be linked
to different concepts. Furthermore, the retrieval of shape
information from long-term memory is context-dependend
regarding the currently held concept in the spatial represen-
tation. This means that a retrieved shape and its properties
are affected by the concept it is linked to in the spatial
representation; especially by background knowledge about a
concept. For example, the mouth of the rabbit in the famous
duck-rabbit image (see figure 3) might not be recalled
when subjects are imagining a duck, because this visual
feature is irrelevant for the shape of the back of a duck’s head.

Figure 3: Ambiguous Duck-Rabbit Image

Predictions of the Model There are three main predictions
we can draw from the model: 1) internal attention shifts are
functional for the construction of complex mental images and
are reflected by eye movements, 2) the sequence in which
parts are added to a complex mental image is affected by the
relative size of the parts, and 3) the visual representation is
used only when demanded by the task.

1) Whenever a new part of an image is visualized in the

model, the attention window is adjusted in its location and
its resolution. That is, it is shifted to the location the new
part will be visualized at. There are several studies (e.g., Jo-
hansson, Holsanova, & Holmqvist, 2005) that have shown a
close correlation between eye movements and the currently
processed contents of a visual image. The model implies
that eye movements are linked to the shifts of the attention
window during mental imagery. Furthermore, these attention
shifts are functional to the process of mental image construc-
tion.

2) The construction process proposed by the model differs
from previous assumptions about the sequence in which parts
are added to form a mental image. A common default as-
sumption seems to be that the sequence of parts is determined
by the strength of association of the part with the main con-
cept. Furthermore, this is often combined with the idea of
choosing that part next, which yields the highest identifica-
tion value for the concept. This idea stems from an analogy to
top-down-hypothesis testing in object recogntion (see Koss-
lyn, 1994). In contrast, our model predicts a very different se-
quence for image construction, which is a direct consequence
of the implementation of the attention window. The attention
window has different scales of resolution, which determine
whether a part is visualized and also whether a visualized part
is accessible. That is, with the initial low resolution only big
parts can be visualized and processed, whereas with a high
resolution also smaller parts, i.e., details, are “visible”. The
model will according to its principle of parsimony not change
its resolution, i.e., go into more detail, unless it is necessary.
This means, that direct parts of the concept are visualized
first when this is possible without a change of resolution, i.e.,
the ones that are closest in relative size to the concept’s main
shape.

3) Lastly, the hierarchical structure of the model allows for
an on demand usage of the visual representation. That is,
if visual information, like the exact shape, is not necessary
to fulfill a task, the processing will remain on the level of
the spatial representation. This concept fits nicely with the
work of Sima, Lindner, Schultheis, and Barkowsky (2010),
who found that the same spatial reasoning task is solved by
either using mental imagery or by using a more abstract rep-
resentation, e.g., mental models, depending on whether the
instruction demands imagery or not.

Conclusion and further work
We have presented a computational cognitive model of hu-
man complex mental image construction and elaborated on
the underlying assumptions as well as the predictions derived
from the model. The model is able to offer plausible accounts
for common mental imagery phenomena and findings about
the dual nature of imagery. The model implements an atten-
tion window to select regions of the visual representation for
processing. The defined role of this structure can be used to
predict eye movements during mental imagery tasks and as
a novel way of evaluating theories and models of mental im-

221

agery.
Important aspects whose effects on the model’s behavior

needs to be investigated include working memory restrictions
and similarly decay processes for both employed working
memory structures. Furthermore, we are preparing appropri-
ate eye tracking experiments to test the model’s predictions
about the construction sequence of multi-part images.

Acknowledgments
In this paper work done in the project R1-[ImageSpace] of
the Transregional Collaborative Research Center SFB/TR 8
Spatial Cognition is presented. Funding by the German Re-
search Foundation (DFG) is gratefully acknowledged. We are
thankful to the reviewers for their helpful comments.

References
Barkowsky, T. (2007). Modeling mental spatial knowledge

processing: An AI perspective. In F. Mast & L. Jäncke
(Eds.), Spatial Processing in Navigation, Imagery, and Per-
ception. (p. 67-84). Berlin: Springer.

Bertel, S., Barkowsky, T., Engel, D., & Freksa, C. (2006).
Computational modeling of reasoning with mental images:
basic requirements. In D. Fum, F. del Missier, & A. Stocco
(Eds.), Proceedings of the 7th International Conference on
Cognitive Modeling (ICCM 2006) (p. 50-55). Edizioni Go-
liardiche; Trieste.

Chandrasekaran, B., Kurup, U., Banerjee, B., Josephson,
J. R., & Winkler, R. (2004). An architecture for problem
solving with diagrams. In A. Blackwell, K. Marriott, &
A. Shimojima (Eds.), Proceedings of Diagrams 2004 (pp.
151–165). Berlin: Springer.

Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V.
(1996). Object and Spatial Working Memory Activate Sep-
arate Neural Systems in Human Cortex. Cereb. Cortex,
6(1), 39-49.

Farah, M. J., & Hammond, K. M. (1988). Visual and spa-
tial mental imagery: Dissociable systems of representation.
Cognitive Psychology, 20, 439–462.

Finke, R. A. (1989). Principles of mental imagery. Cam-
bridge, MA: MIT-Press.

Glasgow, J., & Papadias, D. (1992). Computational imagery.
Cognitive Science, 16, 355–394.

Gunzelmann, G., & Lyon, D. R. (2007). Mechanisms of
human spatial competence. In T. Barkowsky, M. Knauff,
G. Ligozat, & D. R. Montello (Eds.), Spatial Cognition V -
Reasoning, Action, Interaction (p. 288-307). Springer Ver-
lag; 14197 Berlin.

Hegarty, M. (2004). Mechanical reasoning by mental simu-
lation. Trends in Cognitive Sciences, 8(6), 280–285.

Johansson, R., Holsanova, J., & Holmqvist, K. (2005). What
do eye movements reveal about mental imagery? Evi-
dence from visual and verbal elicitations. In B. G. Bara,
L. Barsalou, & M. M. Bucciarelli (Eds.), Proceedings of
the 27th Annual Conference of the Cognitive Science Soci-
ety (p. 1045 - 1059). Mahwah, NJ: Erlbaum.

Kosslyn, S. M. (1980). Image and mind. Cambridge, MA:
Harvard University Press.

Kosslyn, S. M. (1994). Image and brain: The resolution of
the imagery debate. Cambridge, MA: The MIT Press.

Kosslyn, S. M., Thompson, W. L., & Ganis, G. (2006). The
case for mental imagery. New York: Oxford University
Press.

Lathrop, S. (2008). Extending cognitive architectures with
spatial and visual imagery mechanisms. Ph.d. thesis, Uni-
versity of Michigan.

Levine, D. N., Warach, J., & Farah, M. (1985). Two vi-
sual systems in mental imagery: Dissociation of ”what”
and ”where” in imagery disorders due to bilateral posterior
cerebral lesions. Neurology, 35(7), 1010-.

Nestor, A., & Kokinov, B. (2004). Towards active vision in
the DUAL cognitive architecture. International Journal on
Information Theories and Applications, 11, 9–15.

Schultheis, H., Barkowsky, T., & Bertel, S. (2006). LTM-
C — An improved long-term memory for cognitive archi-
tectures. In D. Fum, F. del Missier, & A. Stocco (Eds.),
Proceedings of the 7th International Conference on Cogni-
tive Modeling (ICCM 2006) (p. 274 - 279). Edizioni Go-
liardiche; Trieste.

Sima, J. F., Lindner, M., Schultheis, H., & Barkowsky, T.
(2010). Eye movements reflect reasoning with mental im-
ages but not mental models in orientation knowledge tasks.
In C. Hölscher (Ed.), Spatial Cognition VII (pp. 248–261).
Heidelberg: Springer Verlag.

Ungerleider, L., & Mishkin, M. (1982). Two cortical systems.
Analysis of Visual Behavior, 549-586.

222

Toward an analog neural substrate for production systems
Patrick Simen (psimen@princeton.edu), Marieke Van Vugt (mkvan@princeton.edu)

Fuat Balci (fbalci@princeton.edu)
Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544 USA

David Freestone (David Freestone@brown.edu)
Department of Psychology, Brown University, Providence, RI 02912 USA

Thad Polk (tpolk@umich.edu)
Department of Psychology, University of Michigan, Ann Arbor, MI 48432 USA

Abstract

Symbolic, rule-based systems seem essential for modeling
high-level cognition. Subsymbolic dynamical systems, in con-
trast, seem essential for modeling low-level perception and ac-
tion, and can be mapped more easily onto the brain. Here we
review existing work showing that critical features of sym-
bolic production systems can be implemented in a subsym-
bolic, dynamical systems substrate, and that optimal tuning of
connections between that substrate’s analog circuit elements
accounts for fundamental laws of behavior in psychology. We
then show that emergent properties of these elements are re-
flected in behavioral and electrophysiological data, lending
support to a theory about the physical substructure of produc-
tions. The theory states that: 1) productions are defined by
connection strengths between circuit elements; 2) conflict res-
olution among competing productions is equivalent to optimal
hypothesis testing; 3) sequential process timing is parallel and
distributed; 4) memory allocation and representational binding
are controlled by competing relaxation oscillators.
Keywords: Production system; neural network; diffusion
model; random walk; reinforcement learning.

A subatomic structure for productions
Production systems underlie the most successful theories of
high-level cognition, exemplified by such capabilities as plan-
ning, problem-solving, reasoning and language. Productions
— if-then rules that test the contents of a working memory
and trigger actions or changes to working memory as a re-
sult — have accordingly been characterized as the ‘atomic
components of thought’ (Anderson & Lebiere, 1998). The
implication is that the complex chemistry of mental life arises
from, and can more easily be understood in terms of, the inter-
actions of these simple atoms. To make the most of this anal-
ogy, however, requires a biologically plausible theory about
the subatomic structure that defines these interactions. Here
we propose a subatomic theory in which productions arise
from the behavior of ‘elementary particles’ — leaky integra-
tors, or classic neural network units — whose interactions
with each other are defined by connection strengths and struc-
tured network topologies.

Any computational theory of cognition faces several chal-
lenges: How well does it conform to known laws of behavior
and classic patterns of brain activity? How well does data
conform to new predictions entailed by it? And how much
functionality does it give you (e.g., is it computationally com-
plete)? Here we progressively build up a design for a neural
network structure that emulates the most important features

of production systems. We start with a critical core for indi-
vidual productions, and then add on control mechanisms that
adapt the core’s behavior in order to maximize a reward func-
tion. We will attempt to show how each addition accounts for
known laws, entails new (in some cases, successfully tested)
predictions, and moves the resulting architecture toward full,
production-system functionality. The result falls short of en-
abling the automatic translation of arbitrary production sys-
tem programs into equivalent neural networks, but it suggests
that such translations will be possible for a constrained set of
such programs (and that the constraints thus identified may
be of theoretical importance).

For the core, we review a specific, structured neural cir-
cuit with heuristically reward-maximizing connections that
has previously been proposed as an implementation of pro-
ductions (Polk, Simen, Lewis, & Freedman, 2002; Simen &
Polk, in press). After outlining the remaining mechanisms
underlying key features of a neural production system archi-
tecture, we review separately published results showing the
conformance of its behavioral predictions to the matching law
of operant conditioning, to the logistic/softmax choice func-
tion used in reinforcement learning, and to recent, tested the-
ories of optimal perceptual decision making. We also review
new evidence supporting its predictions regarding the later-
alized readiness potential (LRP) that is observed in human
electroencephalography (EEG).

To the core production implementation, we add a simple
timing mechanism (allowing controlled sequential process-
ing), and we outline a proof that it conforms to the law of
scalar invariance in interval timing (Gibbon, 1977). We show
that this mechanism predicts behavior observed in the differ-
ential reinforcement of low rates of responding (DRL) task.

We conclude the addition of mechanisms by outlining a po-
tential solution to two major challenges facing a connectionist
production system architecture: one is the need for a flexible
memory management system; the other is the variable bind-
ing problem. This problem afflicts any system in which the
semantics of a representation depend only on what is con-
nected to what, so that the components of different represen-
tations must be shared. Our proposed solution involves re-
laxation oscillators with tunable frequencies and duty cycles.
These enable the recruitment of memory resources through
fast Hebbian learning by tagging and reserving allocated net-

223

work units. The result is the sort of oscillatory activity that is
invariably observed in invasive electrode recording and scalp
EEG.

The elementary particles
The basic building block we will use is a stochastic neu-
ral network unit. We begin its description by considering
it as a deterministic system. At each moment, it computes
a weighted sum of its current inputs, then computes an ex-
ponentially decaying average of recent weighted sums, and
finally amplifies the result by a gain function that is approxi-
mately linear (but which saturates at very low and very high
input levels). This quantity is broadcast to other units, over
connections whose strengths determine their relative contri-
bution in those units’ weighted sum computations. Formally,
the output of the ith unit is Vi, the leaky integral of summed
input is xi, and the dynamics are defined as follows:

0.8

0.6

0.4

0.2
0

Recurrent weight

Equilibrium Output

Input

2

1.5

1

1

0.5

0

-0.5

0

0.5

1

wii

O
ut

pu
t V

O
ut

pu
t V

a b

c d

Self excitation = 1; = 4; = 1; = 1 Self excitation = 2; = 4; = 1; = 1

1 0.5 0 0.5 1 1 0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

B

O
ut

pu
t V

O
ut

pu
t V

SETRESET HOLD

1

0

A(A-B)/2
Input I

Input IInput I

Catastrophe
manifold

Input I

Figure 1: a, b: A neural network unit’s rate of activation
change (dV/dt) as a function of input I and output V for
units with fixed I and balanced (a) or strong (b) excitatory,
recurrent connections. Equilibrium curves are solid; veloc-
ities dV/dt are indicated by arrows and shading (light > 0,
dark < 0). c: ‘Catastrophe manifold’ formed by the equilib-
rium curves of Eq. 3 as the self-excitatory, recurrent weight
strength wii ranges from 0 to 2. Three network symbols are
also illustrated. Sigmoid: weak self-excitation, leaky integra-
tion (wii < 1 for a unit with λ = 4). Rounded step-function:
balanced self-excitation, perfect integration (wii = 1). S sym-
bol: strong self-excitation, hysteresis and bistable switching
(or ‘latch’) behavior (wii > 1). d: A latch based on hystere-
sis. States above the dashed curve converge to the upper solid
curve; states below converge to the lower solid curve. This
latch can store a 1 (upper gray region) or a 0 (lower gray re-
gion) as long as input is held between A and B. Bit-flipping
during constant I is least likely when I = (A+B)/2.

Ii =
n

∑
j=1

wi j ·Vj, (1)

τ · dxi

dt
= −xi + Ii, (2)

and Vi(t) = f (xi(t)) = [1+ exp(−λ · (xi−β))]−1. (3)

Parameters λ and β determine the steepness and position of
the sigmoidal activation function f , and τ determines the de-
cay rate of exponential averaging (large τ gives slow decay).

In addition to deterministic dynamics, we assume that
noise enters the system from units that have direct sensory
inputs, and also from the connections between units them-
selves. To model these assumptions, we use stochastic dif-
ferential equations, in which we represent white noise with
a useful abuse of notation as η ≡ dW/dt (multiplication by
dt then gives the standard notation dW in our equations; cf.
Gardiner, 2004). This quantity represents the time-derivative
of a Brownian motion, or Wiener process, W (t).1 The stan-
dard deviation of η is 1, but can be changed to any value c by
multiplying by c. Here, we multiply η by the square root of
the weighted input, an assumption which is consistent with an
even more microscopic level of neural modeling: we assume
that spiking neurons are Poisson processes, and that leaky in-
tegrators model their population-level behavior. The variance
of sums of these independent processes is the sum of their
variances. Thus, if we consider increases in a given weight
wi j to be equivalent to the addition of independent Poisson
processes (because of the addition of noisy synaptic connec-
tions), we get a noise standard deviation equal to the square
root of net input. Formally, then, the full, stochastic unit de-
scription is as follows:

τ · dxi

dt
= −xi +

n

∑
j=1

(
Ii + ci j

√
Ii ·η

)
⇒ τ ·dxi =

(
−xi +

n

∑
j=1

Ii

)
dt + ci j

n

∑
j=1

√
Ii dWi j

⇒ τ ·dVi ≈ (−xi + f (Ii)) dt + ci j

n

∑
j=1

√
Ii dWi j (4)

(See Simen and Polk (in press) for justification of the last
approximation, which moves the noise term outside the non-
linear function f .)

This system can be numerically simulated on a computer
(and perhaps be more easily understood) as a discrete-time
difference equation (Gardiner, 2004):

τ ·Vi(t +∆t)≈Vi(t)+(−xi + f (Ii)) ∆t +ci j
√

∆t
n

∑
j=1

√
Ii. (5)

It is now critical for our purposes to consider the effects of
recurrent excitation of a unit by itself (wii > 0). The strength

1W in fact is non-differentiable, but it is the limit of a sequence
of slightly smoother, differentiable noise processes, so it can be used
without danger.

224

of this self-excitation determines which of three, qualitatively
distinct types of behavior a unit exhibits (Simen & Polk, in
press). For wii < 1, the system acts like a leaky integrator;
as wii grows, the leak is reduced. When the self-excitation
exactly balances the leak (wii = 1), the unit acts like a per-
fect integrator (until it saturates). For wii > 1, the system is
unstable and is forced upward against the upper ceiling on its
activation (1), or downward toward its lower floor (0); thus it
acts like a binary switch. Furthermore, such a unit displays
hysteresis, so that it can both trigger abrupt changes and also
store a bit. Fig. 1 shows the dynamics of such a unit.

In general, leaky integration (weak self-excitation) is use-
ful because it low-pass filters its input, thereby removing
much of the high frequency noise contributed by connections
and by the environment. Perfect integration (balanced self-
excitation) is needed for optimal hypothesis testing (Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006). Bistability
(strong self-excitation) is needed for triggering subsequent
steps of sequential processes and for maintaining the current
state of working memory. The behavioral and electrophysi-
ological data we consider bears on the predictions made by
these bistable units and the integrators that feed into them.

Neural productions, timers and oscillators
Fig. 2 shows the basic building blocks of the proposed ar-
chitecture; in the remainder of the paper, we explain how
each block functions, and assess how well each accords with
known laws and new empirical data. The left column shows
the 3 unit types (a,b,c). Simen and Polk (in press) detail how
a complete set of logic operations (AND, OR, NOT) can be
built from the bistable units in c by parameterizing their in-
put strengths. Panel d shows a simple if-then rule structure:
the leaky integrator filters noise from its inputs, and if the
sum exceeds a critical level, the bistable unit switches from
(approximately) 0 to (approximately) 1. This is analogous to
the process of ‘matching’ the contents of working memory
(which can be made to depend on arbitrarily many symbolic
preconditions using a cascade of logic gates). The degree of
match may be an analog quantity, and whether this is suffi-
cient to cause a bit flip in the output unit determines whether
the production will ‘fire’. Furthermore, the weights on inputs
to the if-stage may also encode preferences between produc-
tions that have an equal degree of supporting evidence.

If more than one production matches, however, there may
be conflict between them. At least at the motor output stage
(e.g., SOAR’s ‘operators’), such conflict must be resolved.
Here we consider conflict resolution as a process of com-
petition between matching productions (Fig. 2 e), with the
outcome biased toward selection of the production with the
strongest amount of preference-weighted evidence. Since
noise is everywhere, this reduces to a well-defined hypothesis
testing problem, for which simple, near-optimal algorithms
exist. These algorithms — sequential probability ratio tests
(SPRTs) — can be parameterized to maximize expected util-
ity in the case of two-alternative choices (Bogacz et al., 2006),

A: Leaky integrator D: Typical production F: Timer Circuit

G: Relaxation
Oscillator

Start switch Ramp Trigger

B: Perfect integrator

C: Bistable switch

IF THEN

E: Conflict-resolving production

IF THEN

Figure 2: Basic building blocks. Arrowheads indicate exci-
tation, circleheads inhibition. a, b, c: Elementary particles;
arrows: excitatory inputs. d: Production topology. e: Con-
flict resolution via lateral inhibition (circles: inhibition); in-
hibition between switches is optional. f: Interval timer. g:
Relaxation oscillator added to production output unit.

and can approximately maximize utility for a greater number
of competing alternatives (McMillen & Holmes, 2006). For
a difficult decision, the process of deciding via lateral inhi-
bition (a form of attractor dynamics) can be parameterized
to implement an SPRT. This requires only that the lateral in-
hibitory strengths between input units equal -1. An example
of these dynamics is shown in Fig. 3. Thus, the firing of a
single production is equivalent to a statistical hypothesis test.

0 1 2 3
0

0.2

0.4

0.6

0.8

1

0 1 2 3
0

0.2

0.4

0.6

0.8

1

0 1 2 3
0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

x
(lo

g
lik

el
ih

oo
d

ra
tio

)
R

ed
 u

ni
t f

iri
ng

 ra
te

Blue unit firing rate

V
(%

 m
ax

 fi
rin

g
ra

te
)

V
(%

 m
ax

 fi
rin

g
ra

te
)

Time (seconds)
Time (seconds)

Time (seconds)

Threshold unit activations Decision variable (difference
of integrator activations)

Integrator unit phase planeIntegrator unit activations

Decision line

Left
Threshold

A B

CD

Figure 3: Hypothesis testing via lateral inhibition. The 2D
system in the bottom layer reduces to a single dimension,
along which a random walk to threshold occurs (implemented
by attractor dynamics in the top layer).

A critical question facing the proposed architecture, how-
ever, is whether the timing of these firings can be coordi-
nated and sequentialized without reference to a central sys-
tem clock. Our problem is the same as that facing digital

225

circuit designers, who have long relied on a central clock and
synchronous updating to preclude critical race conditions and
other signal timing hazards. Our solution is to use these pro-
duction implementations to form processing bottlenecks, and
to use handshake completion signals between computing ele-
ments for asynchronous, distributed timing control (Simen &
Polk, in press). The most difficult question is whether we can
implement productions of the form: If A, Then B and Not A.
Naively wiring up a system to implement such a production
can cause critical race conditions or metastability.

Our solution derives from the hysteresis properties of our
bistable units. Fig. 4 shows that a sequence of such units can
be wired up so that an input unit stays active long enough to
trigger an output unit, which in turn inhibits the input. If the
input unit did not resist this inhibition, it could fail to latch
the output before shutting off. Elsewhere we have detailed
the specific conditions that ensure proper sequential latch-
ing. To ensure that timing issues can be handled, we use the
timer circuit in Fig. 2 f to implement an analogue of the de-
lay gates used in digital logic. This mechanism activates a
‘start’ switch unit on the left, then integrates that signal in
a ‘ramp’ unit, weighted by the start-to-ramp weight, until it
triggers the ‘trigger’ unit to flip from 0 to 1. The delay du-
ration is equal to this threshold value divided by the start-
to-ramp weight. These dynamics are very similar to those
implementing hypothesis-testing in Fig. 3, but now the only
evidence is the passing of time.

0 10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 80 90

0.5

1

A
ct

iv
at

io
n

0

0

0.5

1

A
ct

iv
at

io
n

A
ct

iv
at

io
n

0

0.5

1

Time

IN

OUT

1

-1.15

1.15

2

2

β
λ = 4, τ = 1

 = 1.2725

Figure 4: A production that negates its own if-condition. Bot-
tom layer: input signal (red). Middle layer: IN unit activation.
Top layer: OUT unit activation.

With these building blocks in hand, we can build arbi-
trarily complex circuits that implement logic gates and finite
state machines, and thus special-purpose production systems.
However, we still face the same critical problems facing all
connectionist systems: if the semantics of a representation
depend on what is connected to what, then how do separate
representations share subcomponents? Or if their subcompo-
nents conflict, then how are the proper subcomponents bound
with the proper parent representation? Temporal synchrony
has been widely considered to be a potential solution. The

architectural assumptions are made that whatever is simulta-
neously active refers to the same entity, and distinct entities
share different oscillation phases. We implement these as-
sumptions using the same machinery that underlies produc-
tions which cancel their own if-conditions.

Fig. 2 g shows that for each production trigger, we can
assign an inhibitor. If a production fires, its output unit ac-
tivates and triggers its own cancellation after a controllable
delay (depending on connection strengths). However, the fir-
ing of a production can trigger a stored, hidden variable in a
third bistable unit, which forces reactivation of the production
after the inhibitor falls silent. This process repeats, trigger-
ing oscillations. When productions compete with each other,
they push their active periods out of phase with each other, as
shown in Fig. 5. When they do not, excitation causes them
to entrain to the same phase. Thus conflicting representations
locally decide which gets to broadcast information globally.
If we allow for a plasticity signal that globally increases the
learning rate of Hebbian connection plasticity between units,
and if we activate this signal only at critical times, then we
can burn in connections (possibly temporary connections) be-
tween units simply by activating them.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-0.2

0

0.2

0.4

0.6

0.8

A
ct

iv
at

io
n

Time (msec)

1

1.2

Figure 5: Relaxation oscillations among competing represen-
tations, allowing sharing of a single broadcast channel. Each
solid color corresponds to one representation’s bistable out-
put unit; dashed curves correspond to the output’s inhibitor.

More work will be needed to determine the scope of this
approach to dynamic symbol and rule creation, to the imple-
mentation of a data type system such as exists in ACT-R, and
to the binding problem more generally. With enough addi-
tional assumptions about the structure of the basic building
blocks, it would be possible to translate between any given
symbolic architecture and an architecture built from the com-
ponents we have outlined. This must be the case in a trivial
sense because our components are equivalent to circuits of
resistors, capacitors and transistors. To stand as a psycholog-
ically plausible mapping, however, any subsymbolic theory
will have to account for empirical data. We now focus on the
kind of data for which our subsymbolic approach has some-
thing definite to say, leaving a more detailed investigation of
the dynamics of connection-strength change for future work.

226

Laws of behavior
Two laws of behavior bear directly on the plausibility of the
architectural building blocks. The first, known as the ‘match-
ing law’, states the following: that the ratio of rates of two
(or more) different types of behavior that an animal engages
in equals the ratio of the rewards earned for those behaviors.
We showed in Simen and Cohen (2009) that the network in
Fig. 3 reproduces this behavior. That network involves con-
flict between two productions that are supported by exactly
the same amount of perceptual evidence. The exponentially
weighted reward history of each response is encoded in the
weight between the input unit and output unit of a produc-
tion. This effectively changes the random walk thresholds
for each response, while the walk itself is unbiased toward
any response. The average result, in the case of two alterna-
tives, is a state of exact matching of the behavior and reward
ratios. When, instead, the reward history is encoded in con-
nections from sensory inputs to the laterally inhibiting units,
and input-output unit weights are held fixed, the model im-
plements a softmax or logistic choice function defined on the
difference between the reward histories. Evidence abounds
for one or the other choice function in the instrumental con-
ditioning literature since the time of Skinner. Thus the ba-
sic implementation of preferences for certain responses over
others in the architecture meets a well-known psychological
constraint on learning from reinforcement.

The other law regards timed behavior. A variety of differ-
ent timing experiments show that the standard deviation of
response times in such tasks is equal to a constant times the
mean. The distribution of such responses is usually approxi-
mately Gaussian. The timing model in Fig. 2 f, accounts for
this law. When a unit balances its self-excitation against its
leak, it acts as an integrator. The model uses a simple error-
correction rule to set the connection strength w from the start
switch unit so as to ramp up to a level sufficient to trigger a
switch from 0 to 1 in the output trigger. The integrator acts
as a drift-diffusion process, since it integrates a constant drift
term, w, corrupted by noise of amplitude c

√
w:

dV = w ·dt + c ·
√

w ·dW. (6)

The trigger unit at the end of the chain defines a threshold on
this diffusion process; call it z. Such a process produces a
Wald, or inverse Gaussian, distribution of first-passage times
(Luce, 1986). The mean RT of this process is z/w, and the
standard deviation σ is c

√
z/w. Given that the ramping inte-

grator unit cannot rise above a certain activation because of its
saturation nonlinearity, then if we wish to minimize RT vari-
ability, we have the choice of minimizing z or maximizing w.
The square root in the numerator indicates that increasing w
will effect a larger reduction in variability than an equal in-
crease in z. This implies that for all intervals, we should set
z to a constant value that is as large as possible, without re-
quiring the integrator to enter its highly nonlinear activation
range. This in turn implies that σ = γz/w, with γ = c/

√
z.

That is, RT standard deviation is in constant proportion to the

mean. Furthermore, as long as c is not too great — with a
psychologically plausible value of 0.1 to 0.2, for example –
the Wald distribution has very little skewness, and looks al-
most normal (and a slight positive skewness is often observed
in timing data anyway). Thus the model reproduces scalar
invariance, and meets a second strong, empirical constraint.

Other behavioral and EEG predictions
We now examine two new predictions that regard the specific
mechanism used to implement thresholds. In most decision
making models (e.g., Bogacz et al., 2006), such thresholds
are simply assumed to exist as a step function or Heaviside
function, with a sharp discontinuity at the threshold. The
bistable trigger mechanism described in Fig. 1 makes no such
assumption, but nevertheless acts approximately as an all-or-
none, digital device. Its hysteresis properties are critical for
sequential processing, as we have shown, but does it make
any testable predictions?

One is that if an input to a trigger unit with strong self-
excitation is just below the point needed to trigger a transition
from low to high activation, there will nevertheless be occa-
sional triggerings due only to noise. This phenomenon —
known as the escape from a double-well potential (Gardiner,
2004) — produces escape-time distributions defined in terms
of exponential functions of the well depth (in our case, the
remaining distance to the threshold).

DRL: 7 sec; Rat

B
in

 c
ou

nt
s

Inter-response time (secs)
0 10 20 30 40 50

0
100
200

300
400
500 DRL: 14 sec; Rat DRL: 8 sec; Model

0 10 20 30 40 50
0

20
40

60
80

100

0 4 8 12 16
0

10
20
30
40
50

Figure 6: Two-component (exponential + scale-invariant
Gaussian) response time distributions (rat, a, b, model, c).

In fact, a nearly exponential component of response times
shows up in rat data collected in the differential reinforce-
ment of low rates of responding (DRL) task. In this task,
an animal must wait some minimum amount of time before
making a response. Any response after this time is rewarded;
any response that occurs prior to this waiting time relative to
their last response resets the clock. Animals learn to wait in
this task until shortly after the deadline, but they also emit
a proportion of very fast responses that are apparently not
controlled by a timer. Our model of this task involves us-
ing the timer circuit in Fig. 2f to implement the nearly Gaus-
sian component of such RT distributions, but it also allows
for direct connections between the start-switch and response
trigger. This produces a proportion of fast responses that are
nearly exponentially distributed. We reason that such a con-
nection exists because of the way these tasks are acquired
by animals: first, a contingency between some input stimu-
lus and the response mechanism must be learned; second, a

227

learned delay between responses is shaped through training.

−600 −400 −200 0 200
−0.5

0

0.5

1

1.5

am
pl

itu
de

 (μ
V)

Empirical LRP Model LRP

−600 −400 −200 0 200
−0.5

0

0.5

1

1.5

Time (msec)Time (msec)

Figure 7: a: Average, response-locked LRP data (micro-
volts) from 8 human participants performing left vs. right
dot-motion discrimination, with stimulus odds equal to 60:40
(blue), 75:25 (green), 90:10 (red). Behavioral responses oc-
cur at time 0. Data is baseline-corrected to align peaks. b:
Model LRP (left threshold unit activation subtracted from
right in Fig. 3, followed by a bilateral shutoff signal), with
constant bias toward the right. The order of LRP differences
between conditions is captured, but (as shown by the y-axis
limits) capturing the smaller magnitude of the empirical peak
requires additional assumptions.

The second prediction the bistable trigger mechanism
makes regards the lateralized readiness potential (LRP) ob-
served in any task with a motor response that occurs on one
side of the body. Prior to the movement, a voltage builds
up over the part of motor cortex that is contralateral to the
movement. A voltage also builds up on the same side as
the movement, but not to the same degree. Then, just be-
fore the response is made, the LRP returns to baseline, be-
cause the voltage on both sides of the head over motor cortex
becomes large and equal. We hypothesize that motor cortex
houses response triggers, and we examined what would hap-
pen to a circuit in which a prior probabilities favored, say,
a left button press rather than right button press. Although
our bistable switches are nearly binary, they do involve slow,
graded changes in activation level prior to the point at which
they transition to a high activation. Because of this, and be-
cause this happens to a greater extent for the response trig-
ger that is about to activate than for a trigger for the other,
competing response, a difference in trigger activations devel-
ops, as shown in Fig. 7 a. We interpret this difference as a
readiness potential. As a result, a consistent bias toward one
response over the other should show up as an LRP both be-
fore and after the response. Such biases are expected in two-
alternative perceptual decision making tasks with rewards for
correct responses in which one stimulus is more frequently
presented than the other (Bogacz et al., 2006). Simen et al.
(2009) showed that human behavior in such tasks is consistent
with the predicted bias toward the more frequent stimulus.

New LRP data from the same task shows the predicted
physiological signature of such a constant bias: for a con-
dition in which a right button-press response is always more
likely to be correct than a left button-press, a persistent LRP
should occur, with magnitude increasing as the prior proba-
bility increases for a given response. Data from 8 participants

confirms this stimulus bias prediction (Fig. 7).

Conclusion
Here we have shown strong behavioral and electrophysiolog-
ical evidence for key components of a neurally implemented
production system architecture. These include bistable re-
sponse units, and competitive response selection and hypoth-
esis testing that are equivalent to random walk attractor dy-
namics. Thus the assumptions we made in order to achieve
basic production system functionality seem to be justified.
Much work remains to determine just how much produc-
tion system functionality can truly be emulated by such sys-
tems. However, it is clear from working examples that simple
cognitive models of problem solving can be so implemented
(Polk et al., 2002; Simen & Polk, in press), and we have
outlined a mechanistic implementation of the temporal syn-
chrony solution to the binding problem and the problem of
dynamic linking among representations — problems which
bedevil neural network architectures, but which are handled
easily in standard production systems. We hope that future
work on this topic will illustrate what constraints need to be
imposed on production system programs in order for them to
be ‘compiled’ into an equivalent neural network.

References
Anderson, J., & Lebiere, C. (1998). The Atomic Components

of Thought. Lawrence-Erlbaum Associates.
Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen,

J. D. (2006). The physics of optimal decision mak-
ing: a formal analysis of models of performance in two-
alternative forced choice tasks. Psychological Review,
113(4), 700–765.

Gardiner, C. W. (2004). Handbook of Stochastic Methods
(Third ed.). New York, NY: Springer-Verlag.

Gibbon, J. (1977). Scalar expectancy theory and Weber’s law
in animal timing. Psychological Review, 84, 279–325.

Luce, R. D. (1986). Response Times: Their Role in Infer-
ring Elementary Mental Organization. New York: Oxford
University Press.

McMillen, T., & Holmes, P. (2006). The dynamics of choice
among multiple alternatives. Journal of Mathematical Psy-
chology, 50, 30–57.

Polk, T. A., Simen, P. A., Lewis, R. L., & Freedman, E. G.
(2002). A computational approach to control in complex
cognition. Cognitive Brain Research, 15(1), 71-83.

Simen, P. A., & Cohen, J. D. (2009). Explicit melioration by
a neural diffusion model. Brain Research, 1299, 95–117.

Simen, P. A., Contreras, D., Buck, C., Hu, P., Holmes, P.,
& Cohen, J. D. (2009). Reward rate optimization in two-
alternative decision making: empirical tests of theoretical
predictions. Journal of Experimental Psychology: Human
Perception and Performance, 35, 1865–1897.

Simen, P. A., & Polk, T. A. (in press). A sym-
bolic/subsymbolic interface protocol for cognitive model-
ing. Logic Journal of the IGPL.

228

Deriving Behavior from Personality: A Reinforcement Learning Approach
Christopher Simpkins (chris.simpkins@gatech.edu)

Georgia Tech Research Institute, 250 14th Street, NW
Atlanta, GA 30318 USA

Charles L. Isbell, Jr. (isbell@cc.gatech.edu)
College of Computing, 801 Atlantic Drive

Atlanta, GA 80332 USA

Nicholas Marquez (nicholas.marquez@gatech.edu)
College of Computing, 801 Atlantic Drive

Atlanta, GA 80332 USA

Abstract

Creating artificial intelligent agents that are high-fidelity sim-
ulations of natural agents will require that behavioral scientists
be able to write code themselves, not merely act as consul-
tants with the ensuing knowledge acquisition bottleneck. We
are designing a system that will make it possible to create rich
agents using concepts familiar to behavioral scientists, such
as personality models from psychology. However, translating
personality models into the concrete behavior of an agent us-
ing currently available programming constructs would require
a level of code complexity that would make the system inac-
cessible to behavioral scientists. What we need is a way to
derive the concrete actions of an agent directly from psycho-
logical personality models. This paper describes a reinforce-
ment learning approach to solving this problem in which we
represent trait-theoretic personality models as reinforcement
learning agents. We validate our approach by creating a vir-
tual reconstruction of a psychology experiment using human
subjects and showing that our virtual agents exhibit similar be-
havior patterns.
Keywords: Agents; Reinforcement Learning; Personality

Introduction
There is tremendous interest in creating synthetic agents that
behave as closely as possible to natural (human) agents. Rich,
interactive intelligent agents will advance the state of the art
in training simulations, interactive games and narratives, and
social science simulations. However, the programming sys-
tems for creating such rich synthetic agents are too complex,
or rather too steeped in computational concepts, to be used
directly by the behavioral scientists who are most knowledge-
able in modeling natural agents. Engaging behavioral scien-
tists more directly in the authoring of synthetic agents would
go a long way towards improving the fidelity of synthetic
agents.

Our goal is to create a programming language that a behav-
ioral scientist can use to write agent programs using concepts
familiar to behavioral scientists. This task is complicated by
the fact that the most popular and best understood personal-
ity models from behavioral science do not lend themselves to
direct translation into computer programs. Requiring a be-
havioral scientist to specify behaviors in the detail required in
even the most cutting edge purpose-built programming lan-
guage would plunge the would-be behavioral scientist agent
programmer right into a morass of complex computational

concepts that lie outside the expertise of most dedicated be-
havioral experts. To solve this problem we need a way to get
from personality models to behaviors, to derive specific agent
actions in an environment from a personality model without
having to program the derivation in great detail.

In this paper, we describe a way to model motivational fac-
tors from trait-oriented personality theory by reinforcement
learning components. We describe a virtual agent simulation
that reconstructs a human subject experiment from psychol-
ogy, namely some of Atkinson’s original work in achieve-
ment motivation and test anxiety, and show that our simula-
tion exhibits the same general behavior patterns as the human
subjects in Atkinson’s experiments. First, we briefly discuss
relevant personality research and provide some background.

Personality
Personality is a branch of psychology that studies and char-
acterizes the underlying commonalities and differences in hu-
man behavior. Within psychology, there are two broad cate-
gories of personality theories: processing theories, and dispo-
sitional, or trait theories. Social-cognitive and information-
processing theories identify processes of encodings, ex-
pectancies, and goals in an attempt to characterize the mech-
anisms by which people process their perceptions, store con-
ceptualizations, and how those processes drive their interac-
tions with others (Dweck & Leggett, 1988; Cervone & Per-
vin, 2009; Cervone & Shoda, 1999). A strength of processing
theories, especially from a computational perspective, is that
they provide a detailed account of the cognitive processes that
give rise to personality and drive behavior. This strength is
also a drawback – processing theories tend to be detailed and
often low-level (though not as low-level as cognitive architec-
tures, which we will discuss below), and this makes them less
intuitive and less suited to describing personality in broad,
easily understood terms.

Trait theories (Cervone & Pervin, 2009), the most well-
known example of which is the Five-Factor model (McCrae
& Paul T. Costa, 2008), attempt to identify stable traits (some-
times called “trait adjectives”) that can be measured on nu-
merical scales and remain invariant across situations in de-
termining behavior. A strength of the trait approach is that

229

they are well-suited to describing individuals in broad, intu-
itive terms. Two drawbacks of the approach are that there is
not yet widespread agreement on a set of truly universal traits
(or how many there are), and it is not clear how trait models
drive behavior. A promising line of research by Elliot and
Thrash (Elliot & Thrash, 2002) is working towards solving
these problems by integrating motivation into personality in
a general way. The work of Elliot and Thrash particularly
supports the approach we present here, as they show that ap-
proach and avoidance motivation underpins all currently pop-
ular trait theories.

While debate continues about the merits and drawbacks of
the different approaches to personality, the psychology com-
munity is also attempting to unify personality and motiva-
tion theory (Mischel & Shoda, 2008). While the work we
present here is focused on bridging the gap between the de-
scriptive power of trait-oriented models and the behavior that
arise from them, we consider this work to be complementary
to work in encoding information processing theories. In the
future, rich computational agents may be built by combining
approaches.

Reinforcement Learning
One can think of reinforcement learning (RL) as a machine
learning approach to planning, that is, a way of finding a se-
quence of actions that achieves a goal. In RL, problems of
decision-making by agents interacting with uncertain envi-
ronments are usually modeled as Markov decision processes
(MDPs). In the MDP framework, at each time step the agent
senses the state of the environment and executes an action
from the set of actions available to it in that state. The agent’s
action (and perhaps other uncontrolled external events) cause
a stochastic change in the state of the environment. The agent
receives a (possibly zero) scalar reward from the environ-
ment. The agent’s goal is to find a policy; that is, to choose
actions so as to maximize the expected sum of rewards over
some time horizon. An optimal policy is a mapping from
states to actions that maximizes the long-term expected re-
ward. In short, a policy defines which action an agent should
take in a given state to maximize its chances of reaching a
goal.

Reinforcement learning is a large and active area of re-
search, but the preceding is all the reader needs to understand
the work presented here. More detail can be found in (Sutton
& Barto, 1998; Kaelbling, Littman, & Moore, 1996).

Modeling Personality with Reinforcement Learning
The essential idea behind modeling personality traits with re-
inforcement learning is that each motivational factor can be
represented by a reinforcement learning component. In psy-
chology, the inherent desirability or attractiveness of a behav-
ior or situation is referred to as valence. For a person high in
success approach motivation, behaviors or situations that pro-
vide an “opportunity to excel” will have high valence, while
other behaviors will have lower valence. The notion of va-
lence translates fairly directly into the concept of reward in

reinforcement learning. Just as people with certain motiva-
tional factors will be attracted to high-valence behaviors, a
reinforcement learner is attracted to high-reward behaviors.
This is the basis for modeling motivational factors with rein-
forcement learning components. By encoding the valence of
certain behaviors as a reward structure, reinforcement learn-
ers can learn the behavioral patterns that are associated with
particular motivational factors. This is a powerful idea, be-
cause it allows an agent author to write agent code using mo-
tivational factors while minimizing the need to encode the
complex mechanisms by which such factors lead to concrete
behavior.

A critical aspect of trait theory is that traits can have inter-
active effects. It is clear that a person who is high in achieve-
ment motivation will “go for it” when given the opportunity
and that a person who is high in avoidance motivation will
be more reserved. But what happens when a person is high
in both motivations? Such interactive effects cannot be ig-
nored in a credible treatment of personality, but it is hard
to predict the behavioral patterns that will arise from given
combinations of motivational factors. One can imagine the
code complexity that might result from trying to model such
interactive effects with production rules or other traditional
programming constructs. As we demonstrate later, our rein-
forcement learning approach handles such interactive effects
automatically.

It is important to note that we are not creating a new the-
ory of personality. We are creating a computational means
of translating existing theories of personality from psychol-
ogy (not computer science) into actions executed by synthetic
agents. We are also not committing to a particular theory
from psychology, but rather supporting the general category
of trait theories of personality which, until now, have not been
directly realizable in computer agents.

In the remainder of this paper we discuss some related
work in agent modeling, present our virtual reconstruction of
a human subject experiment using our reinforcement learning
approach, and discuss the promising results and their impli-
cations for future work.

Related Work
There is a great deal of work in modeling all sorts of phe-
nomena in synthetic agents. Cognitive architectures provide
computational models of many low-level cognitive processes,
such as memory, perception, and conceptualization (Jones,
2005; Langley, Laird, & Rogers, 2008). Cognitive architec-
tures support scientific research in cognitive psychology by
providing runnable models of cognitive processes, support
research in human-computer interaction with detailed user
models (John, 1998), and can serve as the “brains” of agents
in a variety of contexts. The most notable and actively de-
veloped cognitive architectures are Soar (Laird, 2008) and
ACT-R (Anderson, Bothell, & Byrne, 2004). Recently, some
effort has gone into integrating reinforcement learning into
Soar (Nason & Laird, 2008). While RL is used to improve

230

the reasoning system in Soar, we are using RL to support new
paradigms of computer programming for agent systems. In
general, our work differs from and complements work in cog-
nitive architectures in that we are drawing on psychological
theory that is expressed at a much higher level of abstrac-
tion. Cognitive psychology and AI have often built on each
other. Indeed, cognitive psychology is the basis of cognitive
architectures in AI. Our work is an attempt to bring in main-
stream personality psychology as a basis for building intel-
ligent agents, which we hope will complement the detailed
models of cognitive architectures in creating rich synthetic
agents.

There is a large and rich body of work in believable
agents. Mateas and Stern built on the work of the Oz project
(Loyall & Bates, 1991) in creating a programming language
and reactive–planning architecture for rich believable agents.
They implemented their theory in the computer game Facade,
a one-act interactive drama in which the player interacts with
computer simulated characters that provide rich social inter-
activity (Mateas & Stern, 2004). Gratch, Marsella and col-
leagues have a large body of work in creating rich simulations
of humans for training simulations that incorporate models
of appraisal theory and emotion (Gratch & Marsella, 2005;
Swartout et al., 2006). A distinctive feature of the work of
both Mateas, et. al., and Gratch, et. al., is that they are deal-
ing with the entire range of AI problems in creating believ-
able agents that sense, act, understand and communicate in
natural language, think, and exhibit human-like personalities.
Our work differs from other work in personality modeling in
that we are not attempting to simulate personality, but using
definitions of personality to drive the behavior of synthetic
agents. We want to derive behavior that is consistent with a
given personality model, but not necessarily to ensure that the
agent gives the appearance of having that personality.

Experiments
To test our claim that personality can be modeled by rein-
forcement learning components, we created a population of
simple two-component multiple-goal reinforcement learning
agents and ran them in a world that replicated experiments
carried out with humans by psychologist John Atkinson. First
we describe Atkinson’s original research, and then discuss
our virtual reconstruction of his experiments.

Atkinson’s Ring Toss Experiment

John Atkinson was among the first researchers to study the
existence and role of approach and avoidance motivation in
human behavior. Prior to Atkinson’s work, it was believed
that test anxiety was equivalent to low achievement motiva-
tion. However, Atkinson showed that test anxiety is actually
a separate avoidance motivation, a “fear of failure” dimen-
sion that works against and interacts with achievement mo-
tivation (Atkinson & Litwin, 1960). To test his hypothesis,
he administered standard tests of achievement motivation and
test anxiety to a group of undergraduate psychology students

and devised a series of experiments which examined the ef-
fort put forth in achieving success in tasks such as taking a
final exam. It is important to note that he did not measure the
outcomes of the task, but rather the effort put forth in doing
well in them. Thus, his experiments examined the relation-
ship between motivation and behavior, not necessarily com-
petence. One of his experiments, a ring toss game, produced
results that clearly show the interplay of approach and avoid-
ance motivation and is particularly well-suited to computer
simulation.

In Atkinson’s ring toss experiment, subjects played a ring
toss game in which players attempted to toss a ring from a
specified distance onto a peg. Subjects made 10 tosses from
any distance they wished, from 1 through 15 feet, and the dis-
tance at which each subject made each toss was recorded. For
analysis, subjects were divided into four groups according to
their measures of achievement motivation and test anxiety so
that the relationship between these motivations and their be-
havior could be analyzed. For each of the two measures –
achievement motivation and test anxiety – subjects were clas-
sified as either high or low, with the dividing line between
high and low set at the median scores in each measure. (For
example, a H-L subject is high in achievement motivation and
low in test anxiety). Subjects were divided into four groups –
H-L, H-H, L-L, and L-H – and the percentage of shots taken
at each distance by each group was recorded. We discuss his
results and our simulation below.

Computational Models of Atkinson’s Subjects
We reconstructed Atkinson’s ring toss experiment in a com-
puter simulation. We created 49 virtual agents that corre-
sponded to each of the 49 human subjects in Atkinson’s ex-
periments, with the same distribution of high and low mea-
sures of achievement motivation and test anxiety. Simplified
code for a representative student subject is presented in Fig-
ure 1. Since we did not have access to Atkinson’s source data,
we modeled high motivation measures as having a mean of
1.5 and low motivation with a mean of 0.5, both with stan-
dard Normal distributions (mean = 0, variance = 1) scaled by
1
2 , so virtual test subjects did not all have the same measures.

1 object Student((Achievement , 1.5 + X ˜ N(0, 1) / 2),
2 (TestAnxiety , .5 + X ˜ N(0, 1) / 2))
3 }

Figure 1: An agent representing a success-oriented student in
Atkinson’s ring toss experiment, containing two RL components
representing high achievement motivation and low test anxiety. The
code snippets presented here are simplified versions of the Scala
code we used to run our experiments.

As discussed earlier, each of the motivational dimensions
of the virtual subjects was implemented with reinforcement
learning components that learned to satisfy the preference for
perceived valence of behaviors (modeled as reward). For ex-
ample, in the achievement motivation component (see Figure
2), the greater the distance from the peg, the greater the re-
ward because it represents greater achievement. Similarly, in

231

the test anxiety component (see Figure 3), greater reward is
given to closer distances, because they minimize, or “avoid”
the chance of failure from a long-distance toss.

1 object Achievement extends AbstractRlComponent {
2
3 world = RingTossWorld
4
5 rewards = (1_foot_line -> 1,
6 2_foot_line -> 2,
7 // ...
8 15_foot_line -> 15)
9

10 actions = (play_1_foot_line ,
11 play_2_foot_line ,
12 // ...
13 play_15_foot_line)
14 }

Figure 2: A reinforcement learning component representing
achievement motivation.

1
2 object TestAnxiety extends AbstractRlComponent {
3
4 world = RingTossWorld
5
6 rewards = (1_foot_line -> 15,
7 2_foot_line -> 4,
8 // ...
9 15_foot_line -> 1)

10
11 actions = (play_1_foot_line ,
12 play_2_foot_line ,
13 // ...
14 play_15_foot_line)
15 }

Figure 3: A reinforcement learning component representing Test
Anxiety (‘avoidance motive, a.k.a. “fear of failure”). Note that the
rewards are inverted from the achievement motivation component,
that is, the valence of avoiding achievement is higher.

Internally, each personality component is implemented
with the standard Q-learning algorithm (Sutton & Barto,
1998). The ring toss world consists of 16 states – a start state
and one state for each of the 15 distances, and 15 actions
available in each state that represent playing (making a toss)
from a particular distance. For readers interested in such de-
tails, each reinforcement learning component used a step-size
parameter of α = 0.1, a discount factor of γ = 0.9 (though dis-
counting wasn’t important given that the 15 states represent-
ing playing lines were terminal states, since each play was a
training episode), and employed an ε-greedy action selection
strategy with ε = 0.2. (Readers familiar with reinforcement
learning will also notice that this game is roughly equivalent
to a 15-armed bandit problem.) We emphasize that the details
of the reinforcement learning algorithms are not essential to
modeling motivational factors, and those details are hidden
inside the implementation of the components. Indeed a major
goal of our work is to simplify the task of writing synthetic
agents by taking care of such details automatically.

Recall that reinforcement learning algorithms learn an ac-
tion value for each action available in a given state. An action
value for a state represents the expected total reward that can
be achieved from a state by executing that action and transi-
tioning to a successor state. For each of the components –

Achievement and TestAnxiety – the action values represent
the learned utility of the actions in serving the motivational
tendencies the components represent. The Student agents
take into account the preferences of the components – rep-
resented by action values – by summing their action values
weighted by their component weights to get a composite ac-
tion value for each action in a given state. If we denote each
component’s action value by Q(s,a) and the weights by W ,
then the composite, or overall, action value is:

Qstudent(s,a) =WAchievementQAchievement(s,a)+ (1)
WTestAnxietyQTestAnxiety(s,a) (2)

For the virtual experiments, each component – Achieve-
ment and TestAnxiety – was run to convergence and then the
student agents simulated 10 plays of the ring toss game, just
as in Atkinson’s experiment. We discuss the results of the
experiment below.

Model Validation
A model is a set of explicit assumptions about how some sys-
tem of interest works (Law, 2007). In psychology the sys-
tem of interest is (usually) a human or group of humans. Our
virtual reconstruction of Atkinson’s experiments constitutes a
computational representation of Atkinson’s two-factor model
of personality. Thus, our agents are simulation models of
Atkinson’s subjects (the students in his ring toss experiment).
While the work presented here is only a proof of concept, we
do hope to achieve a high level of validity as we refine our
approach, so it will be useful to validate our models using
techniques from simulation science (Law, 2007).

As we described earlier, Atkinson divided his subjects into
four groups according to their measures (high or low) on
achievement motivation and test anxiety. For each of these
four groups – H-L, H-H, L-L, L-H – he recorded the percent-
age of shots that each group took from each of the 15 dis-
tances. We ran 10 replications of our simulation and recorded
the mean percentages for each group and distance. For each
percentage mean we calculated a 95% confidence interval.
We consider a model to be valid if the confidence intervals
calculated on the simulation percentage means contain the
percentages obtained by Atkinson in his experiments with hu-
man subjects.

The validation results are presented in Table 1. Atkinson
analyzed his experimental data by aggregating the shots taken
by subjects into three “buckets” representing low, medium,
and high difficulty. In Atkinson’s analyses the dividing lines
between the three buckets were set in four different ways with
each yielding similar results. For brevity we present the di-
vision obtained by using both geographical distance and dis-
tribution of shots about the median shot of 9.8 ft, in other
words, the dividing line one would choose by inspecting the
histogram for distinct regions. This strategy resulted in the
three buckets listed in the left column of Table 1. Each cell of
the four subject groups – H-L, H-H, L-L, L-H - contains the

232

Table 1: Validation Results. For each subject group the percentage of shots taken by Atkinson’s human subjects and by our
simulation from each of three ranges is presented along with a 95% confidence interval for the mean percentage of shots in 10
simulated replications of Atkinson’s experiment.

Achievement: High High Low Low
Test Anxiety: Low High Low High

Atkinson Atkinson Atkinson Atkinson
Simulation Simulation Simulation Simulation

Range Conf. Int. Conf. Int. Conf. Int. Conf. Int.
1-7 11 26 18 32

7.7 14.0 5.6 8.5
(4.0, 11.4) (5.6, 22.4) (1.4, 9.7) (4.4, 12.5)

8-12 82 60 58 48
75.4 69.0 74.4 80.0

(65.1, 85.7) (61.1, 76.9) (62.0, 86.9) (74.1, 85.9)
13-15 7 14 24 20

16.9 17.0 20.0 11.5
(8.8, 25.0) (9.4, 24.6) (8.3, 31.7) (6.9, 16.2)

percentage of shots taken by Atkinson’s subjects, the mean
percentage obtained by running 10 replications of our simula-
tion of Atkinson’s experiment, and a 95% confidence interval
for the mean percentage. While our model did not achieve
formal validation, the general patterns of behavior are quite
similar to Atkinson’s human subject experiment and we con-
sider these results to be a good proof of concept. We discuss
some reasons behind these results and strategies for improve-
ment below.

Discussion

We made several assumptions in our models that affected the
validation results. First, because we did not have access to
Atkinson’s original data, only summary presentations, we did
not know the exact distribution of motivational factors among
his subjects, or even the scales used in his measures. We as-
sumed normally distributed measures and tried several differ-
ent scales before settling on the values used in the simula-
tions reported here. Second, it is not clear how the valence of
behaviors should be translated into reward structures for RL
agents. We chose a simple linear reward structure in hopes
that the system would be robust to naive encodings. To make
our approach widely useful we will need to address the man-
ner in which reward structures are determined. Third, we cal-
culated aggregate action values by a simple weighted sum of
component action values. We are currently investigating opti-
mal arbitration of multiple RL components and hope to report
results within the next six months.

We chose the Atkinson ring toss experiment on the advice
of psychologists who recommended it as a well-known exam-
ple of trait-oriented behavior theory, and because of its sim-
plicity. However, our goal is to create large agent systems,
so future work will need to address scalability – to greater

numbers of trait factors and more complex worlds – and gen-
eralizability, or transferability, to other domains.

The algorithms we used also employed no optimization.
Reinforcement learning suffers from the curse of dimension-
ality, and many techniques are being actively pursued to cope
with the size of state spaces for realistic-size domains. Prof-
itably employing reinforcement learning in agent program-
ming systems will mean integrating scaling techniques such
as function approximation (e.g., of action-value functions or
state spaces) and decomposition techniques.

Finally, notice that the example code presented in this pa-
per contains no logic for implementing behavior. The agents
and the components are defined declaratively by specifying a
state space, an action set, and a reward structure. The run-
time system derives the concrete behavior of the agents au-
tomatically from these specifications. This technique, some-
times called partial programming (Simpkins, Bhat, & Isbell,
2008), is a key concept that increases the usability of agent
programming by allowing programmers to specify what an
agent is to do without getting mired in how the agent should
do it.

Conclusions and Future Work
Reinforcement learning provides a promising approach to
modeling personality traits and motivational factors in syn-
thetic agents. In particular, it provides us with a means to
create agent programming systems that are accessible to be-
havioral scientists and harness their knowledge directly while
minimizing the need for complex programming. Much work
remains to make this vision a reality, and our work is pro-
gressing on three paths. First, the integration of reinforcement
learning into agent programming systems needs to be studied
further so that we know when it is useful and how much detail

233

can be hidden from the agent programmer. Second, the exam-
ples presented here were written together so that the reward
signals of each agent were directly comparable. If we want
to enable large-scale agent programming, we must be able to
arbitrate the reward signals of separately-authored reinforce-
ment learning components (Bhat, Isbell, & Mateas, 2006).
We are currently working on such an arbitration algorithm
and hope to have results in the very near future. Finally, once
the implications of integrating reinforcement learning com-
ponents into agent models are sufficiently well understood
and separately authored components can be combined in a
modular fashion using an appropriate arbitration algorithm,
we believe the best way to realize these benefits is in a lan-
guage that incorporates these features in a coherent design.
We are currently working on such a language, initially im-
plemented as an internal domain-specific language (DSL) in
Scala.

Acknowledgments
The authors are grateful for the support of the National Sci-
ence Foundation and the Georgia Tech Research Institute.
Patrick McNiel in the psychology department suggested the
Atkinson example and was very generous in discussing our
work and helping us understand personality psychology. Dr.
Doug Bodner assisted us in applying validation techniques
from simulation science.

References
Anderson, J. R., Bothell, D., & Byrne, M. D. (2004). An in-

tegrated theory of the mind. Psychological Review, 111(4),
1036—1060.

Atkinson, J. W., & Litwin, G. H. (1960). Achievement mo-
tive and test anxiety conceived as motive to approach suc-
cess and motive to avoid failure. Journal of Abnormal and
Social Psychology, 60(1), 52–63.

Bhat, S., Isbell, C., & Mateas, M. (2006, July). On
the difficulty of modular reinforcement learning for real-
world partial programming. In Proceedings of the twenty-
first national conference on artificial intelligence (aaai-
06). Boston, MA, USA.

Cervone, D., & Pervin, L. A. (2009). Personality: Theory
and research. John Wiley and Sons.

Cervone, D., & Shoda, Y. (1999). The coherence of personal-
ity: Social-cognitive bases of consistency, veriability, and
organization. In D. Cervone & Y. Shoda (Eds.), (pp. 3–33).
New York: Guilford Press.

Dweck, C. S., & Leggett, E. L. (1988). A social-cognitive
approach to motivation and personality. Psychological Re-
view, 95(2), 256–273.

Elliot, A. J., & Thrash, T. M. (2002). Approach-avoidance
motivation in personality: Approach and avoidance tem-
peraments and goals. Journal of Personality and Social
Psychology, 82(5), 804–818.

Gratch, J., & Marsella, S. (2005). Lessons from emotion
psychology for the design of lifelike characters. Journal

of Applied Artificial Intelligence (special issue on Educa-
tional Agents - Beyond Virtual Tutors), 19(3-4), 215–233.

Ho, Y.-C., & Pepyne, D. L. (2001, December). Simple ex-
planation of the no free lunch theorem of optimization. In
Proceedings of the 40th ieee conference on decision and
control (pp. 4409–4414). Orlando, Florida USA.

John, B. E. (1998, June). Cognitive modeling for human-
computer interaction. In Invited paper in the proceedings
of graphics interface ‘98. Vancouver, British Columbia,
Canada.

Jones, R. M. (2005). An introduction to cognitive archi-
tectures for modeling and simulation. In Proceedings of
the interservice/industry training/simulation and education
conference.

Kaelbling, L. P., Littman, M. L., & Moore, A. P. (1996).
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research, 4, 237-285.

Laird, J. E. (2008). Extending the soar cognitive architecture.
In Proceedings of the first conference on artificial general
intelligence (agi-08).

Langley, P., Laird, J. E., & Rogers, S. (2008). Cognitive
architectures: Research issues and challenges. Cognitive
Systems Research.

Law, A. M. (2007). Simulation modeling and analysis (4th
ed.). McGraw-Hill.

Loyall, A. B., & Bates, J. (1991). Hap: A reactive adaptive
architecture for agents (Tech. Rep. No. CMU-CS-91-147).

Mateas, M., & Stern, A. (2004). Life-like characters. tools,
affective functions and applications. In H. Prendinger &
M. Ishizuka (Eds.), (chap. A Behavior Language: Joint Ac-
tion and Behavioral Idioms). Springer.

McCrae, R. R., & Paul T. Costa, J. (2008). Handbook of
personality: Theory and research. In O. John, R. Robins,
& L. Pervin (Eds.), (pp. 159–181). New York: Guilford.

Mischel, W., & Shoda, Y. (2008). Handbook of personality:
Theory and research. In O. John, R. Robins, & L. Pervin
(Eds.), (pp. 208 – 241). New York: Guilford.

Nason, S., & Laird, J. E. (2008). Soar-rl: Integrating rein-
forcement learning with soar. In 6th international confer-
ence on cognitive modeling. Pittsburgh, PA.

Simpkins, C., Bhat, S., & Isbell, C. (2008, October). Towards
adaptive programming: Integrating reinforcement learning
into a programming language. In Oopsla ’08: Acm sigplan
conference on object-oriented programming, systems, lan-
guages, and applications, onward! track. Nashville, TN
USA.

Sutton, R., & Barto, A. (1998). Reinforcement learning: An
introduction. Cambridge, MA: MIT Press.

Swartout, W., Gratch, J., Hill, R., Hovy, E., Marsella, S.,
Rickel, J., et al. (2006). Toward virtual humans. AI Maga-
zine, 27(1).

234

Dynamic Behaviour of a Spiking Model of Action Selection in the Basal Ganglia

Terrence C. Stewart (tcstewar@uwaterloo.ca)
Xuan Choo (fchoo@uwaterloo.ca)

Chris Eliasmith (celiasmith@uwaterloo.ca)
Centre for Theoretical Neuroscience, University of Waterloo

Waterloo, ON, N2L 3G1

Abstract

A fundamental process for cognition is action selection:
choosing a particular action out of the many possible actions
available. This process is widely believed to involve the basal
ganglia, and we present here a model of action selection that
uses spiking neurons and is in accordance with the
connectivity and neuron types found in this area. Since the
parameters of the model are set by neurological data, we can
produce timing predictions for different action selection
situations without requiring parameter tweaking. Our results
show that, while an action can be selected in 14 milliseconds
(or longer for actions with similar utilities), it requires 34­44
milliseconds to go from one simple action to the next. For
complex actions (whose effect involves routing information
between cortical areas), 59­73 milliseconds are needed. This
suggests a change to the standard cognitive modelling
approach of requiring 50 milliseconds for all types of actions.

Keywords: action selection; basal ganglia; spiking neurons;
Neural Engineering Framework; cognitive cycle time

Action Selection
The basal ganglia are generally believed by both
neuroscientists (e.g. Redgrave et al., 1999) and cognitive
scientists (e.g. Anderson et al., 2004) to be responsible for
action selection. Action selection consists of choosing one
action to perform out of the many actions in an organism's
repertoire. Selection is done on the basis of some sort of
context­dependent utility signal for each possible action.
Actions that are inappropriate for the current context may
have low utility, and a task of the basal ganglia is to select
the action that currently has the highest utility value.

Since such a mechanism forms the core of many cognitive
models, including all of those based on production systems
(where a single production much be chosen to fire), it is
useful to develop a computational model of this process.
Here, we develop a detailed spiking neuron model that takes
into account a broad range of neurological details about the
basal ganglia. Other spiking models of action selection
exist, but tend to be organized unlike the basal ganglia
(Belavkin & Huyck, 2009) and unconstrained by neural
properties (Shouno et al., 2009; see Humphries et al., 2006
for an exception and alternate approach).

By directly connecting our model to neuroscientific
results, we constrain our parameter values. Every parameter
in the model reflects neurological data from the relevant
brain areas, resulting in a model that has no free parameters
(that affect the results shown here). Furthermore, having a
biologically realistic model allows us to make predictions
about a wide range of measures, including spike patterns,
timing, variability, lesion effects, neural degeneration, the

influence of various drugs, and so on. Importantly, all of
these predictions can come from the same model, with no
additional parameters.

Neural Structure
The basal ganglia are a group of subcortical structures that
are ideally suited for an action selection operation, as they
receive input from extremely broad areas of cortex and the
limbic system, and send output back to these areas via the
thalamus. The basic components are the striatum, the
subthalamic nucleous (STN), the globus pallidus internal
(GPi), the globus pallidus external (GPe), and the substantia
nigra pars reticulata (SNr).

The classic way of thinking about the organization of the
basal ganglia is shown in Figure 1A. It consist of a direct
pathway, where excitatory inputs from cortex to the D1 cells
in the striatum inhibit corresponding areas in GPi and SNr,
which then in turn inhibit areas in the thalamus, and an
indirect pathway from the D2 cells in the striatum to GPe,
STN, and then GPi/SNr (Albin et al., 1989). However,
more recent evidence shows other major connections,
including a hyperdirect excitatory pathway straight from
cortex to STN (Nambu et al., 2002), and other feedback
connections, as shown in Figure 1B.

Figure 1: Two schematic diagrams of the basal ganglia. A
shows the standard direct/indirect pathway. B includes the

other major connections that have been discovered.

235

There is also a great deal of topological structure in the
inhibitory connections in basal ganglia. Neurons in the
striatum project to a relatively localized area in the GPi,
GPe, and SNr, while the excitatory connections from STN
are very broad (Mink, 1996). This is an important
constraint for the model we discuss below.

Simple Action Selection Models
Two simple approaches to neurally modelling action
selection are shown in Figure 2. The inputs give the utilities
of three possible actions (0.3, 0.8, and 0.5), and the model's
task is to chose one of them. Importantly, since the output
from the basal ganglia is inhibitory, selecting an action
consists of having that particular inhibitory output be zero.
In other words, it will no longer inhibit the neurons to which
it is connected, allowing the action to occur. Thus, in
Figure 2, the selected action is the middle one, whose output
value is zero in both cases.

The model in Figure 2A is the most straight­forward.
Each input neuron inhibits its corresponding output neuron
and excites all others. For the first action, this results in an
output of ­0.5*0.3+0.5*0.8+0.5*0.5=0.5. The action with
the largest input will have the smallest output, and if the
weights are in suitable ranges, only one output neuron will
be turned off. One problem with this approach is
determining suitable weights, although this can be helped by
introducing recurrent connections, as in our earlier model
(Stewart & Eliasmith, 2009). However, a more fundamental
problem is that real neurons are typically either excitatory or
inhibitory, and seldom both, as they are in this model.

An alternate approach is shown in Figure 2B. Here,
instead of each neuron being both excitatory and inhibitory,
a separate inhibitory interneuron is introduced. These are
found throughout the brain, and can be used here to divide
up the excitatory and inhibitory parts of the task. This
approach is commonly used in neural models of action
selection (e.g. Hazy et al., 2007; Stocco et al., 2010).

Figure 2: Two simple models of action selection. Inputs are
the utilities of three possible actions, and an output of zero
indicates the selection of a particular action. Each neuron

(circle) outputs the sum of its weighted inputs.

A Realistic Rate Neuron Model
Gurney, Prescott, and Redgrave (2001) have developed a
computational model of the basal ganglia that is well­suited
to reimplementation using more realistic spiking neurons.
While their model uses rate neurons, they have carefully
followed the known biological constraints on the
connectivity and types of neurons in the basal ganglia.

One of the main differences between their model and
other computational models (e.g. Hazy et al., 2007; Stocco
et al., in press) is that it does not make use of inhibitory
interneurons in the striatum to perform action selection (as
in Figure 2B). This is important for two reasons. First,
while the striatum does include inhibitory interneurons, the
actual behaviour and biological characteristics of these
neurons is unclear, making them difficult to model. Second,
there seems to be little evidence of the sort of broad, diffuse
connectivity required by figure 2B (Gurney, et al., 2001).
Tepper and Bolam (2004) identify three different types of
striatal interneurons, and demonstrate their ability to affect
spike timing in the rest of the striatum. These interneurons
are highly influenced by dopamine (Bracci et al., 2002),
acetylcholine (Koos & Tepper, 2002), and seratonin
(Blomeley & Bracci, 2009), indicating that their role may be
more to do with learning and other large­scale cognitive
processes than with action selection.

Instead, Gurney, Prescott, and Redgrave (2001) present a
model where the inhibitory output from the striatum and the
excitatory output from the subthalamic nucleous (STN)
combine to produce the desired output. That is, instead of
treating the striatum as the primary input to the basal
ganglia, neurological evidence shows that the STN receives
excitatory connections directly from the cortex, and then
produces diffuse excitation in the output nuclei. Figure 3
shows how this leads to an action selection mechanism that
separates the inhibitory and excitatory connections.

Figure 3: Action selection via the striatum D1 cells and the
subthalamic nucleous (STN). Connections from the STN

are all excitatory and set at a weight of 0.5. The input with
the highest utility (0.8) causes the corresponding output in
the globus pallidus internal (GPi) or substantia nigra (SNr)

to drop to zero, stopping the inhibition of that action.

236

While the model shown in Figure 3 is sufficient for action
selection in some circumstances, it turns out not to be fully
general. In particular, it has difficulty adjusting to situations
where there are many actions with large utilities or where all
actions have low utilities. For this reason, a control system
is needed to modulate the behaviour of these neural groups.
Gurney et al. (2001) argue that the globus pallidus external
(GPe) is ideally suited for this, as its only outputs are back
to the other areas of the basal ganglia, and it receives similar
inputs from the striatum and the STN as does the globus
pallidus internal (GPi). In their model, the GPe forms a
circuit identical to that in Figure 3, but its outputs project
back to the STN and the GPi. This regulates the action
selection system, allowing it to function across a full range
of utility values. The final network is shown in Figure 4.

Figure 4: The model of action selection in the basal ganglia
presented by Gurney, Prescott, and Redgrave (2001). The

striatum D1 cells and the subthalamic nucleous (STN) are as
in Figure 3, while the striatum D2 cells and globus pallidus

external form a modulatory control structure.

Converting Rates to Spikes
The model discussed so far is capable of performing action
selection and reproducing a variety of single­cell recording
results from electrostimulation and lesion studies (Gurney et
al., 2001). However, it does so with rate neurons; that is,
the neurons do not spike and instead continually output a
numerical value based on their recent input. This makes it
difficult to make precise numerical timing predictions or to
make use of more accurate neural models. Furthermore, the
model has no redundancy, since exactly one neuron is used
per area of the basal ganglia to represent each action. The
model shown in Figure 4 uses a total of 15 neurons (dark
circles) to represent 3 possible actions, and if any one of
those neurons is removed the model will fail.

To make timing predictions and to constrain our model
with a broader range of neurological details, we needed to
adapt the rate model of the basal ganglia into one that uses
spiking neurons. For the results shown here, we use the
standard leaky integrate­and­fire (LIF) model of spiking
neuron behaviour, although our initial results with a more
detailed implementation of the medium spiny neurons in the
striatum (Gruber et al., 2002) are similar.

For LIF neurons, current is constantly leaking out of the
neuron as per the membrane resistance R. If enough input
current is gathered to cause the voltage to be above a certain
threshold, then the neuron will fire. After firing, the voltage
is set to 0 for a fixed refractory period (~2 milliseconds)
before starting to gather current again. Given a constant
current input J and membrane resistance R, the voltage level
of the LIF neuron changes over time as given in Equation 1
and shown in Figure 1. The timing of this behaviour is
controlled by τRC, the membrane time constant of the
neuron.

V t =J R 1−e−t /RC (1)

Figure 5: LIF neuron with constant input current.

For a constant input, we can measure the average firing rate
of a given LIF neuron, and this will be dependent solely on
the neurophysicological details of the resistance R and the
membrane time constant, which tend to be fixed for any
particular type of neuron. However, for real in vivo
neurons, their output will also vary based on any
background current flowing into the neurons, and their
activity can be scaled by the strength of the incoming
synaptic connection. Thus, even among neurons of the
same type, their responses will vary, as shown in Figure 6A.
The behaviour of a neuron as its input varies is known as its
tuning curve, and the ones shown in Figure 6A are typical
for neurons throughout the brain.

In Figure 6B, we show the tuning curve for the rate
neurons used by Gurney et al. (2001). This does not look
like the realistic tuning curves of Figure 6A. However,
Figure 6C shows that we can implement the effects of such
a tuning curve by adding together the realistic tuning curves
of 6A. This allows a group of realistic neurons to provide a
similar effect to that assumed by the model.

When adding the outputs of the spiking neurons, we scale
each one by a factor di, producing a weighted sum. We can
compute the optimal di values using Equation 2, where the
integration is over all possible inputs x, ai is the average
firing rate of neuron i given input x, aj is the same for
neuron j, and f(x) is the desired output (Figure 6B). This
calculation determines the least­squared­error solution for
mapping the neural tuning curves onto the function f(x).
The method extends to complex functions and multiple
dimensions, making it the basis of the Neural Engineering
Framework (Eliasmith & Anderson, 2003).

d=−1  ij=∫ai a j dx  j=∫ a j f x dx (2)

237

While there clearly must be a developmental or learning­
based mechanism to determine these weights, we do not
consider this here, just as we do not consider the
developmental process for the creation of these separate
brain areas in the first place. Instead, we assume that
whatever such mechanisms exist converge to weights near
the values determined by Equation 2.

Figure 6: Combining realistic tuning curves to produce a
desired function. A shows the average firing rate of three

different neurons as the amount of input to the neurons
increases. B shows the neural output function used by the

rate neuron model. C shows how B can be approximated by
taking a weighted sum of tuning curves in A.

Given these weighting values di, we can construct a spiking
version of the model shown in Figure 4. Each single neuron
in the original model is replaced by a set of 20 spiking
neurons (increasing this value does not change our results).
These all have the same time constant (τRC=20ms; common
throughout the brain), but have varying background currents
and scaling factors to produce the range of tuning curves
seen in Figure 6A. Each connection in the original model
from rate neuron A to rate neuron B is replaced by a set of
connections from all of the spiking neurons replacing A to
all of the spiking neurons replacing B. The actual synaptic
connection weight from the ith neuron in A to the jth neuron
in B is wαjdi, where α is the neuron's scaling factor and w is
the original rate model's connection weight.

Finally, the timing effects of a neuron firing must be
considered. This is vital for producing realistic temporal
predictions from a model of spiking neurons. When a

neuron fires, it sends current into all of the neurons to which
it is connected. This current h(t) can be characterized by
Equation 3, where τs captures the effects of neurotransmitter
re­uptake and dispersal. As shown in Figure 7, a small τs

provides a fast, short­lasting effect (~10ms), while others
last for hundreds of milliseconds.

ht =t e−t / s (3)

Figure 7: Post­synaptic currents for common synapses.

Importantly, different neurotransmitters are used by the
different types of connections in the basal ganglia. All of
the inhibitory connections involve GABA (τs=6.1ms to
10.5ms; Gupta et al., 2000), while the excitatory ones of
concern for this model involve fast AMPA­type glutamate
receptors (τs=2ms; Spruston et al., 1995). This means that
the excitation and inhibition in the model act at different
times scales, a factor not taken into account in the original
model. As we show below, the time constants of these
neurotransmitters have a strong impact on the temporal
behaviour of our model.

Results
Figure 8 demonstrates that the model is capable of correctly
performing action selection. Initially, action B has the
highest utility, and the output shows that B is the only action
that is not inhibited by the GPi/SNr outputs. In the middle,
C is selected and has the highest activation, followed by A.

Figure 8: Spikes produced (bottom) for three possible
actions (A, B, and C) as their utility changes (top).

f x ={ 0 if xe
m  x−e if x≥e

n1

n3

n2

f x ≈d1n1 d2 n2d3n3

238

Response Latency
One of the key advantages of using a realistic neural model
is that timing predictions emerge from the neural
parameters. We start by determining how long it takes the
model to select an action when there is a sudden change in
the input. Figure 9 shows the output for an action when its
utility is suddenly increased at t=0. This matches empirical
findings that in the rat basal ganglia, output neurons stop
spiking 14 to 17 milliseconds after a similar input pulse
(Ryan & Clark, 1991).

Figure 9: Spiking produced (bottom) for a sudden change
in utility (top). Firing for action A stops 15.1ms after its

utility is increased.

We can also examine how long it takes the model to decide
between two actions as we adjust the difference between the
top two utility values. Figure 10 indicates how the latency
changes from very similar utility values (38ms mean
latency, standard deviation 8.8ms) to highly differing utility
values (14ms mean latency, standard deviation 1.5ms). As
far as we are aware, this is a novel prediction.

Figure 10: Mean and standard deviation of basal ganglia
response latency as for varying differences between utilities.

Error bars are 95% confidence intervals over 200 runs.

Cognitive Cycle Timing
In a full cognitive system, the output of the basal ganglia
would be used to affect the firing of other areas of the brain
(via the thalamus). This, in turn, will affect the input to the
basal ganglia, perhaps causing a different action to be
selected. This is the basis of our ongoing development of a
full production system using spiking neurons (Stewart,
Choo, and Eliasmith, 2010). To investigate how long this
whole cycle requires, we need to include the thalamus and a
simple cortical area in our model.

For the cortex, we create a group of 5000 spiking neurons
representing the current state. These are connected to the
inputs to the basal ganglia so that the utility input for each
action will be the similarity (measured as the dot product)
between the current state and the ideal state for that action.
This is done using Equation 2, where f(x) is this similarity
measure. For the thalamus, we create neurons representing
the actions of switching to each possible state. They are
connected to the cortex similarly, such that the firing of one
group of neurons in the thalamus will cause the cortical
neurons to fire in a pattern representing that state.

To implement the chaining of actions one after the other,
we connect the output of the basal ganglia to the thalamic
neurons such that if the basal ganglia selects action A, this
will stop the inhibition of the thalamic neurons representing
state B, thus causing the cortex to go to state B, and the
basal ganglia to select action B. The actions are chained so
that A leads to B, B leads to C, C leads to D, and so on.
This can be thought of as a set of production rules of the
form “If A then B; If B then C; If C then D; etc.” The
newly added connections are excitatory, using AMPA­type
receptors (τs=2ms). All other parameters remain the same.

With this model, we can measure the time taken to change
from one action to the next. This provides a measure of the
minimum amount of time needed to go from one step to the
next in a sequence of cognitive actions. In cognitive models
that use production systems, extensive behavioural data has
been gathered indicating that this value should be around 50
milliseconds (Anderson et al., 1995).

Figure 11 shows the mean and standard deviation of the
cycle times produce by our model. The shaded area shows
the timing produced when the correct realistic time
constants for the inhibitory GABA neurotransmitter are
used. Importantly, there are no parameters in our model that
we can vary to affect this performance. In should be noted
that our model predicts cycle times between 34 and 44
milliseconds, which is somewhat shorter than the standard
50 milliseconds value. However, this result is only for
simple actions: more complex actions are considered next.

Figure 11: Cognitive cycle times produced by our model
as the time constant τs of the inhibitory neurotransmitter

GABA varies. The shaded area indicates parameter settings
consistent with neurophysiology (Gupta et al., 2000).
Cognitive models generally use a cycle time of 50ms.

To be cognitively useful, an action selection mechanism
needs to be able to trigger more complex actions than those
considered so far. In particular, production system rules
generally allow actions that can send a value stored in one

239

brain area to another. To model this we can create
connections between cortical areas such that driving a
cortical area to a particular value causes a second cortical
area to send its value to a third cortical area. This can be
implemented using Equation 2 (see Stewart, Choo, and
Eliasmith, 2010 for more details). The timing of these types
of actions are shown in Figure 12. While simple actions
require less than 50 milliseconds, complex actions require
more than 50 milliseconds.

Figure 12: Cognitive cycle times produced for complex
actions by our model as the time constant of the inhibitory

neurotransmitter GABA varies.

Conclusions
We presented a spiking neuron model of action selection
that matches the anatomy of the basal ganglia and does not
assume the presence of diffuse inhibitory interneurons in the
striatum. By constraining the neurons' behaviour to match
that of real neurons in the basal ganglia, we produce timing
predictions from our model without parameter fitting.
Figure 9 shows that these predictions match well for single­
cell recordings in rats, and Figure 11 shows a close match
for a wide range of cognitive psychology results. Our
model thus provides a neural explanation of the commonly
used 50 millisecond cognitive cycle time (e.g. Anderson et
al., 1995). It also produces novel predictions of increases to
this cycle time for situations where two possible actions
have similar utilities (Figure 10) and for actions involving
information transfer between brain areas (Figure 12).

References
Albin, R. L., Young, A. B. & Penney, J. B. (1989). The

functional anatomy of basal ganglia disorders. Trends in
Neurosciences, 12(10): 366­375.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y. (2004). An integrated theory of the
mind. Psychological Review 111(4), 1036­1060.

Anderson, J. R., John, B. E., Just, M. A., Carpenter, P. A.,
Kieras, D. E., & Meyer, D. E. (1995). Production system
models of complex cognition. 17th Annual Meeting of the
Cognitive Science Society.

Belavkin R. & Huyck, C. (2009). A model of probability
matching in a two­choice task based on stochastic control
of learning in neural cell­assemblies. 9th International
Conference on Cognitive Modelling.

Blomeley, C.P. & Bracci, E. (2009). Serotonin excites fast­
spiking interneurons in the striatum. The European
journal of neuroscience, 29(8):1604­1614.

Bracci, E., Centonze, D., Bernardi, G., & Calabresi, P.
(2002). Dopamine excites fast­spiking interneurons in the
striatum. Journal of neurophysiology. 87(4):2190­2194.

Eliasmith, C. & Anderson, C. (2003). Neural Engineering:
Computation, representation, and dynamics in
neurobiological systems. Cambridge: MIT Press.

Gupta, A., Wang, Y., & Markram, H. (2000). Organizing
Principles for a Diversity of GABAergic Interneurons and
Synapses in the Neocortex. Science 287(5451), 273­278.

Gurney, K., Prescott, T., & Redgrave, P. (2001). A
computational model of action selection in the basal
ganglia. Biological Cybernetics 84, 401­423.

Hazy, T.E., Frank, M.J., & O'Reilly, R.C. (2007). Towards
an executive without a homunculus: computational
models of the prefrontal cortex/basal ganglia system.
Philosophical Transactions of the Royal Society B.

Humphries, M., Stewart, R., & Gurney, K. (2006). A
physiologically plausible model of action selection and
oscillatory activity in the basal ganglia. The Journal of
Neuroscience, 26(50), 12921­12942.

Koós, T. & Tepper, J.M. (2002). Dual cholinergic control of
fast­spiking interneurons in the neostriatum. The Journal
of Neuroscience, 22(2), 529­535.

Mink, J. W. (1996). The basal ganglia: Focused selection
and inhibition of competing motor programs. Progress in
Neurobiology, 50, 381­425.

Nambu, A., Tokuno, H. & Takada, M. (2002). Functional
significance of cortico­subthalamo­pallidal 'hyperdirect'
pathway. Neuroscience Research, 43, 111­117.

Redgrave, P., Prescott, T., & Gurney, K. (1999). The basal
ganglia: a vertebrate solution to the selection problem?
Neuroscience 86, 353­387.

Ryan, L. & Clark, K. (1991). The role of the subthalamic
nucleous in the response of globus pallidus neurons to
stimulation of the pre­limbic and agranular frontal
cortices in rats. Exp Brain Res, 86, 641­651.

Shouno, O., Takeuchi, J., & Tsujino, H. (2009). A spiking
neuron model of the basal ganglia circuitry that can
generate behavioral variability. The Basal Ganglia IX:
Advances in Behavioral Biology. Springer.

Spruston, N., Jonas, P., & Sakmann, B. (1995). Dendritic
glutamate receptor channel in rat hippocampal CA3 and
CA1 pyramidal neurons. J. Physiology 482, 325­352.

Stewart, T., Choo, X., & Eliasmith, C. (2010). Symbolic
reasoning in spiking neurons: A model of the cortex/basal
ganglia/thalamus loop. 32nd Annual Meeting of the
Cognitive Science Society.

Stewart, T., & Eliasmith, C. (2009). Spiking neurons and
central executive control: The origin of the 50­
millisecond cognitive cycle. 9th International Conference
on Cognitive Modelling.

Stocco, A., Lebiere, C., & Anderson, J. R. (in press).
Conditional routing of information to the neocortex: A
network model of basal ganglia function. Psych. Review.

Tepper, J.M. & Bolam, J.P. (2004). Functional diversity and
specificity of neostriatal interneurons. Current opinion in
neurobiology, 14:685­692.

240

A Temporally Asymmetric Hebbian Network for Sequential Working Memory
Jared C. Sylvester (jsylvest@umd.edu)
James A. Reggia (reggia@cs.umd.edu)

Department of Computer Science, A.V. Williams Bldg., College Park, MD 20742 USA

Scott A. Weems (sweems@casl.umd.edu)
Michael Bunting (mbunting@casl.umd.edu)

Center for Advanced Study of Language, 7005 52nd Avenue, College Park, MD 20742

Abstract

Recurrent connections combined with the appropriate dynam-
ics enable oscillatory neural networks to produce rhythmic
activity patterns. Such oscillatory activity can represent mul-
tiple stored patterns simultaneously, rather than the single
pattern of a fixed-point network. However, retrieving these
stored patterns in the same order as they were seen has proven
challenging. In this paper we modify a recently developed
simple oscillatory memory capable of storing temporal se-
quences so that it will now retrieve remembered items in the
same order presented. This was achieved through the use of
a temporally asymmetric weight matrix. The network is still
capable of matching the recall performance of human subjects,
reproducing the recency effect they exhibit in working memory
tasks and displaying similar position-specific recall rates. We
conclude that augmenting simple oscillatory neural network
models with temporally asymmetric synaptic connections sub-
stantially improves their ability to match human short term
memory properties.
Keywords: neural network models; autoassociative memory;
short-term working memory; Hebbian learning; serial order

Introduction
There has been increasing interest in recent years in the devel-
opment of oscillatory neural network models for a variety of
tasks. In contrast to fixed-point attractor networks, which are
typically limited to activating a single pattern in memory at
a time, oscillating networks have dynamics characterized by
recurrent connections leading to persistent rhythmic activity.
This allows multiple patterns to be held in the same short-
term memory concurrently as the model’s state persistently
switches between them.

A large variety of oscillating neural models exist. For
example, some are based on underlying theta/gamma activity
in the hippocampus or neocortex (Hasselmo, Bodelon, &
Wyble, 2002; Ingber, 1995; Lisman & Idiart, 1995), while
others use individual spiking neurons (Raffone & Wolters,
2001). Other more abstract approaches have also been
used, for example Wilson-Cowan oscillators (Chakravarthy
& Ghosh, 1996; Wang, 1995).

Here we concentrate on modeling short-term working
memory, which is active over periods of time on the order of
several seconds. A key characteristic of working memory is
that it has a very limited capacity, unlike long-term memory
(Baddeley, 2000). Recent studies suggest that this capacity
is capped at around four items (Cowan, 2001; Cowan et al.,
2005). More specifically we concern ourselves with modeling
working memory for sequential tasks, or those for which the
serial order of stimuli is important.

There is ongoing debate within cognitive psychology about
the proper model of serial memory. Leading theories include
the chaining model, ordinal theory, and positional theory
(Henson, 1999). Recently focus has moved to connection-
ist neural network-based models (Brown, Preece, & Hulme,
2000; Burgess & Hitch, 1999). Here we present an approach
that is reminiscent of the chaining model but avoids some of
its drawbacks (see Discussion).

An elegant and parsimonious approach to oscillating work-
ing memory models is based on simple modification of Heb-
bian associative memories with fixed-point attractors to make
them oscillatory. For example, Horn, D., Usher, M. (1991)
developed a simple oscillatory memory by adding “dynamic
thresholds” into Hopfield networks. With this approach, the
thresholds used to determine the next activity state of a node
are continuously changing such that it becomes increasingly
difficult for a node to remain in the same state, and eventually
it switches its activity state to the complementary value.
When such a network is presented with multiple input stimuli
it is found to oscillate between activity states representing
these stored memory patterns.

We recently extended the Horn and Usher model to include
a weight decay term so that the order of input pattern pre-
sentations could affect the network’s recall (Winder, Reggia,
Weems, & Bunting, 2009). This allows the network to accu-
rately model the recency effect observed in human working
memory on running memory span tasks. Stimuli which were
presented later in the input sequence were more likely to be
successfully stored and recalled by the network when using
weight decay.

While the previous version of our model was able to match
the position-specific recall rates of human subjects, the order
in which the stimuli were recalled by the model was arbitrary.
In this paper, we extend our oscillatory weight decay network
to enable it to recall inputs in the order presented. The ap-
proach is to introduce a second set of temporally asymmetric
weights into the model. By doing so we hypothesized that
the network would be induced to oscillate between stored
memory states in the desired order.

More specifically, we introduce into our simple oscillatory
networks for the first time the use of temporally asymmetric
Hebbian learning. Adaptation occurs in a fashion inspired by
experimental evidence that synaptic efficacy in biological cor-
tex and other brain structures is “temporally asymmetric” (Bi
& Poo, 2001; Markram, Lubke, Frotscher, & Sakmann, 1997;

241

Figure 1: Stimuli to the model consist of 35 binary-valued
inputs, conceived of as letters (such as the ‘P’ shown here)
for ease of visualization and interpretation.

Zhang, Tao, Holt, Harris, & Poo, 1998). That is, synapses are
strengthened (LTP) if presynaptic activity precedes excitatory
post-synaptic potentials by 20-50ms, and weakened (LTD) if
the time course is reversed. Our model, when extended in this
fashion, not only captures the recency effect of the original
model but also now largely retains the sequential order in
which the stimuli were presented.

Methods
Model Description
Our model uses a fully connected network of N linear thresh-
old units. Each node takes a binary value ai ∈ {−1,1}. The
stimuli used are in effect arbitrary sets of N bits, though we
consider them as being individual letters from A to Z for
ease of interpretation. Figure 1 shows an input to a 35 node
network interpreted as the letter ‘P.’

The operation of the model occurs in two phases: first
a temporal sequence of input stimuli are presented and the
weight matrices learned according to Eqs. 1 and 2 below,
and then the model is allowed to oscillate between states
according to Eqs. 3 and 4 for a predetermined total number
of iterations. One iteration, or time step, corresponds to
asynchronously updating every node once.

There are two sets of connection weights, W and V . Both
are N×N matrices composed of real values, and are initial-
ized to zero before learning. The first of these, W , is the
same symmetric weight matrix used in previous version of
this model (Winder et al., 2009). The entries of W are updated
as each stimulus is presented according to:

wt
i j = (1− kd)wt−1

i j +
1
N

at
ia

t
j(1−δi j) (1)

where kd is a decay rate (0 ≤ kd < 1), and δi j is Kronecker’s
delta, which ensures that weights on self-connections are
fixed at zero. This is, at it’s core, the same Hebbian weight
change rule used in many previous neural network models.
The difference is the addition of the decay term that reduces
the influence of older stimuli in favor of more recent ones.

The new element of this model is the incorporation of a
second weight matrix, V . The purpose of V is to allow the
model to recall stimuli in the same order they were presented.
In order to accomplish this, V is trained with a temporally
asymmetric learning rule

vt
i j = (1− kd)vt−1

i j +
1
N

at
ia

t−1
j (2)

inspired by the learning method used in some past neural net-
works for processing temporal sequences (Schulz & Reggia,
2004). This is similar to the Hebbian learning with decay
given in Eq. 1, but it associates the activity of node i during
the presentation of stimulus at time t with the activity of all
other nodes j during the presentation of the previous stimulus
at time t − 1 in the sequence. This introduces a sense of
temporal ordering to the weight matrix, potentially making
it possible to recall the stimuli in order rather than randomly
as was previously done. Note that the decay term is still
present, although the Kronecker’s delta factor is no longer
used as it is desirable for a node’s activity to be influenced by
its activation state in the previous time steps.

After learning and before recall the network is initially set
in a random activity state. It is not necessary to prime the
network with a partial or noisy version of any of the input
patterns. The calculation of inputs to each node is modified
from the prior model to account for both sets of weights. The
input to node i at time step t is given as

ht
i = ∑

j

(
β1wi jat

j +β2vi jat−1
j

)
−θ

t
i (3)

where the constant coefficients β1 and β2 are used to weight
the relative contributions of W and V (0≤ β1,β2 ≤ 1). As in
the previous version of the model, θi is a dynamic threshold
used to insure that the network oscillates between states rather
than coming to rest at a fixed attractor. Its calculation has
been simplified from previously, however, with it now being
updated according to the following two rules. Every time
step, θi decays according to θ

t+1
i = (1− kθ)θt

i . In any time
step in which the state of node i has remained unchanged
from the previous time step a factor of kwat

i is also added
to θ

t+1
i . This moves θi in the direction of the activity state

of node i, making it more difficult for node i to remain in the
same state. Both kθ and kw are constants chosen in advance,
with 0 < kθ < kw < 1. We use kθ = 0.09 and kw = 0.175
in the following computational experiments, though similar
values gave qualitatively similar results. Equation 3 has been
simplified from the prior model by dropping the Ki biasing
term derived from Horn, D., Usher, M. (1991). This was
previously used to account for the potentially uneven distribu-
tion of active and inactive nodes across potential stimuli and
current network state. Computational experiments revealed
that it added computational complexity to the model without
significant impact on performance.

After the input to each node is calculated, the node’s state
is updated according to the following rule

at
i =


+1 ht

i > 0
at−1

i ht
i = 0

−1 ht
i < 0

(4)

This is also a simplification of our earlier model, which
used a stochastic updating process. We have found that the
deterministic rule given above performs roughly the same
with our data set and reduces computational cost.

242

Measuring Recall

We assess the network’s recall by calculating the Hamming
distance dλ between its activity state ~a and ~aλ, where ~aλ is a
perfect representation of one of the 26 stimuli λ:

dλ =
1
2

N

∑
i=1

∣∣∣aλ
i −ai

∣∣∣ (5)

The greater the distance dλ between ~a and ~aλ, the lower the
similarity sλ = 0.85dλ will be. A value of sλ = 1.0 indicates a
perfect match between ~a and ~aλ. We call any such time step
a “recall peak” for λ. An exponential function was used to
define sλ in order to emphasize the difference between some
pairs of inputs with small Hamming distance between them.
The choice of 0.85 in the definition of sλ is essentially arbi-
trary, chosen because it produced visually reasonable results.
Values such as 0.7 or 0.9 work just as well.

In order to compare versions of the model as to whether
they successfully recalled the stimuli in the same order as they
were presented, we track the transitions from one recall peak
to the next and use this to generate a single scalar value. We
count the proportion of these peak-to-peak transitions which
occur between one stimulus and the stimulus which was
presented to the network immediately following. A transition
from the fourth-back to the third-back stimulus would be
counted as a correct transition, while one from the third to the
fourth, or fourth to second, would not. A higher proportion of
such correct transitions is indicative of the recall being more
well ordered in the sense that the model is cycling through
the stimuli it recalls in the same order as they were initially
presented. Transitions following the one-back stimulus (i.e.
the final stimulus) are ignored because there is no “next”
stimulus to correctly transition to.

The recall phase of the model lasts for hundreds of time
steps, each one potentially generating the recall of a stimu-
lus. This lengthy series of activity must be distilled into a
single ordering of the inputs, in which each unique stimulus
appeared no more than once. This is accomplished by con-
solidating any consecutive time steps in which in the network
peaks for the same stimuli. (Neither human subjects nor
the model were ever presented with duplicates of the same
stimulus, so there was no cause for the model to report seeing
the same stimulus repeated.) So, for instance, if a stimuli
sequence of “A B C D E” were to result in the network
oscillating between the states “B C C C D D E” then the
recalled sequence would be taken to be “B C D E,” and
the second through fifth stimuli would be considered to have
been remembered correctly. The requirement to remember
the stimuli in the appropriate position is the same as what
human subjects are faced with when doing running memory
span tasks. Previous versions of the model were not subjected
to this requirement; any recall peak for a stimulus was enough
for it to be considered correctly stored.

Human Behavioral Data

We used behavioral data that we collected previously (Winder
et al., 2009) on a running memory span task for compar-
ison with the model’s performance, roughly following the
designs of Pollack, Johnson, and Knaff (1959) and Bunting,
Cowan, and Saults (2006). Our human experimental data was
obtained from 38 adult subjects who were shown a rapidly
presented, two per second sequence of 12 to 20 randomly
ordered stimuli under computer control, and were asked to
remember the most recent six items in the order of their
presentation. Subjects indicated the stimuli that they recalled
by clicking on a subsequent graphical display of all possible
stimuli. Recall was measured by assessing accuracy of recall
as a function of stimulus position. A stimulus was counted as
accurately recalled only if: 1. it was presented in the retention
window (e.g., the last six items, depending on instructions),
2. it was correctly recalled by the participant; and 3. it was
recalled in the same position as it was presented (counting
backwards from the final, most recent stimulus). Any item
presented prior to the retention window that was recalled
was considered a false positive, as was any item that was
not presented at all but which was recalled. Any item from
the retention window that was not recalled was considered a
miss. Any item that was presented in the retention window,
but which was recalled in the incorrect position was also
counted as wrong (e.g., if the last six items presented were
“1 2 3 4 5 6” and the subject recalled “4 3 2 6 5 1”, then only
“5” was counted as correct). A total of twelve trials were
conducted for the task with each subject requiring roughly 20
minutes per trial; no time restrictions were placed on subject
responses. All 38 subjects completed the task.

Results

In the previous version of this model (Winder et al., 2009),
the network was given an advantage in that it did not have
to recall stimuli in the correct temporal sequence for them
to be counted as correctly stored. Any network activity pat-
tern during testing with sufficient similarity to an input was
considered successfully stored, no matter when that activity
pattern occurred. Here we increase the difficulty of the task
by requiring the network to also recall stimuli in the correct
sequence.

Figure 2 shows an example of the effect that introducing
asymmetric weights has on sequential recall. A plot of peaks
in similarity for each of the stimuli presented is shown. In
Figure 2a without temporally asymmetric weights the order-
ing of the peaks is largely random, with the network moving
between the four stored memory states without regard to
their original presentation order. In contrast, Figure 2b with
asymmetric weights shows that recalled memory patterns are
much more ordered in their progression, with activity tending
to proceed from earlier to later input patterns. This ordered
retrieval of stored memories is much closer to the human
behavioral task described above than was our earlier model.

243

(a)

(b)

Figure 2: Plot over time of when the values of s reached their peaks for the eight stimuli during an example run of the model.
Black marks indicate when s reached the maximum possible value of 1.0 and thus were counted as present, while gray marks
indicate when s exceeded 0.8 but did not reach 1.0. The lines between activity peaks indicate transitions that occurred in the
same order as the stimuli were presented. The first 150 time steps of the recall phase are shown here. Figure 2(a) is without
asymmetric weights (β1 = 1.0, β2 = 0.0), and Figure 2(b) is with asymmetric weights (β1 = 0.5, β2 = 1.0). In the former, one
can see that the oscillatory states alternate between the four recalled memory patterns for the 4th, 6th, 7th and 8th stimuli (F, J,
D and E). Note that these peaks largely occur in an arbitrary order. In the latter case, the network state alternates between the
five most recent stimuli, i.e. it has a propensity to recall input stimuli in the same sequence as that in which they were presented.

Table 1: Number of stimuli recalled.

β2
0.0 0.25 0.5 0.75 1.0

β1

0.00 – 1.13 1.38 1.46 1.54
0.25 1.18 1.84 2.01 2.22 2.12
0.50 1.44 1.91 1.89 2.04 2.26
0.75 1.72 1.88 1.95 2.02 2.08
1.00 1.76 1.90 1.93 1.93 1.85

Table 1 shows the number of stimuli successfully stored
and recalled by the network for various values of β1 and β2
when the network is presented with a sequence of six inputs.
In constructing Table 1, five hundred random sequences were
used for each simulation, and the network was allowed to
oscillate for 250 time steps, with kd = .15. The cell corre-
sponding to β1 = 1.0, β2 = 0.0 is equivalent to running the
network without any influence from the asymmetric weights.
The best results were achieved with β1 = 0.5, β2 = 1.0, which
gave a capacity of 2.26 items and with β1 = 0.25, β2 = 0.75,
which gave 2.22 items. For comparison, human subjects had
a memory capacity of 2.73 items and our previous model had
a capacity of 2.69 (Winder et al., 2009). Note, however, that
in the latter case the model’s recall was not required to be in
the same temporal order as the stimulus.

6th 5th 4th 3rd 2nd 1st
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stimulus Back

Fr
ac

tio
n

Re
ca

lle
d

With Asymmetric Weights
Without Asymmetric Weights

Figure 3: Recall rates for each position with and without tem-
porally asymmetric weights. Five hundred random stimuli
sequences were run using a decay rate of kd = 0.2. Networks
with asymmetric weights enabled used β1 = 0.5, β2 = 1.0.

In addition to increasing the total memory capacity relative
to baseline (β2 = 0), asymmetric weights also increase correct
position-specific recall of the network. Figure 3 shows the
recall rate at each stimulus position for networks both with
and without asymmetric weights. Asymmetrically weighted
networks were significantly more likely to retain the three
most recent inputs.

Figure 4 shows that the network is capable of modeling

244

12th 11th 10th 9th 8th 7th 6th 5th 4th 3rd 2nd 1st
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stimulus Back

Fr
ac

tio
n

Re
ca

lle
d

human subjects (6 stimuli)
model results (6 stimuli)
human subjects (12 stimuli)
model results (12 stimuli)

Figure 4: Comparison of the position-specific fraction of
recalled simuli by the model and human subjects for both 6-
back and 12-back tasks.

human recency behavior on running span tasks when using
asymmetric weighting by properly tuning the decay parame-
ter, β1 and β2. The model provides close matches for human
performance on both 6-back and 12-back running span tasks.
(For the former kd = 0.05, β1 = 0.5 and β2 = 1.0 and for
the latter kd = 0.075, β1 = 0.63 and β2 = 0.37) Fitting data
derived from human subjects is a simple matter of tuning
these three coefficients, which was accomplished here with a
simple iteratively-refined grid search, minimizing the RMSE.

In addition to having higher total and position-specific
capacity, asynchronous weighted networks also retained the
ordering of the input sequence more effectively. Table 2
gives the proportion of peaks in similarity s that occur in the
correct order, using the same parameters as Table 1. That is,
those that progress from the fifth-back to the fourth-back, for
example. A high proportion of such transitions is achieved
when the synchronous weights are ignored completely (i.e.,
when β1 = 0), but note that the number of stimuli recalled
by such networks is significantly lower (Table 1). The fewer
items stored at all, the easier it becomes to get them into
the correct sequence. Limiting the results to those networks
which stored more than two of the six stimuli on average,
we again find that β1 = 0.5, β2 = 1.0 gives the best result
with 85% of the peaks in s transitioning correctly, compared
to between 50 and 56% for the fully temporally symmetric
networks, regardless of β1.

Discussion
This paper extends our earlier simple oscillatory memory
model to bias it to produce ordered recall of input sequences.
This extension maintains the intrinsic oscillatory nature of
the previous model through the use of changing threshold
values, and accounts for the ordering of input sequences
with weights that include both associated (simultaneous) and
temporally asymmetric components. The same results as
the previous model, such as the re-creation of our human

Table 2: Portion of peak-to-peak transitions in correct order.

β2
0.0 0.25 0.5 0.75 1.0

β1

0.00 – .81 .86 .93 .87
0.25 .56 .71 .71 .83 .78
0.50 .50 .70 .68 .79 .85
0.75 .56 .65 .68 .75 .78
1.00 .53 .61 .67 .74 .71

subjects’ recency effect, were maintained. The combination
of weight decay and temporally asymmetric weight matrices
allowed the model to do a much better job of recalling stimuli
in the order they were originally seen while simultaneously
boosting the number of stimuli successfully stored.

In addition, it was possible to match the model’s perfor-
mance to that from human subjects in two separate tasks (6-
back and 12-back), specifically the existence of a prominent
recency effect, by tuning only the decay rate and the balance
between temporally symmetric and asymmetric inluences.
While our earlier model achieved success in matching the
behavioral data, that model and human subjects were not
being judged on the same scale, as the model did not have
to recall stimuli in order while the human subjects did.

This model adds to the growing range of current models
of short-term memory. It explains some of the richness of
human memory behavior, for instance the recency effect in
sequential recall tasks, but does so while remaining parsimo-
nious in its design. There is no need in our model to explicitly
specify lateral inhibition in order to provoke competition be-
tween stored patterns, such as in Haarman and Usher (2001).
In contrast, competition is allowed to arise from the process
of Hebbian learning and dynamic thresholds. Further, we do
not use different structures for different phases of the memory
process. There is no complex architecture of learning and
recall units, or active gating structures to explicitly guide the
recall process (Frank, Loughry, & O’Reilly, 2001; O’Reilly
& Frank, 2006). Rather, a single substrate of identical nodes
is all that is needed. The two weight matrices used in
the model are also trained with nearly identical rules, and
are treated identically during recall. There is also no need
in our model to introduce extra layers or nodes to provide
temporality of network activity, or to introduce recurrent
connections or back-propagation between layers (Botvinick
& Plaut, 2006). Multiple patterns, along with their order
of appearance, can be stored on the same neural substrate
simultaneously.

For the limited range of data considered here, our model
did not need to maintain a unified record of the entire se-
quence of stimuli. Correlations between temporal events can
be reconstructed by the network during recall in order to
preserve the entire sequence, despite the network only being
aware of the immediately preceding stimulus during training.
The model’s temporal “awareness,” such as it is, only exists

245

in a thin temporal slice. Similarly, during the recall phase,
each change of a node’s activity is only dependent on the
immediately preceding state of the network. Of course, with
more complex data additional processing mechanisms would
be needed.

While our model can be viewed as a variety of “chaining,”
it is important to recognize that it does not suffer from one
of the principle weaknesses of chaining as a technique for
storing sequences. Because of the inherently stochastic na-
ture of the network’s activity in the face of rapidly adjusting
weight thresholds, there is little harm in being “knocked out”
of sequence as the model is able to pick up the trail again.
In fact, the initial state of the network is already out of the
desired sequence: it is initialized to a random pattern, and
not a noisy or partial version of the first pattern in the se-
quence like with many auto-associative networks. From this
initially random state it is able to progress through the stimuli
sequence, usually in the correct order, and only occasionally
going astray but even then tending back towards the proper
ordering. Note that other difficult conditions for chaining,
such as duplicate stimuli and repetitions, were not present in
the tasks that human subjects performed, and so were left out
of our model’s training as well.

An obvious direction for future research in this area is the
introduction of additional sets of asymmetric weights. Just
as we have one set of weights which refer back one time
step into the past, it is possible to have a set of weights
which refers to earlier activity, perhaps increasing effective
sequencing of recall. Such an enhancement may help to deal
with some of the difficulties of sequence learning mentioned
above, such as repetitions, that were not addressed here. The
previous version of the model also only needed a single pa-
rameter, kd to be adjusted in order to match human behavioral
data. By introducing β1 and β2 we have complicated this
slightly. This could be ameliorated by using a single parame-
ter to control the balance between symmetric and temporally
asymmetric weights.

Acknowledgments: Supported, in whole or in part, with
funding from the United States Government, including NSF
award IIS-0753845.

References
Baddeley, A. (2000). Short-term and working memory.

In E. Tulving & F. Craik (Eds.), The oxford handbook of
memory. Oxford Univ. Press.

Bi, G., & Poo, M. (2001). Synaptic modification by corre-
lated activity: Hebb’s postulate revisited. Annual Review
of Neuroscience, 24, 139-166.

Botvinick, M., & Plaut, D. (2006). Short-term memory for
serial order: A recurrent neural network model. Psycho-
logical Review, 113(2), 201-233.

Brown, G., Preece, T., & Hulme, C. (2000). Oscillator-based
memory for serial order. Psych. Rev., 107(1), 127-181.

Bunting, M., Cowan, N., & Saults, J. (2006). How does
running span work? Journal of Experimental Psychology:

Human Perception and Performance, 59(10), 1691–1700.
Burgess, N., & Hitch, G. (1999). Memory for serial order:

A network model of the phonological loop and its timing.
Psychological Review, 106(3), 551-581.

Chakravarthy, S., & Ghosh, J. (1996). A complex-valued as-
sociative memory for storing patterns as oscillatory states.
Biological Cybernetics, 75, 229-238.

Cowan, N. (2001). The magical number 4 in short-term
memory. Behavioral and Brain Sciences, 24, 87-185.

Cowan, N., Elliot, E., Saults, J., Morey, C., Mattox, S., His-
mjatullina, A., et al. (2005). On the capacity of attention.
Cognitive Psychology, 51, 42-100.

Frank, M., Loughry, B., & O’Reilly, R. (2001). Interac-
tions between frontal cortex and basal ganglia in working
memory: A computational model. Cognitive, Affective, and
Behavioral Neuroscience, 1, 137-160.

Haarman, H., & Usher, M. (2001). Maintenance of semantic
information in capacity-limited short-term memory. Psy-
chonomic Bulletin, 8(3), 568-578.

Hasselmo, M., Bodelon, C., & Wyble, B. (2002). Proposed
function for hippocampal theta rhythm. Neural Comp., 14,
793-817.

Henson, R. N. A. (1999). Coding position in short-term
memory. Int’l Journal of Psychology, 34(5-6), 403-409.

Horn, D., Usher, M. (1991). Parallel activation of memories
in an oscillatory neural network. Neural Comp., 3, 31–43.

Ingber, L. (1995). Statistical mechanics of neocortical
interactions: Constraints on 40-hz models of short term
memory based on persistent spiking. Phys. Review E, 52,
4561-4563.

Lisman, J., & Idiart, M. (1995). Storage of 7 ± 2 short-term
memories in oscillatory subcycles. Science, 267, 1512-6.

Markram, H., Lubke, J., Frotscher, M., & Sakmann, B.
(1997). Regulation of synaptic efficacy by coincidence of
postsynaptic APs and EPSPs. Science, 275, 213-215.

O’Reilly, R., & Frank, M. (2006). Making working memory
work: A computational model of learning in the prefrontal
cortex and basal ganglia. Neural Comp., 18, 283-328.

Pollack, I., Johnson, I., & Knaff, P. (1959). Running memory
span. Journal of Experimental Psychology, 57, 137-146.

Raffone, A., & Wolters, G. (2001). A cortical mechanism for
binding in visual working memory. Journal of Cognitive
Neuroscience, 13, 766-785.

Schulz, R., & Reggia, J. (2004). Temporally asymmet-
ric learning supports sequence processing in multi-winner
self-organizing maps. Neural Comp., 16(3), 535-561.

Wang, D. (1995). Emergent synchrony in locally coupled
neural oscillators. IEEE Trans. Neural Netw., 6, 941-7.

Winder, R., Reggia, J., Weems, S., & Bunting, M. (2009). An
oscillatory hebbian network model of short-term memory.
Neural Comp., 21, 741–761.

Zhang, L., Tao, H., Holt, C., Harris, W., & Poo, M. (1998).
A critical window for cooperation and competition among
developing retinotectal synapses. Nature, 395, 37-44.

246

Nice Graphs, Good R2, but Still a Poor Fit?
How to be more Sure your Model Explains your Data

Niels Taatgen (n.a.taatgen@rug.nl)

Department of Artificial Intelligence, University of Groningen
Nijenborgh 9, 9747 AG Groningen, Netherlands

Hedderik van Rijn (hedderik@van-rijn.org)
Department of Psychology University of Groningen

Grote Kruisstraat 2/1, 9712 TS Groningen, Netherlands

Abstract

Although widely criticized, R2 and RMSE are still the most
popular measures to report the quality of fit between model
and data. Here we present a different way to assess the quality
of fit by comparing the fixed effect estimates of mixed-effects
models of both the data and the model. We demonstrate the
usefulness of this approach on the basis of a time estimation
experiment for which two models were constructed. The
model that at first seems to have a superior fit turns out to be
based on an invalid characterization of the data when
scrutinized more carefully, whereas the alternative model
provides an accurate characterization.

Keywords: model fitting; time perception; declarative
memory; mixed-effect models

Introduction
One of the unsolved problems in cognitive modeling is how
to judge whether a model produces a good fit of the
experimental data. Most published papers in which a model
is presented try to convince the reader that a fit is good by
showing graphs that represent the empirical data along with
the model fit. The fit is assumed to be convincing if both
graphs are similar. In addition to eyeballing the graphs,
statistical measures are often provided to quantify the fit.
The most popular measure is R2, which expresses the
correlation between model and data, and some sort of
distance measure, like RMSE.

Figure 1 shows an example of two fits between model and
data (ignore the "Criterion" curve for now, we will discuss
that later). Which of these two models offers a better fit?
Neither fit seems to be perfect, but both appear to be
reasonable. The following table shows the measures of fit:

Table 1: Measures of fit for the two models in Figure 1

 model A model B
R2 upper graph 0.97 0.91
R2 lower graph 0.81 0.82
RMSE upper graph 178 229
RMSE lower graph 35 46

(a) model A

(b) model B

Figure 1: Two fits between model and data

0 50 100 150 200 250 300 350

15
00

20
00

25
00

30
00

35
00

40
00

Sequence

E
st

im
at

ed
 d

ur
at

io
n

(m
s)

Data
Model
Criterion

0 50 100 150 200 250 300 350

15
00

20
00

25
00

30
00

35
00

40
00

Sequence

E
st

im
at

ed
 d

ur
at

io
n

(m
s)

Data
Model
Criterion

247

However, as Schunn and Wallach (2005) pointed out, there
is no hard criterion for how high R2 should be to consider a
fit as “good”. For RMSE the situation is even less clear,
because the measure depends on the measure of the
dependent variable. It should just be as low as possible, but
there is no standard for what is low enough because the
values are dependent on the experiment. Lacking any formal
criteria, it is often assumed that the model with higher
values for R2 and lower values for RMSD should be
preferred. On the basis of these criteria, Model A should be
preferred over Model B, as it outscores it on three of the
four measures, and tying it at the fourth. What we will
show, though, is that model A is wrong, and model B is
reasonably accurate.

Several researchers have criticized the enterprise of fitting
models to data. Roberts and Pashler (2000), for example,
have pointed out that an ill-constrained model can fit almost
any data set. Pitt, Kim, Navarro and Myung (2006) have
provided a method to assess the data-fitting capacity of
models by examining the partitioning of the space produced
by varying all model parameters. If this procedure yields a
space with relatively few partitions it means the model
makes strong predictions, but if there is a partition for
almost any possible outcome, the model is worthless.

Exploration of the parameter space is not always a
feasible option, because complex models can take
substantial time to run for a single set of parameters, let
alone for many combinations. A possible solution to this is
to have no free parameters at all, or leave all free parameters
at an architectural default, producing so-called "zero-
parameter" fits. This is again not always possible, because
sometimes parameters have no default value (like some of
the parameters in ACT-R's declarative memory), in which
case "zero-parameter fits" devolve into "fits with reasonable
parameter values". Another issue hidden by the discussion
about numerical parameters is the fact that there is
considerable freedom in the structural parts of the model
(either network topology in neural network models, of
symbolic components in a symbolic model). Need another
50 ms to improve the fit? Add a production rule. Need
another 200 ms? Add an extra perceptual action. The only
way to prevent modelers from wiggling unreported free
parameters into their models is to require them to make
predictions first and collect data later. The model-data
comparison may not always be pretty, but is at least honest
(see Taatgen, van Rijn & Anderson, 2007, and Taatgen,
Huss, Dickison & Anderson, 2008, for examples).

Apart from the discussion about how a model fit is
achieved and how potential alternative fits can be explored,
there is the question what kind of measure is a good
assessment of a fit. To show that R2 and RMSD
comparisons can deceive, we will first explain our
experiment and the goals of the experiment. We will then
analyze the data using linear mixed-effect models, and use
the same method on the two models. This analysis will
provide a better way of comparing models to data, and,

although it does not provide absolute criteria, shows
convincingly that Model B should be preferred.

Experiment: Memory in Time Perception
To goal of the experiment was to study the role of memory
in time perception. In many specialized theories of time
perception it is assumed that people are able to represent
and store intervals of time in the order of 1 to 60 seconds in
memory, without offering any clear theory on the nature of
this process. In ACT-R, time perception is modeled using a
time estimation module that interacts with the rest of
cognition in the same way as other ACT-R modules
(Taatgen et al., 2007). The advantage is that ACT-R already
has a module for memory, more specifically declarative
memory, which can be used to explain memory effects in
time perception. We encountered such memory effects in an
experiment in which we explored how people estimate
partially overlapping time intervals (van Rijn & Taatgen,
2008). In this experiment, subjects had to learn intervals of
2 and 3 seconds, but we noted that the representations of
these intervals started to contaminate each other to the
extent that some subjects merged both intervals together
into a single representation of 2.5 seconds. To study this
effect more carefully, we designed a new experiment, of
which we will describe one of the conditions here.

Method
In the experiment, subjects learned two intervals, a short one
of 2 seconds, and a long one of 3.1 seconds, which they had
to reproduce repeatedly, always alternating between the
short and the long. Subjects were presented with two circles
of the screen, which were gray when they were not active.
The circle on the right of the screen was associated with the
2 second interval, while the circle on the left was associated
with the 3.1 second interval. During training, one of the
circles would change color for a specific duration, and
would then turn back to gray. Training consisted of 10 trials,
5 of each duration.
After training, grey circles would again change color to
indicate the start of an interval, but now subjects had to
press a key to indicate the end of the interval. Subjects
received feedback on the accuracy of their produced
intervals (we will refer to them as estimates from here on):
"too short" if they responded earlier than 87.5% of the
interval, "too long" if they responded later than 112.5% of
the interval, or "correct" otherwise. After training, subjects
received 15 warm-up trials of each duration, followed by the
experiment proper.

The main manipulation in the experiment is that the
criterion for the long interval shifts. For the first 25
estimates of the long interval, the criterion is 3.1 seconds.
However, the criterion is then linearly increased to 3.6
seconds over 15 estimates. This means that at some point
subjects are told they were too short where they were
previously correct. After the shift to 3.6 seconds, the
criterion stays at 3.6 seconds, then is decreased back to 3.1
seconds of 15 estimates, stays there for another 25

248

estimates, then decreases further to 2.6 seconds over 15
trials, stays at 2.6 seconds for 25 trials, increases back to 3.1
seconds over 15 trials and stays there for the remaining 25
estimates. Meanwhile, the criterion for the short interval
(remember that short intervals and long intervals are alter-
nated) remains constant at 2 seconds. The "criterion" line in
Figure 1 indicates all these shifts. 16 subjects, all students of
the University of Groningen, participated in the experiment.

Results
The solid line in Figure 1 shows the mean estimates subjects
made for the two intervals. The lines have been smoothed
by a Lowess filter (Cleveland, 1981). The results suggest
that the two intervals indeed influence each other, given that
the changes in criterion for the long interval also impact the
estimate of the short interval.

There are (at least) four possible factors that can explain
changes in the short interval. One is that the representations
of the intervals affect each other directly, i.e., an increase in
the internal representation of the longer interval carries over
in the internal representation of the short interval. A second
explanation is that feedback on the long interval also affects
subsequent estimations of the short interval. For example, if
we have just produced a long interval, and received the
feedback that it was too short, we might unintentionally
increase the duration of the short interval that has to be
produced next. In addition to the impact of the other
interval, previous estimations of the short interval and
feedback on those might also impact the next estimate. In
order to assess the impact of all these factors, we used
mixed-effect models to analyze the data (Baayen, Davidson,
& Bates, 2006).

What we did was start out with the most simple regression
model to fit the data, and then started adding factors. Each
factor adds degrees of freedom to the model, so with each
added factor we checked whether improvement in the model
was significant with respect to the added degrees of
freedom.We started out with the following model, in which
the produced short interval is just a constant plus an
intercept for each subject:

shortn,s = β0 + rs + εn,s

So the estimate of short interval n for subject s is equal to
constant β0 plus a random effect for each subject s plus
noise. We first start adding the estimates of the previous
short intervals. It turns out that including both the previous
short interval, and the one before that produce a significant
improvement of the model:

shortn,s = β0 + β1shortn-1,s + β2shortn-2,s + rs + εn,s

Feedback on the previous short estimate also has a
significant impact, but not feedback on earlier short
estimates:

shortn,s = β0 + β1shortn-1,s + β2shortn-2,s + β3short-fb-Sn-1,s rs
+ β3short-fb-Ln-1,s + rs + εn,s

The feedback has two components, because it can be "too
short" (short-fb-S) or "too long" (long-fb-L). short-fb-S is
equal to 1 if the feedback on the previous trial was "too
short", and 0 otherwise. The same is true for long-fb-L and
the "too long" feedback. We then added factors associated
with the long interval. The estimate of the previous long
interval did indeed have a significant impact, but earlier
long intervals did not. Finally, we added in the feedback on
the earlier long intervals. Here the feedback on the last long
interval also led to a significant contribution. Table 2 lists
the components and regression values of the final model.

Table 2. Fixed effects in the regression model for the

short interval

Fixed Effect Value of β t value
Intercept 657 ms 4.6
shortn-1 0.385 8.3
shortn-2 0.085 3.3
short-fb-Sn-1 110 ms 3.1
short-fb-Ln-1 -208 ms -6.5
longn-1 0.16 5.1
long-fb-Sn-1 92.6 ms 3.2
long-fb-Ln-1 -163 ms -4.2

From this analysis we can conclude that all potential

factors contribute to the estimate of the short interval. We
can now do the same analysis on the long interval, and
determine what its duration depends on. Table 3 shows the
final model that came out of that analysis. The general
pattern is the same as for the short interval: previous
estimates of the long interval and previous feedback on that
interval affect the current estimate, even longer back than
for the short interval. This is probably due to the fact that
the long interval changes. But also the estimate of the
previous short interval and the feedback on that interval
impact the next long estimate.

Model
The two models of which the results are shown in Figure 1
are in fact instantiations of the same model with different
parameter settings. The basis for the model is two modules
from the ACT-R theory (Anderson, 2007), but implemented
in statistical package R (http://www.r-project.org/). More
specifically, we used the time estimation modules (Taatgen,
et al., 2007), and the declarative memory module augmented
with the blending mechanism (Lebiere, Gonzalez, & Martin,
2007).

Time Estimation
The temporal module of ACT-R measures time in units that
start at 100ms, but become gradually longer, creating a
nonlinear representation of time. For the purposes of the

249

Table 3. Fixed effects in the regression model for the long
interval

Fixed Effect Value of β t value
Intercept 695 ms 3.8
longn-1 0.34 8.5
longn-2 0.16 4.0
longn-3 0.12 4.6
longn-4 0.05 1.9
long-fb-Sn-1 159 ms 4.8
long-fb-Ln-1 -118 ms -2.5
long-fb-Sn-2 82.9 ms 2.5
long-fb-Ln-2 3.8 ms 0.1
shortn-1 0.15 2.9
short-fb-Sn-1 85 ms 2.1
short-fb-Ln-1 -107 ms -6.5

present model, the nonlinearity is not very important. The
temporal module can be given a start signal, which resets
the clock, after which an accumulator starts collecting
pulses. The short interval of 2 seconds corresponds to
approximately 17 pulses, and the long interval of 3.1
seconds to approximately 26 pulses. Noise is added to each
pulse, which means that estimates are always approximate.
For the purposes of the model, the important aspect of the
time estimation module is that it can estimate a particular
time interval by translating it into number of pulses, and that
it can reproduce a time interval by waiting until a particular
number of pulses has been accumulated. The noise produces
variability in the estimates that correspond to variability in
human time estimation.

Declarative Memory
The assumption of the model is that when a particular time
interval has to be produced, the number of pulses
representing that interval is retrieved from memory. There is
no single representation of a particular interval in memory,
but rather a collection of past experiences. Each past
experience is represented by a memory chunk, which
contains the type of interval (long or short), and a number of
pulses. When an interval is retrieved from memory, each
chunk receives an activation value on the basis of its age
(how old is the experience), and whether it matches the
current request:

€

A(t) = log(t − tcreation)
−d +mismatchpenalty

In this equation, tcreation is the time the chunk is created, so
the activation of a chunk decreases with time. The
mismatchpenalty of a chunk is 0 if the request matches the
chunk (e.g., we are retrieving a short interval and the chunk
represents the short interval), but a negative value in the
case of a mismatch (e.g., we try to retrieve a short interval
but the chunk represents a long interval).

In standard ACT-R, activation determines the probability
of retrieval of a chunk. This means that more recent

experiences that match the request have the highest
probability to be retrieved. The following equation estimates
these probabilities (where t is a noise parameter, and the
summation is over all candidate chunks):

€

Pi =
e
Ai

t

e
A j

t

j
∑

With the blending mechanism (Lebiere et al., 2007),
however, a weighed average of all candidate chunks is
retrieved. If we try to retrieve the duration of the short
interval, the results will be a blend of all intervals in
memory, with the more recent intervals having a higher
impact, and the intervals that match the request (short)
having a higher impact than the mismatching long intervals.
The resulting value can simply be calculated by multiplying
the number of pulses in a chunk (Vi) by the probability of
retrieval:

€

Result value = Pj
j
∑ V j

In order to determine how many pulses to wait for an
interval, the model not only retrieves the representation of
the interval, but also feedback received for that interval. For
this we use exactly the same mechanism as for the retrieval
of the interval. Whenever feedback is received, the model
stores this in memory. If the feedback was "correct" it stores
the value of 0, if it was "too long" it stores a negative value,
and when it is "too short" it stores a positive value (this
value is referred to as the feedbackshift, which is a free
parameter in the model). Retrieval is done in the same way
as the retrieval of the interval itself. This means that the
feedback of previous trial for the same duration has the
highest impact, but that earlier feedback and feedback for
the other duration can also weigh in.

To summarize: if the model has to produce a certain
interval, it determines the number of pulses by retrieving a
blend of memory representations for that interval. It then
retrieves previous feedback for that interval, which is also a
blend of earlier feedback. It adds the two together, and waits
for that many pulses to produce the interval.

Table 4. Free parameters in model A and B

Parameter Model

A
Model

B
Noise parameter t 0.25 0.2
Mismatch penalty between short and
long for interval retrieval

-1.3

Mismatch penalty between short and
long for feedback retrieval

-0.8

both
-0.92

Feedbackshift: how many pulses to add
or subtract on the basis of feedback

8 1.8

250

The free parameters for model A and B were set to the
values in Table 4. All other parameters were set to their
ACT-R or time estimation module defaults (d=0.5, t0=100
ms, a=1.02, b = 0.015). The parameters in model A were
determined using the procedure that many modelers follow:
starting with some initial set of parameters try varying them
in order to optimize the fit in terms of R2 and RMSE. This is
typically a satisficing procedure (unless the whole parameter
space is explored): model fitting ends as soon as variation of
parameters leads to little improvement, and the current fit is
decent enough. For model B we used a different method that
we will outline later.

So Which is the Better Model?
When we create a cognitive model, it is not our goal to fit a
particular data graph, although this may be part of the
process, but to explain the phenomena that we are interested
in. The statistical analysis has revealed that both the
representations of the two intervals and the feedback for the
intervals play a role in producing the next interval. It does
not tell us what cognitive mechanisms can produce this. The
cognitive model does supply a possible answer: a single
memory mechanism that has been validated in many other
studies can incorporate all factors that play a role in
producing the estimate. But is this really true? The graphs in
Figure 1 show a good fit, and the R2's and RMSE also look
decent, so what else is there to say?

We can test the impact of the factors that turned up
significantly in the data more directly by performing the
same analysis on the model outcomes. Statistical
significance is not very relevant here, because we can run
the model as often as we like. But the model should produce
β values that are comparable to the β's found in the data
analysis. We therefore ran each model 100 times, and
collected the model data in the same format as the human
data. This allowed us to fit the same linear regression
models. Table 5 shows the results for two models next to the
data.

On the basis of this analysis a whole new picture emerges:
Model A does not fit the data at all, while Model B provides
a very decent fit. The table also reveals the problem of
Model A: its representation of the interval is much too
stable, as is shown by the estimates for the intercept. In
Model A, the intercepts are approximately equal to the
actual duration of the interval, and there is hardly any
impact of previously produced intervals, either long or short
(as evidenced by the low longn-x and shortn-x effects).
Moreover, Model A's responses to feedback are much
stronger than in the data. For example, if Model A receives
the "too short" feedback on the short interval, it will respond
to this by increasing its next production of that interval by
487 ms, while subjects only increase it by 110 ms. It
probably needs such strong values to produce the shifts in
estimates of the long interval.

Table 5. Comparison between model and data for the two
models

Short interval
Fixed Effect β data β Model A β Model B
Intercept 657 ms 2157 ms 789 ms
shortn-1 0.385 0.08 0.356
shortn-2 0.085 -0.03 0.048
short-fb-Sn-1 110 ms 487 ms 170 ms
short-fb-Ln-1 -208 ms -521 ms -153 ms
longn-1 0.16 -0.06 0.15
long-fb-Sn-1 92.6 ms 432 ms 125 ms
long-fb-Ln-1 -163 ms -534 ms -211 ms
Long interval
Fixed Effect β data β model A β model B
Intercept 695 ms 3162 ms 493 ms
longn-1 0.34 0.011 0.22
longn-2 0.16 0.012 0.25
longn-3 0.12 0.003 0.12
longn-4 0.05 0.001 0.09
long-fb-Sn-1 159 ms 626 ms 198 ms
long-fb-Ln-1 -118 ms -744 ms -251 ms
long-fb-Sn-2 82.9 ms 60 ms 90 ms
long-fb-Ln-2 3.8 ms -142 ms -57 ms
shortn-1 0.15 -0.07 0.18
short-fb-Sn-1 85 ms 326 ms 20 ms
short-fb-Ln-1 -107 ms -492 ms -35 ms

To summarize, Model A might produce a good global

model fit, but for the wrong reasons. Model B on the other
hand has factor values that are quite similar to those in the
data. This means that the same factors that play a significant
role in subjects' performance also play approximately the
same role in the model's performance. This also means that
it is reasonably likely that the model will generalize to other
situations in which time intervals have to be stored in
memory (see Note at the end).

In fact, the parameter settings for model B were derived
by using the factors in the statistical model as an
optimization criterion instead of the R2 and RMSE values.
Starting with model A, it was clear the feedbackshift had to
be adjusted to reduce the factors associated with feedback.
After that, some smaller adjustments led to model B.

Conclusions
Although there are several proposals to improve the
assessment of model fit (e.g., Pitt et al., 2006; Weaver,
2008), not all of them are applicable to all types of models,
and some of them require intensive additional calculations.
The method we showed here is relatively straightforward in
comparison, because the same method that is used to
analyze the data (which has to be done anyway) can also be
used to analyze the model's fit. Although this comparison
does not produce a nice and simple single value for the
quality of the fit, such a value might be an illusionary

251

concept anyway. It is never possible to prove that a model
has "a 95% probability of being correct". For this it is
necessary to know the complete space of possible
models/theories, something that is decidedly undecidable.

The nice thing about this analysis is that we can see
whether the model produces the effects that we are
interested in, and that it produces them in approximately the
same order of magnitude. It was even helpful in data fitting
itself, because it shows what particular factor is throwing
the fit out of balance.

In conclusion, analyzing model fits with mixed-effect
models is a promising tool in the modeler's toolbox.

Note
The experiment that we have discussed here had two
additional conditions, one in which both intervals remained
constant for the duration of the experiment, and one in
which they long interval became shorter first and longer
later. The model we presented here has not run for those
conditions yet. We will do so before the conference and
present the results there, and we will keep our fingers
crossed that the fit will be good.

Acknowledgements
We would like to thank the participants of the Cognitive
Modeling class in Groningen in participating in the
discussion of these data, and Stefan Wierda for collecting
the data.

References
Anderson, J. R. (2007). How can the human mind occur in

the physical universe? New York: Oxford university
press.

Cleveland, W. S. (1981) LOWESS: A program for
smoothing scatterplots by robust locally weighted
regression. The American Statistician, 35, 54.

Lebiere, C., Gonzalez, C., & Martin, M. (2007). Instance-
based decision making model of repeated binary choice.
In proceedings of the 8th International Conference on
Cognitive Modeling. Ann Arbor, Michigan, USA.

Pitt, M. A., Kim, W., Navarro, D. J., & Myung, J. I. (2006).
Global model analysis by parameter space partitioning.
Psychological Review, 113, 57–83.

Roberts, S., & Pashler, H. (2000). How persuasive is a good
fit? A comment on theory testing. Psychological Review,
107(2), 358-367.

Salvucci, D. D., & Taatgen, N. A. (2008). Threaded
Cognition: An Integrated Theory of Concurrent
Multitasking. Psychological Review, 115(1), 101-130.

Schunn, C. & Wallach, D. (2005). Evaluating goodness-of-
fit in comparison of models to data. In: W. Tack (Ed.),
Psychologie der Kognition: Reden and Vorträge
anlässlich der Emeritierung von Werner Tack (pp. 115-
154). University of Saarland Press, Saarbrücken,
Germany.

Taatgen, N. A., Huss, D., Dickison, D. & Anderson, J. R.
(2008). The acquisition of robust and flexible cognitive
skills. Journal of Experimental Psychology: General,
137(3), 548-565.

Taatgen, N. A., van Rijn, H., & Anderson, J. (2007). An
Integrated Theory of Prospective Time Interval
Estimation: The Role of Cognition, Attention, and
Learning. Psychological Review, 114(3), 577-598.

van Rijn, H. & Taatgen, N.A. (2008). Timing of multiple
overlapping time intervals: How many clocks do we
have? Acta Psychologica, 129(3), 365-375.

Weaver, R. (2008). Parameters, predictions, and evidence in
computational modeling: a statistical view informed by
ACT-R. Cognitive Science, 32, 1349-1375.

252

The Evolution of a Goal-Directed Exploration Model:
Effects of Information Scent and GoBack Utility on Successful Exploration

Leonghwee Teo (teo@cs.cmu.edu)
Bonnie E. John (bej@cs.cmu.edu)

Human-Computer Interaction Institute, Carnegie Mellon University
5000 Forbes Ave. Pittsburgh, PA 15213 USA

Abstract

We explore the match of a computational information
foraging model to participant data on multi-page web search
tasks and find its correlation on several important metrics to
be too low to be used with confidence in the evaluation of
user interface designs. We examine the points of mismatch to
inspire changes to the model in how it calculates information
scent scores and how it assesses the utility of backing up from
a lower-level page to a higher-level page. The outcome is a
new model that qualitatively matches participant behavior
better than the original model, has utility equations more
appealing to “common sense” than the original equations, and
significantly improves the correlation between model and
participant data on our metrics.

Keywords: ACT-R; CogTool-Explorer; Computational Model;
Human-Computer Interaction; Information Foraging

Introduction
Predicting human performance to aid in the design of
interactive systems is an important practical use of
computational cognitive modeling. Models like SNIF-ACT
2.0 (Fu & Pirolli, 2007) and AutoCWW (Blackmon,
Kitajima, & Polson, 2005) focus on predicting user
exploration of websites. These models use the common
concepts of label-following and information scent
(infoscent). That is, they posit that the user’s choice is partly
determined by the semantic similarity between the user’s
goal and the options presented in the user-interface (UI).
Budiu and Pirolli (2007) and Teo and John (2008) began to
consider the 2-D spatial layout of the UI when predicting
exploration behavior. Budiu and Pirolli (2007) reported a
correlation between data and model of R2 = 0.56 for the
number of clicks to success and R2 = 0.59 for search times
in a Degree-Of-Interest (DOI) tree. Teo and John (2008) did
not report correlations, but their model successfully
predicted the effect of target position in 22 search tasks in a
two-column format. This paper furthers this work by
considering a multi-page layout of links in a website where
previous information is hidden as exploration progresses.

We first describe our metrics and why they are important.
We then present the tasks and the operation of a baseline
model. After presenting the quantitative performance of the
baseline model, we delve into some details of the model’s
performance to find inspiration as to how to improve the
model. Finally, we present the best model found to date and
discuss directions for future work.

Our Metrics
Ultimately, a UI designer would want a model to predict the
range of human behavior that would be observed in the real
world when using the interactive system, on metrics such as
number of errors and where they occur, performance time,
learning time and what was learned, effects of fatigue,
environmental factors, or emotion on performance, and even
levels of satisfaction or joy when using the system. No
computational model is up to that task at this writing, and
more modest metrics are used in current work.

For SNIF-ACT 2.0, Fu and Pirolli (2007) reported the
correlation between model and participants on number of
clicks on each link (R2 = 0.69 and 0.91 for two different
websites), the correlation for number of go-back actions for
all tasks (R2 = 0.73 and 0.80), and a table of percent of
model runs that succeeded on each task juxtaposed with the
percent of participants who succeeded on each task (R2 =
0.98 and 0.94, calculated from Fu and Pirolli, 2007, Figure
13). The first two metrics were for models run under the
model-tracing paradigm, that is, at each step the model was
allowed to choose its action but was re-set to the
participant’s action if it did not choose what the participant
chose; the last metric was for free-running models. For their
free-running model, DOI-ACT, Budiu and Pirolli (2007) did
not report percent success because their experiment
participants completed all tasks (and the model could run to
success on all but 2 of the 16 tasks), but instead reported the
correlation between the model and participants for number
of clicks to accomplish each task (R2 = 0.56) and total time
for each task (R2 = 0.59).

We will report similar metrics that are both indicative of
model goodness-of-fit and important to UI designers.
1. Correlation between model and participants on the

percent of trials succeeding on each task (R2%Success).
Percent success is common in user testing to inform UI
designers about how successful their users will be with
their design, so a high correlation between model and data
will allow modeling to provide similar information.

2. Correlation between model and participants on the
number of clicks on links to accomplish each task
(R2ClicksToSuccess). We eliminated unsuccessful trials
because some participants would click two or three links
and then do nothing until time ran out whereas others
continued to click (as did the model). Also, AutoCWW
(Blackmon, et al., 2005) uses this metric.

3. Correlation between model and participants on the
percent of trials succeeding without error on each trial
(R2%ErrorFreeSuccess). This measure indicates the

253

model’s power to predict which tasks need no
improvement and therefore no further design effort.

The Tasks
To test and improve our model, we chose a multi-page
layout used in AutoCWW experiments (Toldy, 2009,
Experiment 1), shown in Figure 1; Dr. Marilyn Blackmon
generously provided the participant log files from 36
exploration tasks performed on this layout. The participants
were given a search goal (at the top of each page) and had
130 seconds to complete each task. There were 44 to 46
valid participant trials recorded for each task.

CogTool-Explorer: Mechanisms & Parameters
We start our exploration with CogTool-Explorer (CT-E),
developed in the ACT-R cognitive architecture (Anderson,
et al., 2004) to account for the effects of 2-column layout on
link choice in web search tasks (Teo and John, 2008). CT-E
added ACT-R’s simulated “eyes” and “hands” to SNIF-
ACT 2.0 and interacts with a spatially accurate ACT-R
“device model” generated by CogTool (John, Prevas,
Salvucci, & Koedinger, 2004), including the position,
dimension and text label of every link on a webpage.

Given a text description of a goal and a device model with
at least one visible link, CT-E moves its visual attention to a
link, visually encodes the text label of the link and evaluates
its infoscent relative to the goal. Three ACT-R productions

then compete, (1) clicking on the best link so far, (2) reading
another link on this page, or (3) going back to the previous
page. If CT-E decides to click on the best link it has seen so
far, it looks back at that link, moves a virtual mouse pointer
over it, and clicks, bringing the next webpage into the
model’s visual field. If it decides to go back, the previous
page is brought into the model’s visual field. If it decides to
read another link, it moves its visual attention to the next
closest link and continues. Of course, this simple
see/decide/act cycle is controlled by mechanisms and
parameters that can be manipulated to produce the best
predictive model possible.

In more detail, CT-E uses ACT-R’s “eye” as described in
Anderson, et al. (2004) with Salvucci’s EMMA model of
visual preparation, execution and encoding (Salvucci, 2001),
a long-standing implementation within CogTool. A visual
search strategy adapted from the Minimal Model of Visual
Search (Halverson & Hornof, 2007) guides where to move
the eye. The strategy starts in the upper-left corner and
proceeds to look at the link closest to the model’s current
point of visual attention, moderated by its noise function.
This strategy will not look at a link more than once on each
visit to the web page. Other noise parameters and strategies
are possible (e.g., see Budiu and Pirolli, 2007), but as the
strategy and noise setting from Halverson and Hornof
(2007) produced good results in the two-column tasks in
Teo and John (2008), the models in this paper will not vary
any aspects of visual processing. Likewise, CT-E uses ACT-

Figure 1: Multi-Page Layout from Toldy (2009). Participants start on the top-level page (leftmost) and on selecting a link,
transition to 2nd-level pages. Participants may go back to the top-level page, or may select a link to go to a 3rd-level page.
3rd-level pages explicitly inform participants if they are on the correct path or not.

254

R’s standard “hand,” used in many CogTool models, and
will retain that mechanism through this paper’s exploration.

CT-E’s estimation of information scent has used latent
semantic analysis (LSA; Landauer, McNamara, Dennis, and
Kintsch, 2007) to calculate the semantic relatedness of the
search goal to links on the screen. We will continue using
LSA throughout this paper, although other estimation
procedures are possible (e.g., Fu and Pirolli (2007) and
Budiu and Pirolli (2007) used pointwise mutual
information). A noise function moderated the infoscent
values to reflect the variability a person might display when
assessing relatedness (baseline noise = ACT-R default = 1),
and a scaling factor of 50 (set by Teo and John, 2008)
transforms the infoscent values provided by LSA to the
range of values expected by SNIF-ACT 2.0.

CT-E uses the same equations as SNIF-ACT 2.0 to decide
which action to take based on what has been seen and
evaluated so far, equations which also achieved good results
in Teo and John (2008). These equations include two
parameters, k, a “readiness to satisfice” factor, and the
GoBackCost. Both of these were set to 5 in Fu and Pirolli
(2007), but Teo and John’s tasks required a k value of 600 to
fit the data well, which we will continue to use here. The
baseline GoBackCost parameter is set to Fu and Pirolli’s
value of 5.

Finally, when SNIF-ACT 2.0 went back to a page already
seen, the link associated with the page backed-up from was
marked as having been selected, and SNIF-ACT 2.0 would
not select it again (not reported in Fu and Pirolli, 2007, but
extracted from the SNIF-ACT 2.0 code). Presumably, since
Fu and Pirolli’s data come from naturalistic tasks, the link
color changed when a link had been selected and thus this
“perfect memory” was “in the world”. This mechanism is
also in CT-E’s baseline model.

Performance of the Baseline CT-E Model
We ran the baseline CT-E model until the model runs
converged. That is, we ran a set of 44-46 runs of each of the
36 tasks (equal to the number of valid participant trials on
each task, for a total of 1649 runs in each set) and calculated
the %Success for each task. We then ran an additional set,
combined it with the previous set to form a new combined
set and compared its values of %Success per task to the
previous set’s values. If all values were within 1% of each
other, we considered the model converged and stopped. If
any of the tasks had a %Success value greater than 1% from
its counterpart in the previous set, we ran an additional set,
combined it with the previous combined set to form a new
combined set and compared its values of %Success per task
to the previous combined set’s values. The baseline model
converged after 12 sets (~20,000 runs), with the following
calculated values for our metrics and their 95% confidence
intervals:

R2%Success = 0.28 (0.21, 0.35)
R2ClicksToSuccess = 0.36 (0.29, 0.43)
R2%ErrorFreeSuccess = 0.44 (0.37, 0.51)

These values are disappointing for UI design because
design practice requires far higher confidence in a model’s
predictions to be a useful alternative to user testing. These
values are also substantially lower than the comparable
values reported by other SNIF-ACT derivatives, SNIF-ACT
2.0’s R2%Success was 0.98 and 0.94 for the two websites
modeled (Fu & Pirolli, 2007) and DOI-ACT’s
R2ClicksToSuccess was 0.56 (Budiu & Pirolli, 2007).

Since the baseline CT-E model used the same utility
equations and most of the same parameters as SNIF-ACT
2.0, it is necessary to understand why the R2%Success
results are so different. Our first hypothesis is that different
data collection processes are to blame. Fu and Pirolli’s
(2007) data were from participants doing eight tasks on each
of two websites, at their leisure, on their own computers.
Their participants could abandon the task at will whereas the
Toldy’s tasks were collected in the lab and participants had
130s to complete each task (Toldy, 2009). Allowing the
participants to abandon tasks probably eliminated the most
difficult tasks with their higher variability. Not compelled to
continue until success, not a single participant in Fu and
Pirolli’s data succeeded on 4 of their 16 tasks, in contrast to
the range seen in Toldy’s tasks (average %Success=71%,
min=13%, max=100%). Since SNIF-ACT 2.0 also failed on
these tasks, these four points provided a strong anchor at the
origin for their R2%Success value. Another major difference
that might have led to better performance is that SNIF-ACT
2.0 used infoscent scores calculated with reference to only
the website in the task (E. Chi, personal communication,
June 18, 2010), whereas our infoscent scores were
calculated with reference to the college-level TASA corpus
(from Touchstone Applied Science Associates, Inc.). A
corpus comprised of the task website might have produced
infoscent scores with less noise (from word sense
ambiguity, etc.) that the more general college-level corpus.
Finally, simply switching tasks can illuminate deficiencies
in any model, which will be the focus of the rest of this
paper.

Inspirations for What to Change in the Model
Two glaring deficiencies in the behavior of the baseline
model, relative to that of participants, inspired changes in
the model. The first is that participants revisit links that
they clicked before (13% of their actions) and the model
never does. This means that the mechanism in SNIF-ACT
2.0 that perfectly remembers which links have been clicked
on and never re-selects them must be changed to allow the
possibility of matching the behavior in these data. We
cannot tell from the data whether a revisit is a deliberate
decision to click on the link a second time or that the
participant forgot that link had been clicked (the links in this
experiment did not change color when clicked); we chose to
model the latter with the following mechanism in our
baseline model. Each link is represented as a visual object
that has a “status” attribute whose value is set to “chosen”
when the link is clicked on by the model and then stored in
declarative memory. ACT-R’s decay mechanism governs

255

whether the fact that the link had been chosen will be
retrieved when it is next seen and evaluated by this model.
We set ACT-R’s base level learning activation parameter,
:bll, to 0.5 as recommended in the ACT-R tutorial (section
4.3), the retrieval activation threshold to -0.5 as shown in
section 4.2, and both the permanent noise, :pas, and the
instantaneous noise, :ans, to nil (section 4.5).

The second deficiency in the baseline model is that 22%
of the participants’ actions involve going back from a page
and only 7% of the models’ actions do. This behavior is
comparable to Fu and Pirolli’s 5% go-back actions, which,
we believe matched their data because they allowed their
participants to abandon tasks instead of going to
completion. This calls into question the SNIF-ACT 2.0
mechanisms that govern go-back behavior, that is, both the
GoBack utility equation and the GoBackCost parameter. We
will lower the GoBackCost from 5 to 1 to get the
exploration started and examine the GoBack utility equation
with a more detailed examination of the model behavior.

After making the two fundamental changes motivated by
global behavior of the baseline model (call this model
baseline++), we guided our investigation by examining
tasks where participants were least likely to be exploring in
a random fashion, i.e., on tasks where participants were
most successful. We sorted the 36 tasks by highest
%ErrorFreeSuccess and then focused on the top four tasks.

The third task in this list, to search for information about
pigeons (correct top-level link = “Life Sciences”, correct
2nd-level link = “Birds”) had infoscent scores that were all
very low and not widely distributed for the top-level
headings. Budiu and Pirolli (2007) discuss this problem as
well; misleading and/or non-discriminating infoscent scores
will plague any model and we did not consider this task
further for inspiration about what to change. However, the
other three tasks inspired three ways to change the
baseline++ model.

Refinement of Infoscent Values for Top-level links
The topmost task was to search for information about ferns
and its correct top-level link was “Life Sciences”. The 46
participants only selected other top-level links 8% of the
time and but went back from those 2nd-level pages to select
“Life Science” and then “Plants” (in all but 2 cases) to
complete the task. In contrast, the baseline++ model
selected other top-level links about 70% of the time before
selecting “Life Sciences”, and on some model runs it never
selected “Life Sciences” and failed the task.

One possible explanation for the model behavior was that
it did not look at “Life Science” before deciding to select a
link on the top-level page. When we examined the details of
the model runs, this was not the case, as the model runs did
see “Life Science” before selecting a link in over 95% of
first-visits to the top-level page. A second possible
explanation was that the model looked at too many links and
saw other higher infoscent links before selecting a link on
the top-level page. This also was not the case because, in all
model runs up to the point where it finished looking at “Life

Science”, if we forced the model to choose the best link so
far, it would have selected “Life Science” in over 60% of
the runs. A third possible explanation lies in the infoscent
values used by the model.

Given a particular goal, the baseline models followed
AutoCWW (Blackmon, et al., 2005) by using LSA to
compute an infoscent value for each link, based on the
cosine value between two vectors, one representing the
words in the goal description and the other the words in the
link text. To approximate how a reader elaborates and
comprehends the link text in relation to his or her
background knowledge, AutoCWW adds all the terms from
the LSA corpus that have a minimum cosine of 0.5 with the
raw text and a minimum word frequency of 50 to the raw
link text before using LSA. Kitajima, Blackmon and Polson
(2005) explained that “elaborated link labels generally
produce more accurate estimates of semantic similarity
(LSA cosine values).” Our baseline model used the same
method, thus, for the link “Life Science”, the words
“science sciences biology scientific geology physics life
biologist physicists” were added and then submitted to LSA
to compute the infoscent value.

AutoCWW uses a further elaboration method motivated
by UI layouts with links grouped into regions labeled with a
heading. Kitajima et al. (2005) explained that “readers scan
headings and subheadings to grasp the top-level
organization or general structure of the text”. To represent a
region, AutoCWW first elaborates the heading text as
described in the previous paragraph, and then adds all the
text and their elaborations from links in the same region.
The baseline model did not use this elaboration method for
top-level links because their subordinate links appeared on
2nd-level pages, different from Kitajima et al.’s assumption.
However, participants did practice trials on the same multi-
page layout as the actual trials, and perform all 36 test trials
on the same layout. Therefore, we would expect that this
experience would influence how participants assessed
infoscent of the top-level link. This reasoning motivated our
first refinement to the baseline++ model to better represent
these participants: for the infoscent of a top-level link, we
elaborate the top-level link and then add the text from all
links in the corresponding 2nd-level page. While this
refinement is similar to AutoCWW’s procedure, the
justifications are different. This refinement is also in line
with Budiu and Pirolli’s (2007) use of category-based scent,
but approximates their human-generated categories with an
automated process.

Refinement of Mean Infoscent of Previous Page
The second task on our list was to search for information
about the Niagara River. The baseline++ model selected the
correct link “Geography” on the top-level page, but went
back from the 2nd-level “Geography” page over 60% of the
time, while participants never did. To investigate, we looked
at how the model decided to go back. Recall that like SNIF-
ACT 2.0, after looking at and assessing the infoscent of a
link, the baseline CT-E models choose between reading

256

another link, selecting the best link seen so far, or going
back to the previous page using utility functions. The utility
functions of reading another link and selecting the best link
so far have both strong theoretical support (Fu & Pirolli,
2007) and empirical support from several studies that did
not use or emphasize go-back behavior (Fu & Pirolli, 2007
and Teo & John, 2008). However, the utility function for
going back has less support and was therefore a focus of our
attention. From SNIF-ACT 2.0, the baseline CT-E models
used the following GoBack utility equation.

 UtilityGoBack = MIS(links assessed on previous page)
 – MIS(links assessed on current page)
 – GoBackCost
 where MIS is Mean Information Scent [Eq. 1]

The infoscent values for the nine top-level links are

sensible: the correct link, “Geography”, has the highest LSA
value by an order of magnitude. After selecting the top-level
link with the highest infoscent and visiting the
corresponding 2nd-level page, Eq. 1 includes “Geography’s”
high scent in its first operand, which attracted the model
back to the top-level page. This behavior violates common
sense; since the model had just selected the best top-level
link to visit its 2nd-level page, it should not be pulled back to
the previous page by the infoscent of the selected link. This
reasoning inspired another refinement to the baseline++
model, changing Eq. 1 to Eq. 2:

UtilityGoBack = MIS(links assessed on previous page

 excluding the selected link)
 – MIS(links assessed on current page)
 – GoBackCost
 where MIS is Mean Information Scent [Eq. 2]

Refinement of Mean Infoscent of Current Page
The last task on our list of four was to find information
about the Hubble Space Telescope. While both participants
and model in this task selected the correct link “Physical
Science & Technology” on the top-level page, the model
went back from the corresponding 2nd-level page 50% of the
time, but participants never did. Inspection of the model
runs in the Hubble task revealed a different problem from
that in the Niagara River task, however. After selecting the
link with the highest infoscent and visiting the
corresponding 2nd-level page, if the first link the model saw
on that page had very low infoscent, the GoBack utility
would be high because the value of the second operand
would be low. This behavior also violates common sense;
since the model had just selected the best link on the top-
level page because it looked promising, the model should
carry that confidence into the next page and should not
immediately go back just because the first link it saw on the
2nd-level page did not relate to the task goal. This reasoning
inspired our last refinement to the baseline++ model,
changing Eq. 2 to Eq. 3:

UtilityGoBack = MIS(links assessed on previous page
 excluding the selected link)

 – MIS(links assessed on current page)
 including the selected link)
 – GoBackCost
 where MIS is Mean Information Scent [Eq. 3]

This change has a nice symmetry with the previous

change, carrying along the “confidence” inspired by the
high infoscent top-level link. If the selected link’s infoscent
score is very high compared to the other top-level links,
those other top-level links alone will not exert much pull to
go back. If the selected link’s infoscent score is high relative
to the first few links it sees on the 2nd-level page the model
will not go back until it “loses confidence” by seeing several
low infoscent links, thereby diluting the effect of the high
infoscent link that led the model to this page.

We ran one set of many preliminary models to get a feel
for the contributions of these changes. The combination of
all changes described here seemed to be the best model.

Performance of the Best Model So Far
With all the changes described above combined, we ran the
model to convergence (10 sets, a total of 16490 runs), and
attained the following calculated values for our metrics and

Table 1. Summary of Results. Gray shading indicates
mechanism and parameters that did not change.

Mechanism, Parameter,
or Metric	

Baseline
Model	

Best Model So
Far	

Visual processes	

ACT-R +
Salvucci, 2001 +
Halverson &
Hornoff, 2007 2	

No change	

Manual processes	
 ACT-R 2	
 No change	

Information Scent Process	

Heading-level input	
 link labels	
 link labels +
lower link labels	

Link-level input	
 link labels	
 No change	

Decision Process	

Click best link utility eq	
 SNIF-ACT2.01	
 No change	

k (readiness to satisfice)	
 6002	
 No change	

Read next link utility eq	
 SNIF-ACT2.01	
 No change	

GoBack utility equation	
 SNIF-ACT2.0:
Eq. 11	

Improved here
Eq. 3	

GoBackCost	
 51	
 1..	

Memory of selected links	
 Perfect1	

Imperfect
:bll = 0.5
:rt = -0.5	

:ans = nil
:pas = nil	

Metrics	

R2%Success	
 0.28
(0.21, 0.35)	

0.72
(0.66, 0.76)	

R2ClicksToSuccess	
 0.36
(0.29, 0.43)	

0.66
(0.60, 0.71)	

R2%ErrorFreeSuccess	
 0.44
(0.37, 0.51)	

0.82
(0.79, 0.85)	

1 from Fu & Pirolli, 2007
2 from Teo & John, 2008

257

their 95% confidence intervals (Table 1):
R2%Success = 0.72 (0.66, 0.76)
R2ClicksToSuccess = 0.66 (0.60, 0.71)
R2%ErrorFreeSuccess = 0.82 (0.79, 0.85)

Discussion and Future Work
The improved model presented above made large and
significant improvements on all our metrics over the
baseline model coming into this investigation. R2%Success
more than doubled and the other two metrics increased by
more than 50%. Although there is room for improvement,
these values are in the range where UI designers could use
them to identify the tasks at the extremes. That is, this
analysis identifies which tasks are sufficiently supported by
the interface that effort can be diverted to other areas and
which tasks are in most need of attention.

Future work will take at least two paths. First we must
systematically explore the benefits of the model
mechanisms and parameters described in this paper. We
have presented only the conjunction of these elements, with
a single set of parameters, but we will examine the
mechanisms’ individual and pairwise effects on model
performance and explore the parameter space before moving
on to other UI layouts and tasks.

Second, we should reconsider the metrics and how to use
them. Although we believe the metrics presented here are
both meaningful for goodness of fit and useful for UI
design, other metrics should be considered. For example, Fu
and Pirolli (2007) reported the correlation between the
number of go-back actions by the model and participants;
how might this help inform model improvements or design?
As a second example, consider root mean square error
(RMS error), a standard metric for quantifying the
difference between the values estimated by a model and
what is observed in empirical trials. UI designers often need
to know absolute quantities when making decisions about
design and development effort and cost trade-offs. Thus, a
low RMS error would be as valuable as a high correlation
(the RMS error did reduce for each metric with our
improved model, but are not yet <20% which is desirable
for UI design practice). In addition, we need to understand
how to combine or trade-off metrics against one another, as
it is unlikely that model exploration will produce the most
desirable levels of all metrics at once.

In the meantime, AutoCWW has shown it could be used
to improve the design of website links with only 54% of the
variance explained for ClicksToSuccess (Blackmon, et al.,
2005) and this improved version of CogTool-Explorer
exceeds that level. If these results can be shown to extend
beyond simple web search tasks, to other layouts, types of
interfaces, and tasks, CogTool-Explorer will be well on its
way to being a useful tool for design.

Acknowledgments
The authors thank the anonymous reviewers whose probing
questions improved the science reported in this paper and
Dr. Marilyn Blackmon for sharing the experiment data. This

research was supported in part by funds from IBM, NASA,
Boeing, NEC, PARC, DSO, ONR, N00014-03-1-0086. The
views and conclusions in this paper are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of IBM, NASA,
Boeing, NEC, PARC, DSO, ONR, or the U.S. Government.

References
ACT-R 6.0 Tutorial (June, 2010) Available for download at

http://act-r.psy.cmu.edu/actr6/units.zip, June 13, 2010.
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An integrated theory of the
mind. Psychological Review. 111, 4, 1036-1060.

Blackmon, M. H., Kitajima, M., & Polson, P. G. (2005).
Tool for accurately predicting website navigation
problems, non-problems, problem severity, and
effectiveness of repairs. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
CHI '05. ACM, New York, NY, 31-40.

Budiu, R. & Pirolli, P. (2007), Modeling navigation in
degree-of-interest trees. In N.A. Taatgen & H. van Rijn
(Eds.), Proceedings of the 31th Annual Conference of the
Cognitive Science Society (pp. 845-850). Austin, TX:
Cognitive Science Society.

Fu, W.-T., & Pirolli, P. (2007). SNIF-ACT: A cognitive
model of user navigation on the World Wide Web.
Human-Computer Interaction, 22, 355-412.

Halverson, T. & Hornof, A. J. (2007). A minimal model for
predicting visual search in human-computer interaction.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI '07. ACM, New
York, NY, 431-434.

John, B. E., Prevas, K., Salvucci, D. D., & Koedinger, K.
(2004). Predictive human performance modeling made
easy. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. CHI '04. ACM,
New York, NY, 455-462.

Kitajima, M., Blackmon, M. H. & Polson, P. G. (2005).
Cognitive architecture for website design and usability
evaluation: Comprehension and information scent in
performing by exploration. HCI International 2005.

Landauer,T. K., McNamara, D. S., Dennis, S., & Kintsch
W. (Eds). (2007). Handbook of Latent Semantic Analysis.

Salvucci, D. D. (2001). An integrated model of eye
movements and visual encoding. Cognitive Systems
Research, 1, 201-220.

Teo, L., & John, B. E. (2008). Towards a tool for predicting
goal-directed exploratory behavior, Proceedings of the
Human Factors and Ergonomics Society 52nd Annual
Meeting (pp. 950-954). Santa Monica, CA: Human
Factors and Ergonomics Society.

Toldy, M. E. (2009) The Impact of Working Memory
Limitations and Distributed Cognition on Solving Search
Problems on Complex Imformational Websites.
Unpublished Doctoral Dissertation, University of
Colorado – Boulder, Department of Psychology.

258

A Computational Model of Second-Order Social Reasoning

Leendert van Maanen (leendert@ai.rug.nl) & Rineke Verbrugge (rineke@ai.rug.nl)
Department of Artificial Intelligence, University of Groningen

P.O. Box 407, 9700 AK Groningen, The Netherlands

Abstract
This paper presents the first computational cognitive model of
second-order social reasoning. The model uses a decision tree
strategy to reason about the opponent’s behavior. We
hypothesize that a decision tree strategy requires (1)
declarative memory, and (2) working memory. Declarative
memory is required to retrieve successive reasoning steps,
while working memory is required to temporarily store these
reasoning steps while the next step is retrieved from memory.
The model fit on data from a social reasoning game supports
the validity of the model. This initial result leads to an explicit
prediction for an experiment in which the reasoning game is
combined with another task that requires the same cognitive
resources as hypothesized by the model. This work is a first
step towards understanding higher-order social reasoning
from a cognitive modeling perspective.

Keywords: reasoning; theory of mind; cognitive models;
ACT-R

Introduction

What is social reasoning?
The ability to successfully interact with others requires
knowledge on how your actions are going be interpreted by
others. Additionally, successful interaction requires the
ability to reason about the actions that other people might
take to respond to, or even to anticipate, your own actions.
(Verbrugge, 2009). A term that is often used in connection
with this ability is theory of mind (Premack & Woodruff,
1978). In this paper we will present a computational
cognitive model of second-order theory of mind, calling the
process second-order social reasoning.

Contrary to the case of first-order mental state attributions
such as "she plans to move her queen", second-order social
reasoning requires the ability to attribute mental states about
mental states to others, as in "she believes that I intend to
sacrifice my horse" (Perner & Wimmer, 1985). In higher-
order social reasoning, this ability is recursively applied for
successful behavior. The cognitive model presented in this
paper will be the first that explicitly addresses higher-order
social reasoning. We will present a theory on how people
reason in second-order social reasoning games, as well as
explicit predictions on how behavior changes if the task is
made more complex.

Second-order social reasoning has often been studied by
use of simple strategic games in which success is only
warranted if the players successfully anticipate each other’s
moves. A very simple example of such a game is tic-tac-toe
(also known as noughts-and-crosses), in which each player
has all information available on the playing board, and
players have to take into account what the optimal move is
for the opponent (that is, games of perfect information,

Osborne & Rubinstein, 1994). A more complex example is
Cluedo (Van Ditmarsch, 2002) in which not all information
is known to each player, and players also have to reason
about what information they will provide to their opponents
by making a move, in addition to reasoning about optimal
moves, for example, “I don't want Alice to know that I know
that she has the ace of hearts”. In this paper, we will focus
on a simpler game called Marble Drop in which all
information about the current game state is known. Marble
Drop is equivalent to the well-known centipede game
(Rosenthal, 1981) and will be discussed in detail in later
sections.

What are important questions in social reasoning?
Two issues stand out in studying social reasoning. The first
relates to human performance on games such as Marble
Drop. Up to this point we have described behavior as
“optimal” or “rational”, but it turns out that humans perform
significantly suboptimally on these games as the complexity
increases (Flobbe, Verbrugge, Hendriks, & Krämer, 2008;
Hedden & Zhang, 2002). Flobbe et al. for example found
that participants in a centipede game only correctly perform
75.5% of second-order games, whereas they are near-perfect
on the first-order games (97%).

The second issue relates to the role of memory in
reasoning tasks. Taking the perspective of others about your
own mental states and then incorporating that knowledge in
your own reasoning must require some form of working
memory. In this paper, we will present the first
computational model that explicitly addresses both issues.

After a brief overview of other models of social
reasoning, we will introduce our model. Then we will
present the model fit on relevant data and we will discuss
how this model can contribute new insights in the
understanding of social reasoning.

Formal models of social cognition
Social reasoning has been formally studied from a number
of perspectives. These perspectives differ in the amount of
cognitive validity that is considered. One perspective is to
study social cognition as an interactive game (Camerer,
2003). This game-theoretic perspective assumes that people
are rational agents, optimizing their gain by applying
strategic reasoning. However, many experiments have
shown that people are not completely rational in this sense.
For example, McKelvey and Palfrey (1992) have shown that
in a traditional centipede game participants do not behave
rationally. In this version of the game, the payoffs are
distributed in such a way that the optimal strategy is to
always end the game at the first move (i.e., Nash

259

equilibrium, Nash, 1951). However, in McKelvey and
Palfrey’s experiment participants continued the game for
some rounds before ending it. One interpretation of this
result is that the game-theoretic perspective fails to take into
account the reasoning abilities of participants. That is, due
to cognitive constraints such as working memory capacity,
participants may be unable to perform optimal strategic
reasoning, even if in principle they are willing to do so.

A different perspective, that focuses on cognitive validity
in developing formal models, is that of a cognitive
architecture (Anderson, 2007; Newell, 1990). Cognitive
models developed within this framework aim to explain
certain aspects of cognition by assuming only general
cognitive principles. However, the current cognitive models
that describe social interactions do not take second-order
reasoning into account. For example, cognitive models of
simple games exist in which it is important to know the
opponent’s behavior (e.g., Lebiere & West, 1999; West,
Lebiere, & Bothell, 2006). These cognitive models
demonstrate that declarative memory is important in playing
strategically. In the current work however, we are less
interested in how people adapt their strategy to an opposing
strategy, but rather we are studying the cognitive limitations
of explicit second-order reasoning. Related to this, Hendriks
and colleagues (e.g., Hendriks, Van Rijn, & Valkenier,
2007; Van Rij, Van Rijn, & Hendriks, in press) have studied
the development of first-order theory-of-mind in language
using computational cognitive modeling.

An ACT-R model of social reasoning
To provide a full model of second-order social reasoning,
we implemented our model in the cognitive architecture
ACT-R (Anderson, 2007). ACT-R aspires to explain all of
cognition using one theoretical framework. To achieve this,
the heart of ACT-R consists of a procedural memory
system, which contains condition-action pairs known as
production rules. Besides the procedural module, ACT-R
has designated modules for specific types of information.
For example, the visual module processes visual
information, whereas the declarative memory module
processes declarative or factual information. Each module
has a buffer that may contain one unit of information (a
chunk). If the current contents of all buffers in the system
matches the conditions of a particular production rule, that
rule fires and its actions are executed. Each action may refer
to an operation in one of the modules.

This general layout of the cognitive system enables the
development of models in which different kinds of
information can be processed at the same time, while each
module can only process one unit of information at a time.
Based on this feature, ACT-R predicts specific interference
effects if different aspects of a task require the same
cognitive resource at the same time (e.g., Borst, Taatgen, &
Van Rijn, 2010; Van Maanen & Van Rijn, 2010; Van
Maanen, Van Rijn, & Borst, 2009). In the discussion section
of the current paper we will use this feature of the

architecture to make explicit predictions for a particular
social reasoning task.

Two modules of ACT-R deserve extra attention in the
light of our model of second-order social reasoning: the
declarative memory module and the problem state module.
The declarative memory module retrieves information from
long-term memory, called chunks. Each chunk in memory is
represented by an activation value that represents the
likelihood that that item can be retrieved. If the activation
value drops below a certain minimal value (the retrieval
threshold), the related information is no longer accessible.
In that case, the system will report a retrieval failure after a
constant time factor. If the activation value is above the
retrieval threshold, the information is accessible. However,
the time needed to retrieve it from memory depends on how
active the item actually is. The more active, the faster the
retrieval will be. Connected to the declarative memory
module is a retrieval buffer, which may contain one
(retrieved) item at a time. If another item is retrieved, it is
stored in the retrieval buffer, with the previous item being
pushed back to long-term memory.

The problem state module (sometimes referred to as the
imaginal module) contains a buffer in which information
can be temporarily stored. Typically, this information
contains a subsolution to the problem at hand. In the case of
a social reasoning task, this may be the outcome of a
reasoning step that will be relevant in subsequent reasoning.
Storing information in the problem state buffer is associated
with a time cost (typically 200ms). The model that we
present in this paper relies on the combination of the
declarative module and the problem state buffer. That is, the
model retrieves relevant information from memory and
moves that information to the problem state buffer if new
information is retrieved from memory that needs to be
stored in the retrieval buffer.

Marble Drop game
To study the reasoning processes that are involved in social
reasoning, we developed a cognitive model of a reasoning
game in which in order to play optimally the players have to
anticipate each other’s moves. The particular game that was
analyzed and modeled is a variant of the centipede game
called Marble Drop (Meijering, Van Maanen, Van Rijn, &
Verbrugge, 2010).

Marble Drop is a marble run game containing trapdoors
(Figure 1). Players take turns in deciding whether to open
one trapdoor or the other. In each turn, opening one trapdoor
leads to the end of the game, whereas opening the other
trapdoor means that the game continues to the next bin on
the right and the opponent may choose which trapdoor to
open. If a player decides to end the game, both players
receive the credits that are associated with that stage of the
game. If a player decides to continue the game, the players
traverse to a new stage with which new credits are
associated. Because all credits are known in advance, both
players can reason about their opponent’s possible moves
further on in the game. The players can do this by applying

260

backward induction (Van der Hoek & Verbrugge, 2002;
Verbrugge & Mol, 2008). For example, a player can reason
that his opponent wants the highest payoff in bins C and D.
As a result the player knows the maximal payoff that he can
get from bins C and D, and can then compare that
information to his own payoff in bin B. If it is possible in a
particular game for a player to behave optimally by directly
predicting its opponent’s actions, we refer to this game as
being first-order. In a second-order game it is necessary to
predict the opponent’s predictions of ones own actions in
order to behave optimally. In principle, Marble Drop games
could be developed for third-order or even higher-order
games.

The Model
The model follows a backward induction strategy to predict
the opponent’s moves further on in the game. Hedden and
Zhang (2002) provide a decision tree analysis of this
process for their matrix version of the game.1 The model has
knowledge on how to solve Marble Drop games for all
possible distributions of payoffs over the bins of the marble
run game. That is, the model stores chunks containing
information on which payoffs to compare at each step. In
addition, chunks representing the magnitudes of the payoff
shades are stored in declarative memory, as well as chunks
representing the location of the payoffs on the screen.

1 an analysis that shows the logical equivalence of these games

can be found at http://www.ai.rug.nl/~leendert/Equivalence.pdf

Finally, chunks representing ordinal information are stored
in declarative memory. This means that the model contains
knowledge on the relative magnitudes of each combination
of payoff values.

A model run starts with the initial comparison of two
payoff values (Figure 2). For second-order games, that
initial comparison is always a comparison between the
player’s own payoffs in Bins C and D. First, it retrieves
from declarative memory where the first payoff is located
on the screen (Bin D in Figure 1). If it retrieves that
knowledge, the model attends Bin D and tries to retrieve the
magnitude of the observed payoff. At the same time, the
model stores the current comparison in the problem state
buffer, to free the retrieval buffer for the upcoming payoff
information.

Because in the experiment the payoffs are represented by
shaded marbles, the model has to retrieve the value
corresponding to the observed shade. Next, the model
retrieves the location information for the other payoff value
that is part of the current comparison. Again to free the
retrieval buffer, the payoff value of the first payoff is stored
in the problem state buffer. The payoff is attended and the
corresponding value is retrieved from memory. Finally, the
two values are compared by trying to retrieve a chunk with
ordinal information from memory. Based on the outcome of
this retrieval the model now retrieves a new payoff
comparison. For example (Figure 1), if the value in bin D
was smaller than the value in bin B, the model attends the
payoff in bin B, and compares that with the payoff in bin A.
If the value in bin D was larger than the value in bin B, then
the model attends the opponent’s payoff in bin D, and
compares that with the opponent’s payoff in bin C. The
model continues to compare payoffs following the decision
tree (Hedden & Zhang, 2002) until it reaches the bottom of
the tree. There, it decides its action based on the final
comparison.

Model fit The model was tested against data from a Marble
Drop task (Meijering et al., 2010). In the experiment the
participants were asked to solve zero-order, first-order, and
second-order Marble Drop problems. In all these conditions,
participants were instructed to indicate the optimal first

Figure 1. The interface of a second-order Marble Drop

game. Color shades of the marbles in the experiment are
represented by numbers.

Figure 2. Flow chart of the model activity in ACT-R modules. The width of each box denotes the duration of each

stage. Arrows indicate possible next actions.

261

move as quickly as possible. That is, even in second-order
games participants had to make only one choice. However,
because the opponent always played rationally (and the
participants were informed of this), there was always only
one optimal choice.

 Figure 3 presents the model fit on both response times
and accuracy of the first moves. The fit on the response
times is very good (R2 = 1.0; RMSE = 0.42 s). The fit on the
accuracy data is slightly less (RMSE = 0.067, R2 = 0.2), but
this may be attributed to lack of data, making the estimated
means less reliable.2

As the order of the Marble Drop reasoning problems
increases, the model requires more time to respond. This is
because more comparisons have to be made, and therefore
more information has to be retrieved from declarative
memory and stored in the problem state buffer. These steps
take time, increasing the response time for higher-order
reasoning problems. Because of the similar behavioral
patterns between model and data, this study supports the
view that participants in this task follow the same reasoning
steps as the model does. That is, participants in a social
reasoning game follow a decision tree to make the correct
decision.

Discussion & Predictions

First model of second-order social reasoning
The ACT-R model of second-order social reasoning
described in this paper is the first cognitive model to
account for second-order social reasoning. Other cognitive
models in the field of social reasoning have either not
explicitly addressed orders of reasoning (e.g., Lebiere &
West, 1999; West et al., 2006), or have focused on first-
order reasoning only (e.g., Hendriks et al., 2007; Van Rij et
al., in press).

Because the model is based on Hedden and Zhang’s
(2002) decision tree analysis of behavior in 2x2 matrix
games, the model provides support for their theory of

2 As the data presented here are actually the practice block of the

experiment performed by Meijering et al. (2010), the number of
observations per participant was 4 for zero-order games, and 8 for
first and second-order games.

second-order social reasoning. The model can be considered
as a cognitively plausible implementation of that analysis.

Model predictions
Our model can be used to provide explicit predictions
regarding the use of memory in second-order social
cognition (Verbrugge, 2009). In particular, the model relies
on various declarative memory retrieval steps, in
combination with storage of information in a problem state
buffer. An explicit prediction would be that second-order
theory of mind reasoning would be affected by performing
another task at the same time that would require the same
resources (Borst et al., 2010). To our knowledge, such an
experiment has not been done yet. Therefore, in the
remainder of this paper we would like to propose such an
experiment, combined with explicit, quantitative predictions
provided by the model. By providing the predictions of our
model before actually doing the experiment, we counter the
criticism that insufficiently constrained cognitive models
can be made to fit any dataset (Roberts & Pashler, 2000).

A task that would require the same resources as
hypothesized for social reasoning is a tone counting task.
Participants are presented with tones of two different pitches
and are requested to count the number of tones for each
pitch. This task would tap into the same cognitive resources
as hypothesized for the Marble Drop reasoning task, as
maintaining two counters at the same time can be
considered a heavy working memory load. A control
condition in this task would be one in which participants
would not need to maintain a counter, but rather just say
“high” or “low” every time they heard a tone of a particular
(higher or lower) pitch. Because the control task does not
require maintaining a counter (a problem state), concurrent
execution of this task and the social reasoning task does not
pose a conflict, and the different stages of the tasks could be
interleaved without much loss of time (Anderson, Taatgen,
& Byrne, 2005).

A dual-task model of social reasoning A simple model of
this task would involve maintaining the current counter in a
problem state buffer. In addition, the model would – upon
hearing a tone – check whether the pitch of the tone is the
same as the pitch of the previous tone. Specifically, the
model compares the pitch of the tone with the pitch

Figure 3. Model fit to data from Meijering et al. (2010). Left: Response time, Right: Accuracy.

262

associated with the counter in the problem state buffer. If
this is the case, the model then retrieves the subsequent
number of the stored counter from memory. If this is not the
case, the model retrieves the other counter from memory,
and based on that retrieves the subsequent number.

Such a model would require both the problem state buffer
and the retrieval buffer, resulting in interference with
performance on the Marble Drop game. For the control task,
both the retrieval and the problem state resources are not
required. The model of the control task consists of a simple
stimulus response mechanism: When a tone of a particular
pitch is heard, the model responds with a vocal response
(either “high” or “low”).

We adapted our model to also perform the tone counting
task. The model was extended with a control mechanism
that maintained which task was currently given preference
(Salvucci & Taatgen, 2008). The model performs the
Marble Drop task until a tone is presented. At that point a
switch is made to the counting task. If necessary, the model
tries to retrieve the current count and restore the problem
state of the counting task. Then, it retrieves the subsequent
number from declarative memory followed by a vocal
response saying the number. After that, the model tries to
restore the problem state of the Marble Drop task by
retrieving a comparison from memory.

Model predictions We ran the second-order reasoning
model in three conditions for a sufficient number of trials to
obtain a stable estimate of the predicted response. In the
first condition (Single) the model only performed the
Marble Drop task. In the Control condition, the model
performed the Marble Drop task in combination with the
simple response task. The tones were presented with
stimulus onset asynchronies (SOAs) of 2s, 5s, 8s, 11s, 14s,
17s, 20s, and 23s. Only those tones were presented that
preceded the model response on the reasoning task. In the
Interference condition, the model performed the Marble
Drop task in combination with the tone counting task. The
tones were presented similarly as in the Control condition.

Figure 4 presents the predicted reaction time and accuracy
of the dual-task model as a function of the number of tones
presented. The left-most data point in each graph (where the
number of tones is zero) represents the behavior of the
model under single-task conditions. This is the same as the
model fit presented in Figure 3. For the Control condition

the model predicts an increase in the response time, and no
change in accuracy. This is because the single response task
used as secondary task in the Control condition does not
share any resources with the Marble Drop task. Thus,
responding to the tones only adds time to the Marble Drop
response, but does not change the difficulty of the task. In
contrast, the tone counting task that the model performs in
the Interference condition adds considerable time to the
response. In addition, the accuracy of the model decreases
as well. Moreover, the mean response time in the
Interference condition increases dramatically to 27s (Figure
5), whereas the mean response time in the control condition
is 8.3s, which is only slightly above the mean response time
of the single response task (7.7s). Our interpretation of these
results is that the tone counting task and the Marble Drop
task share a cognitive resource. In particular, both tasks
require a problem state buffer for maintaining intermediate
results. Swapping these problem states takes extra time and
is prone to errors, explaining the increased reaction times
and the decreased accuracy.

Conclusion
This paper presents the first computational cognitive model
of second-order social reasoning. The model uses a decision
tree strategy to reason about the opponent’s behavior in a
social reasoning game. We hypothesize that a decision tree
strategy requires (1) declarative memory, and (2) working
memory. Declarative memory is required to retrieve
successive reasoning steps, while working memory is
required to temporarily store these reasoning steps while the

Figure 5. Predicted mean response time for the dual-task

model. Left: Response time, Right: Accuracy.

Figure 4. Model predictions for the dual-task social reasoning task. Left: Response time, Right: Accuracy.

263

next step is retrieved from memory. We implemented
working memory as a problem state buffer using the ACT-R
cognitive architecture (Borst et al., 2010). The model fit on
data from a social reasoning game called Marble Drop
(Meijering et al., 2010) supports the validity of the model.
This initial result leads to an explicit prediction for an
experiment in which the reasoning game is combined with
another task that requires the same cognitive resources as
hypothesized by the model. In particular, if the other task
also requires the problem state resource, the interference of
that task is substantial. On the other hand, a secondary task
that is equivalent but does not require the problem state
resource exhibits minimal interference. This work is a first
step towards understanding higher-order social reasoning
from a cognitive modeling perspective.

Acknowledgements
This research was supported by NWO Vici grant NWO-
277-80-001 awarded to Rineke Verbrugge.

References
Anderson, J. R. (2007). How can the human mind occur in

the physical universe? New York: Oxford UP.
Anderson, J.R., Taatgen, N.A. & Byrne, M.D. (2005).

Learning to Achieve Perfect Time Sharing: Architectural
Implications of Hazeltine, Teague, & Ivry (2002). Journal
of Experimental Psychology: Human Perception and
Performance, 31(4), 749-761.

Borst, J. P., Taatgen, N. A., & Van Rijn, H. (2010). The
problem state: A cognitive bottleneck in multitasking.
Journal of Experimental Psychology: Learning, Memory,
and Cognition, 36(2), 363-382.

Camerer, C. F. (2003). Behavioral game theory:
Experiments in strategic interaction. Princeton: Princeton
UP.

Flobbe, L., Verbrugge, R., Hendriks, P., & Krämer, I.
(2008). Children's application of theory of mind in
reasoning and language. Journal of Logic, Language and
Information, 17(4), 417-442.

Hedden, T., & Zhang, J. (2002). What do you think I think
you think?: Strategic reasoning in matrix games.
Cognition, 85(1), 1-36.

Hendriks, P., Van Rijn, H., & Valkenier, B. (2007).
Learning to reason about speaker's alternatives in
sentence comprehension: A computational account.
Lingua, 117(11), 1879-1896.

Lebiere, C., & West, R. L. (1999). A dynamic ACT-R
model of simple games, Proceedings of the Twenty-First
Annual Conference of the Cognitive Science Society (pp.
296-301): Erlbaum.

McKelvey, R. D., & Palfrey, T. R. (1992). An experimental
study of the centipede game. Econometrica, 60(4), 803-
836.

Meijering, B., Van Maanen, L., Van Rijn, H., & Verbrugge,
R. (2010). The facilitative effect of context on second-
order social reasoning. In R. Catrambone & S. Ohlsson
(Eds.), Proceedings of the 32nd Annual Conference of the

Cognitive Science Society. Austin, TX: Cognitive Science
Society.

Nash, J. (1951). Non-cooperative games. The Annals of
Mathematics, 54(2), 286-295.

Newell, A. (1990). Unified theories of cognition.
Cambridge, MA: Harvard UP.

Osborne, M., & Rubinstein, A. (1994). A course in game
theory. Cambridge, MA: MIT Press.

Perner, J. & Wimmer, H. (1985). "John thinks that Mary
thinks that...": Attribution of second-order beliefs by 5- to
10-year old children. Journal of Experimental Child
Psychology, 5, 125-137.

Premack, D., & Woodruff, G. (1978). Does the chimpanzee
have a theory of mind? Behavioral and Brain Sciences, 4,
515-526.

Roberts, S., & Pashler, H. (2000). How persuasive is a good
fit? A comment on theory testing. Psychological Review,
107(2), 358-367.

Rosenthal, R. (1981). Games of perfect information,
predatory pricing, and the chain store. Journal of
Economic Theory, 25, 92-100.

Salvucci, D. D., & Taatgen, N. A. (2008). Threaded
cognition: An integrated theory of concurrent
multitasking. Psychological Review, 115(1), 101-130.

Van der Hoek, W., & Verbrugge, R. (2002). Epistemic
logic: A survey. In L. A. Petrosjan & V. V. Mazalov
(Eds.), Game theory and applications (Vol. 8, pp. 53-94).
New York: Nova Science.

Van Ditmarsch, H. P. (2002). The description of game
actions in cluedo. In L. A. Petrosian & V. V. Mazalov
(Eds.), Game theory and applications (Vol. 8, pp. 1-28).
Hauppage, NY: Nova Science Publishers.

Van Maanen, L., & Van Rijn, H. (2010). The locus of the
Gratton effect in picture-word interference. Topics in
Cognitive Science, 2(1), 168-180.

Van Maanen, L., Van Rijn, H., & Borst, J. P. (2009). Stroop
and picture-word interference are two sides of the same
coin. Psychonomic Bulletin & Review, 16(6), 987-999.

Van Rij, J., Van Rijn, H., & Hendriks, P. (in press).
Cognitive architectures and language acquisition: A case
study in pronoun comprehension. Journal of Child
Language.

Verbrugge, R. (2009). Logic and social cognition: The facts
matter, and so do computational models. Journal of
Philosophical Logic, 38(6), 649-680.

Verbrugge, R., & Mol, L. (2008). Learning to apply theory
of mind. Journal of Logic, Language and Information,
17(4), 489-511.

West, R. L., Lebiere, C., & Bothell, D. (2006). Cognitive
architectures, game playing, and human evolution. In R.
Sun (Ed.), Cognition and multi-agent interaction: From
cognitive modeling to social simulation (pp. 103-123).
New York, NY: Cambridge UP.

Wickelgren, W. A. (1977). Speed-accuracy tradeoff and
information-processing dynamics. Acta Psychologica,
41(1), 67-85.

264

Neural Correlates of Temporal Credit Assignment

Matthew M. Walsh (mmw187@andrew.cmu.edu)
Department of Psychology, Carnegie Mellon University, 342C Baker Hall

Pittsburgh, PA 15213

John R. Anderson (ja@cmu.edu)
Department of Psychology, Carnegie Mellon University, 345D Baker Hall

Pittsburgh, PA 15213

Abstract

When feedback follows a sequence of decisions, how do
people assign credit to intermediate actions within the
sequence? To explore this temporal credit assignment
problem, we recorded event-related potentials (ERPs) as
participants performed a sequential decision task. Our ERP
analyses focused on feedback-related negativity (FRN), a
component thought to reflect neural reward prediction error.
The experiment showed that FRN followed negative feedback
and negative intermediate states. This outcome suggests that
participants evaluated intermediate states in terms of expected
future reward, and that these evaluations guided acquisition of
earlier actions within sequences. We compared these results
to the predictions of three reinforcement learning models that
address temporal credit assignment: Actor-critic, Q-Learning,
and SARSA.

Keywords: Actor-critic; ERP; Q-Learning; SARSA;
Temporal credit assignment; Temporal difference learning.

Introduction
To behave adaptively, humans and animals must learn to
predict the outcomes of their actions. Reinforcement
learning (RL) provides a mechanism for acquiring this
knowledge through trial-and-error interactions with an
environment (Sutton & Barto, 1998). According to many
RL models, the difference between expected and actual
outcomes, or “reward prediction error”, provides a learning
signal. By revising estimates based on prediction error,
humans and animals learn to anticipate outcomes, and
consequently, to select actions that maximize reward and
minimize punishment.

RL methods have influenced contemporary
neuroscientific theories. For example, one popular RL
method, temporal difference (TD) learning, has been used to
characterize the phasic response of midbrain dopamine
neurons to rewarding and punishing events (Schultz, Dayan,
& Montague, 1997). Several studies have confirmed that the
response of these neurons depends on reward magnitude and
reward likelihood (Tobler, Fiorillo, & Schultz, 2005).
Rather than responding directly to experienced outcomes,
however, these neurons respond to the difference between
expected and actual rewards. Thus, midbrain dopamine
neurons convey information about TD prediction error.

Recent ERP research with humans has revealed a
frontocentral negative component that appears 200-300 ms
after the display of error feedback (Gehring & Willoughby,
2002; Miltner, Braun, & Coles, 1997). Three features of this
feedback-related negativity (FRN) indicate that it too

reflects neural reward prediction error. First, FRN is larger
after unexpected than expected outcomes (Holroyd et al.,
2009). Second, FRN correlates with behavioral adjustment
(Cohen & Ranganath, 2007). Third, neuroimaging
experiments, source localization studies, and single cell
recordings suggest that FRN originates from the anterior
cingulate cortex (ACC), a region implicated in goal-direct
behavioral selection (Holroyd et al., 2009). These ideas have
been synthesized in the reinforcement learning theory of the
error-related negativity (RL-ERN), which proposes that
midbrain dopamine neurons transmit a prediction error
signal to the ACC, and that this signal strengthens or
weakens the actions that precipitated outcomes (Holroyd &
Coles, 2002).

Although the RL-ERN theory has stimulated a great deal
of research (for review, see Nieuwenhuis et al., 2004),
feedback immediately follows actions in most studies of
FRN. Similarly, although RL methods have stimulated a
great deal of psychological research (for review, see Fu &
Anderson, 2006), most studies of RL in humans also
involve relatively simple tasks. These scenarios contrast
with complex control problems we face in daily life. One
such problem is temporal credit assignment. When feedback
follows a sequence of decisions, how should credit be
assigned to intermediate actions within the sequence?

Here, we consider three TD learning methods that address
the temporal credit assignment problem: Actor-critic, Q-
Learning, and SARSA. These methods evaluate actions in
terms of immediate and future reward. For example, an
action may bring an individual into direct contact with
reward. Alternatively, an action may bring an individual
into a state associated with a high probability of future
reward. How should future reward be calculated? In the
actor-critic model, future reward is treated as the value of
potential options, weighted according to the probability of
selecting each (Sutton & Barto, 1998). In Q-Learning,
future reward is treated as the value of the best potential
option (Watkins & Dayan, 1992). Finally, in SARSA, future
reward is treated as the value of the future option that is
actually selected (Rummery & Niranjan, 1994).

In the current experiment, we recorded ERPs as
participants performed a sequential decision task. The initial
decision in each sequence brought participants to an
intermediate state associated with a high or a low
probability of receiving positive feedback, and the final
decision was followed by positive or negative feedback.
Based on the idea that FRN reflects neural prediction error

265

(Holroyd & Coles, 2002), we tested two main hypotheses.
First, FRN should be greater for unexpected than for
expected outcomes. This follows from the fact that RL
models anticipate probable outcomes. Consequently, model
prediction error is greater for unexpected than for expected
outcomes. Second, if credit assignment occurs “on the fly”,
as predicted by the TD model, negative feedback and
negative intermediate states will evoke FRN. Alternate
methods exist for performing temporal credit assignment
(e.g. model-based RL, eligibility traces). If credit is only
assigned at the end of the decision episode, as predicted by
these alternate models, only negative feedback will evoke
FRN. In addition to testing these two hypotheses, we
compared predictions of three TD models, actor-critic, Q-
Learning, and SARSA, to the behavioral and neural results
of the experiment.

Experiment
Task
A pair of letters appeared at the start of each trial. A cue
appeared after participants selected a letter. A second pair of
letters followed the cue. Feedback appeared after
participants selected a second letter. Participants completed
2 experiment blocks of 400 trials. 13 graduate and
undergraduate students participated in the experiment.

Within each block, one pair of letters appeared at the start
of all trials (Figure 1). When participants chose the correct
letter in the first pair (“J” in this example), a positive and a
negative cue appeared equally often. When they chose the
incorrect letter in the first pair (“R”), a negative cue always
appeared. A second pair of letters followed the cue. The
correct letter in the second pair depended on the cue
identity. The correct letter for the positive cue (“V” in this
example) was rewarded with 80% probability, and the
correct letter for the negative cue (“T”) was rewarded with
20% probability. Incorrect letters were never rewarded.
Consequently, optimal selections yielded positive feedback
for 80% of trials involving the positive cue (0.8 Cue) and
for 20% of trials involving the negative cue (0.2 Cue). The
symbols “#” and “*” denoted positive and negative
feedback.

Recording
The EEG was recorded from 32 Ag–AgCl sintered
electrodes (10–20 system), and recordings were
algebraically re-referenced offline to the average of the right
and left mastoids. The vertical EOG was recorded as the
potential between electrodes placed above and below the
left eye, and the horizontal EOG was recorded as the
potential between electrodes placed at the external canthi.
The EEG and EOG signals were amplified by a Neuroscan
bioamplification system with a bandpass of 0.1-70 Hz and
digitized at 250 Hz. Eye blinks were corrected using ICA.
800 ms epochs were extracted from the continuous
recording and these epochs were baseline corrected relative
to the 200 ms prestimulus interval.

Figure 1. Experiment states, transition probabilities, and

outcome likelihoods.

Feedback-locked ERPs were analyzed for trials where
participants selected the correct letter for the cue, and FRN
was calculated as the difference between ERP waveforms
after losses and wins. FRN amplitude is often confounded
by changes in P300 amplitude, a component that is also
sensitive to event likelihoods. Consequently, we compared
losses and wins that were equally likely by creating an
“expected outcome” difference wave (0.2 Cue losses – 0.8
Cue wins), and an “unexpected outcome” difference wave
(0.8 Cue losses – 0.2 Cue wins). FRN was measured as
mean voltage of the difference waves from 200-300 ms after
feedback onset, relative to the 200 ms prestimulus baseline.
Cue-locked ERPs were analyzed for trials where
participants selected the correct starting letter (after which
the probability of receiving the 0.2 or the 0.8 Cue was
equal). Cue FRN was measured as mean voltage of the cue
difference wave (0.2 Cue – 0.8 Cue) from 200-300 ms after
cue onset.

Models
Actor-critic (Sutton & Barto, 1998)
The actor-critic (AC) model computed a state-action value
function, Q(s,a), and a state value function, V(s). The state-
action value function, which corresponded to the actor,
enabled action selection. The state-value function, which
corresponded to the critic, enabled evaluation of action
consequences. Actions affected the transition from state st to
st+1, and actions affected the presentation of reward, rt+1.
Following the selection of an action, at, the critic issued an
evaluation in the form of prediction error, δ,

δ = rt +1 + γ • V st +1()[]− V st(). (1)

266

The AC model maximized the combined immediate, rt+1,
and future reward, V(st+1), and future reward was discounted
by γ (γ < 1.0). The value of the previous state, V(st), was
updated according to

V st()← V st()+α •δ , (2)

where α controlled the learning rate (0.0 < α < 1.0). The
value of the previous state-action pair, Q(st,at), was updated
according to

() () δα •+← tttt asQasQ ,, . (3)

Q-Learning (Watkins & Dayan, 1992)
The AC and Q-Learning models differed in two ways. First,
the Q-Learning model used an action-state value function,
Q(s,a), to select actions and to evaluate outcomes. Second,
the Q-Learning model treated future reward as the value of
the optimal selection policy in state t + 1,

()[] ()tttat asQasQr ,,max 11 −•+= ++ γδ . (4)

As in the AC model, future reward was discounted by γ, and
the state-action value function was updated according to
Equation 3.

SARSA (Rummery & Niranjan, 1994)
Like the Q-Learning model, the SARSA model only
required an action-state value function, Q(s,a). Unlike the
Q-Learning model, however, the SARSA model treated
future reward as the value of the actual state-action pair
selected in state t + 1,

δ = rt +1 + γ • Q st +1,at +1()[]− Q st ,at(). (5)

As with the AC and Q-Learning models, future reward was
discounted by γ, and the state-action value function was
updated according to Equation 3.

To summarize, all models used δ to learn the values of the
state-action pairs that comprised the experiment task (Figure
1), and all models sought to select actions that maximized
immediate and future reward. Although the initial selection
in each trial was not followed by immediate reward (i.e. rt+1
= 0), the initial selection was followed by future reward
associated with a subsequent state (AC model), or a
subsequent state-action pair (Q-Learning and SARSA
models). As such, prediction error for the initial selection
was calculated as the difference between discounted future
reward and the value of the first state (AC model), or the
value of the first state-action pair (Q-Learning and SARSA
models). Prediction error for the final selection was
calculated as the difference between immediate reward and
the value of the second state (AC model), or the value of the
second state-action pair (Q-Learning and SARSA models).

Positive feedback had a value of 1.0 and negative feedback
had a value of 0.01.

Model predictions were based on 500 simulations. All
state and state-action pairs began with values of 0.5 and
values were updated according to prediction error. In each
trial, logistically distributed noise was added to state-action
values, and the state-action pair with the greatest value was
selected. Two model parameters, learning rate (α = .05) and
the temporal discounting factor (γ = 0.8), were fixed
according to values reported in Fu & Anderson (2006).
Interestingly, when α and λ were treated as free parameters,
mean squared error (MSE) for each model was minimized at
values of α and γ within ±0.02 of their fixed values.
Selection noise (t, defined as the standard deviation of the
logistically distributed noise added to state-action pairs)
remained as a free parameter. We compared model
selections to participant performance. Additionally, we
computed the difference in δ for expected feedback (0.2 Cue
losses – 0.8 Cue wins), unexpected feedback (0.8 Cue losses
– 0.2 Cue wins), and cues (0.2 Cue – 0.8 Cue) to derive
model FRN. We then fit model FRN to observed FRN using
a slope term (m) and a zero intercept.

Results
Behavioral Results
Selection accuracy varied by choice, F(2,24) = 10.33, p <
.001, and selection accuracy increased by block half,
F(1,12) = 102.54, p < .0001 (Figure 2). Selection times for
correct responses did not vary by choice, F(2,24) = 2.47, p >
.1, or block half, F(1,12) = 2.55, p > .1.

ERP Results
We first analyzed feedback-locked ERPs. Waveforms
showed a pronounced negativity from 200-300 ms after loss
feedback (Figure 3). This FRN (loss – win) appeared to be
greater for unexpected than for expected outcomes. A 3
(site: Fz, Cz, Pz) by 2 (outcome likelihood: expected,
unexpected) ANOVA on FRN amplitude revealed effects of
site, F(2,24) = 10.91, p = .005, and outcome likelihood,
F(1,12) = 13.26, p = .003. FRN was greater for unexpected
than for expected outcomes at site Fz, t(12) = 3.69, p = .003.
We also considered FRN over the first and the second
halves of blocks (Figure 5). A 2 (outcome likelihood) by 2
(block half) ANOVA at Fz showed an effect of outcome
likelihood, F(1,12) = 11.68, p = .005, but not block half,
F(1,12) = 0.10, p > .1. Although the interaction was not
significant, F(1,12) = 3.13, p > .1, experience caused FRN
to increase for unexpected outcomes and to decrease for
expected outcomes2.

We then analyzed cue-locked ERPs. A 3 (site) by 2 (cue)
ANOVA revealed a nonsignificant effect of site, F(2,24) =

1 Because the model used a soft-max decision policy, choice

proportions depended only on the absolute differences between Q-
values. Consequently, changes to the noise parameter, t, can
accommodate a wide range of positive and negative reward values.

2 In a subsequent experiment with a larger sample size, this
interaction reached significance.

267

0.24, p > .1, a marginal effect of cue, F(1,12) = 3.05, p = .1,
and a nonsignificant interaction, F(2,24) = 1.78, p > .1.
ERPs were relatively more negative for 0.2 than for 0.8
Cues at site Fz, but the effect failed to reach significance,
t(12) = 1.77, p = .1. When we considered the first and the
second halves of blocks separately, however, a different
picture emerged (Figure 4). A 2 (cue) by 2 (block half)
ANOVA at Fz revealed a significant interaction between
cue and block half, F(1,12) = 6.56, p = .025. In the first half
of blocks, ERPs did not vary by cue, t(12) = .46, p > .1, but
in the second half of blocks, ERPs were relatively more
negative for 0.2 than for 0.8 Cues, t(12) = 2.76, p = .017.
The discovery of cue FRN indicates that participants
evaluated intermediate outcomes in terms of future reward,
as predicted by the temporal difference models.

Figure 2. Selection accuracy for start pair, 0.8 Cues, and 0.2
Cues by block half and for participants (bars), AC (squares),

Q-Learning (circles), and SARSA (triangles).

Model Performance
For each model, we estimated the value of noise, t, that best
accounted for selection accuracy over the first and second
halves of experiment blocks. For the Q-Learning and
SARSA models, MSE was minimized at t = 0.1 (Q-
Learning: MSE = 0.002, r2 = 0.90; SARSA: MSE = 0.002,
r2 = 0.90). For the AC model, MSE was minimized at t =
0.2 (MSE = 0.004, r2 = 0.71). As seen in Figure 2, all
models displayed effects of choice and block half like those
seen for participants. Additionally, the Q-Learning and
SARSA models, which were structurally most similar,
yielded nearly identical predictions to one another (r2 =
0.99). Finally, the AC model outperformed participants and
the other two models over the second half of blocks.

Next, we examined whether FRN related to model δ. To
do so, we computed model FRN as the difference in δ for
expected feedback, unexpected feedback, and cues. For each
model, we estimated the value of the slope parameter, m,
that best accounted for FRN over the first and second halves
of experiment blocks. For the Q-Learning and SARSA
models, MSE was minimized at m = 2.6 (Q-Learning: MSE
= 0.295, r2 = 0.85; SARSA: MSE = 0.294, r2 = 0.85). For

the AC model, MSE was also minimized at m = 2.6 (MSE =
0.262, r2 = 0.86). As seen in Figure 5, all models predicted
that cue FRN would increase with experience, and that FRN
for unexpected outcomes would increase with experience
while FRN for expected outcomes would decrease with
experience. These trends were observed.

Figure 3. ERPs evoked by unexpected and expected losses
and wins at site Fz (left panels). Scalp voltage topography
for loss – win comparison from 200-300 ms (right panels).

Figure 4. ERPs evoked by 0.2 and 0.8 Cues for the first and

the second halves of blocks at site Fz (left panels). Scalp
voltage topography for 0.2 Cue – 0.8 Cue comparison from

200-300 ms (right panels).

268

Figure 5. FRN for unexpected outcomes, expected
outcomes, and cues by block half and for participants (bars),
AC (squares), Q-Learning (circles), and SARSA (triangles).

The behavioral results favored the Q-Learning and

SARSA models. The AC model outperformed participants
and the other two models over the second half of blocks.
Performance differences between models related to the
nuanced meaning of state-action pairs, Q(s,a), for each. In
the Q-Learning and SARSA models, Q-values approximate
values of state-action pairs. In the AC model, Q-values
approximate selection preferences that maximize the state-
value function, V(s). Because a deterministic selection
policy maximized the state-value function, V(s), in our task,
Q-values in the AC model became increasingly polarized
until near-deterministic selections emerged. The same effect
could be achieved in the Q-Learning and SARSA models by
annealing the noise parameter.

To further distinguish between the Q-Learning and
SARSA models, we re-analyzed cue-locked waveforms
based on cue identity (0.2 Cue, 0.8 Cue) and the response
that followed the cue. If prediction error depended on the
value of future actions, as predicted by SARSA, we
expected that cue-locked waveforms would be more
negative before participants chose the incorrect response
than before they chose the correct response. From 200-300
ms after cue presentation, average area under the 0.2 Cue
waveform was less than area under the 0.8 Cue waveform at
site Fz, F(1,12) = 8.40, p = .013 (Figure 6). Waveforms did
not depend on the accuracy of the forthcoming response,
however, F(1,12) = 1.71, p > .1.

We computed model δ for the same combination of
factors3. Q-Learning and AC predictions were consistent
with observations (Q-Learning: MSE = 0.237, r2 = .0.77;
AC: MSE = 0.225, r2 = .0.76) in that they predicted an
effect of cue but not response accuracy. In contrast, the
SARSA model predicted a more negative signal before
incorrect than correct responses (MSE = 0.419, r2 = .0.32),
owing to how the algorithm computed future reward (Eq. 5).

3 This analysis was based on the area under individual

waveforms rather then FRN. Consequently, we computed new
slope and intercept terms to compare model δ to observations.

Figure 6. Cue-locked voltages preceding correct and
incorrect responses by cue and for participants (bars), AC
(squares), Q-Learning (circles), and SARSA (triangles).

General Discussion
Although the RL-ERN theory has stimulated a great deal of
research, feedback immediately follows actions in most
studies of FRN. Similarly, although RL methods have
stimulated a great deal of psychological research, most
studies of RL in humans involve simple environments. In
the current experiment, we examined learning in a more
complex problem space. We asked how people assign credit
to intermediate actions when making sequences of
decisions.

The experiment yielded two clear results. First, FRN was
greater for unexpected than for expected outcomes.
Although some studies have reported a relationship between
FRN and prediction error (Holroyd et al., 2009), others have
not (Hajcak et al., 2005). This discrepancy has led to the
proposal that FRN relates most strongly to prediction error
when outcomes are contingent on behavior (Holroyd et al.,
2009). In our experiments, feedback was contingent on
behavior, and consistent with the proposal of Holroyd et al.
(2009), we did observe a relationship between prediction
error and FRN. Second, FRN also followed negative
intermediate outcomes even though these outcomes did not
directly signal reward. This result shows that people
evaluated intermediate outcomes in terms of expected future
reward. Although many theories propose that such
evaluations underlie temporal credit assignment (Fu &
Anderson, 2006; Holroyd & Coles, 2002; Schultz, Dayan, &
Montague, 1997; Sutton & Barto, 1998), these results
provide one of the clearest demonstrations of TD learning to
our knowledge.

We also examined three TD methods: Actor-critic, Q-
Learning, and SARSA. A recent neuroimaging study
provided support for the AC model by showing that activity
in the dorsal and ventral striatum of the basal ganglia
corresponded to the behavior of the actor and the critic in
the AC model (O’Doherty et al., 2004). Alternatively,
single-cell recordings from midbrain dopamine neurons in
monkeys have supported SARSA (Morris et al., 2006), and

269

recordings from dopamine neurons in rats have supported
Q-Learning (Roesch, Calu, & Schoenbaum, 2007). An
integrative account of these findings is hindered by the
between species comparison. Consequently, it is unclear, as
of yet, which form of TD control is most applicable to
humans. The behavioral and neural results of the current
experiment were consistent with Q-Learning. This
considerations not withstanding, the current data do not
definitively distinguish between TD variants. The more
valuable contribution of this work is the demonstration that
intermediate states inherit value, a feature central to each
TD model. Future studies should aim to elucidate the
precise TD algorithms that underlie neurological
computations.

Our simulations demonstrated that the core Q-Learning
model could account for the behavioral and neural data.
Additionally, our computational instantiation clarified two
nuanced features of the experiment results. First, FRN
decreased for expected outcomes and increased for
unexpected outcomes. Model FRN changed in the same
manner. Because utility estimates began at 0.5, δ was
initially -0.5 (0.0 – 0.5) for all losses, and δ was initially 0.5
(1.0 – 0.5) for all wins. As the model learned, the utility of
the correct response for the 0.2 Cue approached 0.2 and the
utility of the correct response for the 0.8 Cue approached
0.8. Consequently, δ magnitude decreased for expected wins
and losses, and δ magnitude increased for unexpected wins
and losses, giving rise to the observed changes in FRN.

Second, cue FRN increased with experience. The Q-
Learning model (and in fact all TD models) also showed an
experience-dependent increase in cue FRN. The models
only distinguished between positive and negative cues after
the values of the states and actions that followed those cues
(e.g. future reward) became polarized. As this result
demonstrates, the TD models learn the utility of actions that
are near to rewards before learning the utility of actions that
are far from rewards. Humans and animals also exhibit this
learning gradient (Fu & Anderson, 2006).

Do the results of this experiment indicate that TD
methods alone are sufficient for coping with temporal credit
assignment? We think not. Although participants faced a
discrete Markov decision process (MDP) in our experiment,
people must sometimes identify current states and recall
past transitions. Violations of the Markov property may be
problematic for TD methods. Additionally, although TD
learning reduces the delay between action selection and
credit assignment, TD learning does not typically eliminate
delays in continuous time domain tasks. An important
question for future research is how people integrate TD
learning with other RL methods, like eligibility traces and
model-based RL, to behave proficiently in complex
environments.

Acknowledgments
This work was supported by training grant T32GM081760
and NIH training grant MH 19983 to the first author and
NIMH grant MH068243 to the second author.

References
Cohen, M.X., & Ranganath, C. (2007). Reinforcement

learning signals predict future decisions. The Journal of
Neuroscience, 27, 371-378.

Fu, W.T., & Anderson, J.R. (2006). From recurrent choice
to skill learning: a reinforcement-learning model. Journal
of Experimental Psychology: General, 135, 184-206.

Gehring, W.J., & Willoughby, A.R. (2002). The medial
frontal cortex and the rapid processing of monetary gains
and losses. Science, 295, 2279-2282.

Hajcak, G., Holroyd, C.B., Moser, J.S., & Simons, R.F.
(2005). Brain potentials associated with expected and
unexpected good and bad outcomes. Psychophysiology,
42, 161-170.

Holyroyd, C.B., & Coles, M.G.H. (2002). The neural basis
of human error processing: reinforcement learning,
dopamine, and the error-related negativity. Psychological
Review, 109, 679-709.

Holroyd, C.B., Krigolson, O.E., Baker, R., Lee, S., &
Gibson, J. (2009). When is an error not a prediction error?
An electrophysiological investigation. Cognitive,
Affective, & Behavioral Neuroscience, 9, 59-70.

Miltner, W.H.R., Braun, C.H., & Coles, M.G.H. (1997).
Event-related brain potentials following incorrect
feedback in a time-estimation task: evidence for a
“generic” neural system for error detection. Journal of
Cognitive Neuroscience, 9, 788-798.

Morris, G., Nevet, A., Arkadir, D., Vaadia, E., & Bergman,
H. (2006). Midbrain dopamine neurons encode decisions
for future action. Nature Neuroscience, 9, 1057-1063.

Nieuwenhuis, S., Holroyd, C.B., Mol, N., & Coles, M.G.H.
(2004). Reinforcement-related brain potentials from
medial frontal cortex: origins and functional significance.
Neuroscience and Biobehavioral Reviews, 28, 441-448.

O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R.,
Friston, K., & Dolan, R.J. (2004). Dissociable roles of
ventral and dorsal striatum in instrumental conditioning.
Science, 304, 452-454.

Roesch, M.R., Calu, D.J., & Schoenbaum, G. (2007).
Dopamine neurons encode the better option in rats
deciding between differently delayed or sized rewards.
Nature Neuroscience, 10, 1615-1624.

Rummery, G.A., & Niranjan, M. (1994). On-line Q-learning
using connectionist systems. (Tech. Rep. CUED/F-
INFENG/TR166). Cambridge University.

Schultz, W., Dayan, P., & Montague, P.R. (1997). A neural
substrate of prediction and reward. Science, 275, 1593-
1599.

Sutton, R.S., & Barto, A.G. (1998). Reinforcement learning:
an introduction. Cambridge, MA: MIT Press.

Tobler, P.N., Fiorillo, C.D., & Schultz, W. (2005). Adaptive
coding of reward value by dopamine neurons. Science,
307, 1642-1645.

Watkins, C.J., & Dayan, P. (1992). Q-learning. Machine
Learning, 8, 279-292.

270

A Computational Model of Functional Category Learning
in a Cognitive Architecture

Yongjia Wang (yongjiaw@umich.edu)

John E. Laird (laird@umich.edu)
Computer Science and Engineering, EECS Department
University of Michigan, Ann Arbor, MI 48109 USA

Abstract

Categorization of objects is an important cognitive capability
for human and higher animals. Phenomena related to
category learning have been investigated both in human
subjects and in animal behavior studies. However, it is less
well understood in the computational processes that are
responsible for the emergence of functionally meaningful
categorizations from specific learning contexts. Here we
present a unique computational model integrating object
categorization and reinforcement learning (RL) in the Soar
cognitive architecture. Our model simultaneously captures
how object categorization affects behavior adaptation, and
how behavioral adaptation influences object categorization
over time in a specific functional context. Results from
synthetic data demonstrate that our model successfully
improves the speed of RL via categorization. The qualitative
predictions from our model are consistent with existing
theories of category learning.

Keywords: cognitive architecture; category learning;
reinforcement learning; behavioral adaptation

Introduction
Category learning has been actively studied in higher
animals including human (Ashby & Maddox 2005) and
primates (Smith 2010). Categorization enables an individual
to response to a novel stimulus, which resembles some other
stimuli with known responses.
 In this paper, we model several related phenomena in
human category learning. The most important one is related
to the notion of basic-level category as described by Rosch
(1978). Consider the following two examples of abstraction
hierarchies: furniture-chair-rocker and vehicle-car-sedan.
The middle categories, chair and car, are basic categories,
because they dominate both their subordinate and
superordinate categories in terms of how fast they can be
retrieved when a person is asked to describe the object
without being put in a specific context. The original theory
about basic-level categories was mainly concerned with this
‘uniformity’ aspect of category recognition across different
individuals. On the other hand, there are also variations.
First, non-basic level categories are frequently chosen in
specific task contexts. Second, basic-levels are dependent on
long term learning experience and can be significantly
different across individuals in specific domains. All of these
are characteristics of category learning. However, there has
been a lack of computational models that coherently explain
the combination of basic-level effects, context effects, and
long-term learning effects in a specific functional setting,
where a cognitive agent has to interact with the world to
achieve some goals.

 We present a unique computational model of category
learning that integrates a hierarchical perceptual category
learning component and a reinforcement learning
component in the Soar cognitive architecture (Laird 2008).
In our model, the underlying computation mechanism
improves the agent’s behavioral adaptation through category
learning and at the same time results in the emergence of
functionally meaningful categorizations as a result of
feedback from reinforcement learning. We term our model a
functional category learning model.
 Our functional category learning model relies on
perceptual category learning, and has the following features.
First, functional categorization requires additional
functional properties as input that are non-perceptual. For
example, a venomous snake is in a different functional
category from a harmless snake, but they may look very
similar and fall under the same perceptual category of
snakes. Second, functional categories are by definition
specific to a particular functional context. For example,
categorizations of animals as sources of food versus as pets
are very different. Third, functional categories are directly
related to decision making and are adaptive relative to the
agent’s experience. For example, a domain expert develops
more detailed categorizations than novices do. Our
hypothesis is that basic-level categories are rooted in
people’s experience, and depending on how objects are
used, the categories can be significantly different across
cultures, even individuals within the same culture.
 Our functional category learning model involves two
components. One is a perceptual category learning system,
which can automatically learn hierarchical category
structures based on innate perceptual features. The other is a
reinforcement learning system, which uses the perceptual
categories as the representational basis and incrementally
forms functionally meaningful categories based on their
utility values.

Hierarchical Categorization
There is a long history of hierarchical models of category
learning. Quillian (1968) proposed the semantic network
model, which can represent categorical relationships among
objects in a hierarchical structure. However, the semantic
network model does not include a learning mechanism to
build the structure. COBWEB (Fisher 1987) is an algorithm
that can incrementally learn a hierarchical organization of
categories. A previous version of the ICARUS cognitive
architecture used a COBWEB-based system, called
LABYRINTH for its declarative learning and memory
(Langley et al. 1991). Ambros-Ingerson et al. (1990)

271

described a neurologically inspired hierarchical clustering
algorithm, which operates in a way very different from
COBWEB and Granger (2005) has demonstrated the
plausibility of using such hierarchical clustering algorithm
as a principled computational instruction for human
cognition.

Reinforcement Learning
Hierarchical category learning provides the necessary
representational basis, however the representation itself is
insufficient for functional category learning because it has
no direct connection to how the learned knowledge can be
used. Another learning process is required to connect the
category representations with the agent’s intrinsic functional
meanings. We consider reinforcement learning (RL, Sutton
& Barto 1998) as a candidate mechanism to establish such
connections via incremental trial-and-error learning with
feedback.
 RL has been successfully applied in adaptively learning
optimal control policies in the field of machine learning.
The general model of RL has also been considered as a
mechanism for human skill learning (Fu & Anderson 2006).
Cognitive architectures such as Soar (Laird 2008) and ACT-
R (Anderson et al. 2004) both have a reinforcement learning
mechanism. However, there has not been a computational
model integrating category learning and RL in these
cognitive architectures.

Demonstration Task
We briefly describe our demonstration task before
describing the implementation of our model, so that we can
illustrate how the model works using a concrete example.
 The demonstration task models a hunting scenario where
the agent is presented with pairs of prey and hunting tools.
There are diverse types of prey and tools, and different tools
have different effectiveness on different prey. For example,
a slingshot is good for small birds, but it will not work for
larger prey. We assume that the agent does not have prior
knowledge to predict the outcomes based on perceptual
features of the objects. The agent must incrementally
acquire such connections based on its experience through
RL. During interaction with the world, the agent receives a
positive reward if hunting is successful and a negative
reward if it is unsuccessful. In order to learn faster, the agent
needs to generalize its predictions based on perceptual
similarity. For example, if the agent has learned that a bow
is good for hunting rabbits, then it is likely to work against a
woodchuck as well. Meanwhile, to improve generality, the
agent must adapt its learning to the right level of abstraction
through the course of using RL.

Model Implementation

Overview
Our model is implemented by combining a hierarchical
category learning (HCL) system with Soar-RL (Nason &
Laird 2005), which has been shown to successfully model
animal behavioral data (Wang & Laird 2007). Our model
uses the HCL component to perform perceptual learning.

The output of the HCL system is the input to the RL system.
We have experimented with both COBWEB and a
biologically inspired hierarchical clustering algorithm
(Ambros-Ingerson et al. 1990). In general, any incremental
hierarchical clustering system will be compatible with our
model.

Learning Algorithm
In a functional category learning model, the functional
utilities of objects are associated with specific actions, and
can be naturally represented as value functions in the RL
system. Soar-RL encodes the value function as a set of
production rules, with an expressive syntax equivalent to
first-order logic. The left-hand side of a rule tests state and
action features, while the right-hand side generates the
expected value for the matching state action pair. The
expected value of an action is the sum of the values of all
rules matching the current state and that action. The Soar-
RL model is a special instance of the sparse-coarse coding
approach to value function approximation (Sutton 1996).
 In our functional category learning model, instead of
using raw perceptual features of the objects in the state
representation, the RL system uses the symbolic category
representations from the HCL system. The entire structure
of our model can be viewed as a two-layer network as
shown in Figure 1. The bottom layer represents the HCL
system. In this paper, we assume such hierarchical structure
has been learned by the agent through regular perceptual
category learning before the hunting task. And we
investigate the emerging properties of doing reinforcement
learning with such hierarchical categorization. The dark
colored nodes in the hierarchies represent symbolic
categories matching with the input objects. These symbolic
categories are used in the state representation and are
matched by rules in the RL system. Rules are represented as
cells in the coarse-coding layer. A rule testing general
category symbols will be coarser than a rule testing more
specific category symbols. Dark colored cells represent
rules that match the current state. The numbers on each grid
indicates the hierarchy levels for component hierarchies,

Figure 1: Overall structure of the system viewed as a

two-layer network

Tools

0,0 1,0

2,0
0,1

1,1

2,1
0,2

1,2

2,2

X

utility

Sparse-coding Weights

Prey

Production Rule Matching

prey weapon

Prey features Weapon features

Input

input

RL
System

HCL
System

272

which will be explained later. The grids form an emerging
lattice structure, with the transitive relationship coarser-
than, represented by the arrows.
 We formally describe the general algorithm below. To
learn the target value function of a state action pair, the
system first maps the input objects into a vector of
functional roles R, which represents the argument types of
the target function. The vector O represents the input objects
binding with R:

� � ���� ��� � � �	
 �� � � �
��
�� � �
	

 In the example, the function is to predict the utility of
hunting some prey with some tool, and for a particular
instance, the inputs are two objects: rabbit and bow.
According to our notation, input to the system will look like
R=(prey, tool), O=(rabbit, bow). After matching objects
with functional roles, the HCL system incrementally builds
a set of hierarchies H correspondingly:

� � ���� ��� � � �	

Let height(hi) denote in the height of the hierarchy hi, and ki
denote a cluster/category/node within the hierarchy. Let
level(ki) denote the level of cluster ki in hierarchy hi, with
the root level being 0. Cells, grids and their relations, shown
in Figure 1, are defined as following:

����� � ��� � � � ���� ��� � � �	
��� � �������������� !��"� � �!# � $ � ���� ��� % % % � �	
�& ' �� ' ���(�����
 ���)��
�(���
�!# *�+� � ,-� �.� ��/�����
 � �� !#� 0 �!1 �* �+� � ,-� �.� �� ' 2�

More intuitively, each cell represents a rule in our RL
system. A set of cells are composed into a grid that
partitions the state space at a specific level of resolution.
There is an emerging lattice structure among the grids with
the transitive relation coarser-than (0). For a given object
oi, the activation of a cluster ki is denoted as a(ki):

3���
 � � 4 -��5�
� � ���
�&��5�
� 6 ��� �

7

The mapping from oi to ki is achieved via category

recognition in the HCL system, and only a single path of
clusters are activated for a particular input as shown in
Figure 1. Details of the COBWEB algorithm can be found
in Fisher (1987). a(ki)=1 means object oi in the current state,
bound to the corresponding functional role ri, is an instance
of the category represented by the cluster ki. The activation
of a cell, a(CK), is defined as:

3���
 � �83���

	

�9�

a(CK)=1 only when all the objects match with the rule,
which will fire to participate in predicting and learning the
target value. The weight, w(CK), from the cell to the output
unit is represented as a numeric value associated with the
rule in the RL system. The learning algorithm updates the
weights according to the delta rule for the identity activation

function used in our RL system, where y is the predicted
value and o is the target output value (current reward +
discounted future rewards). The learning rate α for a
specific rule CK is chosen to decay over time t, where t is
represented by the times the rule has been trained:

: � ;�<���
 = 3���

>?

@<���
 � A��� � �
 = �
 B :
 = 3���

 The connection between the coarse-coding layer and the
output unit is always sparse, since, for any input, only one
cell from each grid in the lattice has non-zero activation.
This is due to the competitive learning nature of the
hierarchical clustering layer – only one cluster is activated at
each level.

Simulation and Results
We use a hunting task as described earlier with synthetic
data to evaluate our model. The data used in the task is
shown in Figure 2. The hierarchies represent natural
perceptual categories based on unsupervised learning with
perceptual features, which are outputs from the HCL system
as shown in Figure 1. We assume the agent has innate
feature detectors that result in such perceptual categorization
purely based on observing the objects without any hunting
experience with the objects.
 The functional interaction structure in this domain is
represented in the two-dimensional table in Figure 2. A dark
cell means the corresponding tool is good for hunting the
prey and the agent will receive a reward of +1 if it chooses
the action ‘hunt’. The white cell means the corresponding
tool is bad for hunting the prey and the agent will receive a
reward of -1 if it chooses the action ‘hunt’. The agent can
alternatively choose the default action ‘avoid’, which will
always give a 0 reward. We expect that the hierarchical
categorizations will help the agent generalize its experience
from a specific instance to similar combinations of objects.
For example, the experience of hunting a rabbit with a
longbow can be successfully generalized to hunting all four-
legged animals with bow expect for one situation (longbow
is not strong enough for hunting deer), so that both the
category of Four-leg and Bow are useful abstractions. On
the other hand, since there are variations within the group,

Figure 2: Input Data – Perceptual Category Hierarchies

and Interaction Outcome Table

Tool

Longbow

Crossbow

Slingshot

Blowgun

Spear

Trident

Bow

Projectile

Pole Arm

Prey

Large
Small

Bird
Fish

Four-legSuccess: +1

Failure: -1

Pole Arm

Fish

273

we expect both concepts will be dominated by their
subordinate categories in certain situations. In addition to
trying to be close to reality, we designed the data so that it is
complex, while at the same time, it has structure that tests
specific aspects of the system, and it is simple enough to
interpret the results.
 To emphasize that the initial categorizations are based on
innate perceptual features as opposed to taxonomic features,
we use the labels such as Four-leg, Large, and Small,
instead of Mammal, Ungulate, and Rodent to indicate they
are perceptual categories. Birds have feathers, sharp beaks,
and can fly. Fish all have similar shape, scales and swim in
the water. A hierarchical clustering algorithm such as
COBWB can automatically discover such statistical
correlations among high dimensional perceptual features
and incrementally build up a hierarchical structure as shown
in Figure 2. Since we focus on the interaction between
hierarchical categorization with RL, we did not include a
detailed perceptual learning step in our simulation.
 The effectiveness of tools with regard to prey may appear
obvious to the reader. We make the assumption that the
agent has no relevant prior knowledge to derive the
effectiveness of a tool based on perceptual features. It has to
incrementally learn the effectiveness of a tool for a prey
through experience and build up the connections from
perceptual similarities to functional outcomes piece by piece
via the RL mechanism.
 Figure 3 shows the details in the layer of coarse-coding
rules for a specific input: hunting a deer with a crossbow.
The black dots spatially represent the specific input in
different grids. The gray areas represent the generalization
effects when the more general rules fire. In this case, the
agent receives a reward of +1 and each of the 16 rules
participates in prediction and updating. Since a general rule
(a larger cell) receives more training samples than a more
specific rule (a smaller cell), it converges to the target value
faster. On the other hand, the smaller cell will tend to
compensate for the value in the context of the larger cell.
The region with the dotted border in 7 of the grids on the
lower and right borders means there are no more specific
rules generated for those regions because it has already
reached the leaf level of the categorization hierarchies.

Result 1: Category Learning to RL
 Figure 4 compares the learning performance of
hierarchical categorization with a baseline that uses the leaf
level nodes without generalization. In the training data,
there are two instances under each of the leaf nodes shown
in Figure 2. For example, there are two instances of Goat
that look different but have the same functional properties.
Therefore, the size of the input space is: 16 (prey) times 12
(tools) equals 192. We evaluate the performance
improvement during the course of learning. The agent is
trained with random samples from the input space with
replacement. The learning rate is set at 0.1. For a given
amount of training episodes, we evaluate the rates of correct
decisions it makes if it follows the policy derived from the
current value function. The result shows that the model
successfully integrates hierarchical categorization to speed
RL.

Result 2: RL to Category Learning
 Next, we analyze how functionally meaningful
categorizations emerge from the process of RL. For a given
input, there are multiple rules firing simultaneously, each
coming from a different grid as shown in Figure 3. We
define the dominant rule as the rule with the highest
absolute value, or equivalently the winning cell with largest
magnitude in its weight:

C�����(���� � �D�(E3F��G<��
G
�

Correspondingly, we define the dominant categories as the
categories associated with the dominant rule. In the hunting
task for a specific input, there will be a dominant category
for prey and a dominant category for tool. For example, the
rule testing Fish and Pole Arm (the lower-right dark square
consisting of 4 cells) dominates all the more specific rules
that involve subtypes of Fish or subtypes of Pole Arms
because it receives more training samples. It also dominates
more general rules because there are inconsistent updates
for those rules that cancel out each other. Consequently, the
categories for Fish and Pole Arm are the dominant
categories in these particular situations. The general
principle is that a rule simultaneously maximizing both
generality and consistency will dominate other rules.
Intuitively, the associated dominant categories are more

Figure 3: Details of Coarse-coding Grids for the Input

(Deer, Crossbow)

Figure 4: Learning with and without Hierarchical

Categorization

Tool

Projectile

Pole Arm

Bow
Slingshot
Blowgun

Spear
Trident

Longbow
Crossbow

G(0,0) G(1,0) G(2,0) G(3,0)

G(0,1) G(1,1) G(2,1) G(3,1)

G(0,2) G(1,2) G(2,2) G(3,2)

G(0,3) G(1,3) G(2,3) G(3,3)

0 200 400 600 800 1000

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Episodes

C
or
re
ct
 D
ec
is
io
n
R
at
e

Hierarchical Categorization
No Categorization

Training Episodes

274

functionally salient than their superordinate and subordinate
categories, since they are the sources contributing to most of
the decisions made by the voting mechanism. We use the
overall domination rates across all possible inputs to
measure the functional saliency of a category in a more
context-free manner, which indicate how likely a category
will become a basic-level category when there is no context
effect.
 The left side of Figure 5 shows the dynamics of
domination rates up to 1,000 training episodes for all the
categories of prey and tools. The trend is that the more
general categories initially have higher domination rates
because they cover more inputs and are trained with higher
frequencies. As more experience is gained, consistent
categories under a less consistent parent category have
increasing domination rates (such as the two subtypes of
birds), while less consistent superordinate categories
become less dominant (such as the general category Prey,
Four-legged animal, and Bird). On the other hand, a
perceptual category that does not have any functional
differences from other members under the same
superordinate category does not arise as a functionally
salient category (such as Rabbit, Woodchuck and the two
subtypes of Fish). The middle of Figure 5 shows the
domination rates after 1,000 training episodes. Since the
ordering of inputs causes variations in the value of rules, we
measure the mean domination rates across 300 independent
learning trials, and the estimated standard errors for the
means (not shown in the figure) are all less than 0.01. For
example, the category for Small Four-legged animal
dominates its superordinate and subordinate categories
(including Prey, Four-legged animal, Rabbit and
Woodchuck) in about 68% of all possible inputs. The
category of Rabbit rarely dominates because its
superordinate category completely captures the decision
boundaries.
 The right side of Figure 5 shows the context-free basic-
level categories in boxes, which are the dominating

categories along a path. The top figure shows the situation at
1,000 training episodes (for an experienced hunter) and the
bottom figure at 10,000 episodes (for an expert hunter). The
additional training experiences can “pull down” the basic-
level towards more specific categories (indicated by the
arrows). This effect arises naturally in our model and
corresponds to the fact that a human domain expert
possesses more specific basic-level vocabularies than a less
experienced person.

Discussion
The general definition of category learning is the process
that groups similar stimuli together so that similar responses
can be made. Traditional cognitive theories of category
learning include two competing views: the prototype view
(Rosch 1973) and the exemplar view (Medin & Schaffer
1978). The prototype view is based on the principle of
cognitive economy (Rosch 1978) and is supported by the
existence of linguistic representations of abstract categories.
However, there has been a shift of favor from the prototype
towards the exemplar view because exemplar models
provide superior empirical results in a variety of
experimental settings (Nosofsky & Zaki 2002). A practical
concern about the prototype view is that a prototype may
fail to retain sufficient discriminative information. More
recent models reconcile the two extreme forms and rely on
representations at multiple abstraction levels (Vanpaemel &
Storm 2008, Love et al. 2004).
 Our model is consistent with both the prototype and
exemplar views. In addition, it explicitly models the
learning process and can deal with the more challenging
situations where the input states involve multiple objects
(such as the interaction between prey and tools). In terms of
decision making, our model is more like exemplar based
models, where the agent acquires information about specific
inputs, and then makes generalizations to novel inputs based
on perceptual similarity. In terms of category abstraction,
our model agrees with prototype models. In particular, it

Figure 5: Dynamics of Domination Rates up-to 1,000 Episodes (on the left),

Domination Rates at 1,000 Episodes (in the middle),
Push-down of Basic-level Categories (boxed) with more Training Episodes – 1,000 vs. 10,000 (on the right)

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

t(y
)

bg ss pole cb bow sp td pjtl lb tool

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fish rodent gb tb ll bird goat deer wdchk bf wf animal

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fi
sh

Fo
ur

-le
gFi

nc
h

W
at

er
fo

w
l

Bi
rd

Sm
al

l

G
oa

tLa
rg

e

D
ee

r

Pr
eyRa

bb
it

W
oo

dc
hu

ck

W
hi

te
fis

h
Bl

ac
kf

is
h

Po
le

 A
rm

Sl
in

gs
ho

t

Bl
ow

gu
n

Cr
os

sb
ow

Bo
w

Pr
oj

ec
til

e

Lo
ng

bo
w

To
ol

Sp
ea

r

Tr
id

en
t

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

D
om

in
at

io
n

Ra
te

s

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

t(y
)

1.0

0.8

0.6

0.4

0.2

0.0
0 200 400 600 800 1000

0 200 400 600 800 1000

1.0

0.8

0.6

0.4

0.2

0.0

Training Episodes

Longbow

Spear

Trident

Projectile

Tool

Bird

Bow

Slingshot

Blowgun

Pole Arm

Large
Small Fish

Four-leg

Prey

Crossbow

1,000 Episodes
Experienced Hunter

Bow

Projectile

Pole Arm

Tool

Large

BirdFour-leg

Prey

Longbow

Slingshot

Blowgun

Spear

Trident

Small Fish

Crossbow

10,000 Episodes
Expert Hunter

275

predicts a similar trend as in the phenomenon of basic-level
category (Rosch 1978) where the most prominent categories
(basic-level categories) reside in the middle of a
categorization hierarchy.
 Furthermore, our model predicts that category domination
is context specific. For example, in the hunting context used
as our demonstration task, Pole Arm is the dominant
category if the sub-context is hunting Fish (all subtypes of
Pole Arms are good for fishing). In a different context,
however, Spear and Trident will dominate if the sub-context
is hunting Deer. Our model explicitly supports the
hypothesis that the “context-free” basic level categories, as
described by Rosch, are the overall effects acquired across
multiple functional contexts. Since the everyday activities
related to common objects are largely the same across
individuals, the context-free basic-level categories appear to
be consistent as manifested in natural language.
 Our model does not involve a dedicated process of
selecting functional meaningful categories. Selection is
achieved as an emerging by-product of the RL process. As a
consequence, our model cannot explain certain types of
category learning that rely on deliberate reasoning or higher
degrees of abstractions, where the agent generalizes across
instances that are perceptually distinctive but functionally
similar. Such deliberate categorization is better described by
rule based category learning model (Rouder & Ratcliff,
2006), or analogical reasoning processes such as in the
structure-mapping engine (SME, Falkenhainer et al. 1989).

Conclusion
In this paper, we have presented the first computational
model that integrates hierarchical category learning and RL
in a general cognitive architecture, which can be used to
coherently model basic-level effects, context effects and
long-term learning effects in category learning. The unique
feature of this model is that it simultaneously captures how
categorization affects behavior adaptation, and how
behavior adaptation influences categorization in a functional
context. The general trends predicted by our model are
consistent with existing category learning theories.
Although the Soar-RL model has been successfully applied
to match animal behavior data (Wang & Laird 2007),
further empirical experiments are required to confirm its
validity in our category learning model.

Acknowledgement
This research was supported in part by the Ground Robotics
Reliability Center (GRRC) at the University of Michigan,
with funding from government contract DoD-DoA
W56H2V-04-2-0001 through the Joint Center for Robotics.

References
Ambros-Ingerson, J., Granger, R., & Lynch, G. (1990).
Simulation of paleocortex performs hierarchical
clustering. Science, 247(4948), 1344-1348.

Anderson, J., Bothell, D., Byrne, M., Douglass, S., Lebiere,
C., & Qin, Y. (2004). An integrated theory of the mind.
Psychol. Rev., 111(4), 1036-1060.

Ashby, E. G., & Maddox, W. T. (2005). Human category
learning. Annu. Rev. Psychol., 56, 149-178.

Falkenhainer, B., Forbus, K., & Gentner, D. (1989). The
structure-mapping engine - algorithm and examples.
Artificial Intelligence, 41(1), 1-63.

Fisher, D. H. (1987). Knowledge acquisition via incremental
conceptual clustering. Machine Learning, 2(2), 139-172.

Fu, W., & Anderson, J. R. (2006). From recurrent choice to
skill learning: A reinforcement-learning model. J. Exp.
Psychol. Gen., 135, 184-206.

Granger, R. (2006). Engines of the brain: the computational
instruction set of human cognition. AI Mag., 27(2), 15-32.

Laird, J. E. (2008). Extending the Soar cognitive
architecture. In Proceeding of the 2008 Conference on
Artificial General Intelligence.

Langley, P., McKusick, K. B., Allen, J. A., Iba, W. F., &
Thompson, K. (1991). A design for the ICARUS
architecture. SIGART Bull., 2(4), 104-109.

Love, B. C., Medin, D. L., & Gureckis, T. M. (2004).
SUSTAIN: A network model of category learning.
Psychol. Rev., 111(2), 309-332.

Medin, D. L., & Schaffer, M. M. (1978). Context theory of
classification learning. Psychol. Rev., 85(3), 207-238.

Nason, S., & Laird, J. E. (2005). Soar-RL: integrating
reinforcement learning with Soar. Cognitive Systems
Research, 6(1), 51-59.

Nosofsky, R. A., & Zaki, S. R. (2002). Exemplar and
prototype models revisited: response strategies, selective
attention, and stimulus generalization. J. Exp. Psychol.
Learning, 28(5), 924-940.

Quillian, M. R. (1967). Word concepts: A theory and
simulation of some basic semantic capabilities.
Behavioral Science, 12(5), 410-430.

Rosch, E. (1978). Principles of categorization. In Cognition
and Categorization (pp. 27-48). John Wiley & Sons Inc.

Rosch, E. (1973). Natural categories. Cognitive Psychology,
4(3), 328-350.

Rouder, J. N., & Ratcliff, R. (2006). Comparing exemplar-
and rule-based theories of categorization. Current
Directions in Psychological Science, 15(1), 9-13.

Smith, J. D., Chapman, W. P., & Redford, J. S. (2010).
Stages of category learning in monkeys (Macaca mulatta)
and humans (Homo sapiens). J. Exp. Psychol. Anim. B,
36(1), 39-53.

Sutton, R., & Barto, A. (1998). Reinforcement Learning: An
Introduction (Adaptive Computation and Machine
Learning). The MIT Press.

Sutton, R. S. (1996). Generalization in reinforcement
learning: successful examples using sparse coarse coding.
NIPS 8, 1038-1044.

Vanpaemel, W., & Storms, G. (2008). In search of
abstraction: The varying abstraction model of
categorization. Psychon. B. Rev., 15(4), 732-749.

Wang, Y., & Laird, J. E. (2007). The importance of action
history in decision making and reinforcement learning. In
Proceedings of the Eighth International Conference on
Cognitive Modeling. Ann Arbor, MI.

276

Interference and ACT-R: New evidence from the fan effect

Robert L. West (robert_west@carleton.ca)
Institute of Cognitive Science, Department of Psychology, Carleton University, 1125 Colonel By Drive

Ottawa, Ontario, K1S 5B6, Canada

Aryn A. Pyke (apyke@ccs.carleton.ca)
Department of Psychology, Carleton University, 1125 Colonel By Drive

Ottawa, Ontario, K1S 5B6, Canada

Matthew F. Rutledge-Taylor (mrtaylo2@connect.carleton.ca)
Institute of Cognitive Science, Carleton University, 1125 Colonel By Drive

Ottawa, Ontario, K1S 5B6, Canada

Hana Lang (hlang@connect.carleton.ca)
Institute of Cognitive Science, Carleton University, 1125 Colonel By Drive

Ottawa, Ontario, K1S 5B6, Canada

Abstract
We present data demonstrating that interference plays a role
in the fan effect. We also show that this cannot be accounted
for using ACT-R. An ACT-R model is fit to the data and we
discuss options for altering the model to account for the data.

Keywords: interference; fan; spreading activation; ACT-R;
memory; cognitive model.

Introduction
The fan effect refers to the fact that cues that are associated
with more facts result in slower recall than cues that are
associated with less facts. For example, in the study that
established the fan effect, Anderson (1974) asked subjects to
memorize facts about where various different characters had
been seen. Subjects were then shown a cue with a character
and a place and asked if it was true (i.e., if they occurred
together in the set of facts subjects had memorized).
Overall, the more places a character had been, the slower
subjects were to confirm that it was either true or false.
Also, subjects were slower to say false than they were to say
true.

In the ACT-R architecture (Anderson & Lebiere 1998)
the cue is held in a buffer as a chunk and each slot value of
the cue spreads activation to chunks in declarative memory
that have the same slot values. For example, if the cue
chunk is person:hippy location:park, then hippy will spread
activation to all chunks that have hippy as a slot value and
park will spread activation to all chunks that have park as a
slot value (note, the slot names do not play a role). The
number of lines of activation leaving from a slot value in the
cue is the fan of that slot value, and the fan of the cue is the
sum of the fans of its slot values.

In ACT-R, the amount of activation spread from a cue to
a chunk is theorized to be proportional to the number of past
associations between slot values of the cue and the chunk. In
the ACT-R architecture, the way of calculating this is based

on an assumption that exposure to different facts has been
counterbalanced, as in a psychology experiment (Anderson
& Reder, 1999). If it is assumed that everything has been
counterbalanced and the number of exposures per chunk is
equal then the activation can just be divided evenly among
the chunks. So, the higher the fan the lower the amount of
activation delivered to each individual chunk (see Anderson
& Reder, 1999, for how to use ACT-R when exposures have
not been counterbalanced). Anderson and Reder (1999)
modeled the fan effect in ACT-R by assuming that people
retrieve the most active chunk and respond true (i.e., they
have seen it before) if the retrieved chunk matches the cue,
and false (i.e., they haven’t seen it before) if it does not.

One consequence of this model is that only the spreading
activation received by the chunk that is chosen affects the
reaction time (RT). In other words, there is no interference
from the activation of other chunks. However, as fan goes
up so do the number of other chunks that receive activation.
As part of a fan experiment we tested the effect of these
“other” chunks to see if interference plays a role in the fan
effect and how that might alter the ACT-R fan model.

Experimental Design
In our experiment we created false cues by taking a true fact
and replacing one element with a false element. For
example, if subjects had studied the fact that the red hat is
in the kitchen, we could create a false cue by replacing hat
with pen. Under these conditions the ACT-R model predicts
that the fan of the false element of the cue will have no
effect on retrieval time, unless the original fact is not
retrieved. However, we performed simulations with the
ACT-R fan model and found that in our experimental
design, the chunk representing the original version of the
fact always received the most activation, and therefore was
always chosen (as far as we can see this is also true for other
fan experiment designs, but it is possible to create more

277

extreme differences in fan where this would not be true).
Related to this, the fan of the false element should also have
no effect on the error rates. Although the ACT-R fan model
does not explicitly model errors, errors would be due to
noise and the retrieval threshold. This could conceivably
interact with fan for the chunk that is being retrieved but the
fan of the false element does not affect this chunk.

Method

Subjects
Twenty eight participants (11 males and 16 females: mean
age 19.9 years, SD = 2.2) were recruited from introductory
psychology courses a Carleton University to take part in the
experiment. Participants received course credit as
compensation for their time.

Procedure
The experiment was divided into three main phases: A study
phase, a recall phase and a recognition phase. In the study
phase each participant was assigned one of three unique sets
of study sentences and was instructed to memorize the
sentences in the list. Once the participant indicated that they
were prepared to proceed, the recall portion of the
experiment began.

The study set consisted of sixteen sentences of the form,
“The color thing is in the place”. The color term was one of
ten colors; the thing was one of ten house-hold items; and
the place was one of ten locations in/around a typical home.
Very typical item/locations combinations, such as
‘comb’/‘bathroom’, were not used in generating the study
set sentences. Each term could have a fan of either 1 or 4.
Thus, the four possible sentence fans were: 3, 6 9, and 12.

In the recall phase each participant was tested three times.
Each test began with the participant trading the study set
with the experimenter for a new list of sentences identical to
the study set, but with one term from each sentence replaced
with a blank, and the order of the sentences randomized.
The participant’s task was to correctly fill-in each of the
blanks with the missing word. The participant was given as
much time as he or she needed. Once finished, the
experimenter recorded the number of correct responses and
for each error, provided the correct missing word to the
participant. The participant was then given the opportunity
to review the study set before being tested again. The three
tests were balanced such that each term from each sentence
in the study set was replaced with a blank exactly once.
After the third iteration the recognition phase began.

The recognition phase of the experiment was conducted
on a computer using Experiment Builder (by SR Research).
The participant’s task was to correctly judge whether
sentences presented in the middle of a 17” CRT display
were members of the study set, or not. Accuracy and
reaction time data were recorded for each trial.

Each participant was presented with 96 test sentences,
which consisted of three exposures to each of the study set
sentences, and 48 sentences that were not from the study set.

The participants were told that they should consider
sentences from the study set to be true, while all others
should be considered false. Each false sentence was
generated by swapping one of the three terms from a true
sentence with another term from the same category (e.g.,
color, thing, or place) and with the same fan. Each true
sentence was used to generate three different false
sentences. Thus, for each exposure to a true sentence there
was a false sentence with the identical fan. Once the test
sentence appeared the participant would indicate if the
sentence was in the study set by hitting the ‘z’ key, or if it
was not by hitting the ‘/’ key.

Results
The data from one of the participants was excluded from the
results presented below. This was due to the fact that this
participant’s performance was significantly poorer than all
other participants by a large margin (P < 0.001). The results
below reflect the data collected from the remaining 27
participants. By the end of the third iteration of the recall
phase the participants were correctly completing the
sentences 91.4 percent of the time. The results of the
recognition phase replicated the fan effect. These results are
reported in Rutledge-Taylor, Pyke, West, & Lang (2010).
However, in this paper we will focus on the results related
to the predictions described above and fitting an ACT-R
model to the data.

The hallmark of a good scientific theory is that it makes
precise, falsifiable predictions. Many theories in Psychology
fail to meet this criterion. However, because ACT-R is
precisely specified, models built in ACT-R are more readily
falsifiable. To test the predictions of the ACT-R fan model
(Anderson & Reder, 1999) concerning the fan of the false
items we ran an ANOVA testing for the effect of the fan of
the false items on RT and error rate. RT was significantly
higher when the fan of the false item was equal to 4 than
when it was equal to 1 (P<0.001). The error rate was also
significantly higher when the fan of the false item was equal
to 4 than when it was equal to 1 (P<0.001). We also ran a
correlation between the fan of the false items and RT, with
the fans of the true items partialled out. We found a
significant correlation of r=0.156 (P<0.001, one tailed).
Similarly, we ran a correlation between the fan of the false
items and % errors, with the fans of the true items partialled
out. Here we also found a significant correlation of r=0.193
(P<0.001, one tailed). The size of these correlations was
roughly similar to the same correlations done with the fan of
the true items.

Contrary to the predictions of the ACT-R fan model, we
found that the fan of the false items significantly affected
RT such that a larger fan led to slower responses (see Figure
1). Consistent with this and also contrary to the predictions
of the model, we found that the fan of the false element
significantly affected the error rate such that a larger fan led
to more errors (see Figure 2). These results indicate that
interference from the false item plays a role in the fan effect.

278

Figure 1: Reaction time in msec/character for responding
false to a false cue as a function of the fan of the false item

in the cue.

Figure 2: Percent errors for responding false to a false cue as

a function of the fan of the false item in the cue.
.

Model Evaluation
Although falsification of a model is sometimes viewed as a
bad thing, falsification actually shows that a model was well
specified. Falsification also creates an opportunity to move
toward a better model. To this end we fit the ACT-R fan
model to our data. Anderson and Reder (1999) used the
following function to calculate RT:

RT=I+Fe-Ai

Where F is a scaling constant for time, I is a constant
representing how long it takes subjects to make their
response after they know it, e is the base for natural
logarithms and A is the activation of the chunk (which
includes spreading activation). Activation was calculated as:

A=B+S

Where B is base level activation and S is spreading
activation. We fitted the Anderson and Reder (1999) ACT-R
fan model to our data using identical parameter values,

except that we had to increase S slightly from 1.45 to 2 to
avoid getting negative activation values. As in Anderson
and Reder (1999), B was set to zero because it trades off
with S.
 We eventually figured out that the slight difference in S
was because we used the current method of calculating fan
size in ACT-R 6, which is to add 1 to the fan of each item in
the cue to represent the match between that item and a
chunk in memory representing that item. For example, 1
would be added to the fan of cup because it is assumed that
we all have a chunk in declarative memory representing
cup. In contrast, Anderson and Reder (1999) calculated the
results without adding 1 to fans of the items in the cue.
Whether or not to do this is an interesting issue. However,
we recalculated our results without adding 1 and found it
made very little difference to our results or conclusions.

Figure 3: The original Anderson & Reder (1999) ACT-R

fan model fit to our data.

Figure 3 shows the fit of the original ACT-R fan model to
our data. The fact that the model predicts an overall lower
RT is not significant as it can be accounted for by assuming
our subjects took longer to press the true/false keys, which
can be modeled by increasing the I parameter. However, the
shape of the functions and the relationship between the
functions is clearly different. The human data shows a clear
upward curve that the model does not and the model RTs
converge as fan increases wile the human data diverges.

Figure 4 shows the original fan effect data from Anderson
and Reder (1999) re-plotted. Note that it shows the same
divergence and upward curve. In fact, the original ACT-R
model for this data (faithfully recreated and shown in Figure
5) also shows a slight upward curve for the true cues, but
not for the false cues. Also, as with our data, the false
function diverges from the true function as fan goes up.
However, it is important to keep in mind the scale of the
graphs and realize that these effects are much smaller in the
Anderson and Reder (1999) data and may not even be real,
although, the consistency of this result across conditions and
studies indicates that we should take it seriously.

279

Figure 4. Re-plotted data from Anderson and Reder (1999)

An Alternative Model
Next we addressed the issue of the parameter values.
Specifically, we wanted to know if the ACT-R model could
be made to fit the data. The only way that we could find to
fit the data was to use the latency exponent parameter (f)
that is available in ACT-R 6. This parameter, which has
rarely been used, changes the RT function to:

RT=I+Fe-(f*A)

By setting f=3 and increasing F from 613 to 2000 we

obtained a good fit to the data (see Figure 6 - note, that the I
parameter could be increased to overlap the functions but it
is easier to see this way). Increasing f lowers overall RT, so
increasing F can be viewed as a way of compensating for
this. The other effect of raising f was to increase the
acceleration of the rate at which lowering activation raised
RT. We will refer to this as the ACT-R(f) model (see Figure
6). However, please note that this model violates the ACT-R
modeling convention of using establish parameter values
unless you have a justification (Anderson & Lebiere, 1998).

Figure 5. A re-creation of the ACT-R fan model from
Anderson and Reder (1999)

Figure 6: The ACT-R(f) model fit to our data (note, that
the I parameter could be increased to overlap the functions

but it is easier to see this way).

Rationalizing the alternative model
There are three ways we can interpret the ACT-R(f) fan
model. We know that it cannot account for our finding that
the fan of the false item in the cue affects RT and % error
any better than the normal ACT-R fan model. However, it is
possible to interpret the manipulation of f as representing the
aggregate effect of interference. In this case, f would be
related to the total effect of interference in the task. If we
assume that our use of more cue items and higher fans
produced greater overall levels of interference, then the fact
that our results show a more pronounced nonlinear effect
than the Anderson and Reder (1999) results could be
modeled by increasing f to represent higher levels of
interference. In this sense, ACT-R could be adjusted to
account for the presence of interference but could not be
said to include a (process) model of interference. More
studies would be required to see if f actually does function
this way.

A less charitable approach to understanding the ACT-R(f)
model would be to point out that adding f to a model that
already has a lot of parameters creates a system capable of
fitting a lot of different functions. We had no principled
reason to adjust f and found that it worked as part of a
parameter tweaking process that involved all of the
available parameters. So possibly the fit of this model is
merely fortuitous.

A third, more constructive way of viewing it is to see the
manipulation of f as a proxy for an additional mechanism or
process - in this case, interference. Although ACT-R does
not include an interference mechanism, modifications have
been introduced to do this. For example, the spacing effect
modification of Pavlik and Anderson (2005) assumes that
interference plays a role in order to account for the spacing
effect in memory. Similarly, the semantic interference
modification proposed by Van Maanen & Van Rijn (2007)
assumes a form of interference to account for the Stroop
effect. Likewise, our findings indicate the need for an
explicit model of interference in ACT-R. A simple way of
doing this that is consistent with our manipulation of f is to
introduce a penalty that reduces activation based on the total

280

fan of the information in the cue – the higher the overall fan,
the greater the penalty for all chunks receiving spreading
activation. We could create such a function but it would not
be meaningful at this point since it would be custom made
to fit our data. Essentially, this would have the same effect
as raising f, but the effect would be tied to the overall fan
and therefore would account for our finding that the fan of
the false item in the cue affects RT and % error.

Figure 7. The ACT-R(f) model applied to the data from
Anderson and Reder (1999).

Model Re-Evaluation
To gain further insight into the ACT-R(f) model we applied
those parameter settings to our recreation of the Anderson
and Reder (1999) fan model. The results are illustrated in
Figure 7. The true results actually produce a reasonable fit
to the data but the false results clearly do not fit. This could
be because the fit of the ACT-R(f) model to our data was
merely fortuitous, or it could be because higher f values are
only appropriate when interference is higher, as suggested
above.

Figure 8. The Anderson and Reder (1999) ACT-R fan
model fit to our data for correctly identifying true cues only.

Based on our experimental findings showing that the
ACT-R fan model for correctly identifying false cues cannot
be correct, we also tried fitting Anderson and Reder's (1999)
fan model to our data for the true results only (see Figure 8).
Without having to fit the false data we were able to get a
good fit by adjusting only F and I (F=1000; I=1100; S=1.45;
similar to Anderson and Reder we did not add 1 when
calculating the fan). This is much less problematic because
it avoids adjusting f, which is almost never altered in ACT-
R modeling. Also, it is important to remember that there is
variability associated with the human data so it is likely that
a single intermediate value of F could be used to obtain a
reasonable fit to our data and Anderson and Reder's (1999)
data.

Conclusions
 Our results show that the ACT-R fan model for correctly
identifying false cues cannot be completely correct. Also,
although fitting ACT-R to our data was possible, it was also
problematic because it required unprecedented alterations to
the parameter values as well as assumptions about the
meaning of those alterations that remain untested. However,
when we did not try to fit the ACT-R fan model for
correctly identifying false cues, the ACT-R fan model for
correctly identifying true cues fit our data well, without any
problematic parameter alterations. Based on this, it appears
most likely that the problem lies with the assumptions and
processes behind the ACT-R fan model for correctly
identifying false cues.

References
Anderson, J. R. (1974). Retrieval of propositional

information from long-term memory. Cognitive
Psychology, 6, 451-474.

Anderson, J. R. & Lebiere, C. (1998). The atomic
components of thought. Mahwah, NJ: Erlbaum.

Anderson, J. R. & Reder, L. M. (1999). The fan effect: New
results and new theories. Journal of Experimental
Psychology: General, 128, 186-197.

Pavlik, P. I., Jr., & Anderson, J. R. (2005). Practice and
forgetting effects on vocabulary memory: An activation-
based model of the spacing effect. Cognitive Science, 29,
559-586.

Rutledge-Taylor, Pyke, West, & Lang (2010). Modeling a
three term fan effect. Proceedings of the International
Conference on Cognitive Modeling.

Van Maanen, L., & Van Rijn, H. (2007). An accumulator
model of semantic interference. Cognitive Systems
Research, 8(3), 174-181.

281

An Online Database of ACT-R Parameters:
Towards a Transparent Community-based Approach to Model Development

Tsunhin John Wong1 (jwong@mpib-berlin.mpg.de)

Edward T. Cokely1,2 (cokely@mpib-berlin.mpg.de)

Lael J. Schooler1 (schooler@mpib-berlin.mpg.de)

Max Planck Institute for Human Development, Lentzeallee 94 14195 Berlin, Germany1

Michigan Technological University, Cognitive & Learning Sciences, Townsend Drive, Houghton, MI 499312

Abstract
We present a database that provides an interface for the ACT-
R modeling community to interact with each other
(http://www-abc.mpib-berlin.mpg.de/actrdb/). The database
includes estimated values of ACT-R parameters from a wide
range of ACT-R modeling studies, selected from the studies
available on the ACT-R website. It serves as a tool to query
studies and estimated values for ACT-R parameters,
providing the exact range of values for each of the available
free numerical parameters. In short, the database supports an
alternative community-based approach to manage the
challenges associated with parameter estimation for complex
cognitive architectures like ACT-R.

Keywords: ACT-R; modeling; parameter.

Managing Parameters for ACT-R Models
Unified theories of cognition allow us to approach
mechanisms of human cognition in a holistic, cumulative
manner (Simon & Newell, 1973). Among the existing
unified theories of cognition, ACT-R is one of the most
widely used architectures, producing the largest body of
sustained research and application. In order to study a wide
range of cognitive mechanisms, ACT-R includes a variety
of modifiable parameters. While these parameters enable
flexibility they also result in fundamental challenges.

Wexler (1978) criticized the early framework of the ACT

research program (Anderson, 1976), stating that “There is
no explanatory power in ACT because there are no
restrictions on human abilities”. He also posited that “the
general problem with ACT is (its flexibility), it is simply so
weak that there is no way to find evidence for or against it”.
About twenty years later, Pashler and Roberts (2000, 2002)
again brought these concerns to the fore, arguing that the
practice of using good fits as major evidence for complex
theories is “rotten to core”. Indeed, goodness-of-fit metrics
remain a very common means of model validation. These
concerns not only hold when criticizing ACT-R and some
other unified models, but also address a wide-spread misuse
of goodness-of-fits as key evidence in psychology. Sound
scientific theory requires that models not only fit but also
predict data (Gigerenzer, 1998; Gigerenzer & Brighton,
2009). How can modelers of the ACT-R architecture deal

with these concerns about parameter estimation and model
fitting?

There have been some attempts to understand the relation

among ACT-R parameters that result from parameter fitting.
For example, Anderson, Bothell, Lebiere, and Matessa
(1998) suggested that there is a systematic linear
relationship between the estimated values of activation
thresholds and the logarithm of estimated latency factors.
Their data also implied that estimated values of these
parameters are exceedingly regular. To date, however, there
has been no meta-analytic assessment to evaluate whether
there is any sustained regularity of these estimated
parameters for ACT-R models across other published
studies.

Computational cognitive models are often evaluated by

their fit and generalizability. These properties of a model are
related to two aspects of model complexity: (1) number of
parameters and (2) the functional forms of computation. In
part, such evaluations seek to evaluate the extent to which
noise is unnecessarily captured (Pitt, Myung, & Zhang,
2002; Oaksford, 2002). Using cross-validation, Taatgen, van
Rijn, and Anderson (2007) estimated parameters of a base-
model once and then made use of these estimated values
throughout subsequent models. This study exemplifies a
strict practice that allows minimal parameter estimation;
however, like many ACT-R studies, the work of Taatgen et
al. still relied on superior goodness-of-fits as the major
support for their proposed models.

The latest ACT-R architecture version 6.0 has 62 free

parameters with numerical values, together with the
flexibility of mapping these parameters to tailor-made
handlers and tens of other non-numerical parameters.
Different instantiations of specific ACT-R models do not
typically require setting and optimizing all these numerical
parameters, as default values are provided. However, our
analyses of a large and representative sample of ACT-R
studies indicates that on average each ACT-R model
modifies nearly six free numerical parameters for better
model fitting. Moreover, many of these studies added task-
specific parameters.

282

Parameter Estimations by “Wisdom of the crowd”
To provide another path to parameter estimation-free
modeling, we developed a database to collect estimated and
modified ACT-R parameters from the ACT-R modeling
community. With this database, we hope to facilitate
comparisons of ACT-R parameters by drawing on the
wisdom of the crowd. Accordingly, we catalog previous
studies that have provided estimates together with
corresponding parameters. The database makes it relatively
easy to determine whether a particular newly estimated
value falls within a reasonable range according to previous
related studies. Moreover, this database also serves to
provide some meta-analytical data on the variety and ranges
of selected parameters across a large representative set of
studies.

Taatgen, et al. (2007) have argued that the ideal goal for

an ACT-R modeler is to fix all parameters: A modeler
should not estimate any parameter during modeling. One
key goal of this current project is to collect and compile data
from a representative range of published ACT-R models
(with exact values for estimated parameters) in a sustainable
database to assist ongoing modeling projects. The online
database provides several potentially useful functions
including updated information about the means and the
medians of the existing free numerical parameters.
Moreover, the database has been designed to be scalable so
as to be readily extended to other models and tasks. In what
follows, we describe the database and briefly review some
functions and findings. We close with a discussion of
potential applications and implications.

Method
We started with the studies and models that made use of the
ACT-R architecture listed on the ACT-R website (http://act-
r.psy.cmu.edu/). From this online repository of ACT-R
studies, we selected all studies that have made both their
ACT-R models and manuscripts available; a total of 44
studies were included at the time of data collection. From
these models, we collected the information about the
version of ACT-R architecture that was used as well as the
particular ACT-R parameters that were modified. We also
collected information about the deprecated parameters from
previous versions of ACT-R and other task-specific
parameters that these models made use of.

Overview of functions of the database
The database can be accessed through an Internet-interface
at the URL:

http://www-abc.mpib-berlin.mpg.de/actrdb/

The Internet-interface was tested and works with most of

the popular website browsers, such as Firefox 3+, Safari 4,
Internet Explorer 8+, and Opera. Along with the information

about ACT-R parameters, our database serves at least four
main functions:

1. Monitoring how frequently parameters are modified.
2. Obtaining parameter means, medians and

distributions.
3. Searching the keyword descriptions of ACT-R

studies in the database.
4. Collecting fields of study and other information

related to ACT-R parameter estimations.
Below we describe the basic functions of the database.

Frequency graph In the middle of the frontpage, there is a
frequency graph listing all the numerical parameters that
have been modified by at least one study in the database.
Layout of the frequency graph is arranged so that the
modified parameters are listed in descending order of
frequency from the bottom to the top (Figure 2).

Figure 1: Frequency of modifications of ACT-R parameters.

283

Frontpage function buttons At the top of the frontpage of
the database there are functional buttons labeled “Query
parameters”, “list studies”, and “Enter your ACT-R study”.
These buttons provide access to the major ways to interact
with the database (See Figure 2). A ‘Home’ button returns
the user to the portal frontpage.

Figure 2: Major functional buttons at the top of frontpage.

Performing keyword search in the database At the
bottom of the frontpage there is a search box where users
can perform keyword searches or exact title searches (See
Figure 3).

Figure 3: Keyword search or title search in the database.

Query parameters By pressing the query button a user can
query any ACT-R parameter for any particular version of
ACT-R in the database, using a drop-down menu (See
Figure 4).

Figure 4: A drop-down menu to query ACT-R parameters.

After a parameter is chosen, the studies in the database

that modified the particular parameter are displayed together

with the mean and the median. The database also provides a
graph describing the distribution of its modification among
studies listed as well as the default values and the
equation(s), if any (See Figure 5).

Figure 5: Information about the ACT-R parameter :DAT.

Results of listing or searching the database By pressing
the ‘List’ button, or by performing a search on the
frontpage, a user will reach a list of studies (See Figure 6).

Figure 6: A list of ACT-R studies displayed after pressing
the ‘List’ button or performing a search.

By further clicking on the title of a study specific

information about parameter modifications of that study will
be displayed (See Figure 7).

Figure 7: Information about parameter modifications.

Submit your model By pressing the ‘Submit’ button a user
will reach the interface for entering information about
parameter modifications of an ACT-R study (See Figure 8).

284

The interface is designed so as to guide the user through
reporting their study in a step-by-step manner. By allowing
ACT-R modelers to interact through our online database
(providing their own estimated parametric values, modified
values, and comments on their entries and models) we
provide a more sustainable ‘living’ archive that benefits
from the ‘wisdom of crowds’. Readers are welcome to try
out the database and provide feedback.

Figure 8: An interface to enter information about an ACT-R
modeling study.

Results and Discussion

A brief report of some notable ACT-R parameters
At the time of publication, 44 studies were included in the
database Together with a total of 261 instances of parameter
modifications or estimations. On average each study
modified 5.93 parameters. Among the ACT-R parameters
that were modified in these studies, the three most
frequently modified were :RT, :ANS, and :LF. The two
ACT-R parameters :BOLD-EXP and :RT have the widest
ranges of modified values among all parameters (See Table
1).

Table 1: The Most Frequently Modified ACT-R

Parameters and Parameters with The Widest Range of
Values
ACT-R
Parameter

Default
value

Description Frequency
modified

:ANS Nil Activation noise of
chunks

30

:LF 1 Latency factor of
chunks retrieval

23

:RT 0 Retrieval threshold
of chunks

37

:BOLD-
EXP

6 Exponential
parameter for
computing the
BOLD response.

15

Note: For detailed descriptions of all the ACT-R
parameters, we refer the interested reader to the ACT-R
website (http://act-r.psy.cmu.edu/), Anderson (2007), and
Anderson & Lebiere (1998).

Applications
Anderson et al. (1998) demonstrated that there are
systematic variations between τ (:RT) and F (:LF) across
studies. Unfortunately, not all the parameters in ACT-R
have received this level of attention. As ACT-R continues to
develop, it will acquire even more parameters. To help
manage obstacles and challenges associated with such
growth, our online database may provide a useful and
convenient way for the ACT-R community to interact with
each other and monitor these parameters. In the long run,
by flagging frequently monitored parameters the database
may point to weaknesses in the theory. In the short run, the
database provides an overview of the parameter space.

To illustrate, when a modeler wants to study a

phenomenon that requires estimation of an ACT-R
parameter, this database serves as a portal to get an
overview of the parameter in question with just a few
mouse-clicks. With a keyword search about the
phenomenon one can get a list of related modeling studies.
When directly querying the parameter, the database
provides studies that have modified the parameter from its
default value, alongside with the means, medians, and
default value (if any) on a distribution graph. This provides
the modeler with a transparent window onto what was
previously opaque information about what parameter values
other ACT-R modelers were using.

Beyond fixing exact parameters, we also expect that the

database can simplify much of the procedure used to
estimate ranges of ACT-R parameters. The database can
provide information about ways and approaches for
capturing individual differences (e.g. age, abilities),
environmental differences, and task differences (e.g.
vigilance). For example, the default action time (:DAT),
which is set at 0.05 second, dictates the basic firing speed of
a procedure in an ACT-R model. While it is standard to use
to default values when possible, there are indications that
age (Mata, Schooler, & Rieskamp, 2007) and environmental
factors (Gunzelmann, Gross, Gluck, & Dinges, 2009) may
alter this basic firing speed. Another example is the retrieval
threshold parameter (:RT), which is normally set to zero but
can be expressed instead as a logistic function with a range
of possible values, reflecting forgetting (Schooler &
Hertwig, 2005). In these instances, using the interactive
database to gather information provides a way to better
monitor and estimate the most reasonable (or common)
parameters of variation for human speed of processing.

Implications for parameter estimations in ACT-R
We setup the database in response to some important
concerns stemming from the general problems of parameter
estimation associated with a framework as complex as
ACT-R. By setting up this database, we appeal to the
‘wisdom of the crowd’ among ACT-R modelers. In ongoing
work we are testing the median parameter hypothesis: The
parameterization of ACT-R based on the median estimated

285

ACT-R parameter values across all studies will fare better in
predicting performance when compared to the
parameterization that was used for each particular study. We
could also imagine searching for a set of parameters that
gives the best fit to all the studies in the database. It is our
hope that these efforts may bring ACT-R modelers closer to
true “zero-parameter fits”.

Setting parameter values a priori to plausible values
constrains overly flexible models by restricting the range of
a model’s predictions. This should lead to more accurate
and perhaps more useful predictions of human performance
patterns. A possible further development is to estimate a
recommended range of values for every ACT-R parameter
that correspond to human cognitive limitations. Finding
such a correspondence would be in line with practices used
in the human factor community, where limits of human
performance are essential inputs for system design.

Conclusions
The major aim of this database is to provide a collaborative
interface for ACT-R modelers to document and monitor
values of ACT-R parameters in an efficient and sustainable
way. By making use of the “wisdom of the crowd”, ACT-R
modelers can minimize model flexibility and increase the
generalizability of their models. This can also be seen as a
natural experiment concerning how best to estimate
parameters in a social manner. By using a database of
parameters that encourages generalizability and penalizes
flexibility the ACT-R community might move closer to
answering Newell’s beautiful call for a truly unified theory
of cognition.

References
Anderson, J. R. (1976). Language, Memory, and thought.

New Jersey: Lawrence Erlbaum.
Anderson, J. R. (2007). How can the human mind occur in

the physical universe? Oxford University Press, USA.
Anderson, J. R., & Lebiere, C. (1998). The atomic

components of thought. Lawrence Erlbaum.Anderson, J.
R., Bothell, D., Lebiere, C., & Matessa, M. (1998). An
integrated theory of list memory. Journal of Memory
and Language, 38, 341–380.

Gigerenzer, G. (1998). We need statistical thinking, not
statistical rituals. Behavorial and Brain Sciences, 21,
199-200.

Gigerenzer, G., & Brighton, H. J. (2009). Homo
heuristicus: Why biased minds make better inferences.
Topics in Cognitive Science, 1, 107-143.

Gunzelmann, G., Gross, J. B., Gluck, K. A., & Dinges, D.
F. (2009). Sleep Deprivation and Sustained Attention
Performance: Integrating Mathematical and Cognitive
Modeling. Cognitive Science, 33(5), 880-910.

Mata, R., Schooler, L., & Rieskamp, J. (2007). The aging
decision maker: cognitive aging and the adaptive
selection of decision strategies. Psychology and Aging,
22(4), 796-810.

Oaksford, M. (2002). How does it fit? Trends in Cognitive
Sciences, 6(10), 412-413.

Pitt, M. A., Myung, I. J., & Zhang, S. (2002). Toward a
method of selecting among computational models of
cognition. Psychological Review, 109(3), 472–491.

Roberts, S., & Pashler, H. (2000). How persuasive is a good
fit? A comment on theory testing. Psychological Review,
107(2), 358–367.

Roberts, S., & Pashler, H. (2002). Reply to Rodgers and
Rowe (2002). Psychological Review, 109(3), 605–607.

Schooler, L. J., & Hertwig, R. (2005). How Forgetting Aids
Heuristic Inference. Psychological Review, 112(3), 610–
628.

Taatgen, N. A., Van Rijn, H., & Anderson, J. (2007). An
integrated theory of prospective time interval estimation:
The role of cognition, attention, and learning.
Psychological Review, 114(3), 577–598.

Wexler, K. (1978). A review of John R. Anderson’s
Language, Memory, and Thought. Cognition, 6, 327-
351.

286

Locating the Neural Correlates of the Problem State Resource:
Analyzing fMRI Data on the Basis of a Computational Model

Jelmer P. Borst (jpborst@ai.rug.nl), Niels A. Taatgen (niels@ai.rug.nl)

Department of Artificial Intelligence, University of Groningen, the Netherlands

Hedderik van Rijn (d.h.van.rijn@rug.nl)
Department of Psychology, University of Groningen, the Netherlands

Keywords: fMRI analysis; cognitive modeling; problem state.

Introduction
Multitasking often has to be investigated with experiments
using complex tasks. An example is our research on the
‘bottleneck’ role of the problem state resource (Borst,
Taatgen, & Van Rijn, 2010). The problem state resource is
the part of working memory that is used to store
intermediate results. Previously, we have shown that its
capacity is limited to one element. Because we were
interested in finding the neural correlates of the problem
state resource, and fMRI data of complex tasks are difficult
to analyze with classical analysis methods, we developed a
novel, computational-model-based fMRI analysis method.
We show that this method can be used to analyze complex
tasks by locating the brain area responsible for maintaining
problem states: the inferior parietal lobule.

Methods
Our participants were asked to perform a ‘triple-task’ in the
fMRI scanner: They solved multi-column subtraction
problems, entered text, and performed a listening
comprehension task concurrently. Both the subtraction task
and the text entry task had two versions: an easy version
without problem state usage and a hard version with
problem state usage. Due to the problem state bottleneck,
problem states had to be replaced constantly in the hard
subtraction – hard text entry condition (Borst et al., 2010).
This should lead to considerably more activity in brain areas
associated to the problem state in the hard – hard condition
than in the other conditions. That is, we predicted an over-
additive interaction effect.

This type of complex task is difficult to analyze with
classical fMRI analysis methods that assume ‘pure
insertion’. In such a complex task cognitive resources are
used at different time points in each trial, while pure
insertion methods assume that a resource is active in one
condition but not in the other conditions. As an alternative
analysis method, we fit a computational model developed
using ACT-R (Anderson, 2007) and Threaded Cognition
(Salvucci & Taatgen, 2008) to the behavioral data, and
subsequently regressed the model’s problem state activity
against the fMRI data to find regions that are sensitive to
problem state activity. This gives a much finer-grained
stimulus function than classical methods, as we use model
behavior within a single trial. Figure 1a and 1b give a

concrete example of what this means over the course of four
trials in our experiment. Figure 1a shows the single stimulus
function of the problem state resource that was used for the
new model-based analysis and Figure 1b shows the four
stimulus functions that are needed for the classical fMRI
analysis of an interaction effect.

Results & Discussion
The results of the analyses are displayed in Figure 1c
(model-based method) and 1d (classical method). First, the
results show that the model-based analysis method
outperformed the classical method: it enabled us to find the
neural correlates of the problem state resource, while the
classical method did not yield any significant results.
Secondly, the results show that the problem state resource is
located in the posterior parietal cortex, with the peak
activity in the inferior parietal lobule.

These findings illustrate the applicability of a new
analysis method for fMRI, which not only allows for using
complex tasks in the fMRI scanner, but also for locating
multiple cognitive resources in one experiment. For
example, while we have shown the results for the problem
state resource, the same methodology can be used for the
visual resource, yielding an area in the occipital cortex.
Furthermore, this model-based fMRI analysis method can
be applied to every data set when there is a model available
that is more detailed than the global trial structure of the
experiment, showing which constructs of a model are linked
to which brain areas.

Acknowledgments
The research was supported by Office of Naval Research
grant N00014-08-10541 awarded to Niels A. Taatgen.

References
Anderson, J. R. (2007). How can the human mind occur in

the physical universe? New York: Oxford University
Press.

Borst, J. P., Taatgen, N. A., & Van Rijn, H. (2010). The
problem state: A cognitive bottleneck in multitasking.
Journal of Experimental Psychology: Learning, Memory,
& Cognition, 36(2), 363-382.

Salvucci, D. D., & Taatgen, N. A. (2008). Threaded
cognition: An integrated theory of concurrent
multitasking. Psychological Review, 115(1), 101-130.

287

Figure 1. Comparison of the model-based analysis method and the classical method. Panel (a) shows the demand
function of the problem state resource in the model in blue, and its convolution with a hemodynamic response
function in red. Panel (b) shows the four stimulus functions that are necessary to analyze an interaction using the
classical method. Easy-Easy etc. above the diagrams indicate the experimental condition. Panel (c) shows the results
of the model-based method (contrast is displayed above the results), and (d) the results of the classical method.

288

“Hello Java!” Linking ACT-R 6 with a Java simulation

Philippe Büttner
Technische Universität Berlin

Centre of Human Machine Systems
Franklinstr. 28-29, FR 2-6

10587 Berlin, Germany
pbu@zmms.tu-berlin.de

Abstract

Many more applications and simulations are developed in the
Java programming language than in the Lisp programming
language. This can be attributed to a number of reasons, in-
cluding platform independence, object-oriented programming,
etc. Due to the fact that the ACT-R software was programmed
in Lisp, incompatibility issues between it and Java arose.
These issues necessitated the establishment of a tool capable
of preventing a Lisp reimplementation of existing Java appli-
cations. Consequently, “Hello Java!” was developed to link
cognitive models written in ACT-R with Java applications,
namely simulations. In order to achieve this, a package must
be added to the Java simulation so that it can observe and per-
form actions on the frame, as well as communicate with the
ACT-R software. The line of communication between Java
and Lisp is established through a TCP/IP connection. As a re-
sult, the simulation and cognitive models can be run on dif-
ferent computers. Since the release of ACT-R 6, the methods
for perception and action have been externalized. These ex-
ternalized methods can be utilized as devices for the ACT-R
software, making it possible to, consequently, use a Java
simulation as a device for ACT-R.

Keywords: ACT-R; device; Java; simulation; network

Introduction
ACT-R (Anderson & Lebiere, 1998) is a computational the-
ory of human cognition with two separate, but interacting,
knowledge stores developed in Lisp. Both declarative
knowledge and procedural knowledge are unified into a
production system where procedural rules act on declarative
chunks. The ACT-R system includes the capability to create
simulated environments, such as screen interfaces. Produc-
tion rules have the ability to interact with this environment
by perceiving objects and making motor movements
through perceptual and motor buffers.

The externalization of all necessary methods involved in
the perception of objects and the facilitation of motor move-
ments makes it possible to extend the environment to a
world outside of ACT-R, without requiring a modification
of its architecture. An interaction with the production rules
can be enabled with any device which meets the specifica-
tions of these externalized methods. Due to the fact that
Lisp supports communication via the TCP/IP network pro-
tocol, it becomes possible for ACT-R to interact with any
environment also possessing the capability to communicate
via TCP/IP.

I was able to take advantage of this trait and developed
“Hello Java!” as an open source tool for linking cognitive
models written in ACT-R to applications and simulations

written in Java. This tool and additional examples, including
the source code, are available on the following website:
http://www.zmms.tu-berlin.de/kogmod/tools/hello-java.html

Design
To link a cognitive model written in ACT-R to a frame-
based Java simulation two elements that coordinate the in-
teraction between the model and the simulation are required.
The first of these elements is a Java package that must be
added to the simulation. The second element is a device for
the ACT-R software that bridges the incompatibility be-
tween Java and Lisp with the TCP/IP network protocol. I
will now proceed to describe the communication and syn-
chronization of the elements in detail:
Communication
The line of communication between Java and Lisp is estab-
lished through a TCP/IP connection, which is a protocol
commonly used to connect computers to the internet. All
information sent with this protocol can be transmitted as a
string representation. This string representation carries data
pertaining to perception and action that is exchanged be-
tween the cognitive model and the simulation. In order to be
able to communicate via TCP/IP, each side must encode and
decode information using a common vocabulary and unified
grammar. ACT-R receives data pertaining to perception and
sends back data pertaining to the execution of motor move-
ments. Java, meanwhile, receives data instructing it to per-
form the cognitive model’s desired action and provides a
visual representation of all objects visible in the frame.

By using a network structure it is possible to run a cogni-
tive model and a simulation on different computers. This
increases computing power for each, cognitive model and
simulation.
Synchronization
In order to keep the cognitive model and the simulation syn-
chronized, the simulation must adjust its cycle speed to that
of the cognitive model. The opportunity to do this applies to
all clock-controlled simulations. A clock-controlled simula-
tion updates all elements visible on the screen after one cy-
cle. The length of a cycle depends on the time resolution of
the simulation. The shorter the cycle, the smoother a simula-
tion appears to be.

ACT-R is responsible for adjusting the cycle speed of the
simulation. It accomplishes this by synchronizing the execu-
tion of the simulation’s cycles with the computed time in-
terval of the cognitive model. ACT-R’s scheduler is used to
trigger the cycles in a calculated time interval.

289

As an example, let us assume that the cycle length of a
clock-controlled simulation is one second. The scheduler
will also be adjusted to one second and it assumes control of
the cycles of the simulation. Due to the fact that the time
interval of the scheduler is synchronized with the computed
time interval of the cognitive model, the same time will
elapse for the simulation and the cognitive model.

Extending the Java simulation
Java has established itself as a widely used, universal,

platform-independent programming language. In order for
ACT-R to be able to access a Java simulation, the simula-
tion itself must be extended by a package. In general, a Java
package contains classes, methods and functions that extend
an application. This package coordinates the functions of
observing all objects from the simulation, performing ac-
tions on the simulation, and exchanging information with
ACT-R. In order to run the package, one must first add it to
the simulation and initialize it. The package consists of three
sub-packages. Their descriptions and roles are listed below:
Robot

This sub-package triggers actions like clicking a mouse
button, moving the mouse, stroking a key, moving the atten-
tion pointer and speaking, if the cognitive model decides to
perform one of these actions.
GUI

GUI contains the information of all objects visible in the
frame. By recursively accessing objects in the frame, data
pertaining to the following objects becomes accessible: la-
bels, text fields, buttons, radio buttons and toggle buttons. In
principle, every Java object can be accessed. Therefore,
information pertaining to the kind, value, colour, size and
relative position of an object must be encoded to a string
representation. This information is necessary for the visual
icon of ACT-R. An object can be one of the following
types: text, line or oval. Because ACT-R interprets an oval
as a button, every type of button is assigned as oval.
Net

This sub-package provides all methods responsible for
encoding and decoding information and handles the network
connection with ACT-R. A socket process is started that
waits for a connection from ACT-R on a predefined port. If
the socket process receives information, it proceeds to parse
it, thereby enabling it to perform actions based on methods
obtained from the robot sub-package. Furthermore, it can
send back visual information from the GUI package.

ACT-R device
As described above, ACT-R 6 provides externalized, acces-
sible methods responsible for the perception of objects and
the execution of motor movements. These methods can be
implemented and utilized as a device, resulting in an inter-
action between this particular device and the production
rules. In order to be able to link ACT-R to a Java simula-
tion, it was necessary to implement the following methods:

 device-move-cursor-to: ACT-R sends an action to the
Java simulation to move the mouse pointer to a given
position.

 device-handle-click: ACT-R sends an action to the Java
simulation to perform a mouse click.

 device-handle-keypress: ACT-R sends an action to the
Java simulation to perform a keystroke.

 device-speak-string: ACT-R sends an action to the Java
simulation to speak a string.

 get-mouse-coordinates: ACT-R sends a request to the
Java simulation to gather data pertaining to the position
of the mouse.

 build-vis-locs-for: This method updates the visual icon
of ACT-R’s vision module with all visible objects of
the device. It will be invoked after the proc-display
command is called.

 device-update: This method is called after ACT-R
computes one cycle. At this point it is optional to up-
date the visual icon of ACT-R’s vision module or to
perform other tasks.

Updating the visual icon of the vision module
To update the visual icon, it is necessary to call an update-
method. This method regulates the gathering of visual in-
formation, but is not one of ACT-R’s device-methods. The
update-method sends a request to the Java application in-
structing it to collect data pertaining to all visible objects
present in the simulation. Once this visual data is transmit-
ted to ACT-R, it is then written into the visual icon of ACT-
R via the “build-vis-locs-for” method. The visual icon pro-
vides information about the kind, value, colour, size and
relative position of visible objects in the environment. This
method responsible for updating the visual icon can be trig-
gered in two different ways:
 By utilizing a scheduler corresponding to a regular time

interval, resulting in reduced network traffic for longer
time intervals. A scheduled update is especially practi-
cal on clock-controlled simulations in which the simu-
lation updates the screen after a certain interval.

 By allowing every instance in which ACT-R calls the
“device-update” method to serve as a trigger. Although
this method ensures that the visual icon is always up-to-
date when being accessed by ACT-R, it incurs higher
network traffic costs.

Discussion
“Hello Java!” was developed as a tool to directly interface
ACT-R with an external system. Its defining trait is its ease
of use resulting from the fact that no modification of the
simulation is required, that no restrictions are imposed upon
the model and that it is possible to synchronize the simula-
tion with the model.

References
Anderson, J. R., & Lebiere, C. (1998). The atomic compo-
nents of thought. Mahwah, NJ: Erlbaum.

290

Answer Set Programming for Computational Psychological Models

Sara Girotto (sara.girotto@ttu.edu)
Department of Psychology, Texas Tech University

Lubbock, TX 79404

Marcello Balduccini (marcello.balduccini@gmail.com)
Intelligent Systems, KRL, Eastman Kodak Company

Rochester, NY 14650

Keywords: formalization of psychological knowledge; answer
set programming; short term memory.
Abstract: Our work explores the use of Answer Set
Programming (ASP) to formalize and reason about
psychological knowledge. To demonstrate the viability of ASP
for this task, in this paper we discuss an ASP-based
formalization of the mechanisms of Short Term Memory.

Introduction

Our work explores the use of Answer Set Programming

(ASP) (Gelfond & Lifschitz, 1991; Marek & Truszczynski,

1999) to formalize and reason about psychological

knowledge. Whereas some psychological models have a

clear quantitative nature, which allows modeling e.g. with

neural networks or Bayesian networks, other models have a

more logical or qualitative nature and are not suitable for

formalization with these techniques. ASP is a knowledge

representation formalism allowing for concise and simple

representations of defaults, uncertainty, common-sense and

evolving domains, and has been demonstrated to be a useful

paradigm for the formalization of knowledge of various

kinds (e.g., Baral & Gelfond, 2005; Son & Sakama, 2009).

For this reason, we believe that ASP can be used

successfully for the formalization of psychological

knowledge that is of qualitative nature. ASP is also directly

executable, in the sense that the consequences of collections

of ASP statements can be directly computed using computer

programs. Hence, ASP-based formalizations of

psychological knowledge can be viewed as computational

models of the underlying psychological theories.

Answer Set Programming

In ASP, terms and atoms are formed according to the

standard rules of first-order logic. A literal is either an atom

a or its strong (also called classical or epistemic) negation

:a. In its simplest form, a rule is a statement:

 hÃ l1; l2; : : : ; lm;not lm+1; : : : ;not ln

where h and li’s are literals and not is the so-called default

negation. The intuitive meaning of the rule is that a reasoner

who believes fl1; : : : ; lmg and has no reason to believe

flm+1; : : : ; lng, must believe h . The availability of two

types of negation is one important feature of ASP, allowing

for great flexibility in knowledge representation. In

particular, the way default negation is treated in ASP allows

to easily encode defaults (such as “an action is allowed

unless it is explicitly stated that it is not”) and also to

represent uncertainty and alternative, different views of the

world (e.g. “either symbol a or symbol b, but not both, will

be forgotten, but we do not know which one). The precise

definition of the meaning of sets of ASP rules (called an

ASP program) is given by the answer set semantics

(Gelfond & Lifschitz, 1991), which characterizes a suitable

notion of logical consequence. We omit further details due

to space constraints; rather, in the rest of the paper we rely

on the informal meaning of rules given above. From a

practical perspective, the logical consequences of sets of

ASP rules can be computed automatically, and rather

efficiently, using computer programs called ASP solvers.

These solvers can of course be also interfaced to pre-

processors, post-processors and user interfaces, to build

sophisticated end-to-end systems (e.g., Balduccini, Gelfond

& Nogueira, 2006).

ASP-Based Formalization of STM

To demonstrate that ASP is suitable for and successful at

formalizing psychological knowledge, we have developed

an ASP-based formalization of the mechanisms of operation

of Short-Term Memory (STM), as described by Atkinson &

Shiffrin (1971). This theory was selected because it reflects

the type of psychological knowledge that we aim at

formalizing: it is mostly of qualitative nature and is

expressed in the literature at a rather high level of

abstraction. Moreover, its formalization is challenging

because it involves modeling of a sophisticated dynamic

domain, involving non-determinism, fixed-capacity storage,

and decay over time. In order to show that the use of ASP is

not limited to a single theory, we have formalized not only

the traditional theory of STM (Atkinson & Shiffrin, 1971),

but also an alternative STM model (e.g., Card, Moran &

Newell, 1983) in which decay is influenced not only by

elapsed time but also by other variables such as the number

of chunks a user is trying to remember and retrieval

interference with similar chunks activated in working

memory. It is worth stressing that the accounts of STM

(Atkinson & Shiffrin, 1971; Card, Moran & Newell, 1983)

that have been formalized by means of ASP are relatively

well-established models from the existing literature. Our

purpose in this study is not to modify the models but to

show that they can indeed be formalized using ASP.

Using a common methodology in ASP-based knowledge

representation, the formalization process starts by

291

condensing the description of STM in a number of precisely

formulated statements in natural language. For example, the

set of statements for the traditional theory of STM contains

16 items, including the following: (1) STM is a collection of

symbols; (2) the size of STM is limited to ! elements

(Cowan, 2000); (3) each symbol has an expiration time; (4)

symbols can be added to STM; (5) if a new symbol is added

to STM when ! elements are already in it, the symbol that

is closest to expiring is removed from STM (i.e. forgotten).

Then, the logical representation of the formalization is

created by choosing suitable relations and functions, and

using them to encode the natural language statements and

the underlying knowledge. Because we are interested in

describing how the contents of STM change over time, we

use two special relations, holds(f; i), saying that property f

holds at step i in the evolution of the contents of STM, and

occurs(a; i), saying that action a occurs at step i. For

instance, statement (4) is encoded by a rule:

holds(in stm(S); I +1)Ã occurs(store(S); I)

whose informal reading is: if the action of storing some

symbol S (by convention an uppercase initial denotes a

variable) occurs at some step I , then S will be in STM at

the next step I + 1. The rule is based on the stipulation that

store(S) represents the action of adding a symbol to STM,

and that in stm(S) encodes the fact that S is in STM.

Statement (5) is formalized by the following rule, as well

as the definition (omitted to save space) of the auxiliary

relations used in it:

:holds(in stm(S0); I+1)Ã S 6= S0; occurs(store(S); I);

stm max size(MX);

curr stm size(MX; I)

not some symbol expiring(I);

oldest in stm(S0; I)

The informal reading of the rule is: when S is stored in

STM, if the current size of STM equals its maximum size

(represented by relations and

, respectively) and no symbol is due

to expire (written as), then

the symbol which is closest to expiring is removed from

STM (encoded by means of the classical negation of

holds(in stm(S0); I + 1), saying that S0 will not be in

STM at the next step).

Using terminology from the literature on ASP, the set of

all rules formalizing STM is called action description, and

denoted by ¦STM . To use the action description in order to

predict the behavior of STM in a particular situation, one

writes additional rules, say ¦sit, describing the situation,

and then uses an ASP solver to compute the logical

consequences of the ASP program consisting of ¦STM and

¦sit. For example, given the encoding of a memory-span

test in which the subject is required to remember the

sequence 1-7-3-2-6-5 and the maximum size of STM is of 4

items, the output of the ASP solver for ¦STM [¦sit

contains statements such as holds(in stm(digit 1);1) and

:holds(in stm(digit 1);5), showing that digit 1 was

correctly stored initially, but forgotten at step 5 (because

digit 6 was stored when STM was already at its full

capacity).

In our study we also demonstrate the computational

aspects of our modeling technique by creating an

application of our formalization to the task of predicting a

user’s performance in the interaction with a graphical user

interface. We developed an ASP-based representation of a

scenario in which a user is told a sequence of tasks and is

expected to execute it relying only on memory of the

sequence. The prediction of the corresponding ASP program

is in line with what the STM model (Atkinson & Shiffrin,

1971) predicts, correctly determining (1) if the user will or

will not be able to remember and execute the sequence, and,

in case the user forgets part of the sequence, (2) which

pieces of information are (likely to be) forgotten and when.

Execution of the ASP program is also rather fast, with most

predictions computed in less than a second.

Conclusions

The ASP-based formalization appears promising in terms

of producing accurate predictions of performance from

mostly qualitative models of behavior. It also allows

analysis and comparison of different psychological theories,

as well as prediction of the outcome of experiments, thus

making it possible to design better experiments and

diminishing the need for prototyping and user testing. This

success opens the door to the use of ASP for the

formalization of other psychological knowledge and models,

as well as for its practical use in HCI-oriented applications.

References

Atkinson, R. C., & Shiffrin, R. M. (1971). The control of

short-term memory. Scientific American, 225, 82-90.

Balduccini, M., Gelfond, M., & Nogueira, M. (2006).

Answer set based design of knowledge systems. Annals of

Mathematics and Artificial Intelligence, 47(1-2), 183-219.

Baral, C., & Gelfond, M. (2005). Reasoning about intended

actions. Proceedings of the 20
th

 International Conference

on Artificial Intelligence (pp. 689-694). AAAI Press.

Card, S. K., Moran, T. P., & Newell, A. (1983). The

Psychology of Human-Computer Interaction. Mahwah,

NJ: Lawrence Erlbaum Associates.

Cowan, N. (2000). The magical number 4 in short-term

memory: A reconsideration of mental storage capacity.

Behavioral and Brain Sciences, 24, 87-185.

Gelfond, M., & Lifschitz, V. (1991). Classical negotiation in

logic programs and disjunctive databases. New

Generation Computing, 9, 365-385.

Marek, V. W., & Truszczynski, M. (1999). Stable models

and an alternative logic programming paradigm. In Apt,

K., Marek, V., Truszczynski, M., Warren, D. (Eds), The

logic programming paradigm: A 25-year perspective.

Berlin, Germany: Springer Verlag.

Son, T. C. & Sakama, C. (2009). Negotiation using logic

 programming with consistency restoring rules. 21
st

 International Joint Conferences on Artificial Intelligence

 (IJCAI). Morgan Kaufmann Publishers Inc.

292

Towards a cognitive model of conceptual blending

Markus Guhe, Alan Smaill, Alison Pease ([m.guhe, a.smaill, a.pease]@ed.ac.uk)

School of Informatics, University of Edinburgh, 10 Crichton Street
Edinburgh EH8 9AB, Scotland

Abstract
We outline a way to use Goguen’s (2006) account of concep-
tual blending in the cognitive architecture ACT-R. Despite re-
cent advances in linguistics and general accounts of concep-
tual blending (for example, Fauconnier and Turner 2002,
2008) it has received scant attention in cognitive modelling,
which is partly due to the fact that there are hardly any
computational accounts of this phenomenon, Goguen’s being
one of them.

Keywords: conceptual blending; metaphor; analogy; linguist-
ics; conceptualisation; scientific creativity; ACT-R; Theory of
Institutions.

Analogy, metaphor, conceptual blending
A major factor for the power and flexibility of the human
cognitive system is its ability to create new concepts, in par-
ticular by combining existing ones. It is both central in cre-
ating new scientific ideas as well as for ‘everyday’ thinking.
We are particularly interested in the role of this mental ma-
chinery in the creation of new mathematical concepts
(Guhe, Smaill and Pease 2009). Most current accounts of
scientific creativity emphasise the role of analogy (Gentner
& Markman, 1997) or metaphor (Lakoff & Núñez, 2000).
Here, we outline the more general process of conceptual
blending, its role in creating new concepts, and how it can
be integrated into the cognitive architecture ACT-R
(Anderson, 2007).

Analogy and metaphor, which we take to be essentially
the same, are cognitive processes that (1) establish map-
pings between parts of a cognitive system’s knowledge rep-
resentations (usually called domains) and that (2) can trans-
fer knowledge between domains for which a mapping was
established. For example, in the extensively studied meta-
phor TIME IS SPACE, the expression Christmas is two days
away recasts an event (Christmas) as a location with respect
to the speaker’s current location in time by specifying a
temporal interval (two days) as a distance.

According to Fauconnier and Turner (2002) metaphors
and analogies are only special cases of conceptual blending.
A metaphor is simply a ‘cross space mapping’ (Goguen,
2006, p. 8). The TIME IS SPACE metaphor, for example, not
only provides the basic mapping, but allows reconceptuali-
sations as well as the integration of knowledge from other
domains. A common reconceptualisation of the TIME IS
SPACE conceptual blend is, for example, a change in per-
spective, where time is conceptualised as passing a static
observer, e.g. in the expression Time passes slowly
(Fauconnier and Turner 2008). It is important to note that a

metaphorical or analogical mapping alone cannot account
for this additional mental flexibility.

Goguen’s approach
Fauconnier and Turner’s account of concept blending is not
directly suited for computational cognitive modelling, be-
cause it remains purely descriptive. Goguen (2006) outlines
a computational account of conceptual blending – based on
Fauconnier and Turner – using the theory of Institutions, a
theory similar to Information Flow, which we used earlier
(Guhe, Smaill, & Pease, 2009).

We cannot go into much detail here, so we will restrict
ourselves to one of Goguen’s (2006) motivating examples
of a conceptual blend between the concepts HOUSE and
BOAT, resulting in the conceptual blends HOUSEBOAT and
BOATHOUSE, cf. Figure 1 for a depiction of the HOUSEBOAT
blend. A base domain (shown at the bottom) provides the
‘glue’ needed for mapping two domains (in the middle, left
and right) and creating a conceptual blend (at the top). The
most important mapping here is the one of live-in and ride,
which provides the reconceptualisation of a BOAT as an
OBJECT in which a person can not only RIDE but also LIVE.

Goguen restricts the many possible conceptual blends by
specifying sortal frames, which must match in order for a
mapping between domains to succeed. Sortal restrictions are

Figure 1: HOUSEBOAT conceptual blend

293

specified in a signature, for example for the HOUSEBOAT
case Goguen defines the following sortal frames:

Transfer to ACT-R
The translation of Goguen’s proposal to ACT-R (Anderson,
2007) is rather straightforward. In our prototypical imple-
mentation, facts are represented as chunks and the matching
and transfer operations are realised with production rules.
The one major problem is that ACT-R does not have a sortal
mechanism comparable to Goguen’s. Although ACT-R uses
sorts (in the form of chunk types), it does not automatically
check for super-/subsort relations like in Goguen’s concep-
tion. This means, for example, that WATER is not automati-
cally understood to match frames specifying MEDIUM. Thus,
the mapping of on(house, land) to on(boat, water) fails, be-
cause these facts cannot be linked via the base domain (by
using on(object, medium)). We outline two basic solutions
below. Which one provides a better model of the cognitive
mechanisms will have to be established experimentally.

Solution 1 – Explicit sortal checks
The first solution is to explicitly perform sortal checks with
a set of production rules. For such a model we coded infor-
mation about subsorts as chunks of type
(chunk-type is-subsort sort1 sort2)

The production rules performing the sortal checks keep
the information about the two facts that are being compared
in the imaginal buffer while the information about the sortal
hierarchy is retrieved from the declarative memory.

A variant for faster processing is to include sortal infor-
mation with the facts, e.g. for predicates:
(chunk-type predicate name result-sort
 par1 sort1 par2 sort2)

The major disadvantage of this solution is that the repre-
sentations contain much redundancy and do not provide the
usual generalisations, e.g. that WATER is a subsort of ME-
DIUM.

Solution 2 – Amending the declarative module
An alternative solution is to change ACT-R on the architec-
tural level, i.e. to amend the declarative module. A rather
mild extension is to provide the declarative module with
sortal information (e.g. a lattice of sorts) and let it consider
not only chunks that directly match the sort of the chunk
(i.e., that match in the isa slot) but also chunks that have a
supersort of the chunk being requested.

A more severe alteration is to check all slot values that a
chunk specifies and match not only the values themselves
but check for values higher up in the sortal hierarchy. For

example, if a request to the declarative module specifies a
chunk with a slot–value pair like
retrieval>

isa predicate
name on
par1 house …

the par1 slot would also match for chunks like:
retrieval>
isa predicate
name on
par1 object …

Solution 2 predicts much faster processing than solution 1,
because all checks are performed within one memory re-
trieval. Thus, it neither requires firing multiple productions
nor multiple retrievals from declarative memory.

Conclusion
Conceptual blending is a central, powerful and productive
aspect of human cognition, allowing, for example, to con-
ceptualise time in terms of space. However, cognitive mod-
elling has not yet seriously addressed this issue. We outlined
in broad terms a way to transfer Goguen’s notion of concep-
tual blending into the cognitive architecture ACT-R as a
first step to include conceptual blending in cognitive models
of scientific creativity, in particular mathematical thinking.
Whether a modification of ACT-R’s declarative module will
provide better cognitive adequacy will have to be decided
on the basis of empirical data.

Acknowledgements
The research reported here was carried out in the Wheel-
barrow project, funded by the EPSRC grant EP/F035594/1.

Bibliography
Anderson, J. R. (2007). How can the human mind occur in

the physical universe? New York: Oxford Univ. Press.
Fauconnier, G., & Turner, M. (2008). Rethinking metaphor.

In Cambridge Handbook of Metaphor and Thought (pp.
53–66). New York: Cambridge Univeristy Press.

Fauconnier, G., & Turner, M. (2002). The way we think:
Conceptual blending and the mind's hidden complexities.
New York: Basic Books.

Gentner, D., & Markman, A. (1997). Structure Mapping in
Analogy and Similarity. Am. Psychologist, 52 (1), 45–56.

Goguen, J. (2006). Mathematical Models of Cognitive
Space and Time. In D. Andler, Y. Ogawa, M. Okada, &
S. Watanabe, Reasoning and Cognition.

Guhe, M., Smaill, A., & Pease, A. (2009). Using Informa-
tion Flow for Modelling Mathematical Metaphors. In
Proc. of the 9th ICCM.

Lakoff, G., & Núñez, R. E. (2000). Where Mathematics
Comes From. New York: Basic Books.

resident: → Person passenger : → Person
house : → Object boat : → Object
land, water: → Medium land, water: →Medium
livein : Person Object → Bool ride : Person Object → Bool
on: Object Medium → Bool on: Object Medium → Bool
livein(resident, house) ride(passenger, boat)
on(house, land) on(boat, water)

294

Modeling Interaction and Integration of Perception and Action

Pascal Haazebroek (phaazebroek@fsw.leidenuniv.nl)

Bernhard Hommel (hommel@fsw.leidenuniv.nl)
Cognitive Psychology Unit & Leiden Institute for Brain and Cognition, Wassenaarseweg 52

Leiden, 2333 AK The Netherlands

Keywords: Perception, Action, Interaction, Integration,
Binding, Modeling, Cognitive Architectures, Simulation

Introduction

To account for perceptual and action-related stages of

information processing, most prominent cognitive

architectures have extended their coverage from primarily

cognitive processes to perceptual processing and response

execution (e.g. EPIC (Kieras & Meyer, 1997); ACT-R/PM

(Byrne & Anderson, 1998)). However, despite these

extensions they are typically still too limited to explain
some well-known phenomena from the perception-action

domain in cognitive psychology such as stimulus-response

compatibility effects (e.g., Simon Effect (Simon & Rudell,

1967), and action preparation influences on perception (e.g.,

Müsseler & Hommel, 1997). These phenomena suggest that

perception and action are more intimately related than these

architectures allow for. We are currently developing HiTEC

(Haazebroek, Raffone & Hommel, submitted), a novel

cognitive architecture that stresses both the interaction and

integration between perception and action.

Here we describe the overall structure and general
principles of HiTEC and we demonstrate how a variety of

psychological phenomena in the perception-action domain

can be replicated using computer simulations of the model.

HiTEC

As shown in Figure 1, HiTEC consists of three levels: the

sensorimotor level, the common coding level and the task

level. At the sensorimotor level, stimuli are encoded by

activating sensory codes. Motor actions are executed by

activating motor codes. Sensory codes and motor codes are
both connected to feature codes at the common coding level.

These feature codes represent a-modal perceptual features

(e.g., location, intensity et cetera). Crucially, both stimulus

features (e.g., location of a tone) and response features (e.g.,

location of a key press) are encoded using these common

codes, thereby allowing for two-way interaction between

stimuli and responses (Hommel et al., 2001).

Feature codes are connected to task codes at the task

level. These connections reflect the task instruction allowing

the model to respond according to specified stimulus-

response (S-R) mappings. By dynamically setting up these
connections, different S-R mappings can be implemented,

allowing the model to simulate a variety of tasks, while

keeping all other codes and connections unchanged.

Within the levels, codes are arranged in maps. Sensory

codes are contained in sensory maps, corresponding to

sensory dimensions (e.g., color), feature codes are contained

in feature maps reflecting more cognitive feature

dimensions (e.g., global location). At the task level there is

one map containing task codes representing the different

response alternatives within the current task. There is also

one motor map containing motor codes representing a

limited number of specific movements.
In the HiTEC architecture, stimulus processing and

response selection are one and the same process: stimuli

activate certain sensory codes, activation flows through the

model and at all levels interaction takes place, letting the

model converge to a condition with only one motor code

having an activation value above a set threshold. This

results in the selection of that motor action and execution of

the corresponding response.

In addition to this propagation of activation there are

integration processes at work that temporarily bind feature

codes into event files (Hommel, 2004). These event files -
illustrated by the gray feature codes in Figure 1 - modulate

the overall dynamics of the model, by selectively enhancing

feature codes belonging to one event file and at the same

time making them less available to other processes.

Task Level

Sensory System

Haptic

Feature Level

Motor System

Haptic Dimension

S7 S8

Auditory

Auditory Dimension

S5 S6

Visual

Visual Dimension

S3 S4

Visual Dimension

S1 S2

Motor Codes

M1 M2

Feature Dimension

F1 F2

Feature Dimension

F3 F4

Feature Dimension

F5 F6

T1 T2

Figure 1: General structure of HiTEC architecture.

Circles denote codes, lines denote connections, rectangles
are maps, and gray feature codes belong to the same event

file.

The above mentioned principles that govern the dynamics

in HiTEC are strongly based on both theoretical and

empirical work in cognitive psychology. By integrating

them into a cognitive architecture that can be used to

simulate a variety of well-known phenomena we aim at

obtaining a richer understanding of the intricate interplay

295

between perception and action than theory alone can

provide.

Other cognitive architectures such as EPIC and ACT-

R/PM do address perceptual and motor related aspects of

human performance. However, these architectures differ on

several crucial aspects. Where HiTEC treats perceptual
processing as part of the overall ‘translation process’ and

therefor allows perception to be modulated by task

preparation and even action planning, EPIC and ACT-R/PM

treat this perceptual stage as ‘additional waiting time’ before

the cognitive core system (using production rules) can start

to work. In similar vein HiTEC treats action planning as part

of the overall ‘translation process’, susceptible to influences

from perception and task set.

Thus, where other architectures focus on the cognitive

middle ‘stage’ between perception and action, HiTEC puts

perception and action – and their interplay – at the center

treating cognition mainly as a modulatory influence. By
assuming common codes for both perception and action

interactions can occur that are impossible when segregating

perceptual, cognitive and motor stages as is common in

other architectures. These interactions allow the replication

of empirical phenomena related to stimulus-response

crosstalk (both enhancement and impairment).

HiTEC is not yet as mature as other cognitive

architectures and cannot be readily used to model the

diversity of tasks that other architectures have been shown

to successfully replicate. Yet, by taking perception-action as

primary perspective we provide a line of research that
complements existing approaches in cognitive architectures.

Acknowledgments

Support for this research by the European Commission

(PACO-PLUS, IST-FP6-IP-027657) is gratefully

acknowledged.

References

Byrne, M.D., & Anderson, J.R. (1998). Perception and

action. In: Anderson, J.R., Lebiere, C. (eds.) The atomic

components of thought. Erlbaum, Hillsdale.

Byrne, M.D. (2008). Cognitive architecture. In: Jacko, J.A.,

Sears, A. (eds.) Human-Computer Interaction Handbook.

Erlbaum, Mahwah.

Haazebroek, P., Raffone, A., & Hommel, B. (submitted).

HiTEC: A computational model of the interaction

between perception and action.

Hommel, B. (2004). Event files: Feature binding in and

across perception and action. Trends in Cognitive
Sciences, 8, 494–500.

Hommel, B., Muesseler, J., Aschersleben, G., & Prinz, W.

(2001). The theory of event coding (TEC): A framework

for perception and action planning. Behavioral and Brain

Sciences, 24, 849–937.

Kieras, D.E., & Meyer, D.E. (1997). An overview of the

EPIC architecture for cognition and performance with

application to human-computer interaction. Human-

Computer Interaction, 12, 391–438.

Müsseler, J., & Hommel, B. (1997). Blindness to Response-

Compatible Stimuli. Journal of Experimental Psychology:

Human Perception and Performance, 23, 861-872.

Simon, J., & Rudell, A. (1967). Auditory s-r compatibility:

The effect of an irrelevant cue on information processing.

Journal of Applied Psychology, 51, 300–304.

296

LETF
A Lisp-Based Exploratory Testing Framework for Computational Cognitive Models

Clayton T. Stanley (clayton.stanley@wpafb.af.mil)

Air Force Research Laboratory
WPAFB, OH 45431 USA

Keywords: exploratory testing, ACT-R, high performance
computing

Introduction
Developing a computational cognitive model is an iterative
process. Due to this, any model validation/testing technique
cannot be static, and must be agile enough to evolve
alongside the model’s development. Over the past few
decades, a software validation paradigm called exploratory
testing has emerged within the software engineering
community. Exploratory testing is not static, favors a high
level of interactivity between the tester and the program,
and advocates that programmers should “build time and
enthusiasm for parallel research, test development, and test
execution” (Kaner, 2004). As cognitive modelers, trying to
develop a model that performs within a certain range of
objective performance metrics while maintaining a level of
cognitive plausibility, exploratory testing is not new to us.
In fact, testing frameworks are already available to the
cognitive modeling community. In ACT-R, for example,
there is the visual-location crosshair for the vision module,
the buffer activity trace, and the fMRI BOLD visualization.

However, many of these exploratory testing formalisms
are specific to the cognitive architecture that the modeler is
using, and there are a fair amount of exploratory tests that
are architecturally agnostic. For example, exploring the
architectural/strategy/parameter space of a cognitive model,
computing objective performance measures, and capturing
the central tendency of stochastic models are all common
modeling issues. In order to enable modelers to easily
explore these sorts of generic performance metrics, I have
developed LETF, a lisp-based exploratory testing
framework for computational cognitive modelers.

LETF
LETF is a lightweight configurable lisp program that layers
on top of a cognitive model. After LETF is configured and
launched, it spawns the cognitive model as a separate
process, sending inputs to the model as command line
arguments, and grabbing outputs from the model by
capturing the standard output stream. Model inputs are
specified in a work file, where each row in the file is a
particular parameter combination, and columns correspond
to the values for a parameter in the model. A flexible
configuration file allows for extended processing of model
outputs, and configurable display format by means of a
modular print method. The flexibility of the configuration
file is an important consideration, because once the model is

set up to interface with LETF, modifying and adding model
tests does not require altering the model’s code. Instead, you
express the tests by modifying the configuration file.

In order to express a large range of different model tests
in the configuration file, we are not providing a large
number of specific APIs to support each test. Instead, we
have removed the API layer altogether, and grounded the
syntax of the configuration file to the underlying language
of the generic testing framework. That is, the syntax of the
configuration file is lisp. And it is this critical feature that
makes adding and changing model tests in LETF so
expressive and agile.

The best way to make this point is with a simple example.
Suppose we have a model written in lisp (e.g., an ACT-R
model), with independent variables (IVs) ‘noise’, ‘speed’,
dependent variables (DVs) ‘rt1’, ‘rt2’, ‘rt3’, and we want to
compute the correlation between the observed and model
data. The configuration file to express this model test (i.e.,
compute the correlation) could look like Figure 1.

Figure 1: Example configuration file.

The model code that would communicate with LETF for
this example could look like Figure 2.

Figure 2: Example model.

Note that LETF offers a more direct interface when the
model is in lisp (shown in Figure 2). In this case, LETF can
communicate with the model by calling the entry function
‘run-model’ instead of spawning a separate process.

IV= noise
IV= speed
file2load= extras.lisp
modelRTs= (list [rt1] [rt2] [rt3])
observedRTs= (getObservedRTs)
correlRTs= (correl [modelRTs] [observedRTs])
DV= correlRTs

(defun run-model (&key (noise) (speed))
…run the model using the values for IVs ‘noise’ and
‘speed’ that were passed to ‘run-model’
(format t “rt1=1.1~%”)
(format t “rt2=2.2~%”)
(format t “rt3=3.3~%”))

297

Many cognitive models are stochastic, and so it is
common to run them multiple times to reveal the central
tendency. This can be accomplished with the simple
addition to the configuration file

collapseQuota= 100 (1)

And, if we wanted to use a collapsing function other than
the default ‘mean’, we could specify our own directly in the
configuration file (note the lisp syntax)

collapseFn= (lambda (a) (+ (mean a) 1000)) (2)

LETF calculates the value of a variable X on a ‘DV=X’
line by expanding the string expression that variable X
represents, and then invoking the lisp reader to interpret that
expression and return a value. Using the example in Figure
1, the ‘DV=correlRTs’ line tells the program to find the
expanded string expression for the variable ‘correlRTs’.
LETF finds the ‘correlRTs=’ line in the configuration file,
and sets the value of ‘correlRTs’ to

(correl [modelRTs] [observedRTs]) (3)

Then, all variable names within brackets ‘[]’ are recursively
expanded to their values, and the program evaluates the
expression by invoking the lisp reader

(eval (read-from-string
“(correl (list 1.1 2.2 3.3) (getObservedRTs))”) (4)

Note that once the brackets are recursively expanded, the

API between the configuration file and LETF is lisp,
matching the underlying language of the generic testing
framework. Going back to Figure 1, the modeler is writing a
lisp expression around the variables sent by the model (rt1-
3) in order to calculate a DV of interest (‘correlRTs’). The
function ‘getObservedRTs’ (which returns a list of observed
response times for trials 1 through 3) would be defined in
the lisp file ‘extras.lisp’, which is loaded (by specifying the
‘file2load=extras.lisp’ line) and therefore visible to LETF
when it evaluates the string expression in [4]. The ‘correl’
function has already been defined in LETF, which computes
the correlation between two lists, so the expression in [4]
will bind the correlation of RTs between the model and
observed data to the variable ‘correlRTs’. Having this on-
the-fly configurability available directly in the configuration
file – both syntactically and semantically anchored in the
experimental testing framework’s own language – can be a
very powerful paradigm.

Discussion
LETF supports the exploratory testing that a modeler might
perform during the early stages of model development. For
example, with modest computational resources (e.g., a
laptop workstation) and a few lines of code, a modeler can

build an exploratory test framework for their cognitive
model. Iterative changes in the model might drive evolution
of the exploratory tests, while results of the tests might drive
iterative changes in the model. Test results can be displayed
in whatever format the modeler thinks is informative (e.g.,
printing to the terminal, communicating via a socket to a
data visualization program, writing to a text file) and can
evolve over time as well. In fact, this sort of exploratory
testing technique is currently being used to test incremental
changes to LETF’s own code.

LETF also supports large-scale exploration of cognitive
models by taking care of data aggregation and restructuring
(e.g., calculating DVs, collapsing to determine central
tendency) before outputting the results in a configurable
format that can be coupled with specific parameter search
algorithms and High Performance Computing (HPC)
systems. For example, it was recently coupled with Moore’s
regression tree search algorithm ‘Cell’ (2010) to run a
computational cognitive model of the Change Signal Task
(Moore, Gunzelmann, & Brown, 2010) on the Maui High
Performance Computing Center, Mana. In just a few
minutes, LETF was configured to interface the model and
the search algorithm (Cell) for an exploratory analysis that
used over 6000 processor hours (running in less than 12
hours wall clock time) on Mana.

We recognize that there are a fair amount of exploratory
tests that apply generally across architectures, and have
provided a generic exploratory testing framework to easily
specify those tests. Further, LETF has no API layer between
the configuration file and the language that the framework
was built in (i.e., lisp), allowing for an unbound number of
tests that can be expressed. It is light enough to run a model
on a standalone desktop computer through a small range of
hand-coded configurations, and generic enough to couple
with large scale exploratory tests on HPC clusters. Very
much in the spirit of exploratory testing, LETF helps
accelerate the pace that cognitive modelers can develop,
test, and improve their computational models1.

References
Kaner, C. (2004). The ongoing revolution in software

testing. Proceedings of Software Test and Performance
Conference. Baltimore, MD.

Moore, L. R., Jr., Gunzelmann, G., & Brown, J. W. (in press
- 2010). Modeling Statistical Learning and Response
Inhibition with the Change Signal Task. In Proceedings of
the 10th International Conference on Cognitive Modeling,
Manchester, United Kingdom.

Moore, L. R. (2010). Cognitive model exploration and
optimization: a new challenge for computational science.
In T. Jastrzembski (Ed.), Proceedings of the 2010
Behavior Representation in Modeling and Simulation
(BRIMS) Conference. Orlando, FL: Simulation
Interoperability Standards Organization.

1 Please contact the author if you are interested in obtaining the

source code

298

A Cognitive Model of the Acquisition and Use of Referring Expressions

Jacolien van Rij (J.C.van.Rij@rug.nl)
Center for Language and Cognition, University of Groningen

P.O.Box 716, 9700AS Groningen, The Netherlands

Hedderik van Rijn (D.H.van.Rijn@rug.nl)
Department of Psychology, University of Groningen

Grote Kruisstraat 2/1, 9712TS Groningen, The Netherlands

Petra Hendriks (P.Hendriks@rug.nl)
Center for Language and Cognition, University of Groningen

P.O.Box 716, 9700AS Groningen, The Netherlands

Keywords: ACT-R; language acquisition; processing
efficiency; referring expressions; working memory

Introduction
Referring expressions are used to describe a person, object
or event. Different referring expressions can be used to
describe the same person or object. For example, to describe
a specific person, one could use a full noun phrase (NP)
such as the pirate, or a pronoun, such as he. However, in
certain discourse contexts using a pronoun would lead to an
incorrect interpretation for the listener. Adult speakers use a
full NP instead of a pronoun in these cases, suggesting that
adult speakers take into account the listener’s perspective. In
contrast, children up to the age of 6 prefer to use a pronoun
in these cases. In this study, we investigate how children
acquire adult-like performance on their use of referring
subjects by modeling experimental data using the cognitive
architecture ACT-R (Anderson, 2007). The cognitive model
allows us to investigate the complex interaction between
formal linguistic constraints and cognitive factors. In
addition, the model generates detailed and testable
predictions with respect to linguistic performance.

Experimental data
To test children’s performance on the production and
comprehension of pronouns in subject position, Wubs,
Hendriks, Hoeks & Koster (2009) asked 31 4- to 7-year-old
children and 23 adults controls to perform a production task,
a comprehension task and a working memory task.

In their production task participants were asked to tell
stories on the basis of series of six pictures (cf. Karmiloff-
Smith, 1981). These stories were about two characters of the
same gender. At the end of the story, the participants had to
refer to the character that was introduced earlier in the story,
but was not the current topic1 of the story. Wubs et al.
(2009) looked at the type of referring subject used to re-
introduce this referent: a pronoun (he) or a full NP (the
pirate). Selecting a pronoun would result in potential
ambiguity for the listener, as pronouns are interpreted as
reference to the current topic (a.o., Grosz, Weinstein, &

Joshi, 1995). Adults mainly used full NPs (97%). However,
children showed a preference for using pronouns (63%)
over full NPs (34%) (see Figure 1). That is, children often
produced pronouns that are unrecoverable for a listener.
These results support the hypothesis that adults take into
account the listener’s perspective. In contrast, children seem
to only take into account their own perspective as a speaker.
They preferably use the most economical form, a pronoun.

Figure 1: The type of referring subject used to re-introduce
a character. The performance of the participants of Wubs et
al. (2009)’s experiment is compared with the performance

of our ACT-R model.

In the comprehension task of Wubs et al (2009), the same
participants were asked to name the referent of an
ambiguous subject pronoun at the end of pre-recorded
stories with or without a topic shift. In contrast to adults,
children showed no significant difference in their answers
between the two types of stories. This suggests that they did
not use discourse structure to resolve ambiguous pronouns.
Notably, children’s higher working memory scores were
positively correlated with performance on the production
and comprehension tasks.

Cognitive model
We have implemented a cognitive model within the
cognitive architecture ACT-R (Anderson, 2007) to explain
children’s difficulties with the production and
comprehension of referring subjects. In this model,

299

children’s non-adult performance is caused by (i) lack of
processing efficiency and (ii) limitations in working
memory capacity (WM). Although we will only explain the
acquisition of adult-like production of referring expressions,
the same model can also explain the acquisition of adult-like
comprehension by using the same mechanisms.

Processing efficiency
Adult speakers take into account the listener’s perspective

as a speaker to check whether the referring expression they
intend to use can be interpreted correctly by the listener. As
a result of this process, adult speakers will use a full NP to
refer to a character that is not the current topic, because they
know that a listener will interpret a pronoun as reference to
the current topic. This process requires sufficient processing
efficiency (as shown in a previous model of object
pronouns, Van Rij, Van Rijn, & Hendriks, 2010). Initially,
the model's processing is not efficient enough to carry out
this process within a limited amount of time. Simulations
show that the process gradually becomes more efficient as a
result of frequent application of the same rules (i.e.,
production compilation mechanism of ACT-R, Taatgen &
Anderson, 2002), ultimately resulting in adult-like
performance.

Working memory capacity
In addition, the model needs to determine the current
discourse topic for using the grammar correctly, because the
model will also produce pronouns that are unrecoverable for
the listener when it incorrectly determines that the character
to be referred to is the current topic. The model implements
the hypothesis that children have difficulties to incorporate
previous discourse structures in their interpretation and use
of referring expressions. For adults the subject of the
previous utterance is often the most salient discourse
referent (a.o, Grosz et al., 1995). However, children do not
seem to use information about grammatical roles in
determining the current topic as a result of their limited WM
capacity. For children the saliency of discourse referents is
only determined by their frequency and recency of
mentioning in the discourse. This follows from our
implementation of differences in WM as differences in
source activation, i.e., the activation used to maintain task-
relevant information (cf. Daily, Lovett, & Reder, 2001).
Only when WM increases, will children be able to use
grammatical information of the previous utterance to
determine the current discourse topic.

To summarize, not only sufficient processing efficiency is
necessary for adult-like production and comprehension of
referring expressions in subject position (cf. Van Rij et al.,
2010), but also sufficient WM capacity.

Future directions
Our cognitive model allows us to generate very precise and
testable predictions with respect to linguistic performance,
which can be tested with experiments. We are investigating
two of the predictions of the model. The model predicts i)

that in a situation of increased WM load, adults will show
difficulties in determining the current topic, because WM
capacity affects the ability to incorporate discourse structure
in determining the current topic, and ii) that manipulating
the frequency and recency of mentioning of characters in the
discourse will affect low WM children’s performance on the
comprehension task more than manipulating the
grammatical roles.

In addition, we are planning to re-implement the
sentence-processing component, because the sentence-
processing component of the model is highly simplified.
With the re-implemented model that not only processes
structural information (cf. Lewis & Vasishth, 2005), but
also semantic and discourse information, we can investigate
how discourse information, syntactic and semantic
information interact in resolving ambiguous pronouns
during on-line sentence comprehension.

Footnotes
1 The discourse topic is the most salient referent in the
current linguistic context, the discourse.

References
Anderson, J. R. (2007). How Can the Human Mind Occur in

the Physical Universe? New York: Oxford University
Press, USA.

Daily, L. Z., Lovett, M. C., & Reder, L. M. (2001).
Modeling individual differences in working memory
performance: A source activation account. Cognitive
Science, 25(3), 315.

Grosz, B. J., Weinstein, S., & Joshi, A. K. (1995).
Centering: a framework for modeling the local coherence
of discourse. Computational Linguistics, 21(2), 203-225.

Karmiloff-Smith, A. (1981). The grammatical marking of
thematic structure in the development of language
production. In W. Deutsch (Ed.), The Child's
Construction of Language (pp. 121-147). London:
Academic Press.

Lewis, R. L., & Vasishth, S. (2005). An activation-based
model of sentence processing as skilled memory retrieval.
Cognitive Science, 29(3), 375-419.

Taatgen, N. A., & Anderson, J. R. (2002). Why do children
learn to say “Broke”? A model of learning the past tense
without feedback. Cognition, 86(2), 123-155.

Van Rij, J., Van Rijn, H., & Hendriks, P. (2010). Cognitive
architectures and language acquisition: A case study in
pronoun comprehension. Journal of Child Language,
37(3), 731-766.

Wubs, E., Hendriks, P., Hoeks, J., & Koster, C. (2009). Tell
me a story! Children's capacity for topic shift. In J.
Crawford, K. Otaki & M. Takahashi (Eds.), Proceedings
of the 3rd Conference on Generative Approaches to
Language Acquisition North America (GALANA 2008)
(pp. 313-324). Somerville, MA: Cascadilla Press.

300

Contextual Memory for Goals:
On the Role of Context, Attention, and Intention in Cognitive Control

Michel E. Brudzinski (brudzm@rpi.edu)
Cognitive Science Department

Rensselaer Polytechnic Institute
Troy, NY 12180

Abstract

The contextual memory for goals (CMFG) model is presented
as a theory of the role of context in cognitive control. CMFG
has three components: (1) contextual chunking, (2) perceptual
priming, and (3) goal setting. CMFG proposes that the
contents of the cognitive buffers (perceptual, motor,
intentional, etc.) become bound in declarative memory based
on their co-occurrence during each cognitive cycle. The re-
occurrence of buffer contents that have previously co-
occurred spreads activation to associated chunks of memory.
Goals are conceived of as declarative structures representing
desired perceptual states that compete for control of
cognition, are activated by perceptual priming, and are
selected on the basis of activation. CMFG represents an
integration of principles from Memory for Goals (MFG)
model of cognitive control, Adaptive Control of Thought
Rational (ACT-R), a unified theory of cognition, Perceptual
Symbol Systems (PSS), and the Theory of Event Coding
(TEC). CMFG will be examined in a series of experiments,
implemented in the ACT-R cognitive architecture, and used to
model experimental results.

Keywords: cognitive control; contextual memory; cognitive
modeling; cognitive architecture; goals; feature integration.

Introduction
Goals are a central concept in cognitive control,
representing the intentions of the cognitive system. Theories
of the cognitive control of attention seek to explain how
human behavior balances the need to be both (a) reactive;
changing goals due to critical changes in the environment,
and (b) proactive; maintaining goals over extended time
periods, ignoring changes in the environment. Cognitive
science needs good theories about the role of context,
attention, and intention in the control of cognition.

Memory for Goals (MFG; Altmann & Trafton, 2002) is a
theory of cognitive control that explains goal memory in
terms of general declarative memory constructs, such as
activation and associative priming, rather than using a
special goal memory or control structure, such as a goal
stack. Goals in memory compete for control of cognition.
The goal with the highest instantaneous activation value
becomes the active goal. MFG consists of three
components: (1) the interference level, (2) the strengthening
constraint, and (3) the priming constraint. Although MFG
emphasizes the role of cues in cognitive control, it does not
yet specify how cues become associated with goals. MFG
has been implemented in cognitive models using the ACT-R
cognitive architecture.

ACT-R is a cognitive theory and a production-rule based
computational cognitive architecture that is used to model
psychological processes (Anderson & Lebiere, 1998;
Anderson et al, 2004). ACT-R lacks automatic, general-
purpose mechanisms for associative memory, episodic
memory, or contextual memory. Associations between
modalities require specifically programmed declarative and
procedural knowledge.

Goals in ACT-R are abstract symbols that can represent
intentions at various levels of behavioral and temporal
analysis. Goals are set by production rules and maintained
in the goal buffer without cost. ACT-R needs a less
ambiguous representation of intention so that goals can be
created, suspended, and achieved by cognitive models,
rather than by cognitive modelers.

Perceptual Symbol Systems theory (PSS) proposes that
all mental representation, including abstract concepts and
plans for action are inherently modal (Barsalou, 1999).

The Theory of Event Coding (TEC) proposes that
perceptual and action symbols are bound into event files in
memory based on their co-occurrence (Hommel, 2009;
Hommel, Musseler, Aschersleben, & Prinz, 2001). TEC
proposes that perception and action are representationally
and functionally equivalent.

In this dissertation, I propose a computational mechanism
for the role of contextual associative memory in cognitive
control. This model integrates principles from MFG, TEC,
and PSS into the ACT-R architecture.

Theoretical Framework
The Contextual Memory for Goals (CMFG) theory proposes
that the attended features of perception are bound into
contextual chunks based on there co-occurrence, prime the
activation of actions and goals, with the highest activation
goal driving cognition. CMFG consists of 3 components: (1)
contextual chunking, (2) perceptual priming, and (3) goal
setting.

Contextual chunking is a form of associative memory. It
is the binding of features of the current context into a
representation in declarative memory. The current context is
conceived as being the contents of the cognitive buffers
from ACT-R, and the contextual representations are similar
to the event files proposed by TEC. The contextual chunk is
limited in its representation of the context based on
attention.

Perceptual priming is a form of spreading activation. The
re-occurrence of a percept, that has been associated with a

301

goal in a contextual chunk, increases the activation of that
goal. MFG, TEC and ACT-R, all propose priming by
context.

Goal setting concerns both the focus and the form of
intentions. The assignment of the active goal is based on
instantaneous activation. The representation of intentions is
based on the principle of common coding of perception and
action. Goals are to-be-produced perceptual states.

Computational Implementation
CMFG will be computationally implemented in the ACT-R
cognitive architecture in two forms: (1) using the standard
architecture, and (2) using a modified architecture.

Standard ACT-R implementation
CMFG will be implemented in the ACT-R architecture
using new and modified modules and buffers, relying on
productions rules and Lisp functions calls to achieve
CMFG’s three theoretical principles.

Modified ACT-R implementation
CMFG will be implemented in the ACT-R architecture
using new and modified modules and buffers to achieve
CMFG’s three theoretical principles (Figure 1).

Figure 1: Proposed architectural changes to ACT-R.

Contextual chunking occurs within the architecture after
the execution of a production rule. The new context module
instantiates a contextual chunk with slots for each buffer in
ACT-R, sets the value to be the value of the current chunk
in each buffer, and harvests the chunk into declarative
memory.

Perceptual priming occurs within the architecture through
ACT-R’s standard spreading activation mechanism. The
breadth and depth of the pool of declarative chunks involved
in spreading activation is massively increased by CMFG.

Goal setting occurs within the architecture through
change to the operation of the goal module. The active goal
is updated, through retrieval, on every production cycle,
making the highest activation goal chunk the new goal
buffer chunk. Goals are not be abstract concepts, but
concrete imaginal buffer chunks.

Experiments
CMFG will be examined in four experiments, using two
experimental paradigms. The first paradigm, Argus Army is

an eye-tracked, computer-based environment. Experimental
participants will learn associations between icons for
military units and goals for action. The strength of these
associations will be manipulated in a training phase and its
effects will be examined during a testing phase in which
participants will select the order of goals to pursue. The
purpose of these experiments will be to demonstrate that
CMFG can explain the process of learning cross-modal
associations and that the activation of goals can predict
priorities in goal-directed behavior.

The second paradigm, Coffee Challenge is a table-
top, mobile-eye-tracked task. Experimental participants
interact with abstract or real-world objects to perform a
sequence of coffee-making actions.

Simulations
The two computational implementations of CMFG will be
used in three simulations. Simulation 1 will use data from
Hommel (2007), experiment 2, to demonstrate the ability of
CMFG to account for response compatibility effects in a
binary free-response task. Simulation 2 will model data
from the Argus Army experiments. Simulation 3 will model
data from the Coffee Challenge experiment. The ACT-R
model, using CMFG, will connect to the Tekkotsu robotics
framework (Touretzky et al, 2007) to control a custom-built
robot consisting of 2 Crustcrawler AX-12 robotic arms, and
a pan-and-tilt-capable webcam.

Conclusions
The Contextual Memory for Goals (CMG) theory

includes 3 components: (1) contextual chunking, (2)
perceptual priming, and (3) goal setting. The theory will
implemented in the ACT-R computational cognitive
architecture, supported by experimentation and computer
simulation. CMFG represents a new embodied, reactive,
distributed, automatic approach to cognitive control.

References
Altmann, E.M., Trafton, J.G. (2002). Memory for goals: An

activation-based model. Cognitive Science, 26, 39-83.
Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S.,

Lebiere, C., & Qin, Yulin, Q. (2004). An integrated
Theory of the Mind. Psychological Review, 111(4), 1036-
1060.

Barsalou, L.W. (1999). Perceptual symbol systems.
Behavioral Brain Science, 22, 577-660.

Hommel, B. (2009). Action control accoding to TEC
(theory of event coding). Psychological Research, 73(4),
512-526.

Hommel, B. (2007). Feature integration across perception
and action: event files affect response choice
Psychological Research, 71, 42-63.

Touretzky, D.S., Halelamien, N.S., Tira-Thompson, E.J.,
Wales, J.J., & Usui K. (2007). Dual-coding
representations for robot vision in Tekkotsu.
 Autonomous Robots, 22(4):425-435.

302

Long-Term Symbolic Memories for Long-Living Learning Agents

Nate Derbinsky (nlderbin@umich.edu)
University of Michigan, 2260 Hayward Street

Ann Arbor, MI 48109-2121 USA

Keywords: cognitive architecture; declarative memory; Soar.

Introduction
We humans, as prime exemplars of long-lived, learning
agents, are frequently bombarded with dense and varying
torrents of information, including data that is
autobiographical (Laird & Derbinsky, 2009; Tulving, 1983),
lexical (Miller, 1995), conceptual (Kolodner, 1983), and
commonsensical (Lenat, 1995). Despite this deluge of
experience, humans do not drown; we push forward,
drawing on our knowledge and reasoning abilities to
flourish in challenging and novel situations and tasks. The
human cognitive architecture efficiently manages large
stores of experience and supports precise retrievals, bringing
to bear pertinent knowledge to effectively act in dynamic
environments (Laird & Wray, 2010).

A review of prior psychological and computational work
(Derbinsky & Laird, 2010) suggests that this robust
behavior is due in part to our multiple, dissociated memory
systems, citing significant functional and computational
tradeoffs when utilizing a single memory mechanism for
different types of learning tasks. While research into
cognitive architectures for artificial learning agents typically
reflects this dissociation strategy (Langley et al., 2009),
significant work must still be done to understand the
specific functionalities these memory systems must support
to achieve human-level intelligence, as well as how to
efficiently implement these mechanisms over long lifetimes.

In my thesis work, I seek to improve our functional and
computational understanding of two long-term, symbolic
memory systems, episodic and semantic, within the context
of a general cognitive architecture. Semantic memory stores
general facts that the agent knows, independent of the
context in which they were originally learned, which can be
applied to improve understanding and task performance in
numerous, potentially unrelated situations. In contrast,
episodic memory stores autobiographical, contextualized
agent experience that allows an agent to remember its own
past, such as recalling what occurred in similar situations
and using that knowledge to decide how to act presently. I
will first summarize my work with these memory systems to
date, and then continue to my plans for future research.

Prior Work
My initial work has been to understand the computational
challenges involved in extending the Soar cognitive
architecture (Laird, 2008) with basic, task-independent

episodic and semantic functionality that scales with large
bodies of knowledge.

Episodic Memory
In Soar, episodic memory automatically stores and
temporally indexes snapshots of the agent’s current
situation, which is represented as a directed, connected
graph. To access episodic knowledge, the agent creates a
symbolic cue, which represents contextualized features of
interest in the episode to be retrieved. The retrieval
mechanism then searches the episodic store for the best
matching episode, biased by recency, and reconstructs the
result in full for agent deliberation (Nuxoll & Laird, 2007).

We have found that in general, maintaining bounded
episodic processing as the agent contends with multiple,
complex tasks over long lifetimes presents a significant
computational challenge (Laird & Derbinsky, 2009).
However, we have developed data structures and algorithms
that perform within reasonable limits in practice (Derbinsky
& Laird, 2009). For instance, we have demonstrated sub-
100msec. retrievals for a variety of cues on commodity
hardware within a competitive tile-based game after 1
million episodes, each containing over 2500 features.

Semantic Memory
In Soar, semantic memory is a repository for long-term
declarative knowledge. Sharing many similarities to the
declarative memory module in ACT-R (Anderson et al.,
2004), the semantic store can be conceived as a collection of
chunks, each with features and relations to other chunks.

We have formulated and analyzed the computational
challenges involved with supporting efficient access to large
stores of declarative knowledge (Derbinsky et al., 2010).
We demonstrated performance optimizations that support
efficient retrievals over millions of declarative chunks. For
instance, we presented sub-millisecond retrievals for many
classes of cues on the entirety of the WordNet lexicon,
consisting of more than 820K chunks.

Research Plan
My existing work has focused on efficiently supporting
basic episodic and semantic functionality. I intend for future
work to emphasize enhanced storage, retrieval, and
functionality, while maintaining efficient performance.

Enhancing Storage
Episodic. Currently, Soar’s episodic memory captures all
details of the agent’s current situation. One interesting

303

modification to this policy is to not encode in episodic
memory the features and relations of semantic concepts, but
instead allow the agent to reconstruct these details on-
demand from the current contents of semantic memory.
While this proposal shares some surface-level similarities
with cognitive theories of human episodic reconstruction
(Hassabis & Maguire, 2007), it will also reduce the amount
of knowledge episodic memory must manage, thus
improving storage and retrieval performance. It remains to
be seen whether these performance gains outweigh the
potential for inconsistencies and confusion that arises when
integrating the contents of two long-term memory stores.

Semantic. Currently Soar, unlike ACT-R, has no automatic
mechanism for storing new, and updating existing,
declarative knowledge. I am interested in exploring
architectural policies for storing agent experience. I am also
interested in how episodic meta-data, such as the temporal
stability of concepts and features, may be used to boost
retrieval quality.

Enhancing Retrievals
In preliminary exploration, I have found that parallelism and
heuristic search may be key to maintaining efficient
retrievals, given large amounts of episodic and semantic
knowledge. I plan to investigate these paths further in
context of the extensions below.

Episodic. Soar scores episodic retrievals primarily on match
cardinality, with recency used as a tie-breaking bias. I am
interested in the degree to which feature activation, as well
as overall episode appraisal, can improve match quality.

Semantic. The current declarative matcher in Soar
implements a basic activation bias function. I am interested
in efficiently incorporating some of the more extensive
activation components in ACT-R, such as retrieval history
and current context.

New Functionality
When comprehensive long-term memory systems are
embedded within a general cognitive architecture, I am
interested in the interfaces to agent experience, other than
cue-based retrievals, that may be functionally beneficial to
agent reasoning. For instance, as episodic memory encodes
the current situation, it can aggregate the degree to which
features are novel, an appraisal which may be useful for
reasoning about actions (Mariner & Laird, 2008).

Evaluation
One major challenge of my proposed work is that there do
not exist accepted benchmarks or metrics for comparing
task-independent memory systems in context of a general
cognitive architecture; thus proper evaluation is a research
goal in and of itself. I foresee two categories of evaluation.

First, across a spectrum of problems, I intend to seek
empirically optimal tradeoffs between computational

resources (space and time) and task performance as I
explore the mechanism changes described above.

Second, I intend to explore general cognitive capabilities,
many of which we associate with human intelligence,
supported by the availability and interaction of the semantic
and episodic long-term memory systems within a single
cognitive architecture. For instance, when choosing actions,
an agent can “play forward” prior episodes with similar
features and intentions, providing an agent a general and
task-independent source of action evaluation knowledge.

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., Qin, Y. (2004). An Integrated Theory of the
Mind. Pychological Review 111, (4). 1036-1060.

Derbinsky, N., Laird, J. E. (2009). Efficiently Implementing
Episodic Memory. Proc. of the 8th International
Conference on Case-Based Reasoning (ICCBR).

Derbinsky, N., Laird, J. E. (2010). Extending Soar with
Dissociated Symbolic Memories. Proc. of the Symposium
on Human Memory for Artificial Agents, 36th AISB.

Derbinsky, N., Laird, J. E., Smith, B. (2010). Towards
Efficiently Supporting Large Symbolic Declarative
Memories. Proc. of the 10th International Conference on
Cognitive Modeling.

Hassabis, D., Maguire, E. A. (2007). Deconstructing
Episodic Memory with Construction. Trends in Cognitive
Sciences 11. 299-306.

Kolodner, J. L. (1983). Maintaining Organization in a
Dynamic Long-term Memory. Cognitive Science 7, (4).
243-280.

Laird, J. E. (2008). Extending the Soar Cognitive
Architecture. Proc. of the First Conference on Artificial
General Intelligence (AGI).

Laird, J. E., Derbinsky, N. (2009). A Year of Episodic
Memory. Proc. of the Workshop on Grand Challenges for
Reasoning from Experiences, 21st IJCAI.

Laird, J. E., Wray III, R. E. (2010). Cognitive Architecture
Requirements for Achieving AGI. Proc. of the Third
Conference on Artificial General Intelligence (AGI).

Langley, P., Laird, J. E., Rogers, S. (2009). Cognitive
Architectures: Research Issues and Challenges. Cognitive
Systems Research 10. 141-160.

Lenat, D. (1995). CYC: A Large-Scale Investment in
Knowledge Infrastructure. Communications of the ACM
38 (11). 33-38.

Mariner, R., Laird, J. E. (2008). Emotion-Driven
Reinforcement Learning. Proc. of the 30th Annual
Conference of the Cognitive Science Society (CogSci).

Miller, G. A. (1995). WordNet: A Lexical Database for
English. Communications of the ACM 38, (11). 39-41.

Nuxoll, A. M., Laird, J. E. (2007). Extending Cognitive
Architecture with Episodic Memory. Proc. of the 22nd
Conference on Artificial Intelligence (AAAI).

Tulving, E. (1983). Elements of Episodic Memory. Oxford:
Clarendon Press.

304

Towards Descriptive and Prescriptive Double-Loop Learning Agents

Ceyhun Eksin (ceksin@seas.upenn.edu)
Ackoff Collaboratory for Advancement of the Systems Approach (ACASA),

Department of Electrical and Systems Engineering,

University of Pennsylvania, Philadelphia, PA 19107 USA

Keywords: Double-loop learning

Introduction

The rise of complex computational models is due to the
desire for white-box models with higher resolution of

explanation and representation. Usually, the reason for

complexity within models is because we are trying to

explain real world phenomena that include humans.

Descriptive qualitative and quantitative models of human

behavior have mainly been the goal of social sciences

(psychology, economy, sociology etc.) as well as fields such

as cognitive science. Most of the time, studies are primarily

interested in behavior within a specific context or situation

in that domain. Therefore, generated theories are restricted

to apply within the domains that they are designed for,

constrained by further assumptions. Hence, often a single
theory is not sufficient to properly represent human

behavior in an evolving or dynamic socio-economic systems

model. This makes a systems approach that contains

adaptive feedback mechanisms to this problem necessary.

A possible framework that highlights this kind of

mechanism is double-loop learning (Argyris and Schon,

1978) (Figure 1). The first loop of learning is based on an

existing mental model (Johnson-Laird, 1983). A mental

model is an implicit internal image of how the current

system works (Senge, 1990). In other words, mental models

can be interpreted as the theory that results in a strategy or
decision making mechanism such as a heuristic. Most of the

behavioral theories and heuristics can be interpreted as

possible mental models that we utilize under certain

conditions. The single loop learning only considers the

existing mental model and modifies it based on information

fed back, i.e. consequences of our actions. In this loop, the

way we view the world does not change and we just make

fine tuning adjustments on the existing mental model. The

second loop of learning is where we consider whether our

current mental model is still satisfactory to explain the

world dynamics or not. Within a system, certain behavior

around us might lead to a paradigm shift in our explanation
or we might explain certain situations with one mental

model and other situations with other sets of mental models.

Hence, our reasoning mechanism adapts to the changes in

the world. Although humans are capable of doing double-

loop learning, none of these learning loops is done perfectly.

Therefore, a descriptive human behavior model based on a

double-loop learning framework would have to reflect

human faults in application. A prescriptive approach would

point to our faults in the learning processes and in our

mental models. Hence, an ideal agent would utilize correct

mental models, rules, and/or heuristics at the right time with

correct settings in a complex system. In this study, I plan to

provide a general framework for descriptive and prescriptive

(ideal) models of double-loop learning.

System

Decision
Making

Mechanism

Mental

Model

Information
Feedback

(Consequences)

Figure 1: Double Loop Learning

Methodology

While it is possible to discuss optimal decision making and

convergence in tractable analytical models, these

discussions do not often apply to real world complex

computational agent-based models. Complex computational

models are not analyzable via conventional analysis

methods hence the concept of optimality is void within this

domain. In complex systems, we often define metrics of
performance that indicate how well we are doing and we

can discuss ideal approaches based on these metrics. These

metrics can be common to everyone or can be our subjective

goals. In a double-loop learning process, the first loop of

learning refers to tuning of the existing decision-making

process, i.e. updating model parameters based on these

metrics. Learning in the sense of artificial intelligence or

evolutionary algorithms would provide ideal ways to do

single loop learning. Heuristics, local algorithms and other

theories would provide descriptive ways of doing this

update procedure. A general framework for second-loop
learning requires a methodology for model comparison. An

ideal approach would answer the question: “Which

decision-making process is the best in this case?” A

descriptive approach relates to literature on model

comparison, validation and verification. Literature on these

processes tries to answer questions such as “Which model is

305

the one that explains human behavior the best in this

situation?” or “Does my model provide a valid explanation

and representation of human behavior?” The metrics will

help to come up with a general framework that governs how

to update mental models, when to replace them and what

models to replace them with. The first loop considers
performance metrics based on the system where as the

second loop can consider a more general system

independent set of metrics.

The final part of the research deals with coming up with a

set of descriptive or normative and ‘optimal’ decision

making models (heuristics, rules, theories etc.) that work

under certain conditions. The set of models will depend on

the system and will not consist of algorithms that work for a

general problem and include no reasoning (such as search

algorithms).

Current and Future Research

There are two paths of research that can be pursued in

parallel. The first deals with developing a methodology for

metrics of comparison amongst models within the same

framework. The author has ongoing research on this topic

that attempts to evaluate validity and performance of

alternative models within a complex system (Eksin et al.,

2010). The second path deals with computational

representations of descriptive and ideal double-loop learning

mechanisms. The descriptive part relates to knowledge
based search and reasoning literature. The ideal part will

relate to artificial intelligence (stochastic games, learning)

and control theory (adaptive control, fuzzy logic, stochastic

optimization algorithms) literature. Fields such as artificial

intelligence and control theory provide a set of adaptive and

feedback-based algorithms that can still work in practice for

complex systems. The author’s current work in this track

includes incorporating a Q-learning agent to a complex

system (Eksin, 2010). Although the study was approached

from the perspective of policy design for an agent, one can

utilize similar kinds of learning algorithms to establish ideal

forms of first and second loops of learning. In this study, the
agent is essentially a Q-learning agent which by definition

does a first loop of learning until convergence. However, the

Q-learning mechanism misses a second loop where either

the update mechanism or the state summary that is used for

decision-making is modified. Future work would also

concentrate on a literature review on existing approaches to

reasoning to utilize a descriptive double loop learning agent.

Application

After coming up with a general framework for double loop

learning, they will be applied to two socio-cognitive agent

based models: 1) A country with factional-conflicts and

existing insurgency (Silverman et al., 2007), and 2) A

village model that includes tribal and ethnic differences. The

first task would be to develop a list of descriptive and

prescriptive theories, heuristics and rules that is relevant to

the model. There will be two sets of experiments on each

model. On the first set of experiments, the model will only

have a single agent that has double-loop learning. The

double-loop learning agent decision making mechanism will

be descriptive in one case and prescriptive in the second

case. These cases will be compared to the benchmark cases

where none of the agents are double-loop learners. The

second set of experiments will have all the agents as double-
loop learners. Similarly, in one case all the agents will have

descriptive models of a decision making mechanism and in

the second case all agents will utilize prescriptive models. In

this set of experiments, I will be looking at the changes in

the emerging behavior within the system compared to

benchmark cases.

Conclusion

In this paper, I present an overview of a research thread that

will produce a descriptive computational model framework,
or double-loop learning, that will require use of multiple

alternative descriptive theories as mental models.

Additionally, the framework can be a prescriptive model

that utilizes correct mental models at the right time. I

propose to make use of multiple literatures to develop both

descriptive and prescriptive models of double-loop learning.

References

Argyris, C., & Schon, D. (1978). Organizational Learning:

A Theory of Action Perspective. Reading: Addison

Wesley.

Eksin, C. (2010). Policy Analysis Using Q-Learning. Poster

presentation at 19
th

 Behavior Representation in Modeling

and Simulation. Charleston, SC.

Eksin, C, Silverman, B.G., Pietrocola, D. & Kang, R.

(2010). Dimensions of Leader-in-Context Models.

Submitted to the International Conference on Cognitive

Modeling 2010. Philadelphia, PA.

Johnson-Laird, P.N. (1983). Mental Models: Toward a

Cognitive Science of Language, Inference and

Consciousness. Harvard University Press.
Senge, P.M. (1990). The fifth discipline : the art and

practice of the learning organization. New York:

Doubleday

Silverman, B. G., Bharathy, G., K., Nye, B.,Eidelson, R.

(2007). Modeling Factions for ‘Effects Based

Operations’: Part I – Leader and Follower Behaviors.

Journal of Computational & Mathematical Organization

Theory, 13, 379-406.

306

Learning to Use Memory

�icholas A. Gorski (ngorski@umich.edu)
Computer Science & Engineering, University of Michigan

2260 Hayward St., Ann Arbor MI 48109-2121 USA

Keywords: Reinforcement learning; memory; working
memory; declarative memory.

Introduction

Reinforcement learning (RL) provides a general approach to

support intelligent agents that learn to act in their

environments (Sutton & Barto, 1998). The foundational

reinforcement learning algorithms of Q-Learning and

SARSA, however, are purely reactive and thus not generally

applicable to problems in which knowledge must be

maintained in memory.

My research focuses on investigating how memory can

extend the range of possible behaviors that RL can achieve,

and in particular how RL agents can learn to use

biologically-inspired memory models. In this context, using

memory has two senses: first, making use of the knowledge

that is retrieved from memory in order to better perform the

task at hand, thus making use of the declarative knowledge

from memory; second, selecting actions (such as encoding,

storage and retrieval) over memory as appropriate for the

task, thus using memory through procedural knowledge.

One view of this research is that it is an attempt to discern

which procedural knowledge over memory must be

architectural and which may be adaptive.

Some prior work has begun to investigate this direction.

We demonstrated that it is possible to learn to use a human-

inspired episodic memory model in certain specific cases,

but that in others an agent cannot learn the optimal control

strategy (Gorski & Laird, 2009). Other researchers have also

found that RL agents endowed with episodic and working

memory models can learn to achieve some tasks, but not

others (e.g. Zilli & Hasselmo, 2007).

My primary research question is: how and when can RL

be used to learn to use memory? To address this in my

thesis, I will perform a comprehensive empirical exploration

of learning to use memory in order to better understand the

dynamics that arise when an RL agent is endowed with an

internal memory model. I will identify characteristics of

tasks that can be explored independently across sets of

parameterized problems. My initial exploration will begin

with three memory models: a simple bit memory model, a

gated working memory model (inspired by human working

memory), and an associative memory model (inspired by

human episodic memory). I precede a more detailed

discussion of my research plans with an overview of my

research to date.

Progress to Date

My research initially focused on learning to use Soar’s

episodic memory model (Derbinsky & Laird, 2009; Laird,

2008). Nuxoll (2007) had previously identified a set of

cognitive capabilities that could be supported by episodic

memory, and demonstrated agents that performed a subset

of these capabilities. However, these agents required

significant background knowledge and performed no

learning. We studied whether it was necessary to provide

the knowledge to utilize these cognitive capabilities, or

whether RL could learn to use episodic memory in specific

ways, and eventually performed specific cognitive

capabilities solely as an emergent response to environmental

and architectural constraints and pressures.

We succeeded in demonstrating agents that learned to

perform two specific cognitive capabilities: virtual sensing,

in which an agent uses episodic memory to recall a portion

of the environment state that it cannot directly perceive; and

remembering past actions, in which an agent uses

knowledge of past actions to guide current behavior (Gorski

& Laird, 2009).

In the course of this work, we found three interesting

results. First, trivial-seeming changes to the environment

had dramatic effects on how well agents were able to learn

to use memory. Similarly, it can be very difficult to

construct a task that is “just right” such that it elicits the

desired cognitive capability and in which an agent uses

memory in desired way.

Second, it is significantly easier to learn to perform virtual

sensing than to use the knowledge that results from

remembering past actions. When learning to perform virtual

sensing, the agent was retrieving knowledge from memory

that was a reliable indicator of the state of the environment,

regardless of the duration of the agent’s existence. However,

knowledge of past actions was useful only after the agent

had converged to a relatively stable behavior in the

environment, as the knowledge that was retrieved was more

sensitive to interference effects of taking a related action at

an inopportune time.

Third, in certain settings agents converged to nearly

optimal behaviors, but used episodic memory essentially as

a single bit of memory (similar to the bit memory of

Littman, 1994). Even though the learned behavior was

suboptimal, it was a sufficiently stable equilibrium such that

the agent was not able to find the globally optimal behavior

through additional exploration.

The third result motivated us to explore using a bit

memory model in the same domain (Gorski & Laird,

forthcoming). In this work, we determined that while bit

memory was sufficiently capable of being used to represent

the optimal policy when the agent was provided with some

initial background knowledge, the agent could not learn to

use bit memory effectively. We additionally identified

307

important ways in which bit memory differed from the

episodic memory model.

Agents learning to use memory were sensitive to small

changes in the task specification; furthermore, the behaviors

of agents using different memory models were very

different in the same domain. These results motivated a

more comprehensive exploration of the space of tasks and

memory models.

Research Plan

In order to understand the dynamics of learning to use

memory, I propose a methodical and comprehensive

empirical exploration of the space of possible tasks and

memory models. As the space of possible tasks and memory

models is infinite, it will be necessary to focus my empirical

study on a particular set of tasks and memory models, which

will be used to draw conclusions that can apply to tasks and

memory more generally.

The tasks that I will explore have been selected on the

basis of understanding how varying specific aspects (or

characteristics) of a task affect the ability to learn to use

memory in it. We have identified a very simple task,

inspired by T-Maze tasks from the experimental psychology

literature, that can be parameterized across independent

dimensions. When these dimensions correspond to

characteristics that are relevant to how memory must be

used in a task, then observing the behavior that emerges in

those tasks will inform how learning to use memory scales

and what patterns of behavior take place in the course of the

learning process.

The task characteristics that we are primarily interested in

are those that directly relate to how knowledge must be

retained while performing a task (we refer to this knowledge

that must be maintained over time as salient knowledge).

These characteristics include:

• The temporal delay between when salient knowledge

is acquired and a task action that depends on it

• The quantity of salient knowledge that must be

maintained simultaneously in a task

• The number of actions in a task that depend on

salient knowledge.

I have identified a preliminary set of tasks that are

parameterized along these relevant characteristics.

Exploring the space of memory models will require a

different approach. While it is possible to design tasks that

isolate individual characteristics and explore them over a

parameterized task set, a given memory model cannot exist

without architecturally committing to a number of

simultaneous points in the various dimensions that define a

memory model. Therefore, we will explore the space of

memory models using a top-down approach.

We will explore bit memory, gated working memory, and

an associative long-term memory in the context of the set of

tasks discussed above. In a first pass, we will perform a

comprehensive sweep exploring artificial agents that learn

to use each memory model across all tasks (the cross

product of memory models and tasks). After analyzing the

results of this study, we will then modify the three memory

models in an attempt to explore functional differences that

they exhibit when an agent learns to use them, so as to be

able to determine which characteristics of memory are

directly responsible for supporting the necessary learning

behavior, or not supporting it.

Throughout my investigation, my focus will be on the

dynamics that arise between memory and task. I intend to be

agnostic regarding specific RL algorithms as much as

possible, and consistently apply the same algorithm (e.g.

SARSA, Sutton & Barto, 1998) in all of my experiments.

My evaluation will focus on two issues: how agent

performance scales with characteristics of task, and which

characteristics of memory are most directly tied to which

task characteristics.

Although my research is grounded in the field of artificial

intelligence, I aim to draw conclusions from my work that

inform cognitive scientists as to the nature of how

procedural knowledge that uses memory (both controls it

and makes use of the knowledge from it) can be learned.

While most memory models assume some architectural

basis for certain internal actions over memory, such as

encoding and storage to long-term declarative memory, the

procedural knowledge that governs memory retrievals and

how that retrieved memory impacts task performance is

adaptive. By better understanding in which tasks it is

computationally feasible to learn to use specific memory

models, we might better understand the constraints on

human memory (and learning). In the field of artificial

intelligence, learning to use memory is one approach to

answering challenging problems of overcoming tasks with

incomplete information while maintaining responsive

learning and decision making.

References

Derbinsky, N. & Laird, J.E. (2009). Efficiently

Implementing Episodic Memory. Proceedings of the 8
th

Intl. Conf. on Case-Based Reasoning. Seattle, WA.

Gorski, N.A. & Laird, J.E. (2009). Learning to Use Episodic

Memory. Proceedings of the 9
th
 Intl. Conf. on Cognitive

Modeling. Manchester, UK.

Gorski, N.A. & Laird, J.E. (forthcoming). Learning to Use

Episodic Memory. Under Review.

Laird, J.E. (2008). Extending the Soar Cognitive

Architecture. Proceedings of the 1
st
 Conf. on Artificial

General Intelligence.

Littman, M.L. (1994). Memoryless Policies: Theoretical

Limitations and Practical Results. Proceedings of the 3
rd

Intl. Conf. on Simulation and Adaptive Behavior.

Nuxoll, A. (2007). Enhancing Intelligent Agents with

Episodic Memory. Ph.D. diss., Computer Science &

Engineering, U. of Michigan, Ann Arbor.

Sutton, R.S. & Barto, A.G. (1998). Reinforcement Learning:

An Introduction. Cambridge: MIT Press.

Zilli, E.A. & Hasselmo, M.E. (2007). Modeling the Role of

Working Memory and Episodic Memory in Behavioral

Tasks. Hippocampus, 18, 193-209.

308

Understanding Strategic Adaptation in Multitask Settings

Christian P. Janssen (c.janssen@ucl.ac.uk)
University College London, Gower Street, London WC1E 6BT, UK

Introduction

How do people interleave their attention when performing

multiple tasks, such as dialing a phone number while

driving, or checking e-mail while writing a paper? To

investigate these issues a variety of modeling frameworks

have been used, for example EPIC (Meyer & Kieras, 1997),

SOAR (Lallement & John, 1998), ACT-R Threaded

Cognition (Salvucci & Taatgen, 2008) and Cognitively

Bounded Rational Analysis models (Howes, Lewis, & Vera,

2009). The majority of these frameworks focus on

understanding how multiple tasks interfere with each other,

for example as a result of having limited resources (e.g., two

eyes, two hands) to dedicate to each task.

Within the cognitive modeling community, relatively less

attention is given to understanding how more top-down

aspects, such as instructions and priorities, interact with

these architectural aspects. However, some exploration has

been done elsewhere. For example, it has been demonstrated

that people adapt their performance to instructions to spend

more time on a task (e.g., Gopher, 1993), or to changes in

payment associated with performance (e.g.,Wang, Proctor,

& Pick, 2007). In situations like these, the adaptation

process can be understood as making trade-offs between

performance on each of the tasks (e.g., Navon & Gopher,

1979; Norman & Bobrow, 1975).

In my doctoral dissertation work I try to understand this

flexible adaptation of dual-task performance, where people

interleave attention in different ways despite being exposed

to the same stimuli. As a modeling approach, I use

Cognitively Bounded Rational Analysis Models (Howes, et

al., 2009). However, I also have an interest in informing and

using other architectural frameworks.

CBRA Models of Multitasking

So far, my work has focused on developing explanations

of human multitasking behavior for two dual-task settings:

(1) manually dialing a phone number while driving a

simulated car, and (2) typing digits while tracking a cursor.

In both domains, the central questions are: when is attention

for one task interleaved to pay attention to the other task,

how is this moderated by the set priorities, and why is

attention interleaved in this specific way?

Our first dual-task setting, manually dialing a phone

number while driving a simulated car, has been well studied

before. One way of understanding interleaving in this

situation is that people make use of “natural break points”: a

prevalent task structure in which some points are more

natural to interleave performance than others (Salvucci,

2005). However, whether this structure is used depends on

the priority that the driver sets (Brumby, Salvucci, &

Howes, 2009; Janssen & Brumby, in press; Janssen,

Brumby, & Garnett, 2010). If the priority is to dial the

number as fast as possible, more digits are dialed

consecutively before turning attention back to driving, often

omitting natural break points. When the priority is to drive

as safe as possible, participants interleave dialing for driving

at the natural breakpoints, and at more positions if these

points are not sufficient (Janssen & Brumby, in press).

Using a cognitively bounded rational analysis model we

demonstrated the trade-offs that drivers make in these

situations (Janssen & Brumby, in press).

While the above work illustrates the trade-offs that are

made between tasks, it does not illustrate why a specific way

of performing the task is chosen (Howes, et al., 2009). In

the driving studies we found that a different number of

digits is dialed in sequence before interleaving dialing for

driving depending on the set priority. But why were not

more (or less) digits typed?

Howes et al. (2009) argue that in order to understand what

it is the cognitive system is adapting to it is important to

specify an explicit objective function that determines the

quality of a given task interleaving strategy (Howes, et al.,

2009). Based on this assessment, the strategy with the

highest payoff can be determined and compared with human

performance. We applied this methodology in a new task

paradigm in which participants have to track a cursor with a

joystick while typing in a series of digits as fast as possible

(Janssen, Brumby, Dowell, & Chater, 2010a). Critically,

participants can only control one task at a time (i.e., they

can either type a series of digits, or track the cursor) and

have to determine how many digits they type in one

sequence and how much time they spend on tracking.

Experimental results show that participants adapt their

strategy to the difficulty of the task, making trade-offs in

task performance. A succeeding modeling effort

demonstrated why participants adapted their strategy: the

adopted strategies maximized their pay-off. In this sense,

the explanation given by our model went beyond traditional

demonstrations of performance trade-offs.

Conclusions and Future Work

The preceding work has demonstrated that multitasking

participants adapt their performance not only to stimuli

characteristics, but also to more internal characteristics such

as priorities and instructions. Our modeling work

demonstrated why certain trade-offs are made: participants

trade-off performance on one task versus performance on

the other task. In addition, our more recent work was able to

demonstrate that participants not only adapt performance to

instructions, but that they also try to adapt in an optimal

309

way, to maximize pay-off (Janssen, Brumby, Dowell, &

Chater, 2010a).

In the remainder of my PhD I want to take this work

further in a couple of novel angles. First of all, I want to

explore models of individual differences in performance.

Cognitively Bounded Rational Analysis models describe

spaces of performance (instead of just one strategy for

performance, as is often the case in production rule

systems). Given that there often is a variety of ways in

which tasks can be performed, it seems unlikely that

participants only act in one way. By fitting cognitive models

to individual characteristics (e.g., typing speed), I want to

explore whether rational strategies for multitasking can be

explained at an individual level (cf. ,Howes, et al., 2009).

Another angle of future research is to investigate how

optimal performance is learned. My current work has

mainly focused on explaining why performance is adapted

(to maximize pay-off, or to suit an instruction). However, it

does not explain how performance is adapted given

experience. Using Cognitively Bounded Rational Analysis

models I want to demonstrate that if participants have to

learn to interleave two tasks, they change their strategies

over time by (systematically) moving performance towards

the optimum strategy. In addition, I want to look at other

modeling frameworks to see how these models would

explain performance. In particular the theory of Threaded

Cognition is appealing, as it is one of the most integrated

and unifying theories of multitasking (being able to explain

performance across a range of multitask settings with

different time scales, Salvucci, Taatgen, & Borst, 2009).

Moreover, as this theory is integrated within a cognitive

architecture, it is relatively easy to combine theories of

multitasking with theories of for example skill learning. For

some initial ideas on this see (Janssen, Brumby, Dowell, &

Chater, 2010b). At the doctoral consortium I hope to further

discuss these and other ideas.

Acknowledgments

This work was supported by EPSRC grant EP/G043507/1.

I would like to thank my advisors Duncan Brumby, John

Dowell and Nick Chater for their support and advice.

References

Brumby, D. P., Salvucci, D. D., & Howes, A. (2009). Focus

on driving: How cognitive constraints shape the

adaptation of strategy when dialing while driving. In

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (pp. 1629-1638). New

York, NY: ACM Press.

Gopher, D. (1993). The skill of attention control:

Acquisition and execution of attention strategies. In D. E.

Meyer & S. Kornblum (Eds.), Attention and performance

XIV: Synergies in experimental psychology, artificial

intelligence, and cognitive neuroscience (pp. 299–322).

Cambridge, MA: MIT Press.

Howes, A., Lewis, R. L., & Vera, A. (2009). Rational

adaptation under task and processing constraints:

Implications for testing theories of cognition and action.

Psychological Review, 116, 717-751

Janssen, C. P., & Brumby, D. P. (in press). Strategic

adaptation to performance objectives in a dual-task

setting. Cognitive Science.

Janssen, C. P., Brumby, D. P., Dowell, J., & Chater, N.

(2010a). A cognitively bounded rational analysis model of

dual-task performance trade-offs. In Proceedings of the

10th International Conference on Cognitive Modeling

2010. Philadelphia, NJ.

Janssen, C. P., Brumby, D. P., Dowell, J., & Chater, N.

(2010b). Strategic adaptation in a dual-task setting. In

Proceedings of the First European ACT-R Workshop.

Groningen, The Netherlands.

Janssen, C. P., Brumby, D. P., & Garnett, R. (2010). Natural

break points: Utilizing motor cues when multitasking. In

Proceedings of the 54th annual meeting of the Human

Factors and Ergonomics Society. San Francisco, CA,

USA: Human Factors and Ergonomics Society.

Lallement, Y., & John, B. (1998). Cognitive architecture

and modeling idiom: An examination of three models of

the wickens task. Proceedings of the twentieth annual

conference of the Cognitive Science Society, 597-602.

Meyer, D. E., & Kieras, D. E. (1997). A computational

theory of executive cognitive processes and multiple-task

performance: Part 1. Basic mechanisms. Psychological

Review, 104, 3-65.

Navon, D., & Gopher, D. (1979). On the economy of the

human-processing system. Psychological Review, 86,

214-255.

Norman, D. A., & Bobrow, D. G. (1975). On data-limited

and resource-limited processes. Cognitive Psychology, 7,

44-64.

Salvucci, D. D. (2005). A multitasking general executive for

compound continuous tasks. Cognitive Science, 29, 457-

492.

Salvucci, D. D., & Taatgen, N. A. (2008). Threaded

cognition: An integrated theory of concurrent

multitasking. Psychological Review, 115, 101-130.

Salvucci, D. D., Taatgen, N. A., & Borst, J. P. (2009).

Toward a unified theory of the multitasking continuum:

From concurrent performance to task switching,

interruption, and resumption. In Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems. New York, NY: ACM Press.

Wang, D. D., Proctor, R. W., & Pick, D. F. (2007).

Acquisition and transfer of attention allocation strategies

in a multiple-task work environment. Human Factors, 49,

995-1004.

310

Recognizing Behaviors and the Intentional State of the Participants
Wesley Kerr (wkerr@cs.arizona.edu)

Department of Computer Science
1040 E. 4th Street

Tucson, AZ 85721 USA

Keywords: activity recognition; intention recognition; time
series;

Introduction
Psychological research has demonstrated that subjects shown
animations consisting of nothing more than simple geomet-
ric shapes perceive the shapes as being alive, having goals
and intentions, and even engaging in social activities such
as chasing and evading one another (Blythe, Todd, & Miller,
1999; Heider & Simmel, 1944). While the subjects could
not directly perceive affective state, motor commands, or the
beliefs and intentions of the actors in the animations, they
still used intentional language to describe the moving shapes.
For example, subjects in the Heider and Simmel (1944) study
consistently labeled the larger triangle, shown in Figure 1, as
a bully who harassed the smaller triangle and circle.

Figure 1: Single frame from an animations similar to the orig-
inal Heider and Simmel animation.

When subjects ascribe intentions to geometric primitives
like those shown in Heider and Simmel’s research (see Fig-
ure 1), which information guides the process? Blythe et al.
(1999) showed that the motion of the actors in animations
is sufficient to classify the activities that occur in the anima-
tions. The system generated to perform classification even
outperformed human subjects on the same task.

Blythe’s system mapped patterns of motion onto class la-
bels for intentional states, which isn’t quite the same as know-
ing anything about intentional states. One of Heider and Sim-
mel’s subjects described the larger triangle in Figure 1 as
“blinded by rage and frustration.” Blythe’s system couldn’t
come up with such a description. An agent that classifies
episodes by patterns of motion knows about patterns of mo-
tion, not about rage and frustration, even if these words are
provided as episode labels. So how might an agent infer af-
fective states?

In both the Heider and Simmel animations and the anima-
tions developed by Blythe et al., subjects can only observe a
subset of the features that are available, i.e. positions, veloc-
ities, sizes, colors, etc. The subjects cannot directly perceive
the affective state, motor commands, and the beliefs and in-
tentions of the actors in the animations. Yet they infer af-
fective states and describe them with intentional language.
We think humans infer affective states given non-affective ob-
servables such as positions and velocities by calling on their
own affective experiences. Observables cue, or cause to be re-
trieved from memory, schemas that include learned affective
components, which are inferred or “filled in” as interpreta-
tions of patterns of motion or other non-affective observables.

In this dissertation, we present representations and algo-
rithms that enable an artificial agent to correctly recognize
other agents’ activities by observing their behavior. In addi-
tion, we demonstrate that if the artificial agent learns about
the activities through participation, where it has access to its
own internal affective state, motor commands, etc., it can then
infer the unobservable affective state of other agents.

Activity Recognition
We begin with definitions: An episode is a collection of in-
tervals. Each interval is a tuple containing a proposition and
the times at which the proposition becomes true and false. A
proposition can become true (and false) multiple times within
an episode; each of these instances is represented as a sepa-
rate interval. Each episode is given a class label and is a single
example of an activity. In the activity recognition task we are
given a collection of episodes for training, and then tested on
episodes that were not part of the training set.

We assume that different examples of one activity share
patterns of intervals. More colloquially, the intervals in sim-
ilar episodes tell the same story with minor variations. Thus,
one may classify episodes by their constituent patterns of in-
tervals. This is not the only way to do it: A cleaning agent
might classify a cleaning episode by the objects it interacts
with, such as pots and pans, rather than what was done with
the pots and pans. But our focus here is classifying episodes
by patterns of activities, represented by intervals.

Episodes and intervals have different durations, start times,
end times, and constituent propositions, so our representation
of episodes must be able to accommodate and generalize over
these variations. For example, the activity “capture” involves
one agent chasing another agent until the second agent is cor-
nered or held in a single place. The participants might be
a prisoner and a guard or some other pair of agents, and the
amount of time spent chasing can vary from minutes to hours,

311

but all episodes share the same common pattern: One actor
chasing another until the other agent is cornered or caught.

Relationships between intervals can be described by Allen
relations (Allen, 1983). Allen recognized that, after eliminat-
ing symmetries, there are only seven possible relationships
between two intervals. Allen relations are qualitative in the
sense that they represent the temporal order of events, specif-
ically, the beginnings and endings of intervals, but not the
durations of intervals.

Our episode representation, which we call a qualitative se-
quence, is a sequence of Allen relations between intervals in
the episode. We construct the sequence by combining the
Allen relations between all of the pairs of intervals in the
order in which the Allen relation completes. An illustrative
episode and the resulting qualitative sequence is shown in Ta-
ble 1. The letters A, B and C denote propositions, and an
assertion such as (C 1 3) means that proposition C was true
in the interval [1,3].

Intervals Sequence
(C meets A)

(C 1 3) (C before B)
(A 3 6) (A overlaps B)
(B 4 9) (C before C)
(C 6 10) (A meets C)

(B overlaps C)

Table 1: An episode comprising four intervals and the corre-
sponding qualitative sequence.

Episodes are first converted into qualitative sequences of
Allen relations and learning is done with these sequences. Let
S = {S1,S2, . . . ,Sk} be a set of qualitative sequences with the
same activity label. We define the signature of the activity
label, Sc, as an ordered sequence of weighted Allen relations.
(The only difference between a signature and a qualitative
sequence is these weights.) We select a sequence at random
from S to serve as the initial signature, Sc, and initialize all
of its weights to 1. After this, Sc is updated by combining it
with the other sequences in S , processed one at a time.

Two problems are solved during the processing of the se-
quences in S . First, the sequences are not identical, so Sc
must be constructed to represent the most frequent relations
in the sequences. The weights in Sc are used for this pur-
pose. Second, because a relation can appear more than once
in a sequence Si, there can be more than one way to align Si
with Sc. These problems are related because the frequencies
of relations in Sc depend on how sequences are successively
aligned with it.

Updating the signature Sc with a sequence Si occurs in two
phases. In the first phase, Si is optimally aligned with Sc
using the Needleman-Wunsch global sequence alignment al-
gorithm (Needleman & Wunsch, 1970). The alignment al-
gorithm penalizes candidate alignments for relations in Sc
that are not matched by relations in Si, and rewards matches.

These penalties and rewards are functions of the weights
stored with the signature. In the second phase, the weights in
the signature Sc are updated. If a relation in Si is aligned with
one from Sc, then the weight of this relation is incremented
by one. Otherwise the weight of the relation is initialized to
one and it is inserted into Sc at the location selected by the
alignment algorithm.

The signatures function as classifiers as follows. Recall
that S = {S1, . . . ,Sk} is a set of qualitative sequences with
the same activity label; for example, all the sequences in S
might be examples of jump over. Now suppose we have N
sets of qualitative sequences, Σ = {S 1,S2, . . . ,SN} each of
which has a different activity label, and its own signature.
A novel, unlabeled sequence matches each signature to some
degree, determined by aligning it with each signature, as de-
scribed earlier. The novel sequence is given the activity label
that corresponds to the signature it matches best.

Inferring Hidden State
Episodes have observable and unobservable propositions de-
pending on which agent is doing the observing. For exam-
ple, when agent1 is chasing agent2, agent1 observes all of
the propositions pertaining to its motor commands, emotional
state, and intentional state, but when agent1 observes agent3
chasing agent2, agent1 cannot perceive the motor commands,
emotional state, and intentional states of agent2 nor agent3.

By hidden relations we mean relations that include one
or more propositions that are not directly observable in the
behavior of other agents, and so must be inferred. Our ap-
proach to inferring hidden relations is to have agents learn
signatures of their own behaviors, in which these relations
are not hidden. Then, when an agent observes another’s be-
havior, it matches the observable relations to signatures of its
own behavior, and uses these to infer unobservable relations
in other’s behavior.

In general, sequences can contain many hidden relations.
The most frequent are the most likely when observing other
agents. Therefore, our agent selects the most frequently oc-
curring hidden relations to be the inferred hidden state.

References
Allen, J. F. (1983). Maintaining knowledge about temporal

intervals. Communications of the ACM, 26(11), 832–843.
Blythe, P. W., Todd, P. M., & Miller, G. F. (1999). How

motion reveals intention: Categorizing social interactions.
In Simple heuristics that make us smart. Oxford University
Press, USA.

Heider, F., & Simmel, M. (1944). An experimental study of
apparent behavior. The American Journal of Psychology,
57(2), 243.

Needleman, S. B., & Wunsch, C. D. (1970, March). A gen-
eral method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of Molecular
Biology, 48(3), 443-453.

312

A probabilistic model of phonetic cue restructuring
James P. Kirby (jkirby@uchicago.edu)

University of Chicago, Department of Linguistics,
1010 E. 59th St., Chicago, IL 60622 USA

Keywords: Phonetic change; speech perception; agent-based
modeling; categorization; mixture models

Introduction
Research demonstrating that both infants and adults track
statistical distributions of acoustic-phonetic cues and use
this information when making phonetic category judgements
(Maye, Werker, & Gerken, 2002; Clayards, Tanenhaus, Aslin,
& Jacobs, 2008) has led to interest in computational mod-
els of phonetic category acquisition, which can shed light on
the requirements and limitations of statistical learning. The
results of a number of studies (Vallabha, McClelland, Pons,
Werker, & Amano, 2007; Toscano & McMurray, 2008) have
yielded encouraging results, indicating that Gaussian mixture
(GMs) may be an appropriate means of representing phonetic
category structure. However, these structures are not static;
they can and do change over a speaker’s lifetime, albeit in
ways which are not yet fully understood. This work builds
on previous research by embedding the GM approach in an
agent-based framework to explore the ways in which phonetic
category structure changes over time.

Sound change as phonetic cue restructuring
Speech sound categories (consonants and vowels) are not
monolithic entities, but are instead signaled by a multitude
of acoustic dimensions, called cues. Lisker (1978) cites 16
acoustic dimensions relevant for the perceptual distinction
between voiced (e.g., [b]) and voiceless (e.g., [p]) obstru-
ents in word-medial position in English, including duration
of the preceding vowel, fundamental frequency (f0) contour,
and timing of voice onset (VOT). While many cues are truly
independent, others, such as VOT and f0 contour, are re-
dundant: vowels following voiced obstruents have lower f0
than vowels following voiceless obstruents; in addition, some
cues contribute more information to the identity of a contrast
than others. Accurate categorization of an utterance involves
weighting these of these cues, a task which finds a natural
analog in density estimation (Ashby & Alfonso-Reese, 1995)
and closely related ‘ideal observer’ models of speech percep-
tion as optimal Bayesian inference (Clayards, 2008; Feldman,
Griffiths, & Morgan, 2009).

The distribution of cues to a speech sound category are
not static, however, and may shift and change over time.
An oft-cited example is the idea that lexical tone – the use
of pitch to distinguish between words, familiar from lan-
guages such as Mandarin Chinese or Thai – finds its ori-
gins in consonantally-induced pitch perturbations (Hombert,
Ohala, & Ewan, 1979). On this account, the physiologically-
based, consonantally-induced differences in vowel f0 first be-

come part of a perceptual cue distinguishing two types of
consonants. If f0 comes under speaker control, it may then
be used to actively to enhance the perception of this con-
trast. More generally, when the primary cue to a contrast
becomes uninformative, the contrast may still be maintained
through increased attention to a secondary cue, a process
termed phonologization (Hyman, 1976).

Table 1: Phonologization of f0 in Seoul Korean.

manner 1960s 2000s gloss

fortis

!!"#$!%&'()*
+!,,#$!%-.(/*
0 !,#$!%1(233*

[ppul] [púl] ‘horn’

lenis !!"#$!%&'()*
+!,,#$!%-.(/*
0 !,#$!%1(233*

[pul] [phùl] ‘fire’

aspirated

!!"#$!%&'()*
+!,,#$!%-.(/*
0 !,#$!%1(233*[phul] [phúl] ‘grass’

Empirical support for such an account may be found in the
phonologization of f0 currently taking place in Seoul Korean
(Kang & Guion, 2008). In this language, a three-way contrast
between fortis, lenis, and aspirated word-initial voiceless ob-
struents once distinguished chiefly by differences in VOT is
now distinguished chiefly by differences in f0. As shown in
Table 1, fortis and aspirated stops are both produced with high
f0, but distinguished along the VOT dimension, whereas lenis
stops are distinguished from aspirated by low f0.

As it happens, VOT and f0 are not the only cues relevant for
the perception of word-initial obstruents in Seoul Korean: a
number of studies (reviewed in Kang and Guion (2008)) have
shown that other acoustic characteristics, such as length of the
following vowel and spectral tilt at vowel onset, are also im-
portant cues to obstruent category. If phonetic categories are
signaled by a multiplicity of cues, however, it is not immedi-
ately obvious why should f0, and not some other cue, should
have been phonologized, nor why this change took place in
Korean, but not in other languages which displays a similar
redundancy between VOT and f0, such as English.

In this work, I propose that this type of phonetic cate-
gory restructuring is the result of an adaptive strategy of cue
enhancement designed to ensure robust communication in
noise. Speakers enhance phonetic cue dimensions probabilis-
tically, in proportion to their contribution to the successful
perception and categorization of a phonetic contrast, based on
the informativeness of a cue and the precision with which the
contrast may be recovered. This predicts that phonetic cue
restructuring will result from the loss of contrast precision
due to noise or external bias, with the degree of enhancement
proportional to the loss of precision.

313

Modeling phonetic cue restructuring
A series of agent-based simulations were conducted to better
understand the effects of probabilistic enhancement on cue
weights. Five cue dimensions known to be relevant for the
perception of Korean stops (VOT, vowel length, closure dura-
tion, spectral tilt, and f0) were represented as a set D of three
5-dimensional GMs, corresponding to the three word-initial
obstruent categories. Both the initial and target parameters
of each GM were estimated from data in the apparent time
study of Kang and Guion (2008), represented as an exemplar
list Ek = {ek

1, . . . ,e
k
n}, ek

i a 5-dimensional column vector of
cue values plus a category label k and a decay weight τ.

Agent-based simulations
The simulations reported here consist of simple ‘telephone’
conversations in which two agents alternate between produc-
ing and categorizing utterances. At each iteration, the speaker
agent selects a phonetic category target k, computes maxi-
mum likelihood estimates of the parameters µd|k,σd|k for all
d ∈ D based on Ek, and samples from each conditional den-
sity xd ∼ N (d|k;µd ,σd) to generate an utterance vector x.
The agent then enhances cue dimension d of x with some
probability, proportional to both (i) the cue’s weight (based
on normalized d′) and (ii) the current contrast precision, de-
fined as the error rate of a naive Bayes classifier. Finally, x
may be further modified by a transmission bias term λ, used
to implement systematic biases such as articulatory drift.

The utterance x is then presented to the listener agent for
classification. The listener agent assigns a category label k
with probability P(k|x1, . . . ,xD), where the posterior proba-
bility of each category k is calculated as

P(k|x1, . . . ,xD) =
p(x1|k)p(x2|k), . . . , p(xD|k)p(k)

∑
K
i=1 p(x1|ki)p(x2|ki), . . . , p(xD|ki)p(ki)

.

(1)
After classification, the agent adds x to the top of the ap-

propriate exemplar list Ek, re-computes decay weights, and
deletes exemplars with sufficiently low τ (to simulate memory
decay). In the next iteration, when the listener agent becomes
the speaker, the contribution of this newly categorized exem-
plar will be reflected in production when the agent computes
new maximum likelihood parameter estimates.

Results
Simulations of up to 50,000 iterations were conducted with
and without enhancement and for various settings of the bias
term λ. Neither the proposed probabilistic enhancement strat-
egy nor systematic bias alone were sufficient to induce a shift
in cue weights that resembled the empirical target distribu-
tions, but simultaneous application of both gave a close ap-
proximation of the attested distributions and cue weights, as
measured by the Kullback-Leibler divergence between the
simulated results and the empirical targets. A second series
of simulations in which the weights of secondary cues to the
contrast were equalized at initialization, systematic bias in the

production of VOT (the primary cue) led to either partial or
total category merger or stability of the existing cue structure,
depending on exact nature of the transmission bias.

Conclusions
Sound change resulting from a cognitive restructuring of pho-
netic cue weights may be modeled as an adaptive strategy of
probabilistic enhancement interacting with systematic biases
in speech production. Computational simulations show that
such a restructuring may come about without appealing to ei-
ther (a) inherent perceptual bias for or against any particular
cues or (b) a system-wide pressure or preference for contrast
maintenance. Given just the initial state and characterization
of transmission bias, this model allows us to make (proba-
bilistic) predictions about directionality in sound change. On-
going extensions of this work include experimental testing of
the model predictions using human subjects.

References
Ashby, F. G., & Alfonso-Reese, L. A. (1995). Categorization

as probability density estimation. Journal of Mathematical
Psychology, 39, 216–233.

Clayards, M. (2008). The ideal listener: making optimal use
of acoustic-phonetic cues for word recognition. Unpub-
lished doctoral dissertation, University of Rochester.

Clayards, M., Tanenhaus, M. K., Aslin, R., & Jacobs, R. A.
(2008). Perception of speech reflects optimal use of proba-
bilistic speech cues. Cognition, 108, 804–809.

Feldman, N. H., Griffiths, T. L., & Morgan, J. L. (2009). The
influence of categories on perception: Explaining the per-
ceptual magnet effect as optimal statistical inference. Psy-
chological Review, 116, 752–782.

Hombert, J.-M., Ohala, J. J., & Ewan, W. G. (1979). Pho-
netic explanations for the development of tones. Language,
55(1), 37-58.

Hyman, L. (1976). Phonologization. In A. Juilland (Ed.), Lin-
guistic studies presented to Joseph H. Greenberg. Saratoga:
Anma Libri.

Kang, K.-H., & Guion, S. G. (2008). Clear speech produc-
tion of Korean stops: Changing phonetic targets and en-
hancement strategies. Journal of the Acoustical Society of
America, 124(6), 3909–3917.

Lisker, L. (1978). Rapid vs. rabid: a catalogue of acoustic
features that may cue the distinction. Haskins Laboratories
Status Report on Speech Research SR-54, 128–32.

Maye, J., Werker, J. F., & Gerken, L. (2002). Infant sensi-
tivity to distributional information can affect phonetic dis-
crimination. Cognition, 82(3), B101–B111.

Toscano, J., & McMurray, B. (2008). Using the distributional
statistics of speech sounds for weighting and integrating
acoustic cues. In Proceedings of the Cognitive Science So-
ciety. Mahwah, NJ: Erlbaum.

Vallabha, G. K., McClelland, J. L., Pons, F., Werker, J. F., &
Amano, S. (2007). Unsupervised learning of vowel cate-
gories from infant-directed speech. Proceedings of the Na-
tional Academy of Sciences, 104(33), 13273–13278.

314

Canonical Behavior Patterns
Walter C. Mankowski (walt@cs.drexel.edu)

Department of Computer Science, Drexel University, 3141 Chestnut Street
Philadelphia, PA 19104 USA

Keywords: Protocol analysis; sequential data analysis

Introduction
In the development of cognitive models, data are often col-
lected in the form of behavioral protocols — sequences of
actions performed by the user during the execution of a task.
Behavioral protocols have been employed to study a wide va-
riety of actions, including mouse clicks and keystrokes (e.g.,
Card, Newell, & Moran, 1983), eye movements (e.g., Byrne
et al., 1999), and driving (e.g., Salvucci, 2006). While proto-
cols are a rich source of data, they have one significant limita-
tion — often so much data are recorded that it is impractical
to analyze by hand. Researchers have sometimes tried to get
around this issue by performing some form of aggregation on
their data. While this can help in seeing overall behavior, it
masks potentially interesting patterns in individual users and
subsets of users. Alternatively, researchers have sometimes
laboriously studied individual protocols by hand to identify
interesting behaviors. While some work has been done on
automated protocol analysis, such techniques typically focus
on matching observed behaviors to the predictions of some
type of user process model.

The goal of my dissertation is to develop a new, automated
method of protocol analysis to find canonical behaviors — a
small subset of behavioral protocols that is most representa-
tive of the full data set, providing a reasonable high-level view
of the data with as few elements as possible. The method I
am proposing takes advantage of recent algorithmic develop-
ments in computational vision, and the method has already
been successfully employed in diverse fields such as image
analysis and software engineering. By adapting this algo-
rithm to the analysis of behavioral protocols, I hope to pro-
vide a new tool for cognitive modelers working with large
protocol data sets that are infeasible to study using current
methods. My method can also be used as an important com-
plement to existing protocol analysis techniques, allowing re-
searchers to build their models based on a few highly repre-
sentative samples.

Finding Canonical Behaviors
My technique for computing canonical behaviors derives
from work in the area of computational vision, where tech-
niques have been developed to identify canonical members
of a class of visual patterns (Denton et al., 2008). The goal
is to reduce a large set of patterns (in this context, behavioral
protocols) to a smaller (often much smaller) subset of patterns
that is most representative of the entire data set. Specifically,
I define a canonical set of behaviors as a subset of protocols
such that behaviors within the canonical set are minimally

similar to each other, and behaviors in the canonical set are
maximally similar to behaviors not in the set. The problem
of finding such a set of patterns is known to be intractable
(Garey & Johnson, 1979), and thus an approximation algo-
rithm is utilized. Please refer to Denton et al. (2008) for a full
description of the algorithm.

The key aspects of the method I propose are the specifi-
cation of a similarity measure between behaviors and the de-
termination of canonical behaviors given this similarity mea-
sure. The similarity measure is dependent upon the nature
of the particular protocol. For web browsing, it might be the
edit distance between two sequences of URLs (i.e., the num-
ber of insertions, deletions, or substitutions needed to trans-
form one sequence to the other). For eye-tracking data, an
appropriate measure might compare the x,y coordinates of
the fixations, the number of fixated items, or the exact se-
quence of items fixated upon. Similarly, the determination of
canonical behaviors is also dependent upon the context. For
example, canonical behaviors for going to the next page in a
word processor might include “press the page down key on
the keyboard” and “click the scroll bar”.

The principal benefits of my canonical set technique are (1)
it is an unsupervised algorithm: no training data set is needed;
and (2) no a priori knowledge of the number of sets is needed:
both the sets themselves and the most representative elements
of the sets arise naturally from the algorithm.

Preliminary Work
To test the application of the canonical set algorithm to hu-
man behavior protocols, I have done initial experiments in
two problem domains. In the domain of web browsing, I have
identified canonical web browsing patterns. I have also found
canonical lane changes in a driving experiment. I briefly sum-
marize each of these experiments below.

Web Browsing
As an initial experiment to validate this automated method
of finding canonical sets, my colleagues and I collected data
from users performing typical web browsing tasks. Each sub-
ject was asked to answer 32 questions that could be found
on a college web site. The questions covered a range of re-
alistic topics such as finding information about professors,
athletic programs, and academic departments. (Please see
Mankowski et al. (2009) for a full description of this experi-
ment.)

Figure 1 shows the various behaviors for a single ques-
tion (“What is the phone number of 〈department〉 professor
〈name〉”) for (a) an expert human coder with significant ex-
perience in analyzing behaviors and cognitive modeling, and

315

(a) Human Expert Coder (b) Canonical Set Algorithm

Home

25374

75

252

1457

40458

405120

152

153

195

196

Legend
A B DC E F

Home

25374

75

252

1457

40458

405120

152

153

195

196

Legend
A B C D

Figure 1: Sample analysis graphs.

(b) the canonical behavior algorithm. In both graphs, each
node represents a web page (labeled with a unique integer)
and each edge represents a clicked link from one page to an-
other taken by one of our subjects. The expert coder found
6 sets of behaviors, labeled A-F: A and B are different ways
of finding the professor’s home page via their department’s
website; C and D are different ways of accessing a directory
search page (node 14); and E and F are slight variations on
C and D. The canonical set algorithm found 4 canonical be-
haviors in the same graph; these are shown as bold in graph b,
and the other behaviors are labeled in terms of their most sim-
ilar canonical behavior. The behaviors it found correspond
exactly with sets A-D found by the expert coder. Instead of
identifying E and F as separate behaviors, the algorithm de-
cided to group these behaviors with their nearest canonical
behavior (D).

Grouping behavior patterns is clearly a subjective process,
since expert coders could each have their own notions about
whether two behaviors are similar enough to be grouped to-
gether. For example, our second coder put behaviors A and
B into the same group. To model this, the algorithm can be
tuned to be more tolerant of differences in a grouping, or to al-
low more significant variations to become canonical elements
themselves.

Driving
I have also applied the canonical set algorithm to the domain
of driving, specifically the problem of identifying canoni-
cal lane changes (Mankowski, Shokoufandeh, & Salvucci, in
press). Our data came from a previous experiment examining

 0

 2

 4

 6

 8

 0 50 100 150 200 250

x
po

si
tio

n
(m

et
er

s)

z position (meters)

Figure 2: Lane changes for a representative subject.

driving behavior (Salvucci, 2006), where subjects navigated
a simulated straight, flat highway and were required to pass a
number of automated vehicles. For each lane change we con-
structed a histogram of the car’s position and lateral velocity,
and computed the similarity between each histogram.

Figure 2 shows the lane changes our algorithm found for
a typical subject. Results were similar for the other subjects
with these settings. The canonical lane changes are shown in
bold, and the other lane changes are drawn in the same color
as their most similar canonical lane change.

Acknowledgments
This work was supported in part by ONR grants #N00014-03-
1-0036, #N00014-08-1-0925 and #N00014-09-1-0096, and
by NSF grant #IIS-0426674.

References
Byrne, M. D., Anderson, J. R., Douglass, S., & Matessa,

M. (1999). Eye tracking the visual search of click-down
menus. In Proc. CHI 1999 (pp. 402–409). New York:
ACM Press.

Card, S. K., Newell, A., & Moran, T. P. (1983). The psychol-
ogy of human-computer interaction. Hillsdale, NJ, USA:
Lawrence Erlbaum Associates.

Denton, T., Shokoufandeh, A., Novatnack, J., & Nishino, K.
(2008). Canonical subsets of image features. Computer
Vision and Image Understanding, 112(1), 55–66.

Garey, M. R., & Johnson, D. S. (1979). Computers and in-
tractibility: A guide to the theory of NP-completeness. San
Francisco: W.H. Freeman and Co.

Mankowski, W. C., Bogunovich, P., Shokoufandeh, A., &
Salvucci, D. D. (2009). Finding canonical behaviors in
user protocols. In Proc. CHI 2009 (pp. 1323–1326). New
York: ACM Press.

Mankowski, W. C., Shokoufandeh, A., & Salvucci, D. D.
(in press). Canonical patterns of oriented topologies. In
Proc. ICPR 2010. IEEE Computer Society Press.

Salvucci, D. D. (2006). Modeling driver behavior in a cogni-
tive architecture. Human Factors, 48(2), 362–380.

316

Modeling Memes, A Memetic View of Affordance Learning
Benjamin D. Nye (benjamid@seas.upenn.edu)

School of Engineering and Applied Science
Department of Electrical and Systems Engineering

3320 Smith Walk
Hayden Hall, Room 120B, ACASA Lab

Philadelphia, PA 19104

Keywords: Memes; Information Theory; Social Psychology;
Social Learning Theory; Systems Theory; Affordance Theory;
Agent Based Modeling; Cognitive Agents

Overview
The purpose of this doctoral research is to apply a systems
approach to defining and understanding memes. A meme is
a piece of social information which transmits and replicates
within a society (Heylighen, 1998). Memetics allow insight
into the evolution of ideas and behavior, a fundamental ques-
tion pertinent to all fields of social science. Three mecha-
nisms guide the evolution of memes: reproduction, variation,
and selection (Dennett, 1995). These mechanisms have to
be understood in terms of empirical research on individual,
social, and environmental factors that influence transmission
and change of ideas. However, the body of relevant empir-
ical study and theory is vast. This raises the basic research
question: What synthesis of theories usefully explains meme
behavior? The thesis of this research addresses this question
using a three step process:

1. Synthesis of Theories - A conceptual model is synthesized
which connects social science research to the mechanisms
guiding meme transmission and evolution.

2. Computational Model - A cognitive agent simulation
model is coded which operationalizes insights and theory
captured by the conceptual model.

3. Testing the Model - Experiments conducted using the
model examine the validity, flexibility, and types of insight
the computational model provides.

Hypotheses
This process is being used to test three hypotheses. The first
hypothesis is that the theoretical relationships used to build
the computational model will be statistically significant in the
data collected from simulation runs. This hypothesis is in-
tended to show internal validity. For example, the halo effect
states a positive correlation of the likeability of a source with
their persuasiveness. For this to hold true, a meme should
be more likely to be repeated when received from a likable
source. Relationships will be reported from the collected data
by running logistic regression and statistical tests are being
used to test significance.

The second hypothesis is that this model will provide a
effective framework for representing and analyzing individ-
ual and situational characteristics that influence meme fitness.

This hypothesis will be tested by applying classification tech-
niques to detecting agents that receptive or resistant to differ-
ent memes. The differences between classes will be examined
statistically. These classifications will be compared against a
human analysis of the scenario, as part of basic Turing test.

The third hypothesis is that memes can improve its corre-
spondence with empirically collected behavioral data. This
test involves building a scenario based on empirical data by
tuning the scenario based upon personality factors and be-
havioral frequencies. The behavior of most interest is the first
time an agent takes an action that express a meme. The or-
der that agents first express memes can then be statistically
compared against the real world observed ordering. The in-
dependent variable in this hypothesis is the set of agents who
are initially aware of the meme. For this hypothesis to hold
true, the trials with meme transmission must match the real-
world ordering better than the trials where no social learning
occurs (due to agents starting with full information). This
tests if the propagation pattern improves the match of behav-
ior to the ground truth.

Figure 1: Conceptual Model for Meme Transmission

Experimental Design
As part of the thesis proposal, Shannon Information The-
ory and Bandura Social Learning Theory were synthesized
to form an end-to-end model for retransmission of memes
(Bandura, 1986; Shannon, 1948). Information theory con-
siders the effects of noise and environmental influences on
a physical transmission. Social learning theory considers the

317

processes that affect an agent’s likelihood of repeating a trans-
mission to which it is physically exposed. Social learning has
a concept of observational learning that consists of 4 steps:
attention, retention, motivation, and production. The synthe-
sis of information theory and social learning theory provides
a conceptual framework for connecting empirical findings to-
gether into a single process. Findings from perception, social
psychology, learning, marketing, and other fields have been
connected within this conceptual framework as noted in Fig-
ure 1. The thesis proposal for this project provides a signifi-
cant mapping of theories into this framework, along with their
implications for the mechanisms of meme evolution.

Figure 2: PMFServ Implementation of Meme Transmission

Based upon this synthesis of literature into a unified
model, a simulation consisting of cognitive agents has been
built using the PMFServ socio-cognitive agent architecture
(Silverman, 2004). Figure 2 shows the key elements of the
conceptual model that implemented as cognitive components
for PMFServ agents. These agents are simulated within a
shared environment, with meme transmission occurring when
agents learn about affordances from each other’s behavior.
This implementation will concentrates on the cognitive fac-
tors that affect memes. The agents used within this model
consider not only the intrinsic information of a meme, but
also the appeal of the source, and the influence of the environ-
ment. Computational models for social influence, attention,
and learning have been implemented according to empirically
based findings and theory. The halo effect (Kelley, 1955), se-
lective attention (Simons & Chabris, 1999), and conformity
(Asch, 1963) are examples of over a dozen constituent theo-
ries used to build cognitive components.

The computational model is being used to simulate two
scenarios: a reproduction of the Stanford Prison Experiment
and an archetypal Iraqi village of Hamariyah based on US
Marine Corps human terrain data. The Stanford Prison exper-
iment is an infamous landmark field study in which seemingly
normal participants were assigned roles as guards or prison-
ers in a simulated prison (Haney, Banks, & Zimbardo, 1973).
The Stanford Prison experiment scenario has been calibrated
and tested using de-identified Comrey Personality inventories
and hourly coded behavioral logs. The potential memes in the
Stanford Prison Experiment are the practice of throwing pris-

oners in ”the hole” and the spread of prisoner resistance. All
three hypotheses will be examined using the Stanford Prison
Experiment simulation.

The Iraqi village scenario is being used to examine a pair
of competing memes, one for informing to the US group and
one for helping to plant an IED. Since there is no ground-truth
data, only the first two hypotheses can be examined. How-
ever, the Iraqi village will be better suited to classification
due to its larger number of agents and actions.

Contribution
The main goal of this research topic is to present a useful
conceptual model for the transmission of memes, accompa-
nied by a working and useful implementation. The theoretical
contribution of the work has been to synthesize established
models to help explain meme dynamics. It has also identi-
fied gaps in social science literature where the interaction of
different theories is not well understood. The cognitive archi-
tecture implementation provides insight into the conceptual
model’s value for operationalizing and analyzing memes. The
end result should help advance the capabilities of simulated
societies to analyze real societies.

Acknowledgments
Many thanks to my advisor Dr. Barry Silverman, as well as
my esteemed committee members Dr. Tony Smith, Dr. Kath-
leen Carley, and Dr. Joseph Bordogna.

References
Asch, S. E. (1963). Opinions and Social Pressure. People

and Productivity.
Bandura, A. (1986). Social Foundations of Thought and Ac-

tion. A Social Cognitive Theory. Englewood Cliffs, NJ:
Prentice-Hall.

Dennett, D. C. (1995). Darwin’s Dangerous Idea: Evolution
and the Meanings of Life. Simon & Schuster.

Haney, C., Banks, W. C., & Zimbardo, P. G. (1973). In-
terpersonal Dynamics in a Simulated Prison. International
Journal of Criminology and Penology, 1, 69–97.

Heylighen, F. (1998). What makes a meme successful? Se-
lection criteria for cultural evolution. In 16th international
congress on cybernetics (pp. 418–423). Namur, Belgium:
Association internationale de cybernétique.

Kelley, G. A. (1955). The psychology of personal constructs
(Vols. 1 & 2).

Shannon, C. E. (1948). A Mathematical Theory of Communi-
cation. Key Papers in the Development of Information The-
ory. Available from http://cm.bell-labs.com/cm/ms/
what/shannonday/shannon1948.pdf

Silverman, B. G. (2004). Toward Realism in Human Perfor-
mance Simulation. In J. W. Ness, V. Tepe, & D. R. Ritzer
(Eds.), (Vol. 5, pp. 469–498). JAI Press.

Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst:
sustained inattentional blindness for dynamic events. Per-
ception, 28, 1059–1074.

318

Exploring a Novel Training Paradigm for Knowledge and Skills Acquisition

Jaehyon Paik (jaehyon.paik@psu.edu)

Department of Industrial and Manufacturing Engineering
Pennsylvania State University, University Park, PA

Keywords: Spacing effect, Distributed practice schedule,
Massed practice schedule, Hybrid Practice schedule, Procedural
stage

Introduction
Due to the importance of training, many scientists have
studied effective training schedules, and they have
compared distributed practice schedules to massed practice
schedules. Most of the results consistently show that a
distributed practice schedule outperforms a massed practice
schedule in a retention test, because of the spacing effect in
human memory.

This result may lead new scientists who want to
investigate knowledge and skills acquisition to explore just
these two schedules and compare them in retention tests
without examining other options. However, I think that we
need to consider and approach another way for knowledge
and skills acquisition. According to Anderson’s (1982,
1993) ACT-R theory, skill acquisition is the process of
transition from declarative memory to procedural memory,
and in the fully procedural stage, human beings do not need
to retrieve their declarative memory to implement a task,
even if they forgot the knowledge in declarative memory,
they can perform the whole task without any errors. Based
on his findings and theory, the most important factor in
learning is how to transform learned knowledge to the
procedural stage of the learning framework, and the research
for learning should not compare two relatively extreme
schedules, but make an appropriate schedule that could
transfer learners to the procedural stage for each piece of
knowledge. In this paper, I will present a candidate
approach to make an appropriate schedule for getting better
performance in knowledge and skill retention, and as a
doctoral consortium paper, I hope I have useful advices for
theoretical approach of the ACT-R cognitive architecture in
this topic.

Theory
Spacing effects exists in human memory. This explains the
reason that a distributed practice schedule has better
performance than a massed practice schedule in retention
tests. However, I mentioned in previous section, research for
training should be focused on how to transfer a learned skill
to the procedural stage.

Unfortunately, we do not have any measurement whether
learners are in the procedural stage or not. One of the
candidate measurements could be differences between the
performances of the last training session and the retention
session, however, it is difficult to fix the amount of
differences that could represent the procedural stage. So, I

think that we should consider how to increase performance
in retention, and it may the only way to approach for
explaining the status of procedural stage.

Pavlik (2005) studied practice and forgetting effects on
vocabulary. In this research, he found that the spacing
effects could be increased through distributed practice with
massed practice; in other words, a mixed schedule could
produce better performance than distributed schedule in
vocabulary memory task.

I also think some kinds of tasks, such as procedural or
perceptual-motor tasks, may show even better performance
through an initial or distributed massed practice schedule.
For example, we can learn how to ski perhaps better not in a
distributed way (1 hour per day over 5 days), but in massed
way (5 hours in a row in one day).

From the above results, I argue that a hybrid practice
schedule that is a mixed schedule including distributed and
massed practice, could increase the spacing effect, and
generate better performance than a purely distributed or
massed practice schedules on the retention test.

Methodology
To explore the better schedule on retention test, four kinds
of experiment environment were developed. These tasks are
presented in Table 1.

Table 1: Four tasks with respect to knowledge type.

Knowledge Type Task
Declarative Memory Japanese Vocabulary
Procedural Memory Tower of Hanoi

Procedural to Declarative Permutation Problem
Perceptual-Motor BalanceMe® Game

 The Japanese Vocabulary test that is similar to the task of
Pavlik and Anderson (2003, 2005), is a web-based test, and
participants will be tested with 15 Japanese vocabulary
words. The accuracy (the number of correct answers) and
RT (the completion time per correct answer) will be
measured.

There are two kinds of tasks in procedural memory type.
One is the Tower of Hanoi puzzle, and the other is solving
permutation problem. A Tower of Hanoi game that will be
modified from its original style has 3 rods with 6 disks.
Participants will be asked to move 6 disks from the leftmost
rod to the rightmost rod. The number of movements and the
duration time will be measured.

For the permutation problem test, I will use the task of
Rohrer and Taylor (2006). Participants will be taught to
solve the number of unique ordering (or permutations) of a
letter sequence with at least one repeated letter, such as

319

aabbbb, aabbbcc, etc.;, 12 problems will be presented. The
accuracy (the number of correct answers) and RT (the
completion time per correct answer) will be measured.

The BalanceMe® game, an Iphone® Application, will be
used for the perceptual-motor task. This is very similar to an
inverted pendulum. Participants will be asked to keep
balancing the stick in the screen by tilting the device. The
time duration of balancing will be measured.

Participants will be divided into 3 groups, massed group,
distributed group, and hybrid practice group, and they will
be asked to perform 8 sessions for training and 1 session to
test retention. Each session consists of 4 tasks, and the order
of tasks will be decided randomly.

Expected Results
As I mentioned in the Theory section of this paper, I assume
that the participants of hybrid practice may show the best
performance in all four tasks of retention test. The reason is
that I believe the hybrid practice including the distributed
practice and massed practice could increase spacing effect
in human memory. I expect that the distributed practice
schedule may outperform massed practice schedule in
declarative memory task and the procedural to declarative
task, because learners mainly depend on their declarative
memory in these kinds of tasks. However, massed practice
schedule may outperform distributed practice schedule in
procedural memory task and perceptual-motor task, because
massed practice may be needed in these kinds of tasks.
These expected results are presented in Table 2. Figure 1
and figure 2 present expected learning curves of each of
these practice schedules.

Table 2: The expected results for each task.

Schedules Task
Japanese Vocabulary H > D > M Permutation Problem

Tower of Hanoi H > M > D BalanceMe® Game
Note: H means Hybrid, D means Distributed, and M means

Massed Practice.

Figure 1: Expected results for declarative memory task and

procedural to declarative task.

Figure 2: Expected results for procedural memory task and

perceptual-motor task.

Conclusions
In this paper, I present a hybrid practice schedule that
includes distributed and massed practice, and I assume that
this is one of the candidate practice schedule for transferring
learners to the procedural stage of learning framework. To
explore this, I created four kinds of tasks that represent
different knowledge types, declarative, procedural, and
perceptual-motor.

At least 30 participants, 10 for each schedule, will be
recruited by 31 July 2010, and I will explore the candidate
hybrid schedule based on the ACT-R theory. By
comparing human data and the theory of ACT-R, I may
verify or extend the theory. Finally, this experiment will
show the learning curves with the same subject in different
types of tasks.

Acknowledgements
This work was supported by the U.S. Office of Naval
Research (ONR) under contract N00014-06-1-0164 and the
Defense Threat Reduction Agency under contract 1-09-1-
0054.

References
Anderson, J. R. (1982). Acquisition of cognitive skill.

Psychological Review, 89(4), 369-406.
Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ:

Erlbaum.
Pavlik, P. I., & Anderson, J. R. (2003). An ACT-R model of

the spacing effect. In (pp. 177-182).
Pavlik, P. I., & Anderson, J. R. (2005). Practice and

forgetting effects on vocabulary memory: An activation-
based model of the spacing effect. Cognitive Science,
29(4), 559-586.

Rohrer, D., & Taylor, K. (2006). The effects of overlearning
and distributed practise on the retention of mathematics
knowledge. Applied Cognitive Psychology, 20(9), 1209-
1224.

320

Modeling of Modality Selection in Multimodal Human-Computer Interaction

Stefan Schaffer (stefan.schaffer@zmms.tu-berlin.de)
Research Training Group prometei, Berlin Institute of Technology, Germany

Keywords: strategy selection; multimodal user behavior.

Research Interests
The main interest of my research is the development of
model-based methods for simulation and automated
usability prediction of multimodal interfaces. In particular I
want to investigate how modality choice of users can be
predicted and simulated by a computational model that
estimates the quality of multimodal interfaces. Therefore I
am also interested in exploring rules and cognitive processes
that impact users’ modality selection in multimodal human-
computer interaction.

Previous Multimodal HCI Related Work
During my master thesis at Deutsche Telekom Laboratories
(T-Labs) I worked on the integration of a speech recognition
module in so-called Attentive Displays. The Attentive
Displays are an interactive wall-mounted information
system for employee and room search in a smart office
environment. Originally the system was controlled with a
touch screen only. To enhance the input facility I embedded
a speech interface. Thereby the system input was altered
from unimodal to multimodal.

Several studies have shown multimodal interfaces to be
more robust, efficient and flexible than unimodal systems
(e.g. Oviatt, 2003). As a part of my master thesis a user
study with 36 participants and six tasks was conducted to
investigate the effect of multimodality on user behaviour
and the perceived quality of the system. In contrast to the
assumption that the multimodal system is judged best, the
evaluation revealed the perceived quality of both the touch
screen and the multimodal version of the system were rated
equally. The distinct malfunction of the speech recognition
module in the multimodal setup could be a reason for this
result. While accomplishing the tasks with the multimodal
system it could also be observed that users switched from
speech to touch input, after experiencing repeated speech
recognition errors. Otherwise speech was the preferred input
modality for tasks that were solvable with less interaction
steps via speech (Metze et al., 2009).

Current Research Work
Currently I am working towards my PhD, where I am
developing user models for the simulation of interaction
between users and multimodal dialogue systems. Thereby
the modality choice of users has to be simulated in each
interaction step. A literature research within HCI related
topics exploring user behavior and our previous work show
that miscellaneous factors like e.g. expertise (Kamm et al.,
2008; Seebode, 2009), task and efficiency (Naumann, 2008)

and task success (Wechsung et al., submitted) influence
modality selection. According to these findings the
Attentive Display user study indicates that efficiency of
interaction and system errors affect user behavior (Metze et
al., 2009). Usage of shortcuts via speech and modality
switch after repeated malfunction of the speech recognition
module was observed in the study. Users appear to prefer
more efficient interaction strategies.

In the following two subsections I give a closer
description of two of my current research projects.

Project 1: Modeling Efficiency-Guided Multimodal
Strategy Selection
In order to build a model for selected Attentive Display
tasks, human data about modality usage, recorded during the
experiment, serves as a target value. Currently the employee
search task including a shortcut via speech input is modeled
with the cognitive architecture ACT-R (Anderson &
Lebiere, 1998). To search the employee “Patrick” by means
of touch screen or speech input the following interaction
steps have to be fulfilled:

[pre 1] Search button “SEARCH” [post 2]
[pre 2] Press button “SEARCH” [post 3]
[pre 2] Speak “SEARCH PATRICK” [post 11]
[pre 3] Search button “P” [post 4]
[pre 4] Press button “P” [post 5]
[pre 5] Search button “A” [post 6]
[pre 6] Press button “A” [post 7]
[pre 7] Search “T” [post 8]
[pre 8] Press button “T” [post 9]
[pre 9] Search button “PATRICK” [post 10]
[pre 10] Press the button “PATRICK” [post 11]
[pre 11] Search goal cue [post end]

This simple task analysis is implemented in the ACT-R
model as instructions in declarative memory. The model
also provides a couple of production rules for retrieving the
instructions, searching in the interface, pressing buttons and
speaking commands. The structure of the model is similar to
the model presented by Taatgen et al. (2006) where
declarative instruction chunks are associated through pre-
and postconditions. This makes it easy to reuse instructions
which are used for speech and touch interaction (e.g.
production [pre 1] and [pre 11]). Additionally this
representation features a practical flexibility which can be
used for simulating multimodal interaction with ACT-R. If
two chunks with the same precondition are added to
declarative memory, different interaction strategies can be
retrieved and different postconditions can be set. Thereby it
has to be taken into account that chunks where the

321

precondition occurs twice are chosen randomly. Hence the
model does not reproduce human behavior. One possibility
of solving this problem is to use the ACT-R inherent
mechanisms production compilation (Taatgen & Lee, 2003)
and utility learning. The production compilation mechanism
combines two production rules into one new rule and
substitutes retrievals from declarative memory directly into
the new rule. Thus specialized productions for speech and
touch interaction are created. Utility learning rewards all
rules which are involved in reaching the goal. The total
reward is a stated value and spreads over the involved rules.
Consequently the reward per rule is lower if more rules
were involved. By means of these mechanisms it should be
possible to let ACT-R learn the utilities of new production
rules during an initial training. After the training the strategy
involving less production rules should have a higher utility.
Hence the more efficient modality should be used with a
higher probability.

The aim of this research project is to investigate if ACT-R
could be applied directly as a decision mechanism for
modality selection in a development environment (the
MeMo Workbench), which is based on prior work of the T-
Labs (Möller et al., 2006). Furthermore rules for modality
selection will be derived.

Project 2: Efficiency-Dependent Thresholds for
Modality-Changing
This research project aims to develop a multimodal
prototype for purposes of investigating thresholds for
modality changing. Users of multimodal systems often have
the possibility to choose a specific input modality to
perform an interaction step during the processing of a task.
Diverse factors influencing modality choice including
efficiency-related factors like time to solve the task,
interaction steps and cognitive load have to be considered.
The objective is to examine whether users change their input
modality from touch to speech interaction or vice versa, if
the modalities offer different efficiencies. Therefore I
propose a task which systematically allows varying the
number of interaction steps to solve a goal. Additionally
cognitive load should be kept as constant as possible. The
task will be integrated in an application on a mobile device.

The findings of this project should be translated into rules
which will be used by the MeMo Workbench.

Future Work
In addition to the aforementioned projects further research is
required on factors like cognitive load, dual task,
experience, system errors and individual user attributes. A
detailed factor model describing the effects and relations of
the factors to each other should be deployed. Furthermore
the developed models should be validated by transferring to
other tasks.

My findings about modality selection will be integrated
into the MeMo Workbench which so far only facilitates the
evaluation of unimodal system models. After the extension
MeMo will be validated again. Therefore systems and tasks

which have been explored in prior experiments will be
modeled with MeMo. The empirical data gathered during
the experiments will serve as target values.

Acknowledgments
The research is funded by the German Research Foundation
(DFG - 1013 ‘Prospective Design of Human-Technology
Interaction’) and supported by Deutsche Telekom
Laboratories.

References
Anderson, J. R., & Lebiere, C. (1998). The atomic

components of thought. Hillsdale, NJ: Erlbaum.
Kamm, C., Litman, D., & Walker, M (2008). From novice

to expert: the effect of tutorials on user expertise with
spoken dialogue systems. Proccedings of the 9th Annual
Conference of theInternational Speech Communication
Association.

Metze, F., Wechsung, I., Schaffer, S., Seebode, J., &
Möller, S. (2009). Reliable Evaluation of Multimodal
Dialogue Systems. In Proceedings of the 13th
international Conference on Human-Computer
interaction. Springer-Verlag, Berlin, Heidelberg, 75-83.

Möller, S., Englert, R., Engelbrecht, K., Hafner, V.,
Jameson, A., Oulasvirta, A., Raake, A., Reithinger, N.
(2006). MeMo: Towards automatic usability eval-uation
of spoken dialogue services by user error simulations. In
Proceedings of INTERSPEECH 2006. Pittsburgh, PA.

Naumann, A. B., Wechsung, I., & Möller, S. (2008). Factors
Influencing Modality Choice in Multimodal Applications.
In Proceedings of the 4th IEEE Tutorial and Research
Workshop on Perception and interactive Technologies
For Speech-Based Systems: Perception in Multimodal
Dialogue Systems. Springer-Verlag, Berlin, Heidelberg,
37-43.

Oviatt, S. (2003). Multimodal interfaces. In the Human-
Computer interaction Handbook: Fundamentals,
Evolving Technologies and Emerging Applications (pp.
286-304). Hillsdale, NJ: L. Erlbaum Associates.

Seebode, J., Schaffer, S., Wechsung, I. & Metze, F. (2009).
Influence of Training on Direct and Indirect Measures for
the Evaluation of Multimodal Systems. 10th Annual
Conference of the International Speech Communication
Association, (Interspeech 2009).

Taatgen, N.A., Huss, D. & Anderson, J.R. (2006). How
Cognitive Models can Inform the Design of Instructions.
Proceedings of the seventh international conference on
cognitive modeling (pp. 304-309). Trieste, Italy: Edizioni
Goliardiche.

Taatgen, N.A. & Lee, F.J. (2003). Production Compilation:
A simple mechanism to model Complex Skill
Acquisition. Human Factors, 45(1), 61-76.

Wechsung I., Schaffer S., Schleicher R., Naumann A. &
Möller S. (submitted). The Influence of Expertise and
Efficiency on Modality Selection Strategies and Perceived
Mental Effort.

322

Visual Search Strategies and the Layout of the Display

Bella Z. Veksler (zafrib@rpi.edu)
Cognitive Science Department, Rensselaer Polytechnic Institute

110 8th St., Troy, NY 12180

Keywords: ACT-R; visual search; memory; finsts; lockout

Introduction
The role of visual search in everyday tasks is paramount.
Whether we are searching for an item in the grocery store,
trying to find our car in a busy parking garage, or looking
for an important piece of information on a web page, the
visual search mechanism is crucial. We are also quite
efficient at performing all of these tasks. The main focus of
the current proposal will be to further our understanding and
modeling of what makes the process so efficient. The key
emphasis here is on the process of visual search – the actual
strategies that people utilize as they search for things and
the degree to which memory plays a role in aiding in this
process.

Visual search as a paradigm has been studied
meticulously for the better part of the last 50 years. The
paradigm consists of the detection of a target among a
varying number of distractors with the dependent measure
being whether the search is serial or parallel (Duncan &
Humphreys, 1989; Treisman & Gelade, 1980; Wolfe, 1994).

The role of memory within visual search has also been
greatly debated. In some instances, researchers have inferred
from response time data that memory is not utilized during
search because there was not a difference in response time
between static and dynamic search conditions (Horowitz &
Wolfe, 2003; Korner & Gilchrist, 2007; Melcher & Kowler,
2001; Peterson, Beck, & Wong, 2008; Peterson, Kramer,
Wang, Irwin, & McCarley, 2001). In other instances, it has
been shown that visual search is guided by memory for
previously viewed items (Korner & Gilchrist, 2007;
Peterson et al., 2008; Peterson et al., 2001). In particular,
eye movement provides a more detailed picture of the
underlying search process (Geyer, von Muhlenen, & Muller,
2007). Geyer et. al. used the same search paradigm as
Horowitz and Wolfe but analyzed the eye movement
behavior in addition to the response time data and found that
participants rarely re-fixate items suggesting a role for
memory in visual search. Furthermore, path memory has
also been shown to exist suggesting that more of the
distractor space is represented (Dickinson & Zelinsky,
2007).

In all of these studies, however, it was specifically visual
search that was being manipulated and measured. As such,
these tasks have been relatively simple – presenting items
on the screen for varying lengths of time and measuring
how long it took for participants to find the target. In the
current work, the visual search process will be analyzed and
modeled embedded within the context of a larger task. In

particular, I am interested in how the search process is
modulated when people are forced to wait for information to
appear (during a timed lockout) and by having searched for
other items on the same display. In the course of attempting
to model performance on this task (using ACT-R), it was
found that the model had problems with the basic visual
search process. It is therefore the goals of the current work
to explore the visual search strategies employed by
participants and implement them in the model, which will
consequently aid in modeling the rest of the task.

The Task
A simple radar task was used to determine how people
allocate attention when forced to wait for information to
appear. As compared to traditional visual search tasks where
each trial consists of a single target among varying numbers
of distractors, this task had distractors that on another visual
pass through the display could be targets. Therefore memory
for previous distractors would be beneficial and may guide
subsequent searches.

Procedure
Participants were eye-tracked while they completed 60 trials
of the task. A radar screen (Figure 1) was displayed on the
left and was comprised of a static display of 20 2-digit
numbers arranged randomly on the display. On the right
side of the screen was the table of alternatives (TOA).

Figure 1: Task display, seen both by human participants and

the model.

During the trial, the task of the participant was to
determine which of the six targets from the TOA had the
highest threat value. Threat values ranged from 0(lowest) to
9(highest). In order to discover the threat value of a
particular alternative (target), the participant had to find and

323

click on the target in the radar display. Once a target was
clicked (selected), there was a lockout delay of 1, 2, 4 or 8s
depending on the participant's condition. The threat value
would then appear next to the selected item. Consequently,
the participant had to repeat this process with the rest of the
items from the TOA until the highest threat-valued target
was discovered.

Preliminary Analyses & Model
Preliminary analyses of the data were done with respect to
the first several fixations on each trial to determine the
search strategies used to find the first target clicked. A
typical sequence of first fixations involved participants
looking at 1-2 TOA items and then moving their gaze to the
radar. Participants were able to find the first item they
selected in an average of 6 fixations, with no differences
between the four conditions. Participants also tended to re-
fixate items on the radar display in ~15.37% of fixations
prior to selecting the first target.

In order to inform the model’s search initiation, I also
looked at where participants tended to begin their search.
There were several possibilities: a) closest to TOA, b)
closest to center of the radar, c) closest to one of the corners
of the radar, d) to the item that had the most other items
around it (most ‘clustered’), e) to the item that had the least
other items around it (singleton). The results are beyond the
scope of this paper, but they will be used to inform the
model.

The ACT-R cognitive architecture will be used to model
this task because of its ability to ground the model in the
same environment that human participants saw (Anderson et
al., 2004). The goal of the proposed work will be to use
human data to inform the model’s visual search process as
in its current state it is considerably more inefficient than
human participants in finding the targets in the radar. ACT-
R currently uses the finst mechanism for ensuring that items
previously fixated are not re-fixated within a given amount
of time. However, although people find the item they are
searching for efficiently (within 6 fixations), they also tend
to revisit items they have viewed before suggesting that
relying on the finst mechanism is insufficient to model
behavior.

Future Work
Instead of relying on the finst mechanism, the proposed
work will determine the degree to which the visual
segmentation of the display allows for the efficient search
process. Others have shown that fixations and saccades
progress in a course-to-fine strategy whereby fixation
durations increase while saccade amplitudes decrease as
search continues (Over, Hooge, Vlaskamp, & Erkelens,
2007). The current work will explore whether people
systematically search the displays such that they look within
visual ‘clusters’ of items, thereby minimizing the number of
areas they need to search to find the targets.

Currently, a k-means clustering algorithm has been used
to quantitatively assess which items appear to cluster

together on each screen. However, k-means has the
limitation that it is difficult to know what value of k is
appropriate for each screen layout. Therefore, a new study is
being run which presents the same screen layouts the
original participants saw to naïve participants who are asked
to make these judgments.

The modeling work will take into account the findings
from this new study and will incorporate the visual search
strategies employed both at the beginning of each trial,
during subsequent searches, and during lockouts.

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An Integrated Theory of
the Mind. Psychological Review, 111(4), 1036-1060.

Dickinson, C. A., & Zelinsky, G. J. (2007). Memory for the
search path: Evidence for a high-capacity representation
of search history. Vision Research, 47(13), 1745-1755.

Duncan, J., & Humphreys, G. W. (1989). Visual-Search and
Stimulus Similarity. Psychological Review, 96(3), 433-
458.

Geyer, T., von Muhlenen, A., & Muller, H. J. (2007). What
do eye movements reveal about the role of memory in
visual search? Quarterly Journal of Experimental
Psychology, 60(7), 924-935.

Horowitz, T. S., & Wolfe, J. M. (2003). Memory for
rejected distractors in visual search? Visual Cognition,
10(3), 257-298.

Korner, C., & Gilchrist, I. D. (2007). Finding a new target in
an old display: Evidence for a memory recency effect in
visual search. Psychonomic Bulletin & Review, 14(5),
846-851.

Melcher, D., & Kowler, E. (2001). Visual scene memory
and the guidance of saccadic eye movements. Vision
Research, 41(25-26), 3597-3611.

Over, E. A. B., Hooge, I. T. C., Vlaskamp, B. N. S., &
Erkelens, C. J. (2007). Coarse-to-fine eye movement
strategy in visual search. Vision Research, 47(17), 2272-
2280.

Peterson, M. S., Beck, M. R., & Wong, J. H. (2008). Were
you paying attention to where you looked? The role of
executive working memory in visual search. Psychonomic
Bulletin & Review, 15(2), 372-377.

Peterson, M. S., Kramer, A. F., Wang, R. X. F., Irwin, D.
E., & McCarley, J. S. (2001). Visual search has memory.
Psychological Science, 12(4), 287-292.

Treisman, A. M., & Gelade, G. (1980). Feature-Integration
Theory of Attention. Cognitive Psychology, 12(1), 97-
136.

Wolfe, J. M. (1994). Guided Search 2.0 - a Revised Model
of Visual-Search. Psychonomic Bulletin & Review, 1(2),
202-238.

324

Cognitive Control: A Symposium

Andrew Howes (Andrew.Howes@mbs.ac.uk)
Manchester Business School

University of Manchester
Booth Street West, Manchester, M15 6PB, UK

Richard P. Cooper (R.Cooper@bbk.ac.uk)
Department of Psychological Science,

Birkbeck, University of London
Malet Street, London, WC1E 7HX, UK

Abstract

Cognitive control may be defined as the mechanisms or
processes invoked in order to engage in goal directed
behaviour under system constraints. This symposium explores
a range of recent computational approaches to understanding
problems of cognitive control. It comprises five presentations
which each discuss a different aspect of cognitive control and
a discussion session.

Keywords: Cognitive control; executive function; rational
adaptation; task switching; monitoring; multitasking.

Introduction
In cognitive science there is a substantial research tradition
of studying control problems such as how the cognitive
system ensures the selection of a desired action in
circumstances where an automated, learned, action might
otherwise be selected. Control problems are often
understood as arising from the necessity to serialise the
multi-threaded processing contributions of a parallel neural
architecture, but some work (e.g. Rieskamp, 2008) has tried
to extend the application of control metaphors, derived from
control theory and reinforcement learning, to a broader
range of phenomena, including those associated with higher
level decision making tasks. In the most general terms we
might define the control problem as the problem of what to
do next. A view that, perhaps, encourages an integrative
approach to cognition that eschews prior commitments to
particular forms of processing mechanisms. Control is about
engaging in goal directed behaviour under system
constraints.

Questions concerning cognitive control include, for
example: how people switch among the short-term goals
that govern everyday behaviour (Altmann & Gray, 2008);
how people allocate perceptual, motor and cognitive
resources in the control of interactive behaviour (Gray et al.,
2006); how people adjust architectural parameters in the
light of feedback (Botvinick et al, 2001); how people inhibit
prepotent but inappropriate or unintended behaviours
(Norman & Shallice, 1986); how the cognitive system
resolves the problem of producing multiple responses when
processing or physical constraints prevent them from being
produced in parallel (Howes et al., 2009); how the cognitive
system may manage strategies in demanding memory tasks
(Juvina & Taatgen, 2007); and how the cognitive system
learns to prefer specific strategies in judgement and decision
making tasks (Rieskamp, 2008). It is also critical to real
world applied problems such as driving (Salvucci, 2006;
Janssen and Brumby, in press; Gunzelmann et al., 2009).

The control problem is difficult for a number of reasons:
1. The temporal credit assignment problem. Control is
adaptive, so the problem of control encompasses the
problem of how to make use of feedback. However,
multiple actions can contribute to feedback and feedback
may be delayed. This raises the problem of which actions
should be assigned credit/blame when feedback is received.
(cf. Lovett and Anderson’s (1996) utility learning within
ACT-R).
2. The uncertainty problem. Frequently information that we
do have (e.g., feedback) is uncertain. We may know that
information is uncertain, but how should information about
uncertainty be processed?
3. The scaling problem. When many choices are available
considering them all is computationally expensive. Scaling
problems are found in, for example, both reinforcement
learning and Bayesian approaches to modelling control and
inference (Botvinick, Niv & Barto, 2009).
4. The bounds problem. The brain is a physically
instantiated neural processing mechanism that imposes
limits on what information can be encoded and effectively
deployed. Cognitive control involves making efficient use
of the neural mechanism subject to these limits (Howes,
Lewis & Vera, 2009).
5. The concurrency problem. In many situations behaviour
is under the control of multiple goals which we work
towards concurrently, as in the example of driving while
navigating or holding a phone conversation (Salvucci &
Taatgen, 2008).

The symposium will explore a range of recent
computational approaches to understanding the control
problem through five diverse presentations and a discussion
session.

Botvinick’s recent work emphasises the hierarchical
structure of control knowledge: the divisibility of ongoing
behavior into discrete tasks, which are comprised of subtask
sequences, which in turn are built of simple actions.
Botvinick, Niv and Barto (2009) reexamines behavioral
hierarchy and its neural substrates from the point of view of
recent developments in computational reinforcement
learning. Specifically, a set of approaches known
collectively as hierarchical reinforcement learning is
considered. A close look at the components of hierarchical
reinforcement learning suggests how they might map onto
neural structures, in particular regions within the
dorsolateral and orbital prefrontal cortex. A particularly
important question that hierarchical reinforcement learning
brings to the fore is that of how learning identifies new

325

action routines that are likely to provide useful building
blocks in solving a wide range of future problems.

Cooper will discuss the potential roles of so-called
forward and inverse models in cognitive control. Forward
models are representations of a future state of a system
given its current state and a plan or course of action, while
inverse models “invert the causal flow” and allow one to
predict, given a desired state and a course of action will
should result in that state. Both forward and inverse models
have been argued to play important roles in motor control
(e.g., Wolpert & Ghahramani, 2000). Cooper will argue that
such models, possibly learned through associative and
reinforcement learning mechanisms, may equally play a
significant role in cognitive control, allowing the cognitive
system to predict appropriate processing parameters and
thereby configure itself prior to task performance.

Both Howes and Lewis will explore computational and
empirical approaches to understanding people as bounded
optimal control systems (Howes, Lewis & Vera, 2009).
They contend that through learning people solve the
constrained optimisation problem presented by their
architecture. Howes will present evidence concerning
bounded optimal control of working memory strategies. The
work demonstrates that people do not only adapt strategies
to changes in the cost structure of the task environment but
rather they adapt optimally. Lewis will present a boundedly
optimal control perspective on interference resolution. He
will report a computational model of how people adapt
strategically to interference in memory.

Taatgen’s task will aim to initiate a discussion about
asking the right questions; clearly a precusor to the search
for answers.The standard way to think about cognitive
control in multitasking is that control is needed to schedule
the use of resources between tasks (e.g., Kieras, 2007). A
different view, prompted by the threaded cognition theory of
multitasking (Salvucci & Taatgen, 2008), is that not all
cognitive processing can be understood in terms of tasks. As
soon as we consider something as a task, some measure of
cognitive control is needed to make sure all the steps in the
task are carried out to achieve the goal. Miyake's (Miyake et
al, 2000) three categories of cognitive control (inhibition,
working memory and task switching) are all needed to
protect a task from interference, but they are not the whole
story. Cognitive modeling can help complete the picture.

References
Altmann, E. M., & Gray, W. D. (2008). An integrated

model of cognitive control in task switching.
Psychological Review, 115(3), 602-639.

Botvinick, M.M. Braver, T.S., Barch, D.M., Carter, C.S. &
Cohen, J.D. (2001). Conflict monitoring and cognitive
control. Psychological Review, 108, 624–652.

Botvinick, M. M., Niv, Y., & Barto, A. C. (2009).
Hierarchically organized behavior and its neural
foundations: A reinforcement learning perspective.
Cognition, 113(3), 262-280.

Brumby, D. Salvucci, D. & Howes, A. (2007). Dialing
while driving? A bounded rational analysis of concurrent
multi-task behaviour. In R. L. Lewis, T. A. Polk & J. E.
Laird (eds.), Proceedings of the 8th International
Conference on Cognitive Modeling (pp. 121-126). Ann
Arbor, MI.

Gunzelmann, G., Moore, Jr, L.R., Salucci, D., & Gluck, K.
(2009). Fluctations in alertness and sustained attention:
Predicting driver performance. In A. Howes, D. Peebles
& R. P. Cooper (eds), Proceedings of the 9th International
Conference on Cognitive Modeling (pp. 44-49).
Manchester, UK.

Gray, W. D., Sims, C. R., Fu, W., & Schoelles, M. J.
(2006). The Soft Constraints Hypothesis: A Rational
Analysis Approach to Resource Allocation for Interactive
Behavior. Psychological Review, 113(3), 461-482.

 Howes, A., Lewis, R. L., & Vera, A. (2009). Rational
adaptation under task and processing constraints:
Implications for testing theories of cognition and action.
Psychological Review, 116(4), 717-751.

Janssen, C.P. & Brumby, D.P. (in press). Strategic
adaptation to performance objectives in a dual task
setting. Cognitive Science, in press.

Juvina, I. & Taatgen, N. A. (2007). Modeling control
strategies in the B-back task. In R. L. Lewis, T. A. Polk &
J. E. Laird (eds.), Proceedings of the 8th International
Conference on Cognitive Modeling (pp. 121-126). Ann
Arbor, MI.

Kieras, D. E. (2007). Control of cognition. In W. Gray
(Ed.), Integrated models of cognitive systems (pp. 327-
355). New York: Oxford University Press.

Lovett, M. C., & Anderson, J. R. (1996). History of success
and current context in problem solving: Combined
influences on operator selection. Cognitive Psychology,
31(2), 168-217.

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H.,
& However, A. (2000). The unity and diversity of
executive functions and their contributions to complex
"frontal lobe" tasks: a latent variable analysis. Cognitive
Psychology, 41, 49-100.

Norman, D.A. & Shallice, T. (1986). Attention to action:
willed and automatic control of behaviour. In R.
Davidson, G. Schwartz, and D. Shapiro (eds.)
Consciousness and Self Regulation, Volume 4, pp. 1−18.
Plenum: NY.

Reiskamp, J. (2008). The importance of learning when
making inferences. Judgment and Decision Making, 3(3),
261-277.

Salvucci, D. D. (2006). Modeling driver behavior in a
cognitive architecture. Human Factors, 48(2), 362-380.

Salvucci, D. D., & Taatgen, N. A. (2008). Threaded
cognition: An integrated theory of concurrent
multitasking. Psychological Review, 115(1), 101-130.

Wolpert, D. M., & Ghahramani, Z. (2000). Computational
principles of movement neuroscience. Nature
Neuroscience, 3, 1212-1217.

326

Multi-Agent Activity Modeling with the Brahms Environment

Maarten Sierhuis (sierhuis@parc.com)
Palo Alto Research Center, 3333 Coyote Hill Road

Palo Alto, CA 94304 USA

Keywords: agent-based modeling, BDI, cognitive modeling,

Introduction
More and more people are interested in developing "day in
the life" models and simulations of people's behavior at the
second and longer timeframe, the interaction between
groups of people and systems, as well as the movement and
interaction within the environment. Cognitive modeling
tools (e.g. SOAR, ACT-R) focus on detailed modeling of
individual cognitive tasks at the sub-second level. In
contrast, activity modeling focuses on higher-abstraction
behaviors that enable modeling of people's daily activities
and enable a focus on how informal, circumstantial, and
located behaviors of a group of individuals occur and where
communication and synchronization happen, such that the
task contributions of people and machines flow together to
accomplish goals. This is referred to as "work practice
modeling."

Brahms includes an activity-oriented Belief-Desire-
Intention (BDI) language, a compiler and virtual machine
for executing Brahms models, as well as an Eclipse plug-in
and a post-execution viewer of agent execution,
communication and interaction. Brahms enables the creation
of multi-agent models that include aspects of reasoning
found in cognitive models, task execution, plus the impact
of interaction and geography, such as agent movement and
physical changes in the environment. Brahms is currently
used to automate the work of a flight controller in NASA’s
International Space Station’s Mission Control Center (ISS
MCC). This system, called OCAMS, has been in production
in the ISS MCC, 24x7, since July of 2008, and is based on a
Brahms model of the work practices of the flight controllers.
OCAMS is a distributed Multi-Agent System (Sierhuis et
al., 2009b).

Motivation for Brahms
Brahms was developed as a multiagent modeling and
simulation language to visualize the social systems of work
for business redesign projects. The Brahms language was
originally conceived of as a language for modeling
contextual behavior of groups of people, called work
practice.

Work Practice: The collective performance of
contextually situated activities of a group of people who
coordinate, cooperate and collaborate while performing
these activities synchronously or asynchronously, making
use of knowledge previously gained through experiences
in performing similar activities.

This created two very important ideas for the language:

First, to model a group of people it is very natural to model
them as software agents. Second, modeling situated
behavior of a group imposes a constraint on the level of
detail that is useful in modeling the dependent and
independent behavior of the individuals. The right level is a
representational level that falls between functional process
models and individual cognitive models (Clancey et al.,
1998). If we are interested in modeling a day-in-the-life of
say ten or more people, modeling the individual behavior at
the level of cognitive task models will be very time
consuming, because these models are generally at the
millisecond decision-making level. To overcome this kind
of detail, the Brahms language uses a more abstract level of
behavioral modeling that is derived from Activity Theory
(Leont'ev, 1978; Vygotsky, 1978) and Situated Action
(Suchman, 1987). An individual's behavior is represented in
terms of activities that take an amount of discrete time and
can be decomposed into more detailed subactivities if
necessary.

Brahms demonstrates how a multiagent belief-desire-
intention (BDI) language, symbolic cognitive modeling,
traditional business process modeling, activity- and situated
cognition theories are brought together in a coherent
approach for analysis and design of organizations and
human-centered systems.

The Brahms Language
The Brahms language is a pure AOL (Sierhuis et al.,
2009a). It is not a set of Java libraries enabling agent-based
programming in the Java language. Instead, Brahms is a
full-fledged multiagent language allowing the modeler to
easily and naturally represent multiple agents. Although
Brahms was originally developed for modeling people's
behavior, the Brahms language is a domain independent
language. This means that the modeler decides what a
Brahms model represents. Agents can represent whatever
autonomous entity the modeler wants to represent, such as a
person, an animal, or an autonomous or intelligent system.
Brahms includes the following language features:
• Mental attributes: attributes, relations, beliefs and

facts.
• Deliberation and Intention: concluding new beliefs,

and use of production rules for reasoning.
• Adaptation: changing beliefs, execution activity

behavior and reasoning based on context.
• Social Abilities: groups and group inheritance,

communication, and modeling the environment
(objects, geography and location).

327

• Reactive and Cognitive-based behavior: modeling
activity behavior, versus pure cognitive behavior,
detectables, workframe-activity subsumption.

• Agent Communication: communication activities, and
communicative acts.

Brahms is an agent-oriented BDI-like language. It allows
easy creation of groups of agents that execute parallel
activities based on local beliefs. Below is a simple
taxonomy of the language concepts:

GROUPS are composed of
AGENTS having
BELIEFS and doing
ACTIVITIES executed by
WORKFRAMES defined by
PRECONDITIONS, matching agents beliefs
PRIMITIVE ACTIVITIES
COMPOSITE ACTIVITIES, decomposing the activity
DETECTABLES, including INTERUPTS, IMPASSES
CONSEQUENCES, creating new beliefs and/or facts

DELIBERATION implemented with
THOUGHTFRAMES defined by
PRECONDITIONS, matching agents beliefs
CONSEQUENCES, creating new beliefs

Cognitive Modeling in Brahms
Brahms borrows some of the theoretical underpinnings of
the ACT-R theory about human knowledge. Just as in ACT-
R, Brahms assumes there are two types of knowledge—
declarative and procedural.

Declarative knowledge in Brahms is represented as
“beliefs” of individual agents. A belief of an agent in
Brahms plays a similar role in processing the procedural
knowledge of the agent as chunks do in ACT-R, i.e. they are
matched to preconditions of rules. However, beliefs are
semantically and syntactically simpler than chunks. A belief
is a first-order predicate statement.

Brahms represents the procedural knowledge of an
individual agent as rule-like constructs called workframes
and thoughtframes. The condition-part—called pre-
conditions—are matched against the belief-set of the
Brahms agent. When all the preconditions of a workframe
or thoughtframe match, the rule is put onto the agent's work
stack. Each of these rule-types is processed independently
by the virtual machine. Hence the reason for separate stacks.

Thoughtframes are similar to production rules in ACT-R,
in that their action-part consists only of changes to, or
additions of beliefs in the agent's declarative memory, i.e. its
belief-set. Thoughframes are executed in a forward-chaining
mode. Workframes are the main type of rule in Brahms.
Activities are executed in the action-part of a workframe
(the workframe's body). The time it takes to fire a
workframe depends on the total time it takes to execute all
of the activities in its body. The workframe rule-type in
Brahms corresponds to the goal-directed production rules in
ACT-R, with the addition that in a workframe we can

include the changes in the external world, and not only the
internal declarative changes in the memory of the agents.

We show a similar figure (Figure 1) for a Brahms agent as
the figure in Anderson’s book about ACT-R (Anderson and
Lebiere, 1998)

References
Anderson, J. R. and Lebiere, C. (1998) The atomic

components of thought. Mahwah, NJ.: Lawrence Erlbaum
Associates.

Clancey, W. J., Sachs, P., et al. (1998) "Brahms: Simulating
practice for work systems design", International Journal
on Human-Computer Studies 49: 831-865.

Leont'ev, A. N. (1978) Activity, Consciousness and
Personality. Englewood Cliffs, NJ: Prentice-Hall.

Sierhuis, M., Clancey, W. J. et al. (2009a) "Brahms: An
Agent-Oriented Language for Work Practice Simulation
and Multi-Agent Systems Development ", in M. D. Rafael
H. Bordini, Jürgen Dix, Amal El Fallah-Seghrouchni (ed.)
Multi-Agent Programming, 2nd Edition: Springer.

Sierhuis, M., Clancey, W. J., et al (2009b) "NASA’s OCA
Mirroring System: An application of multiagent systems
in Mission Control", 8th Int. Conf. on Autonomous
Agents and Multiagent Systems 2009. Budapest, Hungary

Suchman, L. A. (1987) Plans and Situated Action: The
Problem of Human Machine Communication. Cambridge,
MA: Cambridge University Press.

Vygotsky, L. S. (1978) Mind in Society: The Development
of Higher Psychological Processes. Cambridge, MA:
Harvard University Press.

Figure 1. Flow of information among the various modules
in a Brahms Agent

328

Tutorial: The CLARION Cognitive Architecture

Nicholas Wilson (wilson3@rpi.edu)
Cognitive Science Department

Rensselaer Polytechnic Institute,
110 Eighth Street, Troy, NY 12180 USA

Telephone: (518) 276-2692 | Fax: (518) 276-3017

Michael Lynch (lynchm2@rpi.edu)
Department of Language, Literature and Communication
Rensselaer Polytechnic Institute, Troy, NY 12180 USA

The half-day tutorial introduces participants to the CLAR-
ION cognitive architecture and presents a detailed descrip-
tion, as well as simulation examples, advanced topics, and
demonstrations. It will combine conceptual (psychological),
theoretical, and implementation aspects of the architecture.
Participants should have some prior exposure to cognitive
architectures and artificial neural networks. Preferably, par-
ticipants should also have some experience with program-
ming languages (in particular Java). However, prior under-
standing of these areas can be limited, as both basic and
advanced topics related to cognitive modeling using CLAR-
ION will be covered.

Tutorial Outline
A General Overview of CLARION (15 min.)

In this section, an introduction to cognitive architectures
in general, and CLARION in particular, will be presented.
CLARION will be compared to various other architectures
and a brief discussion of some past and current applications
of CLARION will be presented along with cognitive justifi-
cations and implications.

CLARION is a unified, comprehensive theory of the mind
based on two basic theoretical assumptions: representational
differences and learning differences of two different types
of knowledge --- implicit vs. explicit (Sun, Merrill, & Peter-
son, 2001; Sun, Slusarz, & Terry, 2005), among other essen-
tial assumptions/hypotheses (Sun, 2003).

The first assumption, the representational difference be-
tween these two types of knowledge, relates to accessibility.
In each subsystem of CLARION, the top level contains eas-
ily accessible explicit knowledge whereas the bottom level
contains less accessible implicit knowledge.

The second assumption of CLARION concerns the differ-
ent learning processes in the top and bottom levels of each
subsystem (Sun et al., 2001, 2005). In the bottom level, im-
plicit associations are learned through gradual trial-and-
error learning. In contrast, learning of explicit knowledge is
one-shot and captures its abrupt availability. The emphasis
on bottom-up learning (i.e., the transformation of implicit
knowledge into explicit knowledge) is, in part, what distin-
guishes CLARION from other cognitive architectures (al-
though top-down learning is also a capability of CLAR-
ION).

In addition to the aforementioned theoretical assumptions,
CLARION is a cognitive architecture composed of four
main subsystems: the Action-Centered Subsystem, the Non-
Action-Centered Subsystem, the Motivational Subsystem,
and the Meta-Cognitive Subsystem.

The Action-Centered Subsystem (60 min.)
In this section, the Action-Centered Subsystem (ACS)

will be defined in detail. The structure and design of the
various aspects of the ACS, along with the learning mecha-
nisms and the properties of the model, will be presented.
Finally, a series of simulation examples related to the opera-
tions within the ACS will be presented.

The Action-Centered Subsystem is used mainly for action
decision-making. In the ACS, the top level generally con-
tains simple “State  Action” rules, while the bottom level
uses multi-layer perceptrons to associate states and actions.
Reinforcement learning algorithms (usually with back-
propagation) are used in the bottom level while rule learning
in the top level is mostly “one-shot” and can be performed
bottom-up (via “explicitation”) or independently (e.g.,
through linguistic acquisition).

The ACS has been used to model anything from naviga-
tion in minefields (Sun et al., 2001) to Towers of Hanoi, etc.
In addition, because CLARION focuses on the dichotomy
between explicit and implicit knowledge, benchmark psy-
chological tasks used to demonstrate implicit learning have
also been successfully modeled and explained (Sun et al.,
2005).

The Non-Action-Centered Subsystem (45 min.)
 Similar to the section on the ACS, this section will detail

the Non-Action-Centered Subsystem (NACS). The structure
and design of the various aspects of the NACS, along with
the learning mechanisms and the theorems describing the
properties of the model, will be presented. In addition, as
with the section on the ACS, a series of simulation exam-
ples demonstrating the operations within the NACS will be
presented.

The Non-Action-Centered Subsystem is used to store de-
clarative (“semantic” and episodic) knowledge and is re-
sponsible for reasoning in CLARION. In the NACS, the top
level contains simple associations while the bottom level
involves a nonlinear neural network. Associative learning

329

algorithms (e.g., backpropagation or contrastive Hebbian)
are generally used in the bottom level whereas associations
in the top level are mostly learned “one-shot” (similar to the
ACS).

The NACS has mostly been used to simulate memory and
reasoning. In particular, CLARION was able to capture the
effect of mixed rule-based and similarity-based reasoning
(e.g., when judging the likelihood of simple deductive
forms). In addition, other reasoning phenomena (e.g., inheri-
tance-based reasoning, reasoning from incomplete informa-
tion, etc) have also been explained using CLARION (e.g.,
Sun & Zhang, 2006).

The Motivational and Meta-Cognitive Subsystems (30 min.)
In the fourth section, the structure and design of the moti-

vational (MS) and meta-cognitive (MCS) subsystems will
be explored in detail. In addition, several past and current
simulation examples related to the operations within the MS
and the MCS will be presented.

The Motivational Subsystem contains both low-level
(physiological) and high-level (social) primary drives that
take into account both environmental and internal factors in
determining drive strengths. These drive strengths are re-
ported to the Meta-Cognitive Subsystem, which regulates
not only goal structures but also other cognitive processes as
well (e.g., monitoring, parameter setting, etc). For more
details on motivation and meta-cognition see Sun (2003,
2007, 2009).

Simulations using these subsystems, for example, have
shown how anxiety-inducing drives can affect the parame-
ters within the ACS in terms of explicit vs. implicit response
weighting and overall performance (Wilson et al., 2009).
Other simulations have addressed the combination of drives
in the MS toward the setting of goals by the MCS. On this
basis, models of human personality have been developed.

Introduction to the CLARION Library (30 minutes)
The CLARION implementation (in Java) has recently un-

dergone a number of improvements and enhancements al-
lowing for the simulating of a wide variety of tasks, as well
as interfacing with a variety of virtual environments. In the
last section of the tutorial, an overview of the CLARION
Library will be presented. Participants will be given copies
of the newest release of the library and will be shown how it
can be used to run new and existing simulations.

Relevance for Cognitive Science
The CLARION cognitive architecture is well established

and has been the subject of more than 100 scientific papers
and several books. CLARION is particularly relevant to
cognitive scientists because of its strong psychological plau-
sibility and the breadth of its application to cognitive model-
ing and simulation. In CLARION, each structure corre-
sponds to a psychological process/capacity. CLARION-
based models have been used to explain data as diverse as
implicit learning, cognitive skill acquisition, inductive and
deductive reasoning, meta-cognition, motivation, personal-
ity, and social simulations (Sun, 2006).

Presentation Details & History
Descriptions and demonstrations during the presentation

will be provided using PowerPoint and the Eclipse Java
development environment.

Participants in the tutorial are encouraged to ask questions
throughout the presentation to clarify any ideas described.
The presenters are versed in both the conceptual and imple-
mentation details of the CLARION cognitive architecture.

An older variation of the proposed tutorial had been pre-
sented at the 30th Annual Meeting of the Cognitive Science
Society in Washington D.C. as well as the 2009 Interna-
tional Joint Conference on Neural Networks in Atlanta, GA.
In addition, this tutorial has been given as a lecture series on
several occasions for various courses in Cognitive Science
at Rensselaer Polytechnic Institute.

Sample Materials
• A complete technical specification of CLARION:

http://www.cogsci.rpi.edu/~rsun/sun.tutorial.pdf
• A list of CLARION-related publications:

http://www.cogsci.rpi.edu/~rsun/clarion-pub.html
• Current versions of the CLARION Library, slides, etc.:

http://www.cogsci.rpi.edu/~rsun/clarion.html

References
Sun, R. (Ed.). (2006). Cognition and Multi-Agent Interac-

tion: From Cognitive Modeling to Social Simulation.
Cambridge, UK: Cambridge University Press.

Sun, R. (2003). A Tutorial on CLARION. Technical report,
Cognitive Science Dept., Rensselaer Polytech. Institute.
http://www.cogsci.rpi.edu/∼rsun/sun.tutorial.pdf

Sun, R. (2007). Motivation and metacognitive control of
CLARION. In: W. Gray (ed.). Modeling Integrated Cog-
nitive Systems. New York, NY: Oxford University Press.

Sun, R. (2009). Motivational representations within a com-
putational cognitive architecture. Cognitive Computation,
1, 91-103.

Sun, R., Merrill, E., & Peterson, T. (2001). From implicit
skills to explicit knowledge: A bottom-up model of skill
learning. Cognitive Science, 25, 203-244.

Sun, R., Slusarz, P., & Terry, C. (2005). The interaction of
the explicit and the implicit in skill learning: A dual-
process approach. Psychological Review, 112, 159-192.

Sun, R. & Zhang, X. (2006). Accounting for a variety of
reasoning data within a cognitive architecture. Journal
of Experimental and Theoretical Artificial Intelligence,
18, 169-191.

Wilson, N., Sun, R., & Mathews, R. (2009). A Motivation-
ally-based Simulation of Performance Degradation Un-
der Pressure. Neural Networks, 22, 502-508.

330

	Cover
	Table of Contents
	Introduction
	Papers
	Bellet
	Bratman
	Breslow
	Brumby
	Choi
	Cooper
	Das
	De_Obeso_Orendain
	Derbinsky
	Douglass
	Eksin
	Freiman
	Goergeon
	Halverson
	Harbers
	Hiatt
	Hornof
	Janssen
	Jastrzembski
	John
	Kennedy
	Kieras
	Laird
	Lehmann
	Little
	McDuff
	Mioch
	Mobus
	Moore
	Napoli
	Oliva
	Paik
	Ragni
	Reitter
	Rosenbloom
	Rutledge-Taylor
	Sima
	Simen
	Simpkins
	Stewart
	Sylvester
	Taatgen
	Teo
	van_Maanen
	Walsh
	Wang
	West
	Wong

	Poster Abstracts
	Borst
	Buttner
	Girotto
	Guhe
	Haazebroek
	Stanley
	van_Rij

	Doctoral Consortium Abstracts
	Brudzinski
	Derbinsky
	Eksin
	Gorski
	Janssen
	Kerr
	Kirby
	Mankowski
	Nye
	Paik
	Schaffer
	Veksler

	Symposium Abstracts
	Howes

	Tutorial Abstracts
	Sierhuis
	Wilson

