
Towards Efficiently Supporting Large Symbolic Declarative Memories

Nate Derbinsky (nlderbin@umich.edu)
John E. Laird (laird@umich.edu)

University of Michigan, 2260 Hayward Street
Ann Arbor, MI 48109-2121

Bryan Smith (bryanesmith@gmail.com)

Ann Arbor, MI

Abstract
Efficient access to large declarative memories is one
challenge in the development of large-scale cognitive models.
Prior work has provided an initial demonstration of
declarative retrievals using ACT-R and a relational database.
In this paper, we provide extended analysis of the
computational challenges involved. We detail data structures
and algorithms for an efficient mechanism over a large set of
retrievals, as well as for a class of activation bias. We have
implemented this work in Soar, and present detailed
evaluation on synthetic data as well as the WordNet 3 lexicon.

Keywords: large-scale cognitive modeling; declarative
memory; cognitive architecture; Soar.

Introduction
Typical cognitive models have very modest declarative
memory (DM) requirements. In these cases, naïve data
structures and algorithms, despite inefficiencies, suffice for
declarative retrievals. However, prior work (Douglass et al.,
2009) has shown that cognitive models of complex tasks
require more substantial DMs, such as a large subset of the
WordNet lexicon (Miller, 1995), and that existing retrieval
mechanisms, such as the ACT-R implementation, do not
scale to large DMs. If we are ever going to study human
behavior in knowledge-rich, temporally extended tasks,
additional research is required on the underlying
computational data structures and algorithms that support
declarative memory storage and retrieval.

In an effort to efficiently support large declarative
memories in ACT-R (Anderson et al., 2004), Douglass et al.
developed a DM using the PostgreSQL relational database
management system. While their work produced an ACT-R
module supporting persistent declarative access to large
declarative knowledge stores, there are significant
opportunities for extension and improvement. First, while
achieving significant empirical performance improvements
over the ACT-R retrieval mechanism, the authors do not
address the analytical computational profile of the DM
retrieval problem, thereby missing, for instance, situations
in which even DBMS query optimizers will not support
efficient performance. Additionally, their presented
evaluation is limited to their target application and DM, and
does not include any calculation of chunk activation.

In this paper, we extend that work along many
dimensions. First, we contribute an extended analysis of the
computational challenges of efficient declarative retrievals.

To address many of these problems, we describe system-
independent methods for efficient retrieval functionality.
Also, while not achieving the full functionality of ACT-R
activation, we move towards that goal by formulating and
efficiently supporting a simpler class of activation bias.

To evaluate this work, we have implemented a semantic
memory system in the Soar cognitive architecture (Laird,
2008). We evaluate the system on a scalable, synthetic data
set, as well as the entire WordNet 3 lexicon. For successful
retrievals on data sets scaling to millions of declarative
chunks, we achieve retrieval times that are two orders of
magnitude faster than previously reported results.

A forewarning: much of the presented work delves into
the details of data structures, algorithms, and complexity
analysis, which are critical for communicating the results of
our work to developers of cognitive architectures. However,
these details may be of less interest to model developers.
We recommend that modelers focus on the problem
formulation sections and the empirical evaluation.

Symbolic DM Retrieval Problem
To begin, we develop an abstract problem formulation of
symbolic declarative retrievals. To exemplify this
formulation, we then map it onto the ACT-R DM.

Problem Formulation
We define a declarative memory (DM) as a set of elements.
A DM element is decomposed into a set of symbolic
augmentations. For example, consider the following
example DM, in which the letters A-D identify elements and
lower-case Greek letters represent augmentations:

A: {α, β, ε, φ}
B: {α, ε}
C: {γ}
D: {γ, φ}
We define a DM symbolic retrieval cue as having a

required positive component and an optional negative
component, each of which is expressed as a set of symbols
(corresponding to the augmentations of a DM). For instance,
consider the following retrieval cue, corresponding to the
example DM above, consisting of both positive (+) and
negative (–) components: +{α, ε}, –{γ}. Semantically, the
positive set specifies augmentations that an element must
contain, and the negative set those that it must not contain.

49

Given a DM and a cue, we define the result of a
declarative retrieval to be a single element from the DM,
including all augmentations, that satisfies the constraints
represented semantically by the cue. Thus, the result of the
example cue and the example DM would either be element
A or B (with respective augmentation set {α, β, ε, φ} or {α,
ε}). A retrieval is considered a success if there exists a result
(as with our example) and a failure otherwise.

ACT-R DM
We now compare our symbolic declarative retrieval
problem formulation to ACT-R’s declarative memory
module retrieval interface. We begin with a review of the
ACT-R DM and then map it onto our definitions above.

In ACT-R, declarative knowledge is encoded as a set of
chunks, which are collections of labeled slots that have
values. For example, consider this chunk, representing one
of the noun senses of the word “roach” from the WN-
LEXICAL interface to WordNet (Emond, 2006):

(S-105261088-1 ISA S
SYNSET-ID 105261088
W-NUM 1
WORD "roach"
SS-TYPE "n"
SENSE-NUMBER 1
TAG-COUNT 0)

To retrieve declarative knowledge, a production rule issues
a request to the declarative module by populating the
declarative buffer with positive and negative slot-value
pairs. These pairs are interpreted as hard constraints that
either must be met (positive tests) or must not be met
(negative tests). The DM module also supports non-
symbolic tests (<=, >, etc), but we do not consider them.

For example, consider a cue that requests a sense chunk
(“ISA S”) where the value of the WORD slot is equal to
“roach” and the SS-TYPE is not equal to “v” (verb):

+retrieval>
 ISA S
 WORD “roach”
 - SS-TYPE “v”

Given this request, the ACT-R DM module searches the
store for matching chunks. If any are found, the module,
given default module parameter settings, indicates a
successful retrieval and selects randomly amongst the
candidates chunks and reconstructs it in the appropriate
buffer. The module also supports the use of non-symbolic
activation to bias selection amongst candidate chunks,
functionality that is used in many cognitive models. We
comment on this functionality later in this paper. If no
perfect match is found, the default behavior of the DM is to
report a retrieval failure. The module also supports the use
of customizable partial matching. While some modelers
may use this functionality, it makes the retrieval problem
strictly harder computationally, and we leave research on an
efficient implementation of it to future work.

We now map the ACT-R DM to our abstract formulation.
First, without loss of generality, we interpret the chunk type
(above, “ISA S”) as a slot-value pair (slot label “ISA” and
value “S”). Next, since we are considering qualitative
matching (equality is defined as symbolic equivalence),
each distinct slot-value pair can be equivalently represented
as a single, composite symbol (by concatenating the slot
label and value with a unique separating character, such as
“ISA:S”). Since slot-value pair order is arbitrary, a chunk
instance can be equivalently represented as a set of
[composite] symbols. In ACT-R, all chunks of a given type
must contain values for the same set of slots and a chunk
type can only have one slot of a given label; without loss of
generality, we eliminate both of these constraints. Given the
analysis above, a chunk maps to a declarative memory
element, and slot-value pairs to augmentations.

We apply a similar analysis to DM retrieval requests, with
distinct slot-value pairs compressed to a single composite
symbol. If we require that equivalent slot-value pairs in
chunks and retrieval requests resolve to the same composite
symbols, then the set of positive tests form the positive cue
component and the negative tests the negative component.

With this analysis, we claim that the symbolic ACT-R
DM retrieval interface is an instance of our problem
formulation. Thus, results from our work, though
implemented in Soar, extend to ACT-R models, and any
other system that can be similarly mapped.

Supporting Efficient Retrievals
In this section, we discuss indexing structures and processes
to efficiently support a large class of symbolic DM
retrievals, accompanied by a brief computational complexity
analysis. We decompose our description into the required
positive cue component, followed by the negative. Prior to
getting lost in the weeds of data structures and algorithms,
however, let us first consider what is meant by efficient
support with respect to our problem formulation.

Contextual Meaning of Efficient Support
As a baseline, consider a naïve retrieval mechanism that
iterates through the DM, comparing each element to the cue,
and returning the first valid result, if one exists. To
understand the costs, we define E as the set of elements in a
DM, and a as the average number of augmentations per
element. Given a cue C, we define P as the positive cue
component and N as the negative cue component. Sets
surrounded with vertical bars, such as |E|, refer to the
cardinality, or number of items contained in the set.

Assuming no specialized indexing, the memory cost of
the baseline mechanism grows with the product of the
number of elements and the average augmentation
cardinality (a|E|). In the worst case, the baseline mechanism
must traverse all of this memory for each cue element, and
thus the time cost multiplies by the size of the cue (a|E||C|).
In context of large declarative memories, it is likely that |E|
will dominate a and |C|, and thus memory and retrieval costs
will scale linearly with the number of elements in the DM.

50

Memory, though not unlimited, is generally considered
cheap and plentiful, while time is expensive and limited, and
thus our goal is to minimize retrieval time, possibly at the
cost of memory. Thus we pose efficient support for
declarative retrievals as sub-linear in the number of
elements in the DM, |E|, while remaining linear in memory.
We further require that these computational bounds hold in
the general case of our problem formulation, supporting a
broad variety of DMs and retrieval cues, as opposed to an
optimized mechanism for a specific knowledge-base and/or
query load. We now present our mechanism, revisiting these
requirements for theoretical evaluation.

Positive Cue Component
To review, the positive cue component for symbolic
declarative retrievals is a non-empty set of augmentations
that a declarative element must contain. To assist in our
analysis, we define Rp as the elements that contain an
augmentation p and, accumulated over all p in P, R to be the
bag of candidate elements (which may contain duplicates, if
an element contains more than one augmentation, p, in P).

Before presenting our mechanism, we note that this
component of the retrieval problem is a constrained form of
a subset query on set-values, which has been widely studied
in database and information retrieval (IR) communities
(Terrovitis et al., 2006). In its general form, the worst-case
time cost is known to be linear in the sum of the number of
candidate elements for each positive cue augmentation, |R|,
though clever indexing methods have shown massive
average-case improvements in real-world data.

Indexing Building on this prior work, the primary indexing
structure for our mechanism is an inverted table of DM
elements, combined with cached frequency statistics. The
structure contains a sorted list of each augmentation, p, in
the DM, each paired with a sorted list of elements in which
they are contained as well as the size of this list, Rp. We note
that this structure roughly doubles the size of the store and
can be updated very efficiently as the DM changes.
Consider the following index over the example DM above:
α (2): [A, B]
β (1): [A]
γ (2): [C, D]
ε (2): [A, B]
φ (2): [A, D]

Algorithm To retrieve based only on the positive cue
component, we first generate a sorted list, Q, of all
augmentations p in P, keyed ascending on Rp, which
requires |P| queries on the inverted index. Q represents a
specialized query plan, sorted in ascending order of
candidate element list size. With the example positive
component above, Q is either [α,β] or [β,α] (as Rα = Rβ),
and we use the former for the remainder of this analysis.

Next, we pop the first augmentation from Q (α) and
retrieve a pointer, w, to the head of the element list in the
inverted index (initially referring to the first element, A).
Note that since this list is updated incrementally with

changes to the DM, we do not have to compute this list in
response to the query. Iterating over the remaining
augmentations in Q ([β]), we verify, using the original DM,
that w satisfies all remaining positive constraints. If so,
return w and success. Otherwise, increment w to point to the
next element in the inverted index and retry verification. If
no element successfully verifies, the retrieval is a failure.

Analysis In the worst case, this retrieval mechanism grows
linearly with |E| (as demonstrated later). However, the small
amount of indexing and query optimization bounds element
iteration to min(Rp), the set of elements containing the most
selective positive query augmentation. Furthermore, we
only need to fully examine this list in the failure case,
which, as we see in the later empirical evaluation, can be
achieved in near constant-time queries in many cases.

Negative Cue Component
The negative cue component for symbolic declarative
retrievals is an optional set of augmentations that a
declarative retrieval must not contain.

We have struggled with how to efficiently support this
type of constraint given our problem formulation. What
makes this component difficult is that given a large DM
with a sparse distribution of augmentations, it can be
prohibitively expensive to maintain an index of the elements
not containing an augmentation, analogous to issues
surrounding the closed-world assumption and negated
conditions in production matching (Doorenbos, 1995).

Initial Integration Currently, we integrate this functionality
with the positive cue component above by special-casing
negative augmentations. First, |R’n|, the number of candidate
elements that do not contain a particular augmentation n,
equals (|E| - |Rn|), the total number of elements less the
number of elements that do contain the augmentation. This
quantity can be computed efficiently and used to order Q
with negative augmentations. Second, because we cannot
efficiently enumerate R’n, w is initialized as the head of the
list of the first positive augmentation in Q. Finally, when
verifying a candidate element, we simply invert the result of
the set-inclusion query on E.

Analysis Using this approach, our mechanism loses a major
performance benefit. This forfeiture arises when there exists
an augmentation in the negative component that is more
selective than any positive component augmentation, which
is probably not uncommon. While we are theoretically able
to integrate this functionality, we have neither implemented
nor evaluated this work empirically in Soar, and plan to
address this deficiency in the future.

Supporting Efficient Activation Bias
A major contribution of the ACT-R DM module to
cognitive modeling is the sub-symbolic influence of the
current context and prior retrievals as a form of activation
bias for declarative retrievals (Anderson et al., 2004). This
functionality, however, has been shown to come at a

51

significant computational cost that does not scale to large
declarative memories (Douglass et al., 2009).

While we have not achieved the functionality of all
aspects of ACT-R’s activation scheme, we have made
progress by formulating and efficiently supporting a simpler
class of activation bias. In this section, we first extend our
problem formulation to include retrieval bias, then define
the class of activation update processes we can efficiently
support, and discuss how we achieve this functionality.

Problem Formulation Extension
To integrate activation bias in our problem formulation, we
extend our definition of a declarative memory element to
include a numerical activation value, as exemplified below
by the numbers in square brackets:

A [1.41]: {α, β, ε, φ}
B [1.73]: {α, ε}
C [3.14]: {γ}
D [2.72]: {γ, φ}

We refine our previous definition of a retrieval result as an
element from the DM, including all augmentations, that
satisfies the constraints represented semantically by the cue
and has the maximal activation value. Given the example
cue (+{α, ε}, –{γ}) and this expanded DM, the result is now
unambiguously B (and its associated augmentations), as it
has a greater activation value than A.

Efficient Activation Bias Updates
The expanded retrieval mechanism described in the next
section efficiently incorporates activation. However, just as
the DM must support efficient updates to elements and
augmentations, so too must it support efficient updates to
activation values. In this context, for large DMs, we propose
that an activation value update process must be locally
efficient. An activation update process is locally efficient if
it satisfies two properties: (1) the update can affect the
activation value of at most a constant number of elements
and (2) updating the activation value of an element takes
time strictly sub-linear in the number of DM elements.

The locally efficient activation update process we
implement in Soar is a straightforward mechanism to bias
retrievals towards recency. After each successful retrieval,
the activation value of the retrieved element is updated to be
one greater than the previously largest activation value. This
update process is local, as it only changes a single element
per retrieval, and it is efficient, as the largest activation
value can be cached to avoid any search over E.

In ACT-R, chunk activation includes retrieval history
(base-level), current context (spreading), partial matching,
and noise. Both the base-level approximation and permanent
noise computations appear to be local, so it should be
possible to extend our approach to cover those components.
However, transient noise, partial matching, and spreading
activation appear to be global to the elements of the DM,
which suggests significant further theoretical and
engineering research are necessary to develop locally
efficient mechanisms. For reference, the mechanism in

Douglass et al. does not efficiently compute any portion of
ACT-R chunk activation, and those components were not
included in their empirical evaluations.

Efficient Support
The most direct method of integrating activation values in
our efficient algorithm is to sort the candidate list (w) by
activation values on demand. This approach, henceforth
referred to as Scheme I, suffers from retrieval times that are
always dependent upon augmentation selectivity, as the
candidate list must be fully computed to be sorted.

Another method of integrating activation values, Scheme
II, is to maintain, for each augmentation, an element list
sorted by activation value. Thus, w is sorted in order of
activation, independent of augmentation selectivity.
However, the time required for updating activation values is
dependent upon the number of different augmentations an
element can have (its augmentation cardinality), and for
large cardinalities, this cost can be prohibitive.

Our approach to integrating activation values combines
these schemes by exploiting an assumption that most
elements will have “small” augmentation cardinality. Given
this information, we explain how we can extend our
implementation to yield efficient retrievals and then we
validate our assumption empirically by studying three large,
commonly used knowledge bases.

Our Approach. If an element has small augmentation
cardinality, Scheme II is efficient, independent of DM size.
If few elements must be sorted per retrieval, Scheme I is
efficient, independent of element augmentation cardinality.
To resolve this tension between augmentation cardinality
and element selectivity, we apply these schemes on a per-
element basis: we apply Scheme II when an element has
small augmentation cardinality, and otherwise apply
Scheme I. What we describe here are the data structure
modifications and additional processing necessary to
efficiently implement this split strategy.

First, we introduce a threshold parameter, t, which
represents a small value of augmentation cardinality. By
default, we integrate activation bias as described in Scheme
II above. However, if the augmentation cardinality of a
particular element is greater than t, we associate a one-time
special “infinity” (∞) activation value with all its
augmentations and maintain a separate list associating the
element with its activation value, per Scheme I. For
instance, if t=3, we would have a list wherein [A=1] and our
inverted index would contain the following information:
α (2): [A=∞, B=2]
β (1): [A=∞]
γ (2): [D=4, C=3]
ε (2): [A=∞, B=2]
φ (2): [A=∞, D=4]

By default, an update to an element’s activation value will
involve updating a small number of references (≤t)
throughout the inverted index. For elements with
augmentation cardinality greater than t, such as A, we need

52

only update this value once, thereby bounding the update to
constant time and addressing the weakness of Scheme II.

During retrieval, as we are populating the list of
augmentations, Q, which is sorted by activation level, we
may now encounter one or more infinite activations at the
head of the list. If so, we perform a lookup for its true
activation level and execute insertion sort into a second,
special list, Q’. We then merge Q and Q’ to form our query
plan. Notice that if the size of Q’ is small (i.e. few elements
have augmentation cardinality greater than t), this process is
cheap and independent of augmentation selectivity, the
weakness of Scheme I. Thus, if we can select an appropriate
value of t, we will achieve efficient activation bias support.

Validation. To validate that our split strategy works well on
real data sets, we studied three large, commonly used
knowledge bases (KBs): SUMO (Niles et al., 2001),
OpenCyc (Lenat, 1995), and WordNet (Miller, 1995). For
each KB, we extracted the number of features of each
named entity. Each distribution was unimodal and exhibited
strong right skew, suggesting that while most elements had
a similar feature size, there were rare cases with
exceptionally large cardinalities. Then, we sampled from
these distributions to form synthetic data sets that were
reasonably large (5040 elements) and empirically valid in
augmentation cardinality. We then collected empirical
retrieval data, summarized in Table 1, showing that for each
KB there was a range over the value of t that optimally
balanced the performance effects of cue selectivity and
augmentation cardinality. For two of the KBs, we could
efficiently employ Scheme II above for more than 99% of
elements, versus only about 93% for the SUMO data set.

Important components of this analysis for future
examination are (1) automatically selecting a value of t for a
given DM and (2) tuning this value online for changing DM
contents. As to the former, we see in Table 1 that the
optimal threshold typically covers greater than 90% of the
elements using augmentation cardinality, but that value is
not constant across data sets. Further analysis of the KBs
may uncover why this is the case and suggest better factors
for prediction. As for the latter, we expect that caching t in
indexing structures will allow the algorithm to adapt in real
time, while maintaining efficient retrievals.

Table 1: Optimal Thresholds.
Data Set Optimal t Range Element Coverage

SUMO 50 – 70 92.78 – 93.86%
OpenCyc 40 – 60 99.17 – 99.74%
WordNet 20 – 40 99.50 – 99.90%

Evaluation
To evaluate our work, we implemented our data structures
and algorithms as the Semantic Memory long-term,
symbolic memory system in the Soar cognitive architecture
(Laird, 2008). We used version 3 of the SQLite in-process
relational database engine to manage the semantic store and
all experimental results were run on a 2.8GHz Core 2
Extreme processor with 4GB of RAM.

Our final evaluation spans two data sets: (1) the WordNet
3 lexicon and (2) a scalable synthetic benchmark of our
design. WordNet offers a large, ecologically valid
knowledge base with which we can compare to previous
results in this space (Douglass et al., 2009). Our synthetic
dataset offers us the ability to exhaustively benchmark our
retrieval mechanism on arbitrarily large DMs.

WordNet
As with Douglass et al., we used the WN-LEXICAL
WordNet 3 data conversion (Emond, 2006). The data set has
over 820K chunks, which includes over 212K word/sense
combinations. Once imported, Soar’s semantic store,
including all indexing structures, is about 400MB.

Our first experiment was to verify (a) that retrieval time
was independent of augmentation selectivity and (b) that the
activation bias was processed efficiently in under-specified
cues. We performed DM retrievals on 100 randomly chosen,
single-augmentation cues, averaged over 10 trials. Retrieval
time was 0.1887 msec. each (0.0216 std. deviation).

Our next experiment focused on larger cues. We
randomly chose 10 nouns and formed a cue from their full
sense description (such as the “roach” example above).
Retrieval time was an average of 0.2973 msec. over 10 trials
each (0.0108 std. deviation).

Douglass et al. used a derived subset of the WN-
LEXICAL dataset, so direct replication of their work is
difficult. They reported retrievals of about 40 msec. with
cues of 1-4 augmentations on a DM with about 232.5k
chunks. Our results show 100x faster retrievals on a
comparable set of cues scaling to a 3x larger DM.

Synthetic Data
In addition to running on a known data set, we tested our
implementation more exhaustively to measure how it scales
with much larger DMs. We developed a scalable, synthetic
DM generator and, in Table 2, we list statistics of the data
sets we used as they scale with k, the size control parameter:

Table 2: Synthetic Statistics.

k Elements Store Size (MB)
7 5,040 3.00
8 40,320 27.81
9 362,880 291.95

10 3,628,800 2048.00

While we have a DM generator, we do not have a model of
what are typical cues used to access a DM and how those
cues could interact with the performance profile of the DM
retrieval mechanism. For instance, we do not know how
selective the cues are likely to be, meaning how many
elements, termed candidates, could possibly satisfy any part
of the cue. Furthermore, we do not know the proportion of
cues that will have no perfect matches. To allow us to test
these different interactions, we constructed the DMs so that
we can generate cues with independently controlled
selectivity. In each KB, there are k! elements and each

53

element has augmentation cardinality of (k+1). For i = 2 …
k, the ith augmentation of an element has selectivity (k!/i).
The 0th augmentation of each element is shared by all
elements and the 1st augmentation is unique.

Selectivity Sweep. Our first question is whether the DM
mechanism provides bounded retrievals for under-specified
cues, independent of the number of candidate elements. For
each distinct augmentation in the DM, we constructed a cue
and measured retrieval time. We found nearly constant-time
retrievals within each data set, independent of augmentation
selectivity, measuring just under 0.4 msec. for k=10.

Cue Sweep. Our next question is whether combinations of
augmentations result in complex cues that adversely affect
retrieval time. We constructed all possible lengths of cues
using all combinations of augmentation selectivity and
measured retrieval time. As shown in Figure 1, the only
factor affecting retrieval time within a data set was the
number of augmentations in the cue (R2≈1), achieving a
maximum of about 0.5 msec. for k=10.

Failure Sweep. For our mechanism, retrieval failure is the
algorithmic worst-case, as it must examine and fail to verify
all candidate elements. We constructed our last experiment
to measure retrieval time for cues that fail only after
examining significant proportions of the elements in the
KB. While our mechanism minimizes the chance of this
situation, these results are useful to set an expectation for
the unlikely worst-case retrieval time in any given DM. As
shown in Figure 2, the number of inspected candidate
elements was the only factor affecting retrieval time,
independent of the data set. Because the time is linear in the
number of candidates, and not the total number of KB
elements, our mechanism, for even worst worst-case cues,
scales to arbitrarily large data sets when cue augmentations
are sufficiently selective.

Conclusions
In this work, we formulate and address the computational
challenges involved with supporting efficient symbolic
retrievals for the core functionality required in representing
and accessing large DMs. We extend the research of

Douglass et al., demonstrating two orders of magnitude
improvement in retrieval times for comparable functionality
on significantly larger data sets. There are still challenges
ahead to efficiently support partial match, spreading
activation, and other non-local biases for retrieval for large
data sets, for which it may be necessary to explore algorithm
approximations or massively parallel computation.

Acknowledgments
The authors acknowledge the funding support of the Office
of Naval Research under grant number N00014-08-1-0099.

References
Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An Integrated Theory of
the Mind. Psychological Review 111, (4). 1036-1060.

Doorenbos, R.B. (1995) Production Matching for Large
Learning Systems. PhD Thesis, Carnegie Mellon.

Douglass, S., Ball, J., & Rodgers, S. (2009). Large
Declarative Memories in ACT-R. Proc. of the 9th
International Conference on Cognitive Modeling.

Emond, B. (2006). WN-LEXICAL: An ACT-R Module
Built from the WordNet Lexical Database. Proc. of the
7th International Conference on Cognitive Modeling.

Laird, J.E. (2008). Extending the Soar Cognitive
Architecture. Proc. of the First Conference on Artificial
General Intelligence (AGI).

Lenat, D. (1995). CYC: A Large-Scale Investment in
Knowledge Infrastructure. Communications of the ACM
38, (11). 33-38.

Miller, G.A. (1995). WordNet: A Lexical Database for
English. Communications of the ACM 38, (11). 39-41.

Niles, I., Pease, A. (2001). Towards a Standard Upper
Ontology. Proc. of the Second Conference on Formal
Ontology in Information Systems (FOIS).

Terrovitis, M., Passas, S., Vassiliadis, P., Sellis, T. (2006).
A Combination of Trie-trees and Inverted Files for the
Indexing of Set-valued Attributes. Proc. of the 15th
Conference on Information and Knowledge Management
(CIKM).

Figure 2: Synthetic failure sweep results.

Figure 1: Synthetic cue sweep results.

54

