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Abstract 
Efficient access to large declarative memories is one 
challenge in the development of large-scale cognitive models. 
Prior work has provided an initial demonstration of 
declarative retrievals using ACT-R and a relational database. 
In this paper, we provide extended analysis of the 
computational challenges involved. We detail data structures 
and algorithms for an efficient mechanism over a large set of 
retrievals, as well as for a class of activation bias. We have 
implemented this work in Soar, and present detailed 
evaluation on synthetic data as well as the WordNet 3 lexicon. 

Keywords: large-scale cognitive modeling; declarative 
memory; cognitive architecture; Soar. 

Introduction 
Typical cognitive models have very modest declarative 
memory (DM) requirements. In these cases, naïve data 
structures and algorithms, despite inefficiencies, suffice for 
declarative retrievals. However, prior work (Douglass et al., 
2009) has shown that cognitive models of complex tasks 
require more substantial DMs, such as a large subset of the 
WordNet lexicon (Miller, 1995), and that existing retrieval 
mechanisms, such as the ACT-R implementation, do not 
scale to large DMs. If we are ever going to study human 
behavior in knowledge-rich, temporally extended tasks, 
additional research is required on the underlying 
computational data structures and algorithms that support 
declarative memory storage and retrieval. 

In an effort to efficiently support large declarative 
memories in ACT-R (Anderson et al., 2004), Douglass et al. 
developed a DM using the PostgreSQL relational database 
management system. While their work produced an ACT-R 
module supporting persistent declarative access to large 
declarative knowledge stores, there are significant 
opportunities for extension and improvement. First, while 
achieving significant empirical performance improvements 
over the ACT-R retrieval mechanism, the authors do not 
address the analytical computational profile of the DM 
retrieval problem, thereby missing, for instance, situations 
in which even DBMS query optimizers will not support 
efficient performance. Additionally, their presented 
evaluation is limited to their target application and DM, and 
does not include any calculation of chunk activation. 

In this paper, we extend that work along many 
dimensions. First, we contribute an extended analysis of the 
computational challenges of efficient declarative retrievals. 

To address many of these problems, we describe system-
independent methods for efficient retrieval functionality. 
Also, while not achieving the full functionality of ACT-R 
activation, we move towards that goal by formulating and 
efficiently supporting a simpler class of activation bias. 

To evaluate this work, we have implemented a semantic 
memory system in the Soar cognitive architecture (Laird, 
2008). We evaluate the system on a scalable, synthetic data 
set, as well as the entire WordNet 3 lexicon. For successful 
retrievals on data sets scaling to millions of declarative 
chunks, we achieve retrieval times that are two orders of 
magnitude faster than previously reported results. 

A forewarning: much of the presented work delves into 
the details of data structures, algorithms, and complexity 
analysis, which are critical for communicating the results of 
our work to developers of cognitive architectures. However, 
these details may be of less interest to model developers. 
We recommend that modelers focus on the problem 
formulation sections and the empirical evaluation. 

Symbolic DM Retrieval Problem 
To begin, we develop an abstract problem formulation of 
symbolic declarative retrievals. To exemplify this 
formulation, we then map it onto the ACT-R DM. 

Problem Formulation 
We define a declarative memory (DM) as a set of elements. 
A DM element is decomposed into a set of symbolic 
augmentations. For example, consider the following 
example DM, in which the letters A-D identify elements and 
lower-case Greek letters represent augmentations: 

A: {α, β, ε, φ} 
B: {α, ε} 
C: {γ} 
D: {γ, φ} 
We define a DM symbolic retrieval cue as having a 

required positive component and an optional negative 
component, each of which is expressed as a set of symbols 
(corresponding to the augmentations of a DM). For instance, 
consider the following retrieval cue, corresponding to the 
example DM above, consisting of both positive (+) and 
negative (–) components: +{α, ε}, –{γ}. Semantically, the 
positive set specifies augmentations that an element must 
contain, and the negative set those that it must not contain. 
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Given a DM and a cue, we define the result of a 
declarative retrieval to be a single element from the DM, 
including all augmentations, that satisfies the constraints 
represented semantically by the cue. Thus, the result of the 
example cue and the example DM would either be element 
A or B (with respective augmentation set {α, β, ε, φ} or {α, 
ε}). A retrieval is considered a success if there exists a result 
(as with our example) and a failure otherwise. 

ACT-R DM 
We now compare our symbolic declarative retrieval 
problem formulation to ACT-R’s declarative memory 
module retrieval interface. We begin with a review of the 
ACT-R DM and then map it onto our definitions above. 

In ACT-R, declarative knowledge is encoded as a set of 
chunks, which are collections of labeled slots that have 
values. For example, consider this chunk, representing one 
of the noun senses of the word “roach” from the WN-
LEXICAL interface to WordNet (Emond, 2006): 

(S-105261088-1 ISA S  
SYNSET-ID  105261088  
W-NUM   1  
WORD    "roach"  
SS-TYPE   "n"  
SENSE-NUMBER  1  
TAG-COUNT   0) 

To retrieve declarative knowledge, a production rule issues 
a request to the declarative module by populating the 
declarative buffer with positive and negative slot-value 
pairs. These pairs are interpreted as hard constraints that 
either must be met (positive tests) or must not be met 
(negative tests). The DM module also supports non-
symbolic tests (<=, >, etc), but we do not consider them.  

For example, consider a cue that requests a sense chunk 
(“ISA S”) where the value of the WORD slot is equal to 
“roach” and the SS-TYPE is not equal to “v” (verb): 

+retrieval> 
 ISA   S 
 WORD  “roach” 
         - SS-TYPE “v” 

Given this request, the ACT-R DM module searches the 
store for matching chunks. If any are found, the module, 
given default module parameter settings, indicates a 
successful retrieval and selects randomly amongst the 
candidates chunks and reconstructs it in the appropriate 
buffer. The module also supports the use of non-symbolic 
activation to bias selection amongst candidate chunks, 
functionality that is used in many cognitive models. We 
comment on this functionality later in this paper. If no 
perfect match is found, the default behavior of the DM is to 
report a retrieval failure. The module also supports the use 
of customizable partial matching. While some modelers 
may use this functionality, it makes the retrieval problem 
strictly harder computationally, and we leave research on an 
efficient implementation of it to future work. 

We now map the ACT-R DM to our abstract formulation. 
First, without loss of generality, we interpret the chunk type 
(above, “ISA S”) as a slot-value pair (slot label “ISA” and 
value “S”). Next, since we are considering qualitative 
matching (equality is defined as symbolic equivalence), 
each distinct slot-value pair can be equivalently represented 
as a single, composite symbol (by concatenating the slot 
label and value with a unique separating character, such as 
“ISA:S”). Since slot-value pair order is arbitrary, a chunk 
instance can be equivalently represented as a set of 
[composite] symbols. In ACT-R, all chunks of a given type 
must contain values for the same set of slots and a chunk 
type can only have one slot of a given label; without loss of 
generality, we eliminate both of these constraints. Given the 
analysis above, a chunk maps to a declarative memory 
element, and slot-value pairs to augmentations.  

We apply a similar analysis to DM retrieval requests, with 
distinct slot-value pairs compressed to a single composite 
symbol. If we require that equivalent slot-value pairs in 
chunks and retrieval requests resolve to the same composite 
symbols, then the set of positive tests form the positive cue 
component and the negative tests the negative component. 

With this analysis, we claim that the symbolic ACT-R 
DM retrieval interface is an instance of our problem 
formulation. Thus, results from our work, though 
implemented in Soar, extend to ACT-R models, and any 
other system that can be similarly mapped. 

Supporting Efficient Retrievals 
In this section, we discuss indexing structures and processes 
to efficiently support a large class of symbolic DM 
retrievals, accompanied by a brief computational complexity 
analysis. We decompose our description into the required 
positive cue component, followed by the negative. Prior to 
getting lost in the weeds of data structures and algorithms, 
however, let us first consider what is meant by efficient 
support with respect to our problem formulation. 

Contextual Meaning of Efficient Support 
As a baseline, consider a naïve retrieval mechanism that 
iterates through the DM, comparing each element to the cue, 
and returning the first valid result, if one exists. To 
understand the costs, we define E as the set of elements in a 
DM, and a as the average number of augmentations per 
element. Given a cue C, we define P as the positive cue 
component and N as the negative cue component. Sets 
surrounded with vertical bars, such as |E|, refer to the 
cardinality, or number of items contained in the set. 

Assuming no specialized indexing, the memory cost of 
the baseline mechanism grows with the product of the 
number of elements and the average augmentation 
cardinality (a|E|). In the worst case, the baseline mechanism 
must traverse all of this memory for each cue element, and 
thus the time cost multiplies by the size of the cue (a|E||C|). 
In context of large declarative memories, it is likely that |E| 
will dominate a and |C|, and thus memory and retrieval costs 
will scale linearly with the number of elements in the DM. 
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Memory, though not unlimited, is generally considered 
cheap and plentiful, while time is expensive and limited, and 
thus our goal is to minimize retrieval time, possibly at the 
cost of memory. Thus we pose efficient support for 
declarative retrievals as sub-linear in the number of 
elements in the DM, |E|, while remaining linear in memory. 
We further require that these computational bounds hold in 
the general case of our problem formulation, supporting a 
broad variety of DMs and retrieval cues, as opposed to an 
optimized mechanism for a specific knowledge-base and/or 
query load. We now present our mechanism, revisiting these 
requirements for theoretical evaluation. 

Positive Cue Component 
To review, the positive cue component for symbolic 
declarative retrievals is a non-empty set of augmentations 
that a declarative element must contain. To assist in our 
analysis, we define Rp as the elements that contain an 
augmentation p and, accumulated over all p in P, R to be the 
bag of candidate elements (which may contain duplicates, if 
an element contains more than one augmentation, p, in P). 

Before presenting our mechanism, we note that this 
component of the retrieval problem is a constrained form of 
a subset query on set-values, which has been widely studied 
in database and information retrieval (IR) communities 
(Terrovitis et al., 2006). In its general form, the worst-case 
time cost is known to be linear in the sum of the number of 
candidate elements for each positive cue augmentation, |R|, 
though clever indexing methods have shown massive 
average-case improvements in real-world data. 

Indexing Building on this prior work, the primary indexing 
structure for our mechanism is an inverted table of DM 
elements, combined with cached frequency statistics. The 
structure contains a sorted list of each augmentation, p, in 
the DM, each paired with a sorted list of elements in which 
they are contained as well as the size of this list, Rp. We note 
that this structure roughly doubles the size of the store and 
can be updated very efficiently as the DM changes. 
Consider the following index over the example DM above: 
α (2): [A, B] 
β (1): [A] 
γ (2): [C, D] 
ε (2): [A, B] 
φ (2): [A, D] 

Algorithm To retrieve based only on the positive cue 
component, we first generate a sorted list, Q, of all 
augmentations p in P, keyed ascending on Rp, which 
requires |P| queries on the inverted index. Q represents a 
specialized query plan, sorted in ascending order of 
candidate element list size. With the example positive 
component above, Q is either [α,β] or [β,α] (as Rα = Rβ), 
and we use the former for the remainder of this analysis. 

Next, we pop the first augmentation from Q (α) and 
retrieve a pointer, w, to the head of the element list in the 
inverted index (initially referring to the first element, A). 
Note that since this list is updated incrementally with 

changes to the DM, we do not have to compute this list in 
response to the query. Iterating over the remaining 
augmentations in Q ([β]), we verify, using the original DM, 
that w satisfies all remaining positive constraints. If so, 
return w and success. Otherwise, increment w to point to the 
next element in the inverted index and retry verification. If 
no element successfully verifies, the retrieval is a failure. 

Analysis In the worst case, this retrieval mechanism grows 
linearly with |E| (as demonstrated later). However, the small 
amount of indexing and query optimization bounds element 
iteration to min(Rp), the set of elements containing the most 
selective positive query augmentation. Furthermore, we 
only need to fully examine this list in the failure case, 
which, as we see in the later empirical evaluation, can be 
achieved in near constant-time queries in many cases. 

Negative Cue Component 
The negative cue component for symbolic declarative 
retrievals is an optional set of augmentations that a 
declarative retrieval must not contain. 

We have struggled with how to efficiently support this 
type of constraint given our problem formulation. What 
makes this component difficult is that given a large DM 
with a sparse distribution of augmentations, it can be 
prohibitively expensive to maintain an index of the elements 
not containing an augmentation, analogous to issues 
surrounding the closed-world assumption and negated 
conditions in production matching (Doorenbos, 1995).  

Initial Integration Currently, we integrate this functionality 
with the positive cue component above by special-casing 
negative augmentations. First, |R’n|, the number of candidate 
elements that do not contain a particular augmentation n, 
equals (|E| - |Rn|), the total number of elements less the 
number of elements that do contain the augmentation. This 
quantity can be computed efficiently and used to order Q 
with negative augmentations. Second, because we cannot 
efficiently enumerate R’n, w is initialized as the head of the 
list of the first positive augmentation in Q. Finally, when 
verifying a candidate element, we simply invert the result of 
the set-inclusion query on E. 

Analysis Using this approach, our mechanism loses a major 
performance benefit. This forfeiture arises when there exists 
an augmentation in the negative component that is more 
selective than any positive component augmentation, which 
is probably not uncommon. While we are theoretically able 
to integrate this functionality, we have neither implemented 
nor evaluated this work empirically in Soar, and plan to 
address this deficiency in the future. 

Supporting Efficient Activation Bias 
A major contribution of the ACT-R DM module to 
cognitive modeling is the sub-symbolic influence of the 
current context and prior retrievals as a form of activation 
bias for declarative retrievals (Anderson et al., 2004). This 
functionality, however, has been shown to come at a 
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significant computational cost that does not scale to large 
declarative memories (Douglass et al., 2009). 

While we have not achieved the functionality of all 
aspects of ACT-R’s activation scheme, we have made 
progress by formulating and efficiently supporting a simpler 
class of activation bias. In this section, we first extend our 
problem formulation to include retrieval bias, then define 
the class of activation update processes we can efficiently 
support, and discuss how we achieve this functionality. 

Problem Formulation Extension 
To integrate activation bias in our problem formulation, we 
extend our definition of a declarative memory element to 
include a numerical activation value, as exemplified below 
by the numbers in square brackets: 

A [1.41]: {α, β, ε, φ} 
B [1.73]: {α, ε} 
C [3.14]: {γ} 
D [2.72]: {γ, φ} 

We refine our previous definition of a retrieval result as an 
element from the DM, including all augmentations, that 
satisfies the constraints represented semantically by the cue 
and has the maximal activation value. Given the example 
cue (+{α, ε}, –{γ}) and this expanded DM, the result is now 
unambiguously B (and its associated augmentations), as it 
has a greater activation value than A. 

Efficient Activation Bias Updates 
The expanded retrieval mechanism described in the next 
section efficiently incorporates activation. However, just as 
the DM must support efficient updates to elements and 
augmentations, so too must it support efficient updates to 
activation values. In this context, for large DMs, we propose 
that an activation value update process must be locally 
efficient. An activation update process is locally efficient if 
it satisfies two properties: (1) the update can affect the 
activation value of at most a constant number of elements 
and (2) updating the activation value of an element takes 
time strictly sub-linear in the number of DM elements.  

The locally efficient activation update process we 
implement in Soar is a straightforward mechanism to bias 
retrievals towards recency. After each successful retrieval, 
the activation value of the retrieved element is updated to be 
one greater than the previously largest activation value. This 
update process is local, as it only changes a single element 
per retrieval, and it is efficient, as the largest activation 
value can be cached to avoid any search over E. 

In ACT-R, chunk activation includes retrieval history 
(base-level), current context (spreading), partial matching, 
and noise. Both the base-level approximation and permanent 
noise computations appear to be local, so it should be 
possible to extend our approach to cover those components. 
However, transient noise, partial matching, and spreading 
activation appear to be global to the elements of the DM, 
which suggests significant further theoretical and 
engineering research are necessary to develop locally 
efficient mechanisms. For reference, the mechanism in 

Douglass et al. does not efficiently compute any portion of 
ACT-R chunk activation, and those components were not 
included in their empirical evaluations. 

Efficient Support 
The most direct method of integrating activation values in 
our efficient algorithm is to sort the candidate list (w) by 
activation values on demand. This approach, henceforth 
referred to as Scheme I, suffers from retrieval times that are 
always dependent upon augmentation selectivity, as the 
candidate list must be fully computed to be sorted. 

Another method of integrating activation values, Scheme 
II, is to maintain, for each augmentation, an element list 
sorted by activation value. Thus, w is sorted in order of 
activation, independent of augmentation selectivity. 
However, the time required for updating activation values is 
dependent upon the number of different augmentations an 
element can have (its augmentation cardinality), and for 
large cardinalities, this cost can be prohibitive. 

Our approach to integrating activation values combines 
these schemes by exploiting an assumption that most 
elements will have “small” augmentation cardinality. Given 
this information, we explain how we can extend our 
implementation to yield efficient retrievals and then we 
validate our assumption empirically by studying three large, 
commonly used knowledge bases. 

Our Approach. If an element has small augmentation 
cardinality, Scheme II is efficient, independent of DM size. 
If few elements must be sorted per retrieval, Scheme I is 
efficient, independent of element augmentation cardinality. 
To resolve this tension between augmentation cardinality 
and element selectivity, we apply these schemes on a per-
element basis: we apply Scheme II when an element has 
small augmentation cardinality, and otherwise apply 
Scheme I. What we describe here are the data structure 
modifications and additional processing necessary to 
efficiently implement this split strategy. 

First, we introduce a threshold parameter, t, which 
represents a small value of augmentation cardinality. By 
default, we integrate activation bias as described in Scheme 
II above. However, if the augmentation cardinality of a 
particular element is greater than t, we associate a one-time 
special “infinity” (∞) activation value with all its 
augmentations and maintain a separate list associating the 
element with its activation value, per Scheme I. For 
instance, if t=3, we would have a list wherein [A=1] and our 
inverted index would contain the following information: 
α (2): [A=∞, B=2] 
β (1): [A=∞] 
γ (2): [D=4, C=3] 
ε (2): [A=∞, B=2] 
φ (2): [A=∞, D=4] 

By default, an update to an element’s activation value will 
involve updating a small number of references (≤t) 
throughout the inverted index. For elements with 
augmentation cardinality greater than t, such as A, we need 
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only update this value once, thereby bounding the update to 
constant time and addressing the weakness of Scheme II. 

During retrieval, as we are populating the list of 
augmentations, Q, which is sorted by activation level, we 
may now encounter one or more infinite activations at the 
head of the list. If so, we perform a lookup for its true 
activation level and execute insertion sort into a second, 
special list, Q’. We then merge Q and Q’ to form our query 
plan. Notice that if the size of Q’ is small (i.e. few elements 
have augmentation cardinality greater than t), this process is 
cheap and independent of augmentation selectivity, the 
weakness of Scheme I. Thus, if we can select an appropriate 
value of t, we will achieve efficient activation bias support. 

Validation. To validate that our split strategy works well on 
real data sets, we studied three large, commonly used 
knowledge bases (KBs): SUMO (Niles et al., 2001), 
OpenCyc (Lenat, 1995), and WordNet (Miller, 1995). For 
each KB, we extracted the number of features of each 
named entity. Each distribution was unimodal and exhibited 
strong right skew, suggesting that while most elements had 
a similar feature size, there were rare cases with 
exceptionally large cardinalities. Then, we sampled from 
these distributions to form synthetic data sets that were 
reasonably large (5040 elements) and empirically valid in 
augmentation cardinality. We then collected empirical 
retrieval data, summarized in Table 1, showing that for each 
KB there was a range over the value of t that optimally 
balanced the performance effects of cue selectivity and 
augmentation cardinality. For two of the KBs, we could 
efficiently employ Scheme II above for more than 99% of 
elements, versus only about 93% for the SUMO data set. 

Important components of this analysis for future 
examination are (1) automatically selecting a value of t for a 
given DM and (2) tuning this value online for changing DM 
contents. As to the former, we see in Table 1 that the 
optimal threshold typically covers greater than 90% of the 
elements using augmentation cardinality, but that value is 
not constant across data sets. Further analysis of the KBs 
may uncover why this is the case and suggest better factors 
for prediction. As for the latter, we expect that caching t in 
indexing structures will allow the algorithm to adapt in real 
time, while maintaining efficient retrievals. 
 

Table 1: Optimal Thresholds. 
Data Set Optimal t Range Element Coverage 

SUMO 50 – 70 92.78 – 93.86% 
OpenCyc 40 – 60 99.17 – 99.74% 
WordNet 20 – 40 99.50 – 99.90% 

Evaluation 
To evaluate our work, we implemented our data structures 
and algorithms as the Semantic Memory long-term, 
symbolic memory system in the Soar cognitive architecture 
(Laird, 2008). We used version 3 of the SQLite in-process 
relational database engine to manage the semantic store and 
all experimental results were run on a 2.8GHz Core 2 
Extreme processor with 4GB of RAM. 

Our final evaluation spans two data sets: (1) the WordNet 
3 lexicon and (2) a scalable synthetic benchmark of our 
design. WordNet offers a large, ecologically valid 
knowledge base with which we can compare to previous 
results in this space (Douglass et al., 2009). Our synthetic 
dataset offers us the ability to exhaustively benchmark our 
retrieval mechanism on arbitrarily large DMs.  

WordNet 
As with Douglass et al., we used the WN-LEXICAL 
WordNet 3 data conversion (Emond, 2006). The data set has 
over 820K chunks, which includes over 212K word/sense 
combinations. Once imported, Soar’s semantic store, 
including all indexing structures, is about 400MB. 

Our first experiment was to verify (a) that retrieval time 
was independent of augmentation selectivity and (b) that the 
activation bias was processed efficiently in under-specified 
cues. We performed DM retrievals on 100 randomly chosen, 
single-augmentation cues, averaged over 10 trials. Retrieval 
time was 0.1887 msec. each (0.0216 std. deviation). 

Our next experiment focused on larger cues. We 
randomly chose 10 nouns and formed a cue from their full 
sense description (such as the “roach” example above). 
Retrieval time was an average of 0.2973 msec. over 10 trials 
each (0.0108 std. deviation). 

Douglass et al. used a derived subset of the WN-
LEXICAL dataset, so direct replication of their work is 
difficult. They reported retrievals of about 40 msec. with 
cues of 1-4 augmentations on a DM with about 232.5k 
chunks. Our results show 100x faster retrievals on a 
comparable set of cues scaling to a 3x larger DM. 

Synthetic Data 
In addition to running on a known data set, we tested our 
implementation more exhaustively to measure how it scales 
with much larger DMs. We developed a scalable, synthetic 
DM generator and, in Table 2, we list statistics of the data 
sets we used as they scale with k, the size control parameter: 

 
Table 2: Synthetic Statistics. 

k Elements Store Size (MB) 
7 5,040 3.00 
8 40,320 27.81 
9 362,880 291.95 

10 3,628,800 2048.00 
 
While we have a DM generator, we do not have a model of 
what are typical cues used to access a DM and how those 
cues could interact with the performance profile of the DM 
retrieval mechanism. For instance, we do not know how 
selective the cues are likely to be, meaning how many 
elements, termed candidates, could possibly satisfy any part 
of the cue. Furthermore, we do not know the proportion of 
cues that will have no perfect matches. To allow us to test 
these different interactions, we constructed the DMs so that 
we can generate cues with independently controlled  
selectivity. In each KB, there are k! elements and each 
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element has augmentation cardinality of (k+1). For i = 2 … 
k, the ith augmentation of an element has selectivity (k!/i). 
The 0th augmentation of each element is shared by all 
elements and the 1st augmentation is unique. 

Selectivity Sweep. Our first question is whether the DM 
mechanism provides bounded retrievals for under-specified 
cues, independent of the number of candidate elements. For 
each distinct augmentation in the DM, we constructed a cue 
and measured retrieval time. We found nearly constant-time 
retrievals within each data set, independent of augmentation 
selectivity, measuring just under 0.4 msec. for k=10. 

Cue Sweep. Our next question is whether combinations of 
augmentations result in complex cues that adversely affect 
retrieval time. We constructed all possible lengths of cues 
using all combinations of augmentation selectivity and 
measured retrieval time. As shown in Figure 1, the only 
factor affecting retrieval time within a data set was the 
number of augmentations in the cue (R2≈1), achieving a 
maximum of about 0.5 msec. for k=10. 

Failure Sweep. For our mechanism, retrieval failure is the 
algorithmic worst-case, as it must examine and fail to verify 
all candidate elements. We constructed our last experiment 
to measure retrieval time for cues that fail only after 
examining significant proportions of the elements in the 
KB. While our mechanism minimizes the chance of this 
situation, these results are useful to set an expectation for 
the unlikely worst-case retrieval time in any given DM. As 
shown in Figure 2, the number of inspected candidate 
elements was the only factor affecting retrieval time, 
independent of the data set. Because the time is linear in the 
number of candidates, and not the total number of KB 
elements, our mechanism, for even worst worst-case cues, 
scales to arbitrarily large data sets when cue augmentations 
are sufficiently selective. 

Conclusions 
In this work, we formulate and address the computational 
challenges involved with supporting efficient symbolic 
retrievals for the core functionality required in representing 
and accessing large DMs. We extend the research of 

Douglass et al., demonstrating two orders of magnitude 
improvement in retrieval times for comparable functionality 
on significantly larger data sets. There are still challenges 
ahead to efficiently support partial match, spreading 
activation, and other non-local biases for retrieval for large 
data sets, for which it may be necessary to explore algorithm 
approximations or massively parallel computation. 
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