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Abstract 
The process of interleaving two tasks can be described as 
making trade-offs between performance on each of the tasks. 
This can be captured in performance operating characteristic 
curves. However, these curves do not describe what, given the 
specific task circumstances, the optimal strategy is. In this 
paper we describe the results of a dual-task study in which 
participants performed a tracking and typing task under 
various experimental conditions. An objective payoff function 
was used to describe how participants should trade-off 
performance between the tasks. Results show that 
participants’ dual-task interleaving strategy was sensitive to 
changes in the difficulty of the tracking task, and resulted in 
differences in overall task performance. To explain the 
observed behavior, a cognitively bounded rational analysis 
model was developed to understand participants’ strategy 
selection. This analysis evaluated a variety of dual-task 
interleaving strategies against the same payoff function that 
participants were exposed to. The model demonstrated that in 
three out of four conditions human performance was optimal; 
that is, participants adopted dual-task strategies that 
maximized the payoff that was achieved. 

Keywords: multitasking; performance operating 
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Introduction 
Multitasking behavior often involves trade-offs in 

performance (e.g., time, errors, extension, etc.) between the 
tasks. Such trade-offs can be described graphically with 
Performance Operating Characteristics, which show how the 
performance of separate tasks vary together systematically 
(Navon & Gopher, 1979; Norman & Bobrow, 1975). Trade-
offs reflect strategic choices and can be modified, for 
example, in response to instructions to prioritize one task 
over another (e.g., Brumby, Salvucci, & Howes, 2009; 
Janssen & Brumby, in press). 

Consideration of the strategic choices made in 
multitasking (i.e., of why a specific way of performing the 
tasks is chosen) naturally supposes some optimal trade-off. 
Why time is allocated differentially to the tasks, and why 
particular patterns of interleaving are adopted, must 
reference the relative success of those different strategies. In 
this paper we use an objective payoff function to integrate 
into a single score the performance rewards in a tracking-
while-typing dual-task situation. Such payoff functions have 
been used before in multitask studies, but only to show that 
performance is sensitive to isolated factors such as changes 
in reward structure (e.g.,Wang, Proctor, & Pick, 2007). 
Objective payoff functions have not previously been used to 

support explanations of multitasking strategy choices, or to 
assess the optimality of strategies.  

Combined with a cognitive model that can perform 
alternative multitasking strategies (i.e., alternatives for when 
to interleave and execute multiple tasks), a payoff function 
enables an evaluation of the success of each of the strategies 
(Howes, Lewis, & Vera, 2009). Strategies with the highest 
payoff can be determined and compared with human 
performance in experimental settings. This can be used to 
explain the strategic choices participants make.  

We developed a tracking-while-typing dual-task to test 
the hypothesis that people can hone their dual-task behavior 
to maximize the payoff that is achieved. The task required 
participants to keep a randomly moving cursor inside a 
circular area and to type a string of digits. Tracking tasks 
have been used in several multitasking studies (e.g., Gopher, 
1993; Hornof, Zhang, & Halverson, 2010; Kieras, Meyer, 
Ballas, & Lauber, 2000; Lallement & John, 1998; Salvucci 
& Taatgen, 2008). For example, Gopher (1993) showed that 
performance trade-offs in a tracking-while-typing task can 
be influenced by instructions to spend more time on one of 
the tasks. Within the cognitive modeling literature, the work 
by Lallement and John (1998) is interesting as it compares 
performance of models developed in several cognitive 
architectures on a tracking and choice task. We attempt to 
extend this work by showing how a payoff function enables 
us to bind normative cognitive models with experimental 
observations of multitasking behavior, and specifically, to 
show how multitasking strategy choice can be better 
explained by seeing it in relation to optimal performance.  

Experiment 

Method 
Participants Eight participants (4 female) between 20 and 
35 years of age (M = 23 years) from the subject pool at UCL 
participated for monetary compensation. Payment was based 
on performance (details are provided in the Materials 
section). The total payment achieved by participants ranged 
between £7.13 and £11.45 (M = £9.14).  
Materials The dual-task setup required participants to 
perform a continuous tracking task and a discrete typing 
task, presented on a single monitor. Figure 1 shows the 
layout of the tasks on the display. The typing task was 
presented on the left side and the tracking task on the right. 
Each task was presented within a 450 x 450 pixels area, 
with a vertical separation of 127 pixels between the tasks.  
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The tracking task required participants to keep a square 
cursor that drifted about the display in a random fashion 
inside a target circle  (see Figure 1). The cursor was 10 x 10 
pixels and the target had a radius of either 80 (small target) 
or 120 pixels (large target). A random walk function was 
used to vary the position of the cursor in the display every 
20 milliseconds. The rate at which the cursor drifted about 
the display was varied between different experimental 
conditions. In a low noise condition the random walk had a 
mean of zero and standard deviation of 3 pixels per update, 
while in a high noise condition the random walk had a mean 
of zero and standard deviation of 5 pixels per update.   

Participants used a Logitech Extreme 3D Pro joystick 
with their right-hand to control the position of the cursor in 
the tracking display. The drift function of the cursor was 
suspended whenever the joystick angle was greater than 
0.08 (the maximum angle was 1). The speed was scaled by 
the angle, with a maximum of 5 pixels per 20 milliseconds.  

The typing task required participants to enter a string of 
twenty digits using a numeric keypad with their left-hand. 
The string was made up of the digits 1 to 3, where each digit 
occurred at least six times in a given sequence. Digits were 
presented in a random order with the constraint that no 
single digit was presented more than three times in a row in 
the sequence (e.g., “11233322132123132123” as in Figure 
1). When a digit was entered correctly it was removed from 
the to-be-entered sequence. In this way, the left-most digit 
on the display was always the next one to be entered.  

The study used a forced interleaving paradigm, in which 
only one of the two tasks was visible and could be worked 
on at any moment. By default the typing task was visible 
and the tracking task was covered by a gray square. In order 
to see and control the tracking task, participants had to hold 
down the trigger of the joystick. When the trigger was 
released, the tracking task was covered by a gray square and 
the typing task revealed.  
Design The study manipulated aspects of the tracking task 
using a 2 (cursor noise: low vs. high) x 2 (target size: small 
vs. large) within-subjects design. The main dependent 
variables were the time required to complete the typing task 
and maximum distance of the cursor from the center of the 
target circle.  

Participants were remunerated based on performance, as 
determined by an objective payoff function that was 
calculated for each dual-task trial. The function was 
designed to encourage fast completion of the typing task, 
while keeping the cursor inside the target. The payoff (in 
pounds) for a given trial was defined as: 

 
Payoff = Gain + Digit Penalty + Tracking Penalty 

 
The minimum payoff for a given trial was limited to £-0.20. 
The gain component was based on the total time required to 
complete a dual-task trial (in seconds): 
 

Gain = 0.15 * e
-1*TotalTrialTimeInSec/20 + 0.25 

 

This function was determined using pilot studies, to make 
sure participants mostly gained money. To encourage 
accurate typing, a digit penalty deduced £0.01 from the total 
payoff whenever an incorrect digit was entered. To 
encourage participants to keep the cursor inside the target 
circle of the tracking task, a tracking penalty was applied: 

 
Tracking Penalty =  - 0.1*eSecOutside/1.386 - 0.6931 
 
This penalty was crafted such that £0.10 was lost when 

the cursor was outside of the radius for 0.5s, and £0.20 was 
lost when it was outside of the radius for 1s. In the 
remainder of this paper we will not look at the effect of digit 
penalty on payoff. 
Procedure Participants were informed that they would be 
required to perform a series of dual-task trials and that they 
would be paid based on their performance. A participant’s 
payment was based on the cumulative payoff over the 
course of the study, in addition to their base payment of £3. 
Participants were told that they would gain more points by 
completing the typing task as quickly as possible, but that 
they would lose points if they made a typing error or if the 
cursor drifted outside of the target area in the tracking task. 
We chose not to give participants a formal description of the 
payoff function, but instead provided explicit feedback after 
every dual-task trial with the payoff score achieved. 

After explaining how to perform each of the tasks 
participants performed two single-task training trials for 
each task and two dual-task practice trials. Participants were 
instructed that for dual-task trials only one of the two tasks 
would be visible and controllable at any moment in time, 
and they were instructed how to switch between tasks.  

Participants then completed four blocks of experimental 
trials (one for each experimental condition). The order of 
conditions was randomized and counter-balanced across 
participants, with the exception that blocks of the same 
noise level were grouped together. The order of radius sizes 
was repeated across the first two blocks and the second two 
blocks.  For each block, participants completed five single-
task tracking trials, five single-task typing trials, and twenty 
dual-task trials. The dual-task trials were further grouped 
into sets of five trials, with a short pause between each set. 
The total procedure took about one hour to complete. 

Figure 1: Position of the two tasks in the interface 
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Results 
We focus on performance during the last five dual-task 

trials of each experimental condition, as these reflect a 
period during which the participant has had time to adapt 
behavior to the objective payoff function. A 2 (cursor noise) 
x 2 (target size) analysis of variance (ANOVA) was used for 
all statistical analysis with a significance level of .05.  
Overall performance We first consider the effect of 
varying aspects of the tracking task on the time required to 
complete the typing task and the maximum distance of the 
cursor from the center of the target circle in the tracking 
task. It was found that trial time was significantly longer 
when there was greater noise in the tracking task (M = 
11.17s, SD = 4.32s) than when there was a lower level of 
noise in the tracking task (M = 7.51s, SD = 2.00s), F(1, 7) = 
15.07, p < .01. Trials were also longer when the target in the 
tracking task was smaller (M = 10.59s, SD = 4.01s) than 
when it was larger (M = 8.09s, SD = 3.22s), F(1, 7) =11.84, 
p = .01. There was no significant interaction, F(1, 7) = 0.22.  

In the tracking task we consider the maximum distance of 
the cursor from the center of the target over the course of a 
trial. It was found that the cursor drifted more when there 
was a higher level of noise  (M = 95 pixels, SD = 15 pixels) 
than when there was a lower level of noise  (M = 61 pixels, 
SD = 8 pixels), F(1,7)=33.42, p < .001. There was no effect 
of target size on the maximum distance that the cursor 
drifted over a trial (F(1,7) = 1.19, p = .31), nor was the 
interaction effect significant (F(1,7) = 0.07).  

These differences in overall task performance between 
conditions are somewhat expected and unsurprising because 
they partly reflect differences in the difficulty of the 
tracking task. We were far more interested in how this 
performance was achieved. We next consider the dual-task 
interleaving strategy that was adopted in each condition.  
Strategies Two aspects determine a strategy: (1) the number 
of digits typed during each visit to the typing window and 
(2) the amount of time spent in the tracking window per 

visit to this window. Figure 2 shows these two basic 
strategy dimensions for each of the four conditions. It can be 
seen that for each experimental condition there is a unique 
point in this strategy space – strategies differ between 
conditions. The number of digits entered per visit increased 
with an increase in target size (F(1, 7) = 17.4, p < .01), and 
it also increased with a decrease in cursor noise (that is, 
more digits were typed when it took longer for the cursor to 
cross the boundary; F(1, 7) = 15.18, p < .01). There was no 
significant interaction (F(1, 7) = 3.24, p = .12).    

It can also be seen in Figure 2 that the time spent in the 
tracker window per visit increased with an increase in the 
noise associated with the cursors movement (F(1,7)=14.98, 
p = .01). An interaction effect was present as visit time was 
particularly short in the low noise, large radius condition 
(F(1,7)=11.55, p = .01). There was no significant effect of 
radius (F(1,7)=0.54).  

A CBRA Model of Tracking-while-Typing 
The results show that participants adapted their dual-task 

behavior to changes in the difficulty of the tracking task. 
However, what these results do not show is whether 
participants were adopting a strategy that is optimal in terms 
of maximizing the expected payoff that could be achieved in 
each condition. To answer this question we developed a 
cognitively bounded rational analysis model (Howes, et al., 
2009). This framework is particularly useful for comparing 
the performance of alternative strategies, allowing strategies 
to be discriminated based on the payoff achieved. The 
model developed here is inspired by our previous work in 
developing models of a dialing-while-driving dual-task set-
up (e.g., Brumby, Salvucci, & Howes, 2007; Brumby, et al., 
2009; Janssen & Brumby, in press). Both dual-task 
environments share core characteristics, but the current 
work differs in that it incorporates an explicit payoff 
function against which various dual-task interleaving 
strategies can be evaluated.  In the next section, we use a 
model to determine whether people were selecting strategies 
that would maximize the financial payout that could be 
achieved in each condition.   

Model Development 
Tracking Model The crucial question for developing a 
model of the tracking task was at what angle participants 
held the joystick given their current distance from the center 
of the target. Figure 3 shows the mean values for discrete 
bins of 5 pixels for the horizontal axes (vertical data is 
similar). We fitted a linear function (shown as a dotted line): 

 
Angle = -0.01 * current distance from target 
 
The joystick had a maximum angle of (-)1. As in the 

experiment, the speed of the cursor is calculated by 
multiplying the angle of the joystick with a value of 5 
pixels. Speed is calculated once every 250 milliseconds of 
tracking, and the cursor position is updated every 20 
milliseconds based on this speed value. As in the 

☐  low noise, small target 
Ο   low noise, big target 
Δ   high noise, small target 
  high noise, big target 

Figure 2: Number of digits typed and tracking time, 
both per visit. Error bars depict standard errors.  
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experiment, the cursor could only be controlled when the 
tracking window was open. The total time spent tracking in 
dual-task was varied as part of the strategy (see below). 
Typing Model To model the typing task we fitted model 
performance to human single-task typing performance data. 
The time taken to type a digit (260 milliseconds) is identical 
to the mean inter-keypress interval measured in single-task.  
Dual-Task Model The dual-task model works as followed. 
The model starts of with typing a series of digits (the length 
of which is varied as a strategy). For switching between 
typing and tracking a switch cost of 250 milliseconds is 
incurred, based on experimental data (time between last key 
press and pressing the trigger on the joystick: 247 
milliseconds). The model then tracks the cursor for a 
designated amount of time (varied between runs as a 
strategy aspect). When it switches back to typing, a switch 
cost of 180 milliseconds is incurred (time between releasing 

the trigger and pressing the first key press minus single task 
inter-keypress interval: 185 milliseconds). Noteworthy, 
switch cost values are close to those in ACT-R models (e.g., 
Borst, Taatgen, & Van Rijn, 2010) and in the Cognitively 
Bounded Rational Analysis driving models. 
Strategies We used this basic model to explore performance 
of a variety of strategies. A strategy is determined by the 
number of digits that are typed in sequence during a visit to 
the target window. We consider only a subset of twenty 
simple strategies that placed a consistent number of digits 
during each visit (between 1 and 20), with the exception of 
the last visit during which the remaining digits were placed 
(e.g., strategy 6-track-6-track-6-track-2, but not 6-track-4-
track-6-track-4). In addition, for each visit to the tracking 
task, more or less time can be spent on tracking. We 
systematically explored performance for models that spent 
between 250 to 3000 milliseconds on tracking during each 
visit to the tracking window, using steps of 250 milliseconds 
(i.e., 12 alternatives). This gave a total of 229 (20 x 12 – 11) 
strategy alternatives.  

The objective function for rating performance is similar as 
in the experiment with the exception that the model does not 
make typing errors. For each strategy alternative 100 runs 
were performed. Mean performance is reported. 

Model Results 
The first question of interest was whether the model 

would fit the experimental data. In particular, if we 
hardcode a strategy that types the same number of digits per 
visit and spends about the same amount of time tracking as 
participants did in each condition (with both measures lying 
within two standard errors of human means), does this then 

Figure 3: Angle of the joystick as a function of distance 
from the target. The dashed line shows a fitted function.  

Figure 4: Maximum deviation versus predicted payoff per trial for the ten best (black crosses), and other strategies (gray 
crosses) per condition. Human results are shown as circles with standard error. The dotted line shows the target boundary.  

Low Noise, Small Target Low Noise, Large Target 

High Noise, Small Target High Noise, Large Target 
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result in similar total trial time and maximum deviation in 
each experimental condition (again with performance within 
two standard errors of the mean)? This is important so as to 
know that we have a reasonable calibration of the model’s 
performance relative to the human data. This was the case. 

Given that we can be confident that the model is 
reasonably calibrated to the human data on the observed 
strategy, we can now use the model to evaluate the payoff 
achieved by different (unobserved) dual-task interleaving 
strategies. Figure 4 shows a plot of the average maximum 
deviation versus payoff. We plotted the ten highest scoring 
strategies with black crosses, and the other strategies with 
gray crosses. In each condition there is a strong peak, 
though the shape of the distribution of scores differs 
between experimental conditions. In three out of four 
conditions the human data (black circles) lies in the region 
of maximum deviations that can achieve the highest 
performance. In each figure a vertical line shows the 
boundary of the target. Note that in the low noise, large 
radius condition participants could have let the cursor drift 
more to improve their score slightly (they would never cross 
the target boundary). Due to space limitations, we omitted a 
plot of total time data versus score; the pattern is similar. 

Traditionally, differences in dual-task performance are 
plotted in Performance Operating Characteristics (POCs), in 
which performance on one measure or task is shown against 
performance on the other measure or task (Navon & 
Gopher, 1979; Norman & Bobrow, 1975). In Figure 5 we 
show the POC of total time and maximum deviation for the 
model and human data. The ten best performing strategy 
alternatives are again plotted with black crosses. There are a 
couple of interesting aspects to these graphs. First, the best 

performing models lie on the outer edge (left side, and 
bottom side) of the strategy space: the trade-off curve. That 
is, the best strategies make an optimal trade-off between 
performance on the two tasks. Furthermore, the position of 
the optimum strategies is at a different section (e.g., top left, 
or bottom right) of this curve for each condition.  The model 
is essential for this assessment, as traditional POCs cannot 
predict optimal regions by themselves.  

Human data again lies in the region of optimum payoff 
for three out of four conditions. Only in the low noise large 
target condition could participants have scored better by 
spending less time on the tracking task (increasing 
maximum deviation, but decreasing trial time). In all other 
conditions, the model illustrates that participants made good 
performance trade-offs to optimize their payoff. 

General Discussion 
In this paper we have presented an experiment and a 

model of a tracking-while-typing dual-task setup. A good 
feature of the task environment, in which participants need 
to track a cursor and type in digits, is that it translates 
performance on both tasks into a single performance score. 
Due to this feature, we were able to move beyond 
observations that participants trade-off performance in tasks, 
as done in classical dual-task research (Navon & Gopher, 
1979; Norman & Bobrow, 1975) and in research on dual-
task driving behavior (e.g., Janssen & Brumby, in press). 
Here, we were able to demonstrate that participants mostly 
made performance trade-offs in an optimal manner, so as to 
maximize pay-off (cf. Howes et al., 2009).  

These claims are possible because of the use of a payoff 

Figure 5: POCs of model performances for the ten best (black crosses), and other strategies (gray crosses) per condition. 
Human results are shown as circles with standard error. The dotted line shows the target boundary.  

Low Noise, Small Target Low Noise, Large Target 

High Noise, Small Target High Noise, Large Target 
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function that explicitly describes how participants ought to 
trade performance on each task to gain payment. The goal of 
this paper is not to argue that objective functions are the 
most prevalent aspect of performance in the real world. 
However, they make it possible to quantify how good 
performance is. This contrasts with previous work where 
verbal instructions on how to trade performance on each 
task is given (e.g., Gopher, 1993; Horrey, Wickens, & 
Consalus, 2006; Levy & Pashler, 2008), or where 
performance is sensitive to a change in payment (e.g., 
Wang, et al., 2007). In contrast, we can define optimal 
performance in terms of maximizing payoff.   

There was however one condition (the low noise, large 
target condition) in which participants did not maximize the 
payoff that was achieved. In this condition, participants 
could have typed all of the digits in one sequence (i.e., 
without multitasking) to receive a slightly higher payoff 
than was actually observed. Two possible explanations for 
suboptimal performance are that participants overestimated 
the danger of the cursor crossing the boundary (which 
would give a severe penalty), or they were biased to switch 
between the two tasks (which is necessary in the other 
conditions). In this sense, participants not always adapt their 
behavior to maximize the payoff function. Further research 
is required to investigate such biases.  

The model was developed with a minimal set of 
assumptions. This was already enough to demonstrate that 
people mostly adapt performance to an objective function. 
Further research can investigate how people adapt their 
behavior to different payoff functions, which, for instance, 
give greater weight to performance on one of the two tasks. 
Also, the model of the typing task might be refined to 
predict typing errors, and to predict the effect of the 
different times needed to type repeating digits versus non-
repeating digits (cf. Janssen, Brumby, & Garnett, 2010). At 
a different level of analysis, the role of eye-movements can 
be considered to explore a wider variety of strategies (cf. 
Hornof, et al., 2010), such as strategies in which some visits 
to the typing task window are only spent on studying, and 
not typing digits.  
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