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Introduction
Psychological research has demonstrated that subjects shown
animations consisting of nothing more than simple geomet-
ric shapes perceive the shapes as being alive, having goals
and intentions, and even engaging in social activities such
as chasing and evading one another (Blythe, Todd, & Miller,
1999; Heider & Simmel, 1944). While the subjects could
not directly perceive affective state, motor commands, or the
beliefs and intentions of the actors in the animations, they
still used intentional language to describe the moving shapes.
For example, subjects in the Heider and Simmel (1944) study
consistently labeled the larger triangle, shown in Figure 1, as
a bully who harassed the smaller triangle and circle.

Figure 1: Single frame from an animations similar to the orig-
inal Heider and Simmel animation.

When subjects ascribe intentions to geometric primitives
like those shown in Heider and Simmel’s research (see Fig-
ure 1), which information guides the process? Blythe et al.
(1999) showed that the motion of the actors in animations
is sufficient to classify the activities that occur in the anima-
tions. The system generated to perform classification even
outperformed human subjects on the same task.

Blythe’s system mapped patterns of motion onto class la-
bels for intentional states, which isn’t quite the same as know-
ing anything about intentional states. One of Heider and Sim-
mel’s subjects described the larger triangle in Figure 1 as
“blinded by rage and frustration.” Blythe’s system couldn’t
come up with such a description. An agent that classifies
episodes by patterns of motion knows about patterns of mo-
tion, not about rage and frustration, even if these words are
provided as episode labels. So how might an agent infer af-
fective states?

In both the Heider and Simmel animations and the anima-
tions developed by Blythe et al., subjects can only observe a
subset of the features that are available, i.e. positions, veloc-
ities, sizes, colors, etc. The subjects cannot directly perceive
the affective state, motor commands, and the beliefs and in-
tentions of the actors in the animations. Yet they infer af-
fective states and describe them with intentional language.
We think humans infer affective states given non-affective ob-
servables such as positions and velocities by calling on their
own affective experiences. Observables cue, or cause to be re-
trieved from memory, schemas that include learned affective
components, which are inferred or “filled in” as interpreta-
tions of patterns of motion or other non-affective observables.

In this dissertation, we present representations and algo-
rithms that enable an artificial agent to correctly recognize
other agents’ activities by observing their behavior. In addi-
tion, we demonstrate that if the artificial agent learns about
the activities through participation, where it has access to its
own internal affective state, motor commands, etc., it can then
infer the unobservable affective state of other agents.

Activity Recognition
We begin with definitions: An episode is a collection of in-
tervals. Each interval is a tuple containing a proposition and
the times at which the proposition becomes true and false. A
proposition can become true (and false) multiple times within
an episode; each of these instances is represented as a sepa-
rate interval. Each episode is given a class label and is a single
example of an activity. In the activity recognition task we are
given a collection of episodes for training, and then tested on
episodes that were not part of the training set.

We assume that different examples of one activity share
patterns of intervals. More colloquially, the intervals in sim-
ilar episodes tell the same story with minor variations. Thus,
one may classify episodes by their constituent patterns of in-
tervals. This is not the only way to do it: A cleaning agent
might classify a cleaning episode by the objects it interacts
with, such as pots and pans, rather than what was done with
the pots and pans. But our focus here is classifying episodes
by patterns of activities, represented by intervals.

Episodes and intervals have different durations, start times,
end times, and constituent propositions, so our representation
of episodes must be able to accommodate and generalize over
these variations. For example, the activity “capture” involves
one agent chasing another agent until the second agent is cor-
nered or held in a single place. The participants might be
a prisoner and a guard or some other pair of agents, and the
amount of time spent chasing can vary from minutes to hours,
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but all episodes share the same common pattern: One actor
chasing another until the other agent is cornered or caught.

Relationships between intervals can be described by Allen
relations (Allen, 1983). Allen recognized that, after eliminat-
ing symmetries, there are only seven possible relationships
between two intervals. Allen relations are qualitative in the
sense that they represent the temporal order of events, specif-
ically, the beginnings and endings of intervals, but not the
durations of intervals.

Our episode representation, which we call a qualitative se-
quence, is a sequence of Allen relations between intervals in
the episode. We construct the sequence by combining the
Allen relations between all of the pairs of intervals in the
order in which the Allen relation completes. An illustrative
episode and the resulting qualitative sequence is shown in Ta-
ble 1. The letters A, B and C denote propositions, and an
assertion such as (C 1 3) means that proposition C was true
in the interval [1,3].

Intervals Sequence
(C meets A)

(C 1 3) (C before B)
(A 3 6) (A overlaps B)
(B 4 9) (C before C)
(C 6 10) (A meets C)

(B overlaps C)

Table 1: An episode comprising four intervals and the corre-
sponding qualitative sequence.

Episodes are first converted into qualitative sequences of
Allen relations and learning is done with these sequences. Let
S = {S1,S2, . . . ,Sk} be a set of qualitative sequences with the
same activity label. We define the signature of the activity
label, Sc, as an ordered sequence of weighted Allen relations.
(The only difference between a signature and a qualitative
sequence is these weights.) We select a sequence at random
from S to serve as the initial signature, Sc, and initialize all
of its weights to 1. After this, Sc is updated by combining it
with the other sequences in S , processed one at a time.

Two problems are solved during the processing of the se-
quences in S . First, the sequences are not identical, so Sc
must be constructed to represent the most frequent relations
in the sequences. The weights in Sc are used for this pur-
pose. Second, because a relation can appear more than once
in a sequence Si, there can be more than one way to align Si
with Sc. These problems are related because the frequencies
of relations in Sc depend on how sequences are successively
aligned with it.

Updating the signature Sc with a sequence Si occurs in two
phases. In the first phase, Si is optimally aligned with Sc
using the Needleman-Wunsch global sequence alignment al-
gorithm (Needleman & Wunsch, 1970). The alignment al-
gorithm penalizes candidate alignments for relations in Sc
that are not matched by relations in Si, and rewards matches.

These penalties and rewards are functions of the weights
stored with the signature. In the second phase, the weights in
the signature Sc are updated. If a relation in Si is aligned with
one from Sc, then the weight of this relation is incremented
by one. Otherwise the weight of the relation is initialized to
one and it is inserted into Sc at the location selected by the
alignment algorithm.

The signatures function as classifiers as follows. Recall
that S = {S1, . . . ,Sk} is a set of qualitative sequences with
the same activity label; for example, all the sequences in S
might be examples of jump over. Now suppose we have N
sets of qualitative sequences, Σ = {S 1,S2, . . . ,SN} each of
which has a different activity label, and its own signature.
A novel, unlabeled sequence matches each signature to some
degree, determined by aligning it with each signature, as de-
scribed earlier. The novel sequence is given the activity label
that corresponds to the signature it matches best.

Inferring Hidden State
Episodes have observable and unobservable propositions de-
pending on which agent is doing the observing. For exam-
ple, when agent1 is chasing agent2, agent1 observes all of
the propositions pertaining to its motor commands, emotional
state, and intentional state, but when agent1 observes agent3
chasing agent2, agent1 cannot perceive the motor commands,
emotional state, and intentional states of agent2 nor agent3.

By hidden relations we mean relations that include one
or more propositions that are not directly observable in the
behavior of other agents, and so must be inferred. Our ap-
proach to inferring hidden relations is to have agents learn
signatures of their own behaviors, in which these relations
are not hidden. Then, when an agent observes another’s be-
havior, it matches the observable relations to signatures of its
own behavior, and uses these to infer unobservable relations
in other’s behavior.

In general, sequences can contain many hidden relations.
The most frequent are the most likely when observing other
agents. Therefore, our agent selects the most frequently oc-
curring hidden relations to be the inferred hidden state.

References
Allen, J. F. (1983). Maintaining knowledge about temporal

intervals. Communications of the ACM, 26(11), 832–843.
Blythe, P. W., Todd, P. M., & Miller, G. F. (1999). How

motion reveals intention: Categorizing social interactions.
In Simple heuristics that make us smart. Oxford University
Press, USA.

Heider, F., & Simmel, M. (1944). An experimental study of
apparent behavior. The American Journal of Psychology,
57(2), 243.

Needleman, S. B., & Wunsch, C. D. (1970, March). A gen-
eral method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of Molecular
Biology, 48(3), 443-453.

312




