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Abstract 

In this paper, we describe a high-level behavior representation 
language (Herbal) and report new work regarding Herbal’s 
ACT-R compiler.  This work suggests that Herbal reduces 
model development time by a factor of 10 when compared to 
working directly in Soar, ACT-R, or Jess. We then introduce 
a large ACT-R model (541 rules) that we generated in 
approximately 8 hours. We fit the model to learning data.  
The comparison indicates that humans performing 
spreadsheet tasks appeared to start with some expertise.  The 
comparison also suggests that ACT-R, when processing tasks 
consisting of hundreds of unique memory elements over times 
spans of twenty to forty minutes, may have problems 
accurately representing the learning rates of humans.  In 
addition, our study indicates that the spacing between learning 
sessions has significant effects that may impact the modeling 
of memory decay in ACT-R.       
 

Introduction 
In this paper, we discuss the rapid development of user 
models capable of dynamically representing behavioral 
constraints.  Pew and Mavor (eds., 2007) advise using such 
user models as a shared representation meant to identify, 
predict, and when possible, mitigate risks. These 
representations are of various kinds (qualitative, 
quantitative, analytical, computational), and can describe 
interactions operating within or across multiple levels of 
analysis. These models in their various forms have proven 
useful in predicting and preventing significant losses 
whether human (e.g., Byrne & Kirlik, 2005; Pew & Mavor, 
2007) or monetary (e.g., Gray, John, & Atwood, 1993) or 
both (e.g., Booher & Minniger, 2003).  

There is a rich literature in user models. Classic user 
studies beginning with Card, Moran, and Newell’s (1983) 
book have often represented psychological/behavioral 
constraints using the GOMS model; analyzing user behavior 
in terms of goals, operators available for accomplishing 
those goals, routinized sequences of behavior or methods, 
and rules for the selection of methods for instances where 
multiple methods apply. Grey et al. (1993) extended and 
validated the GOMS model through an empirical study of 
telephone operators working for the New England 
Telephone Company, introducing CPM-GOMS. The 
success of later-implemented versions of the GOMS model 

(John & Kieras, 1996; Kieras, Wood, Abotel, & Hornof, 
1995), TAC-AIR Soar (Jones et al., 1999), and of embodied 
cognitive architectures generally (Byrne, 2001; Byrne & 
Gray, 2003; e.g., Ritter & Young, 2001; St. Amant, Horton, 
& Ritter, 2007) has intensified interest in agent-based user 
models for testing interfaces and for working in simulations 
as opponents and colleagues.   

On the other hand, these efforts have been stymied in part 
by the significant integration costs and the detailed level of 
specification required by existing cognitive architectures to 
create models. While one of cognitive modeling’s great 
strengths is its demand for computational entailment, the 
low-level abstractions required by mature cognitive 
architectures such as Soar and ACT-R have frequently 
proven expensive to create, resulting in a fewer models 
being created. Furthermore, these models have often proven 
difficult to maintain, extend, or merge (Pew & Mavor, 1998; 
2007; Ritter et al., 2003).   

Recognizing these issues, developers in recent years have 
released both re-implemented versions of Soar and ACT-R 
in Java that may be easier to integrate into systems, as well 
as creating high-level cognitive modeling languages that 
seek to provide a common framework and formal language 
for a variety of essentially similar cognitive modeling tasks 
(a review is available, Ritter et al., 2006). In the next 
section, we will briefly review these efforts before 
introducing Herbal (High-Level Behavior Representation 
Language). We will then discuss recent work on Herbal’s 
ACT-R compiler and a large learning model we have 
generated and tested before concluding.   

Related Work 
Cognitive architectures realized as programming languages, 
as noted above, have operated at low-levels of abstraction, 
and consequently have made developing, implementing, and 
comparing cognitive models difficult. Two general 
approaches have emerged to address this problem, the 
reimplementation of existing languages and the 
development of high-level cognitive languages for these 
architectures. We will describe both briefly before 
discussing Herbal. 
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Re-implementing cognitive modeling languages 
Reimplementation of existing cognitive languages into 
newer object-oriented languages offers several advantages:  
(a) smoother integration into systems created in those 
widely used languages, such as Java, supported by extensive 
libraries and tools; (b) a perceived and sometimes greater 
degree of implementation modularity, and thus the ability to 
more easily investigate changes and extensions to existing 
cognitive architectures; and (c) the opportunity to make 
comparative analyses, and thus discern the effect that 
previous implementation choices as opposed to theoretical 
commitments have had on the language in question.  
jACT-R (Harrison, 2002) and jSoar (Ray, 2009) have both 
contributed interesting comparative analyses, offer an array 
of GUI based debugging and organizational tools, and can 
increasingly support ongoing work in simulations and 
agent-based tools.   

jACT-R and jSoar both rely heavily upon the syntax of 
their parent languages to represent the rules and knowledge, 
limiting their accessibility to some extent. Though Python 
ACT-R (Stewart & West, 2005) eliminates this syntax issue, 
all three languages are at various stages of completeness, 
and none to our knowledge has undergone extensive 
validation through a computational alignment or docking 
study (Axtell et al., 1996) or similar means (e.g., Burton, 
1998; Louie, Carley, Haghshenass, Kunz, & Levitt, 2003). 
In addition, re-implemented cognitive modeling languages 
are neither able to support the comparative analysis of 
models across cognitive architectures, nor the fine-tuning of 
architectures at a constant high-level of abstraction. Thus, 
high-level cognitive modeling languages are attractive. 

High-level cognitive modeling languages and 
approaches 
High-level cognitive languages use abstractions to 
generalize common structures and processes found in 
existing cognitive architectures. These persistent 
commonalities are evident when one considers defining a 
high-level knowledge representation, building a structured 
task analysis, or implementing a decision cycle 
characterized by the perceive-decide-act mechanism 
(Newell, Yost, Laird, Rosenbloom, & Altmann, 1991). 
Cognitive architectures’ shared dependence upon least 
commitment (or the making of control decisions at every 
decision point) and associative encoding (or the associative 
retrieval of potential courses of action and a conflict 
resolution process for choosing between solution paths) 
entail a set of core commonalities from which to abstract.  
The commonalities include: a declarative memory structure 
and retrieval method, goals, procedural memory frequently 
used for the achievement of those goals, mechanisms for 
responding to external events, and a iterative decision 
process (Jones, Crossman, Lebiere, & Best, 2006). 

Where these approaches differ is in their representation 
structures. We will briefly summarize two existing 
candidate approaches for modeling more complex cognitive 
models: Jones et al.’s (2006) High Level Symbolic 

Representation Language (HLSR), and Herbal, a High-
Level Behavior Representation Language (Cohen, Ritter, & 
Haynes, in press; Haynes, Cohen, & Ritter, 2009).   

HLSR uses three primitives (relations, transforms, and 
activation tables) to derive micro-theories for representing 
cognitive architectures (and by extension, cognitive 
theories). Herbal characterizes common cognitive modeling 
tasks such as task analyses and problem solving using an 
ontology based upon the Problem Space Computational 
Model (PSCM, Newell et al., 1991). Each of these 
approaches is promising; each potentially allows for 
comparative analysis across architectures; and each, if fully 
developed, could promote model reuse across a diverse 
community of users. 

Herbal’s user focus, however, is unique in this area.  
HLSR supports both Soar and ACT-R, but is not yet 
available outside of its developers, and has, to our 
knowledge, not undergone either a docking or a usability 
study. Herbal, in contrast, is open source; supports three 
cognitive architectures across a set of common cognitive 
modeling tasks (Soar, ACT-R, and Jess); has undergone two 
usability studies (Cohen 2008; Cohen, Ritter, & Haynes 
2009); has been used to create several models; and is 
currently undergoing a docking study. Next, we will 
describe Herbal and work related to Herbal more fully, 
focusing on Herbal’s implications for HCI and the more 
rapid creation of user models.   

Herbal 
Herbal is based on the PSCM (Newell et al., 1991).  
Herbal’s ontological representation defines behavior as the 
movement of operators modifying states, as well as 
movement through problem spaces. Within this framework, 
behavior is divided into bands of activity operating across 
three time scales: the elaboration cycle (10 ms), the decision 
cycle (100 ms), and activity occurring within a problem 
space (1 s). The elaboration cycle describes the process by 
which an agent modifies its state representation through the 
associative retrieval of information. The decision cycle in 
turn consists of repeated cycles of elaboration that persist 
until quiescence, or until no further productions can be fired. 
The levels of elaborations are, for the most part, hidden in 
and by Herbal.   

The agent makes decisions based upon its state 
interpretation and preferences, choosing either a unique 
operator (actions capable of transforming the state) or 
generating an impasse if an operator cannot be selected due 
to insufficient knowledge. Agents resolve impasses by 
generating sub-states that enable the agent to retrieve the 
information necessary to specify the next operator. Problem 
spaces are thus representations describing a sequence of 
decisions (or a search in the event of limited knowledge) 
that can be further defined in terms of goals, states, and 
operators.  

Herbal’s ontology characterizes behavior in terms of 
classes that represent concepts such as states, operators, 
elaborations, impasses, conditions, actions, and working 
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memory. These classes furthermore entail basic 
relationships for instance—states can contain impasses, 
working memory, operators, elaborations, and other states 
while operators and elaborations can contain zero or more 
conditions and actions. Programming in Herbal thus 
involves instantiating objects using these ontological 
classes. Herbal also supplies additional attributes that enable 
future developers to discern the intent motivating creation of 
a given object, supporting models that in essence explain 
themselves (Haynes, Cohen, & Ritter, 2009).    

The Herbal/ACT-R compiler 
We have created an initial version of an ACT-R compiler in 
Herbal. Although several easy-to-use frameworks exist to 
develop ACT-R models: CogTool (John, Prevas, Salvucci, 
& Koedinger, 2004), ACT-Simple (Salvucci & Lee, 2003), 
and G2A (St. Amant, Freed, & Ritter, 2005), these tools 
cannot represent models of greater complexity than KLM-
GOMS or GOMS models. 

To support modeling in ACT-R, we added a declarative 
memory component to the Herbal environment because 
ACT-R uses declarative memories. With this component, 
we were able to also add hierarchical and sequential tasks to 
an ACT-R model—the relations among tasks are shown in a 
tree form in the user interface. Herbal then makes memories 
and production rules based on these relationships. 
Furthermore, to explore the flexibility of the high-level 
compiler, we added an ACT-R parameter pane. Through 
this pane, users can generate either a novice ACT-R model 
or eleven kinds of expert ACT-R models with varying 
degrees of expertise ranging from 0% to 100%.  

The Herbal/ACT-R compiler takes the PSCM 
representation in Herbal and creates an ACT-R model from 
it. The compiler also uses these parameters to determine 
how to compile the model: as a novice, an expert, or 
somewhere in between. When implementing a task, we 
represented the level of expertise, or degree of 
proceduralization, as corresponding to the percentage of 
declarative memory retrievals necessary to complete the 
task. We then distinguished novice from expert models by 
this percentage. Novice models, in this framework, have no 
information regarding the next task step in procedural 
memory, and thus must retrieve each step from memory, 
whereas the expert models have the next task step 
incorporated as part of the operation. Novice models thus 
provide the maximum anticipated completion time while 
normative expert models (described below) provide the 
hypothetical minimum time. 

Distinguishing novice from expert, we further divided 
expert models into two types: (a) normative experts, models 
where all the declarative memory elements for the task have 
been compiled into procedural knowledge, and 
(b) practicing experts, models that exhibit varying degrees 
of proceduralization. Models exhibiting 100% expertise 
(normative experts) provide a baseline, and do not use 
memory elements in declarative memory to perform the task 
because we assume that and the model has these elements 

fully proceduralized. Models ranging between 0% and 90% 
expertise (practicing experts) have a proceduralized task 
structure, but the number of declarative memory retrievals 
to walk the task structure varies. For example, if a model 
should be represented as having 10 declarative memories 
(DMs), the 0% expertise model would have 10 DMs while 
the 10% expertise model would have 9 DMs and 1 rule, and 
so on. Practicing expert models thus provide us a basis for 
making useful comparisons with the human data by 
providing incremental predictions of performance based 
upon expertise, and perhaps enable us to isolate the 
participants’ actual average level of expertise at the onset of 
the trial.  

A test of the Herbal/ACT-R compiler 
To explore the Herbal ACT-R compiler, we implemented an 
ACT-R model using Herbal and compared the performance 
times with practice provided by the model with those of 
human participants performing the same series of tasks. 

The Dismal spreadsheet task 
We next provide a brief description of the participant data 
before discussing the model and its implications. For the 
purposes of examining variance in retention rates over time, 
Kim (2008) devised a sequential spreadsheet task consisting 
of 14 subtasks that participants learned using one of two 
different modalities (keyboard or vertical mouse). In 
addition, Kim examined what if any influence training 
intervals have on retention rates by comparing the 
performance of participants undergoing training at 6, 12, 
and 18-day retention intervals. These results are discussed in 
a forthcoming publication.   

For this comparative analysis, we used a subset of Kim’s 
data, modeling the decline in task completion times for all 
14 subtasks over a four training sessions. Over the training 
iteration’s time course (about 30-45 min. per session), Kim 
found that the average task completion time for participants 
(N = 30) using a vertical mouse to perform the spreadsheet 
task ranged from 1,366 s (SE = 60.76 s) on day 1 to 655 s 
(SE = 22.81 s) by day 4. 

The change in performance over the four-day trial is as 
anticipated, a relationship between performance and practice 
(

€ 

y =1339.7x−0.5, 

€ 

R2 = 0.99) that follows the power law of 
learning. Examining the curve’s progression, one also sees 
the final value is similar to the anticipated KLM-GOMS 
(Card, Moran, & Newell, 1983) value of 797.14 s for expert 
performance. 

Modeling the Dismal spreadsheet task 
Paik and Kim, working collaboratively, implemented the 
spreadsheet task model in ACT-R in four hours using 
Herbal. The resulting novice model consists of 9 rules and 
542 declarative memory elements; the fully expert model 
consists of 541 ACT-R rules and no declarative memory 
elements; and the intermediate, practicing expert models 
interpolate between these two models. For example, the 
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50% expert model has 271 declarative memory elements 
and 541 ACT-R rules, and the 0% expert model has 542 
declarative memory elements and 541 ACT-R rules.  

The rate of development using Herbal was about 0.9 
minutes per rule (240 minutes x 2 programmers/541 rules) 
in the expert model.  This is approximately 20 times faster 
than writing in Soar (assuming that an ACT-R rule is 
approximately the size of two Soar rules to propose an 
operator and then to implement it), and also about 5 times 
faster than rates reported by Yost (1992) using TAQL 
(again, assuming that the ACT-R rules are larger).  
Unfortunately, we know of no comparative usability studies 
for ACT-R, but we suspect that Herbal also accelerates the 
rate of developing ACT-R models.   

Results 
Running the 12 models in ACT-R 6, we confirmed that the 
novice, expert, and intermediate models perform the task. 
We compared the performance rates over time provided by 
the model with those of human participants performing the 
same task. (In addition to the ACT-R model’s times, we 
added interaction times for mouse moves and key presses). 
All the models also learn, with the novice models learning 
the most and the expert model the least. The predicted times 
are comparable both to the GOMS and KLM models, and to 
the data collected by Kim (2008).   

Because the data was taken over multiple trials, the 
comparison becomes more interesting because we can use 
the model to predict the participants’ levels of expertise at 
the onset of the first trial. By comparing the learning curves 
of the model with that of the 40 participants who performed 
the Dismal spreadsheet task (as depicted in Figure 1), we 
found that human completion times for the first trial 
corresponded with an expertise level of 20%, 60% at trial 2, 
80% at trial 3, and a gradual increase up to full expert by the 
fourth trial. We thus see that the human performance data 
represents a faster learning curve than that displayed by any 
of the ACT-R models.   

The difference between the two curves indicates that the 
model’s learning rate remains too slow, as opposed to the 
participants’ expertise being either too high or too low to be 
matched. Though the learning displayed by the model is 
already surprisingly fast and robust, these results suggest 
not only that the model will have to learn faster but also that 
it may have to include a new learning mechanism. For 
example, the learning rate exhibited by the human data 
between the first and second trials shows a sharp decline, 
meaning that the participants acquired more knowledge in 
the first trial than the model, and that this learned 
knowledge was already sufficiently activated to use for 
performing the task. The current Herbal/ACT-R models, in 
contrast, predict a more gradual learning curve. While the 
existing model includes declarative strengthening and 
procedural learning, another type of learning or stronger 
parameters on the existing learning mechanisms may be 
necessary. 

 

Figure 1: The human data shown with respect to the model’s 
learning curves. 

 
The results in Figure 1 suggest further, deeper problems 

as well. ACT-R does not appear to easily support modeling 
declarative memory decay, and the participants’ learning 
sessions were separated by at least a day. If, for example, 
we attempted to model massed training (concentrated 
training blocks), the difference between the model’s 
performance and that of the participants is likely to be have 
been even greater because no memory decay would have 
occurred, and if we modeled the effect of days between 
learning trials, the model would learn more slowly, 
matching the data less well.   

Nevertheless, this model is unique in that we are able to 
begin to conduct these comparative analyses, and perhaps 
may eventually be better able to ascertain the participants’ 
actual initial level of expertise for sequential tasks. Future 
work includes individual data fits, exploring these deep 
problems of decay, and devising ways to achieve faster 
learning.   

Discussion and conclusions:  Implications for 
future user models 

To conclude, we would like to discuss four implications for 
modeling learning. First, the novice model and the expert 
models use different approaches to organize the task 
knowledge that then results in different task completion 
times. Novice models use a tree structure to organize 
declarative memories (each declarative knowledge element 
has a parent, a next-sibling, and a first-child); to walk this 
structure, the model uses a depth-first search approach. All 
the expert models, however, use a sequential representation 
of the declarative memory structure, in other words each of 
the declarative memory elements has its next step, so the 
models can walk through the entire structure by following 
the next step. This is the difference between the top 2 lines, 
novice and 0% expert models, in Figure 1.  

Second, our model’s representation of expertise differs 
from ACT-R.  We represented expertise as a function of 
model’s number of declarative memory elements. For 
example, the 0% expertise model, our novice, has 542 
declarative memory elements while our normative expert 
model (100% expertise) has no declarative memory 
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elements. Consequently (at least as presently compiled), the 
number of retrieved declarative memory elements gradually 
decreases as expertise increases. The normative expert 
model, thus, does not retrieve its declarative memory 
elements to perform the task.  ACT-R, on the other hand, 
represents experts with production compilation (the process 
of generating a new rule by combining two or more rules). 
So, the number of fired rules gradually decreased, but those 
rules still need to retrieve declarative memory to perform a 
task.         

Third, we have presented a high-level cognitive modeling 
language that allows for the rapid development of complex 
user models. As we noted in the introduction, one reason 
why agent-based user models have not been more widely 
adopted is because of the relative difficulty associated with 
developing them. Cognitive architectures such as ACT-R 
and Soar use a low-level knowledge representation language 
that makes developing user models appear intractable to 
non-experts. Herbal, in contrast, is based on the Eclipse that 
is well-known development tool and provides graphical user 
interface, so it enables users to make three different kinds of 
cognitive models, such as Soar, Jess, and ACT-R, more 
easily. In addition, Herbal provides models that explain 
themselves by providing answers to questions that users 
frequently ask (Haynes, Cohen, & Ritter, 2009).   

Nevertheless, we acknowledge that Herbal is far from 
mature, and that we will most likely have to refine our 
ontology further to fully support ACT-R. We also have to 
extend the Herbal/Soar compiler to use the task hierarchy 
pane; and we have yet to compare Soar and Jess models 
developed in Herbal to human data.   

Fourth, the models we have developed with Herbal 
suggest new model types and new uses for models. A model 
(Herbal/Soar/Diag) includes a large number of strategies 
(M. B. Friedrich, 2008; M. B. Friedrich & Ritter, 2009). 
Another model (Herbal/ACT-R/Dismal) is perhaps the 
largest ACT-R model (as measured by rule count) created 
thus far. It is large partially because it performs a non-
repetitive task. Many previous models have performed a 
repetitive task taking minutes to do (e.g., processing 100 
planes). Doing a long non-repetitive task, however, requires 
creating a large knowledge set that has many components 
that are only used once.  

While Herbal remains in some ways a modest step, it 
opens up new modeling approaches where a broad range of 
relatively shallow knowledge is needed, but within a 
cognitive architecture, and where learning is important.   
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