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Abstract

Computational experiments have been used extensively to
study language emergence by simulating the evolution of lan-
guage over generations of interacting agents. Much of this
work has focused on understanding the mechanisms of how
language might have evolved. We propose a complementary
approach helpful in understanding why specific properties of
language might have emerged as an adaptive response to joint
pressures from the environment and constraints on an agent’s
cognitive architecture. The approach suggests that linguistic
systems can be described as boundedly optimal policies in
multi-agent dynamic control problems defined by specific en-
vironments, agent computational structures, and task-oriented
(vs. communication oriented) rewards. We illustrate the ap-
proach with a set of computational experiments.
Keywords: language emergence, bounded optimality, cogni-
tive architecture, reinforcement learning, adaptive control

Introduction
The goal of this paper is to begin exploring a new approach
to understanding the emergence of language. The primary
scientific aim is understanding how pressures from the envi-
ronment and constraints on the agent’s cognitive architecture
jointly lead to the emergence of specific properties of lin-
guistic communication as optimal policies for obtaining well-
defined long-term task- or environment-related reward.

Taking this perspective allows us to abstract away from the
question of how language evolved and systematically explore
constraints explaining why language appeared in the form that
it has. We hypothesize that specific language-like proper-
ties (for instance, compositionality and systematic reliance
on surface cues such as order) can in part be explained as
bounded optimal solutions to control problems faced by com-
putationally limited agents in environments exerting specific
pressures. We propose investigating language through such
environments in which we can formulate control problems for
two or more bounded agents. If the optimal policies for these
agents exhibit certain linguistic properties, then we can be-
gin to define a mapping from the original pressures and agent
constraints to the properties exhibited.

Finding solutions to these control problems computation-
ally can be accomplished through various means such as rein-
forcement learning, game-theoretic analysis, or evolutionary
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algorithms. Thus, the approach allows us to step away from
assumptions about specific mechanisms of learning or evolu-
tion, and focus on the joint relationship of agent structure and
environment to derived linguistic systems. A feature of this
approach that distinguishes it from related efforts is the focus
on deriving control for internal cognitive processes and ex-
ternal actions generally rather than communication systems
specifically, with communication processes emerging only if
they are part of the optimal policy.

This paper proceeds as follows: first, we review related
work on language emergence and discuss ways in which our
approach complements this work. Next, we move to an ex-
ample (the “Treasure Box Domain”) designed to illustrate the
approach by exploring constraints leading to the emergence
of structured utterances — here the systematic use of serial
order and allocation of lexical items to aspects of the environ-
ment. Finally, we show how this domain, and the approach
in general, can be extended to investigate more sophisticated
phenomena and propose future directions of inquiry.

Related Work
Research into the origins of language has a rich and contro-
versial history. Chomsky addressed it in his early work on
generative grammar, prompting a longstanding debate on the
extent to which language is a biological adaptation arrived
at via natural selection (Chomsky, 1968; Pinker & Bloom,
1990; for a more recent treatment, see Hauser, Chomsky, &
Fitch, 2002; Pinker & Jackendoff, 2005; Fitch, Hauser, &
Chomsky, 2005; Jackendoff & Pinker, 2005). Chomsky’s
(Chomksy, 2010) own recent approach to the question at-
tempts to minimize—in fact, nearly eliminate—the role of
language-specific biological adaptation. A more recent line
of research by Nowak and colleagues (Nowak, Krakauer, &
Dress, 1999; Nowak & Krakauer, 1999; Nowak, Plotkin, &
Jansen, 2000; Nowak, Komarova, & Niyogi, 2002), estab-
lishes a mathematical framework used to explore the evolu-
tion of language from the standpoint of computational learn-
ing theory and evolutionary game theory. This work also pro-
vides evidence for coding constraints that may have resulted
in increased fitness for agents capable of multi-symbol utter-
ances.
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Several recent computational experiments explore the no-
tion that cultural adaptation and domain-general cognition
may be sufficient for the emergence of language (Beckner
et al., 2009, also see Christiansen & Chater, 2008; Steels,
1998; De Beule, 2008; Gong, Minett, Ke, Holland, & Wang,
2005). This work shows a number of features emerging from
repeated interactions of pairs of computational agents in a
population playing a language game. In a way, this work im-
plicitly frames language emergence as a function of environ-
ment, agent, and learning mechanism. Our work attempts to
remove the last of these and more explicitly address what as-
pects of environment and agent architecture are important—
potentially leading to a more deeply explanatory account.

The questions we are interested in are in part orthogonal to
these debates: we are not making claims about either domain-
specificity or the mechanisms of learning or evolution, but
rather the interplay of cognitive constraints and environmen-
tal pressures that lead to the emergence of particular language
features as adaptive. By leaving the mechanism of adaptation
unspecified, our approach is relevant to researchers working
in both biological and cultural frameworks.

Our work also departs from the approaches above in that
it does not create a pressure for language by explicitly re-
warding cooperation or communication of a particular type.
This approach considers communication not as an end-goal
but rather as the means to obtain some primary reward such
as sustenance, shelter or reproduction. This may give us a
principled way to examine and sharpen what it is about lan-
guage which directly contributes to effective behavior.

Environmental Pressures & Agent Constraints
Natural environments comprise extremely complicated sets
of pressures acting on agents. A key part of the work in this
approach is identifying tractable sets of specific pressures that
are independently motivated by the study of the environments
of early hominids or humans and that might plausibly be im-
portant in the emergence of language. It is not our intent in
this initial exploration to undertake this identification system-
atically, but we propose here a few plausible candidates as
starting points that suffice to illustrate the approach.

Many environments naturally limit agent’s ability to ob-
serve and act. For example human beings can only manipu-
late small pieces of the natural world. Furthermore, knowl-
edge and ability to act is not usually distributed uniformly
among agents, making information sharing between agents
potentially useful. The nature of tasks that must be performed
by agents may limit how immediately information can be
utilized, requiring memory and independent action. A re-
lated pressure is limitation on the lexicon size available to
the agents for communication. This could require generaliza-
tion and furthermore may be a natural consequence of coding
constraints on noisy information transmission (see Nowak et
al., 1999, for a complete discussion). Another important pres-
sure might be temporal: environment dynamics might require
speed or brevity in communication.

Figure 1: Treasure box domain.

Identifying structural constraints on agents is a second ma-
jor requirement for this approach. These constraints may be
independent of learning mechanisms and describe computa-
tional and physical capabilities of an agent. Our interests
initially are in cognitive and perceptual constraints, such as
limited attention and short-term memory. In the experiments
below we adopt highly idealized versions of such constraints,
but we always define computationally complete agents that
can condition their control of internal and external processes
on an internal state that combines memory and perception.

One concern about this approach is the prospect that pres-
sures in the real world and human cognitive capabilities are
so complex that our proposed analysis is impossible. How-
ever, this is an empirical question. It could very well be that
careful investigation will yield simple features or ones that
can be idealized while retaining their important aspects. It
could very well be that careful investigation will yield sim-
ple features or ones which could be idealized while keeping
their important aspects. It may also be possible to separate
and explain specific language properties on a large scale.

Example: Treasure Box Domain
To demonstrate this approach to understanding language
emergence we designed a set of experiments in which par-
ticular kinds of communication may emerge as optimal (or
approximately optimal) behavior in a simple domain popu-
lated by two computationally limited agents. We describe
next the structure of this domain and then discuss why it is
of potential interest for our purposes—why we expect inter-
esting linguistic systems to emerge.

Environment and agent structure
Figure 1 shows the Treasure Box domain. There are two
agents, SPEAKER and LISTENER, who share the goal of
opening a locked treasure box. These agents are in an en-
vironment containing two rooms: a first room, communica-
tion room, in which LISTENER can hear symbols uttered by
SPEAKER and a second room, box room, in which there are
B different boxes and K keys. At any one time, only one par-
ticular box contains treasure and can only be opened by one
particular key. To solve this problem, LISTENER must go into
box room and choose the correct box and key. However, LIS-
TENER knows neither which box contains treasure nor which
key opens it. The second agent, SPEAKER, knows the cor-
rect box and key, but cannot leave the communication room
and therefore cannot open the box itself. Instead, SPEAKER
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can communicate with LISTENER by uttering symbols from
a lexicon of size S which LISTENER observes while in com-
munication room.

When SPEAKER utters a symbol it is placed into LIS-
TENER’s immediate perception: a buffer holding a single
symbol (working memory). In addition to the working mem-
ory store, LISTENER has a second memory location to hold a
single symbol (long-term memory), the value of which can-
not be observed without retrieving it. LISTENER can move a
symbol from the working memory store into long-term mem-
ory and vice-versa (memory encoding and retrieval), but can
only observe the symbol in working memory. The agent does,
however, know whether long-term memory contains informa-
tion. SPEAKER remembers the last symbol uttered in an ob-
servable working memory.

Speaker. This agent observes: (1) The box containing
treasure; (2) the key which opens that box; and (3) last symbol
it uttered. It can act by either (1) waiting or; (2) uttering a
single symbol out of a limited set of size S.

Listener. This agent observes: (1) the room it is in; (2)
whether it holds a key; (3) whether it holds a box; (4) whether
its long-term memory contains information; and (5) the con-
tents of its working memory. It can act by (1) moving to the
box room; (2) encoding a symbol from working memory into
long-term memory; (3) retrieving a symbol from long-term
memory into working memory (4) picking up a specific key;
or (5) picking up a specific box.

Dynamics. The domain is structured as an episodic task
where each episode ends when LISTENER picks up both a
box and a key (at which point the key is automatically used
to open the box). If the key is correct and the box and the
box contains treasure then both agents will receive a positive
reward (of +1); otherwise no reward is received and a new
episode begins. At the beginning of an episode the box con-
taining treasure and the key that opens it are chosen randomly,
LISTENER is returned to communication room holding nei-
ther key nor box, and both agents’ memories are cleared.

Learning algorithm. Although the specifics of the learn-
ing mechanism are not the focus, we needed a method for dis-
covering good agent behavior. Both agents use the ε-greedy
Sarsa(λ) algorithm (Sutton & Barto, 1998). This algorithm
learns by estimating state-action values Q(s,a) that represent
the best expected discounted sum of rewards over an episode
that can be gained by following action a from state s and then
the best policy thereafter (we initialize the Q values to 0). At
each step actions are chosen greedily based on the current Q
function except with a probability of ε when a random action
is chosen instead (yielding exploration). We use a low explo-
ration rate of ε = 0.01 across our experiments. After action at
in state st at time t, the algorithm updates the Q value for all
state-action pairs (s,a) according to their eligibility et(s,a) as
follows earlier actions by

Qt+1(s,a)← Qt(s,a)+αδtet(s,a), ∀s ∈ S,∀a ∈ A

where before the update et(st ,at) is set to 1.0 and the eligibil-
ity for every other state-action is decreased by a multiplicative

factor of γ,λ (we used λ = 0.8 for all of our experiments); the
more recently a state-action pair is visited the higher its eli-
gibility and the more credit or blame it gets for the temporal
difference error δt = rt+1 + γQt(st+1,at+1)−Qt(st ,at) which
is the the current estimated value of the resulting (st+1,at+1)
plus the reward rt immediately gained minus the predicted
value of the pair (st ,at). The discount factor γ describes how
much less future reward is valued compared to immediate re-
ward; we used γ = 0.8 for all our experiments. The step-size
parameter α controls how fast the algorithm incorporates new
experience, we use α = 0.03 in all of our experiments.

Why this domain is of potential linguistic interest
Without any communication the best LISTENER can do is to
open an arbitrary box with an arbitrary key. Given KB possi-
ble box-key combinations the probability of success at each
episode is 1

KB . To improve beyond this, a communicative pol-
icy is required wherein SPEAKER informs LISTENER of the
correct box and/or key in some way.

Different environmental pressures and agent constraints
make different behaviors optimal. For example, we can ex-
plore how varying the size of the available lexicon alters be-
havior. If there are enough symbols (S ≥ KB), then a sin-
gle symbol suffices to describe each box-key combination.
If there are at least K +B but fewer than KB symbols, then
two symbols are required but each box and each key could be
given a unique symbol removing the need for symbol order.
Finally, with S=max(K,B) the meaning of symbols will have
to be shared between boxes and keys, so order may be impor-
tant. In all cases these interpretation of the symbols must be
learned by both agents.

We can explore the effects of changing other constraints
as well, such as agents’ memory or environment structure.
For example, if LISTENER can store two symbols in working
memory, then consistent symbol order may not matter. If the
environment is no longer divided into two rooms (so commu-
nication and box opening can occur simultaneously) symbol
order might still matter, but the LISTENER may not need to
encode anything into long-term memory, instead acting based
on the contents of its working memory at every step—in ef-
fect becoming a situated instruction-taker.

Linguistic Properties of Emergent Policies
We conducted three sets of experiments (eight individual ex-
periments) to demonstrate how environmental pressures and
agent constraints jointly effect communication properties; the
experiment structure and results are summarized in Table 1.
In all experiments the number of boxes and keys is equal
K = B = 4. The first set is the domain originally described
with two separate rooms where LISTENER has a working
memory of one symbol and a long-term memory of one sym-
bol. The second set modifies the agent constraints by giving
the LISTENER two symbols in working memory (no long-
term memory). The third set changes the environmental pres-
sures by removing the room separator.
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Table 1: Summary of three sets of experiments and policies learned. See text for detailed description.

ENVIRONMENT AGENT MEMORY LEXICON SIZE (S) PROPERTIES OF EMERGENT LINGUISTIC SYSTEM

Two Rooms

one symbol
working memory
+ one symbol
long-term
memory

3

Association and systematic order, where in addition
single symbols uttered in isolation denote specific box-
key combinations. Can only achieve 75% success.

4 Association and systematic symbol order. SPEAKER
first describes the box, then the key (see Figure 2b).

8
Highly context-dependent and idiosyncratic symbol
meanings. For example key 2 is represented by sym-
bol 4 if uttered before box, but symbol 5 after.

16 Each symbol denotes a box-key combination. For ex-
ample symbol 5 means key 1 and box 1.

Two rooms

two symbol
working memory
(no long-term
memory)

3 Similar to case with 3 symbols above.

4
Complex lexical forms. Describes entire box-key com-
bination with two symbols which can be observed si-
multaneously by LISTENER effectively creating a 2-
symbol length word (see Figure 3b).

One room

one symbol
working memory
+ one symbol
long-term
memory

3 Symbols act as direct orders to LISTENER, but other-
wise policy is similar to the cases of 3 symbols above.

4

Association and symbol order, but no storing or re-
trieving from long-term memory is necessary because
LISTENER can act immediately upon hearing a symbol
(see Figure 4b).

Experiment set 1: Exploring constraints on the lexicon.
We explore four different lexicon sizes: S = 16, S = 8, S = 4,
and S = 3. Figure 2 shows 30 independent learning trajecto-
ries for each value of S. The high variance is due to the nature
of the learning algorithm which may not converge for both
agents every trial (or may get stuck on a less-than-optimal
policy)—but what we are interested in are the best policies
learned (because the mechanism used can be improved sig-
nificantly beyond our initial implementation of Sarsa(λ) with
fixed parameters across all experiments).

The first four rows of Table 1 summarize the results. Here
we will discuss the resulting policies in more detail. For 16
available symbols, as expected, a different symbol is associ-
ated with each box-key combination and the agents arrive at
perfect performance. With eight symbols, again the best per-
forming policies use two-symbol utterances for each box-key
combination, but not always in the same order (i.e. for some
combinations keys are uttered first and in other boxes are ut-
tered first). For the case of four symbols, the best performing
policies communicate box and key in a particular order, with
each symbol able to refer to either box or key (see Figure 2b).
Of particular interest is that the the agents settle on a consis-
tent order across box-key combinations, but this order might
be different over seperate experiments: the linear position is

necessary but the specific order is not. Finally, for the case of
only three symbols the agents again learn a policy where lin-
ear symbol order matters. Curiously, this alone should only
afford success in 56% of combinations; some policies how-
ever achieved 75% success. The policy succeeds in the addi-
tional box-key combinations by associating each with a single
symbol uttered in isolation. That is, with limitations in sym-
bol size utterance length becomes informative in addition to
positional information.

As we can see, this method of systematically altering only
a single constraint (lexicon size) yields broad variation in lin-
guistic properties even in this extremely simple domain, in-
cluding the denotation of symbols and the use of order in-
formation. The case of three and four symbols suggests that
limited memory (paired with environmental pressures) leads
to the systematic use of symbol order in optimal performance,
especially when the lexicon size is limited.

Experiment set 2: Modified agent constraints. Here our
aim is to explore further what specific constraints led to the
systematic use of order in Experiment 1. We alter the con-
straints on the agents by allowing the LISTENER two symbols
in working memory instead of one (and no long-term mem-
ory). All the other dynamics of the Treasure Box Domain
are kept constant. The actions of store and retrieve have new
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(a) S = 4 (b) Sample of policy2 for S = 4.

(c) S = 3 (d) S = 8 (e) S = 16

Figure 2: Experiment set 1: Exploring constraints on the lex-
icon. Each figure shows 30 learning curves in the Treasure
Box Domain with B = 4 and K = 4. Success rate at each
point is the average success rate over all episodes since previ-
ous point. Dotted line marks where learning and exploration
are disabled. Best policy is highlighted and described in ta-
ble 1. Figure (b) is a sample policy for S = 4 showing the sig-
nificance of symbol order. In this case, agents have learned
to associate string ”3,2” with key 1, box 1, as can be seen in
the rightmost column where SPEAKER utters first symbol “3”
then symbol “2”.

(a) Best policies. (b) Sample of policy2 for S = 4.

Figure 3: Experiment set 2: Modified agent constraints; LIS-
TENER has two working memory locations. Left figure shows
learning curves for best policies for S = 3 and S = 4. Right
figure is a sample policy for S= 4 showing that the LISTENER
can act according to the length-2 string in working memory:
LISTENER’s last two actions are box and key pickups without
a retrieval in between, unlike the policy in figure 2.

(a) Best policies. (b) Sample of policy2 for S = 4.

Figure 4: Experiment set 3: Modified environmental pres-
sures: no room separator. Left figure shows learning curves
for best policies for S = 3 and S = 4. Right figure is a policy
sample for S = 4. The absence of a room barrier allows sym-
bols to act as direct orders: the ”utter 1” action by SPEAKER
is followed by LISTENER’s ”get key 1” on the next time step.

semantics now: moving symbols between the two working
memory locations. Figure 3 shows the best trial for each case
in this experiment (for lexicon size of 3 and of 4). With 4
symbols in the lexicon, pairs of symbols can be used to de-
scribe each box-key combination. This is possible because
unlike Experiment 1 both symbols are visible to the LIS-
TENER (when both stored in memory) and thus there is no
need for an association of order of symbol with object type
(key or box). What is perhaps surprising about this result
is that the more flexible agent structure in this experiment
yields a simpler communication system, whereas the puta-
tively more sophisticated linguistic system in Experiment 1
emerges as an adaptive response to the more computationally
limited agent structure.

Experiment set 3: Modified environmental pressures.
Here we alter the environmental constraints by removing
the separator between the communication room and the box
room. This modification relieves the pressure imposed by
delay between communication and utilization effectively re-
moving the need to remember information. Instead LIS-
TENER can act immediately from SPEAKER’s instructions.
Figure 4 shows the best trial S= 3 and S= 4. For the case of 4
symbols, SPEAKER’s utterances act as immediate instructions
to LISTENER. Word order still matters, but when a particular
symbol is uttered first it may correspond to a different object
(box-key) than if uttered second. Furthermore, the second
symbol uttered can have different meaning depending on the
context. For example if LISTENER has already chosen a box,
the second symbol will be associated with a key.

2Example policies show actions for the case key = 1 and box
= 1. Each row is one time step; e means empty memory location.
For readability, we are showing the contents of LISTENER’s long-
term memory and omitting current room. LISTENER does not have
a “wait” action, but instead uses an action which has no effect (e.g.
“pick up a key” while in the communication room). The SPEAKER’s
utterances do not impact LISTENER after it changes rooms so these
actions are unimportant.
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Conclusions and Looking Ahead
We have described and illustrated a novel approach to lan-
guage emergence hypothesizing that specific properties of
language may be understood as features of boundedly opti-
mal policies to control problems imposed on computationally
limited agents. What makes the approach distinctive is its
emphasis on the shaping of linguistic systems by the joint
constraints of agent and environment structure, and the emer-
gence of such systems as the solution to the problem of how
to optimally control both cognitive and physical actions in
service of task goals (rather than communication goals). This
means that there is no associative learning component or any
other learning mechanism beyond the reinforcement learning
algorithm described above. Any associations between sym-
bols and objects or actions are arrived at not because the
agents are explicitly trying to understand each other or arrive
at shared symbol-meaning mappings, but rather implicitly as
joint solutions to the control problem.

Our initial experiments yielded two key results. First, we
have shown that even simple environments and agent archi-
tectures give rise to linguistic systems with interesting proper-
ties, including systematically structured utterances and flexi-
ble use of limited lexical resources. Second, we have shown
that changes in environmental pressures or agent constraints
may yield dramatic changes in optimal communication struc-
ture. Some constraints and pressures yield communication
with systematic symbol order, other constraints yield policies
that break the association between single symbols and sin-
gle objects in the environment. The changes to environment
and agent may seem small, raising the question of how a ro-
bust communication system can emerge, but in the context
of the environment we explored the modifications are quite
large. We expect small changes in a complex environment
would not drastically alter the resulting communication sys-
tems. Furthermore, the fact that the communication system is
strongly shaped by specific constraints of the cognitive archi-
tecture is also unproblematic, because we expect such con-
straints to be relatively stable across conspecifics. Indeed, to
the extent that language is shaped by such constraints, this is
good news for the cognitive scientist, because their detailed
nature is likely to be more accessible that the relevant details
of the shaping environments.

Our results suggest that there is promise in develop-
ing a broad systematic framework for studying language
emergence by identifying mappings between pressures, con-
straints, and language properties independent of questions re-
garding the mechanisms of evolution or adaptation. Promis-
ing future avenues include investigating the emergence of
compositional mechanisms like recursion, categorical fea-
tures including distinctions between nouns and verbs, or more
sophisticated uses of language for representation of internal
mental states.
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