
Nomination and Prioritization of Goals in a Cognitive Architecture
Dongkyu Choi

Department of Aeronautics and Astronautics
Stanford University, Stanford, CA 94305

dongkyuc@stanford.edu

Abstract

Goals play an important role in human cognition. Dif-
ferent aspects of human mind influence the generation
of goals they pursue, and the goals guide their behav-
ior. In psychology, researchers made significant efforts
to study goals and their origin, and cognitive architec-
tures include various facilities to handle goals of arti-
ficial agents. One such architecture, ICARUS, supports
goal-driven behaviors while maintaining reactivity, and
the top-level goals play an important role by guiding the
behavior of ICARUS agents. However, the architecture
does not cover the origin of its goals or the management
of them, and this imposes restrictions like limited auton-
omy in ICARUS. In this paper, we extend the architec-
ture to provide the capability to manage top-level goals
using the notion of long-term, general goals. We show
some illustrative examples in an urban driving domain,
and discuss related and future work in this direction.

Introduction and Motivation
Goals play an important role in human cognition. People have
ideas on what they want to do or what they should do, and
these give rise to many different goals. Such goals, in turn,
guide people’s behavior by restricting the space of possible
actions to take. Traditionally, psychologists put significant
efforts on the study of this process (Simon, 1967; Sloman,
1987; Gray & Braver, 2002 to name a few). As computational
frameworks for models of cognition, most cognitive archi-
tectures (Newell, 1990), too, have some supports for goals.
At the very least, these architectures allow the specification
of goals or subgoals that guide the artificial agent’s behav-
ior. But some architectures provide more, including nomina-
tion and prioritization of goals. For instance, CLARION (Sun,
2007) has drive and goal mechanisms that correspond to psy-
chological accounts of goal nomination. In Soar (Laird et al.,
1986), the top-level operators can act as reactive goals and
there are rules that govern their nomination as goals.

Another cognitive architecture, ICARUS (Langley & Choi,
2006), operates in a goal-directed fashion, and uses multiple
top-level goals. However, the architecture lacks any mech-
anism to add, delete, or reorder such goals, limiting its ca-
pabilities significantly. In this paper, we present the ICARUS
architecture with a new goal management mechanism that is
reactive to the environment. We extended the existing archi-
tectural distinction between long-term knowledge and short-
term structures to goals by introducing general goal descrip-
tions associated with their own relevance conditions. The sys-
tem instantiates these goals with respect to the current situa-
tion of the world and nominates them as its own top-level
goals to guide its behavior. The extended architecture also
has a new ability to prioritize its nominated top-level goals

by modulating their priority values with continuous degrees
of match for the relevance conditions.

In the subsequent sections, we briefly review the ICARUS
architecture and explain the extension for nomination and pri-
oritization of goals in detail. Then we provide some illus-
trative examples in an urban driving domain. After that, we
conclude after a discussion on related and future work.

Review of the ICARUS Architecture
ICARUS shares its basic features with other cognitive archi-
tectures like Soar (Laird et al., 1986) and ACT-R (Anderson,
1993). It makes commitments to its representation of knowl-
edge, memory structures, and mechanisms for inference, ex-
ecution, and learning. The system provides a computational
framework for intelligent agents, which stays constant across
different domains. In this section, we review the basic ca-
pabilities of the architecture before we continue our discus-
sion on nomination and prioritization of goals. We start
with ICARUS’ representation of knowledge and memories
that support this, and then cover the architecture’s inference
and execution processes. Throughout this section, we show
examples from an urban driving domain, which we also use
for demonstration purposes in a later section.

Representation and Memories
The ICARUS architecture distinguishes conceptual and pro-
cedural knowledge. Its concepts describe various aspects of
the environment, whereas its skills define procedures that are
known to achieve corresponding concepts when executed un-
til completion. ICARUS also distinguishes long-term knowl-
edge and short-term structures. Long-term knowledge in-
cludes general descriptions of the environment and proce-
dures. The architecture instantiates them and gets short-term
structures relevant to the current situation.

The distinctions along these two directions result in four
main memories in ICARUS. Its long-term conceptual mem-
ory stores general definitions of concepts that use variablized
objects and their attributes to describe situations. A long-
term skill memory houses variablized skills that define gen-
eral procedures to achieve certain concepts, namely their
goals. When the system instantiates these general concepts
and skills, it deposits them in the corresponding short-term
memories. A short-term conceptual memory stores instanti-
ated concepts, which the system believes to be true in the cur-
rent situation. A short-term skill memory holds instantiated
skills, along with their corresponding goals. For this reason,
we often call the short-term memories as the belief memory
and the goal memory, respectively.

25



Table 1 shows some sample concepts in an urban driving
domain. The first two concepts are primitive, and they in-
clude only perceptual matching conditions that ground on ob-
ject information from the environment in the :percepts
and :tests fields. On the other hand, the last concept
is non-primitive, since it refers to other concepts in the
:relations field. This hierarchical organization of con-
cepts allows multiple levels of abstraction, and facilitates the
description of complex situations in the world. Meanwhile,
Table 2 provides some examples of skills in this domain. In
a similar fashion to their conceptual counterparts, there are
primitive and non-primitive skills. The first skill shown is
primitive, and it consists of perceptual matching conditions,
preconditions, and a direct reference to an immediate action
in the world. The other two skills, however, are non-primitive,
and they provide subgoal decompositions instead of refer-
ences to actions. In the next section, we cover ICARUS’ pro-
cesses that work over these knowledge structures stored in its
memories.

Table 1: Some sample ICARUS concepts for the urban driving
domain.

((yellow-line ?line)
:percepts ((lane-line ?line color YELLOW)))

((at-turning-speed ?self)
:percepts ((self ?self speed ?speed))
:tests ((>= ?speed 15)

(<= ?speed 20)))

((ready-for-right-turn ?self)
:relations ((in-rightmost-lane ?self ?l1 ?l2)

(at-turning-speed ?self)))

Table 2: Some sample ICARUS skills for the urban driving
domain.

((in-intersection-for-rt ?self ?int ?c ?tg)
:percepts ((self ?self)

(street ?c)
(street ?tg)
(intersection ?int))

:start ((on-street ?self ?c)
(ready-for-right-turn ?self))

:actions ((*cruise)))

((on-street ?self ?tg)
:percepts ((self ?self)

(street ?st)
(street ?tg)
(intersection ?int))

:start ((intersection-ahead ?self ?int ?tg))
:subgoals ((ready-for-right-turn ?self)

(in-intersection-for-rt ?self ?int ?st ?tg)
(on-street ?self ?tg)))

((ready-for-right-turn ?self)
:percepts ((self ?self))
:subgoals ((in-rightmost-lane ?self ?l1 ?l2)

(at-turning-speed ?self)))

Inference and Execution
The ICARUS architecture operates in distinct cycles. On each
cycle, the system invokes a series of processes including the
inference of the current belief state and the execution of skill
paths relevant to the situation. ICARUS receives sensory data
from the environment at the beginning of each cycle. Based
on the perceptual information, the system infers its belief

state, namely, all the concept instances that are true in the
current state. It starts with primitive concepts at the low-
est level and moves up the hierarchy to non-primitive ones.
ICARUS performs this process on every cycle, and therefore,
any naive approach to the belief inference is susceptible to
the combinatorial effect found in domains with many objects.
In response, there have been several efforts to alleviate this
problem including Asgharbeygi et al. (2005).

When the system finishes inferring its belief state, it at-
tempts to execute its skills accordingly. ICARUS retrieves
skills that are relevant to its top-level goals, and finds one or
more executable paths through the hierarchy that start from
these skills. A skill path is executable when all the skill in-
stances on it are executable, from top to bottom. Although
a path might include a single primitive skill that achieves an
ICARUS agent’s top-level goal, a skill path usually starts with
a non-primitive skill for a top-level goal and continues down
several levels until it reaches a primitive skill at the bottom.
The primitive skill includes some actions the system needs to
perform in the environment. The ICARUS architecture takes
these actions and applies them to make changes in its sur-
roundings. Then the system repeats the processes based on
the updated sensory data. In the following section, we con-
tinue our discussion on the architecture in the context of the
new extension.

Reactive Goal Management
As seen in the previous section, the ICARUS architecture has
a goal memory that stores information on its top-level goals
and subgoals along with their corresponding skill instances.
Most contents of the memory are very specific and short-
lived, and they change as the agent moves along its path to-
ward achieving its goals. But the top-level goals themselves
did not change in this memory. It was as if a godly entity gave
the agent a set of goals it should always pursue, which does
not change over time.

This, however, is not very reasonable. When people are
pursuing some goals of their own, they do get distracted from
the environment, and sometimes more urgent matters come
up and they should deal with them first. To support this kind
of behavior, the top-level goals change dynamically in the ex-
tended architecture, rather than staying constant throughout
the course of execution. The system has a new goal nomi-
nation process that generates top-level goals for its agent on
each cycle. The nominated goals from this process are based
on the generalized descriptions stored in a new long-term goal
memory. In this new memory, we can program both general
and domain-specific rules for the nomination of goals. These
rules collectively represent a basic form of motivational struc-
ture in ICARUS.

Once the architecture finishes nominating goals that are
relevant to the current situation, it prioritizes them before start
executing for the goals. The programmer assigns a default
priority value to each general goal, and ICARUS modulates
this value based on a continuous measure for relevancy of the

26



goal. The architecture computes the degree of match for the
relevance conditions of a goal whenever possible, and uses
this continuous matching value during the goal prioritization
process. This continuous degree of match represents the de-
gree of relevance for the goal in the current situation, and any-
thing less than the complete relevance will reduce the priority
value accordingly. In the subsequent sections, we explain the
new representation and processes in detail.

Representation
Perhaps the best way to describe the new representation is
through examples. Table 3 shows some sample goals stored
in the long-term goal memory. Each element takes the form
of a <conditions, goal> pair that specifies the generalized
goal and the conditions under which it is relevant. The rele-
vance conditions stored in :nominate fields are templates
for concepts that the system can match against its beliefs,
and the goals are concepts that use some common variables
that appear in the relevance conditions. The relation between
this long-term goal memory and the existing short-term goal
memory is similar to those between long-term concept and
skill memories and their respective counterparts. This is a
feature that has an architectural significance, which shows the
unified nature of ICARUS.

Table 3: Some sample <relevance conditions, generalized
goal> pairs stored in ICARUS’ long-term goal memory.

((stopped-and-clear ME ?ped)
:nominate ((pedestrian-ahead ME ?ped))
:priority 10)

((clear ME ?car)
:nominate ((vehicle-ahead ME ?car))
:priority 5)

((cruising-in-lane ME ?line1 ?line2)
:nominate nil
:priority 1)

The elements of ICARUS’ long-term goal memory also
have priority values associated with them, which represent
the relative importance of the goals compared to others in the
memory. Users predefine the goals and their associated pri-
ority values, providing a default prioritization measure. This
corresponds to the general idea people seem to have on what
is more important and what is less so. For instance, most
people agree that saving one’s life has priority over saving
his or her possessions. Many people will also save a child
before saving an adult if caught in an accident. There are
many examples like these, and we consider the default priori-
ties assigned to generalized goals in ICARUS’ long-term goal
memory as representing this behavior. Next, we continue our
discussion on the new processes that use this memory.

Nomination Process
When the ICARUS architecture finds a match for any rele-
vance condition stored in its long-term goal memory, it in-
stantiates the corresponding goal accordingly. The system

then stores the instantiated goal in its short-term goal mem-
ory. When this nomination process is complete, the system
has a series of top-level goals, which guide the behavior dur-
ing the particular cycle.

The nomination process starts after the architecture infers
its belief state based on the perceptual information from the
environment. The system goes through each <relevance con-
dition, generalized goal> pair stored in the long-term goal
memory, and makes attempts to match the relevance condi-
tions against the current state. Whenever its attempt is suc-
cessful, ICARUS instantiates the corresponding goal with the
variable bindings it has found from the match. This also
means that the retraction of goals happens without any ad-
ditional mechanisms. If a currently nominated goal loses its
relevance in the subsequent cycles, the system no longer nom-
inates the goal, effectively retracting it from the short-term
goal memory. During this retraction, however, ICARUS stores
some information on the previous nomination, and uses it at
a later time if the same goal instance is nominated again.

Figure 1 shows a simple situation that involves the nomi-
nation and retraction of a goal. Initially, there is nothing in
front of the agent’s car (shown as a green box) moving up-
wards in the figure. Therefore, it has a single goal to get to its
target location. Then a pedestrian, ped1 (shown as a yellow
smily face), suddenly starts to jaywalk the street in front of the
agent’s car and this causes a concept instance, (pedestrian-
ahead me ped1), to match in the state. In response, the sys-
tem generates the corresponding goal, (stopped me), and now
it has two goals as shown in the second column. When the
pedestrian moves away, the relevance condition disappears
and the goal is retracted. The agent has a single goal again,
as shown in the last column.

Goal: 
 (at‐loca+on ME TARGET) 

Goals: 
 (stopped ME)  
 (at‐loca+on ME TARGET) 

Goal: 
 (at‐loca+on ME TARGET) 

Figure 1: An example of goal nomination process in an urban
driving domain.

Prioritization Process
Once ICARUS completes the nomination process, it attempts
to reorder the currently nominated goals to prioritize them
under the given circumstances. Since all the top-level goals
have default priority values associated with them and ICARUS
orders the goals according to these values, we need a mecha-
nism to modulate these fixed values based on the current situ-
ation of the world. This modulation will then give goals with
lower default priorities a chance to overtake higher-priority

27



ones. Our approach uses the continuous matching of con-
cepts, more specifically, the relevance conditions associated
with each goal.

As shown in the previous section, ICARUS’ concepts in-
clude perceptual matching conditions. Especially, some
primitive concepts have numeric tests in their bodies that of-
ten involve continuous variables. We take such variables as
the source of continuous matching. For example, consider a
concept that includes a numeric test on a variable, ?var, as in
0 <?var < 10. ICARUS normally checks if the value of the
variable is within the specified range, and returns true (1) if it
is larger than 0 and smaller than 10, but returns false (0) other-
wise. But if we make the boundaries of the tests smoother as
shown in Figure 2, we can get some partial matches between
0 and 1 when the variable falls right outside of the specified
region.

a  b 
vp 

test region 

regions of par/al match 

a  b 
vp 

test region 

regions of par/al match 

0  0 

1  1 

DM  DM 

Figure 2: Curves applied to the boundaries of numeric tests
for continuous matching.

When the relevance conditions associated with ICARUS’
goals include a primitive concept, we can get the degree of
match between zero and one using this mechanism. This
value will then represent how relevant the associated goal is,
and we can use it to modulate the default priority value of the
goal. In this manner, a very relevant goal with a low default
priority can overtake a barely relevant goal with a high de-
fault priority. We believe this explains people’s behavior in
extreme conditions like when people are extremely hungry or
thirsty. In such cases, people will probably drink fluids with
a bad smell that they would normally reject.

Illustrative Examples
With the extensions described so far, we believe the ICARUS
architecture provides a reasonable account of goal manage-
ment. Testing this hypothesis, however, is not of the standard
affair. As is often the case in the evaluation of cognitive archi-
tectures, capabilities like the goal management are innately at
a very high-level. We want to show performance improve-
ments we can get from the extended system over the previous
one, but doing so using several quantitative measures is not
immediately possible in this case, and those results will not
be quite representative either. Instead, we can demonstrate
the qualitative behavior of the extended system and confirm
that it is far more aligned with our intuition about human cog-
nition than the previous system. Cassimatis et al. (2008) sug-
gested that models of higher-order cognition should be eval-
uated in three aspects: their ability compared to humans, the

breadth of situations they cover, and the parsimony of their
mechanisms.

In this section, we challenge the original and the extended
systems with two scenarios. By comparing the two systems,
we show the advantages of the goal management in various
aspects like programmability and human-like behavior. Of-
ten the original system is not capable of demonstrating the
desired behavior at all, while the extended system can easily
simulate it.

Scenario 1: Cruiser
Imagine that you are driving a sports car cruising down the
street. You notice a car slowing down and stopping in front
of you, and you swerve around the car by changing your lane.
After a while, a group of careless pedestrians jump out to the
road all of a sudden and jaywalk the street. Startled, but deci-
sively you make a move to avoid hitting the pedestrians and
continue your cruise down the road. Unless you are driving
exclusively on freeways, this kind of situation should sound
very familiar.

In the previous version of the ICARUS architecture, we
would program this behavior by giving the system two goals,
(stopped-and-all-clear me) and (cruising-in-lane me ?line1
?line2) in this order. The system gives higher priority to the
first goal than the second one, so it correctly focuses its atten-
tion to maintaining a safe distance from pedestrians before
worrying about cruising on the street. However, we find sev-
eral issues with this program. In addition to the fact that the
system will have the first goal regardless of whether it is rele-
vant or not, a more notable problem is that the first goal does
not mention any specific pedestrian, and that the system will
need to pick a pedestrian dynamically within the skills for
this goal. This means that the system can cover for only one
pedestrian at a time. We will probably program it so that the
closest pedestrian from the ICARUS agent’s position gets the
attention, but no matter what we do, the system has no way
to consider any other pedestrians.

On the other hand, using the extended system with the
goal nomination capability, we would program three long-
term goals like, (stopped-and-clear me ?ped) with the nomi-
nation condition (pedestrian-ahead me ?ped), (clear me ?car)
with the nomination condition (vehicle-ahead me ?car), and
(cruising-in-lane me ?line1 ?line2) with a null nomination
condition. Table 4 shows ICARUS concepts and skills for
the extended system that we wrote this way. The first ad-
vantage of this system over the previous one is that the agent
has only the relevant set of goals at any given moment, much
like people would. But what is more important in this par-
ticular case is that, the ICARUS agent can consider each in-
stance of the goals separately. For instance, if there are mul-
tiple pedestrians jaywalking the street in front of the agent’s
car, multiple instances of the generalized goal, (stopped-and-
clear me ?ped) will be deposited into the system’s short-term
goal memory, and the system will be able to consider all of
them in the order of their corresponding priorities. By doing
so, the system can take an action for the highest priority goal

28



and continue to the subsequent ones if resources are avail-
able. It is also notable that the system no longer requires a
complicated goal concept. Instead, all the individual cases of
different pedestrians are instantiated from a generalized goal
description, and deposited into the system’s short-term goal
memory.

Table 4: ICARUS concepts and skills for the Cruiser scenario
using the extended architecture.

((stopped-and-clear ?self ?obj)
:percepts ((self ?self))
:relations ((stopped ?self)

(clear ?self ?obj)))

((clear ?self ?obj)
:percepts ((self ?self)

(pedestrian ?obj))
:relations ((not (pedestrian-ahead ?self ?obj))))

((clear ?self ?obj)
:percepts ((self ?self)

(car ?obj))
:relations ((not (vehicle-ahead ?self ?obj))))

((stopped-and-clear ?self ?obj)
:percepts ((self ?self))
:actions ((*brake 1000)))

((clear ?self ?obj)
:percepts ((self ?self))
:start ((in-leftmost-lane ?self ?line1 ?line2))
:subgoals ((in-rightmost-lane ?self ?line3 ?line4)))

((clear ?self ?obj)
:percepts ((self ?self))
:start ((in-rightmost-lane ?self ?line1 ?line2))
:subgoals ((in-leftmost-lane ?self ?line3 ?line4)))

Let us analyze a typical run with this system. The agent
starts in the leftmost lane of a street segment. There are sev-
eral other cars in that stretch of the street, and the first one,
c6120 is far ahead of the agent in the same lane. For the first
10 cycles, the agent has a single goal, (cruising-in-lane me
?line1 ?line2) that is always nominated. On cycle 11, as the
ICARUS agent gets closer to the car, c6120, it detects that the
car is blocking its way and the predicate, (vehicle-ahead me
c6120), becomes true in the state. So, the system nominates
(clear me c6120) as its goal. On the next cycle, ICARUS re-
trieves a skill for the first goal with the same name, clear, and
the skill leads to an action, (*steer 35). While the agent is
changing its lane to the right, it notices on cycle 13 that its
speed is below the predefined cruising speed, and the second
goal cruising-in-lane is unsatisfied. The agent now executes
(*gas 20) concurrently with (*steer 35) to adjust its speed. It
continues steering to the right while it performs the speed ad-
justments as needed until cycle 20, but then it notices that it is
in the target lane, and starts aligning itself in that lane. By this
time, the agent successfully avoided the blocking vehicle, and
the concept instance, (vehicle-ahead me c6120), is no longer
true. So the goal, (clear me c6120), that was triggered by this
concept instance disappears.

Scenario 2: Ambulance
Now, to make the task more complicated, let us think about
driving an emergency vehicle, say, an ambulance. We some-
times see that an ambulance is moving quite normally, wait-
ing for pedestrians to pass, observing the speed limit, and
even stopping for red lights, although it has its lights and siren
on. Yet some other times we see an ambulance speeding by

almost like one driven by a reckless driver, blinking every sin-
gle light it has equipped on and making a very loud sound. We
can guess that the difference is on the severity of the problem
at their destinations, or onboard, and this factor affects the
behavior of the drivers.

Modeling this behavior in the previous version of ICARUS
is close to impossible, unless the programmer is patient
enough to write concepts and skills for all possible cases there
are. Even then, the space of search will be so large that the
performance will be below what is required during the exe-
cution. However, the extended system supports this behavior
easily, with some generalized goals encoded in its long-term
memory, coupled with their corresponding triggers. Table 5
shows the new concepts that we added for this scenario.

Table 5: ICARUS concepts and skills for the Ambulance sce-
nario using the extended architecture.

((emergency ?self)
:percepts ((self ?self status ?status level ?level))
:tests ((equal ?status ’emergency)

(= ?level 10))
:pivot (?value))

((not-emergency ?self)
:percepts ((self ?self))
:relations ((not (emergency ?self))))

To handle the task to get to the hospital with the proper
urgency based on the current situation, we encode the goal,
(okay-to-go ME ?signal) with priority 2, to have nomination
conditions, (signal-ahead me ?signal) and (not-emergency
me). This goal is what forces the agent to observe traffic
signals when there is no emergency. But when the emer-
gency strikes and the degree of match for the concept (emer-
gency me) starts to increase from zero, that for the concept
(non-emergency me) starts to decrease from one accordingly.
When this happens, the relevance of the above goal drops
with them, eventually making the architecture focus on the
other goal of getting to the hospital first.

Now we will show how the system behaves during a typ-
ical run. In a similar fashion as before, the agent starts out
by accelerating itself to reach its cruising speed. On cycle 7,
it finds a car blocking its path, and starts steering to the right
to clear the car. With occasional accelerations to maintain
its speed, it continues steering to the right. On cycle 13, it
notices that it is in the target lane, and starts to cruise there.
But it soon finds another car, and clear it in a similar man-
ner, but this time to the left lane, and finishes the move by
cycle 21. The agent then sees a traffic signal that is red, and
brakes to stop. During the wait, its emergency level changes
to 8, which, in turn, changes the degree of match for the
concept instance, (emergency me) to 0.8. The negation of
this instance, (not-emergency me), therefore, gets its degree
of match at 0.2. This is a nomination condition for one of
the current goals, (okay-to-go me c27224). Hence the system
modulates the priority value of the goal to be 0.4 (= 2× 0.2).
This causes the goal to be less important than the default goal,
(cruising-in-lane me ?line1 ?line2) that has the priority of 1.

29



Therefore, the system now stops observing traffic signals, and
starts cruising even with the red traffic light. Later on cycle 95
when it reaches the next intersection, however, the emergency
level is back to 3, and the modulated priority value for (not-
emergency me) becomes 0.7. This once again puts the goal to
observe traffic signals before the default goal of cruising, and
the system starts observing signals again.

The two programs shown above, one for the original archi-
tecture and the other for the extended architecture, both result
in equivalent behaviors at the high level. However, the two
systems still have differences at lower level for basic driving
maneuvers, and the extended system shows much smoother
driving behavior. What is important to note in this scenario
is that the goal nomination capability leads to a much simpler
program that is more intuitive and reasonable to us.

Related and Future Work
Our work has been heavily influenced by related work in the
psychology literature. One can find a fair amount of research
related to motivation and goal selection there. Typically, these
also cover the topic of emotion. Simon (1967) recognized
that the central nervous system, despite being a serial infor-
mation processor, serves multiple needs in an organism sur-
rounded by unpredictable situations. He suggested that two
mechanisms, a goal-terminating mechanism and an interrup-
tion mechanism, would satisfy this requirements. Simon fur-
ther described the relationship among interruption, motiva-
tion, and emotion, and outlined an information-processing
system that covers these as wells as learning in relation to
them. More recently, Sloman (1987; 2002) suggested that
any system with priority in beliefs and actions naturally have
emotions. He argued that goals often conflict with each other,
and systems must have a mechanism to resolve such conflicts.
The author proposed that motivators can serve this purpose.

As mentioned earlier in this paper, there are also some re-
lated work in the architectural perspective. CLARION (Sun,
2007) and Soar (Laird et al., 1986) architectures possess their
own accounts of goal management. The former is more
psychologically positioned, providing interactions between
drives and goals. The latter has a rule-based mechanism to
nominate its top-level operators as its goals, which resembles
the conditionalized goals ICARUS has. Unlike ICARUS, how-
ever, the Soar architecture proposes a single goal at a time,
removing the need for prioritization or the advantage of inter-
actions among multiple goals.

Although the current work is an important first step toward
a cognitive architecture with the full capability for goal man-
agement, it still ignores a vast amount of psychological ac-
counts on human motivation and goal handling. First of all,
people can change priorities among different goal in a flex-
ible manner, depending on the current situation. We have a
way to model this behavior, and hope to report in this direc-
tion in a near future. More broadly, we should explain where
the long-term knowledge about goals comes from. It is very
likely that we will deal with even higher-level cognitions like

motivations, emotion, and obligations. We expect the the ev-
idences in the social psychology literature will help us in the
modeling process.

Conclusions
In this paper, we introduced an extension to the ICARUS ar-
chitecture for reactive goal management. We first conceived
the idea in the architectural perspective, but the extension
makes close connections to previous work in psychology and
other related fields. The extended framework supports the
nomination, retraction, and prioritization of goals based on
the current belief state. We have demonstrated in an urban
driving domain that the extension leads to simpler programs
while supporting new behaviors that connects to the context
better than the original architecture.

References
Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ:

Lawrence Erlbaum.
Asgharbeygi, N., Nejati, N., Langley, P., & Arai, S. (2005).

Guiding inference through relational reinforcement
learning. In Proceedings of the fifteenth international
conference on inductive logic programming (pp. 20–
37). Bonn, Germany: Springer Verlag.

Cassimatis, N. L., Bello, P., & Langley, P. (2008). Abil-
ity, breadth, and parsimony in computational models of
higher-order cognition. Cognitive Science, 32, 1304–
1322.

Gray, J. R., & Braver, T. S. (2002). Integration of emo-
tion and cognitive control: A neurocomputational hy-
pothesis of dynamic goal regulation. In S. C. Moore &
M. Oaksford (Eds.), Emotional cognition: From brain
to behaviour (pp. 289–316). Philadelphia, PA: John
Benjamins Publishing Company.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunk-
ing in soar: The anatomy of a general learning mecha-
nism. Machine Learning, 1, 11–46.

Langley, P., & Choi, D. (2006). A unified cognitive ar-
chitecture for physical agents. In Proceedings of the
twenty-first national conference on artificial intelli-
gence. Boston: AAAI Press.

Newell, A. (1990). Unified theories of cognition. Cambridge,
MA: Harvard University Press.

Simon, H. A. (1967). Motivational and emotional controls of
cognition. Psychological Review, 74(1), 29–39.

Sloman, A. (1987). Motives, mechanisms, and emotions.
Cognition & Emotion, 1(3), 217–233.

Sloman, A. (2002). How many separately evolved emotional
beasties live within us? In R. Trappl, P. Petta, & S. Payr
(Eds.), Emotions in humans and artifacts (pp. 35–114).
MIT Press.

Sun, R. (2007). The motivational and metacognitive control
in CLARION. In W. Gray (Ed.), Modeling integrated
cognitive systems. New York, NY: Oxford University
Press.

30




