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Abstract 
Behavioural studies of individual differences have shown 
mild but significant correlations in performance on tasks that 
require the withholding of a response to a prepotent stimulus, 
i.e., on so-called response inhibition tasks. Several 
computational models of response inhibition tasks have been 
developed, but the dominant models of such tasks have been 
produced in isolation of each other. Consequently they fail to 
present a coherent unitary picture of response inhibition. In 
this paper we consider two established interactive activation 
models of distinct response inhibition tasks – the stop signal 
task and the Stroop task – and explore potential mechanisms 
within those models that might underlie the observed 
behavioural correlation. Only one plausible account of the 
correlation emerges: that it results from shared mechanisms of 
attentional bias. This account does not map onto the classical 
concept of response inhibition. It is concluded that either the 
accepted models are flawed or that the concept of response 
inhibition as applied to these tasks is misleading (and hence 
counterproductive). More generally the work may be taken to 
support an architectural approach to modelling, albeit at the 
level of interactive activation models, rather than the more 
traditional production system models.  
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Introduction 
The construct of “response inhibition” is frequently invoked 
when attempting to explain behaviours in tasks or situations 
that demand the withholding of a strongly prepotent 
response. Response inhibition is held to be a separable task-
general executive or cognitive control function, the efficacy 
of which varies across individuals. 

In the laboratory response inhibition is standardly 
explored in variants of the stop signal task (Logan & 
Cowan, 1984). This is a form of simple reaction time task in 
which subjects are normally required to respond as quickly 
and accurately as possible. However, on a small number of 
trials a compound stimulus is presented and on these trials 
and these trials only the subject is required to withhold their 
response. Such trials are referred to as “stop trials”. 
Typically the compound stimulus consists of a standard 
stimulus that might occur on any normal trial followed 
almost immediately by an auditory beep. Stop trials are rare 
in comparison to normal “go trials”. This and the need to 
respond on go trials as rapidly as possible ensures that the 
go response is prepotent. Performance is measured in terms 
of the number or proportion of stop trials on which a 
response is (incorrectly) produced. This measure varies 

reliably between subjects. Good response inhibitors produce 
few stop responses, while poor response inhibitors produce 
many. 

There is substantial behavioural and neuroscience 
evidence, as well as good theoretical reasons, for supposing 
that response inhibition is a task-general control function. 
From the theoretical perspective, response inhibition fits 
clearly within the supervisory system/contention scheduling 
framework of the control of thought and action of Norman 
and Shallice (1986). On this influential account, a system 
for the control of routine or well-learned behaviours, 
contention scheduling, is modulated by a deliberative 
system, the supervisory system, when routine behaviour is 
inappropriate and must be overridden. Contention 
scheduling is appropriate for generating the prepotent 
response, whatever the situation. If this is not appropriate, as 
in stop trials of the stop signal task, the supervisory system 
must override contention scheduling. A plausible way for 
this to be operationalised is in terms of response inhibition 
acting as a sub-function of the supervisory system. 

From a neuropsychological perspective, patients have 
been reported who are well-characterised in terms of a 
deficit in response inhibition. Thus, utilisation behaviour 
patients tend to exhibit behaviours that are driven largely by 
environmental contingencies rather than their stated 
intentions (Lhermitte, 1983). Alien hand patients show 
similar problems, but they are restricted to one hand 
(Goldberg et al., 1981). Both deficits may be seen as arising 
from a failure in response inhibition.  

One source of behavioural evidence for the task-general 
nature of response inhibition comes from a large individual 
differences study of Miyake et al. (2000). In this study, 137 
subjects were each tested on a total of 14 tasks. Performance 
on 3 of these tasks was argued, on a priori grounds, to 
specifically require response inhibition. Subsequent factor 
analysis of subject performance across the tasks supported 
this view, with performance on the response inhibition tasks 
being related to a single factor that differentiated those tasks 
from others in the study, which were held to primarily tap 
other executive functions (namely the functions of set-
shifting and memory monitoring and updating). 

The three response inhibition tasks of Miyake et al. 
(2000) were a) a forced-choice decision variant of the stop 
signal task, b) the Stroop colour naming task, and c) an anti-
saccade task. Our focus in this paper is on the first two, and 
so we described these in detail. In the stop signal task, 
subjects were required to indicate with a button press 
whether a (visually presented) word was an animal or a non-
animal. The first block of 48 trials were all “go” trials. 
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These were used to establish a mean response time for each 
subject. One quarter of the trials in the second block (of 192 
trials) were stop trials. In these trials, a beep was sounded 
shortly after presentation of the word (225ms prior to the 
subject’s mean response time, as determined in block 1), 
and subjects were required to withhold their response. The 
dependent measure was the proportion of stop trials on 
which a response was given. In the well-known Stroop 
colour naming task, subjects were presented with a “word” 
written in one of six colours. They were required to name 
the colour of the stimulus word. On neutral trials the word 
was a string of asterisk symbols, while on incongruent trials 
it was the name of another colour. The dependent variable 
was the difference in mean response times for incongruent 
and neutral trials.  

For our purposes, the critical result of this individual 
differences study was mild but significant positive 
correlations (r ≈ 0.20) between performance on the stop 
signal task and the Stroop task (and in fact between all pairs 
of response inhibition tasks). In general, these correlations 
were stronger than those between any single response 
inhibition task and any of the non-response inhibition tasks 
explored in the study. However, while the study is 
impressive in its scale, interpretation of the results is limited 
because Miyake et al. fail to provide process accounts of the 
various tasks. While it is perhaps unreasonable to expect 
such models of all 14 tasks, the absence of process models 
leaves unexplained the mechanism that is, on the account 
proposed by Miyake and colleagues, shared by the response 
inhibition tasks. Similarly, it leaves open the issue of why 
that function is not significantly involved in successful 
performance of the other tasks considered in the study. 

The purpose of the work presented here is to begin to 
address this limitation by exploring potential common 
mechanisms within established process models of two of 
Miyake et al.’s response inhibition tasks. We focus on 
models of the stop signal task and the Stroop task because 
there are established models of each task (due to Boucher et 
al., 2007, and Cohen & Huston, 1994, respectively) that 
bear some correspondence. This correspondence offers the 
possibility of relating the models to each other and thereby 
identifying a shared response inhibition mechanism. For 
such a mechanism to be explanatorily adequate, it must be 
parameterisable, with the observed behavioural correlations 
between tasks arising in part from variation in a shared 
parameter. To foreshadow, simulation findings derived from 
reimplementations of the existing published models suggest 
that directly shared parameters fail to yield the required 
correlation in performance. However, an appropriate 
correlation is forthcoming if attentional biasing mechanisms 
are yoked. Unfortunately, attentional biasing is not normally 
related conceptually to response inhibition. We conclude 
that either a) response inhibition is not the mechanism 
underlying the behavioural correlation in these tasks, or b) 
one or both of the accepted models requires updating. These 
simulation results extend those of a complementary analytic 
study (Davelaar & Cooper, 2010). 

The Stop Signal Task 

The Model 
Early work with the stop signal task demonstrated that 
behaviour on the task could be well accounted for by a race 
model consisting of two stochastic processes, a “go” process 
which is slow to activate but has a head start, and a “stop” 
process which is faster to activate but starts late (Logan & 
Cowan, 1984). Successful performance on a stop trial 
requires that the stop process reach threshold before the go 
process. Boucher et al. (2007) note that despite this model’s 
strengths, it is inconsistent with neural evidence of 
interaction between stop and go processes. They present the 
interactive race model, an update of the original model in 
which the stop and go processes compete through mutual 
lateral inhibition. The model, as applied to Miyake et al.’s 
semantic categorisation variant of the stop signal task, is 
shown in Figure 1. 

The model is extremely simple, consisting of just three 
nodes: one for each response and one for the stop process. 
Processing in the model is cyclic with each node operating 
as a leaky competing accumulator (Usher & McClelland, 
2001). On each cycle, the activation of a node is increased 
by an amount proportional to its external input, less an 
amount proportional to the activation of its competitors 
(corresponding to lateral inhibition), less an amount 
proportional to its current activation (its leakage), plus 
normally distributed random noise. Parameters control the 
contributions of the various sources to this accumulation. 
For default behaviour we assume ballpark parameters scaled 
from those of Boucher et al. to give a response threshold of 
1.0. Thus, we assume lateral inhibition, β, of 0.025 between 
all pairs of nodes, leakage of 0.0 (i.e., the accumulators do 
not leak), and the standard deviation of noise, σ, of 0.025 
units per cycle. 

In addition, it is assumed that on any trial external input to 
one of the response nodes (animal or non-animal) is 
provided by a semantic categorisation process (which is not 
modelled). The level of input is controlled by the parameter 
µgo, set to 0.005 units per cycle by default. It is assumed that 
the other response node receives zero external input. On 
stop trials it is assumed that at some point during the trial 

 
Figure 1: The interactive race model of the stop signal task. On 
any one trial, either the animal or the nonanimal node receives 
activation from a semantic categorisation process. On “stop” 
trials, the stop node also receives activation, though this activation 
is delayed relative to the activation from the semantic 
categorisation process. 
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external input is provided to the stop node. The level of this 
input is µstop, set to 0.030 units per cycle by default. Finally, 
we assume that the delay between input to the response 
nodes and input to the stop node is 250 cycles. This delay is 
the sum of the actual delay between presentation of word 
and stop stimuli, SSD, and the time to initiate the stop 
process, δstop. With these parameters, the model performs as 
desired – on go trials its response accuracy is approximately 
99% (with noise and lateral inhibition occasionally leading 
to error) while on stop trials it fails to stop on approximately 
65% of occasions. This compares well with mean subject 
performance of 67% as reported by Miyake et al. (2000). 

Simulation Results 
An initial set of simulation studies was performed to 
determine the relation between the model’s performance and 
the key parameters that could reasonably be argued to vary 
across individuals, that is: µgo, µstop, β (lateral inhibition), σ 
(standard deviation of noise) and δstop.1 Each parameter was 
varied about the default value (with the other four 
parameters fixed at default values) to determine the effect of 
that parameter on the proportion of stop errors. Figure 2 
summarises the results, based on 100 blocks per parameter, 
each of 100 trials. 

As can be seen from the figure, there is a slight non-
monotonic relation between β (lateral inhibition) and the 
model’s performance, with fewer stop errors at intermediate 
values. Similarly there is a non-monotonic relation between 
σ (noise) and stop errors. Perhaps surprisingly, when noise 
is very low there are more stop errors than when noise is at 
moderate values. This is because noise may delay the 
model’s decision, causing it to respond more slowly on 
some trials (but more quickly on others). On stop trials 
when noise acts against the go process this gives the stop 
process more time to affect behaviour. There is an optimal 
value for noise, however, and if it is too high successful 
stopping again becomes rare. Increasing µstop also reduces 
stop errors, though here the relation is monotonic and the 
explanation is more obvious: with stronger excitation of the 
stop node it is more likely to reach threshold on stop trials 
before one of the go nodes. Stop errors correlate positively 

                                                             
1 Indeed, Boucher et al. (2007) consider how their model may be 

fit to data from different monkeys by varying these parameters. 

with µgo and δstop. In both cases the effect of the parameter is 
transparent. With faster excitation of the go process or with 
greater delay, the stop process has less chance of reaching 
threshold before the relevant go process. Consequently stop 
errors are more likely. 

Relating the results to the concept of response inhibition, 
it appears that good inhibitors are those who either have a) 
near optimal levels of lateral inhibition or noise, b) slow go 
processes or short stop process delays, or c) fast stop 
processes. Miyake et al. (2000) do not report the 
behavioural data that would help to discriminate between 
these options.  

The Stroop Task 

The Model 
Many models have been developed of the Stroop task. We 
focus on the well-known model of Cohen and Huston 
(1994), as its principal functional mechanism, interactive 
activation, is shared with Boucher et al.’s interactive race 
model. The model, shown in Figure 3, consists of four sets 
of nodes, with nodes within each set competing for 
activation through lateral inhibition. There are two task 
demand nodes, three word input nodes, three colour input 
nodes, and two response nodes. One task demand node 
corresponds to the colour naming task while the other 
corresponds to the word reading task. The colour naming 
task demand node is connected to all colour input nodes, 
while the word reading node is connected to all word input 

 
Figure 2: Effects of varying key parameters on the proportion of stop errors produced by the interactive race model of the stop signal task. 

 
Figure 3: The Stroop model of Cohen and Huston (1994). 
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nodes. Colour input nodes and word input nodes are each 
connected to one response node. Crucially, the connections 
from word inputs to response nodes are stronger than those 
from colour inputs to response nodes. This is justified on the 
grounds that word reading is the more practiced of the two 
tasks. As in the stop signal model, the operation of the 
network is cyclic with activation accumulating over time. 
However, the accumulation functions differ. For the Stroop 
model activation accumulates according to the logistic 
function of the time-averaged input to a node. (See Cohen & 
Huston, 1994, for details.) 

Processing on any given trial occurs in two stages. First, 
input is provided to one of the task demand nodes (based on 
the task instructions). This causes that node to become 
active and the other task demand unit (through lateral 
inhibition) to become depressed. As a task demand unit 
becomes active, it excites the input nodes to which it is 
connected, raising the resting activation of either the colour 
input nodes or the word input nodes. The network settles 
into this temporary state, which, it is assumed, corresponds 
to a subject who is prepared for either a colour naming or 
word reading Stroop trial. Input is then provided to one 
colour input node and one word input node. If, for example, 
the trial was to name the colour of the word “RED” printed 
in green ink, then input would be provided to the GREEN 
colour node and the RED word node. In this case the colour 
nodes would already be moderately activated, and so the 
additional input to one colour node would tend to excite the 
appropriate response node (i.e. GREEN). At the same time, 
the less active word node for RED would also be receiving 
input and this would be tending to excite the RED response 
node. Hence both response nodes will receive excitation, 
and the balance of this excitation, plus the degree of lateral 
inhibition between the response nodes, will determine how 
quickly either response node reaches threshold.  

As is clear from the architecture, there is no dedicated 
parameter of response inhibition. Thus, verbal descriptions 
of performance on the Stroop task are at odds with the 
computational details of the models. Nevertheless, what 
may be interpreted as response inhibition may well have a 
different label at the computational level. 

Simulation Results 
As in the case of the stop signal model, an initial set of 

simulations was performed to determine the relation 
between the model’s performance and key parameters that 
could plausible be related to individual differences. 
Paralleling Miyake et al.’s study, the dependent variable 
was the difference in processing time between incongruent 
and neutral colour naming trials. Once again, five 
parameters were varied: lateral inhibition (β), the standard 
deviation of normally distributed noise (σ), the strength of 
the task demand units (µ), the gain of the activation function 
(γ) and the response threshold (τ). γ controls the rate at 
which a node’s activation accumulates. It is included 
because Cohen and Servan-Schreiber (1992) suggest that it 
corresponds to an attentional modulation parameter. τ 
controls the sensitivity of the network to produce a 
response. It is fixed at 0.60 in the Cohen and Huston (1994) 
simulations, but we consider varying it here as it has a 
demonstrable affect on Stroop interference and might 
reasonable vary across individuals. We do not consider 
varying the weights from input nodes to response nodes, as 
these are intended to capture learned contingencies which, 
while possibly varying across individuals, should not vary 
systematically with any specific executive function. 

The results of these five sets of simulations are 
summarised in Figure 4. The model is more complex than 
the stop signal model, and consequently the relations 
between the parameters and the relevant dependent measure 
– Stroop interference – are less intuitive. Nevertheless, four 
of the five relations are monotonic, with Stroop interference 
correlating negatively with β (lateral inhibition) and γ 
(gain), and positively with σ (noise) and τ (threshold). That 
is, good inhibitors correspond in the Stroop model to high 
lateral inhibition, low noise, optimal task demand weight, 
high gain or low threshold. 

Yoked Simulation Studies 
Recall the purpose of considering the effects of the various 
parameters on the performance of the two models: we are 
concerned with understanding the source of common 
variance in the tasks to which the models relate. It is 
hypothesised that this might be achieved by identifying a 
parameter that could plausibly vary across individuals and, 
in so doing, could underlie the observed behavioural 
correlation between Stroop colour naming interference and 
stop signal errors. 

 
Figure 4: Effects of varying key parameters on the difference in processing time for correct incongruent and neutral colour naming trials 
produced by the interactive activation model of the Stroop task. 
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We are now in a position to consider candidate 
parameters. For example, both models share a mechanism of 
lateral inhibition, and pre-theoretically one could suggest 
that it is this mechanism, and individual differences in the 
shared parameter β, that underlies the behavioural 
correlation. The left-most panels of Figures 2 and 4 suggest 
that this is implausible. The issue is not the absolute size of 
the parameter’s default value (0.025 for the stop signal 
model and 3.0 for the Stroop model). One can envisage re-
engineering the models so that lateral inhibition in both is of 
a similar magnitude. The issue is that relatively high values 
of β lead to a reduction in Stroop interference accompanied 
by, if anything, a slight increase in stop errors, i.e., a 
negative correlation between the tasks. This is in direct 
contrast to the observed positive correlation. 

In fact, because the relation between β and stop errors is 
non-monotonic, low values of β can yield a positive 
correlation between the tasks. This is shown in Figure 5 
(left-most panel). The figure shows simulation results from 
5 studies in which the value of a parameter in one model is 
yoked to the value of a corresponding parameter in the other 
model. In all 5 cases the relevant parameter values vary 
across the full ranges explored in Figures 2 and 4. Thus, the 
data in the left-most panel was generated by random 
sampling a dummy variable uniformly distributed between 
0.0 to 1.0, and mapping the value of this onto a) the interval 
0.00 to 0.05 to give a value of β for the stop signal model, 
and b) the interval 2.0 to 6.0 to give a yoked value of β for 
the Stroop model. This procedure was repeated 100 times 
for each of the five scatter-plots in Figure 5.2 

From the figure we may immediately rule out several 
potential factors underlying the observed correlation 
between performance on the tasks and hence several 
candidates for the response inhibition function. Neither of 
the parameters shared by the models – lateral inhibition (β) 
or noise (σ) – produce correlations of the appropriate form. 

                                                             
2 One can envisage other approaches to yoking the parameters, 

e.g., by restricting attention to sub-ranges of a parameter in which 
its effect on the relevant dependent variable is monotonic. A 
further alternative focuses on the ranges of parameter values 
chosen. As yet there is no principled way of selecting the ranges 
other than through a cognitive architecture approach. Due to space 
limitations we do not consider these approaches here. 

Hence, it would seem that individual differences in these 
parameters cannot underlie the observed correlations. 
Equally, as shown by the third plot in Figure 5, yoking the 
strength of the go process and the strength of task demand 
weights – an account not immediately related to any 
conceptual mechanism of response inhibition but one which, 
nevertheless, relates two parameters with similar 
functionality – fails to yield a positive correlation between 
the relevant dependent measures. 

The desired positive correlation is shown, however, in the 
two right-most plots of Figure 5. Thus, the models predict 
that performance on the two tasks will correlate positively if 
a) the strength of the stop process and the strength of task 
demand weights are (positively) correlated, or b) the 
strength of the stop process and the gain in the Stroop model 
are (positively) correlated. There is no apriori reason to 
suppose the latter, but the former is plausible as both 
parameters concern the strength of deliberative or 
attentional bias. Thus, these simulation results fail to 
provide support for the idea that the positive behavioural 
correlation between Stroop interference and stop signal 
errors is due to a shared mechanism of response inhibition. 
Rather, they suggest that the correlation arises because 
subjects who are able to provide stronger activation to the 
stop process in the stop signal task are also able to provide 
stronger attentional bias to the colour naming task in Stroop. 
This suggestion is backed up by the right-most plot which 
shows a positive correlation resulting from yoking µstop and 
γ (gain). Recall that γ was also associated (positively) with 
attentional bias by Cohen and Servan-Schreiber (1992). 

Discussion and Conclusion 
In a companion paper (Davelaar & Cooper, 2010), we 
consider closed-form approximations to the same two 
models discussed here. It is demonstrated that the 
explanation of the behavioural correlation in terms of a 
shared process of response inhibition is suspect, and an 
attentional biasing account is proposed as a plausible 
alternative. The simulation results reported here corroborate 
both of these conclusions. 

Our suggestion of attentional biasing, rather than response 
inhibition, as the locus of shared variability on the tasks 
resonates with the approach to response conflict 

 
Figure 5: Effects of varying key parameters in a yoked fashion on the correlation between Stroop interference and the proportion of stop 
errors produced by the two models. 
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management of Botvinick et al. (2001). They demonstrate, 
within the context of three models including the Cohen and 
Huston Stroop model, how trial-by-trial regularities in 
behaviour might be accounted for in terms of a mechanism 
of conflict monitoring which measures the degree of conflict 
in the network’s output nodes and modulates attentional 
bias, increasing it under conditions of high conflict and 
decreasing it under conditions of low conflict. Thus, rather 
than addressing response competition through response 
inhibition, Botvinick et al. (2001) do so through attentional 
biasing. 

We are reluctant to fully endorse this account, however. 
Critically, the account is not fully consistent with the results 
of Miyake et al. (2000). They hold that while stop signal 
errors and Stroop interference are dependent upon response 
inhibition, they are also not dependent on two other putative 
executive functions – task shifting and memory monitoring 
and updating. Thus, if we are to account for the behavioural 
correlation between these tasks in terms of attentional bias, 
it is also necessary to show that attentional bias does not 
systematically affect behaviour on the other tasks of Miyake 
et al. which were held to tap these other two functions and 
not to tap response inhibition. Here there is reason to be 
cautious. Gilbert and Shallice (2002) consider performance 
on a task switching variant of the Stroop task in which 
subjects switch between colour naming and word reading. 
They model the critical behavioural affects by using 
essentially the same mechanism proposed here (i.e., by 
biasing task demand units) in exactly the same model (the 
Cohen and Huston model). Yet these are effects that, on the 
decomposition of Miyake and colleagues, should be 
explained in terms of a distinct task shifting function. 
Moreover in the study of Miyake et al. (2000) all 
correlations between putative task shifting tasks and 
putative response inhibition tasks were non-significant. 

The concept of response inhibition held by Miyake et al. 
(2000) to underlie good performance in the stop signal and 
Stroop tasks was also held to underlie good performance in 
the anti-saccade task. Thus, a fuller analysis of response 
inhibition requires also consideration of process models of 
the anti-saccade task. This remains to be attempted. We 
would hypothesise, however, that performance in this task 
will also correlate with an attentional bias parameter.  

Returning to the two models considered, it should also be 
noted that while they share principles of interactive 
activation, there are also major differences between them. 
For example, different equations govern the accumulation of 
activation in each model. Whether these differences are 
substantive or cosmetic remains to be demonstrated. 
However, these differences really only serve to reinforce our 
primary conclusion, namely, that until we have unified 
process models of the various putative separable executive 
functions, any theoretical account of their supposed unity 
and diversity is incomplete. By extrapolation, to understand 
the executive functions which underly the battery of tasks 
used by Miyake et al. (2000), we need to develop, within a 
single unified framework, models of all of those tasks. Such 

models must, of course, demonstrate the hypothesised 
shared mechanisms. Only then can we be confident that we 
have a plausible account of the various executive functions 
that contribute to the control of complex behaviour. This is, 
of course, one of Newell’s arguments for the utility of 
Unified Theories of Cognition (Newell, 1990). 
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