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Abstract 

This paper describes changes to a model of reading 
comprehension to improve its reading rate and bring it into 
closer alignment with human reading rates. The broader 
context of the research is development of language capable 
synthetic teammates that can be integrated into team training 
simulations. To use synthetic teammates in team training 
without detriment, we believe the synthetic teammates must 
be both functional and cognitively plausible. By functional, 
we mean that the synthetic teammate operates in real time, 
performs the task, and handles the range of linguistic inputs 
that are encountered. By cognitively plausible, we mean that 
the synthetic teammate adheres to well established cognitive 
constraints on human language processing—including the 
incremental and interactive processing of language at human 
reading rates. Achieving human reading rates in a cognitively 
plausible and functional model of reading comprehension is a 
research challenge that has not been met to date. 
 
Keywords: human language processing, reading rate, 
synthetic teammate, functional, cognitively plausible 

Introduction 

We are developing a model of reading comprehension 

called Double-R-Language (Ball, 2007; Ball, Heiberg & 

Silber, 2007). Double-R stands for Referential and 

Relational—two key dimensions of meaning that get 

grammatically encoded in English. The initial application of 

the reading model is development of a synthetic pilot for use 

in a three-person UAV simulation. The synthetic pilot flies 

the simulated UAV from a ground control station and will 

eventually communicate with a human navigator and 

photographer in the completion of reconnaissance missions. 

A prototype system has been developed (Ball, et al., 2009) 

using the ACT-R Cognitive Architecture (Anderson, 2007). 

The synthetic pilot prototype communicates with 

lightweight agent versions of the navigator and 

photographer developed outside ACT-R.  

The prototype communicates with the navigator and 

photographer using text chat and must be capable of reading 

and comprehending the messages it receives from them. The 

reading comprehension model is capable of incrementally 

processing linguistic inputs and generating linguistic 

representations of referential and relational meaning. These 

linguistic representations are interactively mapped into a 

non-linguistic representation of the objects and situations 

referred to in the linguistic input. The non-linguistic 

representation—called the situation model (cf. Zwann & 

Radvansky, 1998)—drives the task behavior of the synthetic 

pilot and determines when to communicate with the other 

teammates to acquire needed information.   

A significant challenge for the reading comprehension 

abilities of the model is input variability. A corpus of text 

chat communications that was collected in an experiment 

involving human subjects and the UAV simulation is full of 

variability in the form of linguistic input (see Table 1). For 

competent readers, misspelled words activate the intended 

lexical items because they contain many of the same letters 

and trigrams (Perea & Lupker, 2003). Hence, key 

requirements of the reading model include the ability to 

handle misspellings in input; the ability to separate 

perceptually conjoined units (e.g. separating punctuation 

from words as in ―He went.‖, but not ―etc.‖; separating 

words lacking spaces as in ―yougo‖ for ―you go‖); and the 

ability to recognize multi-word expressions (e.g. ―speed 

up‖) and multi-unit words (e.g. ―a priori‖, ―h-area‖).  

 

Table 1. Messages seen during a UAV simulation 

 

To satisfy these requirements, the model includes a word 

recognition subcomponent that uses ACT-R’s spreading 

activation mechanism to influence lexical item retrieval. 

The subcomponent maps orthographic input directly into 

DM representations without recourse to phonetic 

processing, although a phonetic mapping is not precluded. 

The model uses the spreading activation mechanism of 

ACT-R to retrieve words from the lexicon that are not an 

exact match to the input. Letters and trigrams in the input 

spread activation to the words containing those letters and 

trigrams in the mental lexicon. These processes and 

encodings are based on the Interactive Activation model of 

word recognition (McClelland & Rumelhart, 1981), with the 

addition of trigrams based on ―letter triples‖ (Seidenberg & 

McClelland, 1989). The subcomponent is embedded in the 

reading comprehension model as a whole; the effects of 

context and previous activation levels are taken into 

consideration when encoding each individual word 

(Freiman & Ball, 2008). The reading model also includes a 

verification stage to check the retrieved lexical item against 

the perceptual input. The verification stage aligns with the 

Activation-Verification model of Paap et al. (1982). It splits 

concatenated words in the input (e.g. ―yougo‖) to match the 

MESSAGE: VARIANT: 

i need to be beloe 3000 for f area i; beloe; f area 

effective radiu 

any requirements for altitde/speed? 

can yougo faster yet or is it stll 200 

radiu 

altitde 

yougo; stll 
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retrieved word (e.g. ―you‖), leaving a residual (e.g. ―go‖) 

for subsequent processing. If the retrieved lexical item is not 

a sufficiently close match to the input, the model treats the 

input as an unknown word. 

Even without considering the mapping of the linguistic 

representations into the situation model, the previous 

version of the reading model was much slower than humans 

in both cognitive processing time and real time 

performance. Adult readers read at a rate of 200-300 words 

per minute (Taylor, 1965; Carver 1973a; Carver 1973b). 

The average reading rate of the model—prior to the 

introduction of the changes described in this paper—was 96 

words per minute (cognitive processing time), making it 

impossible to match the model’s performance against 

human performance. Since we are interested in building a 

model of reading comprehension that is cognitively 

plausible as well as functional, this presents a real challenge. 

The prior reading model read slowly for several reasons: 1) 

it required multiple declarative memory (DM) retrieval 

requests per word; 2) it lacked the ability to read units of 

language larger than the word; and, 3) it built complex 

linguistic representations necessitating the execution of 

multiple productions. In addition, the model relied on 

parallel spreading activation to retrieve lexical items, which 

is computationally expensive for large DMs on serial 

hardware.  

It is important to distinguish between reading rate as 

measured by the real time functional performance of the 

model and the rate as measured by the cognitive processing 

time. ACT-R provides support for measuring cognitive 

processing time—how long it would take a human to 

perform some cognitive process. Execution of a single 

production in ACT-R takes 50ms of cognitive processing 

time; plus, the time it takes to retrieve a chunk from DM 

depends on the activation of the chunk and can be measured. 

Typical ACT-R models with small DMs are capable of 

executing much faster than real time while measuring 

cognitive processing time. However, large DMs tax the 

computational resources of serial hardware and can lead to 

models that run slower than real time or not at all (cf. 

Douglass, Ball & Rodgers, 2009). Although it is important 

to distinguish cognitive processing considerations from real 

time considerations, these considerations are intertwined. 

For example, reducing cognitive processing time by 

eliminating retrievals also reduces the computation of 

parallel spreading activation, speeding up the real time 

performance of the model. For each of the shortcomings 

listed above, one or more remedies is described below and 

its impact on cognitive and real time processing is 

considered. 

Reducing retrievals 

When the model retrieves chunks from DM, the ACT-R 

Declarative Memory module calculates the activation across 

all chunks that match the retrieval template, selecting the 

most highly activated chunk for retrieval. The retrieval 

template provides hard constraints on memory retrieval—

which are difficult to justify from the perspective of 

cognitive plausibility. Only chunks exactly matching the 

retrieval template are eligible for retrieval. The spreading 

activation mechanism provides more cognitively plausible 

soft constraints on retrieval. Chunks may be activated which 

are not an exact match to current input or context. For 

cognitive plausibility, we prefer ACT-R’s spreading 

activation based soft constraint retrieval mechanism, 

minimizing the use of hard constraints in the retrieval 

template. For example, we do not want to use a hard 

constraint exact match to the input which would preclude 

retrieval of a word which is not an exact match (e.g. 

―altitde‖ should retrieve ―altitude‖). However, use of hard 

constraints reduces the amount of computation significantly 

by eliminating non-matching DM elements from the 

spreading activation computation. 

Instead of relying on hard constraint retrievals to reduce 

the amount of computation, we have pursued the more 

cognitively plausible alternative of reducing the number of 

retrievals. An example of this is discussed next. 

Combining Word Form and Part of Speech Chunks 

In the previous version of the model, there was a word-form 

chunk for each word that encoded the graphical form of the 

word, including the letters and trigrams in the word (e.g. 

speed-wf), and part of speech chunks that encoded the 

various parts of speech of the word (e.g. speed-noun and 

speed-verb). The performance of the reading model has 

been improved significantly by collapsing the word form 

and part of speech chunks into a single word-form-pos 

chunk (e.g. speed-wf-noun, speed-wf-verb). Now, a single 

retrieval is required to determine the part of speech of a 

linguistic input. Since the production which initiates a 

retrieval takes 50ms to execute, by combining the word 

form and part of speech chunks for each lexical item, 50ms 

plus the retrieval time were saved per word. 

From a representational perspective, combining the word 

form and part of speech chunks is not ideal. The word-form-

pos chunks combine two distinct types of information (i.e. 

graphical vs. grammatical) which are better kept separate. A 

better solution would retain separate chunks, but support 

retrieval of part of speech chunks given the linguistic input. 

This could be achieved via multi-level activation spread if 

the linguistic input activated a word form chunk which in 

turn activated related part of speech chunks. Unfortunately, 

ACT-R does not support multi-level activation spread, 

although its predecessor ACT* (Anderson, 1983) did. It 

should be noted that single level parallel spreading 

activation is already computationally expensive for large 

DMs. Supporting multi-level spreading activation would 

add an additional multiple to the computation for each level.   

Expanding the Perceptual Span 

By default, ACT-R’s vision module splits input text into 

perceptual spans at spaces and punctuation. The module 

even splits at word internal punctuation, so ―ACT-R” 

becomes “ACT” “-“ “R”, requiring three movements of 
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attention to read. This behavior was changed to a more 

plausible splitting of the input text, thereby reducing the 

number of retrievals per input. Words with internal 

punctuation are no longer split up and retrieved separately.  

The width of the perceptual span is now determined 

dynamically, based on the length of the first word (wordn) in 

the perceptual span. The boundary of wordn is determined 

by the first space. If wordn is greater than twelve letters in 

length, it takes up the entire length of the perceptual span. If 

wordn is fewer than twelve letters in length, up to six letters 

of the next word (wordn+1) can also be seen in the perceptual 

span. No more than twelve letters are contained in the 

perceptual span.  

The size of the revised perceptual span is deliberately 

conservative, so that even though three very short words 

(e.g. ―out of the‖) could be perceived at a single attention 

fixation, the model never retrieves information for more 

than two words. There is a great deal of evidence that the 

perceptual span of adult readers is about 14-15 letters to the 

right of fixation (DenBuurman et al., 1981; McConkie & 

Rayner, 1975; Rayner, 1986). We implemented a span of up 

to twelve letters, with the greatest amount of activation 

spreading from the first few letters of the span and 

decreasing toward the end of the span. As a result, incorrect 

letters at the beginning of words are more detrimental to 

correct retrieval than misplaced letters later in the word. 

Activation spreads from the letters, trigrams, and length of 

the first word (wordn). If there is more than one word in the 

perceptual span, wordn+1 spreads activation from its 

trigrams. The section of the perceptual span containing 

wordn is roughly equivalent to the fovea; the perceptual span 

at wordn+1 is roughly equivalent to the parafovea. 

The revised perceptual span is generally larger than ACT-

R’s default span. Just as for adult readers, information to the 

right of fixation is obtained when the next word is 

predictable from the preceding text (Balota, Pollatsek, & 

Rayner 1985). Again, we were deliberately conservative in 

determining how much information could be perceived from 

wordn+1. Our intent was not to model in high fidelity the 

perceptual span in reading, or movements of attention in 

reading; movement of attention is not our primary focus. 

We merely wanted to make the vision module more 

serviceable to our language comprehension model, and 

more faithful to human perceptual spans in the process. 

An example of the reduction in reading time can be seen 

in the phrase ―take us to h-area‖. Previously, ACT-R’s 

vision module would chop the input into seven parts: 
 

―take‖    ―us‖    ―to‖    ―h‖    ―-―    ―area‖ 
 

The model would retrieve each part from DM, integrate it 

into a linguistic construction, and then move on to the next 

word. The last three sections of the input would need to go 

through additional processing for the model to recombine 

them into a single word. Reading the entire sentence took 

2.8 seconds. If ACT-R does not chop up the input at spaces 

and punctuation, the same phrase takes only 1.74 seconds to 

read. In the next section, the advantage of the expanded 

perceptual span for processing multi-word expressions is 

described. 

Multi-Word Expressions 

To facilitate reading and word recognition we have 

modified the ACT-R architecture and the reading model to 

better interpret multi-word expression (i.e. lexical units 

containing spaces). By not splitting the perceptual input at 

all spaces, multi-word expressions and multi-unit words can 

be retrieved as a single chunk (e.g., "of course" and "a 

priori"). To accommodate multi-word expressions we 

modified our lexical chunks in DM to reduce the number of 

retrievals necessary per word. Multi-word expressions are 

treated in much the same way as singleton words. Many 

multi-word expressions are not syntactically alterable units 

and need not be parsed (Sag et al. 2002), so the model treats 

them as ―words-with-spaces‖. 

An important side effect of the new perceptual span 

mechanism is that it also increases the reading rate of the 

model in the process. Since the perceptual span can cross 

spaces as well as punctuation, multi-word units like ―to go‖, 

―want to‖, and ―believe in‖ can be recognized as a single 

unit and processed in a single attention fixation. This 

capability is really the key to getting Double R-Language to 

approach adult human reading speed.  

Before the multi-word expression capability was 

implemented, the phrase ―we need to go‖ took 1.99 seconds 

for the model to process. After the perceptual span was 

expanded, the model reads the same phrase in 1.79 seconds. 

In this phrase ―to go‖ is treated as a single unit, since it is an 

infinitive verb. There is one fewer retrieval, and the 

infinitive can be integrated into the phrase as a whole 

without having to recombine ―to‖ and ―go‖. Whenever there 

are multi-word units, the model now saves time in retrievals 

and processing. There is no difference in the time it takes to 

process other sorts of words. In addition, multi-word 

expressions are less ambiguous than individual words. ―To‖ 

in isolation is very ambiguous, whereas ―to go‖ is much less 

ambiguous.  

Linguistic Representations 

The reading model incrementally processes the linguistic 

input and builds a representation of referential and relational 

meaning that is mapped into the situation model. The 

building of linguistic representations is driven by the 

execution of productions which retrieve or construct 

linguistic elements and integrate them into the evolving 

representation. It takes more productions and retrievals to 

build complicated linguistic structures. In an effort to reduce 

the number of productions and retrievals that are required, 

we investigated how linguistic representations could be 

simplified or reduced. Our current approach attempts to 

build the minimal structure needed to represent the 

linguistic input, but must support more complex structures 

when they are needed.  
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Retrieving object referring expressions 

Determiners are words that project definiteness and 

(sometimes) number information to nominals (Ball, 2010). 

In the reading model, nominals are called object referring 

expressions (ORE) to emphasize their referential (referring 

expression) and relational (object) functions. Determiners 

include the articles ―a‖, ―an‖, and ―the‖, as well as the 

negative ―no‖, demonstrative pronouns ―this‖, ―those‖, etc. 

Linguists have long known that the determiner ―the‖ is the 

most commonly used word in the English language (cf., 

Zipf, 1932); other determiners are nearly as common. As the 

most commonly used words, determiners are likely to be 

highly proceduralized or simplified in their use (Zipf, 1949). 

Therefore we concentrated on consolidating the processes 

associated with determiners. 

Previously, the model identified a word as a determiner, 

then executed a production which projected an ORE. The 

determiner was integrated as the specifier of the ORE. 

Given that determiners are used so regularly and frequently, 

it seems likely that there is an ORE in DM associated with 

each determiner that can be retrieved without first 

identifying the part of speech of the word. By retrieving the 

associated ORE rather than first identifying the word as a 

determiner, the processing of determiners becomes more 

proceduralized, faster, and more cognitively plausible. 

Where separate, general productions were required to 

retrieve the part of speech, followed by projection of an 

ORE if it’s a determiner, now a single specialized 

production projects an ORE directly from determiners. 

Although we manually created this specialized production, 

we would prefer that the model learn how to compile such 

productions automatically. 

Reducing structure in nominal heads 

Retrieval or projection of an ORE by a determiner 

establishes the expectation for a head to occur. In the 

previous version of the model, when a word following the 

determiner was identified as a noun, a subsequent 

production projected an object head and integrated the 

object head as the head of the ORE (Figure 1). Projection of 

the object head from the noun supported the integration of 

pre- and post-head modifiers (e.g. the post-head modifier 

―on the runway‖ in ―the airplane on the runway‖). When a 

post-head modifier occurred, it could be integrated into the 

object head in the post-head modifier slot. However, in the 

absence of a post-head modifier, projection of an object 

head is unnecessary and the noun could be integrated as the 

head of the ORE. The current version of the model adopts 

the simpler approach, integrating the noun as the head of the 

ORE (Figure 2). The tree diagrams below were generated by 

the previous and current versions of the model and show the 

contrast between the two approaches for the linguistic input 

―the restriction‖ (the pre- and post-head modifier slots in the 

object head are not displayed): 

 

 

Figure 1. Original nominal structure (including a 

determiner, projected ORE and object head) 

 

 
 

Figure 2. Reduced nominal structure (the retrieved 

determiner ORE and no object head) 

 

But what happens when a post-head modifier occurs, or 

when the pre-head modifier slot turns out to be needed? In 

the processing of the input ―the altitude restriction‖, when 

―altitude‖ is processed it is integrated as the head of the 

nominal projected from ―the‖. When ―restriction‖ is 

subsequently processed there is no expectation for its 

occurrence. The previous version of the model projected an 

object head, so ―restriction‖ was accommodated by shifting 

―altitude‖ into the pre-head modifier slot so that 

―restriction‖ could be integrated as the head. In the current 

version, we have adopted a similar strategy. In parallel with 

the integration of ―altitude‖ as the head of the ORE, an 

object head is constructed in which ―altitude‖ is the head. 

This object head is available if needed to support subsequent 

processing. When ―restriction‖ is processed, the object head 

overrides ―altitude‖ as the head of the ORE and ―altitude‖ is 

shifted into the pre-head modifier slot so that ―restriction‖ 

can be integrated as the head (Figure 3). Note that the object 

head is projected in parallel to facilitate processing. A single 

production integrates the object head as the head of the 

ORE, shifts ―altitude‖ to the pre-head modifier slot and 

integrates ―restriction‖ as the head. It takes no more time to 

process ―restriction‖ than in the previous version of the 

model, but it does require parallel projection of the object 

head.  

 

 
 

Figure 3. Accommodating ―restriction‖ 
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Real Time Processing & Spreading Activation 

Cognitive time is the time it takes the productions and 

retrievals in ACT-R to happen, with each production taking 

a fixed amount of time. When a production fires, 50ms of 

cognitive time elapses, so having many productions firing 

for the processing of each word takes up a great deal of 

cognitive time. Retrievals also take cognitive time—chunks 

with high activation are retrieved more quickly than 

chunks with low activation.  

Retrievals take real time to calculate the activation of all 

eligible chunks. Real time is the wall clock time that 

passes while the computer executes the model. When a 

retrieval request is not very specific, for example, 

specifying only the chunk-type, then the activation for all 

chunks of that type must be calculated before the most 

highly activated chunk can be selected. There are 

thousands of chunks of type WORD, so when the chunk-

type WORD is the only retrieval specification, thousands of 

activation calculations must be performed before a chunk is 

retrieved. While this is a parallel process in the brain, it is a 

serial process for a microprocessor. Since the language 

model specifies only the chunk type, and relies on spreading 

activation to retrieve words, thousands of calculations bring 

the real time reading rate down to 53words per minute 

(wpm). 

Disjunctive Retrieval  

One way to retrieve chunks faster in real time is to impose 

stronger hard constraints on the retrieval. Instead of a weak 

chunk-type specification that matches thousands of chunks, 

a strong constraint that matches only a limited set of chunks 

can be specified. For example, the model could try to 

retrieve an exact match to input text form, which might only 

match a single chunk in DM. However, imposing such 

constraints makes the model less flexible and less 

cognitively plausible. If the model relies on a hard 

constraint to match the input form against words in DM, 

variants cannot be read. Even a hard constraint on just the 

first letter means that words where the first letter is 

transposed with the second, or in any other way misplaced, 

cannot be read by the model. 

The model needs the flexibility of a soft-constraint 

retrieval with the real time speed of a strong hard-constraint 

retrieval. In order to achieve this affect, we implemented a 

disjunctive retrieval mechanism. Using an ACT-R function 

called get-chunk, the model checks DM for the largest 

constituent of the perceptual span. If it does not find that 

constituent, it chops the perceptual span at the last 

punctuation mark or space. If that constituent is not found, it 

chops at the second to last punctuation mark or space, and 

so on. If an entire word does not match at any point, a 

simple soft constraint is attempted.  

For example, if the input sentence is ―og to h-area‖, we 

want the model to be able to retrieve GO for ―og‖ (see Table 

2). The get-chunk function is used to try to find chunks that 

correspond to smaller and smaller parts of the visual input. 

If at any point the function finds what it is looking for, the 

model uses that specification to make the retrieval. Get-

chunk is a simple search function into a hash table—it is not 

computationally expensive, and it functions outside of the 

cognitive processes of ACT-R, so it does not take any 

cognitive time. 

 

Table 2. Perceptual span contains ―og to h-area‖ 

 

Using the disjunctive retrieval, the average reading rate 

for the model is 249wpm in real time. The cognitive time is 

unaffected, and the model runs with disjunctive retrieval are 

identical to the model runs using a pure soft-constraint. The 

results of retrieval requests are identical. Since the two 

retrieval methods are equivalent in ACT-R, the disjunctive 

retrieval is acceptable as a way to make our model fast 

enough to be functional in real time while we try to catch up 

in cognitive time. 

Conclusions 

Although we have not yet succeeded in achieving human 

reading rates, we have improved the reading rate of the 

Double-R-Language significantly. The initial version of the 

model read at a rate of about 96wpm, far from our goal of 

200-300wpm, the average reading rate of adults. The model 

now reads at an average rate of 143wpm in cognitive time, 

and 249wpm in real time. This rate is the average, achieved 

while reading a text of just under 2,100 words, without 

counting punctuation as separate words.  

The perceptual span is closer in size to that of human 

readers than previously. The expanded perceptual span 

allows for the expansion of the model’s lexicon to include 

multi-word units, as well as speeding up the reading rate. 

An additional advantage of multi-word units is that they are 

less ambiguous than words in compositional phrases. 

The model was improved by simplifying various 

linguistic constructions. Parallel constructions allow for 

simplified nominal heads, and object referring expressions 

in declarative memory allow the model to avoid 

constructing object referring expressions whenever 

determiners are encountered. We posit that the simplified 

representations are not only more expedient, but more 

cognitively plausible as well. Avoiding unnecessary 

constructions in the model is more likely to track the 

efficiency of human language use. 

Ultimately, we believe that achieving human level reading 

rates will require a capability to recognize multi-word units 

that exceed a single perceptual span. Recognition of a 

linguistic unit as forming a part of a larger linguistic unit 

SEARCH 

FOR: 

RESULT: RETRIEVAL 

REQUEST: 

RESULT: 

og to h-area NIL -- -- 

og to h- NIL -- -- 

og to h NIL -- -- 

og to 

og 

-- 

NIL 

NIL 

-- 

-- 

-- 

chunk-type WORD 

-- 

-- 

GO-word 
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across perceptual spans should minimize the amount of 

higher level processing required to integrate the recognized 

unit into the evolving representation and speed up the 

reading rate, allowing the model to approach adult human 

reading rates. 

Although reading rate is important, the language 

comprehension model is being developed to model the full 

range of linguistic processes of a competent adult reader, 

rather than just modeling the reading rate. It is our hope that 

any improvements we make in the reading rate of our model 

will be accompanied by improvements in the models 

accuracy and cognitive plausibility. 
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