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Abstract

Circadian rhythms cause alertness declines at night,
producing performance decrements across cognitive domains
and tasks. Building on the learning mechanisms for
declarative knowledge instantiated in the ACT-R cognitive
architecture, this research seeks to explain the effects of
circadian rhythms on performance of an orientation task
performed repeatedly across two weeks by participants
working either day or night shifts. The differences in
performance between the two groups are best explained by
varying the decay rate in declarative knowledge as a function
of the time of day the task was performed. The model
accounts well for task learning reflected in decreases in
response times across days, as well as differences in learning
between the day and night shift conditions.
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Introduction

Variations in alertness due to circadian rhythms and sleep
loss have been shown to affect various components of
cognitive functioning (e.g. Jackson & Van Dongen, in
press). For example, vigilant attention (Lim & Dinges,
2008), perceptual learning (Mednick, Nakayama &
Stickgold, 2003), and motor learning (Walker, Brakefield,
Morgan, Hobson & Stickgold, 2003) are all affected by
fluctuations in alertness associated with time awake and
circadian rhythms.

Despite well-documented behavioral changes, it is not
well understood how nighttime operations affect learning in
different contexts. Most research on night and shift work
has focused on how shift differences affect sleep and
frequency of accidents (e.g. Akerstedt, 1988). The affect of
changes in alertness (e.g., as associated with work shift
differences) on learning is one area of research where a
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better understanding of the mechanisms involved is needed.
More detailed explanations hold the promise of enabling
predictions about how learning experiences at different
times of the day may differ, and how this may impact
eventual task performance.

Previous cognitive modeling efforts have explored some
effects of moderators on cognitive processes. In fact, several
studies have examined such effects in the context of
declarative knowledge. For instance, the effects of caffeine
on memory retrieval have been modeled by increasing the
activation of declarative knowledge (Kase, Ritter &
Schoelles, 2009). Conversely, the effects of sleep loss on
memory retrieval have been explained using decreases in
declarative activation (Gunzelmann, Gluck, Kershner, Van
Dongen & Dinges, 2007). The negative effect of time-on-
task on response accuracy has been explained by increasing
noise, making misretrievals more common (Fu, Gonzalez,
Healy, Kole & Bourne Jr, 2006).

These research efforts focused on processes associated
with retrieving declarative knowledge by impacting the
availability or confusability of chunks when they are
requested. In contrast, the effects of alertness on the learning
and retention of declarative knowledge have not been
addressed.

In the research presented here, we investigate how long-
term learning may be affected by fluctuations in alertness
resulting from circadian rhythms during laboratory-
simulated shift work. This is accomplished within the
context of a spatial direction task based on Gunzelmann,
Anderson, and Douglass (2004), which was performed
repeatedly by participants over two weeks. A computational
cognitive model is presented that accounts for changes in
observed response times across successive days of the
study, including differences in learning rates as a function of



simulated work shift. Differences in performance between
shift conditions are explained by manipulating the decay
rate parameter in ACT-R’s declarative knowledge activation
function. Increased decay (reduced learning) in the night
shift condition leads to performance decrements that match
the human data. The details of the task, the human
performance data, and the model are described in the
following sections.

Orientation Task

This experiment was conducted as part of a larger study to
understand how circadian rhythms and sleep disruption
affect performance in a variety of domains. The participants
were screened to be healthy and without sleep disorders,
with no evidence of brain damage or learning disabilities,
and free of drugs of abuse. Participants gave written
informed consent, and were paid for their participation.

Figure 1 shows the orientation task used in this study.
There are 8 possible target locations (left) and 8 possible
misalignments (right; 45 degree intervals). Twenty-five
randomly ordered trials were presented per session — 5
target locations (bottom, near, middle, far, and top) crossed
with 5 misalignments (0, 45, 90, 135, and 180 degrees).
Because performance is roughly equivalent for right-left
mirrored stimuli for both target location and misalignment
(see Gunzelmann, Anderson & Douglass, 2004), the
location was selected at random from the left or right
positions.

Participants received instructions that encouraged them to
mentally rotate the relative positions of the viewpoint
(indicated by the “You” arrow) and the target on the
overhead view (left side filled circle) to align them with the

viewpoint indicated on the map view (right side arrow).
Specifically, they were taught to imagine an angle that
connects the viewpoint to the target on the overhead view,
with the vertex at the center of the field (a 90 degree angle
in Figure 1). They were then told to mentally shift to the
map view, and to rotate the angle so that the arrow in the
overhead view was aligned with the arrow in the map view
(a rotation of 90 degrees clockwise in the trial shown in
Figure 1). At this point, the answer could be determined by
finding the target end of the angle.

Participants responded using the numeric keypad portion
of a computer keyboard, which was spatially mapped to the
possible response locations on the map view. So, if the
target was in the bottom position on the map (as it is in the
sample trial shown in Figure 1), participants responded by
pressing the “2” on the numeric keypad.

Method Thirteen participants, ranging in age from 22 to
39 years old (mean = 28), were in the laboratory for
fourteen consecutive days. The first day was a baseline day
with 10 hours in bed for sleep (22:00-08:00). Subsequently,
some of the participants (n = 6) changed to a simulated
night shift. Night shift participants were given five hours in
bed (15:00-20:00) on the second baseline day, before
starting five consecutive work days with 10 hours in bed
during the daytime (10:00-20:00) on each day. On the
seventh and eighth day, night shift participants had a
simulated “day off” during which they had 5 hours in bed
(10:00-15:00), 7 hours awake, 10 hours in bed during the
night (22:00-08:00), 7 hours awake, and then 5 hours in bed
(15:00-20:00), before resuming their night shift schedule
for the next 5 days. This schedule represented a common

schedule for individuals working a

Overhead

night shift, who frequently switch

Map back to a nighttime sleep schedule
during weekends. After the last night
o shift day, night shift participants

received 5 hours in bed (10:00—
9 15:00), 7 hours awake, and then, on
the final day of the study, were given
10 hours in bed at night (22:00—
08:00) for recovery.

Participants on the day shift (n =7)
were subjected to the same pattern of
two baseline days, five consecutive
work days, a “day off”, another five
3 consecutive work days, and a
recovery day. They maintained the
same sleep schedule throughout the
study, however, with 10 hours in bed

If the arrow points to your location,
in what direction would the blue

You
circle be?

Figure 1: An example trial. The target on the overhead ego-oriented view (left side),
indicated by the filled circle, is at middle distance to the right of center. The
perspective on the map view (right side), indicated by the arrow, is misaligned by

(22:00-08:00) each night. Note that
participants on the day shift and night
shift schedules were given the same
amount of time in bed over the
course of the experiment; it was
merely distributed differently.

90° clockwise. The correct response in this example trial is “2.”
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Over the course of the study, participants completed fifty-
one test sessions of the spatial direction task, with 2 to 4
sessions per day. Before the first session, participants were
presented with instructions for the task.

Eight to sixteen days prior to the first session (mean = 14
days), participants were given baseline training on the
spatial direction task. This included a set of instructions for
the task and four training sessions (these data are not
modeled here).

Observed Data

Average response times for each day of the study are
presented in Figure 2 for both the day and night shift
conditions. Performance during the baseline days of the
study (days 1 and 2) was similar for the two groups, and
there was no significant difference in mean RT at that point.
However, when the conditions diverged, so did performance
on the spatial direction task. The performance of the night
shift group did not recover during the simulated “day off”,
and differences in mean response time remained at the end
of the experiment.

To evaluate the differences between shift conditions, we
compared response times on the days when they were awake
for different shifts (ten days; excluding the baseline, day off,
and recovery day) using a linear mixed-effect model with
subject as a repeated-measure grouping factor. This was
planned a priori to most effectively evaluate the impact of
shift on performance. However, for the model comparisons
later in the paper, all of the observed data was used. See
Halverson, Gunzelmann, Moore, and Van Dongen (in press)
for more complete analyses of the human data.

Figure 2 shows the mean participant response times (solid
lines) as a function of day in study and simulated work shift.
There was a steady decrease of response time between days
1 and 14, as corroborated by a main effect of day, F(9,
7769) = 112.2, p < .001. While there was no evidence of an
overall effect of shift, F(1, 11) = 0.8, p = .37, there was an
interaction between shift and day, F(9, 7769) = 2.1, p = .03.
Response times did not improve as quickly when a
participant was on the night shift. Observed error rates were
low (M = 4%, SD = 3%) and are not addressed in this work.

Mental Rotation Model

A computational cognitive model of the orientation task was
developed using the ACT-R 6.0 cognitive architecture
(Anderson et al., 2004). The model behavior is primarily
driven by mental rotations and learning. The mental rotation
operation is implemented using ACT-R’s imaginal module
and the imaginal-action buffer. Learning in the model
occurs both in the declarative module and through the
compilation mechanisms in procedural knowledge. The task
procedure implemented in the model was based on the
instructions given to the participants in the empirical study.

Model Overview

The model executes the task as follows: In the overhead
view, the model encodes the angle defined by the target
(blue circle), the center of the overhead view, and the
viewpoint (circle nearest the “You” arrow) by visually
attending those locations and encoding their coordinates in
the imaginal buffer. The model then switches to the map
view, encoding the vector defined by the viewpoint (circle
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Figure 2: Observed and predicted mean response times as a function of day and simulated work shift (night or day). The
shaded regions indicate simulated “days off” in which night shift participants (and the model) performed the task during the
day at the same time as day shift participants. Shaded days are not included in the human data analysis.

Error bars indicate =1 standard error.
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nearest the arrow) and center of the map view by attending
those locations and encoding their coordinates.

The angle that was encoded in the overhead view is then
translated to center it on the map view (an imaginal action;
200 ms) and rotated to align the viewpoints of the overhead
and map views. The model visually attends the response
location closest to the transformed location of the target,
encodes the response digit, and presses the corresponding
keyboard key.

Mental rotations were implemented using the ACT-R
imaginal module. The time to perform the rotation was
based on previous mental rotation research (e.g. Bethell-Fox
& Shepard, 1988) and was a linear function of the angle of
rotation. The slope of the linear function was a free
parameter, as the slope can vary by task depending on the
relative complexity of the object to be rotated.

Learning

The model’s performance improves over time by learning
in three ways. First, the angle from the overhead view is
encoded in declarative memory when the first subtask is
completed. In subsequent trials, the model attempts to
retrieve an existing chunk based on the target’s location. If a
chunk exists and gets retrieved before the model completes
the process of visually encoding the angle, then the
information from the chunk that was retrieved from
declarative knowledge is used. Over time, retrievals become
more likely and faster than explicitly encoding the angle
using perceptual and imaginal actions. This leads to a speed-
up in the model’s execution of the task.

In addition to an increasing reliance on declarative
representations for target location information, the second
step of the solution process is also stored in declarative
knowledge once the response is made. These chunks contain
information about the target location from the overhead
view as well as the perspective on the map view (i.e., the
misalignment). Consequently, with experience the model
can attempt to retrieve the response based on the target
location and map view perspective location. Like encoding
the target location on the overhead view, if a chunk is
retrieved before the model completes the mental
transformations on the map view, the response is based
upon the chunk retrieved from declarative knowledge.

The final learning process in the model involves ACT-R’s
production compilation (i.e. proceduralization). Production
compilation is a process by which new productions are
created dynamically to represent in one step the
consequences of two productions that execute
consecutively. With experience, it becomes increasingly
likely that the new production will be used, as the model
learns that the utility of the new production is greater than
the utility of the original, separate productions. However,
due to the many constraints imposed on production
compilation by the architecture and the structure of this
model, the only compilation that occurs in the current model
involves encoding the mental rotation into productions
specific to each pair of overhead target and map view
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perspective  locations. Therefore, the only savings
introduced by production compilation were the infrequent,
but substantial, time savings from the mental rotation of trial
layouts that were only seen once per session.

Explaining Night Shift Performance Decrements

Several alternatives were explored to explain the
decrement in performance observed for participants on the
night shift. The solution that resulted in the best explanation
of the data was a variation of the decay rate of declarative
chunks activation as a function of simulated work shift.
Alternative solutions that did not explain the observed
trends as well are described in the Results and Discussion
section.

By default, the decay rate parameter is not allowed to
vary in the implementation of ACT-R. That is, the decay
rate can be set, but it assumes the same value for the
duration of a model run. There have been various efforts to
implement more dynamic mechanisms for decay in ACT-R.
Most of these have been related to accounting for the
spacing effect (Anderson, Fincham & Douglass, 1999;
Jastrzembski & Gluck, 2009; Pavlik & Anderson, 2005).

In our case, we utilize the decay rate to represent
differences in the effectiveness of learning as a function of
when during the day the task was performed. To implement
the mechanisms, the equation to calculate the base-level
activation of declarative chunks was modified (Equation 1).
The only change to the standard ACT-R base-level learning
equation is that the value of the decay rate parameter can
vary according to the time when a chunk was added to
declarative memory or when the chunk was rehearsed (d;),
as opposed to a constant decay rate across all rehearsals (d)
in the original equation. This modification does not change
the effect of decay for current ACT-R models.

B,=In(),t;")+B (1
j=I1

The current model was implemented with the simplifying
assumption that the level of alertness, and thus the value of
d;, is constant across all hours of a work shift (day or night).
It is well known that alertness due to circadian rhythms
varies throughout the day and night (Van Dongen & Dinges,
2005). However, while the model executed the task the
same number of times as the participants did through a
simulated workday, we aggregated the data across each day
to reduce noise. We have not yet evaluated the capacity of
the mechanism to account for finer grained circadian rhythm
fluctuations or varying inter-session intervals.

The model was fit to the day shift data using the retrieval
threshold (best fit = 1.2), retrieval latency factor (8.0), and
rotation slope (0.009 sec/degree) parameters. The rotation
slope is similar to the slope found in previous research for
simple rotations (Bethell-Fox & Shepard, 1988). The base
level learning, which controls the rate of activation decay
(dj), was left at the ACT-R default (0.5) during sessions
when participants were on the day shift. For predicting the
night shift data, the declarative chunk decay rate was



allowed to vary. The best fitting decay parameter for the
night shift sessions was 0.6.

Results and Discussion

Figure 2 shows observed (solid lines) and best fitting model
(dashed lines) mean reaction times as a function of day in
the study and simulated work shift (night or day). For both
shifts, the observed behavior is well predicted (RMSD = 65
ms, ?= .98 for day shift; RMSD = 79 ms, > = .98 for night

shift). The night shift predictions are particularly
noteworthy, as only one parameter was varied relative to the
day shift model.

The model is able to predict the observed response times
well across fourteen days, including differences across work
shifts (i.e. the interaction of day and shift). The model is
able to predict the effects of work shift changes well with
variations in declarative memory decay rates based on the
time at which the tasks are performed. While the declarative
decay mechanism explains the observed decrements well,
several alternative mechanisms for explaining the trends
were considered.

One alternative mechanism involves manipulating overall
declarative chunk activation at the time of retrieval, as was
done in Gunzelmann et al. (2007). This model did fit the
observed data on most days, but did not correctly predict the
effect on the overall learning rate when the participants in
the night shift condition temporarily switched to the day
shift on days 8 and 14. On these days, the model predicts
that the performance of participants in the night shift group
is nearly equivalent to that of participants in the day shift
group. This is because the model assumes that the
participants’ alertness recovers when performing the task
during the day. There is some evidence in associated data
(not reported here) to support this, although we do not have
conclusive evidence. Regardless, if the impact of degraded
alertness were only on activation levels, then the knowledge
should be more available during the day. As the human data
illustrate, however, the deficits associated with performing
the task on the night shift persisted.

Another alternative mechanism for explaining the
decrements of alertness is a decrement to utility values
associated with production selection and execution. This
mechanism has been used to predict performance
decrements due to decreased alertness in vigilance tasks
(e.g. Gunzelmann, Moore Jr, Salvucci & Gluck, 2009).
However, such a mechanism in the model presented here
does not explain the observed data for the current task. The
same issue is encountered as with the previous alternative
— the model recovers to day shift levels of performance on
the “day off” and “recovery” days. This is likely a result of
the current task requiring constant engagement, over short
periods, and thus mechanisms employed for sustaining
attention throughout the task would not be stressed.

A third alternative mechanism that was explored is a
variation in procedural learning as a function of shift. The
model presented in this paper has both procedural and
declarative learning enabled. It may be that the observed
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night shift decrement resulted from a slowing of procedural
learning rather than a slowing of declarative learning. To
test this, the rate of learning for productions rule utilities
was varied. This made little difference in the predicted
results. This lack of predictive power may result from either
the way in which the model was constructed, with an
emphasis on declarative knowledge, or a result of the study
design, with most of the procedural learning occurring early
in the protocol when all participants performed the task
during the day.

Thus, the model presented here provides support for the
hypothesis that variations in alertness have an impact on
learning that may persist beyond immediate task
performance. This is consistent with previous research that
has indicated that sleep loss causes deficits in encoding
declarative knowledge (see Jackson & Van Dongen, in
press, for a review). In the ACT-R theory of memory, decay
rate is arguably the parameter that most closely corresponds
to encoding and rehearsal, as this parameter determines how
much the previous exposures to knowledge will affect future
retrievals. While there is no conclusive evidence in the
literature to attribute either encoding or retrieval deficits to
the observations, the current modeling helps support the
claim that decreased alertness affects encoding.

A useful future extension to the proposed mechanism for
predicting the effects of alertness on learning would be to
account for the inter-session intervals. Currently the model
does not specifically take into account the 2 to 26 hour
intervals between consecutive sessions, which is
problematic if we want to generalize the model to tasks in
which the time between sessions varies. Incorporating
mechanisms proposed in previous modeling to account for
inter-session intervals (Anderson, et al., 1999) or practice
spacing effects (Jastrzembski & Gluck, 2009) may allow the
current model to predict these inter-session intervals.

Conclusion

Performance variations based on alertness have both
theoretical and real-world importance. The present results
illustrate how specific cognitive processes may be affected
by circadian rhythms, and have implications for task
training and performance in real-world contexts.

The cognitive modeling presented here illustrates how
learning rates may be impaired at night, during the nadir of
circadian rhythms. Because degraded learning has potential
consequences that extend beyond the immediate situation,
brief transitions to day shift may not result in immediate
recovery. While the benefit in response time was fairly
small in this study (300 ms), the modeling suggests that the
effects of learning under conditions of lower alertness may
accumulate over time and thus the benefit of training during
the day will grow. Moreover, tasks in which exposures to
declarative facts are less frequent, as seen in many real
world tasks, are expected to encounter an even greater effect
of decreased alertness due to a greater time between
rehearsals and a greater (exponential) decay rate.



Several mechanisms were explored to explain the
observed night shift response time decrement. Some
mechanisms that have been used previously to explain
observed decrements of alertness could not explain the
results found in this research. We do not find this outcome
particularly troublesome, or even surprising. Rather, in the
current study and others, the tasks were specifically selected
to ascertain the various ways in which reduced alertness
may affect performance on particular mechanisms within
the ACT-R architecture.

Our goal is to identify a general set of mechanisms to
account for the ways in which variations in alertness impact
various components of cognitive functioning. Focusing on
laboratory tasks allows us to better isolate various
components and evaluate particular computational
mechanisms. Such an understanding is necessary in order to
predict performance in more complex tasks where various
cognitive functions, and mechanisms, interact in complex
ways. This represents the focus of this research in the long
term (e.g. Gunzelmann & Gluck, 2009; Gunzelmann,
Moore, Salvucci, & Gluck, 2009; Tucker et al., 2010).
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