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Abstract 
Circadian rhythms cause alertness declines at night, 
producing performance decrements across cognitive domains 
and tasks. Building on the learning mechanisms for 
declarative knowledge instantiated in the ACT-R cognitive 
architecture, this research seeks to explain the effects of 
circadian rhythms on performance of an orientation task 
performed repeatedly across two weeks by participants 
working either day or night shifts. The differences in 
performance between the two groups are best explained by 
varying the decay rate in declarative knowledge as a function 
of the time of day the task was performed. The model 
accounts well for task learning reflected in decreases in 
response times across days, as well as differences in learning 
between the day and night shift conditions. 

Keywords: sleep; circadian rhythm; fatigue; learning; shift 
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Introduction 
Variations in alertness due to circadian rhythms and sleep 
loss have been shown to affect various components of 
cognitive functioning (e.g. Jackson & Van Dongen, in 
press). For example, vigilant attention (Lim & Dinges, 
2008), perceptual learning (Mednick, Nakayama & 
Stickgold, 2003), and motor learning (Walker, Brakefield, 
Morgan, Hobson & Stickgold, 2003) are all affected by 
fluctuations in alertness associated with time awake and 
circadian rhythms. 

Despite well-documented behavioral changes, it is not 
well understood how nighttime operations affect learning in 
different contexts. Most research on night and shift work 
has focused on how shift differences affect sleep and 
frequency of accidents (e.g. Åkerstedt, 1988). The affect of 
changes in alertness (e.g., as associated with work shift 
differences) on learning is one area of research where a 

better understanding of the mechanisms involved is needed. 
More detailed explanations hold the promise of enabling 
predictions about how learning experiences at different 
times of the day may differ, and how this may impact 
eventual task performance. 

Previous cognitive modeling efforts have explored some 
effects of moderators on cognitive processes. In fact, several 
studies have examined such effects in the context of 
declarative knowledge. For instance, the effects of caffeine 
on memory retrieval have been modeled by increasing the 
activation of declarative knowledge (Kase, Ritter & 
Schoelles, 2009). Conversely, the effects of sleep loss on 
memory retrieval have been explained using decreases in 
declarative activation (Gunzelmann, Gluck, Kershner, Van 
Dongen & Dinges, 2007). The negative effect of time-on-
task on response accuracy has been explained by increasing 
noise, making misretrievals more common (Fu, Gonzalez, 
Healy, Kole & Bourne Jr, 2006).  

These research efforts focused on processes associated 
with retrieving declarative knowledge by impacting the 
availability or confusability of chunks when they are 
requested. In contrast, the effects of alertness on the learning 
and retention of declarative knowledge have not been 
addressed. 

In the research presented here, we investigate how long-
term learning may be affected by fluctuations in alertness 
resulting from circadian rhythms during laboratory-
simulated shift work. This is accomplished within the 
context of a spatial direction task based on Gunzelmann, 
Anderson, and Douglass (2004), which was performed 
repeatedly by participants over two weeks. A computational 
cognitive model is presented that accounts for changes in 
observed response times across successive days of the 
study, including differences in learning rates as a function of 
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simulated work shift. Differences in performance between 
shift conditions are explained by manipulating the decay 
rate parameter in ACT-R’s declarative knowledge activation 
function. Increased decay (reduced learning) in the night 
shift condition leads to performance decrements that match 
the human data. The details of the task, the human 
performance data, and the model are described in the 
following sections. 

Orientation Task 
This experiment was conducted as part of a larger study to 
understand how circadian rhythms and sleep disruption 
affect performance in a variety of domains. The participants 
were screened to be healthy and without sleep disorders, 
with no evidence of brain damage or learning disabilities, 
and free of drugs of abuse. Participants gave written 
informed consent, and were paid for their participation. 

Figure 1 shows the orientation task used in this study. 
There are 8 possible target locations (left) and 8 possible 
misalignments (right; 45 degree intervals). Twenty-five 
randomly ordered trials were presented per session — 5 
target locations (bottom, near, middle, far, and top) crossed 
with 5 misalignments (0, 45, 90, 135, and 180 degrees). 
Because performance is roughly equivalent for right-left 
mirrored stimuli for both target location and misalignment 
(see Gunzelmann, Anderson & Douglass, 2004), the 
location was selected at random from the left or right 
positions. 

Participants received instructions that encouraged them to 
mentally rotate the relative positions of the viewpoint 
(indicated by the “You” arrow) and the target on the 
overhead view (left side filled circle) to align them with the 

viewpoint indicated on the map view (right side arrow). 
Specifically, they were taught to imagine an angle that 
connects the viewpoint to the target on the overhead view, 
with the vertex at the center of the field (a 90 degree angle 
in Figure 1). They were then told to mentally shift to the 
map view, and to rotate the angle so that the arrow in the 
overhead view was aligned with the arrow in the map view 
(a rotation of 90 degrees clockwise in the trial shown in 
Figure 1). At this point, the answer could be determined by 
finding the target end of the angle. 

Participants responded using the numeric keypad portion 
of a computer keyboard, which was spatially mapped to the 
possible response locations on the map view. So, if the 
target was in the bottom position on the map (as it is in the 
sample trial shown in Figure 1), participants responded by 
pressing the “2” on the numeric keypad. 
 

Method Thirteen participants, ranging in age from 22 to 
39 years old (mean = 28), were in the laboratory for 
fourteen consecutive days. The first day was a baseline day 
with 10 hours in bed for sleep (22:00–08:00). Subsequently, 
some of the participants (n = 6) changed to a simulated 
night shift. Night shift participants were given five hours in 
bed (15:00–20:00) on the second baseline day, before 
starting five consecutive work days with 10 hours in bed 
during the daytime (10:00–20:00) on each day. On the 
seventh and eighth day, night shift participants had a 
simulated “day off” during which they had 5 hours in bed 
(10:00–15:00), 7 hours awake, 10 hours in bed during the 
night (22:00–08:00), 7 hours awake, and then 5 hours in bed 
(15:00–20:00), before resuming their night shift schedule 
for the next 5 days. This schedule represented a common 

schedule for individuals working a 
night shift, who frequently switch 
back to a nighttime sleep schedule 
during weekends. After the last night 
shift day, night shift participants 
received 5 hours in bed (10:00–
15:00), 7 hours awake, and then, on 
the final day of the study, were given 
10 hours in bed at night (22:00–
08:00) for recovery. 

Participants on the day shift (n = 7) 
were subjected to the same pattern of 
two baseline days, five consecutive 
work days, a “day off”, another five 
consecutive work days, and a 
recovery day. They maintained the 
same sleep schedule throughout the 
study, however, with 10 hours in bed 
(22:00–08:00) each night. Note that 
participants on the day shift and night 
shift schedules were given the same 
amount of time in bed over the 
course of the experiment; it was 
merely distributed differently.  

Figure 1: An example trial. The target on the overhead ego-oriented view (left side), 
indicated by the filled circle, is at middle distance to the right of center. The 

perspective on the map view (right side), indicated by the arrow, is misaligned by 
90° clockwise. The correct response in this example trial is “2.” 
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Over the course of the study, participants completed fifty-
one test sessions of the spatial direction task, with 2 to 4 
sessions per day. Before the first session, participants were 
presented with instructions for the task. 

Eight to sixteen days prior to the first session (mean = 14 
days), participants were given baseline training on the 
spatial direction task. This included a set of instructions for 
the task and four training sessions (these data are not 
modeled here).  

Observed Data 
Average response times for each day of the study are 
presented in Figure 2 for both the day and night shift 
conditions. Performance during the baseline days of the 
study (days 1 and 2) was similar for the two groups, and 
there was no significant difference in mean RT at that point. 
However, when the conditions diverged, so did performance 
on the spatial direction task. The performance of the night 
shift group did not recover during the simulated “day off”, 
and differences in mean response time remained at the end 
of the experiment. 

To evaluate the differences between shift conditions, we 
compared response times on the days when they were awake 
for different shifts (ten days; excluding the baseline, day off, 
and recovery day) using a linear mixed-effect model with 
subject as a repeated-measure grouping factor. This was 
planned a priori to most effectively evaluate the impact of 
shift on performance. However, for the model comparisons 
later in the paper, all of the observed data was used. See 
Halverson, Gunzelmann, Moore, and Van Dongen (in press) 
for more complete analyses of the human data. 

Figure 2 shows the mean participant response times (solid 
lines) as a function of day in study and simulated work shift. 
There was a steady decrease of response time between days 
1 and 14, as corroborated by a main effect of day, F(9, 
7769) = 112.2, p < .001. While there was no evidence of an 
overall effect of shift, F(1, 11) = 0.8, p = .37, there was an 
interaction between shift and day, F(9, 7769) = 2.1, p = .03. 
Response times did not improve as quickly when a 
participant was on the night shift. Observed error rates were 
low (M = 4%, SD = 3%) and are not addressed in this work. 

Mental Rotation Model 
A computational cognitive model of the orientation task was 
developed using the ACT-R 6.0 cognitive architecture 
(Anderson et al., 2004). The model behavior is primarily 
driven by mental rotations and learning. The mental rotation 
operation is implemented using ACT-R’s imaginal module 
and the imaginal-action buffer. Learning in the model 
occurs both in the declarative module and through the 
compilation mechanisms in procedural knowledge. The task 
procedure implemented in the model was based on the 
instructions given to the participants in the empirical study. 

Model Overview 
The model executes the task as follows: In the overhead 

view, the model encodes the angle defined by the target 
(blue circle), the center of the overhead view, and the 
viewpoint (circle nearest the “You” arrow) by visually 
attending those locations and encoding their coordinates in 
the imaginal buffer. The model then switches to the map 
view, encoding the vector defined by the viewpoint (circle 

Figure 2: Observed and predicted mean response times as a function of day and simulated work shift (night or day). The 
shaded regions indicate simulated “days off” in which night shift participants (and the model) performed the task during the 

day at the same time as day shift participants. Shaded days are not included in the human data analysis. 
Error bars indicate ±1 standard error. 
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nearest the arrow) and center of the map view by attending 
those locations and encoding their coordinates. 

The angle that was encoded in the overhead view is then 
translated to center it on the map view (an imaginal action; 
200 ms) and rotated to align the viewpoints of the overhead 
and map views. The model visually attends the response 
location closest to the transformed location of the target, 
encodes the response digit, and presses the corresponding 
keyboard key. 

Mental rotations were implemented using the ACT-R 
imaginal module. The time to perform the rotation was 
based on previous mental rotation research (e.g. Bethell-Fox 
& Shepard, 1988) and was a linear function of the angle of 
rotation. The slope of the linear function was a free 
parameter, as the slope can vary by task depending on the 
relative complexity of the object to be rotated. 

Learning 
The model’s performance improves over time by learning 

in three ways. First, the angle from the overhead view is 
encoded in declarative memory when the first subtask is 
completed. In subsequent trials, the model attempts to 
retrieve an existing chunk based on the target’s location. If a 
chunk exists and gets retrieved before the model completes 
the process of visually encoding the angle, then the 
information from the chunk that was retrieved from 
declarative knowledge is used. Over time, retrievals become 
more likely and faster than explicitly encoding the angle 
using perceptual and imaginal actions. This leads to a speed-
up in the model’s execution of the task. 

In addition to an increasing reliance on declarative 
representations for target location information, the second 
step of the solution process is also stored in declarative 
knowledge once the response is made. These chunks contain 
information about the target location from the overhead 
view as well as the perspective on the map view (i.e., the 
misalignment). Consequently, with experience the model 
can attempt to retrieve the response based on the target 
location and map view perspective location. Like encoding 
the target location on the overhead view, if a chunk is 
retrieved before the model completes the mental 
transformations on the map view, the response is based 
upon the chunk retrieved from declarative knowledge. 

The final learning process in the model involves ACT-R’s 
production compilation (i.e. proceduralization). Production 
compilation is a process by which new productions are 
created dynamically to represent in one step the 
consequences of two productions that execute 
consecutively. With experience, it becomes increasingly 
likely that the new production will be used, as the model 
learns that the utility of the new production is greater than 
the utility of the original, separate productions. However, 
due to the many constraints imposed on production 
compilation by the architecture and the structure of this 
model, the only compilation that occurs in the current model 
involves encoding the mental rotation into productions 
specific to each pair of overhead target and map view 

perspective locations. Therefore, the only savings 
introduced by production compilation were the infrequent, 
but substantial, time savings from the mental rotation of trial 
layouts that were only seen once per session. 

Explaining Night Shift Performance Decrements 
Several alternatives were explored to explain the 

decrement in performance observed for participants on the 
night shift. The solution that resulted in the best explanation 
of the data was a variation of the decay rate of declarative 
chunks activation as a function of simulated work shift. 
Alternative solutions that did not explain the observed 
trends as well are described in the Results and Discussion 
section. 

By default, the decay rate parameter is not allowed to 
vary in the implementation of ACT-R. That is, the decay 
rate can be set, but it assumes the same value for the 
duration of a model run. There have been various efforts to 
implement more dynamic mechanisms for decay in ACT-R. 
Most of these have been related to accounting for the 
spacing effect (Anderson, Fincham & Douglass, 1999; 
Jastrzembski & Gluck, 2009; Pavlik & Anderson, 2005). 

In our case, we utilize the decay rate to represent 
differences in the effectiveness of learning as a function of 
when during the day the task was performed. To implement 
the mechanisms, the equation to calculate the base-level 
activation of declarative chunks was modified (Equation 1). 
The only change to the standard ACT-R base-level learning 
equation is that the value of the decay rate parameter can 
vary according to the time when a chunk was added to 
declarative memory or when the chunk was rehearsed (dj), 
as opposed to a constant decay rate across all rehearsals (d) 
in the original equation. This modification does not change 
the effect of decay for current ACT-R models. 

             (1)  

The current model was implemented with the simplifying 
assumption that the level of alertness, and thus the value of 
dj, is constant across all hours of a work shift (day or night). 
It is well known that alertness due to circadian rhythms 
varies throughout the day and night (Van Dongen & Dinges, 
2005). However, while the model executed the task the 
same number of times as the participants did through a 
simulated workday, we aggregated the data across each day 
to reduce noise. We have not yet evaluated the capacity of 
the mechanism to account for finer grained circadian rhythm 
fluctuations or varying inter-session intervals. 

The model was fit to the day shift data using the retrieval 
threshold (best fit = 1.2), retrieval latency factor (8.0), and 
rotation slope (0.009 sec/degree) parameters. The rotation 
slope is similar to the slope found in previous research for 
simple rotations (Bethell-Fox & Shepard, 1988). The base 
level learning, which controls the rate of activation decay 
(dj), was left at the ACT-R default (0.5) during sessions 
when participants were on the day shift. For predicting the 
night shift data, the declarative chunk decay rate was 
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allowed to vary. The best fitting decay parameter for the 
night shift sessions was 0.6.  

Results and Discussion 
Figure 2 shows observed (solid lines) and best fitting model 
(dashed lines) mean reaction times as a function of day in 
the study and simulated work shift (night or day). For both 
shifts, the observed behavior is well predicted (RMSD = 65 
ms, r2 = .98 for day shift; RMSD = 79 ms, r2 = .98 for night 
shift). The night shift predictions are particularly 
noteworthy, as only one parameter was varied relative to the 
day shift model. 

The model is able to predict the observed response times 
well across fourteen days, including differences across work 
shifts (i.e. the interaction of day and shift). The model is 
able to predict the effects of work shift changes well with 
variations in declarative memory decay rates based on the 
time at which the tasks are performed. While the declarative 
decay mechanism explains the observed decrements well, 
several alternative mechanisms for explaining the trends 
were considered. 

One alternative mechanism involves manipulating overall 
declarative chunk activation at the time of retrieval, as was 
done in Gunzelmann et al. (2007). This model did fit the 
observed data on most days, but did not correctly predict the 
effect on the overall learning rate when the participants in 
the night shift condition temporarily switched to the day 
shift on days 8 and 14. On these days, the model predicts 
that the performance of participants in the night shift group 
is nearly equivalent to that of participants in the day shift 
group. This is because the model assumes that the 
participants’ alertness recovers when performing the task 
during the day. There is some evidence in associated data 
(not reported here) to support this, although we do not have 
conclusive evidence. Regardless, if the impact of degraded 
alertness were only on activation levels, then the knowledge 
should be more available during the day. As the human data 
illustrate, however, the deficits associated with performing 
the task on the night shift persisted. 

Another alternative mechanism for explaining the 
decrements of alertness is a decrement to utility values 
associated with production selection and execution. This 
mechanism has been used to predict performance 
decrements due to decreased alertness in vigilance tasks 
(e.g. Gunzelmann, Moore Jr, Salvucci & Gluck, 2009). 
However, such a mechanism in the model presented here 
does not explain the observed data for the current task. The 
same issue is encountered as with the previous alternative 
— the model recovers to day shift levels of performance on 
the “day off” and “recovery” days. This is likely a result of 
the current task requiring constant engagement, over short 
periods, and thus mechanisms employed for sustaining 
attention throughout the task would not be stressed. 

A third alternative mechanism that was explored is a 
variation in procedural learning as a function of shift. The 
model presented in this paper has both procedural and 
declarative learning enabled. It may be that the observed 

night shift decrement resulted from a slowing of procedural 
learning rather than a slowing of declarative learning. To 
test this, the rate of learning for productions rule utilities 
was varied. This made little difference in the predicted 
results. This lack of predictive power may result from either 
the way in which the model was constructed, with an 
emphasis on declarative knowledge, or a result of the study 
design, with most of the procedural learning occurring early 
in the protocol when all participants performed the task 
during the day.  

Thus, the model presented here provides support for the 
hypothesis that variations in alertness have an impact on 
learning that may persist beyond immediate task 
performance. This is consistent with previous research that 
has indicated that sleep loss causes deficits in encoding 
declarative knowledge (see Jackson & Van Dongen, in 
press, for a review). In the ACT-R theory of memory, decay 
rate is arguably the parameter that most closely corresponds 
to encoding and rehearsal, as this parameter determines how 
much the previous exposures to knowledge will affect future 
retrievals. While there is no conclusive evidence in the 
literature to attribute either encoding or retrieval deficits to 
the observations, the current modeling helps support the 
claim that decreased alertness affects encoding. 

A useful future extension to the proposed mechanism for 
predicting the effects of alertness on learning would be to 
account for the inter-session intervals. Currently the model 
does not specifically take into account the 2 to 26 hour 
intervals between consecutive sessions, which is 
problematic if we want to generalize the model to tasks in 
which the time between sessions varies. Incorporating 
mechanisms proposed in previous modeling to account for 
inter-session intervals (Anderson, et al., 1999) or practice 
spacing effects (Jastrzembski & Gluck, 2009) may allow the 
current model to predict these inter-session intervals. 

Conclusion 
Performance variations based on alertness have both 
theoretical and real-world importance. The present results 
illustrate how specific cognitive processes may be affected 
by circadian rhythms, and have implications for task 
training and performance in real-world contexts. 

The cognitive modeling presented here illustrates how 
learning rates may be impaired at night, during the nadir of 
circadian rhythms. Because degraded learning has potential 
consequences that extend beyond the immediate situation, 
brief transitions to day shift may not result in immediate 
recovery. While the benefit in response time was fairly 
small in this study (300 ms), the modeling suggests that the 
effects of learning under conditions of lower alertness may 
accumulate over time and thus the benefit of training during 
the day will grow. Moreover, tasks in which exposures to 
declarative facts are less frequent, as seen in many real 
world tasks, are expected to encounter an even greater effect 
of decreased alertness due to a greater time between 
rehearsals and a greater (exponential) decay rate. 
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Several mechanisms were explored to explain the 
observed night shift response time decrement. Some 
mechanisms that have been used previously to explain 
observed decrements of alertness could not explain the 
results found in this research. We do not find this outcome 
particularly troublesome, or even surprising. Rather, in the 
current study and others, the tasks were specifically selected 
to ascertain the various ways in which reduced alertness 
may affect performance on particular mechanisms within 
the ACT-R architecture. 

Our goal is to identify a general set of mechanisms to 
account for the ways in which variations in alertness impact 
various components of cognitive functioning. Focusing on 
laboratory tasks allows us to better isolate various 
components and evaluate particular computational 
mechanisms. Such an understanding is necessary in order to 
predict performance in more complex tasks where various 
cognitive functions, and mechanisms, interact in complex 
ways. This represents the focus of this research in the long 
term (e.g. Gunzelmann & Gluck, 2009; Gunzelmann, 
Moore, Salvucci, & Gluck, 2009; Tucker et al., 2010). 
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