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Abstract

It is generally well acknowledged that humans are capable of
having a theory of mind (ToM) of others. We present here a
model which borrows mechanisms from three dissenting ex-
planations of how ToM develops and functions, and show that
our model behaves in accordance with various ToM experi-
ments (Wellman, Cross, & Watson, 2001; Leslie, German, &
Polizzi, 2005).
Keywords: cognitive architectures; theory of mind

Introduction
The concept of “theory of mind” (ToM) refers to one’s ability
to infer and understand the beliefs, desires and intentions of
others, given the knowledge that one has available; without
it, people can be severely impaired in their ability to interact
with others (Baron-Cohen, Leslie, & Frith, 1985). A large
body of research has tried to explain how this critical ability
functions by studying its development in children (Wellman
et al., 2001), but has led to many contradictory accounts.

We have built a model that borrows ideas from various ex-
planations of how ToM develops and functions to form a co-
hesive theory of ToM, and show that it produces behavior in
accordance with various ToM experiments (Wellman et al.,
2001; Leslie et al., 2005). While the similarities between a
model’s behavior and data is not a certain indicator of cogni-
tive plausibility (Cassimatis, Bello, & Langley, 2008), it can
distinguish between models that show performance and data
fit (which, to us, are preferred) and models that do not.

Theories of the Theory of Mind
There are, in general, three competing views for how ToM
takes place at a cognitive level. They are typically described
in the context of “belief and desire” reasoning: ToM is the
understanding that different people can have different beliefs,
not all of which may be actually true; people also have in-
ternal desires that cause them to act in certain ways, physi-
cally, in the world. There is also a distinction between “true-
beliefs,” or beliefs that are true in the physical world, and
“false-beliefs,” which others may have but which are not ac-
tually true. The ability to understand a false-belief task, then,
indicates evidence that a person can appreciate the distinction
between the mind and the world (Wellman et al., 2001).

Conceptual change (commonly called theory-theory) is
one possible explanation for ToM (Wellman et al., 2001).
Theory-theorists believe that children learn a set of causal
laws, or theories, about the beliefs and desires of people in
general (Gopnik, 1993). Children then use these causal laws
to explain behavior observed in others, to predict desires and
behaviors, and to perform other related ToM tasks.

Simulation theory is a second view (Gallese & Goldman,
1998). It posits that when a person (“A”) tries to understand
another (“B”), A simulates what he/she would do in B’s place,
and attributes the result to B. More specifically, the theory
states that humans perform ToM by representing the mental
states of others, and then using their own decision-making
systems to operate on these foreign mental states to predict
others’ behavior; similar processes can be used to explain ob-
served behavior, making backward inferences. Gallese and
Goldman (1998) describe the distinction between this and
theory-theory as, while theory-theory is performed as a “‘de-
tached’ theoretical activity,” simulation theory involves at-
tempting to mimic or impersonate the mental state of another.

A third body of literature posits that the mind has two sep-
arate mechanisms that work together to provide ToM (Leslie,
Friedman, & German, 2004). The theory of mind mecha-
nism (ToMM) allows people to generate and represent multi-
ple possible beliefs. It is argued that this mechanism is fully
functional in even very young children. The second mecha-
nism provides a selection process (SP) that uses inhibition to
reason about others’ beliefs, such as inhibiting a true-belief
to select a false-belief answer; this processing ability, it is ar-
gued, develops in children during the pre-school years. To
describe how the mechanisms work together as “ToMM-SP”
to provide ToM, the authors break it down into four steps:
(1) identify candidate belief possibilities; (2) provide a priori
weights to the candidates, with true-belief receiving the high-
est weight; (3) adjust the weights given the belief inquiry; and
(4) select the highest-weighted candidate as the answer.

A variety of experiments, primarily in developing children,
have led to a range of results that supports each of these the-
ories. We describe next some of these experiments, followed
by our interpretation of the data and our overall view of ToM.

Experiments in Developing Children
The majority of experiments in this area concerns false-belief
tasks. Arguably, the most well-known false-belief task (and
the one on which we focus in this paper) is the Sally-Anne
task (Baron-Cohen et al., 1985), in which a child is shown
a play with two characters, Sally and Anne (Figure 1). The
true-belief answer (to where Sally believes the marble is) is
that the marble is in Anne’s box (the “TB box”), since that is
where the marble actually is. In contrast, the correct answer
is the false-belief answer, Sally’s box (the “FB box”).

Variations on the Sally-Anne task have also been explored.
One is the avoidance false-belief task (which we shorten to
“avoidance task”). In a sample set-up, the marble is replaced
by a kitten that crawls between boxes while Sally is out of
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Figure 1: A diagram of the Sally-Anne task. A child watches
while: (1) Sally puts a marble in her box; (2) Sally leaves the
room; (3) Anne moves the marble to Anne’s box; (4) Sally
returns to the room. The child is then asked where Sally be-
lieves the marble is.

the room; when Sally returns, she wants to put a piece of
fish under the unoccupied box so that the kitten will not eat
the food and get sick. Therefore, the correct answer to the
question “where will Sally try to put the fish” is the TB box.
This task involves not only identifying Sally’s false belief,
but also taking into account her avoidance desire to predict
her behavior, presumably making the task more difficult.

To individually consider all the experiments in this area is
nearly impossible. Instead, we focus on a meta-analysis that
compiled a broad range of false-belief experiments (Wellman
et al., 2001), and a more detailed experiment performed after
the meta-analysis was compiled (Leslie et al., 2005). These
two studies involve two developmental shifts that are believed
to occur in children. The first is at about 3-4.5 years of age,
when children go from being mostly incorrect to mostly cor-
rect on the standard false-belief task; this seems to corre-
late with the ability to recognize and identify beliefs of oth-
ers. The second developmental shift is at around 4.5-6 years,
when children go from having difficulty with the avoidance
task to performing it mostly correctly; this seems to correlate
with a child’s ability to account for both beliefs and desires,
and to use them to predict the behavior of others.

The meta-analysis performed by Wellman et al. (2001) pro-
vides three results pertinent to this paper. First, it identified
several task components that were statistically insignificant,
including the exact type of task being performed as well as
the phrasing of the false-belief question (e.g., whether it asks
where Sally will look, what Sally believes, or what she will
say). Other factors such as whether the characters in the task
are dolls, photographs, etc., are also inconsequential. Our fo-
cus on the Sally-Anne task, then, and the exact experimental
set-up we chose should not affect the validity of the results.

Secondly, several task components were identified as main
effects, which improve performance but do not interact with
age, including whether the child participated in the experi-
ment (e.g., helped to set up props), whether Sally’s absence
was explicitly emphasized, and in which country the experi-
ment took place. We do not model such task variations.

Thirdly, the compiled results show a significant, if noisy,
effect between age and the proportion of children that an-
swered the false-belief query correctly (p < 0.001). Figure
2 shows the findings; it plots the results from each individ-
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only what we termed primary conditions. These were
conditions in which (1) subjects were within 14
months of each other in age, (2) less than 20% of the
initially tested subjects were dropped from the re-
ported data analyses (due to inattention, experimen-
tal error, or failing control tasks), and (3) more than
80% of the subjects passed memory and/or reality
control questions (e.g., “Where did Maxi put the
chocolate?” or “Where is the chocolate now?”). Our
reasoning was that age trends are best interpretable if
each condition’s mean age represents a relatively nar-
row band of ages; interpretation of answers to the tar-
get false-belief question is unclear if a child cannot re-
member key information, does not know where the
object really is, or cannot demonstrate the verbal facil-
ity needed to answer parallel control questions. In
most of the studies, few subjects were dropped, very
high proportions passed the control questions, and
ages spanned a year or less, so primary conditions in-
cluded 479 (81%) of the total 591 conditions available.
The primary conditions are enumerated in Table 1;
they were compiled from 68 articles that contained
128 separately reported studies. Of the 479 primary
conditions, 362 asked the child to judge someone
else’s false belief; we began our analyses by concen-
trating on these conditions. On average in the pri-
mary conditions, 3% of children were dropped from a
condition, children were 98% correct on control ques-
tions, and ages ranged 10 months around their mean
values.

In an initial analysis only age was considered as a
factor. As shown in Figure 2, false-belief performance
dramatically improves with age. Figure 2A shows
each primary condition and the curve that best fits the
data. The curve plotted represents the probability of
being correct at any age. At 30 months, the youngest
age at which data were obtained, children are more
than 80% incorrect. At 44 months, children are 50%
correct, and after that, children become increasingly
correct. Figure 2B shows the same data, but in this
case the dependent variable, proportion correct, is
transformed via a logit transformation. The formula
for the logit is:

,

where “ln” is the natural logarithm, and “
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” is the
proportion correct. With this transformation, 0 rep-
resents random responding, or even odds of predict-
ing the correct answer versus the incorrect answer.
(When the odds are even, or 1, the log of 1 is 0, so the
logit is 0.) Use of this transformation has three major
benefits. First, as is evident in Figure 2B, the curvilin-
ear relation between age and proportion correct is
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straightened, yielding a linear relation that allows
systematic examination of the data via linear regres-
sion; second, the restricted range inherent to propor-
tion data is eliminated, for logits can range from
negative infinity to positive infinity; and third, the
transformation yields a dependent variable and a
measure of effect size that is easily interpretable in
terms of odds and odds ratios (see, e.g., Hosmer &
Lemeshow, 1989).

The top line of Table 2 summarizes the initial anal-
ysis of age alone in relation to correct performance

Figure 2 Scatterplot of conditions with increasing age show-
ing best-fit line. (A) raw scatterplot with log fit; (B) proportion
correct versus age with linear fit. In (A), each condition is rep-
resented by its mean proportion correct. In (B), those scores are
transformed as indicated in the text.

Figure 2: Results from (Wellman et al., 2001) showing a scat-
terplot of the results and best-fit curve.

ual study considered, as well as the curve that best fits it.
They found that at an age of about 44 months, the odds of
answering correctly are even, or 1.0; then, the odds of being
correct increase 2.94 times for every year. The linear regres-
sion model which considers only age is y = −3.96+ 0.09 ·
[age in months], with r2 = 0.391. Their best statistical model,
which had six variables (including age, the country in which
the experiment took place, and child participation), yielded an
R2 of 0.55. The results clearly document the developmental
shift that seems to happen between roughly 3 to 4.5 years of
age where children go from being mostly incorrect to mostly
correct on the standard false-belief task.

We also consider an experiment involving the avoidance
task (Leslie et al., 2005). The experiment, performed with
4.75-year-olds on average, supports the belief that this task is
more difficult than the standard task, and provides evidence
for the second developmental shift. After several children
were eliminated for failing the false-belief task, only 25%
of 16 children correctly answered the query of “Where will
Sally try to put the fish.” The experiment showed, however,
that by asking the question in terms of where the first place
Sally will try to put the fish is, almost three times as many
children (71%) passed the task; we refer to this as “look-first
avoidance.” Overall, the results suggest that children gain the
ability to understand others’ desires and their implications af-
ter they gain the capability to understand their beliefs.

Discussion of Experiments
The area of how children develop theory of mind remains
controversial. One of the pressing questions that emerges
from the literature is whether the various developmental shifts
are due to learning concepts and causal laws (for clarity, we
refer to this as “learning”), as the theory-theorists strongly
posit, or due to increasing capabilities/functionality of mech-
anisms of the brain (we refer to this as “maturation”), as oth-
ers argue. There is certainly evidence for both.

1This model transformed the proportion correct, p, via a logit
transformation, ln(p/(1− p)) where “ln” is the natural logarithm.
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Leslie et al. (2004) argues that maturation of processing ca-
pabilities and resources, alone, can account for all ToM devel-
opments, and have designed reasonable process models (e.g.,
ToMM-SP) demonstrating the idea’s plausibility. Further ev-
idence shows that the capabilities of specific mechanisms in
the brain (such as selection processing and inhibition of be-
liefs) play a crucial role in ToM (German & Hehman, 2006;
Carlson, Moses, & Claxton, 2004).

Wellman et al. (2001), however, makes several arguments
for learning over maturation based on the results of the meta-
analysis; specifically, the strong presence of task manipula-
tions that act as main effects (e.g., child participation). If
maturation were true, presumably many task manipulations
would interact with age since they should help younger chil-
dren’s processing competence more than older children’s;
however, they do not. The presence of such manipulations
does, however, support conceptual change accounts. Over-
all, the authors argue that there is a potential interrelation of
learning and maturation: children improve as they grow and
acquire conceptual understanding of ToM but, within an age
group, processing capabilities could be highly correlated with
performance and could account for much of the variance.

Many of the above papers argue against simulation the-
ory based on these results; however, much of the arguments
are neither substantive nor well supported. Wellman et al.
(2001) argues that, since children do not systematically err
about their own false beliefs, simulation theory is not as plau-
sible; however, this could easily be explained by children re-
membering their own past mental states. Leslie et al. (2004)
simply says about simulation theory, “it is also hard to see a
role for ‘simulation’ in accounting for this data... the mech-
anisms of theory of mind might simply figure out what one
would do... there is currently no evidence that it is the first-
person singular.” The opposite argument could just as eas-
ily be made. Unfortunately, there are few developmental ac-
counts available for simulation theory; (Harris, 1992) is an
exception, and states that a child’s inability to perform simu-
lation early on may be due to memory limitations. In general,
simulation theorists support their arguments as in (Gallese &
Goldman, 1998), with the presence of mirror neurons that fire
both when one views an action and when one performs it.

Overall, we agree in part with Wellman et al. (2001), who
say that the ability of children to recognize false-beliefs in
others is due to both learning and maturation, accounting for
the first developmental shift we discussed where children gain
the ability to recognize and predict beliefs in others. We ar-
gue, however, that the second developmental shift that oc-
curs, which results in children being able to account for both
beliefs and desires to predict another’s behavior, is due to
children gaining the ability to perform simulation. This ac-
counts for 4.75-year-olds’ inabilities to reliably answer the
avoidance query: they are still in the middle of learning and
maturing this ability. Note that this view is not necessarily
incompatible, at the process level, with some of the others;
e.g., in highly complex situations, there is not much differ-
ence between Leslie et al. (2004)’s SP mechanism inhibiting

everything that should not be used and operating only on what
is left, and identifying pertinent beliefs and decision-making
processes and subsequently using them in simulation.

Some recent experiments also suggest that very young chil-
dren (15 months of age) can perform implicit (non-verbal)
false-belief tasks (Onishi & Baillargeon, 2005). This sup-
ports the theory of processing mechanisms in the brain that
work with false-beliefs and, further, suggests that the ability
to recognize situations involving false-beliefs develops before
the ability to explicitly reason about them. We anticipate fur-
ther modeling work concerning this would be compelling.

Core Cognitive Architecture
As our core cognitive architecture we use ACT-R, a hybrid
symbolic/sub-symbolic production-based system (Anderson,
2007). ACT-R consists of a number of modules, buffers and a
central pattern matcher. Modules contain a relatively specific
cognitive faculty typically associated with a specific region
of the brain. For each module, there are one or more buffers
that communicate directly with that module as an interface to
the rest of ACT-R. At any point in time, there may be at most
one symbolic item, or “chunk,” in any individual buffer; the
module’s job is to decide when to put chunks into a buffer.
Chunks are used to represent knowledge or memories related
to any of the modules/buffers, and, in addition to symbolic in-
formation, contain subsymbolic information (e.g., activation).
The pattern matcher uses the contents of the buffers, if any,
to match specific productions which, when fired, can modify
the current contents of the buffers. Ties between competing
productions are broken based on the productions’ expected
utilities, which can be initially set and adjusted via a rein-
forcement learning process; random noise can also be added
in during execution to affect production selection.

The relevant modules of ACT-R to this paper are the in-
tentional and declarative modules. In addition, ACT-R in-
terfaces with the world through the visual, vocal, motor and
aural modules. The open-source, robotic simulation environ-
ment Stage (Collett, MacDonald, & Gerkey, 2005) was used
as the “world” of the model in order to enable fast model de-
velopment and data collection.

ACT-R is able not only to learn new facts and rules, but
also to learn which rule should fire (called utility learning in
ACT-R). It accomplishes this by learning which rule or set
of rules lead to the highest reward. ACT-R uses an elabora-
tion of the Rescorla-Wagner learning rule and the temporal-
difference algorithm (Fu & Anderson, 2006). This algorithm
has been shown to be related to animal and human learning
theory.

Any time a reward is given (e.g., children being told they
responded with the correct answer), a reward is propagated
back in time through the rules that had an impact on the model
getting that reward. Punishments are performed similarly.

Model Description
As stated above, our model is based on the conjecture that,
as children grow, they learn and mature simultaneously; i.e.,
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as they develop, they learn to take advantage of their matur-
ing ability to select between competing beliefs. Further, we
believe that being able to select between beliefs acts as a pre-
curser for simulation, which allows people to use the beliefs
and desires of others to predict and understand their behavior,
and is ultimately what provides full-fledged ToM.

In our model, the Sally-Anne task takes place in the Stage
simulator, which feeds the model visual information; i.e., it
passes the model visual locations to fixate on and, when at-
tended to, what is at that location. This allows the model to
“watch” the Sally-Anne play unfold. As the story unfolds,
the model explicitly notes what happened (e.g., Sally moved
the marble into her box), and who saw it happen (e.g., only
Anne saw herself move the marble into her box). After the
play completes, the model is asked several false-belief ques-
tions. If the model answers a question correctly, the model is
rewarded; otherwise, it is punished.

We first describe the core mechanisms that enable ToM.
Then, we describe how the model learns to effectively use
these mechanisms (as well as develops the ability to use
them). Although much of the description is in the context
of the Sally-Anne task, as are our experiments, recall that this
acts as a proxy for false-belief tasks in general and our results
are not specific to this task (Wellman et al., 2001).

Theory of Mind Mechanisms
When its goal is to answer a query about someone’s belief,
a fully-developed model will answer the question similar to
Leslie et al. (2004)’s ToMM-SP. As the story unfolds, the
model generates possible beliefs for the marble’s location;
for the standard Sally-Anne task, then, this set is {sallys-box,
annes-box}. The model first retrieves the TB answer because
it has the highest activation. It realizes, however, that the an-
swer is not correct since Sally does not know about it. To
address this, it considers the various possible beliefs of the
marble’s location and, from these, it selects the most salient
belief that Sally was known to be privy to, the FB box.

When faced with an avoidance task, a fully-developed
model will first use the above process to select knowledge
to use as input to its simulation. For the Sally-Anne avoid-
ance task variant, the simulation’s input would be the differ-
ent boxes, as well as Sally’s belief of the location of the kitten.
All subsymbolic information of the knowledge, including ac-
tivation levels, is preserved. The model next performs simu-
lation by spawning a sub-model with: this input; access to the
model’s productions and cognitive resources; and the goal of
deciding where to put the kitten (Kennedy, Bugajska, Harri-
son, & Trafton, 2009). Then, the sub-model can infer that, if
Sally wants to put the fish under a box without the kitten, she
will put it under the TB box.

Developmental Mechanisms
As stated, our model both learns and matures as it develops
ToM. The learning mechanism is similar to standard ACT-
R learning. The model begins with a production that answers
false-belief queries simply by retrieving the belief chunk with

the highest activation, and returning it. It can learn, however,
to consider an alternate competing production that, upon the
retrieval of the belief, considers whether the person the query
is about knows about the belief. This production acts as the
gateway to the selection process. Learning over time can
teach the model to exclusively favor this production, as it ul-
timately leads to the correct answer. A similar process occurs
when learning to perform simulation.

ACT-R does not normally model increasing functionality
in the brain. In order to model maturation, therefore, we in-
troduce the notion of a “maturation parameter.” This parame-
ter determines whether a model has the ability to fire certain
sets of productions (i.e., whether the model is mature enough
to have that functionality). Since maturation is not an “all
or nothing” concept, and happens gradually, the parameter
acts as a guideline for how strong the model’s abilities are at
that moment. Any time the model attempts to fire a matur-
ing set of productions, their availability is random according
to the parameter (e.g., if a randomly selected number is less
than the parameter, the productions will be able to fire). Intu-
itively, maturation parameters should be correlated with age:
the older the child, the higher the parameter.

In the case of selecting between different beliefs, the matu-
ration parameter is called the “selection parameter” and deter-
mines the availability of the productions that select between
beliefs. A model with a selection parameter of 0 would never
be able to correctly select a false-belief as the involved pro-
ductions would be unable to fire; a model with a selection pa-
rameter of 0.5 would be able to do so on half of its attempts;
and a model would a selection parameter of 1 will always be
able to fire the involved productions.

In the case of simulation, the model should be able to per-
form larger and larger simulations as it ages. This is in accor-
dance with Harris (1992)’s view that children have difficulty
performing simulation early on due to memory limitations.
The “simulation parameter” determines the availability of the
productions that perform simulation, given the size of sim-
ulation that is being attempted; for low sizes, the model is
more likely to be able to do it, but at high sizes the model be-
comes overwhelmed and cannot process all the data, and so
simulation is less likely. Specifically, any time a simulation
is attempted, the probability that the simulation productions
will be available is min(1,sp/s), where sp is the simulation
parameter and s is the size of the attempted simulation. The
size of the simulation is discussed in the subsequent section.

Modeling Developmental Progress
The model begins at approximately 2 years of age with the
ability to generate multiple possible beliefs (Leslie et al.,
2004). Model development mirrored the two ToM develop-
mental phases. With respect to the first phase and the stan-
dard false-belief task, the model has a selection parameter of
0.5, but does not yet know to do the selection; i.e., when it
initially retrieves the most salient belief, it does not know to
check whether Sally saw it and simply returns the belief. Of
course, the most salient belief is likely the true-belief, and so
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the model will be incorrect, leading to a punishment. This
causes the model to begin to explore using the selection pro-
cess. If the model is able to access that functionality (i.e., if
a number randomly selected at the time of the attempt is less
than the selection parameter), it will attain the correct answer
and receive reward; otherwise, it will default to returning the
initially-retrieved belief, likely leading to punishment. Note
that if this occurs, the productions leading to the selection at-
tempt will incur lower expected utility, making it less likely
that the model will attempt selection during the next trial.

Experience is simulated by engaging the model in false-
belief trials and by slowly increasing the selection parameter.
Therefore, as the model grows more experienced, it concur-
rently learns to utilize its selection mechanism and is able
to more reliably perform selection: by the age of about 44
months (3.7 yrs), the selection parameter is up to 0.8, and
by the age of 68 months (5.7 yrs) that parameter equals 0.95.
Note that, as the selection parameter increases, so does the ef-
ficacy of learning, since more trials that attempt to select the
false-belief do so successfully and receive positive reward.
Learning was concentrated such that about 2 trials approxi-
mates 12 months of experience; the function relating learning
trials to age was determined post hoc after comparing our re-
sults with those of (Wellman et al., 2001).

The second developmental component (concerning the
avoidance task) occurs in an analogous way. Whenever the
child successfully answers the standard false-belief task, it is
queried about the look-first avoidance task (and, upon suc-
cessfully answering that, is further queried on the standard
avoidance task). The model first tries to calculate Sally’s be-
lief exactly as in the standard false-belief task; note that, es-
pecially at early ages, it may or may not be able to do so and
may end up thinking about either the TB or FB box. Once a
belief is in hand, the model initially does not know what to do
with it; so it defaults to where it would put the kitten, the FB
box, resulting in punishment. Over time, the model will start
using the initial belief as input to simulation. If the model is
able to simulate, it will return the box other than the belief;
otherwise, it will again default to returning the FB box.

As mentioned, the model’s ability to perform simulation
is dependent on a simulation parameter, which in turn is de-
pendent on the “size” of the simulation. For the look-first
avoidance query, the simulation size is 1, as the child is being
asked to predict Sally’s actions only one step in the future.
For the standard avoidance query, the simulation size is set to
32. When the model begins at age 2, the simulation parameter
is 0 and so no simulation is possible; by age 56 months (4.7
yrs), it is 1, and by age 72 months (6 yrs), it is 5.

For all models, we kept most of the ACT-R parameter de-
faults. We did change the utility noise parameter (set at a
moderate 1.0) to allow low-use productions to occasionally
fire. Because the rate of learning is dependent entirely on the
utility learning rate parameter (set at the default of 0.2), learn-

2Although this is ad hoc, with such limited data to match, a more
pleasing parameter choice and justification is not possible.
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Figure 3: Model results showing a scatterplot of the standard
false-belief results and best-fit curve.

ing occurred quite quickly in this model. Utility learning rate
could be scaled down substantially to match actual develop-
ment and learning time. In order to do this correctly, it would
be important to know approximately how often children en-
counter false-belief and avoidance tasks, and learn from them.

Model Results
In our first experiment, corresponding to the first phase of
model development, we started testing the model at age 32
months (2.7 yrs), and test roughly every 7 months until the
model reaches around age 92 months (7.7 yrs), for a to-
tal of 10 tests. Each test period consisted of 8 repetitions
of the Sally-Anne task, including all three queries. During
these tests, learning is turned off in order to reliably test the
model’s abilities at that age. To simulate the variability of
children’s development, we randomly perturbed the models’
starting ages around their a priori value of 2 years, selecting
uniformly in the range [17, 31] months. This made the age of
the models in our experiment comparable to the ages of the
children in the meta-analysis (Wellman et al., 2001).

Figure 3 shows the results for the false-belief task, and
plots each model’s age during a test period against the propor-
tion of correct answers the model gave during the test. The
graph appears very similar, visually, to that of Figure 2, and
shows a clear learning trend as well as noise which presum-
ably stems from different maturation levels. Using Wellman
et al. (2001)’s linear regression model (which considers only
age) on this data, r2 = 0.51 with a residual standard error of
1.73. This is considerably higher than their r2 = 0.39. It also
approaches the R2 of their multi-variate model, 0.55. We ar-
gue, then, that our model is stronger since it is both a process
model that learns to perform this task, as compared to a sta-
tistical model, and depends on fewer parameters.

Note that this curve is due to an interaction between the
selection parameter increasing, and the model learning that
attempting to select between beliefs often leads to the correct
answer. We expect, therefore, that if the selection parameter
increased more slowly, learning would be impeded and mod-
els’ performance would not improve as quickly.
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Our avoidance false-belief results were also compared to
those of (Leslie et al., 2005), which showed that 71% of chil-
dren around the age of 4.75 years could answer the look-
first avoidance query but only 25% could answer the stan-
dard avoidance query. We were able to match these results,
but further experimental data is needed in order to distinguish
our parameterization from other valid possibilities.

Discussion
We have shown in this paper a cognitive model for theory of
mind. Our model borrows ideas from all three main postu-
lates of ToM to develop a cohesive explanation for how ToM
functions. The model uses a selection process to identify the
beliefs and knowledge others may have; then, to predict the
desires and behaviors of others, it uses the identified concepts
as input to its own decision-making mechanisms, simulating
what the model would do in the other’s place. This ToM func-
tionality develops by concurrent learning and maturation of
the required functional capabilities. The model was found to
be a good match to existing data from developing children.

One of the strengths of this model is that it generalizes to
many other types of false-belief and ToM tasks. The matu-
ration parameters are very general, and can be applied with
little change to other tasks. The same holds true for simu-
lation; the cognitive mechanism which enables it can accept,
and work with, any input. The learning of ToM in this paper is
not as general, as it chooses between productions which are
relatively task-specific; however, if the model were to have
experience on a variety of ToM tasks, we expect that it would
generalize what it learns into a broader concept.

Our work is also distinguished from previous work in cog-
nitive architectures. Laird (2001)’s QuakeBot performs men-
tal simulation of opponents to predict their behavior, for ex-
ample, but to our knowledge their approach has not been
matched against human cognitive data.

A future step is to explicitly address other observed ToM
phenomena. One experiment added a third “neutral” box to
the avoidance task, introducing a second correct answer, and
had both children and adults as subjects (Leslie et al., 2004).
The study showed that children have a bias towards the TB
box, whereas adults have a bias towards the new neutral box.
Our model does predict this phenomena for children, since
the TB box is the correct box with the highest activation (it is
the last box to receive a kitten, and it is identified as the true-
belief of the kitten’s location before the selection of beliefs
begins), and so it is the answer that simulation will select.
As far as the results for adults, we believe that with further
learning, simple simulations can be avoided in favor of gen-
eral, learned inference rules. In this case, therefore, adults
are simply returning an answer that is true from anyone’s per-
spective. The paper describes further experiments that our
model can predict, but that is outside the scope of this paper.
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