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Abstract
A multimodal dual task experiment that contributed to the 
original development and tuning of the EPIC cognitive 
architecture is revised and revisited with the collection of new 
high  fidelity human performance data, most notably detailed 
eye movement data, that  reveal the complex overlapping of 
perceptual and motor processes within and between the two 
competing tasks.  The data permit a new detailed evaluation 
of assumptions made in previous models of the task, and 
contribute to the development  of new models that explore 
opportunities for overlapping visual-perceptual, auditory-
perceptual, ocular-motor, and manual-motor activities.  Three 
models are presented:  (a) A hierarchical  task-switching 
model in which each task  locks out the other;  the model 
explains reaction time but does not account for eye movement 
data. (b) A maximum-perceptual-overlap model that 
maximizes parallel processing and predicts the trends in the 
eye movement data, but  performs too quickly.  (c) A 
moderately-overlapped model that introduces task-motivated 
constraints and predicts both reaction time and eye movement 
data.  The best-fitting model demonstrates the complex task-
constrained interleaving of perceptual and motor processes in 
a time-pressured dual task.

Keywords: Cognitive strategies, EPIC cognitive architecture, 
eye tracking, multimodal dual task, multitasking.

Introduction
A critical task domain for the research enterprise of 
cognitive modeling is that of multimodal (auditory and 
visual) multitasking.  Psychologists and cognitive modelers 
puzzle over the question of how people engage in two or 
more time-pressured tasks that compete for perceptual, 
cognitive, and motor processes, such as for air-traffic 
control or in-car navigation (Byrne & Anderson, 2001; 
Howes, Lewis, & Vera, 2009; Meyer & Kieras,  1997; 
Salvucci & Taatgen, 2008).  Gaining an understanding and 
ability to predict aspects of multimodal multitasking is of 
critical scientific and practical importance.  This paper 
advances an understanding of such tasks by presenting 
cognitive models of time-critical multimodal multitasking 
and evaluates these models in detail using eye tracking data.

The Time-Critical Multimodal Dual Task
An earlier version of the experiment that forms the basis of 
this theoretical exploration was conducted in the early 1990s 
at the Naval Research Laboratory (NRL) (Ballas, 
Heitmeyer, & Perez, 1992).  The experiment produced 
human speed and accuracy data that proved useful for 
developing detailed computational cognitive models of dual 

task performance (Kieras, Ballas, & Meyer, 2001).   In the 
NRL dual task, participants use a joystick to track a moving 
target on one display and, in parallel, key-in responses to 
objects that appear on a secondary “radar” display.   This 
paper presents an experiment that extends the original NRL 
dual task in numerous important ways, including that (a) eye 
movements are recorded, (b) eye tracking is used in some 
conditions to hide objects on the not-currently-looked-at 
display, (c) auditory cues relate more directly to required 
responses, and (d) participants are rigorously trained, 
financially motivated, and given extensive feedback so that 
performance approaches that of an expert.

Figure 1 shows an overview of the two displays used in 
the multimodal dual task modeled in this paper.   Two tasks 
(or subtasks) were performed in parallel: a tracking task and 
a tactical classification task.  The tracking task consisted of 
keeping a small circle on a moving target using a joystick.  
When the circle was positioned as such, it turned green, and 
the participant was financially rewarded at a constant rate.  
The tactical classification task consisted of monitoring 
groups of icons or “blips” (fifty-seven in a nine-minute 
scenario) that moved down a radar display, and keying-in 
the blip number and “hostile” or “neutral” as soon as the 
blip changed from black to red, green, or yellow, indicating 
that it was “ready to classify”.  When a blip became ready to 
classify, a financial bonus was awarded though it diminished 
at a constant rate until the blip was keyed-in, or classified.  
Red blips were hostile; green were neutral; yellow blips 
were classified based on their shape, speed, and direction, 
following practiced rules.

Two important factors were manipulated in the 
experiment: (a) peripheral visibility on or off and 

Figure 1: An overview of the visual and auditory displays 
and input devices used in the multimodal dual task.
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(b) auditory cues present or absent.  Peripheral Visibility 
manipulated whether participants could see the contents of 
the other display—radar or tracking—that they were not 
currently looking at.  This simulates a task environment in 
which visual displays are separated by enough distance such 
that they cannot be monitored with peripheral vision.  
Auditory Cues (Sound On) indicates that a blip’s initial 
appearance (as black) and color change (to red, green, or 
yellow) were indicated with spatialized auditory cues.  Each 
nine-minute scenario maintained a constant setting of 
peripheral visible or not-visible and sound on or off.

Figure 2 summarizes the most important eye and hand 
movement data from the experiment, which is described in 
more detail in Hornof, Zhang, Halverson (2010).  Figure 2 
shows the time required for the four consecutive stages of 
classifying a blip: (a) Initiate the eye movement from the 
tracking display to the tactical display; (b) once on the 
tactical, find the target and move the eyes to it; (c) keep the 
eyes on the blip long enough to identify it and then move 
the eyes back to tracking; and (d) after the eyes are back on 
tracking, key-in the blip (keying-in was consistently 
performed after the eyes were back on tracking).   These data 
serve to reveal the complex interleaving of perceptual, 
cognitive, and motor processing, and provide a basis for the 
current modeling endeavor.

The EPIC Cognitive Architecture
The EPIC cognitive architecture (Executive Process-
Interactive Control; Kieras & Meyer,  1997) was used to 
model the multimodal dual task, as it was used previously to 
model the earlier version of the same task (ibid.; Kieras, 

Ballas, & Meyer, 2001).   EPIC is particularly well-suited for 
exploring a range of explanations of multitasking 
performance because of its specific commitment, at the 
architectural level, to only enforcing sequential processing 
for motor activities, such as to constrain the eyes to rotate to 
only one point at a time, and the hands to only execute one 
sequence of movements at a time.  Perceptual information 
can flow into the auditory and visual processors in parallel, 
and multiple production rules—IF-THEN statements that 
represent the strategy used to do a task—can fire in a single 
50 ms cycle.  Strategies can be written to permit only one 
rule to fire at a time (as in our initial model) or to explore 
the full potential of overlapping (as in our second model).

Extensions to the EPIC Cognitive Architecture
Initial sets of production rules that were constructed to put 
the eyes and hands through the tasks revealed two 
extensions to the EPIC cognitive architecture that would be 
needed to model this task: (a) a computational solution to 
the binding problem, which is the question of how people 
assemble perceptual stimuli to maintain a seamless 
conscious experience, and (b) a temporal processor to 
determine, entirely from within the simulated organism, 
when a certain amount of time has elapsed.

To address the binding problem, the visual processor in 
the EPIC cognitive architecture was updated (by EPIC’s 
creator David Kieras) so that psychological objects in 
EPIC’s visual working memory maintain their identity even 
as they disappear and reappear in the physical environment.  
In other words, if the simulated human moves its eyes so 
that a blip disappears (as in the peripheral-not-visible 
conditions), and then moves its eyes so that the same blip 
reappears, EPIC would previously have created a new 
psychological object for the reappeared blip.  Now, provided 
that the initial psychological object associated with the blip 
did not fully decay, the reappeared blip is reconnected to the 
already-existing psychological object.

The second extension to EPIC was to add a temporal 
processor that replicates the temporal processor added to the 
ACT-R cognitive architecture (Taatgen, van Rijn, & 
Anderson, 2007).  This gives the models a way to make self-
motivated periodic checks of the tactical display when there 
was no peripheral visibility or auditory cuing.

Modeling Overview
Each of the models below were presented with the exact 
same auditory and visual stimuli in identical nine-minute 
scenarios that were presented to our human participants.

The following parameters were used in the models:  The 
time required to determine the classification of a yellow blip 
based on its speed and direction was set to 800 ms.  Alarm 
sounds are identified 300 ms after their onset in auditory 
perception rather than with their onset, to give enough time 
to distinguish the alarm from the blip appearance sound.

A common element within all strategies include that 
tracking adjustments (by moving the joystick with a Ply) 
were made only when the tracking circle was not green, 
consistent with a strategy that maximizes payoff.

Figure 2.  Time preceding eye movements across the 
lifetime of a colored blip. Each panel shows a unique 
combination of the factors of peripheral visibility and 
sound on/off.  The x-axis shows a sort of timeline of

the stages involved in classifying a blip.
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The model development presented here follows the 
“bracketing” approach advocated by Kieras & Meyer (2000) 
in which the analyst attempts to “bracket” the human data 
with a slowest-reasonable and fastest-reasonable strategies.  
Three corresponding task strategies are developed: 
(a) Hierarchical task-switching (the slowest-reasonable 
model); (b) Maximum-perceptual-overlap (the fastest-
reasonable model); and (c) Moderately-overlapped (the 
fastest-reasonable model slowed down based on task 
constraints).   Models based on these three strategies, and 
comparisons of each model’s predictions with the human 
data, are presented next.

Hierarchical Task-Switching Model
The hierarchical task-switching (the slowest-reasonable) 
model represents a straightforward translation of the 
multimodal dual task into a hierarchical task with strict 
serial processing of each subtask.   Figure 3 shows the 
corresponding hierarchical task analysis.  The production 
rules were generated by first creating a GOMS model (John 
& Kieras, 1996) of the task,  and then translating that model 
into the corresponding production rules.  Parallelism existed 
in the model primarily in terms of auditory and visual 
information getting deposited in EPIC’s perceptual stores. 

A key characteristic of the model includes that, once it 
determines that a blip is ready to classify,  it holds the eyes 
on that blip until the keystrokes for that blip are initiated.  
During this period, the cognitive processor is dedicated to 
just classifying the blip.  Tracking is completely locked out.  
This aspect of the model resembles the original EPIC 
models of the task, in which “the dual-task executive 
enforces mutual exclusion between the tracking task and the 
tactical task.” (Kieras, Ballas, & Meyer, 2001, p.10)

Figure 4 shows the mean blip classification times across 
the four combinations of peripheral-visibility and sound-on-
or-off, and for red/green versus yellow blips.  The model 
explains the overall reaction time data very well across all 
eight conditions, with an average absolute error (AAE) of 
4.6%.  (Note that all AAEs presented in this paper are 
calculated using the overall observed mean as the 
denominator for each percentage calculation, to reduce the 
distortion that would otherwise result from observed and 
predicted values that are very close to zero.)

If an analyst were primarily interested in the classification 
task and hence did not proceed to model the tracking task 
with any degree of fidelity, and if the analyst did not have 
any eye movement data to work with, the modeling project 
would likely be done at this point, and we might declare 
victory—we modeled the primary data of interest with good 

accuracy.  But a deeper look at the data that are available in 
this modeling exercise reveal a dark truth—the model is not 
accounting for the complex overlapping of visual and motor 
processes that participants are exhibiting with their eye 
movements.  As well,  a look at the tracking task data show 
that the model is performing far worse than skilled 
participants,  predicting an overall mean tracking error of 42 
pixels compared to the observed tracking error of 29 pixels.

Figure 5 shows the same observed data presented in 
Figure 2, along with the eye movement times predicted by 
the hierarchical task-switching model.  As can be seen in 
Figure 5, the model is spending far too long looking at each 
blip.   The tracking-to-keypress is negative (and hence a 
value of zero is used) because the model returns the eyes to 
tracking after the classification.  Participants spent far less 
time on each blip, and spent substantial time with the eyes 
back on tracking before keying-in a classification.

 The hierarchical task-switching model, though intended 
as a slowest-reasonable bracket, does a good job of 
predicting the mean classification times.  But the model 
does not capture the interleaving of perceptual and motor 
processes that people clearly exhibited.  The next model 
attempts to capture and maximize such an interleaving.

Do dual task

Determine if a blip 
is ready to classify

If a blip is ready to 
classify, do tactical.

If no blips are ready to 
classify, do tracking.

Check for auditory 
alarm or visible 
change in blip.

Select blip
to classify

Look at
blip

Get blip
features

Key-in
response

Move eyes 
to tracking 
cursor

If tracking 
cursor is not 
green, move 
joystick.

If no peripheral 
visibility or sound, and 
time has passed, 
move eyes to tactical.

Figure 3: The hierarchical task analysis used to generate the hierarchical task-switching model.

Figure 4: The mean classification time of blips as a function 
of blip color, observed (dark bars) and predicted (light bars) 

by the hierarchical task-switching model.  The average 
absolute error (AAE) of the prediction is 4.6%.
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Maximum-Perceptual-Overlap Model
The maximum-perceptual-overlap (fastest-reasonable) 
model is written to maximize all aspects of parallel 
processing that are built into the EPIC cognitive 
architecture.  The production rules are written such that 
ocular-motor and manual-motor processing proceed entirely 
independently of each other, with manual-motor processing 
resulting from visual-perceptual features that become 
available based on ocular-motor activity.

Figure 6 shows two state transition diagrams that 
represent how one set of production rules moves the eyes 
between tracking and tactical to acquire visual information, 
and another set of rules independently shifts manual motor 
activity between tracking and tactical.  When the model 
runs, both sets of rules—ocular-motor and manual-motor—
spend most of their time on tracking.  When a blip appears, 
the ocular-motor rules shift to tactical just long enough to 
perceive blip features, which become available to the 
manual-motor rules, which switch briefly to tactical to key-
in a response.   Each set of rules returns to tracking as soon 
as its tactical subtask is completed.

Figure 7 shows the classification time predictions of the 
maximum-perceptual-overlap model.  As can be seen, the 
model is too fast, as would be expected for a fastest-
reasonable model.  Looking at the predicted eye movement 
times in Figure 8,  however, reveals that the model does a 
good job predicting the overall trends in how long the eyes 
took to move through the stages involved in classifying a 
blip,  especially in the peripheral-visible conditions. The 
comparably good fit of the eye movement data,  especially 
when compared to the first model’s poor fit with the same 
data, suggest that participants may truly have developed 

expert strategies that include independent parallelism 
between ocular-motor and manual-motor decision making.  
But, as might be expected, the fastest-reasonable model is 
overall too fast.  The predicted mean tracking error is also 
substantially better (20 pixels) than the observed (29 pixels).  

Figure 6: State transition diagrams that represent the 
independent ocular-motor and manual-motor processing

in the maximum-perceptual-overlap model.
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Figure 5: The time preceding eye movements observed 
(solid lines) and predicted (dashed lines) by the

hierarchical task-switching model.  (AAE = 91.4%)

Figure 7: Classification times observed (dark bars)
and predicted (light bars) by the maximum-
perceptual-overlap model.  (AAE = 29.2%)
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The final strategy explores constraints that can be 
introduced to the fastest-reasonable model.

Moderately-Overlapped Model
The moderately-overlapped model was constructed by 
starting with the maximum-perceptual-overlap (fastest-
reasonable) model, presented in the previous section.  Three 
analyses were conducted.  First, the model traces and 
observed data were studied side-by-side to reveal subtle 
differences between the predicted and observed eye and 
hand movements. Second, opportunities were explored to 
adjust strategies to maximize payout (see Howes et al., 
2009).  Third, the manual-motor devices were examined to 
improve the fidelity of their simulation. 

These analyses led to the following five adjustments to 
the model, all of which are represented by the bold italic 
additions in Figure 9:  (a) Eye-to-radar time is delayed by 
having the tracking task finish any joystick Ply underway, 
waiting for the tracking circle to turn green, to leave that 
task in a money-making mode.  (b) The time on yellow blips 
is extended to permit identification of speed and direction 
(set to 250 ms).  (c) Tracking-to-keypress time is extended 
by assuming that, when moving the eyes from tactical back 
to tracking, people make one joystick adjustment before 
keying-in the blip classification; this increases tracking 
payment while further considering the classification.  
(d) The timing for a Ply was increased (to a coefficient of 
300 and minimum time of 400 ms) assuming that the Ply 
effectively requires separate joystick movements to start and 
then stop the tracking circle.  (e) The Punch was replaced 
with a Keypress to represent how the fingers are not 
positioned directly above the keys, but need to travel.  

Figures 10 and 11 show how the moderately-overlapped 
model does a good job of predicting both classification and 
eye-movement timings.  The model also accurately predicts 
tracking error, predicting 26 pixels compared to the 
observed 29 pixels.  Table 1 shows how this model provides 
the best overall fit with the observed data.
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Resume: No new 
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Look at
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target
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wait for 
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wait  for 
green 

tracking 
target

If tracking cursor 
is not green, move 

joystick with a 
slower Ply, until  
target is green.

Interrupt: Blip
ready to key-in and not 

resuming tracking.

or periodic glances when no 
peripheral visibility and no sound

*

Figure 9: The moderately-overlapped model, with
additions to the previous model shown in bold italics.

Figure 8: The time preceding eye movements observed 
(solid lines) and predicted (dashed lines) by the maximum-

perceptual-overlap model.  (AAE = 32.6%)
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Figure 10: Times observed (dark bars) and predicted (light 
bars) by the moderately-overlapped model.  (AAE = 7.1%)
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Conclusion
The models presented here demonstrate the difficulty in 
accurately modeling complex multitasking behavior.  First, 
there is the challenge of collecting enough data to evaluate 
the accuracy of a model; the initial hierarchical task-
switching model accurately predicted the classification time, 
but not eye movements.  Then, there is the challenge of 
correctly identifying opportunities for expert,  overlapped 
behavior; the maximum-perceptual-overlap model presented 
here relied on the massive parallelism of the EPIC 
architecture’s cognitive processor to demonstrate that expert 
strategies might manage ocular-motor and manual-motor 
processes largely independently.  Lastly, there is the 
challenge of determining which task-based constraints 
should be introduced to govern the use of perceptual 
information that passes within and between two tasks that 
compete for motor processing; those presented for the 
moderately-overlapped model may or may not accurately 
capture the true constraints that governed behavior.

The models presented here do not clearly subscribe to the 
notion of an independent process that actively coordinates 
between two task strategies, whether that process be an 
executive process, as in the original models for a similar 
task (Kieras, Ballas, & Meyer, 2001) or an independent 
mechanism, as in Salvucci and Taatgen (2008).  This paper 
explores the possibility that a dual task strategy is perhaps 
an altogether new, carefully interleaved strategy.
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Figure 11: The time preceding movements observed
(solid lines) and predicted (dashed lines) by the
moderately-overlapped model. (AAE = 10.1%)
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Table 1. Average absolute error of each model’s predictions.

Model Classification
Time

Time Preceding 
Movements 

Tracking
Error

Hierarchical 
Task-Switching
Maximum-
Overlap
Moderately-
Overlapped

4.6% 43.6%

29.2% 32.6% 31.2%

7.1% 10.1% 13.9%

91.4%
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