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Abstract 

The Predictive Performance Equation (PPE) is a 
mathematical model of learning and forgetting developed 
to capture performance effectiveness across training 
histories, and to generate precise, quantitative point 
predictions of performance by extrapolating the unique 
mathematical regularities indicative of the learner. This 
equation is implemented in the Predictive Performance 
Optimizer (PPO) cognitive tool, designed to help learners 
and instructors make principled training decisions through 
examination of the learning and retention tradespace. 
Because the point predictive nature of the model implies a 
high degree of certainty, decision-makers could be misled 
into making less than optimal decisions in applied settings; 
and with regards to basic science, the model lacks 
prediction error and uncertainty which would more 
accurately represent the predicted range of human 
performance. Implementation of prediction intervals into a 
point predictive model of human performance is 
unprecedented in the psychological literature. We must 
balance the competing factors of reduced performance 
variation as practice accumulates, and greater prediction 
uncertainty as time spans increase. In this paper, we 
explore new methodologies for incorporating prediction 
intervals into quantitative predictions of future 
performance. 

Keywords: point prediction; mathematical model; 
prediction interval; knowledge retention; skill retention 

Introduction 

The Predictive Performance Equation (PPE) is a 

mathematical model of learning and forgetting developed 

to capture performance effectiveness across training 

histories, and to generate precise, quantitative point 

predictions of performance. This is accomplished by 

extrapolating unique mathematical regularities indicative 

of the learner from training history, while additionally 

accounting for the spacing at which knowledge and skills 

were trained to estimate the stability of performance 

across time. This equation is based upon robust findings 

in the psychological literature, and designed with the 

intent to be relevant in applied learning domains. As such, 

the PPE is implemented in the Predictive Performance 

Optimizer (PPO)–a cognitive tool designed to help 

learners and instructors make principled training decisions 

through examination of the learning and retention 

tradespace.  

What the PPE currently lacks is a measure of 

uncertainty, because it contains no noise or error 

parameter in its current form. If the model is run 100 

times, it will produce the same answer again and again. 

We know that if a human performs a task 100 times a 

range of performance values will be produced due to the 

usual suspects (e.g., distractions, fatigue, fluctuating 

motivation, random noise) coming into play. Thus, the 

point predictive nature of the model could be misleading 

due to the high degree of accuracy implied in its 

predictions. Therefore, it is necessary to incorporate 

principled measures of uncertainty, or prediction intervals 

(PIs), around model point predictions. This provides the 

likely range of performance that is expected, and equips 

decision-makers with a more thorough picture. 

Unfortunately, implementation of PIs into a hybrid 

point predictive model of human performance (to be 

detailed in the next section) is unprecedented in the 

psychological literature. By hybrid, we are referring to the 

notion that one step of the model functions by calibrating 

parameters to available historical data, while the other 

step extrapolates mathematical regularities beyond known 

data, to make true a priori predictions of performance for 

practical applications and purposes (e.g., Kahrs & 

Marquardt, 2007; Psichogios & Ungar, 1992).   

 

 

 

 

 

 

 

 

 

 

Figure 1: Example of prediction uncertainty in the 

meteorological domain. 

Other disciplines, including meteorology, 

econometrics, and the physical natural sciences, have 

well-established methods for incorporating uncertainty 

into time-series model predictions, such that in general, 

prediction uncertainty increases as time increases (see 

Figure 1). We may think of this trend as an expanding 

cone of uncertainty as lead time increases. 

In the human performance domain, this is also a fair 

assumption to make. As the length of time between 

known data and a prediction increases, uncertainty would 

be expected to increase (see Figure 2). 
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Figure 2: Notional training historical data and predicted 

refreshers to maintain performance from 1-10 months out. 

  What meteorological and econometric disciplines do 

not have to contend with is the fact that as practice 

accumulates, variability in human performance decreases 

(e.g., Ericsson, 1996; Rabbitt & Banjeri, 1989).  Thus, 

model uncertainty should decrease as practice amasses 

(see Figure 3). 

Figure 3: Expected levels of uncertainty for 3 regimens 

immediately following a 45-day lag and within a 2-4 day 

training block. 

Furthermore, if multiple predictions are made, as 

shown in Figure 3, uncertainty is conditionally dependent 

on all previous model predictions. Thus, prediction 

uncertainty n-steps ahead of known empirical training 

history should generally grow incrementally larger-and 

prediction uncertainty should additionally be greater after 

a 12-month lag compared to a 1-month lag. 

Thus, we are in the unique predicament of requiring a 

PI calculation method that balances the competing factors 

of reduced performance variation as practice amasses, and 

greater prediction uncertainty as lead time increases. 

Furthermore, to adhere to both basic and applied science 

demands, we need to ensure our methods are based on 

principle, while concurrently providing useful and 

relevant guidance for decision-making purposes. Before 

we turn our attention towards the new methodologies we 

are exploring to achieve alignment with these trends, we 

must first detail the nature of the hybrid point predictive 

human performance model.  

The Performance Prediction Equation  

The PPE is built upon the strengths of the General 

Performance Equation (GPE) (Anderson & Schunn, 

2000), which handles effects of recency and frequency 

very well, but is ill-equipped to handle effects of massed 

versus distributed practice. As such, the PPE formally 

extends the GPE by capturing effects of spacing, while 

providing the additional capability to predict performance 

at later points in time in an a priori fashion. The PPE is 

expressed as: 

 

  Performance =  
    (Equation 1a) 

 

where free parameters include S, a scalar to accommodate 

any variable of interest, c, the learning rate, and d, the 

decay rate. Fixed parameters include T, the true time 

passed since the onset of training, and N, the discrete 

number of training events that occurred over the training 

period. The term St, defined in Equation 1b, is short for 

Stability Term and is responsible for capturing effects of 

spacing by calculating experience amassed as a function 

of temporal training distribution and true time passed.  

 

St = ; 

(Equation 1b) 

 

Lag is computed as the amount of wall clock time passed 

between training events and P is computed as the true 

amount of time amassed in practice. As such, experience 

and training distribution attenuate performance by 

affecting knowledge and skill stability at the macro-level 

of analysis.  

Descriptive Adequacy across Data  

We have validated the descriptive adequacy and 

predictive validity of this mathematical model across 

multiple types of previously published datasets available 

in the cognitive/experimental psychology literature, 

including empirical studies spanning knowledge 

acquisition, knowledge retention, skill acquisition, and 

skill retention. Goodness-of-fit measures across those 

domains have achieved an average R
2
 of 0.98 (see 

Jastrzembski & Gluck, 2009, for additional information).  

These results are encouraging.  However, the datasets 

available in the psychological literature are from simple 

laboratory tasks, possessing few data points over an 

extensive retention period (e.g., Bahrick et al., 1993, 

study measured performance at seven points over the 

course of eight years), or measuring performance at short 

timescales (e.g., Glenberg, 1976, examined monotonic 

versus non-monotonic effects within one paired-associate 

training session). These datasets are useful to include in a 

larger test harness of empirical data to thoroughly validate 

model mechanisms, but their ecological validity is 

questionable. 

Thus, it is necessary to validate against empirical data 

from more applied realms - where the interplay of 

knowledge and skill are often inextricably linked, 

extended lags between practice opportunities are on the 
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order of several weeks to multiple months, and 

knowledge and skill decay across extended lags can have 

a real impact on mission success. These features often 

characterize the nature of military training, where 

resources are both costly and scarce. As such, we 

validated PPE in a team coordination Unmanned Air 

Systems (UAS) reconnaissance task (Cooke, 2005), and 

with F-16 simulator air-to-air combat data collected in the 

Distributed Missions Operations testbed at the Air Force 

Research Laboratory (see Jastrzembski, et al., 2009). 

These highly complex datasets possess significantly 

longer inter-stimulus intervals than those found in the 

literature, and provide excellent opportunities to evaluate 

the incorporation of uncertainty within training blocks 

and across extended lags, where the need to provide 

estimates of uncertainty have very clear ramifications.  

Predictive Performance Equation Methodology 

We will now explain the two distinct, non-stochastic 

sequential steps in our performance prediction 

methodology. The first step in using PPE deals with 

calibrating, or optimizing (using maximum likelihood 

estimation), the learning and decay parameters to the 

unique mathematical regularities of the learner, identified 

by tracking training history. The second step is 

extrapolating the mathematical regularities to make true a 

priori predictions of performance at specified future 

times. We make this distinction because it is 

commonplace for modelers in the cognitive science 

community to use the term prediction when fitting 

empirical datasets, often in a post-hoc manner; whereas 

we use the term calibration to refer to that fitting process, 

and prediction for out of sample calculations.  

With regard to the UAS reconnaissance study 

(Cooke, 2005), teams of three individuals were required 

to coordinate to fly a UAS and attain pictures of targets. 

They completed five 40-minute missions on the first day 

of training (the training baseline used for model 

calibration), and returned either one or three months later 

to complete an additional three missions (used to validate 

model a priori predictions) (see Figure 4). 

The design of the DMO study was similar in nature, 

but required teams of four F-16 pilots to fly air-to-air 

combat missions over a more extensive training baseline 

(one to two hour-long missions trained each day over for 

five days), allowing us to examine skill acquisition and 

decay patterns both within days (where prediction 

uncertainty should decrease) and across days (where 

prediction uncertainty should increase). Teams were 

reassessed either three or six months later and completed 

three hour-long missions over the course of two training 

days (see Figure 5 for individual team level analysis).  

The need to incorporate valid PIs around model point 

predictions becomes extremely evident in the following 

potential use cases, as PPO is indeed intended to help 

decision-makers make informed training decisions. As 

shown in Figure 6, PPO may be used to help determine 

how many additional practice opportunities unique 

learners (an F-16 pilot team in this case) need to achieve a 

desired level of performance (denoted as achievement of a 

wing standard of 0.015 in this particular case).  

 
Figure 4: Aggregate team performance in a UAS task, 

with a three month lag. 

 
Figure 5: Number of times enemy airspace was violated 

by an individual F-16 team, with a lag of three months.  

PPO takes in the historical data for each unique team, 

optimizes the learning and decay parameters to the 

mathematical regularities inherent in the training history, 

and makes customized team performance predictions by 

extrapolating those learning trends into the future. Thus, 

Team 115 (shown in Figure 6, Panel A) is predicted to 

require six additional training events to achieve the 

desired performance level, while Team 112 (shown in 

Figure 6, Panel B) is predicted to require 20 more events.  

Panel A: 

 
Panel B: 

 
Figure 6: Model predictions for two unique F-16 pilot 

teams to achieve the same criterion. 

Calibration (R2 = 0.95) Prediction  
(R2 = 0.98) 

 

Within 

Day 

Between 

Day 

Calibration  
(R2 = 0.98) 

 

Prediction 
(R2 = 0.98) 
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In line with statistical principles, as PPO makes 

multiple time-series dependent predictions, significant 

uncertainty will build for predictions made farther and 

farther ahead in time from actual historical data.  Thus, in 

the example above, Team 115’s predicted attainment of 

criterion is actually more certain than Team 112’s, simply 

due to the fact that criterion is reached with fewer 

timesteps ahead from the historically calibrated data.   

Another potential use case that nicely demonstrates 

the need to incorporate “risk” into model point predictions 

is revealed by PPO’s capability to examine performance 

implications across a multitude of potential future training 

regimens.  

 
Figure 7: Future training regimen comparisons to identify 

which training routine best meets desired goals. 

 

The graph revealed in Figure 7 is calibrated upon the 

historical F-16 pilot team performance data shown in 

Figure 6, Panel A, and depicts predicted levels of 

performance under three distinct training regimens. The 

green line depicts two training opportunities given in each 

training block (occurring every 45 days), while the red 

line reveals three, and the black line reveals four. Noting 

that a desired performance effectiveness level of 0.015 is 

to be reached by the intended deployment date, the learner 

or instructor may easily inspect and assess the efficiency 

and effectiveness each potential future training regimen 

will likely provide.  

As shown in Figure 7, the red and black lines both 

achieve the desired performance level by deployment, 

while the green line does not. However, PIs for the black 

line should theoretically be smaller than those in the red 

line - because more training opportunities are provided 

meaning performance variability should be reduced. Thus, 

less risk would be involved in deploying trainees who 

completed the black training regimen.   

Given the potential ramifications these types of 

prospective use case decisions entail, it becomes very 

clear why the incorporation of prediction uncertainty 

measures is needed. Further, equipping PPE with these 

measures will better aid decision-makers’ understanding 

both learning and training needs, as well as the risks.   

Prediction Interval Calculation Methodology 

As previously expressed, there is no precedent for 

incorporating PIs into a human performance point 

prediction model of this nature. As such, we have 

developed and are investigating new methods to achieve 

our goals of both reducing variability as practice amasses, 

and increasing variability at longer lead times.  

 

Extrapolation of Residuals 
 

The first method we are investigating involves 

extrapolating residuals from calibrated model predictions 

and human empirical data to model point predictions.  

Residuals are often used to add uncertainty to models in 

other disciplines, like econometrics (see Chatfield, 2001, 

for a review); but as previously mentioned, other 

disciplines do not have the added phenomenological 

complexity of uncertainty decreasing as practice 

increases, nor do they have good solutions for estimating 

how much larger PIs should be after lags of increased 

length.  Thus, in order to base a PI method on residuals in 

the human performance domain, a good deal of 

innovation will be required to ensure estimates stay true 

to expected human performance trends.   

 As such, we have modified the residuals by the 

stability term (see Expression 1) and will illustrate PI 

incorporation based on this method later in this paper.  

 

                                 ;  

     (Expression 1) 

 

The Coefficient of Variation 
 

The second method we have developed and are 

continuing to investigate deals with adding variability into 

the learning and decay parameters themselves. The 

amount we have chosen to vary parameters by is the 

coefficient of variation (CV), selected because it is a 

unitless measure of deviation between model predictions 

and human empirical data, generally ranging between 

zero and one (Schweickert, et al., 2003), and it has 

previously been used to incorporate stochasticity into 

other types of cognitive and task performance models 

(Patton, et al., 2009; Patton & Gray, submitted; 

Schweickert, et al., 2003). It is calculated across historical 

training calibration data using Equation 2: 

 

                     CV = RMSD/model mean; 

                    (Equation 2) 

and integrated into PPE in the following way (see 

Expression 2): 

 

        ; 

                 (Expression 2) 

thus producing upper and lower PI bounds. 

 Desirable qualities of this measure include a readily 

available mapping to the learning and decay rates, which 

also range from zero to one; and greater variability being 

added into models that produce lower quality calibrated 

fits to empirical data, producing larger PIs as a result.  

)*(* *** CVddCVcc TNStS 

  )**(*** 2 hi
dc StRMSDEzTNStS 

  
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Prediction Interval Utility in the Applied Domain 
We now illustrate the PI incorporation across four unique 

F-16 pilot teams, possessing differences in learning 

regularities and quality of calibration fit – leading to 

differences in PI spans as a result (see Figures 8 and 9).  

Panel A: 

 
Panel B: 

 

Panel C: 

 

 

 

 

 

 

 

 
 

Panel D: 

 

 

 

 

 

 

 

 
 

Figure 8: CV PI incorporation for F-16 pilot teams. 

 As revealed by Figures 8 and 9 (Figure 9 displays 

identical empirical data displayed in Figure 8, Panels A 

and D), each method produces larger PIs between training 

days and smaller PIs within training days – thus, mapping 

nicely onto human empirical findings showing that 

performance variation decreases as practice amasses. 

They also reveal wider PI bands following the three or six 

month lag relative to other predicted points; thereby 

aligning with the notion that longer lead time predictions 

are more uncertain than predictions at shorter lead times. 

 An added unexpected, but very desirable effect, of 

the CV method was that the PI bands are asymmetrical in 

nature – thereby diverging from standard symmetrical 

estimates of confidence or error (as revealed by the 

residual-based method). This is pleasing in cases where 

human performance is bounded by a floor or ceiling, 

(ceiling performance was zero on the y-axis in Figures 8 

and 9). Thus, there is more room to err (the higher end of 

the y-axis) and less room to gain (performing closer to 

zero), mapping nicely to CV-based error bars having 

longer upper than lower whiskers. 

Panel A: 

  

 

 

 

 

 

 

 
Panel B: 

 

 

 

Figure 9: Residual-based PIs across unique F-16 teams. 

 Comparison of these PI methods to empirical data 

reveal that utilization of residuals, compared to the CV-

based method, tends to produce larger error bars in 

general (it is more liberal, but covers more of the data), 

produces error bands outside the bounds of possible 

performance (below zero in this case), and is more 

sensitive to noisy data (see Figure 9, Panel B – the same 

empirical data as Figure 8, Panel D). This raises concerns 

for how useful a residual-based approach will be as a 

decision-making guide. As such, additional modifications 

are being examined. 
 

Resolution of Data In our last set of analyses, we will 

limit our discussion to the CV PI methodology, due to 

limitations of the residual-based method described above. 

Using data collected in the UAS reconnaisance task 

(Cooke, 2005), we applied PIs to models aggregated at 

different grains of analysis. Given the intended utility of 

the PPO as a principled training decision guide, it is 

important to understand the implications of using a 

predictive model at the aggregate, team, and individual 

learner levels of performance (see Jastrzembski, et al., 

2006), as aggregate data, by definition, reduces noise 

through averaging procedures that smooth out the shape 

of human performance curves. Thus, data will always be 

noisier at finer and finer grains of resolution, implying PIs 

should be wider and wider as aggregation decreases. We 

inspect the ability of the CV PI method to align with this 

phenomenon as shown in Figures 10-12 below. 

R2 = 0.99 
RMSD = 0.002 

CV = 0.205 

R2 = 0.99 

RMSD = 0.012 
CV = 0.271 

R2 = 0.71 

RMSD = 0.033 

CV = 0.522 

Between 

Day 

Within 

Day 

R2 = 0.97 

RMSD = 0.015 

CV = 0.339 

R2 = 0.99 

RMSD = 0.002 

MRes = 0.028 

R2 = 0.71 
RMSD = 0.033 

MRes = 0.115 

Within 

Day 

Between 

Day 
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 As we might expect, PIs for the first point prediction 

after the lag are indeed larger after the long delay (PIrange 

= 146) compared to the short delay (PIrange = 129), 

revealed in Figure 9, showcasing the fact that predictions 

at longer lead times will be less certain than predictions at 

shorter lead times. This effect is generated in PPE because 

the upper and lower CV bounds are placed in the learning 

and decay exponents, which interact with the number of 

training opportunities accumulated, as well as the actual 

amount of time passed. 

 
Figure 10: Aggregate performance across all teams in the 

UAS reconnaissance task, with lags of 30 or 91 days.  

 
Figure 11: Individual UAS team performance. 

 
Figure 12: Individual UAS team member performance. 

 Finally, we note that the CV increases as we move 

from aggregate to team to individual levels of 

performance, as expected (see Figures 10-12). This is a 

useful property to note because it shows that decisions 

may be riskier at finer grains of resolution.  One way to 

help circumvent this problem at finer grains of analysis is 

to in fact accumulate larger training histories to calibrate 

PPE upon, allowing variability and noise to be smoothed. 

 These illustrative exercises help lend credence to the 

notion that use of this newly developed CV PI calculation 

method may have merit as being a useful way to help 

guide training decisions in a way that nicely accounts for 

the competing trends of reduced performance variability 

expected with increases in practice, and increased 

prediction uncertainty expected for longer lead times.  

Conclusions 

The incorporation of estimates of uncertainty into model 

point predictions is a necessary extension to our point 

predictive model in order to provide learners and 

instructors with relevant and useful guidance concerning 

the amount of predictive uncertainty that should be 

expected at specific future points in time and under 

competing future training regimens.  Because there are no 

precedented existing methodologies to apply to this 

problem, we plan to further the validation effort across the 

two potential solutions we proposed in this paper against 

human empirical data, and we are hopeful this new 

capability will apply not only to our modeling effort, but 

also for others who are working on the optimization of 

training (e.g., Lindsey, et al., 2009; Pavlik, & Anderson, 

2008; van Rijn et al., 2009).   
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