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Abstract 
Predicting the results of one’s own actions is a powerful 
cognitive capability that can aid in determining which action to 
take in a given situation. In this paper, we describe a task-
independent framework based on the Soar cognitive architecture 
in which rules, episodic memory, semantic memory, mental 
imagery, and task decomposition are available for predicting an 
action’s consequences. We include results from two domains 
and make predictions for human behavior based on these results.  

Keywords: Action modeling; prediction; cognitive architecture 

Introduction 
When faced with a decision between alternative actions, an 
intelligent agent may have sufficient knowledge to 
immediately determine which choice is best. However, in 
situations where directly available knowledge is insufficient 
or in conflict, an agent can often use predictions of how its 
actions will change the environment to make its decision. 
We call the knowledge used to make such a prediction an 
action model. Using this approach to make a decision 
typically involves the following steps: 
1. Choose one of the alternative actions to evaluate. 
2. Create an internal representation of the situation. 
3. Apply the action model to the internal representation to 

generate a prediction. 
4. Repeat for all other actions. 
5. Choose the action that leads to the best predicted state.  
This approach to decision making is ubiquitous in humans 
(de Groot, 1965; Newell & Simon, 1972) and has been used 
throughout artificial intelligence (AI) systems, where the 
agent internally simulates multiple steps into the future. A 
critical ingredient in this process is the action model: the 
means by which the results of actions are predicted. Action 
modeling is important because it allows an agent to move 
beyond reactive behavior – an agent can plan and deliberate 
about the implications of its actions before choosing one. 

Historically, AI systems have used rule-like structures as 
action models, such as STRIPS operators (Fikes & Nilsson, 
1972). Cognitive science research has addressed action 
modeling, but it has typically been isolated within specific 
cognitive processes, such as mental imagery (Johnson, 
2000; Wintermute & Laird, 2009) or episodic memory 
(Atance & O’Neill 2005, Schacter & Addis 2007). 

Rather than focus on one particular approach to action 
modeling, we investigate the problem in general. We 
propose that different combinations of memory and 
processing systems can be used for action modeling, and 
that domain characteristics and the agent’s knowledge 

determine which mechanisms are used for a specific task. 
The mechanisms we propose include rule-based procedural 
knowledge, episodic knowledge, semantic knowledge, 
mental imagery, action decomposition, and arbitrary 
combinations thereof. These mechanisms vary along many 
dimensions including generality, reportability, learnability, 
computational expense, and the types of problems where 
they are appropriate. Forbus & Gentner (1997) have 
previously posited a similar diversity of processing to 
support mental models, although they did not focus on 
detailed architectural mechanisms as we do here. 

Included in our work is task-independent knowledge that 
dynamically combines these mechanisms, implemented 
within Soar (Laird, 2008). Soar has the requisite 
representational capabilities to support the diverse forms of 
memories, processing units and knowledge required for 
action modeling. In the next section, we give an overview of 
Soar and our approach to using action models in support of 
decision making. This is followed by descriptions of the 
different forms of action modeling, with demonstration of 
them on a simple blocks world task. We then demonstrate 
them together on a simple board game, and analyze their 
relationship to human behavior.  

Framework for Action Modeling in Soar 
Figure 1 shows the structure of Soar, including its long-term 
and short-term memories and processing components. 
Working memory is a shared, symbolic memory that 
maintains the agent’s primary representation of the current 
situation. Long-term symbolic memories hold procedural, 
semantic, and episodic knowledge, which are retrieved 
based on either the total contents of working memory (for 
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Figure 1: Structure of Soar 
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procedural) or cue structures created in working memory 
(for episodic and semantic). Soar has a non-symbolic, 
spatially-based perceptual short-term memory (STM) from 
which symbolic information can be extracted into working 
memory. This memory is the medium of mental imagery. 

Behavior in Soar is driven by rules stored in procedural 
memory. Rules that successfully match the contents of 
working memory fire in parallel. Operators are the locus of 
sequential behavior in Soar and only a single operator can 
be selected at a time.1

If there is insufficient knowledge to select or apply an 
operator, an impasse arises, and a substate is created. Within 
the substate, operators can be proposed, selected, and 
applied to resolve the impasse. A side effect of resolving an 
impasse in a substate is that Soar builds a rule that 
summarizes the processing in the substate. This process is 
called chunking. The learned rule fires in similar situations 
so that the same impasse is avoided in the future. 

 Operators are implemented via rules 
that propose, evaluate, and apply them. Rules that propose 
and evaluate an operator create preferences, while rules that 
apply an operator modify elements in working memory 
when that operator is selected.  

Conceptually, operators are either external, in that they 
initiate action in the environment, or internal, in that they 
change the internal state of an agent. Throughout this paper, 
we call external operators actions, so that an action model 
refers to an internal model of the changes that result from 
the application of an external operator.  

Figure 2 shows how action modeling arises in Soar. When 
an agent is unable to make a decision using its directly 
available knowledge, it internally simulates the effects of 
proposed actions to aid in decision making. In this example, 
the agent is attempting to create a stack of blocks, with A on 
B, B on C, and C on the table. In the upper left corner of the 
figure, the agent’s state is shown, with the lower half 
corresponding to a representation of the problem state as it 
might be in the agent’s perceptual short-term memory. The 
top half of the state shows the symbolic relations that the 
agent extracts from perception, and it is these relations that 

1 Operators in Soar correspond most closely to rules in ACT-R 
(Anderson, 2007); however, operators in Soar provide a richer 
representation for organizing action than do rules in ACT-R because of the 
independent representations of knowledge (as rules) for proposing, 
selecting, and executing the actions associated with an operator. 

are available in working memory.    
We assume the agent has sufficient knowledge to propose 

the three legal actions for this state: move B onto C, move C 
onto B, and move C onto the table. However, there are no 
rules to create preferences, so an impasse arises (1), and 
Soar automatically creates a substate (2). 

To resolve this impasse, the agent tries out each proposed 
action on a copy of the state and then evaluates the quality 
of the result. Task-independent knowledge (TIK), encoded 
as rules, carries out this strategy. The only additional task-
dependent knowledge required in this processing are action 
models and state evaluations, both of which can use the 
various forms of knowledge presented below.   

As shown in Figure 2, following the impasse, operators 
are selected (at random) to evaluate the actions. In the 
example, move C to the table is evaluated first (3). In this 
case, the agent does not have rules to evaluate this action 
directly, and thus, another impasse arises. In the resulting 
substate (4), the TIK copies the contents of the original task 
state and uses a model of the action being evaluated to 
predict the resulting state. Once this state is computed (5), 
the agent must also have some knowledge (usually encoded 
as rules) for evaluating it. In this case, we use an evaluation 
that counts the number of blocks in their desired positions, 
which assigns the state an evaluation of 1. The creation of 
this evaluation terminates the evaluate operator, which is 
followed by the selection of operators to evaluate the 
remaining actions (6, 7). When all the evaluations are 
computed, preferences are created for the actions, leading to 
the selection of the action to move C to the table, and 
resolving the first impasse. The action is then performed. 
Chunking learns rules for evaluating each of the actions 
(from the substates where the action modeling occurs), and 
for creating the preferences based on those evaluations. 

Different Forms of Action Modeling 
In this section, we describe how action modeling can be 
implemented using different processing and memory 
systems, with the blocks world serving as an example. 

Procedural Knowledge 
The most direct way to encode an action model in Soar is as 
rules. These rules test features of the state, features of the 
selected action, and that the state is an internal copy of the 
task state. They modify the internal copy in the same way 
the external action would modify the real state. For complex 
actions, the model can be implemented with multiple rules 
that fire in parallel and/or in sequence. 

Episodic Memory 
Soar has an episodic memory that automatically stores 
“snapshots” of working memory over time (Nuxoll & Laird, 
2007). Soar’s episodic memory is an idealization of human 
episodic memory, and emphasizes basic functionality, such 
as efficient storage and associative retrieval of temporally 
organized episodes. For action modeling, episodic memory 
requires that the agent has a previous experience when the 
action being considered was applied in the environment. 
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The agent can then use its memory of that experience to 
make a prediction as to what will happen when the operator 
is applied to a similar situation (Xu & Laird, 2010). 

When episodic memory is used, the behavior of the agent 
is as follows. The first time the agent gets to the point where 
the action is selected in Figure 2, an impasse would arise 
because there is no rule to apply the action. In the resulting 
substate (not shown in Figure 2), the TIK for using episodic 
memory selects an operator which creates a cue consisting 
of the task state with the action selected, in an attempt to 
retrieve a similar previous episode. Once the cue is created, 
the episodic memory system retrieves the most recent, best 
match to the cue and reconstructs it in working memory. If 
no match is found, then this approach to action modeling 
fails, and the agent must either try other methods, or assign 
a default evaluation value to the action being evaluated. 
Chunking does not create rules to summarize processing in 
substates where episodic memory retrieval failed.  

If the retrieval is successful, the agent then retrieves the 
following episode. The agent continues retrieving 
subsequent episodes until it finds one where the action is no 
longer selected, which indicates the action has terminated. 
The agent then compares the task state in that episode to the 
current task state and modifies the internal copy of the task 
state to reflect any changes. Chunking creates a rule that 
summarizes the processing, so that in the future, the 
retrievals are not required.  

Figures 3 and 4 compare results for using the rule-based 
versus the episode-based approaches to action modeling. 
Both figures show the progression of performance across 
four identical trials of the blocks world problem described 
above, and both use log scales for the y-axis. Figure 3 
shows the number of external actions that the agent takes to 
solve the problem, while Figure 4 shows the number of 
decisions (processing cycles in Soar). These results are not 
intended to precisely model human behavior (for example, 
we are not including time for perception or motor actions); 
however the comparisons should be meaningful in 
predicting qualitative differences across methods and trials.  

In Figure 3, the top line shows the average performance 
of an agent using episode-based action modeling where 
episodes are not learned, so that a random selection is 
always made. The next line shows the performance when 

episodes are being learned. Initially there are no relevant 
episodes, so the selections are random, but with experience, 
the episodes accumulate and the agent’s performance 
improves as it is able to correctly predict future states and 
select the correct action, until finally it achieves optimal 
performance. Even the first trial gets some improvement 
from learned episodes. The bottom line shows the 
performance with the rule-based action model, which 
always makes the correct predictions. 

Figure 4 shows the performance in terms of decisions, not 
just external actions. The top line corresponds to the steps 
required when episodes are not learned. The next line shows 
the performance as episodes are learned. The dashed line 
that starts at the same point for trial 1 shows that when 
chunking is used with episodic memory, it eliminates the 
need for episodic retrievals over time as the agent learns 
action models based on rules that replace those based on 
episodic memory. The agent eventually learns rules that 
choose actions directly, eliminating the need for action 
models. Thus, there is a combined gain with episodic 
memory improving solution quality, and chunking 
improving the efficiency of the problem solving process. 
Note that external actions take orders of magnitude more 
time to execute than internal reasoning steps, so the 
differences are more pronounced in real environments.  

The next line shows the performance for the rule-based 
action model without chunking, which serves as the optimal 
base line for action modeling. The final line shows the 
impact of using chunking with the rule-based action model, 
where after one trial, rules are learned that eliminate the 
need for the action model. As these figures show, in only a 
few trials, the combination of episodic memory and 
chunking converts an agent with little task knowledge  into 
one that solves the problem in few actions (due to episodic 
memory-based action modeling), while eliminating the need 
for purely internal decisions (due to chunking).  

Semantic Knowledge 
Whereas episodic memory is based on specific experiences, 
semantic memory consists of decontextualized facts – such 
as knowledge about objects and their structure, independent 
of when they were experienced. This makes semantic 
knowledge more difficult to learn than episodic knowledge, 
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but more useful across a variety of tasks. Soar as yet does 
not have a theory of how semantic memories are 
automatically learned, and instead Soar agents must 
deliberately store semantic data they encounter.   

The use of semantic memory for action modeling is 
analogous to the use of episodic memory – when there is no 
action model encoded as rules, an impasse arises, and in the 
resulting substate, an operator is selected which queries 
semantic memory to retrieve knowledge that can aid in 
predicting the result of applying that action. Semantic 
memory covers a broad range of knowledge, and one can 
imagine many ways it can aid in action modeling. For 
example, the fact boiling kettles are hot can be useful when 
predicting the consequence of touching one. Here, we use 
declarative instructions that specify how to modify the 
internal task state to model the action.  

To use semantic memory, the agent selects an internal 
operator that initiates a retrieval for instructions related to 
the action being evaluated. If the relevant instructions are 
retrieved, TIK selects the “interpret” operator, whose 
purpose is to apply the instructions to the copy of the task 
state. The interpret operator is not implemented directly in 
rules, but leads to a substate where operators are selected 
and applied for each of the instructions. The processing in 
the substate allows for arbitrarily complex implementations 
of instructions, and is similar in spirit to how declarative 
instructions are used in ACT-R (Anderson 2007; Best & 
Lebiere 2003); however, in those cases the instructions are 
interpreted to control the execution of a task, while here 
they are used to model the execution of an action.  

The format of declarative instructions is like that of an 
imperative programming language or a recipe. We have 
developed task-independent declarative representations for 
common control flow instructions and state modifications. 
In the blocks world example, instructions specify additions 
and deletions of predicates. The rules that interpret those 
instructions assume a specific representation of predicates in 
working memory. Figure 5 shows the instructions for 
moving a block. When using semantic memory, the number 
of decisions decreases after one trial, as chunking creates 
action model and action selection rules.  

Mental Imagery 
Mental imagery involves the maintenance of a separate 
memory structure grounded in perception, which represents 
objects and their spatial properties. While the contents of the 
memory is mostly created bottom-up from perception, an 
agent can create new “imagined” structures and manipulate 
them by operations such as translation, rotation, and scaling, 
as well as simulate complex motions, such as the path of a 
car (Wintermute, 2009). The agent can extract spatial 
predicates from perceptual memory, such as the relative 
positions of objects and whether they collide. When applied 

to perceived structures, this can be used to create the initial 
symbolic representation of the problem. When applied to 
imagined structures, symbolic consequences of actions can 
be predicted. The use of mental imagery for action modeling 
is restricted to actions that involve spatial motion, or actions 
that can be mapped onto such motion. 

As in the use of episodic and semantic memory, mental 
imagery is employed when there are no rules for an action 
model, and an impasse arises. Mental imagery takes 
advantage of the spatial representation and maps the action 
to be modeled onto imagery operations. Making the 
connection between the action and mental imagery 
operations can involve accessing knowledge in semantic 
memory, or such knowledge can be encoded in rules. In our 
example, the agent knows that to move a block, it should 
imagine it centered on top of the destination block. Once the 
perceptual memory has changed, relevant predicates can be 
extracted, creating a symbolic description of the situation 
that serves as the resulting state.  

Mental imagery involves processing that cannot be 
analyzed by chunking because the results of the processing 
are not uniquely determined by the symbolic structures 
available in working memory. Therefore, chunking does not 
create rules that summarize mental imagery processing. This 
is similar to ACT-R avoiding rule compilation for 
processing over external interactions (Anderson, 2007).  

Although not as general as the other methods, mental 
imagery has wide applicability because of the ubiquity of 
spatial problems. Imagery-based action models are effective 
in a range of problems, from simple tasks in the blocks 
world (Wintermute & Laird, 2009) to complex tasks such as 
path planning for cars (Wintermute, 2009). 

Action Decomposition 
The final alternative approach is to model an action by 
decomposing it into simpler actions that can be modeled 
using any of the approaches described above. In Soar, 
hierarchical operator decomposition is ubiquitous, and arises 
when complex operators are selected, and then implemented 
in substates by simpler operators. In the blocks world 
example, when move-block is selected, it can be 
decomposed into pickup-block and put-down-block actions. 
When these actions are selected, any of the previous 
methods can be used as models for them, including further 
decomposition. One typical use of action decomposition is 
to take an action that involves complex spatial interactions 
and decompose it into simpler parts until those parts can be 
mapped onto imagery operations. Chunking will create rules 
for the action model of a complex operator as long as mental 
imagery was not used in any substate processing.  

A Policy for Controlling Action Modeling Approaches 
We have presented these action modeling approaches as 
alternatives, with no attention to when each would be used 
in an integrated agent. Inherent to Soar is that it uses rules 
for action modeling if they are available. That is the default 
behavior and it is not under control of the agent. When rules 
are not available, an impasse arises, and in the ensuing 

Figure 5: Instructions encoded in semantic memory. 

Move-block(blk, dest): 
  1. Del-predicate ontop(blk, x) ∀ x ≠ dest 
  2. Add-predicate ontop(blk, dest) 
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substate, operators are proposed for the alternative methods, 
as well as any operators that decompose the selected action. 
This structure introduces an extra level of deliberation, 
which adds flexibility at minimal cost to the agent (the 
results in Figure 4 are without this additional layer). 
Although it may be possible for an agent to learn when best 
to use each method, that could be a difficult learning 
problem and we leave it to future research. As an 
alternative, we encoded a simple ordering preference for 
these approaches in the TIK and use this method in the 
board game demonstration below. 

Integrated Demonstration 
To provide additional illustration of how these approaches 
work, both independently and in unison, we present an agent 
that plays a simple board game, shown in Figure 5. In this 
game, the agent must slide the hexagonal marker on the left 
along the directional paths to numbered nodes until it gets to 
the end (node 10). As the marker slides along a path, it may 
touch one of three different objects, labeled X, Y, and $. If 
the marker hits an object, the agent gets points. The agent 
has semantic knowledge that the $ is worth 20 points, but 
does not initially know the values of the other objects (X is 
worth 10 points and Y is worth 5). The goal is to get to the 
end with the highest possible score, which is achieved via 
path A, C, F, H, I, K. We assume that the agent can sense 
the marker position, the paths, and the objects, but it does 
not a priori know whether the marker will hit a nearby 
object as it slides along a path.  

To perform the task, the marker starts at position 1, and 
the agent is faced with making a decision to take path A or 
B. To make this decision, the agent will attempt to predict 
the result of each move. At this point, the agent does not 
have any action model rules, nor does it have any episodes 
or relevant information in semantic memory. However, it 
can use mental imagery to imagine moving the marker along 
each of the paths. Mental imagery predicts that if it moves 
along A, it will intersect with object X, while for B, it will 
intersect with Y. In both cases, it does not know how 
encountering those objects will affect its score, so it chooses 
at random. We assume it picks path B. It executes that 
action, encountering Y and getting 5 points.  

Once at 3, the agent picks path D to get to 4. Here, the 
decision is between going along path E or F. This time, after 
it uses mental imagery to detect that it will encounter object 
Y, it then uses episodic memory to recall that the last time it 
encountered object Y it received 5 points. When it considers 

path F, it uses imagery to predict it will encounter object $, 
and then semantic memory to predict that it will receive 20 
points. Based on these evaluations, it chooses path F. It 
receives 20 points, moves to 6 and then 7. At this point, it 
uses a combination of mental imagery and episodic memory 
to predict the result of moving to 8 (10 points). In imagining 
moving to 9, imagery shows that it will not encounter Y, so 
it will get a score of 0. It selects moving to 8, and then 
finishing by moving to 10, getting a total score of 35. 

The next time the agent plays the game, it uses episodic 
memory to predict the results of the paths it took the first 
time (B, F, I). Since it has no episodic memories of moving 
on paths A, E, and J, and cannot chunk over imagery action 
models, it must continue to use imagery for those paths.2

Figure 7 shows the progression of how the agent’s 
decisions are distributed across using imagery versus 
episodic memory over multiple trials. The highest line 
shows the total number of internal reasoning steps. The 
bottom two lines are the number of decisions that involve 
imagery and episodic memory operations. In the first trial, 
imagery dominates as the agent has no prior experiences it 
can draw on. In the second run, the agent must still use 
imagery for those cases where it has not taken a path, but it 
uses episodic memory for those cases where it had prior 
experiences. Although not evident in the graph, chunking 
replaces the use of semantic memory with a rule. For the 
third run, chunking decreases the total number of steps by 
eliminating the use of episodic memory. In the final trial, 
some imagery is still required for those paths the agent 
never actually tried, and episodic memory is no longer used 
as it has been replaced by rules learned through chunking. 

 
Thus, in its second attempt, it will use imagery and episodic 
memory to predict a 10 score for A, while it will use only 
episodic to predict a score of 5 for B. Similar use of imagery 
and episodic memory will be used at nodes 4 and 7. As a 
result, the optimal path is taken, resulting in a score of 40.  

Predictions 
From these examples and an understanding of the 

approach, we can make some predictions about the behavior 

2 Soar’s episodic memory does not capture subgoal processing, so the 
agent has no episodic memories of previous predictions. Otherwise, these 
steps could also be removed. 
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of an agent with the capabilities we described. 
In a spatial environment, an agent initially relies on 

mental imagery for action modeling (and semantic 
knowledge if it is available). As the agent gains experience, 
it switches to using episodic memory when possible. With 
further experience, rules learned via chunking replace 
episodic memory, and eventually rules are learned that 
choose actions directly, eliminating action modeling.   

Concurrent with learning, the agent’s ability to report on 
its internal reasoning should change, as different structures 
become available in working memory (which is the basis for 
our predictions about reporting). Initially, for spatial 
problems, the agent can report imagining spatial situations, 
which then transitions to reports of using episodic memory 
(things it “remembers”). When using semantic memory, it 
can report on the instructions and facts it is using (things it 
“knows”). With practice, the agent loses the ability to report 
on its reasoning as intermediate structures are no longer 
generated in working memory and processing is done purely 
with rules.  The rules produce behavior without the creation 
of a declarative trace that the agent can report.  

As shown in Figure 7, our model predicts there are also 
changes over time in terms of which mechanisms are used 
in action modeling, and thus decision making. The obvious 
prediction is that in humans the brain areas used for action 
modeling, and thus decision making, will change based on 
characteristics of the task (whether it is spatial or symbolic) 
and a subject’s experience (whether it has access to relevant 
semantic, episodic, or procedural knowledge). 

Conclusions 
The major claim of this paper is that intelligent agents, 
including humans, have a variety of available mechanisms 
that can be used to predict the results of their actions in 
service of decision making. A related claim is that internal 
prediction does not occur in any specific architectural 
module, but results from a combination of characteristics of 
the domain, the agent’s background knowledge, prior 
experience, and the agent’s available memories and 
processing elements. We have demonstrated two agents in 
two domains using rules, episodic memory, semantic 
memory, mental imagery, and action decomposition for 
action modeling. Although the domains are simple, the 
results predict significant changes in behavior as knowledge 
accumulates in episodic memory and is compiled into rules. 

Central to achieving these results are the various 
memories and processing units in Soar as presented in 
Figure 1, as well as the task-independent knowledge that 
controls the use of these knowledge sources. A critical 
component of Soar’s ability to support these methods is its 
employment of impasses when knowledge is incomplete. 
Impasses are critical for identifying when action modeling is 
necessary (a tie among competing actions) and for invoking 
alternative approaches when rule-based action modeling 
knowledge is missing. In addition, substates provide the 
representational structure needed to support retrieving and 
combining knowledge without disrupting the state of the 

problem being attempted. These components appear to be 
missing, or at least difficult to achieve, in other 
architectures, and it would be informative to attempt to 
duplicate the qualitative structure achieved here in other 
cognitive architectures. 
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