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Abstract 

The efficient detection and resolution of conflicts represent 
the key tasks of Air Traffic Controllers in enroute 
environments. The complexity of these tasks imposes 
significant challenges on the design of cognitive models that 
are capable of adequately simulating them. Yet, the 
availability of such models is crucial for a number of 
applications, including the evaluation of current and future 
Air Traffic Control concepts. In this paper, we will propose a 
novel modeling approach which adopts the principles of the 
A* graph search scheme from Artificial Intelligence to 
represent the cognitive decision making process of the human 
operator. Results of an initial version of this model will be 
presented, showing that the proposed approach has promise. 

Keywords: Cognitive Modeling; Cognitive Systems 
Engineering; Artifical Intelligence; Decision Making; Air 
Traffic Control. 

Introduction 

In most western economies, the volume of air traffic is 

currently growing at a rate of 4 to 6 percent per annum. 

According to its 2006 annual report, the US Federal 

Aviation Administration (FAA) acknowledges that air 

traffic controllers will not be able to handle traffic at 

25 percent above today’s level, and that traffic may increase 

this much by 2016 (ICAO, 2004). In response to this 

problem, the United States Federal Aviation Administration 

and Eurocontrol are currently pursuing programs to greatly 

increase airspace capacity (FAA, 2010; Eurocontrol, 2008), 

without raising either the workload or number of air traffic 

controllers. 

Cognitive modeling could provide an important vehicle 

for the evaluation of new operational concepts if it is 

possible to simulate performance on challenging air traffic 

control operations. For example, models making reasonable 

estimates of sector workload could inform evaluations of 

safety and staffing. One of the more cognitively complex 

tasks of controllers is the detection and resolution of 

conflicts (Lehmann, Bolland, Remington, Humphreys, 

Fothergill, Hasenbosch, & Neal, 2010). The n-aircraft 

conflict resolution problem is highly combinatorial and 

cannot be optimally solved using classical mathematical 

optimization techniques. This inherent complexity imposes 

significant challenges on the design of corresponding 

models. 

This paper will propose a new method that simplifies the 

task of modeling expert decision making in Air Traffic 

Control (ATC) environments by relying on domain-specific 

simple heuristics that humans deploy to produce accurate 

decisions (Todd & Gigerenzer, 2007). The conflict 

resolution mechanism adopts the principles of the A* search 

algorithm (Felner, Stern, Ben-Yair, Kraus, & Netanyahu, 

2004; Lee, Osman, & Sabudin, 2009; Leigh, Louis, & 

Miles, 2007). The resulting scheme implements a search 

through a space of conflict solutions. System states are 

evaluated using optimization criteria encapsulating the 

controller’s goals. Each optimization criterion is associated 

with a number of individual cost functions that penalize 

deviations of the system states from the goal states. The 

focus on psychologically plausible strategies, rather than 

representative psychological processing mechanisms, was in 

part a response to the complexity of decision making in 

ATC and the large number of unobservable factors that 

would need to be incorporated (e.g., memories for previous 

or typical solutions). Moreover, the strategies we use were 

elicited from highly experienced controllers and thus 

encapsulate experts' insights and knowledge. Our working 

hypothesis is that the use of psychologically plausible 
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solution heuristics and optimization criteria in conjunction 

with the constraints imposed by the environment will 

produce human like behavior. 

We first describe the conflict detection mechanism, then 

detail the manner in which the model selects solutions using 

the optimization criteria to find a path in the search tree. 

Finally, we present empirical tests of an initial 

implementation of the model showing good but not perfect 

fits to data from human controllers. 

Conflict Detection Scheme 

The current implementation of the conflict detection scheme 

is based on the model proposed in Loft et al. (2009). It 

detects pairs of conflicting aircraft in a hierarchical fashion. 

Its decomposition into three operational stages allows for a 

run-time efficient implementation. Potential conflicts are 

verified by extrapolating the flight paths of all aircraft that 

are present in the given scenario, and by subsequently 

identifying violations of separation standards between the 

flight paths. Positional aircraft uncertainty is accounted for 

in this process. The three stages proceed as follows: 

 

Stage 1: Coarse check of vertical separation 

A coarse check is performed to verify the vertical separation 

between aircraft. This stage checks if the vertical corridors 

of any two aircraft of interest are separated by more than 

1000 ft, where the vertical corridors are defined by the 

aircraft’s target altitude and cleared altitude respectively. 

 

Stage 2: Lateral separation check 

If the first stage (coarse check) reveals the existence of a 

possible vertical conflict between two aircraft, the model 

deploys the so-called Trajectory Modeller to check for a 

lateral conflict. At any given time t, the Trajectory Modeller 

extrapolates the flight paths up to time t + 10 min in discrete 

∆T = 5 sec steps. The aircraft positions at each time step are 

subject to positional uncertainty, where the uncertainty 

increases successively over time based on a step function. 

More specifically, the extrapolated aircraft position at a 

discrete time step tk=k∆T, k=0, 1, 2, 3,… is associated with 

a discrete uncertainty interval [ak∆T, bk∆T], where the 

coefficients ak and bk associated with the lower and upper 

limits of the interval are: 
 

)98.0(trunc kak ⋅=    Equation 1 

])1[02.1(trunc +⋅= kbk    Equation 2 

 
Stage 3: Final vertical separation check 

If the second stage (lateral separation check) verifies a 

potential lateral conflict between two aircraft of interest, a 

third stage will be deployed to check for vertical conflicts. 

For this purpose, the respective flight paths are vertically 

extrapolated based on the maximum and minimum climb or 

descent rates of the aircraft. Response times of the aircraft 

are currently not considered. That is, the aircraft are 

assumed to instantaneously initiate the actions associated 

with the controller’s interventions. 

Decision Making Model 

The proposed decision making model adopts the principles 

of the A* graph search algorithm (Felner, Stern, Ben-Yair, 

Kraus, & Netanyahu, 2004; Lee, Osman, & Sabudin, 2009; 

Leigh, Louis, & Miles, 2007). This algorithm relies on a 

state-space search engine to evaluate the decision 

alternatives in a hierarchical fashion. Hierarchical search 

has been shown to produce good modeling solutions to 

complex aeronautical problems in the past (Nason & Laird, 

2005; Rosbe, Chong & Kieras, 2001). 

A* finds the minimum cost path in a decision tree through 

a partial search in the solution space. The avoidance of an 

exhaustive search presents a significant advantage for its 

application in the ATC domain, where the decision making 

process poses a complex problem that typically leads to an 

extensive search tree in general traffic scenarios. That is, the 

topology of the search structure does not need to be known 

a-priori. In our model, the search space consists of solution 

types, each representing an action that could be taken to 

resolve the conflict. The solution types are based on simple 

heuristics that have been obtained from experts (using 

interviews and controlled experiments), and from data 

mining (using radar track data). 

Solution Types 

The current implementation of the conflict resolution model 

provides a set of three different solution types which may be 

applied to the aircraft involved in potential conflicts. Before 

a solution can be considered for exploration, one or more 

conditions of applicability must be satisfied. Each solution 

has a particular weight. A smaller weight corresponds to a 

more favourable solution. The effective weight of a solution 

is the sum of a base weight and a penalty value. The purpose 

of the penalty values is to impede the selection of solutions 

that would severely disturb an aircraft’s intended flight path. 

The individual solution types and their weights are: 

 

A. Assign closest level below or above conflict zone 
 

The principle of this solution type is to ensure sufficient 

vertical separation by assigning one of the two aircraft of 

the conflict pair a safe altitude either beneath (low solution) 

or above (high solution) the other aircraft whilst they are in 

the region of the airspace where a loss of lateral separation 

is possible. More specifically, assuming two conflicting 

aircraft A and B, the low solution is applicable if A is not 

already descending through the low solution. Alternatively, 

the high solution is applicable if A is not already climbing 

through the high solution. This avoids direct transitions 

from a descent into a climb or from a climb into descent 

respectively. 

Figure 1 illustrates an example where both aircraft A 

and B are on climb from Flight Level (FL) 110 to FL150 

and from FL120 to FL160 respectively. 
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Figure 1: Assign closest level below 

 

The climb of aircraft A is halted below aircraft B by 

assigning FL130 to aircraft A. 

The base weight of this solution type is (-0.5). Penalty 

values in the amount of +0.1 are additionally applied if the 

solution applied to A falls outside the transitional altitude 

band defined by A’s current and cleared altitudes. 

 

B. Assign separated levels 
 

The second solution type involves modifying the levels of 

both aircraft, assuming a pair of conflicting aircraft where 

one aircraft is climbing and the other aircraft is descending. 

Figure 2 illustrates the basic concept of this solution, once 

again using a conflict pair of aircraft A and B. In this 

example, aircraft A is climbing from FL110 to FL150, while 

aircraft B is descending from FL150 to FL110. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Assign separated levels 

 

In this case, the applicable solution is to interrupt both the 

climb of aircraft A and the descent of aircraft B by assigning 

FL130 to aircraft A and FL140 to aircraft B, thereby 

ensuring that sufficient vertical separation between the 

aircraft is maintained. 

The base weight of this solution type is (-0.5). Penalty 

values in the amount of +0.1 are added to the weight for any 

reverse climb or reverse descent intervention. 

 

C. Vector behind solution 
 

The vector behind solution proceeds as follows: A circle 

with a radius of 6nm (nautical miles) is placed around 

aircraft B at its current position. Aircraft A is pointed behind 

aircraft B by vectoring it to the heading that establishes a 

tangent to this circle, thereby ensuring sufficient lateral 

separation between the two aircraft. 

This solution is generally applicable to all conflicting 

aircraft. Its base weight is (-0.5). There are no additional 

penalties. 

Adaptation of A* to the ATC decision making task 

The search space of the A* algorithm can be graphically 

represented by a decision tree. An example graph is shown 

in Figure 3. Each node in the decision tree represents a 

system state that, with the exception of the start node (S), 

results from the path of previous actions leading to it. The 

edges between the nodes represent the path of actions. Each 

edge has a value (shown as an integer in Figure 3) 

representing the cost incurred by traversing that edge. It is 

worthwhile to note that apart from the goal node (G), each 

node has at least one decision alternative associated with it, 

leading to a so-called child node. 

 

 
 

Figure 3: A* example graph 

 

The decision making process is effectively driven by the 

cost function f(x). That is, A* ranks each path currently 

under consideration based on f(x) to find the path with the 

lowest traversal cost. f(x) is decomposed into a so-called 

path-cost function g(x) reflecting the cost from the starting 

node to the node of interest, and a “heuristic estimate” h(x) 

of the distance to the goal node. 

 

,)()()( xhxgxf +=    Equation 3 

 

where x denotes some partial path. In other words, f(x) 

represents the estimated final cost of the path leading to the 

goal and including x. Under the right conditions, A* 

guarantees to find the path with the lowest traversal cost 

(Leigh, Louis, & Miles, 2007). The performance of A* 

relies heavily upon the heuristic estimate h(x). A necessary 

condition for A* to find the shortest path is that the heuristic 

must underestimate the remaining distance. 

One of the key aims in adopting the A* search scheme to 

the ATC conflict resolution task consists in achieving a 

model behavior that is closely aligned to the behavior of 

human controllers. For this purpose, the concept of 

optimization criteria was introduced. Each optimization 

criterion Cn encapsulates the n
th

 goal of the controller. 

Table 1 shows three examples for possible optimization 

criteria: 

 

Table 1: Three exemplary optimization criteria 

 

n Optimization criterion Cn 

1 Minimization of total number of aircraft interventions 

2 Minimization of disruption to aircraft flow 

3 Minimization of the controller’s workload 
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Each optimization criterion Cn is associated with a set of 

descriptive attributes, Ank. These attributes are represented 

by corresponding cost functions 

 

.nknknk hgf +=     Equation 4 

 

Summing up all the cost contributions across the 

individual attributes yields the final cost function for the 

individual criterion Cn:  

 

( )∑ +=

k

nknkn hgf    Equation 5 

Our initial version mainly aims at the implementation of 

optimization criterion C1 from Table 1. That is, it tries to 

resolve all conflicts given in the scenario with the fewest 

aircraft interventions. However, the second criterion listed 

in Table 1, C2, was additionally integrated into the model, to 

account for the attempts of controllers to minimize 

unfavorable flight maneuvers. Table 2 shows the individual 

attributes for C1 and C2. 

 

Table 2: Attributes of the optimization criteria as per the 

current model implementation 

 

Cn k Attribute Ank 

C1 1 Preference of graph nodes of lower depth level 

C1 2 Preference of nodes showing fewer remaining conflicts 

C1 3 Number of conflicts of the aircraft subject to intervention 

C1 4 Number of occurrences of the solution of interest 

C2 1 Obstruction of unfavorable flight maneuvers 

 

As Table 2 shows, C1 is represented by four attributes 

and C2 by one attribute respectively. The aim of the 

attribute A11 in Table 2 is to prioritize the selection of 

solutions that belong to graph nodes at low depth levels. 

The depth level of a node is determined by the number of 

subsequent nodes lying in the decision path, that is, by the 

number of actions leading to it. Therefore, the node depth 

defining the corresponding cost function g11(x) represents 

the number of interventions that have already occurred in 

the path of interest x, and that have consequently already 

imposed a penalty on the achievement of optimization 

criterion C1. 

Generally, the number of remaining conflicts in a given 

node establishes a good indicator for the expected number 

of remaining interventions. Consequently, this measure was 

taken to define the cost component h12(x) for the 

corresponding attribute A12 in Table 2. The metric was 

encapsulated in the heuristic component h of the cost 

function f as it represents a predictive cost estimate. The 

number of conflicts that the aircraft the solution acts upon is 

involved in represents an additional indicator for the 

efficiency of the solution with respect to achieving 

criterion C1 in the remaining path to the goal. The number of 

remaining conflicts therefore forms the cost component 

h12(x) corresponding to attribute A12. The underlying idea is 

that in comparison to solutions that are applied to aircraft 

that are involved in a single conflict only, solutions applied 

to an aircraft involved in multiple conflicts have a greater 

than zero probability of resolving multiple conflicts this 

aircraft is subject to in one go. This likelihood of efficiently 

minimizing the intervention count is further increased if in 

addition to acting on aircraft involved in multiple conflicts, 

the particular solution is suggested multiple times by the 

solution logics for resolving different conflicts. The number 

of total occurrences of the solution under consideration was 

therefore taken to define cost component h13(x) 

corresponding to attribute A13. 

The cost function for attribute A21 is simply the sum of the 

base weights of the solutions and the respective penalties as 

described in the subsection entitled Solution Types. While 

the base weights for the individual solutions are identical for 

all solution types in the current implementation, the 

additional penalties depend on the situational context. Their 

purpose is to prevent the selection of solutions yielding 

unfavorable aircraft maneuvers, such as reverse climbs and 

reverse descents. 

Based on this set of individual cost components, the cost 

functions f0(x) and f1(x) are computed using Equation 5. The 

final cost function f(x) is then just formed by adding f0(x), 

f1(x), and a Gaussian noise term that accounts for the 

probabilistic nature of the human decision maker. This noise 

term is characterized by a relatively small variance and 

therefore predominantly influences the selection of solutions 

belonging to the same search tree level. Impacts of this 

noise on solutions belonging to different tree levels are very 

unlikely. All parameters required for the formulation of the 

cost functions, including the variance of the noise, were 

empirically chosen in the current implementation. The 

effective cost f(x) establishes the basis for the decision 

making process in the ATC search tree. This process will be 

discussed in the following subsection. 

ATC Search Tree 

An example of the resulting ATC search tree is depicted in 

Figure 4. 

 

 
 

Figure 4: ATC search tree 
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In this example, the conflict detection model initially detects 

four potential conflicts between aircraft pairs in the 

scenario, as depicted in the root node within Figure 4. A set 

of potential solutions is then constructed for each of the 

potential conflicts present in this node. The entire set of 

potential solutions is then evaluated by assigning individual 

cost values fi,j to the solutions, where i (i = 0 for root node) 

and j denote the indices of the current node and the solution 

under consideration respectively. The solution having the 

smallest cost value will finally be selected and applied, 

creating a new child node with an associated set of conflicts. 

In the example in Figure 4, the solution selected in the root 

node resolves one of the four problems, leaving the 

respective child node with three remaining problem pairs. 

The process applied to the root node is then repeated for the 

child node in a recursive fashion. Figure 4 also demonstrates 

that solutions selected via a-priori evaluation may be 

deemed to be inefficient via a-posteriori evaluation. For 

example, the solution entitled ‘Give XXS new level’ creates 

a new conflict, which leads to back-tracking behavior in the 

search process. That is, the subsequent search evaluation 

step may select a solution associated with the parent node, 

rather than propagating further down from the child node 

produced by the previous, inefficient solution. The overall 

optimization scheme effectively leads to a downhill search 

which is driven by the available set of solution types 

(heuristics) and shaped by the situational context 

(constraints). 

Experiments 

Aim and Methodology 

To compare the model’s behavior against the behavior of 

controllers, we simulated performance on a set of four 

different scenarios of varying complexity that were also 

presented to 14 En-Route, radar endorsed air traffic 

controllers from Brisbane Centre. Figure 5 shows the 

scenario with the highest complexity. 

 

 
 

Figure 5: Scenario of highest complexity 

 

The time participants had been endorsed as a controller 

ranged from 10 to 20 years. Controllers were asked to 

resolve the scenario by issuing restrictions to one or more of 

the aircraft. They were instructed to work through the 

scenario step by step, and to explain their actions in detail, 

including the evaluation of potential problems, and the 

processes of considering options and deciding on actions or 

priorities. The interviews were based on the critical decision 

method (Klein, Calderwood & MacGregor, 1989). 

The simulation consisted of 100 runs of our decision 

making model for each scenario. Our interest centers on the 

degree to which the model used the same intervention rates 

and types as the human controllers. Table 3 shows the 

intervention types. 

 

Table 3: Intervention types 

 

Type Description 

H0 Intervention other than H1, H2,…, H8 

H1 Vector aircraft to the left 

H2 Vector aircraft to the right 

H3 Issue climbing instruction 

H4 Issue descent instruction 

H5 Extend an existing climb 

H6 Extend an existing descent 

H7 Interrupt an existing climb 

H8 Interrupt an existing descent 

 

Results 

The results for the scenario with the highest complexity are 

presented in Figures 6 and 7. Figure 6 shows the total 

average intervention rates for the individual aircraft for both 

controllers and model runs. Figure 7 shows the selection 

rates of the individual intervention types. 

It can be seen from Figure 6 that there is a reasonable 

agreement between controllers and the model in selecting 

the aircraft that are subject to intervention. However, 

controllers appear to intervene with a wider range of aircraft 

than the model, at more variable intervention rates: Aircraft 

‘VHETR’ is excluded by the model in Figure 6. 
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Figure 6: Total average intervention rates for the aircraft 
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Figure 7 demonstrates a reasonable agreement between 

controllers and the model in the selection of the intervention 

types. However, a reduced variability of the model can be 

observed: In contrast to controllers, the model essentially 

excludes the generation of intervention types H0 

(‘Intervention other than H1, H2,…, H8’) and H5 (‘Extend 

an existing climb’). 
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Figure 7: Average selection rates of the intervention types 

 

Conclusions and Outlook 

This paper describes a novel approach for modeling the Air 

Traffic Control (ATC) task using intelligent graph search. 

The A* algorithm was adopted to model human decision 

making under uncertainty and environmental constraints. 

This model relies on the definition of optimization criteria 

and associated attributes, where the attributes are 

represented by corresponding components of the overall 

cost function. The optimization criteria encapsulate 

properties of the situational context that influence the 

decision strategies of a human controller. They can 

consequently enable the model to alter its behavior 

accordingly. An initial implementation of this model is 

proposed that aims at minimizing the total aircraft 

intervention count under preservation of the realism of the 

generated solutions. Empirical tests demonstrate good but 

not perfect fits to data from human controllers. A reduced 

variability of the model over controllers was observed, in 

the selection of both the aircraft for intervention and the 

actual types of intervention. This variability might be 

induced by psychological processes that the model does not 

capture, such as human attention and perception. 

The results suggest that the modeling concept has promise 

for its application to decision making in complex, dynamic 

task environments. We therefore plan to extend the 

approach in our future work by incorporating additional 

optimization criteria; by advancing the current decision 

making mechanisms; and by integrating adaptive behavior 

into the model. 
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