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Abstract

Humans have a remarkable ability to adapt their perceptual
acuity to the task at hand, commonly referred to in the liter-
ature as perceptual learning. Understanding this ability at a
computational level may have important implications across
a wide variety of different psychological phenomena. There
is evidence suggesting this ability plays an important role in
speech comprehension, mathematics, and perceptual expertise,
for instance. Computational models of perceptual learning
have largely focused on hypothesizing how one or more mech-
anisms might explain the observed perceptual learning for a
single task. Here we explore how a single model might ex-
plain the learning curves across two auditory perceptual learn-
ing tasks. Our results suggest that an ideal observer model
with noisy input can predict learning when daily limits are not
reached, and that daily limits on learning can be modeled by
a decay of memory for trials observed on the current day of
practice.
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Introduction

Humans have a remarkable ability to adapt their perceptual

acuity to the task at hand, commonly referred to in the liter-

ature as perceptual learning (Fahle and Poggio, 2002). Per-

ceptual learning has been demonstrated in many different ex-

periments. In vision for instance, there are studies of vernier

hyper-acuity (Poggio et al., 1992), orientation discrimination,

and spatial frequency discrimination (Fiorentini and Berardi,

1980). Examples in the auditory domain include results for

frequency discrimination (Demany, 1985), and temporal in-

terval discrimination (Wright et al., 1997). Perceptual learn-

ing is often characterized as being highly specific both to the

task (Fiorentini and Berardi, 1980), and to the specific loca-

tion or range within a dimension (Wright and Zhang, 2009;

Poggio et al., 1992).

There is evidence that perceptual learning is important for

a great variety of real world tasks humans face (Kellman and

Garrigan, 2008). There is data suggesting that perceptual

learning helps us during speech comprehension (Norris et al.,

2003), that it can help children with dyslexia (Hayes et al.,

2003) and that it has an important role to play in the compre-

hension of mathematical formulae (Kellman et al., 2008).

Computational models of perceptual learning have the po-

tential to enable better predictions and to help us better under-

stand human data. Past computational work studying percep-

tual learning has largely focused on how specific mechanisms

might explain the particular properties of perceptual learn-

ing for a single task (e.g. Poggio et al., 1992; Petrov et al.,

2005; Jacobs, 2009). Such studies focus on the question of

how and/or where perceptual learning occurs within the hu-

man brain for a single perceptual task. Our goal here is to

develop a model of multiple perceptual learning tasks. By

looking across several tasks we can ultimately constrain our

model by requiring that a single parameter explain qualita-

tively different results across several tasks. Our research also

differs from past work in that, to the best of our knowledge,

there are no computational studies of perceptual learning for

auditory tasks.

Here we model auditory perceptual learning across two

tasks: temporal interval discrimination and frequency dis-

crimination, as discussed in Wright and Sabin (2007). By

modeling learning across several tasks our goal is to gain a

better understanding of why learning does or does not occur

under various training conditions. Our focus here is on mod-

eling the daily limits of learning: it was observed in Wright

and Sabin (2007) that training beyond some point in a sin-

gle day does not yield extra learning. Our results suggest

that limits on daily learning can be modeled by a decay of

the memory of trials observed on the current day of practice.

This decay is consistent with numerous studies of consolida-

tion suggesting newly acquired information in a day begins

in a volatile state, and is not made permanent until memories

are consolidated (e.g. McGaugh, 2000).

Human Data

This section reviews the human data and results originally

described in Wright and Sabin (2007). In this paper, they ex-

amined how varying the number of training trials practiced

per day affected learning over multiple days on two auditory

discrimination tasks: frequency discrimination and temporal-

interval discrimination. The basic question asked in the paper

was “how much daily training is sufficient for learning to oc-

cur?” The set of relevant findings we model here is that extra

trials practiced per day, past a certain point, do not appear to

lead to any further learning.

During the experiments, subjects practiced either a tempo-

ral interval discrimination task or a frequency discrimination

task for a single session each day of practice, for six days

over no more than two weeks. Each task was a two inter-
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val forced choice: on each trial participants must pick which

of two stimuli is longer (higher) for the interval (frequency)

discrimination task. The stimuli were adjusted adaptively as

practice continues. As subjects do better, the difference be-

tween the standard (shorter) and comparison (longer) stimu-

lus gets smaller. This is a common procedure used in psy-

chophysics to find a performance threshold. The experiments

consisted of a two-by-two design over number of trials in a

day (360 or 900) and task type (frequency or interval). Each

of the four conditions used a different set of participants. Fur-

ther details of the training procedure can be found in Wright

and Sabin (2007).

The data suggest there are important within-day limitations

on human perceptual learning: extra practice past some point

does not improve learning any further and insufficient prac-

tice in a day yields little to no learning across days. Further,

the number of trials needed for learning is task dependent.

Specifically, if a subject practiced the temporal interval task

for 360 trials per day this yielded the same amount of learn-

ing as 900 trials per day. During the practice of frequency

discrimination, 900 trials of practice produced significantly

more learning than 360 trials. All the above observations

were statistically verified. Details can be found in Wright

and Sabin (2007).

Here our focus will be on modeling this first observed limit

within a day: past a certain point no further trials within a day

appear to yield further learning.

Method

This section describes and justifies the basic principles of our

model (which is evaluated in our Results section).

In terms of Marr’s (1982) levels of analysis, we restrict

ourselves largely to the informational level. When operating

at this level we make no claims about what algorithm is used

internally or how that algorithm is implemented in the human

brain. Since the informational constraints are not yet fully

understood for the modeled experiments, we believe this is

an appropriate level of analysis for the time being.

Specifically, we utilize an ideal observer analysis (Geisler,

2003). The idea is to consider human performance in refer-

ence to an ideal observer, which processes information in a

way that is ‘optimal’ in some sense. This can help to avoid

conflation between two distinct types of limitations on human

behavior. These are, respectively, informational and psycho-

logical limits. Informational limits are those limits that are

inherent to the task: even if an observer were to be perfect

they would still be subject to informational limits. An ex-

ample of an informational limit would be noise in the input:

any learner, no matter how smart, would have to deal with

the problems introduced by noise. Psychological limits on

the other hand are a product of resource limitations on the

part of the observer: if the observer was ‘smarter’ they might

be able to improve their behavior. An example of a psycho-

logical limit would be memory: with limited memory only so

many units of information can be stored, but a smarter learner

would be able to store more, and so improve behavior.

Since any observer is subject to informational limits, we al-

ways assume these are present. Psychological limits are then

only hypothesized as necessary: if a behavior could be ex-

plained solely in terms of informational limits, then no addi-

tional psychological limits would be hypothesized. Through-

out our discussion we make a distinction between the ideal

observer and the proposed psychological limits.

Based upon this principle we designed a system capable of

modeling the observed limits on the amount of useful daily

practice, as observed in Wright and Sabin (2007). We begin

by describing the commitments we made regarding what in-

formation is available to humans when performing this task.

We then describe an ideal observer model, and then identify

the ways in which our model of human performance differs

from the ideal observer.

Input

The input to our model is consistent with the following prop-

erties, which are explained in more detail below. These

choices represented a number of educated guesses as to

the form of the information humans receive, based on psy-

chophysical and physiological findings.

1. Differentiation along task relevant dimensions: e.g. 1 kHz

is represented differently than 2 kHz.

2. Corruption by noise.

3. Range specificity: e.g. energy near 1 kHz is encoded sepa-

rately from energy near 2 kHz.

4. Weber’s law.

Each of these properties is based on many observations.

Clearly the input is differentiated along task relevant dimen-

sions: if there was no differentiation at all along a task rele-

vant dimension, different stimuli of a task would appear the

same to us. Second, there are many evident sources of noise

to perceptual data, from noise in the world, noise during the

transduction of sound to neural impulses, and noise in the

nervous system itself. Range specificity is consistent with

the narrow generalization patterns observed during percep-

tual learning tasks (e.g. Poggio et al., 1992; Fiorentini and

Berardi, 1980; Wright and Zhang, 2009) and with the great

multitude of physiological data suggesting that neurons are

responsive to specific, limited ranges of stimuli (e.g. Brugge,

1992; De Valois and De Valois, 1980). Range specificity is

distinct from differentiation: for instance a single source of

information can differentiate between 1000 Hz and 200 Hz

by using a single number, 1000 or 200, which would not be

specific to a particular range; range specificity means that the

sources of information (e.g. neurons) representing 1000 Hz

and 200 Hz would be at least somewhat disjoint.

Weber’s law—which states that the minimum discernible

difference (or just noticeable difference) between stimuli

along a particular dimension is proportional to the magnitude
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of the stimuli along that dimension—has long been estab-

lished as a useful rule of thumb for perceptual data (Moore,

2006).

In addition we make a number of simplifying assumptions.

We assume that, prior to perceptual learning, the input has

been correctly broken down into the various experimentally

relevant units (i.e. each input to our model represents a single

stimulus). How this happens in humans is not the focus of

this modeling experiment. Our second assumption is that the

dimensions of the stimulus are independent cues for the tasks

in question, which is correct for the two tasks we consider.

Frequency and temporal interval are represented on a log

scale. The frequency representation is found directly from the

model described in (Wang and Shamma, 1994)1. Our interval

representation is found based on a windowed autocorrelation

of the stimulus onsets. Both of these choices yield a repre-

sentation consistent with our above assumptions. The input

to the observer is a vector x of 228 terms: 128 features rep-

resenting frequency and 100 features representing temporal

interval. There are 128 bins for frequency because this is the

resolution of the model from (Wang and Shamma, 1994). The

number 100 for the interval representation was chosen arib-

trarially. The observations made in the Results section did not

change when this number was changed to 50 or 200.

We permute the input by an experimentally determined

amount of noise specific to each dimension of the stimulus

(σ2
t for the interval noise and σ

2
f for the frequency noise).

Note that since the representation is deterministic, when it is

applied directly to an ideal observer it would always respond

correctly. Choosing to represent all error in the system as in-

put noise is conservative in the sense that the ideal observer

will do more poorly under these conditions than if some of

the error was modeled as output noise, for instance.

Ideal Observer

We implement the ideal observer using a Bayesian approach

to learning: a probabilistic model which is learned during the

course of practice is used to determine the correct response on

each practice trial. This model is not meant to be a psycho-

logically plausible model of perceptual discrimination. It is

an optimal decision maker for this task, whose performance

can thus be used to identify in what ways humans are different

from an optimal choice.

For a single trial, there are two stimuli, and each stimulus

is encoded as a vector, x, of 228 terms: 128 features for the

frequency representation and 100 for the interval representa-

tion. Since we know that this input is permuted by Gaussian

noise the likelihood of each stimulus type—the standard (or

longer) and the comparison (or shorter)—can be modeled us-

ing a Normal distribution. We calculate the posterior model

analytically by assuming a conjugate prior (Gelman, 2004).

Learning and use of this model then follows a straightforward

application of Bayes rule and conjugate priors, described be-

1An implementation of this model can be found at
http://www.isr.umd.edu/Labs/NSL/Register.htm.

low.

Specifically the ideal observer learns a model of the stan-

dard (e.g. shorter) stimulus, S, and one for the comparison

(e.g. longer) stimulus, C for each task. Each model is a

multivariate Normal distribution, describing the probability

of observing a given input vector x. This distribution is spec-

ified by the mean vector µS for the standard model and µC

for the comparison. Each mean has 228 terms (one for each

frequency and interval value) and covariance matrix ΣS,or ΣC

with 228 rows and columns. Hence, the probability of ob-

serving a given input vector, assuming it is the standard is as

follows.

p(x|µS,ΣS) ∝ exp
[

(x−µS)
T

Σ
−1
S (x−µS)

]

(1)

To learn the model of S and C the observer must be pro-

vided with examples of the standard and the comparison.

These can be used to determine the probability of a given

µs and ΣS, using Bayes rule. Below xt represents the exam-

ple of the standard (shorter) stimulus observed at time t. On

each practice trial, feedback is given to the observer after it

responds, so on each trial the observer is provided with an-

other example of both the standard and the comparison.

p(µS,ΣS|x1) ∝ p(x1|µS,ΣS)p(µS,ΣS) (2)

p(µS,ΣS|x1,x2) ∝ p(x2|µS,ΣS)p(µS,ΣS|x1) (3)

...

p(µS,ΣS|xt , · · · ,x1) ∝ p(xt |µS,ΣS)p(µS,ΣS|xt−1, · · · ,x1)
(4)

Equation 2 requires that the prior probability p(µS,ΣS) be

known, which we will discuss shortly. Subsequent equations

show how an example xt updates the distribution of parame-

ters for S. Given a set of training examples, the probability of

x for model S is defined as follows:

p(x|S) =
ZZ

p(x|µS,ΣS)p(µS,ΣS|xt , · · · ,x1)dµS dΣS (5)

Equation 5 can be calculated given that conjugate priors are

used. Once p(x|S) and p(x|C) are known, Bayes rule can be

used to find the probability that the model should indicate that

the first (or second) stimulus is the longer of the two stimuli

presented on a trial.

To use this Bayesian learner we must define the prior of the

model (p(µ,Σ)), representing what people know before they

practice the task. There are many deep questions that might

be asked about what humans know about task before practice

and how they know it. Here we choose a simple approach

to selecting a prior: starting with a naive model (with mean

vector 0, and an identity matrix for covariance) the learner is

presented an experimentally determined number of trials of

each task (Nt trials of the interval task, and N f trials of the

frequency task).
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Psychological Limits

We consider two modifications of the ideal observer de-

scribed in the previous section to model psychological lim-

its. The first is a direct result of the observation in (Wright

and Sabin, 2007) that for these tasks people do not appear

to learn within a day but only across days, hence our ‘daily’

model. The ‘daily’ model learns as per the ideal observer, but

responds based only on data from previous days of practice,

and not from the current day. This is used as a baseline model

during our evaluation in the next section. Our second mod-

ification models the hypothesis that there is a daily limit on

training: it does this by introducing a decay on the knowledge

obtained from trials on the current day. The ‘decay’ model

incorporates this limit, in addition to the limits of the ‘daily’

model. This proposed decay is a novel contribution of this

paper in that it has not been considered as an explanation for

the observed daily limit in these tasks before.

The decay in the model is implemented as follows. Given

a new example, xt+1 at trial t + 1, normally the model of

the standard (or comparison) stimulus is updated according

to Bayes rule in the following manner.

ft,d(µ,Σ | Dt+1,C) ∝

p(xt+1 | µ,Σ) ft,d(µ,Σ | Dt) fT,d−1(µ,Σ |C) (6)

In Equation 6, the function ft,d is the distribution over stimu-

lus parameters µ and Σ, on trial t of day d. Dt represents all

training examples observed for the current day, and C repre-

sents all examples observed on previous days (i.e. the con-

solidated information). T is the maximum number of trials

observed in a day. This expresses the same relation expressed

in Equation 4. However, with memory decay, this optimal

update is changed to the following rule.

ft,d(µ,Σ | Dt+1,C) ∝

p(xt+1 | µ,Σ) ft,d(µ,Σ | Dt)
1−L fT,d−1(µ,Σ |C) (7)

Equation 7 means that memory decay occurs for trials ob-

served on the current day. The distribution learned from a

previous day of practice remains in the same state it was at

the end of that day of practice (as determined by fT,d−1), in-

cluding any decay that occurred on that day. This decay is a

reasonable representation of loss of information within a day.

If L = 0 then the model is equivalent to the ‘daily’ model. If

L = 1 the daily practice has no effect on the model. Values

between 1 and 0 represent a continuum between these two

extreme conditions.

Note that it’s possible the decay should be over some

shorter period of time, rather than including all trials within a

day. For instance, it has been suggested that if a short nap is

taken this has the same benefit as a night of sleep for purposes

of perceptual learning (Mednick et al., 2003). This could eas-

ily be explained by our model by having Dt contain only those

trials that occur after the last period of sleep, and C contain

all other trials. However, this is beyond the scope of the ex-

periments modeled in this paper.

Results

Our hypothesis is that the observed daily limits on learning

can be modeld as a decay of the memory of trials on the cur-

rent day (while leaving memory of previous days’ trials un-

touched). We compared a computational model that had this

hypothesized limit (the ‘decay’ model) to one that did not (the

‘daily’ model). To compare these models to human data we

ran the same adaptive track blocks used in (Wright and Sabin,

2007) to determine thresholds. On each trial the original au-

dio input was represented to the model and a response was

given, and then feedback about the correct answer was used

by the model to learn. This procedure was repeated 30 times,

to simulate 30 different experimental subjects. This number

was chosen to yield satisfactory statistical power for our anal-

ysis.

Results for the two models are discussed below. Figure 1

displays the results of these two models alongside human per-

formance, as observed in (Wright and Sabin, 2007). From the

graphs it appears that both models appear to fit the results well

for the 360 trials/day interval discrimination condition and the

900 trials/day frequency discrimination condition. The decay

model appears to also fit the data for the 900 trials/day inter-

val discrimination condition better than the daily model.

Our statistical tests supported this observation. For each

iteration, condition and day of a model we found the squared

error to the mean human performance on that day. Table 1

shows the mean squared errors across conditions and models.

Because the human and model data were qualitatively dif-

ferent in the 360 trial/day frequency condition we excluded

it from the below analysis, since any differences between the

two models in this condition will not be meaningful. A 3x2x6

ANOVA across conditions and models and within days of

these squared errors showed a main effect across condition

and model (p < 0.028). A Tukey’s HSD test suggested that

the decay model’s mean squared error was significantly less

than the daily model’s mean square error (p < 0.014).

Interval Frequency

360 900 360 900

daily 2.68(0.32) 3.40(0.37) 18.09(1.1) 1.24(0.11)

decay 2.77(0.29) 2.03(0.19) 24.60(1.2) 1.19(0.14)

Table 1: Mean squared errors for the daily and decay model.

Errors are the difference between a model threshold and the

mean for the human data on a given day and condition. Num-

bers in parenthesis indicated standard errors.

Model parameters (which determined noise and prior

knowledge) were adjusted so that the daily model matched

human performance on day 1 and day 6 of all conditions ex-

cept the 360 trials/day frequency condition, using the opti-

mization algorithm described in Huyer and Neumaier (2008).

These conditions were chosen because this was where learn-

ing appeared to occur. Since the noise of the model strongly

influences the final performance of our model on day 6 (after

learning), it should be fit to those conditions where learning
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Figure 1: Results for ‘daily’ and ’decay’ models compared to human performance. Results are averaged across 30 runs of

each model. ∆ f represents the difference between the standard (lower) and comparison (higher) frequency stimuli for the

frequency task, and ∆t the difference between the standard (shorter) and comparison (longer) stimuli for the interval task. The

adaptive track method used finds the 79% accuracy of a subject or model. Lower delta’s indicate that the human participants

are performing better. A model is accurately predicting the human data if its curve is closer to the human curves. Bars indicate

standard errors.

appears to occur. The parameters for prior knowledge are de-

pendent on this noise and so we fit it jointly and under the

same conditions as the noise. For reasons that will become

clear below we also matched this data to human performance

on day 2 of the 900 trials/day interval discrimination task.

An analogous procedure was used for the decay model ex-

cept that the decay parameter (L) was also adjusted, and fit

to the same days as above. The data was fit to day 2 for the

900 trials/day interval. This single day was chosen so as to

be minimal (to avoid overfitting) and such that it was a place

where L might cause an observable change in the results. This

same day was used for the daily model above so that both

procedures had access to the same information. All parame-

ters were selected so as to maximize the posterior probability

of the selected days given the human thresholds (assuming

thresholds on a day are Normally distributed, which is con-

sistent with the analysis in Wright and Sabin (2007)).

Discussion & Conclusions

In this paper we evaluated a model of learning across two

simple auditory tasks. Our goals differed from that of pre-

vious work (e.g. Poggio et al., 1992; Petrov et al., 2005; Ja-

cobs, 2009) in that we considered auditory tasks rather than

visual tasks, and in that we considered a single model that

could explain results across several tasks. To the best of our

knowledge, ours is the first computational model of auditory

perpetual learning.

Our contributions in this paper were to show that our

‘daily’ model could accurately model two of the four con-

sidered experimental conditions and that our ’decay’ model

(which included a decay of memory for the trials observed on

current days) could model an additional condition (900 tri-

als/day of interval discrimination). This result suggests that

the minimal difference in learning for this condition and the

360 trials/day of interval discrimination could be caused by

memory loss.

Modeling this condition using memory decay is consistent

with numerous studies of consolidation suggesting newly ac-

quired information begins in a volatile state, and is not made

permanent until consolidation occurs after practice is com-

plete (McGaugh, 2000). In cases where consolidation is in-

terfered with, perhaps what happens is that the memory of

observed trials on a task decays before it can be stored in long

term memory. The 900 trial/day interval discrimination con-

dition would then represent an intermediate case where con-

solidation has yet to occur (perhaps because practice is still
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ongoing), and hence memory decay degrades part of what

has been learned. Once practice is complete consolidation

can commence given that no other interfering effects occur.

The model presented here does not explain one of the ex-

perimental conditions we considered (the condition with 360

a trials of frequency discrimination a day). In this condition

people did not appear to learn but our model did, suggest-

ing that the human results cannot be explained simply by

the fact that fewer trials were observed, which is consistent

with the observations made in Wright and Sabin (2007). We

have considered several possible factors that might explain

this condition, but as of yet, no factor we have considered

can explain both the 360 trial interval discrimination task and

the 360 trial frequency discrimination task using a single pa-

rameter. Any model using a different parameter per condition

would be meaningless in that any such model would fit the

data. This suggests to us that more perceptual learning tasks

must be considered before a meaningful model for this condi-

tion and others like it can be proposed, and is a goal of future

work. In the future, it is also our plan to consider conditions

where people practice several tasks at once, to help us under-

stand why learning does or does not occur, such as in (Banai

et al., 2009).

This paper thus represents a first step toward developing a

model that can explain learning across a number of percep-

tual learning tasks, rather than modeling behavior on a single

task. Such a model must consider more constraints than one

that doesn’t, which can help provide a better understanding

of how and when perceptual learning occurs and why.
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