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Abstract 
The change signal task is a two alternative forced choice task 
with the addition of a change signal presented on 1/3 of the 
trials at some delay relative to the initial stimulus. The change 
signal indicates to participants that they should inhibit their 
initial choice and respond with the other alternative. It 
provides an opportunity to examine the cognitive mechanisms 
involved in statistical learning and response inhibition. Within 
the task, change signal delays are associated with stimulus 
color, and are adjusted independently with a step function to 
produce high and low error conditions. Observed data show a 
significant difference in reaction times between these two 
conditions. In this paper we propose a model for the change 
signal task that leverages existing declarative memory 
mechanisms in ACT-R as a surrogate for the implicit 
contextual learning observed in human trials. We compare the 
mechanisms in this model briefly to an existing neural 
account, and use the model to predict the consequences of 
cue-conditional reversal. 

Keywords: response inhibition; statistical learning; 
declarative memory; ACT-R. 

Introduction 
Executive control of behavior is a defining component of 
high-level cognition. One aspect of executive control, 
response inhibition, has been explored extensively using the 
stop signal paradigm. The classic task from Logan and 
Cowan (1984) visually presented subjects with one of four 
letters, which the subjects then classified into groups by 
pressing one of two buttons. On 25% of the trials an audible 
tone signaled that they should inhibit their response. The 
probability of responding was related to the timing of the 
stop signal (with a greater chance of inhibition with shorter 
delays) and so the authors proposed a “horse race” model 
for resolving executive conflict. 

Brown and Braver (2005) extended the stop signal 
paradigm to assess error-likelihood effects. In their change 
signal task, a two alternative forced choice task is presented. 
On one third of the trials, however, a second stimulus is 
presented at some delay following the original stimulus. The 

second stimulus – the change signal – indicates to subjects 
that they should inhibit their response to the original 
stimulus and respond with the other alternative instead. To 
ensure a particular error rate in the task, the delay between 
the initial stimulus and the change signal is manipulated. 

In Brown and Braver (2005), two colors were used for the 
stimuli, each of which was associated with a different target 
error rate. They collected fMRI data from participants 
across the four stimulus conditions (i.e., Change versus No 
Change trials crossed with High versus Low error 
probability) to evaluate two alternative models of anterior 
cingulate cortex (ACC) function. The successful model, 
known as the error-likelihood model, correctly predicted a 
learned response in the ACC that was sensitive to the 
stimulus color (error rate condition), for both the “go” and 
“change” trials. 

The model presented in Brown and Braver (2005) was 
focused on understanding the role of the ACC in learning to 
recognize situations in which the risks of errors are high.  
Previous work suggested that the ACC detected actual 
errors (Dehaene et al., 1994) as well as conditions of 
response conflict (Botvinick et al., 2001).  The error 
likelihood model further suggested that the ACC activity 
warns of an impending error as a basis for implementing 
proactive control. 

There are other interesting aspects to the empirical data 
that are not addressed directly by Brown and Braver (2005). 
For instance, the model does not address the sequential 
behavior of participants in terms of their reaction times. In 
addition, the model does not explicitly account for 
differences in reaction times for the two different error 
conditions. These effects in the empirical data provide 
further evidence regarding the cognitive mechanisms 
involved in human performance on this task that will be 
explored in the current research. 

To better understand the mechanisms influencing human 
performance on the change signal task, we have created a 
complementary model that focuses on the detailed behavior 
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of participants. For instance, the data illustrate that the 
conditional learning predicted by the error-likelihood model 
(i.e., differences in ACC activation for High versus Low 
error conditions) has an impact on reactions times that 
unfolds over the course of many trials. We used the ACT-R 
(Anderson, 2007) computational cognitive architecture to 
model these results from Brown and Braver (2005) study. 
After we describe the model and results in detail, we discuss 
the distinct and complementary insights afforded by the 
modeling approach used here versus Brown and Braver 
(2005). 

The Task 
We reimplemented the original Brown and Braver change 
signal task in Lisp to accommodate integration with ACT-R. 
The only known differences include color choices, symbols 
presented, and response keys. Although these items were 
altered for implementation convenience, they have no 
bearing on model behavior or performance. The remaining 
description will focus on the task as presented to human 
subjects. Additional details regarding the task and 
instructions can be found in the supplementary materials 
from Brown and Braver (2005). 

A schematic of the change signal task is shown in Figure 
1. After a .5s blank inter-trial delay, subjects were presented 
with a cue stimulus in one of two colors. Unbeknownst to 
the subjects, the cue color represented either a high error 
rate condition or a low error rate condition. After one 
second, the cue was replaced with a similarly colored go 
signal—an arrow pointing either right or left. The subjects 
were instructed to respond to the go signal by pressing the 
corresponding right or left arrow key on the keyboard.  

On one third of the trials, a larger arrow pointing in the 
opposite direction of the go signal appeared after a change 
stimulus delay (CSD). (Again, the coloring was consistent 
with the error rate condition.) In this case, subjects were 
instructed to inhibit their initial response to the go signal, 
and instead respond to the “change signal.” A response 
ended the trial, which progressed directly to a blank screen 
and the inter-trial delay. No feedback was presented. If the 
subject failed to respond within one second after the go 
signal appeared, the trial timed out.  

The high and low error rate conditions were bound to 
unique CSDs, which were adjusted independently using a 
step function to maintain a consistent error rate defined for 
each condition. In both error rate conditions, CSDs were 
constrained to a range of 20 to 800ms and incorrect 
responses reduced the CSD by 50ms. In the low error rate 
condition, correct responses led to a 2ms increase in the 
CSD, while in the high error rate condition the CSD 
increased by 50ms when a correct response was made. 
These adjustments were made to motivate a 4% error rate, 
and a 50% error rate, respectively. Responses made prior to 
the presentation of the change stimulus were considered 
errors. 

The original experiment used five blocks with 
approximately 107 trials each, although the trial count 

varied slightly across subjects. Our task fixed this number to 
107, and the direction of the go signals and error rate 
conditions was randomized and counterbalanced within 
each block as best as possible. Stimulus colors were 
consistent with the error rate condition in all blocks except 
the last. For the final block, the relationship between stimuli 
colors and error rate conditions was reversed. 
 

 
Figure 1: Task schematic. A cue signal is presented in one 

of two colors, followed by a go signal 1 second later. There 
is a 33% chance that a subsequent change signal will be 

presented, the timing of which is determined by a change 
stimulus delay bound to the signal color. 

 

Human Performance 
Figure 2 shows aggregate reaction times across trials 
collapsed across subjects and conditions. The solid line 
represents the central tendency as predicted by a simple 
linear regression of a logarithmic model, although the 
regression is intentionally discontinuous at the start of the 
reversal block, indicated by the grey area. The subjects 
performed more slowly across trials until they reach an 
asymptote. The regression model coefficient affecting the 
rise and asymptote of the curve is significantly greater than 
zero for the normal trials (p < .001), and not significant for 
the reversal block. This suggests that there are not enough 
reversal block trials to reveal an effect, if there is one. 

Time on task effects may account for some of the 
performance decline (e.g., Gunzelmann, G., Moore, L. R., 
Gluck, K. A., Van Dongen, H. P. A., & Dinges, D. F., 
2010), but we believe that the more influential factor is that 
subjects were strategically hedging their responses to 
improve their odds of successfully responding to change 
signals. (Of course, such a strategy is futile in this 
experiment because the CSDs were adjusted to encourage a 
consistent error rate.) Evidence for strategic hedging 
becomes apparent when we examine reaction times for each 
condition, also shown in Figure 2. The dashed line shows 
the central tendency for the high error rate condition, and 
the dotted line shows the central tendency for the low error 
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rate condition. Again, the regression is intentionally 
discontinuous at the start of the reversal block. 

Not surprisingly, the statistics for the two error rate 
conditions match those of the collapsed data, with highly 
significant coefficients for the normal blocks (p < .001) and 
insignificant coefficients for the reversal block. The 
confidence intervals for the normal block coefficients, 
however, are more interesting because they do not overlap. 
(17.8 < Ahigh < 27.7, and 3.0 < Alow < 11.2) The significant 
difference between these coefficients suggests a relationship 
between stimulus color and reaction time. In other words, 
over the duration of the experiment, subjects learn to delay 
their response more for the high error rate condition than for 
the low error rate condition. A simple time on task effect 
would not produce a disparate hedge times across error rate 
conditions.  

 

 
Figure 2: Reaction times collapsed across conditions are 

shown in the grey scatterplot, with the central tendency 
shown as a solid black line. Central tendencies for the high 
and low error conditions are shown as dashed and dotted 

lines, respectively. The central tendencies, generated 
through regressions, are discontinuous at the start of the 

reversal block, shown in grey. 
 

The Model 
The ACT-R 6 (Anderson, 2007) cognitive architecture 
provides the computational framework for our model. It 
integrates perceptual, cognitive, and motor processing 
mechanisms from the psychological literature. At its core, it 
is a symbolic production system with a semantic network 
memory and simulated subsymbolic effects. Specifically, 
our model leverages the procedural and declarative 
capabilities, the intentional module, and a timing capability 
derived from a temporal module (Taatgen, Van Rijn, & 
Anderson, 2007).  

The empirical data from Brown and Braver (2005) 
demonstrate that subjects implicitly learned the association 
of stimulus color to error rate condition. In this paper, we 
show that this learning measurably influenced subject 
performance—their response times were strategically 

mediated by stimulus color. Out of several possible 
approaches to model this in ACT-R, we chose to use the 
declarative module to emulate the statistical learning 
attributed to the ACC.  

From the perspective of the ACT-R theory, the 
declarative module is not intended to represent the 
functional properties of the ACC (see Anderson, 2007), but 
it does provide the appropriate Bayesian dynamics to 
represent the learning we hypothesize may be involved. 
Thus, we treat the declarative module as a surrogate for the 
ACC functionality that is not represented by existing 
mechanisms in ACT-R. This absent functionality would 
appear to appropriately reside within ACT-R’s intentional 
module, which is associated, in part, with ACC function 
(Anderson, 2007). 

The model employs a simple hedging strategy to 
accomplish the task. Upon attending to a cue, it attempts to 
retrieve a similar trial from declarative memory based on the 
cue color. When the subsequent go signal is attended, the 
model does not respond immediately. Instead, it waits 
according to a remembered “hedge time” from the trial that 
was retrieved from declarative memory. If no similar trial 
exists (i.e., nothing was retrieved), a default initial hedge 
time is used, which is a free parameter discussed below. If a 
change signal is seen prior to the expiration of the hedge 
time, a response is made accordingly. If no change signal is 
seen and the hedge time expires, the model responds to the 
go signal. 

Even when the model responds to the go signal, the key 
press does not occur immediately. Instead, the ACT-R 
motor module initiates a 3-phase motor movement that can 
take well over 100 milliseconds before the actual key press 
is registered by the task (Byrne & Anderson, 2001). During 
this time, the model can detect a change signal, although it 
is too late to cancel the requested motor action. The model 
learns from its failure by associating the CSD with the color 
for that trial in its goal buffer of the intentional module.  
This timing information is based upon estimates from the 
temporal module (Taatgen et al., 2007).  

At the start of the next trial, the contents of the goal 
buffer, which includes the association between the stimulus 
color and hedge time, is stored in declarative memory to 
serve as an exemplar for future trials. Because detected 
errors typically associated a longer hedge time than what 
was originally retrieved, they have the effect of increasing 
future hedge times (Rabbitt, 1966). As currently written, the 
model has no specific mechanism to reduce hedge times. 

Without a mechanism to reduce hedge times, it might 
seem that model response times would always increase and 
never asymptote.  Indeed, sharp increases in hedge times do 
occur in early trials.  However, because each stimulus color 
/ hedge time pairing is stored as an independent chunk (i.e. 
there is no merging) the likelihood of retrieving a particular 
hedge time increases the more often it is used, in part due to 
the influence of stochasticity in declarative memory.  After 
a large number of trials, the declarative memory becomes so 
saturated with hedge times associated with each stimulus 
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color, that the model’s hedging essentially reaches a steady 
state. 

Three parameters were involved with fitting the model to 
observed data. The first is the initial hedge time, which we 
believe was established either through practice trials or as a 
side effect of instructions that informed subjects of delayed 
change signals. This has the simple effect of moving the y-
intercept in Figure 3. 

The second free parameter was activation noise, which 
reflects the effect of subsymbolic processes in the 
declarative memory system. Noise influences the likelihood 
that recent and correct declarative information will be 
retrieved. In terms of the curve in Figure 2, noise affects the 
overall shape—higher noise flattens it out. In ACT-R, 
activation noise is set with the ans parameter, for which we 
settled on a value of .53. This produces a standard deviation 
of .96 in the distribution of noise that is sampled to add 
stochasticity to the activation of declarative memories. 

Lastly, the ACT-R declarative memory system allows for 
errors of commition through a mechanism called partial 
matching. We used this mechanism so that the model would 
be indifferent to stimulus colors in early trials and develop a 
differentiation in later trials. The mechanism requires us to 
specify a degree of similarity between stimulus colors, 
which we set to 50%. We did not use this as a free 
parameter in the fitting processes because the other 
parameters provided the necessary degrees of freedom. 

Results 
Using the parameter values described above, we 

aggregated the results from 100 model runs to obtain 
reliable measures of central tendency. A comparison of 
reaction times between model and human data are shown in 
Figure 3. Because a large amount of stochasticity still 
remains even after aggregation, the model results are 
represented using linear regressions of a logarithmic model 
in the same way the human data is shown. (The standard 
deviation is considered as a separate measure of fitness 
below.) 

 
Figure 3: ACT-R model results are shown as dashed lines 

on top of the human data shown as black lines. 

The RMSD values calculated from the model and human 
reaction time data are shown in Table 1. The overall mean 
RMSD was 58.5ms, which seems reasonable given that 
some of the deviation is a result of remaining stochasticity 
in the model and human data.  

 
Table 1: RMSD values between model and human data. 

 
Condition / Block RMSD (ms) 
High Error / Normal 51.6 
High Error / Reverse 48.8 
Low Error / Normal 74.3 
Low Error /Reverse 59.1 

 
The high stochasticity suggests that the standard deviation 

of the reaction time is another important measure of fitness 
(non-responses were removed for this analysis). Figure 4 
overlays model performance on top of a box plot of the 
subject data. The model’s standard deviation was in the 
middle of the 1st quartile for the subject data. This could be 
improved by increasing noise in other areas of ACT-R, but 
we opted against doing so in the interest of parsimony. 

 

  
Figure 4: ACT-R model standard deviation, error 

proportion, and non-responses overlaid on subject data. The 
hollow diamonds indicate ACT-R values. 

 
The proportion of incorrect responses made was also a 

consideration. For purposes of this analysis, an incorrect 
response occurs when the subject presses the wrong arrow 
key, regardless of condition. Since a response is actually 
made, this does not included non-responses, which are 
analyzed separately below. Also shown in Figure 4, the 
results were within the range of humans, although on the 
high side. 

The remaining measure of fitness is the proportion of 
non-responses. A non-response occurs when the model fails 
to respond to a go signal within 1 second. The temporal 
module in ACT-R adds some stochasticity to the timing so 
this can occur even if the intended hedge time is within the 
trial period. Again, the non-responses were well within the 
human range (see Figure 4), but on the low side of the 
second quartile.  As was the case with standard deviation, 
this could be improved if we allowed the model another 
degree of freedom.  

Finally, fMRI studies, including the Brown and Braver 
(2005) work, often use a blood oxygenation level-dependent 
(BOLD) contrast mechanism. With this technique, regions 
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of the brain with higher blood oxygenation appear more 
intensely on images, which indicates greater neural activity.  
ACT-R uses buffer activity to make BOLD predictions 
(Anderson, Bothell, Byrne, Douglass, Lebiere, & Qin, 
2004), as shown in Figure 5. In this figure, ACT-R makes 
BOLD predictions for the ACC region based on activity in 
the goal buffer of the intentional module.  To produce this 
graph, the inter-trial delay was extended to 10 seconds to 
isolate responses.  Data was aggregated from 12 normal 
blocks of 107 trials. 
 

 
Figure 5: ACT-R BOLD predictions for the ACC region 

in each of the four conditions. 
 

 

Discussion 
As modelers, we often confront (and perhaps carry our 

own) biases related to specific modeling approaches, 
whether it be production level architectures like ACT-R, 
connectionist approaches like the error likelihood model, 
diffusion models, dynamic systems, or others (Anderson & 
Lebiere, 2003). This is unfortunate, because as this research 
demonstrates, each methodology maintains distinct 
advantages as well as disadvantages that may be overcome 
using a variety of techniques. Specifically, the error 
likelihood model makes detailed predictions about 
neurological processes in the ACC beyond the current scope 
of ACT-R. However, ACT-R brings to the table a 
generalized account of end-to-end perceptual-cognitive 
activity, which can reproduce observed behavior.  

If we accept that both models contain elements of truth, 
there must be some functional overlap despite the differing 
levels of abstraction. Recent work on the theory of ACT-R 
has focused on mapping functionality to specific brain 
regions (e.g., Anderson, Bothell, Byrne, Douglass, Lebiere, 
& Qin, 2004). Specifically, the ACC is attributed to the 
ACT-R intentional module, which includes the goal buffer 
(Anderson, 2007). The goal buffer typically maintains the 
internal and relevant external information required to make 
decisions. This is intended to include the conflict resolution 

typically attributed to the ACC, but it is a functionally 
broader interpretation. 

In our change signal model, the goal buffer contains the 
stimulus color and hedge time, among other state 
information. The current implementation of ACT-R 
provides no functional computation in the intentional 
module, so the statistical learning demonstrated by the error 
likelihood model involves knowledge maintained in the 
declarative module, which acts as a surrogate. Our position 
that the declarative memory acts as a surrogate is largely 
based on that fact that many subjects were unable to 
explicitly distinguish the difference between stimulus colors 
in terms of their pairing with error likelihood even after the 
experiment.  

This is not a firm position, and we are planning a follow-
up study to guide our modeling direction. A more detailed 
participant debriefing will help determine the degree of 
declarative learning and influence on behavior.  The results 
may suggest that the declarative component is more than 
just a surrogate—perhaps the ACC activity is 
epiphenomenal to declarative function. On the other hand, it 
may be confirmed that there is little relation between 
declarative knowledge and subject behavior with respect to 
high and low error conditions. In this case, the model may 
evolve towards a bottom-up learning approach, perhaps 
though augmenting the intentional module in ACT-R or 
focusing on a procedural learning approach.  

In the mean time, the declarative module provides a 
reasonable proxy for ACC function because it employs a 
similar statistical learning process. Because the information 
managed in declarative memory relates stimulus color and 
hedge times, greater activity occurs when change signal 
errors are detected. This is reflected in the goal buffer, 
which results in higher predicted BOLD responses in ACT-
R. Furthermore, because errors are detected 3x more often 
in the high error rate change condition, its mean BOLD 
response will rise above all other conditions. This is 
supported in Figure 5. 

The ACC BOLD responses recorded in the Brown and 
Braver (2005) study aligns with some, but not all, of the 
ACT-R predictions.  Specifically, the high error change 
condition shows the highest activation, followed by low 
error change and high error go conditions which are 
essentially tied.   

The low error rate go condition is a significant 
divergence, as the BOLD response show that the activation 
is clearly lower than the other conditions in that region. 
Unfortunately this was one of the key findings that 
distinguished the error likelihood model from the alternative 
“conflict” model. The current ACT-R model does not 
produce a similar prediction because extra goal 
manipulation only occurs when errors are detected in 
change conditions. One could argue that this is a response to 
the statistical learning that was delegated to the declarative 
memory system in our model. In this regard, the ACT-R 
model stands in contrast with the Brown and Braver (2005) 
model, which predicted greater fMRI activity in ACC for 
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high vs. low error likelihood trials, even when restricted to 
correct trials with no change signal. Nevertheless, if the 
hedge time in the declarative memory were to increase the 
simulated fMRI activity, then our model might be able to 
simulate an error likelihood effect in ACC activity.  

Finally, with an ACT-R model of the change signal task 
performing reasonably well, we have an opportunity to 
make a prediction. The reversal block in the observed 
human data had surprisingly little effect, and the ACT-R 
model produced similar results. By extending the number of 
reversal blocks, we can predict how many trials will be 
required to see an effect, and what that effect might be.  

The predicted results of 24 reversal blocks are shown in 
Figure 6. As mentioned previously, the model does not 
currently have a mechanism to reduce hedge times. Both 
conditions achieve a steady state at their asymptotes through 
a combination of accumulated statistical evidence and 
retrieval noise. Even when failures to respond to change 
signals are detected and increased hedge times remembered, 
noise in the declarative retrieval process makes it unlikely 
that the latest trial information will be retrieved over the 
large number of older, lower trial hedge times available. 

Without this statistical influence, the low error rate 
condition would never achieve an asymptote below the high 
error condition without a mechanism to hedge downward. 
This also provides an explanation for the predictions in 
Figure 6, which continue on the same trajectory as the 
normal block. In contrast, the error likelihood model of 
Brown and Braver (2005) would predict that over time, the 
ACC will learn the reversed error likelihood pairings, 
leading to a reversal of error likelihood effects on reaction 
time. Although our current data is insufficient to make 
concrete statements about which prediction is correct, our 
follow-up study will extend the number of reversal blocks 
with hopes to allow such a test.  Once again, this will help 
inform future model development. 

 

 
 
Figure 6: ACT-R model prediction of color reversal over 

24 blocks, shown in the grey region.  
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